
Building Linux System
Appliances with KIWI Next
Generation (KIWI NG)
9.25.12



Building Linux System Appliances with KIWI Next Generation (KIWI NG)
9.25.12

Publication Date: 03/28/2024

SUSE LLC
1800 South Novell Place
Provo, UT 84606
USA

https://documentation.suse.com

https://documentation.suse.com


Contents

Preface xiv

1 The Appliance Concept xv

2 Use Cases xv

3 Contact xvi

1 Overview 1
1.1 Basic Workflow 1

Components of an Image Description 2

1.2 Conceptual Overview 3

1.3 Terminology 4

1.4 System Requirements 5

2 Installation 6

2.1 Installation from OBS 6

2.2 Installation from Distribution Repositories 7

2.3 Installation for SUSE Linux Enterprise 8

2.4 Example Appliance Descriptions 8

3 Quick Start 10

3.1 Before you start 10

3.2 Choose a First Image 10

3.3 Build your First Image 11

3.4 Run your Image 11

3.5 Tweak and Customize your Image 11

iii Building Linux System Appliances with KIWI Next Generation (KIWI NG) 9.25.12



4 Working from the Command Line 12

4.1 kiwi-ng 12

SYNOPSIS 12 • DESCRIPTION 13 • GLOBAL

OPTIONS 14 • EXAMPLE 15

4.2 kiwi-ng result list 16

SYNOPSIS 16 • DESCRIPTION 16 • OPTIONS 16

4.3 kiwi-ng result bundle 16

SYNOPSIS 16 • DESCRIPTION 17 • OPTIONS 17

4.4 kiwi-ng system prepare 17

SYNOPSIS 17 • DESCRIPTION 18 • OPTIONS 18

4.5 kiwi-ng system update 21

SYNOPSIS 21 • DESCRIPTION 22 • OPTIONS 22

4.6 kiwi-ng system build 22

SYNOPSIS 22 • DESCRIPTION 23 • OPTIONS 23 • URI_TYPES 26

4.7 kiwi-ng system create 26

SYNOPSIS 26 • DESCRIPTION 27 • OPTIONS 27

4.8 kiwi-ng image resize 27

SYNOPSIS 27 • DESCRIPTION 28 • OPTIONS 28

4.9 kiwi-ng image info 28

SYNOPSIS 28 • DESCRIPTION 29 • OPTIONS 29

5 Troubleshooting 31

5.1 Build Host Constraints 31

5.2 Architectures 32

5.3 Host Security Settings Conflicts with KIWI 33

5.4 Incompatible Filesystem Settings on Host vs. Image 34

iv Building Linux System Appliances with KIWI Next Generation (KIWI NG) 9.25.12



6 KIWI Plugins 36

6.1 Building in a Self-Contained Environment 36

Requirements 37 • Building with the boxbuild command 37 • Sharing

Backends 38

6.2 Building based on Containers 39

Installation 39 • Concept 40 • Create a stash 40 • Rebuild from a

stash 41 • Turn a container into a VM image 42

7 Concept and Workflow 44

7.1 Host Requirements To Build Images 44

7.2 Setting up Repositories 46

Adding repositories 47

7.3 Adding and Removing Packages 49

The package element 50 • The archive element 51 • Uninstall System

Packages 52 • The product and namedCollection element 53 • The

ignore element 54

7.4 Image Profiles 54

7.5 Adding Users 56

7.6 User Defined Scripts 57

Developing/Debugging Scripts 58

7.7 The Runtime Configuration File 64

7.8 Customizing the Boot Process 65

Boot Image Hook-Scripts 66 • Boot Image Parameters 69

7.9 Overview 71

7.10 Image Building Process 72

The Prepare Step 73 • The Create Step 76

8 Image Description 77

8.1 Image Description Elements 77



To build the virtual machine image from the current hosted Leap 15.3 container at SUSE, call
the following stackbuild  command:

$ sudo kiwi-ng system stackbuild \
    --stash leap:15.3 \
    --from-registry registry.opensuse.org/opensuse \
    --target-dir /tmp/myLeap \
    --description container_to_VM_layer

The resulting virtual machine image can be booted as follows:

$ qemu-kvm Leap-VM.x86_64-1.99.1.raw

43 Turn a container into a VM image



7 Concept and Workflow

Note
Abstract

The following sections describe the concept and general workflow of building appliances
with KIWI NG 9.25.12.

