
Keg Reference Guide

Keg Reference Guide

Publication Date: 01 Aug 2024

https://documentation.suse.com

https://documentation.suse.com

Contents

Preface v

1 Overview 1
1.1 Conceptual overview 1

1.2 Working with keg 2

2 Installation 4

2.1 Installation from openSUSE Cloud:Tools repository 4

2.2 Installation from PyPI 4

3 Command Line 5

3.1 keg 5

SYNOPSIS 5 • DESCRIPTION 5 • ARGUMENTS 5 • OPTIONS 5 • EXAMPLE 7

3.2 generate_recipes_changelog 7

SYNOPSIS 7 • DESCRIPTION 7 • ARGUMENTS 8 • OPTIONS 8 • EXAMPLE 8

4 Recipes basics 10

4.1 Recipes data layout 10

4.2 Source data format and processing 11

5 Image definition 12

5.1 Image definition structure 12

image 13 • config 16 • setup 17 • archive 17

5.2 The _include statement 18

5.3 Additional configuration directives 19

include-paths 19 • image-config-

comments 19 • xmlfiles 20 • schema 20

iii Keg Reference Guide

6 Data modules 21

6.1 Image definition modules 21

6.2 Image configuration scriptlets 23

6.3 Overlay files 24

7 Generating change logs 25

7.1 Source info tracking 25

7.2 Change log generator 25

7.3 Integration in OBS source service 26

8 Keg OBS source service 27

iv Keg Reference Guide

Preface

Note
Template-Based KIWI Description Builder

GitHub Sources (https://github.com/SUSE-Enceladus/keg)

v

https://github.com/SUSE-Enceladus/keg

1 Overview

Note
Abstract

This document provides a conceptual overview about the steps of creating an image de-
scription with keg which can be used to build an appliance with the KIWI (https://osin-

side.github.io/kiwi/) appliance builder.

Note
Copyright © 2022 SUSE LLC and contributors. All rights reserved.

Except where otherwise noted, this document is licensed under Creative Commons Attri-
bution-ShareAlike 4.0 International (CC-BY-SA 4.0): https://creativecommons.org/licens-

es/by-sa/4.0/legalcode .

For SUSE trademarks, see http://www.suse.com/company/legal/ . All third-party trade-
marks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote
trademarks of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail.
However, this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the
authors nor the translators shall be held liable for possible errors or the consequences
thereof.

1.1 Conceptual overview

Keg is a tool which helps to create and manage image descriptions for use with the KIWI (https://

osinside.github.io/kiwi/) appliance builder. A KIWI image description consists of a single XML
document that specifies type, configuration, and content of the image to build. Optionally there
can be configuration scripts and overlay archives added to an image description, which allow
for further configuration and additional content.

Since KIWI image descriptions are monolithic, maintaining a number of image descriptions
that have considerable overlap with respect to content and setup can be cumbersome and er-
ror-prone. Keg attempts to alleviate that by allowing image descriptions to be broken into

1 Conceptual overview

https://osinside.github.io/kiwi/
https://osinside.github.io/kiwi/
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
http://www.suse.com/company/legal/
https://osinside.github.io/kiwi/
https://osinside.github.io/kiwi/

modules. Those modules can be composed in different ways in so called image definitions, and
modules can inherit from parent modules which allows for ne-tuning for specific image setups.
Configuration scripts and overlay archives can also be generated in a modular fashion.

The collection of source data required for keg to produce image descriptions is called recipes .
Keg recipes are typically kept in a git repository, and keg has support for producing change
logs from git commit history, but this is not a requirement. A recipes repository provides
keg with the information how an image description is to be composed as well as the content
of the components.

The basic principle of operation is that when keg is executed, it is pointed to a directory within
the recipes repository and it reads any YAML les in that directory and any parent directories
and merges their contents into a dictionary. How the image definition data is structured and
composed is not relevant, as long as the resulting dictionary represents a valid image definition.
This allows for a lot of flexibility in the layout of a recipes repository. The SUSE Public Cloud

Keg Recipes repository (https://github.com/SUSE-Enceladus/keg-recipes) provides an example of
a highly modular one with strong use of inheritance.

For more details on what constitutes a recipes repository, see section Chapter 4, Recipes basics

().

1.2 Working with keg

To create an image description, keg needs to be installed, as well as KIWI , as the latter is used
by keg to validate the final image description. See Chapter 2, Installation for information about
how to install keg , and KIWI Installation (https://osinside.github.io/kiwi/installation.html) about
how to install KIWI .

