
NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 1

NeuVector Onboarding and Best Practices Guide

INTRODUCTION 1

PLANNING 2

ARCHITECTURE 2
SIZING AND SCALE 4

DEPLOYMENT AND INITIAL CONFIGURATION 6

DEPLOYMENT TOOLS AND PRE-DEPLOYMENT CHECKLIST 6
MANAGING NEUVECTOR 7
POLICY MODES – DISCOVER, MONITOR, PROTECT 8
BACKUPS AND PERSISTENT DATA 9
INTEGRATION INTO CI/CD PIPELINE 9
ENTERPRISE INTEGRATION: ALERTS, NOTIFICATIONS, SIEM/SYSLOG, WEBHOOKS 10
POLICY MIGRATION – STAGING TO PRODUCTION 10
DOCKER NATIVE AND DOCKER EE / SWARM 11

OPERATIONS 12

VULNERABILITY AND COMPLIANCE MANAGEMENT 12
COMPLIANCE MANAGEMENT 13
IMPROVING THE SECURITY RISK SCORE IN THE DASHBOARD 14
NETWORK RULES – INGRESS, EGRESS, SEGMENTATION 14
AUTOMATION – REST API 16
AUTOMATION – SECURITY POLICY, CRD 17
REVIEWING NOTIFICATIONS AND REDUCING FALSE POSITIVES 17
UPDATING – NEUVECTOR, NODES, HOST OS, ORCHESTRATOR PLATFORMS 18

APPENDIX - PRE-DEPLOYMENT CHECKLIST 19

Introduction

This guide provides advice for planning and managing NeuVector deployments. References are
provided to documentation for the ‘how to’ where possible.

For additional FAQ’s with best practices, be sure to ask your NeuVector representative for the
NeuVector Customer FAQ document as well.

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 2

The majority of this guide focuses on Kubernetes or Kubernetes-based deployments such as
Rancher and OpenShift. For deployment tips on docker-native hosts or Docker EE with Swarm,
see the last section.

Throughout, general administrative knowledge of your particular deployment architecture is
assumed. No two environments are alike. As this is an ever-evolving suite of technologies, be
aware that some advice contained herein may not absolutely apply to you, and/or data may have
changed since the last update of this document.

Planning

The NeuVector container security platform consists of several containers, all of which
communicate to each on various ports and interfaces. Each container type should be evaluated to
determine where to put them. Sizing and performance considerations are covered in the next
section.

● Manager. A stateless container which presents the web-based console. Typically, only
one is needed and this can run anywhere. Failure of the Manager does not affect any of
the operations of the controller or enforcer. However, some notifications (events) and
recent connection data are cached in memory by the manager so viewing of these would
be affected.

● Controller. The ‘control plane’ for NeuVector, should be deployed in an HA
configuration so configuration is not lost in a node failure. These can run anywhere,
although in many cases customers choose to place these on ‘management’, master or
infra nodes because of their criticality.

● Enforcer. This container is deployed as a daemonset so one Enforcer is on every node to
be protected. Typically deploys to every worker node but scheduling can be enabled for
master and infra nodes to deploy there as well. Note: If the Enforcer is not on a node in
the cluster and connections come from a pod on that node, these are displayed as
‘unmanaged’ workloads in NeuVector.

● Scanner. Performs the vulnerability scanning using the built-in CVE database, as
directed by the Controller. Multiple scanners can be deployed to increase scanning
capacity. Scanners can run anywhere but are often run on the nodes where the controllers
run. See below for sizing considerations of scanner nodes. A scanner can also be invoked
independently when used for build-phase scanning such in a pipeline that triggers a scan,
retrieves results, and stops the scanner. The scanner contains the latest CVE database so
should be updated daily.

● Updater. The updater triggers an update of the scanner through a Kubernetes cron job
when an update of the CVE database is desired. Please be sure to configure this for your
environment.

Architecture

The simplest deployment pattern would be to let Kubernetes or the orchestrator determine where
to put each container, based on the memory (and potentially cpu) request for each container. For

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 3

clusters where each node is similarly resourced and adequate headroom for all workloads can be
guaranteed this would be fine. Other considerations such as separate node maintenance cycles,
network isolation, and sizing could affect where to place the NeuVector containers (except the
Enforcer, which runs on every protected node).

The diagrams below show sample deployment patterns and the flexibility for NeuVector
deployment.

1. Deployment where Kubernetes can place the NeuVector containers on any node, in this
case worker nodes, unless scheduling to the Master has also been enabled. In a public
cloud managed service like EKS, AKS, etc NeuVector can only run on worker nodes.
The most common deployment.