7.1 Host Requirements To Build Images

When building OS images, several tools and sub-systems are used and required on the host KIWI
NG is called at. For example, to build a virtual disk image, several tools needs to be available
on the host that builds the image. This includes tools for partition table setup or tools to create
filesystems.

The number of required components depends on the selected image type and the features used
with the image. We cannot expect the users of KIWI NG to know about each and every component
that is needed to build the image. Therefore a concept to help with the host requirements exists
and is named kiwi-systemdeps

The kiwi-systemdeps  concept consists out of a collection of sub-packages provided with the
python-kiwi  main package. Each individual package requires a number of tools and subsystem
packages which belongs to the package category. There are the following systemdeps packages:

kiwi-systemdeps-core :

Supports building the simple root archive tbz  image type.

Installs the package managers which are supported by the target distribution as well
as the tar  archiving tool.

kiwi-systemdeps-containers :

Supports building OCI  image types used with docker , podman .

Installs the distribution specific tool chain to build OCI compliant container images.

44 Host Requirements To Build Images



kiwi-systemdeps-containers-wsl :

Supports building appx  image types.

Installs the distribution specific tool chain to build WSL compliant container images
on Windows systems.

kiwi-systemdeps-iso-media :

Supports building iso  image types and oem  install media.

Installs all tools required to build ISO filesystems.

Depends on the -core , -filesystems  and -bootloaders  kiwi-systemdeps pack-
ages.

kiwi-systemdeps-bootloaders :

Supports building bootable oem  and iso  image types.

Installs all bootloader tools depending on the host architecture to allow setup and
install of the bootloader. The pulled in components are required for any image that
is able to boot through some BIOS or rmware.

Depends on the -core  kiwi-systemdeps packages.

Note
The iso  type is an exception which might not require the -bootloaders  sys-
temdeps. In case of the firmware  attribute to be set to bios , KIWI NG builds
bootable ISO images still based on isolinux which is provided with the -iso-media
systemdeps. However, by default, any KIWI NG created ISO image is BIOS and EFI
capable and based on the grub bootloader which causes a requirement to the -
bootloaders  systemdeps.

kiwi-systemdeps-filesystems :

Supports building fs-type , oem , pxe , kis  and live iso  image types.

Installs all tools to create filesystems supported with KIWI NG. The pulled in compo-
nents are needed for any image type that needs to create a filesystem. This excludes
the archive based image types like docker , appx  or tbz . The package also installs

45 Host Requirements To Build Images



tools one level below the actual filesystem creation toolkit. These are components
to manage loop devices as well as partition table setup and subsystem support like
LVM and LUKS.

Depends on the -core  kiwi-systemdeps packages.

kiwi-systemdeps-disk-images :

Supports building the oem  image type.

Installs all tools to create virtual disks. In KIWI NG, virtual disks are created using
the QEMU toolchain.

Depends on the -filesystems  and -bootloaders  kiwi-systemdeps packages.

kiwi-systemdeps-image-validation :

Installs the jing  tool to validate the image description. This is useful for detailed
error reports from KIWI NG in case of an image description validation error. In ad-
dition, the anymarkup  Python module is installed if the the option to install recom-
mended packages is set. With anymarkup  available, KIWI NG can also handle image
descriptions in another format than the XML markup, like YAML.

Depending on the image type the kiwi-systemdeps packages can help to setup the host system
quickly for the task to build an image. In case the host should support everything there is also
the main kiwi-systemdeps  package which has a dependency on all other existing systemdeps
packages.

Note
Pulling in all kiwi-systemdeps  packages can result in quite some packages to become
installed on the host. This is because the required packages itself comes with a number
of dependencies like java for jing as one example.

7.2 Setting up Repositories
A crucial part of each appliance is the repository selection. KIWI NG allows the end user to
completely customize the selection of repositories and packages via the repository  element.

46 Setting up Repositories



7.2.1 Adding repositories

KIWI NG installs packages into your appliance from the repositories defined in the image de-
scription. Therefore at least one repository must be defined, as KIWI NG will otherwise not be
able to fetch any packages.