Additionally, a recipes repository is required. The following example uses the aforementioned
SUSE Public Cloud keg recipes:

$ git clone https://github.com/SUSE-Enceladus/keg-recipes.git

$ mkdir sles15-sp4-byos

$ keg --recipes-root keg-recipes --dest-dir sles15-sp4-byos \
 cross-cloud/sles/byos/15-sp4

2 Working with keg

https://github.com/SUSE-Enceladus/keg-recipes
https://github.com/SUSE-Enceladus/keg-recipes
https://osinside.github.io/kiwi/installation.html

After the keg command completes the destination directory specified with --dest-dir con-
tains a description for a SUSE Linux Enterprise Server 15 SP4 image for use in the Public Clouds.
It can be processed with KIWI to build an image. For more details about KIWI image descrip-
tions, see https://osinside.github.io/kiwi/image_description.html .

Recipes used to generate an image description can be spread over multiple repositories. For
that purpose, the --recipes-root command line argument may be given multiple times, with
each one specifying a different recipes repository. Repositories will be searched in the order
they are specified, and for any dictionary key, config scriptlet, or overlay archive module that
exists in multiple repositories, the one that is read last will be used.

Using multiple repositories for recipes can be useful in some situations. For example, if some
parts of recipes data are public and some private, they can be kept in different repositories.
It could also be used to base recipes on an upstream repository and only maintain additional
image definitions or modifications in a separate repository.

Keg also provides support for producing image descriptions for use with the Open Build

Service (https://openbuildservice.org/help/manuals/obs-user-guide/) . It can generate _multi-
build les that are required by OBS for image descriptions with multiple profiles, and it comes
with an OBS Source Service plug-in for automating generating image descriptions. See Chap-

ter 8, Keg OBS source service for details.

3 Working with keg

https://osinside.github.io/kiwi/image_description.html
https://openbuildservice.org/help/manuals/obs-user-guide/
https://openbuildservice.org/help/manuals/obs-user-guide/

2 Installation

Note
This document describes how to install Keg. Currently keg is available from PyPi (https://

pypi.org/project/kiwi-keg/) and from the openSUSE Build Service (https://build.open-

suse.org/package/show/Cloud:Toolr/python-kiwi-keg/) for several openSUSE distribu-
tions. It is included in openSUSE Tumbleweed.

2.1 Installation from openSUSE Cloud:Tools
repository
Keg is available for various openSUSE distributions from the Cloud:Tools repository (https://

download.opensuse.org/repositories/Cloud:/Tools/) in the openSUSE Build Service. Package
name is python[py_version]-kiwi-keg .

2.2 Installation from PyPI
Keg can be obtained from the Python Package Index (PyPi) via Python’s package manager pip:

$ pip install kiwi_keg

4 Installation from openSUSE Cloud:Tools repository

https://pypi.org/project/kiwi-keg/
https://pypi.org/project/kiwi-keg/
https://build.opensuse.org/package/show/Cloud:Toolr/python-kiwi-keg/
https://build.opensuse.org/package/show/Cloud:Toolr/python-kiwi-keg/
https://download.opensuse.org/repositories/Cloud:/Tools/
https://download.opensuse.org/repositories/Cloud:/Tools/

3 Command Line

3.1 keg

3.1.1 SYNOPSIS

keg [options] <source>

3.1.2 DESCRIPTION

keg is a tool which helps to create and manage image descriptions suitable for the KIWI (https://

osinside.github.io/kiwi/) appliance builder. While keg can be used to manage a single image
definition the tool provides no considerable advantage in such a use case. The primary use
case for keg are situations where many image descriptions must be managed and the image
descriptions have considerable overlap with respect to content and setup.

keg requires source data called recipes which provides all information necessary for keg
to create KIWI image descriptions. See Chapter 4, Recipes basics for more information about
recipes .

The recipes used for generating SUSE Public Cloud image descriptions can be found in the
Public Cloud Keg Recipes (https://github.com/SUSE-Enceladus/keg-recipes) repository.

3.1.3 ARGUMENTS

source

Path to image source under RECIPES_ROOT/images

3.1.4 OPTIONS

-r --recipes-root

Root directory of keg recipes. Can be used more than once. Elements from later roots may
overwrite earlier one.

5 keg

https://osinside.github.io/kiwi/
https://osinside.github.io/kiwi/
https://github.com/SUSE-Enceladus/keg-recipes

-d --dest-dir

Destination directory for generated description [default: .]