2. NeuVector control plane containers and scanners are placed on the Master nodes through
taints/tolerations or labels. Master nodes can be appropriately sized for control plane
requirements.

3. Similar to 2, but nodes are selected to run the NeuVector control plane and scanners.
These could be worker nodes and are appropriately sized. Note the one NeuVector node
has workloads allowed to run on it as well, where the other don’t allow workloads.

4. NeuVector control plane and scanners run on Master or dedicated nodes, but since there
are no workloads running on them no Enforcer is deployed to them. In this case the
system containers running on the master node are not monitored by NeuVector, similar to
a public cloud case.

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 4

Tip: See Appendix A for a pre-deployment checklist. Deployment
configuration or yaml files (from our sample) may need to be
customized for your environment.

Q&A

● Q: Can two or more Controllers run on the same node?
A: Yes, although if the node goes down, all Controllers on that node would be lost. The
sample deployment yaml has an ‘affinity’ setting which attempts to deploy controllers on
separate nodes.

● Q: Should we deploy the Enforcer on the master and infra nodes?
A: Yes, this is recommended if possible so it can monitor containers and network traffic
on those as well.

References

o Preparation: https://open-docs.neuvector.com/basics/installation
o Deployment and sample yamls: https://open-docs.neuvector.com/deploying/production
o Updater for CVE database: https://open-docs.neuvector.com/scanning/updating

Sizing and Scale

The NeuVector containers require adequate memory and cpu to function properly. This is
probably the most important consideration when planning the deployment architecture above.
Make sure the minimum requirements (typically 1GB RAM) for each type of NeuVector
container is allocated and available. This should be increased under certain conditions, such as:

● Large image scanning. The Scanner container must have enough memory to pull the
image to be scanned into memory and expand it. If images larger than 1GB are to be
scanned, increase memory to the scanner to slightly higher than the largest expected
image size.

● High network connections expected in Protect mode. The Enforcer requires CPU and
memory when in Protect (inline firewall blocking) mode to hold and inspect connections
and possible payload (DLP). Increasing memory and dedicating a CPU core to the
Enforcer can ensure adequate packet filtering capacity.

Tip: Configuring insufficient pod resource constraints on NeuVector
containers can result in unexpected behavior.. We recommend that you
don’t place any memory or CPU constraints (maximums) on the
NeuVector pods, or if required, make sure there is enough available

https://open-docs.neuvector.com/basics/installation
https://open-docs.neuvector.com/deploying/production
https://open-docs.neuvector.com/scanning/updating

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 5

headroom based on actual performance characterization in
staging/production environments (with target workloads at scale).

Other Scaling Considerations

● Number of Nodes in a Cluster. As the number of nodes increases in a cluster, the network
communication from each enforcer to the controllers will collectively increase. Also, the
practical management of viewing nodes in the web console may become more
challenging.

● Number of Pods (Workloads) on a Node. The number of pods on a node will affect
resource consumption and potentially network traffic (pod to pod on the node or to other
nodes). There will also be more pods for the NeuVector Enforcer to gather scan data and
compliance data to send to the Controller.

● Number of Namespaces, Containers and Other Assets in a Cluster. As containers,
namespaces, groups, and other assets increase various displays in the console will
become busier and may require more time to load. There are filters available in most
screens to quickly isolate a namespace or container/pod to be viewed.

● Number of Images in a Registry to be Scanned. Consider deploying multiple scanner
pods across different nodes if the number of images in a registry exceeds one thousand,
and/or the time it is taking to scan or re-scan the entire registry/repository is longer than
desired. Keep in mind each scanner pod will consume resources on its host during
scanning. The auto-scaling feature can be set to automatically scale the number of
scanner pods available up and down to meet demands.

● Number of Clusters in a Federation. The multi-cluster Primary initiates two-way
connections between it and remote clusters. In addition, if federated rules are deployed
these will be pushed to all remote clusters upon any change.

Tip: Observe the memory and cpu consumption statistics of all pods,
including the NeuVector ones, in an environment similar to the expected
production environment to make sure no adverse effects are observed.

Tip: In the Network Activity map, select one or more namespaces and
the checkmark to limit the view to selected objects. This will enable the
map to load faster.

Q&A

● Q: What are the minimum host specs for running the Controller?
A: We recommend a minimum of 16 GB RAM and 4 CPU cores, assuming the
Controller will be running with other system containers or workloads.

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 6

● Q: What is the maximum number of nodes in a cluster NeuVector can support?
A: There is no hard limit placed by NeuVector, however, there are practical difficulties
that may be experienced in clusters exceeding 500 nodes, depending upon the
environment and host resources.