A repository is added to the description via the repository  element, which is a child of the
top-level image  element:

<image schemaversion="7.4" name="{exc_image_base_name}">
    <!-- snip -->
    <repository type="rpm-md" alias="kiwi" priority="1">
        <source path="obs://Virtualization:Appliances:Builder/openSUSE_Leap_15.3"/>
    </repository>
    <repository type="rpm-md" alias="OS" imageinclude="true">
        <source path="{exc_repo}"/>
    </repository>
</image>

In the above snippet we defined two repositories:

1. The repository belonging to the KIWI NG project: obs://Virtualization:Appli-
ances:Builder/openSUSE_Leap_15.3 at the Open Build Service (OBS)

2. The RPM repository belonging to the OS project: {exc_repo}, at the Open Build Service
(OBS). The translated http URL will also be included in the final appliance.

The repository  element accepts one source  child element, which contains the URL to the
repository in an appropriate format and the following optional attributes:

imageinclude : Specify whether this repository should be added to the resulting image,
defaults to false.

imageonly : A repository with imageonly="true"  will not be available during image
build, but only in the resulting appliance. Defaults to false.

priority : An integer priority for all packages in this repository. If the same package is
available in more than one repository, then the one with the highest priority is used.

alias : Name to be used for this repository, it will appear as the repository’s name in the
image, which is visible via zypper repos  or dnf repolist . KIWI NG will construct an
alias name as result of hex representation from uuid4, if no value is given.

47 Adding repositories



repository_gpgcheck : Specify whether or not this specific repository is configured to to
run repository signature validation. If not set, the package manager’s default is used.

package_gpgcheck : Boolean value that specifies whether each package’s GPG signature
will be verified. If omitted, the package manager’s default will be used

components : Distribution components used for deb  repositories, defaults to main .

distribution : Distribution name information, used for deb repositories.

profiles : List of profiles to which this repository applies.

customize : Script to run custom modifications to the repo le(s). repo les allows for
several customization options which not all of them are supported to be set by kiwi through
the current repository schema. As the options used do not follow any standard and are not
compatible between package managers and distributions, the only generic way to handle
this is through a script hook which is invoked with the repo le as parameter for each
le created by KIWI NG.
An example for a script call to add the module_hotfixes  option for a dnf  compatible
repository configuration could look like this

repo_file=$1
echo 'module_hotfixes = 1' >> ${repo_file}

Note
If the script is provided as relative path it will be searched in the image description
directory

7.2.1.1 Supported repository paths

The actual location of a repository is specified in the source  child element of repository  via
its only attribute path . KIWI NG supports the following paths types:

http://URL  or https://URL  or ftp://URL : a URL to the repository available via
HTTP(s) or FTP.

obs://$PROJECT/$REPOSITORY : evaluates to the repository $REPOSITORY  of the project
$PROJECT  available on the Open Build Service (OBS). By default KIWI NG will look for
projects on build.opensuse.org (https://build.opensuse.org) , but this can be overridden

48 Adding repositories

https://build.opensuse.org


using the runtime configuration le (see Section 7.7, “The Runtime Configuration File”). Note
that it is not possible to add repositories using the obs://  path from different OBS in-
stances (use direct URLs to the .repo  le instead in this case).

obsrepositories:/ : special path only available for builds using the Open Build Service.
The repositories configured for the OBS project in which the KIWI NG image resides will
be available inside the appliance. This allows you to configure the repositories of your
image from OBS itself and not having to modify the image description.

dir:///path/to/directory  or file:///path/to/file : an absolute path to a local di-
rectory or le available on the host building the appliance.

iso:///path/to/image.iso : the specified ISO image will be mounted during the build
of the KIWI NG image and a repository will be created pointing to the mounted ISO.

7.3 Adding and Removing Packages
On top of the Section 7.2, “Setting up Repositories” setup the package setup is required. KIWI NG
allows the end user to completely customize the selection of packages via the packages  element.