--disable-multibuild

Option to disable creation of OBS _multibuild le (for image definitions with multiple
profiles). [default: false]

--disable-root-tar

Option to disable the creation of root.tar.gz in destination directory. If present, an overlay
tree will be created instead. [default: false]

--dump-dict

Dump generated data dictionary to stdout instead of generating an image description.
Useful for debugging.

-l --list-recipes

List available images that can be created with the current recipes

-f --force

Force mode (ignore errors, overwrite les)

--format-yaml

Format/Update Keg written image description to installed KIWI schema and write the
result description in YAML markup

Note
Currently no translation of comment blocks from the Keg generated KIWI descrip-
tion to the YAML markup will be performed.

--format-xml

Format/Update Keg written image description to installed KIWI schema and write the
result description in XML markup

Note
Currently only top-level header comments from the Keg written image description
will be preserved into the formatted/updated KIWI XML le. Inline comments will
not be preserved.

6 OPTIONS

-i --image-version

Set image version

-a

Generate image description for architecture ARCH (can be used multiple times)

-s --write-source-info

Write a le per profile containing a list of all used source locations. The les can used to
generate a change log from the recipes repository commit log.

-v --verbose

Enable verbose output

--version

Print version

3.1.5 EXAMPLE

git clone https://github.com/SUSE-Enceladus/keg-recipes.git

keg --recipes-root keg-recipes --dest-dir leap_description leap/jeos/15.2

3.2 generate_recipes_changelog

3.2.1 SYNOPSIS

generate_recipes_changelog [options] <logfile>

3.2.2 DESCRIPTION

generate_recipes_changelog generates a change log from the git commit history of one or
more keg-recipes repositories. The input le is a source info log that is generated by keg
when run with source tracking enabled (-s command line switch).

The exit status is 0 in case a change log was generated successfully, 1 in case an error occurred,
or 2 in case no error occurred but generated change log is empty.

7 EXAMPLE

3.2.3 ARGUMENTS

logfile

A source info log le produced by keg .

3.2.4 OPTIONS

-o

Write output to OUTPUT_FILE (stdout if omitted)

-r PATH:REV

Set git revision range to REV for repo at PATH

Note
This limits the applicable set of commits to the given revision spec. This can be used
to select only newer changes from a previous change log generator run. See EXAMPLE
below.

-f

Output format, ‘text’ or ‘yaml’ [default: yaml]

-m

Format spec for commit messages (see ‘format:<string>’ in ‘man git-log’) [default: - %s]
(only used with text format)

-t

Use ROOT_TAG for yaml output (e.g. image version)

3.2.5 EXAMPLE

generate_recipes_changelog -r /path/to/repo:12345678.. -t 1.1.8 log_sources

This will produce a YAML change log, namespaced with 1.1.8 , intended as a version
number, only considering commits after hash 12345678 . If 12345678 was the hash of the
HEAD commit in the checked out branch at /path/to/repo at the previous run of gener-
ate_recipes_changelog on the same data set, this would limit the change log to only contain
newer changes. This method can be used to produce incremental change logs.

8 ARGUMENTS

The change log will have the following format:

1.1.8:
 - change: git message subject
 date: git commit UTC timestamp
 details: |-
 git message body
 ...

9 EXAMPLE

4 Recipes basics

To produce image descriptions, keg must be provided with source data, also called keg
recipes . Unlike KIWI descriptions, keg recipes can be composed of an arbitrary number of
les, which allows for creating building blocks for image descriptions. Keg does not mandate a
specific structure of the recipes data, with the exception that it expects certain types of source
data in specific directories.

This document describes the fundamental keg recipes structure and how keg processes input
data to generate an image definition.

4.1 Recipes data layout

Essentially, a keg recipes repository conists of three top-level directories which contain dif-
ferent types of configuration data. Those three are:

1. Image Definitions: images
The images directory contains all image definitions. An image defintion specifies the
properties and content of the image description to generate. Include statements in the
image definition allow to reference chunks of content from the data modules. Image def-
initions are specifed in YAML format, can be modular and support data inheritence. See
Chapter 5, Image definition for details.

2. Data Modules: data
The data directory contains different bits of configuration and content data that can be
used to compose an image description. There are three different types of data modules:
2.1 Image Definition Modules
Any directory in data that is not le: scripts or le: overlayfiles is considered a
module, or module tree, for image definition data. Those modules can be referenced in the
image definitions using _include statements. The data is in YAML format and spports
inheritence.
2.2 Image Configuration Scriptlets
Scriptlets can be used to compose optional configuration shell scripts that KIWI can run
during the build process. The scriptlets are located in data/scripts .
2.3 Overlay Files

10 Recipes data layout

Image description may include overlay les that get copied into the target image. Keg
can create overlay archives from overlay data directories. Overlay les trees are located
in data/overlayfiles .