References

o System requirements, performance and scaling:
https://open-docs.neuvector.com/basics/requirements

Deployment and Initial Configuration

Deployment Tools and Pre-Deployment Checklist

NeuVector supports several tools for deployment, including Helm charts, Operators,
ConfigMaps and plain ‘kubectl’ yaml files.

Tip: Review the sample yaml files and/or Helm/Operator configuration
options carefully and prepare a list of modifications for your own
environment.

Q&A:

● Q: What changes need to be made to the sample deployment defaults?
A: Changes could include:

○ Manager service access method. Loadbalancer, nodeport, ingress controllers etc.
○ Image path’s/registries/names/version #. If pulling renamed or retagged images

from different registry.
○ Container run-time volume mounts. Default containerd, with CRI-O, docker and

other run-times requiring changes to volume mounts.
○ Multi-cluster primary/remote. If multi-cluster is desired, enable service access.
○ Controller, scanner replicaset quantities. Default is 3 for controllers.
○ Taints/tolerations for controlling node deployment. To control where controllers

are deployed or if enforcers should be deployed on masters.

References

o Helm chart on Github: https://github.com/neuvector/neuvector-
helm/tree/master/charts/core

o OpenShift Certified Operator:
https://catalog.redhat.com/software/operators/detail/5ec3fa84ef29fd35586d9a16

o Community Operator: https://github.com/redhat-openshift-ecosystem/community-
operators-prod/tree/main/operators/neuvector-community-operator

o Sample Kubernetes deployment: https://open-docs.neuvector.com/deploying/kubernetes

https://open-docs.neuvector.com/basics/requirements
https://github.com/neuvector/neuvector-helm/tree/master/charts/core
https://github.com/neuvector/neuvector-helm/tree/master/charts/core
https://catalog.redhat.com/software/operators/detail/5ec3fa84ef29fd35586d9a16
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators/neuvector-community-operator
https://github.com/redhat-openshift-ecosystem/community-operators-prod/tree/main/operators/neuvector-community-operator
https://open-docs.neuvector.com/deploying/kubernetes

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 7

Managing NeuVector

Most NeuVector deployments are managed at least in part through the web-based console.
However, the REST API, CLI, configMaps, and CRDs can all be used for non-console-based
management.

Tip: Increase the Session Timeout so you don’t get logged out after 5
minutes, in the My Profile menu (upper right).

Simple deployments can use an integrated load balancer (such as on EKS, AKS, GKE, IKS) to
enable external access to the Manager service, or expose a nodePort for access. Note that there
are security considerations for nodePort access, as it exposes the port on every node for external
access rather than forcing ingress through a load balancer or ingress controller.

Tip: Use a load balancer or ingress controller (e.g. nginx) to control
access to the NeuVector console.

Tip: The SSL connection can be terminated at the ingress controller and
HTTP used to the manager. Use the environment variable in the
Manager deployment to turn off SSL to the manager.

Q&A

● Q: Can the Manager container run outside the cluster?
A: Yes, although this is unusual. The Manager requires that the REST API to the
controller be exposed outside of the cluster.

● Q: Can a service mesh ingress controller such as Istio be used for the NeuVector manager
service?
A: No, this is not supported. Use an alternative Kubernetes ingress method.

● Q: Can the Manager manage multiple clusters?
A: Yes, this requires deployment of a Multi-cluster federation of controllers. A separate
license may also be required.

● Q: Can the self-signed certificates be replaced?
A: Yes, see the reference links below for documentation.

References

o Connect to Manager, REST API: https://open-docs.neuvector.com/configuration/console
o Replace Certificate for Manager: https://open-

docs.neuvector.com/configuration/console/replacecert

https://open-docs.neuvector.com/configuration/console
https://open-docs.neuvector.com/configuration/console/replacecert
https://open-docs.neuvector.com/configuration/console/replacecert

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 8

o Replace Internal Certificates: https://open-
docs.neuvector.com/deploying/production/internal

Policy Modes – Discover, Monitor, Protect

The policy mode of each Group determines what NeuVector does when it detects processes,
network connections, and file activity. In general, Discover mode should be used in testing and
staging environments to build the whitelist rules which protect the application workloads.
Monitor or Protect mode should be used in Production environments to respond to security
events. Monitor or Protect mode can also be used in test/staging environments to observe the
run-time behavior expected of NeuVector in production environments.

Tip: After deploying workloads in Discover mode, run test scripts or
traffic that will exercise all functions in the container (network
connections, process, file). When new rules have not been created for a
few days, switch the Group to Monitor mode and observe for at least a
week. Look for Notification -> Security Events to see if legitimate
activity is being alerted. Whitelist legitimate activity by adding the
appropriate network or process rules. If Protect (blocking) mode is
desired, switch the Group to Protect mode and pay special attention
during the next few days to any blocked activity.