<image schemaversion="7.4" name="{exc_image_base_name}">
    <packages type="bootstrap">
        <package name="udev"/>
        <package name="filesystem"/>
        <package name="openSUSE-release"/>
        <!-- additional packages installed before the chroot is created -->
    </packages>
    <packages type="image">
        <package name="patterns-openSUSE-base"/>
        <!-- additional packages to be installed into the chroot -->
    </packages>
</image>

The packages  element provides a collection of different child elements that instruct KIWI NG
when and how to perform package installation or removal. Each packages  element acts as a
group, whose behavior can be configured via the following attributes:

type : either bootstrap , image , delete , uninstall  or one of the following build types:
docker , iso , oem , kis , oci .
Packages for type="bootstrap"  are pre-installed to populate the images’ root le system
before chrooting into it.

49 Adding and Removing Packages



Packages in type="image"  are installed immediately after the initial chroot into the new
root le system.
Packages in type="delete"  and type="uninstall"  are removed from the image, for
details see Uninstall System Packages (#uninstall-system-packages) .
And packages which belong to a build type are only installed when that specific build type
is currently processed by KIWI NG.

profiles : a list of profiles to which this package selection applies (see Section 7.4, “Image

Profiles”).

patternType : selection type for patterns, supported values are: onlyRequired , plus-
Recommended , see: The product and namedCollection element (#product-and-namedcollec-

tion-element) .

The following sections describes the different child elements of a packages  group.

7.3.1 The package element

The package  element represents a single package to be installed (or removed), whose name is
specified via the mandatory name  attribute:

<image schemaversion="7.4" name="{exc_image_base_name}">
    <!-- snip -->
    <packages type="bootstrap">
        <package name="udev"/>
    </packages>
</image>

which adds the package udev  to the list of packages to be added to the initial filesystem. Note,
that the value that you pass via the name  attribute is passed directly to the used package man-
ager. Thus, if the package manager supports other means how packages can be specified, you
may pass them in this context too. For example, RPM based package managers (like dnf  or
zypper ) can install packages via their Provides: . This can be used to add a package that
provides a certain capability (e.g. Provides: /usr/bin/my-binary ) via:

<image schemaversion="7.4" name="{exc_image_base_name}">
    <!-- snip -->
    <packages type="bootstrap">
        <package name="/usr/bin/my-binary"/>
    </packages>

50 The package element

#uninstall-system-packages
#product-and-namedcollection-element
#product-and-namedcollection-element


</image>

Whether this works depends on the package manager and on the environment that is being
used. In the Open Build Service, certain Provides  either are not visible or cannot be properly
extracted from the KIWI NG description. Therefore, relying on Provides  is not recommended.

Packages can also be included only on specific host architectures via the arch  attribute. KIWI
NG compares the arch  attributes value with the host architecture that builds the image accord-
ing to the output of uname -m .

<image schemaversion="7.4" name="{exc_image_base_name}">
    <!-- snip -->
    <packages type="image">
        <package name="grub2"/>
        <package name="grub2-x86_64-efi" arch="x86_64"/>
        <package name="shim" arch="x86_64"/>
    </packages>
</image>

which results in grub2-x86_64-efi  and shim  being only installed if the build host is a 64bit
x86 machine, but grub2  will be installed independent of the architecture.

7.3.2 The archive element

It is sometimes necessary to include additional packages into the image which are not available
in the package manager’s native format. KIWI NG supports the inclusion of ordinary tar archives
via the archive  element, whose name  attribute specifies the filename of the archive (KIWI NG
looks for the archive in the image description folder).

<packages type="image">
    <archive name="custom-program1.tgz"/>
    <archive name="custom-program2.tar"/>
</packages>

KIWI NG will extract the archive into the root directory of the image using GNU tar (https://

www.gnu.org/software/tar/) , thus only archives supported by it can be included. When multiple
archive  elements are specified then they will be applied in a top to bottom order. If a le is
already present in the image, then the le from the archive will overwrite it (same as with the
image overlay).

51 The archive element

https://www.gnu.org/software/tar/
https://www.gnu.org/software/tar/


7.3.3 Uninstall System Packages

KIWI NG supports two different methods how packages can be removed from the appliance:

1. Packages present as a child element of <packages type="uninstall">  will be gracefully
uninstalled by the package manager alongside with dependent packages and orphaned
dependencies.

2. Packages present as a child element of <packages type="delete">  will be removed by
RPM/DPKG without any dependency check, thus potentially breaking dependencies and
compromising the underlying package database.