See Chapter 6, Data modules for details on data modules.

Schema Templates: schemas

Keg uses Jinja2 templates to produce the headers for config.sh and images.sh . Both are
optional and keg will write a fallback header if they are missing. Additionally, a Jinja2 template
can be used to generate config.kiwi instead of using the internal XML generator.

4.2 Source data format and processing
This section contains some general information about how keg handles its source data.

An image description is internally represented by a data dictionary with a certain structure. This
dictionary gets composed by parsing source image definition and data les referenced by the
image definition and merging them into a dictionary.

Image definitions as well as data modules are used by referencing a directory (under images or
data respectively), which may be several layers of directories under the root directory. When
parsing those, keg will also read any .yaml le that is in a directory above the referenced
one, and merge all source data into one dictionary, with the lower (i.e. more specific) layers
taking precedence over upper (i.e. more generic) ones. This inheritance mechanism is intended
to reduce data duplication.

Keg uses namespaces in the image definition to group certain bits of information (for instance, a
list of packages) which can be overwritten in derived modules, allowing for creating specialized
versions of data modules for specific use case or different image description versions.

Once everything is merged, the resulting dictionary is validated against the image definition
schema, to ensure its structure is correct and all required keys are present. If that is the case,
keg runs the image dictionary through its XML generator to produce a config.kiwi le. In
case the image definition contains configuration scripts or overlay archives specifications, keg
will generate those as well.

11 Source data format and processing

5 Image definition

In keg terminology, an image definition is the data set that specifies the KIWI image description
that should be generated. keg reads image definition from the images directory in the recipes
root directory.

Keg considers all leaf directories in images to be image definitions. This means by parsing
any YAML le from those directories and all YAML les in any parent directory and merging
their data into a dictionary, a complete image definition needs to be available in the resulting
dictionary. There is no specific hierarchy required in images . Any level of sub directories can be
used to create multiple levels of inheritance, or simply just to group image definitions. Example
directory layout:

images/
 opensuse/
 defaults.yaml
 leap/
 content.yaml
 15.2/
 image.yaml
 15.3/
 image.yaml

This example layout defines two images, opensuse/leap/15.2 and opensuse/leap/15.3 . It
uses inheritance to define a common content definition for both image definitions, and to set
some opensuse specific defaults. Running keg -d output_dir opensuse/leap/15.3 would
merge data from the following les in the show order:

images/opensuse/defaults.yaml
images/opensuse/leap/content.yaml
images/opensuse/leap/15.3/image.yaml

All keys from the individual YAML les that are in the given tree will be merged into a dictionary
that defines the image to be generated.

5.1 Image definition structure
An image definition dictionary is composed of several parts that define different parts of the
image. The actual image description, configuration scripts, overlay archives. All parts are de-
fined under a top-level key in the dictionary. There are additional top-level keys that affect data
parsing and generator selection.

12 Image definition structure

The top-level keys are as follows:

5.1.1 image

The image dictionary. This is the only mandatory top-level key. It defines the content of the
config.kiwi le keg should generate and is essentially a YAML version of KIWI's image
description (typically in XML). It contains all image configuration properties, package lists, and
references to overlay archives. There is a number of special keys that influence how keg con-
structs the dictionary and generates the XML output. The basic structure is as follows:

image:
 _attributes:
 schemaversion: "<schema_maj>.<schema_min>"
 name: <image_name>
 displayname: <image_boot_title>
 description:
 _attributes:
 type: <system_type>
 author: <author_name>
 contact: <author_email>
 preferences:
 - version: <version_string>
 - _attributes:
 profiles:
 - <profile_name>
 ...
 type:
 _attributes:
 image: <image_type>
 kernelcmdline:
 <kernel_param>: <kernel_param_value>
 ...
 ...
 size:
 _attributes:
 unit: <size_unit>
 _text: <disk_size>
 ...
 users:
 user:
 - _attributes:
 name: <user_name>
 groups: <user_groups>
 home: <user_home>

13 image

 password: <user_password>
 ...
 packages:
 - _attributes:
 type: image|bootstrap
 profiles:
 - <profile>
 ...
 archive:
 _attributes:
 name: <archive_filename>
 <namespace>:
 package:
 - _attributes:
 name: <package_name>
 arch: <package_arch>
 ...
 ...
 ...
 profiles:
 profile:
 - _attributes:
 name: <profile_name>
 description: <profile_description>
 ...