Tip: Zero-drift mode is enabled by default for process and file
protections in containers. This is useful for hardened containers where
limited functions/processes is allowed.

Q&A

● Q: How long should I leave the group in Discover mode before moving to Monitor or
Protect?
A: This could be as fast as a few hours, after all application tests have been run and you
are confident all network connections and processes have been learned by NeuVector. Or
it could take days or a week. For example, some open source tools make periodic
connections externally to check for updates, and you may not see these. You should
decide if these external connections should be allowed, and if so, whitelist rules added for
them. A good practice is to export the rules as a CRD yaml file and review them with the
application developers to confirm the expected behavior.

References

o Policy Modes: https://open-docs.neuvector.com/policy/modes

https://open-docs.neuvector.com/deploying/production/internal
https://open-docs.neuvector.com/deploying/production/internal
https://open-docs.neuvector.com/policy/modes

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 9

o Zero-drift: https://open-docs.neuvector.com/policy/processrules#zero-drift-process-
protection

Backups and Persistent Data
The NeuVector configuration as well as any state data (connections, notifications etc) are sync’d
between available controllers. However, if all controllers go down, the configuration and state
data will be lost. To enable NeuVector to automatically recover the configuration of the cluster
after an outage, enable a persistent volume. When the controller(s) start, they will pull the latest
backed up configuration from the persistent volume.

Tip: Create a RWX persistent volume to automatically backup the
NeuVector configuration, and take manual snapshots through the
Console or REST API regularly and before any NeuVector, host OS, or
orchestrator updates (reboots). Some public cloud storage systems don’t
support RWX so separate storage such as NFS may need to be deployed.

Q&A

● Q: Can the exported backup file be imported into a different cluster to configure it?
A: This is not recommended, as there may be changes in names, namespaces, IP
addresses, system containers or other configuration settings that don’t work in the target
cluster. Use Helm, configMaps and CRDs to automate configuration of clusters.

References

o Configuring Persistent Volume: https://open-
docs.neuvector.com/deploying/production#backups-and-persistent-data

Integration Into CI/CD Pipeline

Security should be as integrated and automated into the CI/CD pipeline as possible. Vulnerability
and compliance management is covered in the next section. Integration can be done with the
plug-ins and supported interfaces in NeuVector, or customized using the REST API (See
Automation – REST API section). Admission control is a critical bridge between the pipeline
and the production environment and is recommended to be enabled.

Tip: Enable and test the admission controller in Policy -> Admission
Control. Then create a few simple rules to block unauthorized
deployments. Even if registry scanning has not been configured yet,
rules based on registry names, namespaces or other general criteria can
place safeguards around image deployments.

https://open-docs.neuvector.com/policy/processrules#zero-drift-process-protection
https://open-docs.neuvector.com/policy/processrules#zero-drift-process-protection
https://open-docs.neuvector.com/deploying/production#backups-and-persistent-data
https://open-docs.neuvector.com/deploying/production#backups-and-persistent-data

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 10

References

o REST API documentation: https://open-docs.neuvector.com/automation/automation
o NeuVector github including CircleCI Orb, Bamboo: https://github.com/neuvector

Enterprise Integration: Alerts, Notifications, SIEM/SYSLOG, Webhooks

NeuVector displays alerts in the Notifications menu and exports events via SYSLOG, webhooks,
or a Prometheus exporter. Events can also be exported using the REST API. The most recent
events for each type of event (security events, risk reports, and general events) are displayed in
NeuVector. However, these are limited to the most recent 4k events of each type. It is expected
that events will be exported via SYSLOG or other means for permanent storage, alerting and
advanced processing.

Tip: Use webhooks to send special event notifications directly to a
webhook endpoint (e.g. Slack) or to a custom webhook receptor
container within your cluster for additional processing.

Tip: For custom integration with alerting/paging systems, case
management systems, or SIEM use the REST API, webhooks, or a
combination.

Policy Migration – Staging to Production

Once applications are tested and the NeuVector run-time security rules verified, the rules should
be replicated in the production environment.

Tip: Use the NeuVector CRD to export, review, check-in, and migrate
security rules from a staging to production environment.

Tip: In Production, set the New Services Mode to Monitor or Protect in
Settings -> Configuration to prevent any unknown services from starting
without generating alerts. Before deploying any new workloads, make
sure the whitelist rules (process, network, file) are deployed through a

https://open-docs.neuvector.com/automation/automation
https://github.com/neuvector

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 11

CRD, REST API, or console so the workloads can start running without
interruption in a protected state.