Both types of removals take place after config.sh  is run in the Section 7.10.1, “The Prepare Step”

(see also Section 7.6, “User Defined Scripts”).

Warning
An uninstall  packages request deletes:

the listed packages,

the packages dependent on the listed ones, and

any orphaned dependency of the listed packages.

Use this feature with caution as it can easily cause the removal of sensitive tools leading
to failures in later build stages.

Removing packages via type="uninstall"  can be used to completely remove a build time
tool (e.g. a compiler) without having to specify a all dependencies of that tool (as one would
have when using type="delete" ). Consider the following example where we wish to compile
a custom program in config.sh . We ship its source code via an archive  element and add
the build tools ( ninja , meson  and clang ) to <packages type="image">  and <packages
type="uninstall"> :

<image schemaversion="7.4" name="{exc_image_base_name}">
    <!-- snip -->
    <packages type="image">
        <package name="ca-certificates"/>
        <package name="coreutils"/>
        <package name="ninja"/>

52 Uninstall System Packages



        <package name="clang"/>
        <package name="meson"/>
        <archive name="foo_app_sources.tar.gz"/>
    </packages>
    <!-- These packages will be uninstalled after running config.sh -->
    <packages type="uninstall">
        <package name="ninja"/>
        <package name="meson"/>
        <package name="clang"/>
    </packages>
</image>

The tools meson , clang  and ninja  are then available during the Section 7.10.1, “The Prepare

Step” and can thus be used in config.sh  (for further details, see Section 7.6, “User Defined Scripts”),
for example to build foo_app :

pushd /opt/src/foo_app
mkdir build
export CC=clang
meson build
cd build && ninja && ninja install
popd

The <packages type="uninstall">  element will make sure that the final appliance will no
longer contain our tools required to build foo_app , thus making our image smaller.

There are also other use cases for type="uninstall" , especially for specialized appliances.
For containers one can often remove the package shadow  (it is required to setup new user
accounts) or any left over partitioning tools ( parted  or fdisk ). All networking tools can be
safely uninstalled in images for embedded devices without a network connection.

7.3.4 The product and namedCollection element

KIWI NG supports the inclusion of openSUSE products or of namedCollections (patterns in SUSE
based distributions or groups for RedHat based distributions). These can be added via the prod-
uct  and namedCollection  child elements, which both take the mandatory name  attribute and
the optional arch  attribute.

product  and namedCollection  can be utilized to shorten the list of packages that need to be
added to the image description tremendously. A named pattern, specified with the namedCol-
lection element is a representation of a predefined list of packages. Specifying a pattern will
install all packages listed in the named pattern. Support for patterns is distribution specific and

53 The product and namedCollection element



available in SLES, openSUSE, CentOS, RHEL and Fedora. The optional patternType  attribute
on the packages element allows you to control the installation of dependent packages. You may
assign one of the following values to the patternType  attribute:

onlyRequired : Incorporates only patterns and packages that the specified patterns and
packages require. This is a “hard dependency” only resolution.

plusRecommended : Incorporates patterns and packages that are required and recommend-
ed by the specified patterns and packages.

7.3.5 The ignore element

Packages can be explicitly marked to be ignored for installation inside a packages  collection.
This useful to exclude certain packages from being installed when using patterns with pattern-
Type="plusRecommended"  as shown in the following example:

<image schemaversion="7.4" name="{exc_image_base_name}">
    <packages type="image" patternType="plusRecommended">
        <namedCollection name="network-server"/>
        <package name="grub2"/>
        <package name="kernel"/>
        <ignore name="ejabberd"/>
        <ignore name="puppet-server"/>
    </packages>
</image>

Packages can be marked as ignored during the installation by adding a ignore  child element
with the mandatory name  attribute set to the package’s name. Optionally one can also specify
the architecture via the arch  similarly to The package element (#package-element) .

Warning
Adding ignore  elements as children of a <packages type="delete">  or a <packages
type="uninstall">  element has no effect! The packages will still get deleted.

7.4 Image Profiles
A profile is a namespace for additional settings that can be applied by KIWI NG on top of the
default settings (or other profiles), thereby allowing to build multiple appliances with the same
build type but with different configurations.