This only outlines the structure and includes some of the configuration keys that KIWI
supports. See KIWI Image Description (https://documentation.suse.com/kiwi/9/single-html/kiwi/in-

dex.html#image-description) for full details.

For the purpose of generating the KIWI XML image description, any key in the image dictionary
that is not a plain data type is converted to an XML element in the KIWI image description,
with the tag name being the key name. Any key that starts with an _ has a special meaning.
The following are supported:

_attributes

If a key contains a sub key called _attributes , it instructs the XML generator to produce an
attribute for the XML element with the given key name and value as its name-value pair. If value
is not a plain data type, it is converted to a string, which allows for complex attributes being
split over different les and also for redefinition on lower levels. For example:

type:
 _attributes:
 image: vmx
 kernelcmdline:
 console: ttyS0

14 image

https://documentation.suse.com/kiwi/9/single-html/kiwi/index.html#image-description
https://documentation.suse.com/kiwi/9/single-html/kiwi/index.html#image-description

 debug: []

Would generate the following XML element:

<type image="vmx" kernelcmdline="console=ttyS0 debug"/>

The empty list used as value for debug means the attribute parameter is valueless (i.e. a ag).

_text

If a key contains a key called _text , its value is considered the element’s content string.

_namespace[_name]

Any key that start with _namespace does not produce an XML element in the output. Name-
spaces are used to group data and allow for an inheritance and overwrite mechanism. Name-
spaces produce comments in the XML output that states which namespace the enclosed data
was part of.

_map_attribute

If a key contains a key _map_attribute , which needs to be a string type, any _attribute
key under the key that is a simple list instead of the actually required mapping, is automatically
converted to a mapping with the attribute key equal to _map_attribute value. For example:

packages:
 _map_attribute: name
 _namespace_some_pkgs:
 package:
 - pkg1
 - pkg2

Is automatically converted to:

packages:
 _namespace_some_pkgs:
 package:
 - _attribute:
 name: pkg1
 - _attribute:
 name: pkg1
 archive:
 - _attributes:
 name: archive1.tar.gz

This allows for making lists of elements that all have the same attribute (which package lists
typically have) more compact and readable.

15 image

_comment[_name]

Any key that has a key that starts with _comment will have a comment above it in the XML
output, reading the value of the _comment key (needs to be a string).

5.1.2 config

The config dictionary defines the content of the config.sh le keg should generate. con-
fig.sh is a script that KIWI runs during the image prepare step and can be used to modify the
image’s configuration. The config dictionary structure is as follows:

config:
 - profiles:
 - <profile_name>
 ...
 files:
 <namespace>:
 - path: <file>
 append: bool (defaults to False if missing)
 content: string
 ...
 ...
 scripts:
 <namespace>:
 - <script>
 ...
 ...
 services:
 <namespace>:
 - <service_name>
 - name: <service_name>
 enable: bool
 ...
 ...
 sysconfig:
 <namespace>:
 - file: <sysconfig_file>
 name: <sysconfig_variable>
 value: string
 ...
 ...
 ...

16 config

Each list item in config produces a section in config.sh , with the optional profiles key
defining for which image profile that section should apply. Each item can have the following
keys (all are optional, but there has to be at least one):

files defines les that should be created (or overwritten if existing) with the given content
or have content appended to in config.sh .

scripts defines which scriptlets should be included. <script> refers to a le data/scripts/
<script>.sh in the recipes tree.

services defines which systemd services and timers should be enabled or disabled in the image.
The short version (just a string) means the string is the service name and it should be enabled.

defines which existing sysconfig variables should the altered.

Note
<namespace> defines a namespace with the same purpose as in the image dictionary,
but config namespaces don’t have to start with _ , but are allowed to.

5.1.3 setup

The config dictionary defines the content of the images.sh le keg should generate. This script
is run by KIWI during the image create step. Its structure is identical to config .

See User defined scripts (https://documentation.suse.com/kiwi/9/single-html/kiwi/index.htm-

l#working-with-kiwi-user-defined-scripts) in the KIWI documentation for more details on user
scripts.

5.1.4 archive

The archive dictionary defines the content of overlay tar archives, that can be included in the
image via the archive sub-section of the packages section of the image dictionary. The
structure is as follows:

archive:
 - name: <archive_filename>
 <namespace>:
 _include_overlays:
 - <overlay_module>

17 setup

https://documentation.suse.com/kiwi/9/single-html/kiwi/index.html#working-with-kiwi-user-defined-scripts
https://documentation.suse.com/kiwi/9/single-html/kiwi/index.html#working-with-kiwi-user-defined-scripts

 ...
 ...