Q&A

● Q: How long should we run in staging before moving to production?
A: Make sure your staging environment has the same nodes, orchestrator, system-
containers and other important assets as in production. Initial application workloads
expected in production should also be tested, but expect new and updated applications to
occur continuously. This is typically a few weeks in staging for initial deployments, and
days to weeks for additional or updated application workloads.

● Q: Should we run in Monitor or Protect mode in production?
A: Initially, we recommend you run all groups in Monitor mode in production for a few
days or weeks until you are comfortable with any security events detected in
Notifications. Then, you can switch to Protect mode for only those groups that you wish
NeuVector to block network, process, and file violations. This can be decided based on
groups with egress connections, or critical databases, or workloads that you are 100%
sure that all expected behavior has been whitelisted.

● Q: Can I use the export/import configuration file in Settings -> Configuration for the
migration?
A: This is not recommended, as there may be changes in names, namespaces, IP
addresses, system containers or other configuration settings that don’t work in the target
cluster. Use CRDs to do the migration by exporting Group rules and editing them in the
yamls to reflect any changes in the production environment before deploying them.
ConfigMaps can be used for consistent configuration of other settings in both staging and
production environments.

References

o Using CRD: https://open-docs.neuvector.com/policy/usingcrd

Docker Native and Docker EE / Swarm

Deployments and features are very different for docker-native or Swarm. Many NeuVector
features leverage Kubernetes or Openshift resources and therefore are not possible in docker-
native or Swarm. The features NOT supported in this environment include (but not limited to):

- Admission control
- CRD (policy as code)
- Rolling updates
- Helm, Operator based deployments
- ConfigMaps
- Some automated classification of ‘system’ containers
- Persistent volumes.

Deployment on individual docker hosts or Swarm nodes is very different than Kubernetes. The
recommended deployment pattern is to deploy the NeuVector Allinone container on the first 3

https://open-docs.neuvector.com/policy/usingcrd

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 12

nodes, then the Enforcer on any node after that. The ‘cluster’ will be formed by connecting all
the Allinone’s together and the Enforcers connected to the Allinone cluster.

The Allinone containers the Manager, Controller, Enforcer all in one container. This provides for
console access from any of the Allinone nodes as well as HA from the three controllers. When
deploying using the docker run or docker-compose commands, the CLUSTER_JOIN_ADDR
environment variable is used to form the cluster of the Allinones. Use the IP addresses of the
three Allinone nodes separated by comma’s when deploying each Allinone and Enforcer. For
example, CLUSTER_JOIN_ADDR=IPa,IPb,IPc

Q&A

● Q: What if I only have one or two nodes?
A: The Controller function in the Allione requires an odd number to elect a leader, so
deploy a single Allinone and an Enforcer for two nodes, or a single Allinone for one
node. Automated HA is not possible in these configurations. Be sure to backup the
configuration to handle outages.

References

o Docker deployment: https://open-docs.neuvector.com/deploying/docker#deploy-
neuvector-containers-using-docker-native-or-ucpswarm

Operations

Vulnerability and Compliance Management

https://open-docs.neuvector.com/deploying/docker#deploy-neuvector-containers-using-docker-native-or-ucpswarm
https://open-docs.neuvector.com/deploying/docker#deploy-neuvector-containers-using-docker-native-or-ucpswarm

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 13

Every company will have a different process and standards for managing vulnerabilities and
compliance tests. NeuVector has the flexibility to adapt to your process.

Key best practices for vulnerability and compliance management include:

o Require developers to remediate critical vulnerabilities if a fix is available, stopping or
alerting as early as in the build phase if possible.

o Notify developers or appropriate teams if a new vulnerability is discovered in an existing
(approved) image in a registry, or in a production container.

o Provide a grace period to allow developers to remediate critical vulnerabilities, but ensure
that running workloads are protected by NeuVector whitelist rules and ‘virtual patching.’
See the Q&A and reference link below for virtual patching, which protects containers
running with vulnerabilities.

o Allow developers and devops teams to apply for exceptions to policy, and be able to
ignore certain vulnerability scan alerts (based on CVE numbers).

Tip: Utilize the fields “With Fix,” “Published date,” and custom
“Author/developer” metadata to automate policies that require a
developer to fix vulnerabilities (with fix available) that have been
published more than 7 days ago (a grace period).

Q&A

● Q: Why does the NeuVector scan report differ from another scanner I’m using?
A: Each scanning vendor maintains its own CVE database as well as the interpretation of
the CVE sources such as severity/criticality levels.