54 The ignore element

#package-element


The use of profiles is advisable to distinguish image builds of the same type but with different
settings. In the following example, two virtual machine images of the oem  type are configured:
one for QEMU (using the qcow2  format) and one for VMWare (using the vmdk  format).

<image schemaversion="7.4" name="{exc_image_base_name}">
    <profiles>
        <profile name="QEMU" description="virtual machine for QEMU"/>
        <profile name="VMWare" description="virtual machine for VMWare"/>
    </profiles>
    <preferences>
        <version>15.0</version>
        <packagemanager>zypper</packagemanager>
    </preferences>
    <preferences profiles="QEMU">
        <type image="oem" format="qcow2" filesystem="ext4">
    </preferences>
    <preferences profiles="VMWare">
        <type image="oem" format="vmdk" filesystem="ext4">
    </preferences>
</image>

Each profile is declared via the element profile , which itself must be a child of profiles
and must contain the name  and description  attributes. The description  is only present for
documentation purposes, name  on the other hand is used to instruct KIWI NG which profile
to build via the command line. Additionally, one can provide the boolean attribute import ,
which defines whether this profile should be used by default when KIWI NG is invoked via the
command line.

A profile inherits the default settings which do not belong to any profile. It applies only to
elements that contain the profile in their profiles  attribute. The attribute profiles  expects
a comma separated list of profiles for which the settings of this element apply.

Profiles can furthermore inherit settings from another profile via the requires  sub-element:

<profiles>
    <profile name="VM" description="virtual machine"/>
    <profile name="QEMU" description="virtual machine for QEMU">
        <requires profile="VM"/>
    </profile>
</profiles>

The profile QEMU  would inherit the settings from VM  in the above example.

For further details on the usage of profiles see Section 11.19, “Building Images with Profiles”

55 Image Profiles



7.5 Adding Users
User accounts can be added or modified via the users  element, which supports a list of multiple
user  child elements:

<image schemaversion="7.4" name="{exc_image_base_name}">
    <users>
        <user
            password="this_is_soo_insecure"
            home="/home/me" name="me"
            groups="users" pwdformat="plain"
        />
        <user
            password="$1$wYJUgpM5$RXMMeASDc035eX.NbYWFl0"
            home="/root" name="root" groups="root"
        />
    </users>
</image>

Each user  element represents a specific user that is added or modified. The following attributes
are mandatory:

name : the UNIX username

password : The password for this user account. It can be provided either in cleartext form
( pwdformat="plain" ) or in crypt ’ed form ( pwdformat="encrypted" ). Plain passwords
are discouraged, as everyone with access to the image description would know the pass-
word. It is recommended to generate a hash of your password using openssl  as follows:

$ openssl passwd -1 -salt 'xyz' YOUR_PASSWORD

Additionally, the following optional attributes can be specified:

home : the path to the user’s home directory

groups : A comma separated list of UNIX groups. The rst element of the list is used as the
user’s primary group. The remaining elements are appended to the user’s supplementary
groups. When no groups are assigned then the system’s default primary group will be used.

id : The numeric user id of this account.

pwdformat : The format in which password  is provided, either plain  or encrypted  (the
latter is the default).

56 Adding Users



7.6 User Defined Scripts

Note
Abstract

This chapter describes the purpose of the user defined scripts config.sh , image.sh ,
pre_disk_sync.sh  and disk.sh , which can be used to further customize an image in
ways that are not possible via the image description alone.

KIWI NG supports the following optional scripts that it runs in a root environment (chroot)
containing your new appliance:

post_bootstrap.sh

runs at the end of the bootstrap  phase as part of the Section 7.10.1, “The Prepare Step”. The
script can be used to configure the package manager with additional settings that should
apply in the following chroot based installation step which completes the installation. The
script is not dedicated to this use and can also be used for other tasks.

config.sh

runs at the end of the Section 7.10.1, “The Prepare Step” and after users have been set and the
overlay tree directory has been applied. It is usually used to apply a permanent and final
change of data in the root tree, such as modifying a package provided config le.

config-overlay.sh

Available only if delta_root="true"  is set. In this case the script runs at the end of the
Section 7.10.1, “The Prepare Step” prior the umount of the overlay root tree. It runs after an
eventually given config.sh  and is the last entry point to change the delta root tree.

config-host-overlay.sh

Available only if delta_root="true"  is set. In this case the script runs at the end of
the Section 7.10.1, “The Prepare Step” prior the umount of the overlay root tree. The script
is called NOT CHROOTED from the host with the image root directory as its working
directory. It runs after an eventually given config.sh  and is together with an eventually
given config-overlay.sh  script, the last entry point to change the delta root tree.