When generating the image description, keg will produce a tar archive for each entry in
archive with the given le name, with its contents being composed of all les that are in the
listed overlay modules. Each module references a directory in data/overlayfiles .

Keg automatically compresses the archive based on the le name extension. Supported are gz , ,
xz , or no extension for uncompressed archive.

Note
The archive name root.tar (regardless of compression extension) is automatically in-
cluded in all profiles (if there are any) by KIWI . It is not necessary to include it explicitly
in the image definition.

5.2 The _include statement

Keg supports importing parts of the image definition from other directory trees within the
recipes to allow for modularization. For that purpose, a key in the image dictionary may have
a sub-key called _include . Its value is a list of strings, each of which points to a directory in
the data sub-directory of the recipes root. To process the instruction, keg generates another
dictionary from all YAML les in the referenced directory trees (the same mechanism as when
parsing the images tree applies). It then looks up the key in that dictionary that is equal to the
parent key of the _include key, and replaces the _include key with its contents. That means,
if the _include statement is below a key called packages , only data under packages in the
include dictionary will be copied into the image definition dictionary. This allows for having
different types of configuration data in the same directory and including them in different places
in the image definition. See Chapter 6, Data modules for details on data modules.

18 The _include statement

5.3 Additional configuration directives

There are three additional optional top-level image definition sections that affect how the image
definition dictionary is composed and the image description is generated:

5.3.1 include-paths

The include-paths key defines a list of search paths that get appended when _include state-
ments are processed. This allows for having different versions of data modules and still share the
most of an image definition between different versions. See Chapter 6, Data modules for details.

5.3.2 image-config-comments

This section allows to add top-level comments in the produced KIWI le. The format is as
follows:

image-config-comments:
 <comment_name>: <comment>
 ...

<comment_name> is just a name and is not included in the generated output. Comments can be
used to include arbitrary information in the image description. Some comments have a special
meaning for processing image descriptions by the Open Build Service, for instance the OBS-
Profiles directive that is required to process multi-profile image descriptions. See https://

osinside.github.io/kiwi/working_with_images/build_in_buildservice.html for details.

Note
Keg generates some comments automatically. In case the image definition has multiple
profiles and the --disable-multibuild command line switch is not set, it will add an
OBS-Profiles: @BUILD_FLAVOR@ comment. In case the image description is generated
for one or more specific architectures via the -a command line option, the apprpriate
OBS-ExclusiveArch comment is added.

19 Additional configuration directives

https://osinside.github.io/kiwi/working_with_images/build_in_buildservice.html
https://osinside.github.io/kiwi/working_with_images/build_in_buildservice.html

5.3.3 xmlfiles

This optional section allows generating additional custom XML les. The format is as follows:

xmlfiles:
 - name: <filename>
 content:
 <content_dictionary>
 ...

For each list item in this section, an XML le named <filename> will be created, with the
content being generated from the <content_dictionary> . For this dictionary the same rules
about formatting, including, namespacing, etc., apply as for the image dictionary.

Custom XML les can be useful when generating image descriptions for use in the Open
Build Service, which accepts build configuration directives via XML source les, like
the _constraints le. See https://openbuildservice.org/help/manuals/obs-user-guide/cha.ob-

s.build_job_constraints.html for details.

5.3.4 schema

Keg starting with version 2.0.0 has an internal XML generator to produce KIWI image descrip-
tions. Previously, a Jinja2 template was used to convert the image dictionary that keg con-
structed into a KIWI image description. Using a Jinja2 template is still supported and can be
configured as follows in the image definition:

schema: <template>

In this case, instead of running the XML generator, keg would read the le <template>.ki-
wi.templ from the schemas directory in the recipes root directory and run it trough the Jinja2
engine.

Note
While using a Jinja2 template would in theory allow to operate on different input data
structures, the internal schema validator requires the image definition to comply with
what keg expects.

20 xmlfiles

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.build_job_constraints.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.build_job_constraints.html

6 Data modules

Data modules are essentially directories in the data tree. There are three different kinds of
data modules:

Image Definition Modules

Any part of the image definition can be in a data module that is included by the _include
statement from the main image definition.

Image Configuration Scriptlets

Configuration scriptlets are stored in data/scripts . Those scriptlets can be used to compose an
image configuration script or image setup script config and setup key in the image definition.

Overlay Files

Files that can be directly included in the image description and will be copied into the image’s le
system by KIWI during the build process. Overlay les are stored under data/overlayfiles .