● Q: Can NeuVector scan an image as soon as it is pushed to a registry?
A: Some registries such as Openshift support imagestreams which enable NeuVector to
scan an image automatically when pushed. For others, a periodic scan can be configured
to scan new images as often as every few minutes to hours. For true on-demand scanning,
the REST API can be used to trigger a scan on a particular image after it is pushed to a
registry.

● Q: What is Virtual Patching?
A: This term when used by NeuVector means that a container running in production with
critical vulnerabilities is ‘virtually patched’ by NeuVector when running in Monitor or
Protect mode, because any attempt to exploit the vulnerability will be immediately
detected and blocked as it creates an unauthorized process, network connection, or file
access.

References

o Documentation: https://open-docs.neuvector.com/scanning/scanning

Compliance Management

https://open-docs.neuvector.com/scanning/scanning

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 14

Compliance checks in NeuVector include both CIS benchmarks (docker, kubernetes, openshift
etc) as well as custom compliance checks (scripts run in containers or on hosts). These can be
tagged and reported on for various industry standards such as PCI, GDPR and others.

Tip: Use the CIS and Compliance results listed for PCI, GDPR etc or for
each Asset (node, container) as the complete list of compliance checks
for the asset(s) for reporting to auditors. Use the Security Risks ->
Compliance menu for listing and prioritizing compliance violations that
may need to be addressed by devops teams.

Q&A

● Q: Can I customize the compliance reports?
A: Yes, standard reports for PCI, GDPR and others can be created by tagging the
appropriate compliance checks. Each of these can be customized so the reports include or
exclude certain checks.

Improving the Security Risk Score in the Dashboard

The Dashboard provides an overall Security Risk Score which is based on the Policy mode of
containers, ingress/egress connections, vulnerabilities, privileged/root containers, and admission
control. Use the wizard tool next to the score to improve your score step by step.

Tip: It is often not possible to get the Risk Score to zero, because any
running container, Kubernetes system container, or egress connection
represents a risk. Any score in the Good range (less than 20) is
considered acceptable.

References

o How to improve Risk Score: https://open-docs.neuvector.com/navigation/improve_score

Network Rules – Ingress, Egress, Segmentation

Network segmentation, inspection and protection are some of the most critical security
protections available during run-time. Network rules should be carefully reviewed and adjusted
to achieve the desired behavior (allowing, alerting, blocking).

Network rules learned in Discover mode by NeuVector can become fragmented under certain
conditions, such as:

https://open-docs.neuvector.com/navigation/improve_score

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 15

o Connection source or destinations are always changing because random ports are used,
for example if coming through a load balancer or ingress

o Pod deployments for the same application or new versions of the same application have
version numbers or random strings in their naming conventions, causing NeuVector to
think it’s a new application and create new rules for it.

Tip: Review and edit Network rules affecting each application by
filtering on the application in Policy -> Network Rules. If you notice many
rules repeated with a From or To of changing IP addresses, ports or
nodes, think about how a higher level network rule based on Protocol,
Labels, or other criteria (with or without wildcards) could be created to
consolidate such rules.

Egress connections can be a source of high risk and should be evaluated and if possible, declared
to allow access only to specific destinations.

Tip: Create custom egress rules for workloads requiring access outside
the cluster. Create the target (destination) custom Group using
‘address=<destination>” and a corresponding Network rule allowing
access from a pod Group to the target Group, using an Application
protocol (e.g. MySQL, redis, mongodb, SSL etc) if possible.

Pod labels applied during deployment can also be used to enforce rules. For example, scope=cde,
scope=non_cde, external_access=allowed are examples of labels which can be applied to pods,
and rules created in NeuVector for those pods. A custom Group can be created which matches
the label, and rules applied to that Group.

Q&A

o Q: Can network rules be ordered?
A: Yes, custom and learned network rules can be ordered through the console or REST
API. Federated rules and CRD created rules can’t be edited, and always are evaluated
first (ie, above other rules).

o Q: When creating a custom Group, can wildcards be used?
A: Yes, wildcards are generally supported in the criteria, for example
‘address=*.google.com’. If more flexible matching is desired a regex expression can also
be used by indicating it with the ~ sign such as ‘label~my.label*-xyz’.

o Q: Can I change the ‘policymode’ of a custom Group to Monitor or Protect?
A: Currently the policy mode of a custom group is not configurable because the
underlying pods which are referred to could be in different modes (Discover, Monitor,
Protect).

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 16

o Q: Can the DLP network payload inspection regex engine be used for other policies?
A: Yes, it can be used for secrets inspection, for inspecting HTTP headers or paths, or
other purposes.

o Q: Can some Groups be set to block, while other set to just Alert?
A: Yes, each learned Group in NeuVector can be in a different mode, Discover, Monitor
or Protect.

o Q: Can a Group be set to block external egress connections, but only alert if there is a
violation from another pod within the cluster or namespace?
A: Not at this time. A Group can only be in one mode for all traffic. We are considering
more granular policies for a future release.