6.1 Image definition modules
Any directory under data that is not scripts or overlayfiles is considered an image de-
finition data module and may be included in the main image definition using the _include
statement.

Inheritance rules apply similarly to the image definition tree, but additionally, keg supports
sub-versions of data modules. This can be used for instance to create slightly different versions
of modules for use with different image versions while still sharing most of the image definition
between those versions.

For this purpose, keg supports the include-paths directive in the image definition. Include
paths are paths that get appended to any source path and those get scanned for input les as
well. See the following image definition as an example:

include-paths:
 leap15/1
 leap15/2
image:
 preferences:
 - _include:

21 Image definition modules

 - base/common
 packages:
 - _include:
 - base/common
 config:
 - _include:
 - base/common

This tells keg , when adding data from directory data/base/common to the image data dictio-
nary, to also look into sub directories leap15/2 , leap15/1 , and leap15 (through inheritance).
This would lead to the following directories being scanned:

data
data/common
data/common/base
data/common/base/leap15
data/common/base/leap15/1
data/common/base/leap15/2

This allows for example to put generic configuration bits in data/common/base , Leap 15 specific
configuration in data/common/base/leap15 , and adjust the configuration for minor versions,
if necessary.

When merging the included dictionaries into the main dictionary, keg only copies the dictionary
under the top level key that matches the key under which the _include statement is. That
means, assuming the YAML les collected from the above trees resulted in the following data
structure:

preferences:
 locale: en_US
 timezone: UTC
 type:
 _attributes:
 firmware: efi
 image: vmx
packages:
 _namespace_base_packages:
 package:
 - bash
 - glibc
 - kernel-default
config:
 _namespace_base_services:
 services:
 - sshd

22 Image definition modules

Would result in a data structure like this:

include-paths:
 leap15/1
 leap15/2
image:
 preferences:
 locale: en_US
 timezone: UTC
 type:
 _attributes:
 firmware: efi
 image: vmx
 packages:
 _namespace_base_packages:
 package:
 - bash
 - glibc
 - kernel-default
config:
 _namespace_base_services:
 services:
 - sshd

Merging based on the parent key allows for grouping of different types of configuration data
in one data module.

6.2 Image configuration scriptlets

Configuration scriptlets are individual script snippets that can be used to generate image con-
figuration scripts. KIWI runs those scripts at certain points in the image build process. They can
be used to do changes to the system’s configuration.

The scriptlets are located in data/scripts and are required to have a .sh suffix. These are
referenced in the scripts lists of the config or setup sections in the image definition (with-
out the .sh suffix). See Section 5.1.2, “config” for details on the config section.

23 Image configuration scriptlets

6.3 Overlay files
KIWI image descriptions can contain optional overlay archives, which will be extracted into the
system’s root directory before the image is created. Overlay les are located in sub-directories
in data/overlayfiles , with each sub-directory representing an overlay les module. Any
directory structure under the module’s top directory is preserved.

Overlay les modules can be referenced in the archive section of the image definition using
the _include_overlays directive. See Section 5.1.4, “archive” for details.

24 Overlay files

7 Generating change logs

Keg comes with a separate tool that can be used to produce a change log for a generated image
description from the git commit history of the used keg recipes tree(s). This obviously requires
these keg recipes to be stored in git repositories.

To produce a change log for an image description, the description needs to be generated with
source info tracking enabled in keg (-s command line switch).

7.1 Source info tracking
With source info tracking enabled, keg will write one or more source info les in addition to the
image description in the output directory. In case the image description at hand is single-build,
a single le log_sources is written, in case it is multi-build, a le log_sources_PROFILE
is written for each profile. This allows for generating individual change logs for the resulting
image binaries.

The source info logs contain detailed information about which bits from the keg-recipes tree
was used to generate the image description. The source info log les will contain several lines
of the following format:

root:/path/to/repository
range:start:end:/path/to/repository/file
/path/to/repository/file_or_dir

The rst line specifies the repository location. There will be one for each keg-recipes directory
given to keg . Lines starting with range: specify a part of a le in a repository. This is used to
track the source location of each key that was in the final image dictionary. The third line format
simply specifies a le or a directory in the repository that was used in the image description,
and is used for configuration script snippets and overlay les.

This enables the change log generator to produce a change log using the git commit history,
selecting only commits that apply to the generated image description.