References

o Network Rules: https://docs.neuvector.com:1594/policy/networkrules
o Egress Control in Kubernetes, OpenShift, Istio, NeuVector:

https://neuvector.com/container-security/enforce-egress-control-containers/

Automation – REST API

Use the REST API to perform any actions directly on the Controller without having to go
through the web console. The Manager container uses the REST API to access the Controller.
The default port of the REST API is 10443, which can be accessed from within the cluster. To
make calls to the controller from outside the cluster, expose the REST API as a service
externally.

Tip: Use the REST API in scripts to automate things such as policy
backup, packet capture based on suspicious activity, triggering image
scans, pulling scan results.

Q&A

● Q: How does authentication and authorization get enforced?
A: The api token request requires a user and password for authentication. The role of the
user determines what actions are allowed through the api for that user.

● Q: How long does the token last?
A: The token lasts the same length as the user’s timeout, set in the user’s profile. For
example, if the timeout is set to 10 minutes (600 seconds), the token will be valid as long
as it is used within 10 minutes. After 10 minutes of inactivity it will expire.

References

o API documentation: https://open-docs.neuvector.com/automation/automation

https://docs.neuvector.com:1594/policy/networkrules
https://neuvector.com/container-security/enforce-egress-control-containers/
https://open-docs.neuvector.com/automation/automation

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 17

Automation – Security Policy, CRD

The NeuVector Custom Resource Definition (CRD) provides a powerful mechanism for
declaring and automating security rules in NeuVector. It can enable collaboration between
security, devops and developers to discuss and review allowed application behavior.

Tip: Use NeuVector to learn application behavior in staging/test, then
export the rules as a CRD to review and approve with the developer and
devops teams. Then check-in the CRD to manage security policy like
other ‘code.’

CRDs are used to ‘declare’ a set of Groups, rules, and the policy mode of NeuVector objects.
Once declared, these can only be edited by applying an updated CRD.

Tip: Use CRDs to set ‘global’ security rules that are not tied to specific
application behavior, such as preventing SSH or SCP on ‘all containers’
(containers is a reserved group name in NeuVector which can be used
for this). Or allow external api access to pods with certain labels.

Q&A

● Q: How do I export the CRD for my applications?
A: Go to Groups and select the ones for export, then click Export Group Policy. All rules
for select groups, AND related groups (ie, those defined in network rules as sources or
destinations for a selected group) will be exported.

● Q: Can I change the ‘policymode’ of a custom Group before applying in a CRD?
A: Currently the policy mode of a custom group must be ‘null’ because the underlying
pods which are referred to could be in different modes (Discover, Monitor, Protect).

References

o CRD syntax: https://open-docs.neuvector.com/policy/usingcrd

Reviewing Notifications and Reducing False Positives

During the first few days or weeks of NeuVector deployment events should be reviewed to
determine if they are false positives. There are several methods of reducing false positives:

1. Review the event in Notifications and if applicable, select the Review Rule button to
immediately add a whitelist rule for the violation event.

2. After reviewing the event notification, create a whitelist rule manually in the appropriate
Policy menu – admission control, process (under Group), network rules etc.

https://open-docs.neuvector.com/policy/usingcrd

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 18

3. Create a Response rule to ‘suppress notification’ for those types of events.

Tip: Whenever possible, create whitelist rules to allow behavior that is
being reported as a violation. For temporary suppression of notifications
use a Response rule, which can easily be disabled or removed later.

References

o Notifications: https://open-docs.neuvector.com/reporting/reporting
o Response Rules: https://open-docs.neuvector.com/policy/responserules
o NeuVector github including Prometheus exporter: https://github.com/neuvector

Updating – NeuVector, Nodes, Host OS, Orchestrator Platforms

NeuVector supports rolling updates of its critical containers, but special care should be taken for
any updates of the environment. The controllers maintain a state between themselves and this
will be lost if all controllers become unavailable at the same time. For this reason, take special
care when upgrading the hosts/nodes (rebooting) or the orchestrator (e.g. Kubernetes) even if a
node draining process is invoked.

Tip: For updates of host OS or the orchestrator platform such as
Kubernetes which require node reboots or pod draining, make sure at
least one NeuVector Controller is active at all times. When rebooting a
node with a Controller, observe the new Controller to ensure it becomes
available for at least 60 seconds (a few minutes is better) to make sure it
has the time to sync state with the leader Controller, BEFORE rebooting
the next node with a Controller.