7.2 Change log generator
The generated source info log les, together with the keg-recipes in the place and state they
were used to generate the image description, can be used to generate change logs. The keg
distribution contains a tool generate_recipes_changelog for that purpose. When called with

25 Source info tracking

a source log le as argument, generate_recipes_changelog will use the source information
to select matching git messages and produce a change log in chronological order. There are
parameters to to narrow down the applicable commit range as well as some formatting options.
Refer to Section 3.2, “generate_recipes_changelog” command overview for details.

7.3 Integration in OBS source service
The keg distribution contains a module for integrating with the Open Build Service, an imple-
mentation of a so-called OBS Source Service (https://openbuildservice.org/help/manuals/obs-user-

guide/cha.obs.source_service.html) . It supports automatic handling of change log generation.
See Chapter 8, Keg OBS source service for details.

26 Integration in OBS source service

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.source_service.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.source_service.html

8 Keg OBS source service

The OBS Source Service for keg provides a mechanism to produce kiwi image descriptions
for use with the Open Build Service (https://openbuildservice.org/help/manuals/obs-user-guide/)

in an automated fashion. The OBS Source Service , named compose_kiwi_description ,
checks out any given keg-recipes repositories, runs keg to produce the specified image de-
scription, and optionally produces change log les and stores the HEAD commit hashed of the
keg-recipes repositories to be used for the next source service run.

To set up an OBS package as a keg source service package, simply create a le named _service
in your package directory. The contents of the le should look like the following:

<services>
 <service name="compose_kiwi_description">
 <param name="git-recipes">https://github.com/SUSE-Enceladus/keg-recipes.git</
param>
 <param name="git-branch">released</param>
 <param name="image-source">cross-cloud/sles/byos/15-sp3</param>
 </service>
</services>

In this example, the released branch of the public keg-recipes repository for SUSE Linux
Enterprise images hosted on github is used as source and the selected image source is cross-
cloud/sles/byos/15-sp3 . Running the source service will produce a description for a SUSE
Linux Enterprise Server 15 SP3 BYOS image for several cloud service provider frameworks.

The parameters <git-recipes> and <git-branch> may be used multiple times if the image
description should be composed from more than one repository.

There are a few additional optional parameters:

arch (string)

Set build target architecture. Can be used multiple times.

image-version (string)

Set image version. If no version is given, the version number of the existing image description
will be used with the patch level increased by one.

27

https://openbuildservice.org/help/manuals/obs-user-guide/

version-bump (true|false)

Whether the patch version number should be incremented. Ignored if --image-version is set.
If set to false and --image-version is not set, the image version defined in the recipes will
be used. If no image version is defined, image description generation will fail. Default is true .

update-changelogs (true|false)

Whether changes.yaml les should be updated. Default is true .

update-revisions (true|false)

Whether _keg_revisions (used for storing current commit IDs) should be updated. Default
is true .

force (true|false)

If true, refresh image description even if there are no new commits. Default is false .

The system the source service is run on needs to have keg and obs-service-keg installed.
Refer to the Using Source Services (https://openbuildservice.org/help/manuals/obs-user-guide/

cha.obs.source_service.html) section of the OBS manual about details on how to run the source
service and which operating modes are available.

28

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.source_service.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.source_service.html

	Keg Reference Guide
	Contents
	Preface
	Chapter 1. Overview
	1.1. Conceptual overview
	1.2. Working with keg

	Chapter 2. Installation
	2.1. Installation from openSUSE Cloud:Tools repository
	2.2. Installation from PyPI

	Chapter 3. Command Line
	3.1. keg
	3.1.1. SYNOPSIS
	3.1.2. DESCRIPTION
	3.1.3. ARGUMENTS
	3.1.4. OPTIONS
	3.1.5. EXAMPLE

	3.2. generate_recipes_changelog
	3.2.1. SYNOPSIS
	3.2.2. DESCRIPTION
	3.2.3. ARGUMENTS
	3.2.4. OPTIONS
	3.2.5. EXAMPLE

	Chapter 4. Recipes basics
	4.1. Recipes data layout
	4.2. Source data format and processing

	Chapter 5. Image definition
	5.1. Image definition structure
	5.1.1. image
	5.1.2. config
	5.1.3. setup
	5.1.4. archive

	5.2. The _include statement
	5.3. Additional configuration directives
	5.3.1. include-paths
	5.3.2. image-config-comments
	5.3.3. xmlfiles
	5.3.4. schema

	Chapter 6. Data modules
	6.1. Image definition modules
	6.2. Image configuration scriptlets
	6.3. Overlay files

	Chapter 7. Generating change logs
	7.1. Source info tracking
	7.2. Change log generator
	7.3. Integration in OBS source service

	Chapter 8. Keg OBS source service