Tip: Always make a manual backup of the entire configuration before
any update of NeuVector, the hosts it runs on, or the orchestrator. This
can be exported in Settings -> Configuration -> Export All

References

o Rolling updates: https://open-docs.neuvector.com/updating/updating
o Configuring Persistent Volume: https://open-

docs.neuvector.com/deploying/production#backups-and-persistent-data
o Updating the CVE database: https://open-docs.neuvector.com/scanning/updating

https://open-docs.neuvector.com/reporting/reporting
https://open-docs.neuvector.com/policy/responserules
https://github.com/neuvector
https://open-docs.neuvector.com/updating/updating
https://open-docs.neuvector.com/deploying/production#backups-and-persistent-data
https://open-docs.neuvector.com/deploying/production#backups-and-persistent-data
https://open-docs.neuvector.com/scanning/updating

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 19

Appendix - Pre-Deployment Checklist

❏ 1. Gather Required Information

❏ NeuVector version # and target platform orchestrator version #.

❏ Dockerhub ID for pulling NeuVector images.

❏ Target nodes CPU/memory profiles.

❏ Container run-time being used.

❏ Method available for ingress to Manager.

❏ Integration info for SYSLOG servers, LDAP/AD, SSO/SAML servers

❏ 2. Review NeuVector Documentation

❏ https://open-docs.neuvector.com/, especially section 1 Deployment Preparation
(https://open-docs.neuvector.com/basics/installation/native) and section 2
Deploying (https://open-docs.neuvector.com/deploying/production).

❏ Each orchestration platform also has specific deployment instructions in this
section.

❏ 3. Prepare the Target Environment

❏ Pre-pull images if not dynamically pulling from NeuVector docker hub registry.

❏ Create RWX storage volume if using persistent storage for configuration backup

❏ 4. Ensure Connectivity

❏ Test ability to pull images from within the cluster, from registry or docker hub.

❏ Enable and test access to registry(s) from within the cluster for registry scanning
if applicable.

❏ Console network access to manager service in cluster through load balancer,
route, IP/port (default port 8443).

❏ Check to make sure network or local firewalls e.g. firewalld are not blocking
access to required ports for NeuVector.

❏ Enable outbound connections if required for SYSLOG (default port 514) and
webhook notifications.

❏ 5. Create Deployment Process and Templates

❏ Decide on deployment method: Helm, kubectl/yaml files, Operator…

❏ Review sample yaml files and/or values and configuration options

❏ Kubernetes - https://open-docs.neuvector.com/deploying/kubernetes

❏ Deploying from Rancher Manager - https://open-
docs.neuvector.com/deploying/rancher

❏ Openshift - https://open-docs.neuvector.com/deploying/openshift

❏

https://open-docs.neuvector.com/
https://open-docs.neuvector.com/basics/installation/native
https://open-docs.neuvector.com/basics/installation/native
https://open-docs.neuvector.com/deploying/production
https://open-docs.neuvector.com/deploying/production
https://open-docs.neuvector.com/deploying/production#planning-deployments
https://github.com/neuvector/neuvector-helm
https://open-docs.neuvector.com/deploying/kubernetes
https://open-docs.neuvector.com/deploying/rancher
https://open-docs.neuvector.com/deploying/rancher
https://open-docs.neuvector.com/deploying/rancher
https://open-docs.neuvector.com/deploying/openshift

NeuVector Onboarding and Best Practices

 V 5.0 March 2023 Page 20

❏ Edit yamls or deployment values in Helm as applicable:

❏ Manager access - LoadBalancer, ingress, NodePort…

❏ Enable/disable multi-cluster master and remote services

❏ Image name, version tag, or path to NeuVector images

❏ Container run-time if containerd or CRI-O

❏ Taints/tolerations or node labels for controlling where NeuVector pods are
deployed.

	Introduction
	Planning
	Architecture
	Sizing and Scale

	Deployment and Initial Configuration
	Deployment Tools and Pre-Deployment Checklist
	Managing NeuVector
	Policy Modes – Discover, Monitor, Protect
	Backups and Persistent Data
	Integration Into CI/CD Pipeline
	Enterprise Integration: Alerts, Notifications, SIEM/SYSLOG, Webhooks
	Policy Migration – Staging to Production
	Docker Native and Docker EE / Swarm

	Operations
	Vulnerability and Compliance Management
	Compliance Management
	Improving the Security Risk Score in the Dashboard
	Network Rules – Ingress, Egress, Segmentation
	Automation – REST API
	Automation – Security Policy, CRD
	Reviewing Notifications and Reducing False Positives
	Updating – NeuVector, Nodes, Host OS, Orchestrator Platforms

	Appendix - Pre-Deployment Checklist