57 User Defined Scripts



images.sh

is executed at the beginning of the Section 7.10.2, “The Create Step”. It runs in the same image
root tree that has been created by the prepare step but is invoked any time an image should
be created from that root tree. It is usually used to apply image type specific changes to
the root tree such as a modification to a config le that should be done when building a
live iso but not when building a virtual disk image.

pre_disk_sync.sh

is executed for the disk image type oem  only and runs right before the synchronization of
the root tree into the disk image loop le. The pre_disk_sync.sh  can be used to change
content of the root tree as a last action before the sync to the disk image is performed. This
is useful for example to delete components from the system which were needed before or
cannot be modified afterwards when syncing into a read-only filesystem.

disk.sh

is executed for the disk image type oem  only and runs after the synchronization of the
root tree into the disk image loop le. The chroot environment for this script call is the
virtual disk itself and not the root tree as with config.sh  and images.sh . The script
disk.sh  is usually used to apply changes at parts of the system that are not an element
of the le based root tree such as the partition table, the contents of the final initrd, the
bootloader, filesystem attributes and more.

KIWI NG executes scripts via the operating system if their executable bit is set (in that case a
shebang is mandatory) otherwise they will be invoked via the BASH. If a script exits with a non-
zero exit code then KIWI NG will report the failure and abort the image creation.

7.6.1 Developing/Debugging Scripts

When creating a custom script it usually takes some iterations of try and testing until a final
stable state is reached. To support developers with this task KIWI NG calls scripts associated
with a screen  session. The connection to screen  is only done if KIWI NG is called with the
--debug  option.

In this mode a script can start like the following template:

# The magic bits are still not set

echo "break"
/bin/bash

58 Developing/Debugging Scripts



At call time of the script a screen  session executes and you get access to the break in shell.
From this environment the needed script code can be implemented. Once the shell is closed the
KIWI NG process continues.

Apart from providing a full featured terminal throughout the execution of the script code, there
is also the advantage to have control on the session during the process of the image creation.
Listing the active sessions for script execution can be done as follows:

$ sudo screen -list

There is a screen on:
     19699.pts-4.asterix     (Attached)
1 Socket in /run/screens/S-root.

Note
As shown above the screen session(s) to execute script code provides extended con-
trol which could also be considered a security risk. Because of that KIWI NG only runs
scripts through screen  when explicitly enabled via the --debug  switch. For production
processes all scripts should run in their native way and should not require a terminal to
operate correctly !

7.6.1.1 Script Template for config.sh / images.sh

KIWI NG provides a collection of methods and variables that supports users with custom oper-
ations. For details see Functions and Variables Provided by KIWI NG (#image-customization-meth-

ods) . The following template shows how to import this information in your script:

#======================================
# Include functions & variables
#--------------------------------------
test -f /.kconfig && . /.kconfig
test -f /.profile && . /.profile

...

Warning
Modifications of the unpacked root tree

59 Developing/Debugging Scripts

#image-customization-methods
#image-customization-methods


Keep in mind that there is only one unpacked root tree the script operates in. This means
that all changes are permanent and will not be automatically restored!

7.6.1.2 Functions and Variables Provided by KIWI NG

KIWI NG creates the .kconfig  and .profile  les to be sourced by the shell scripts config.sh
and images.sh . .kconfig  contains various helper functions which can be used to simplify the
image configuration and .profile  contains environment variables which get populated from
the settings provided in the image description.

7.6.1.2.1 Functions

The .kconfig  le provides a common set of functions. Functions specific to SUSE Linux Enter-
prise and openSUSE begin with the name suse , functions applicable to all Linux distributions
start with the name base .

The following list describes all functions provided by .kconfig :

baseSetRunlevel {value}

Set the default run level.

baseStripAndKeep {list of info-files to keep}

Helper function for the baseStrip*  functions, reads the list of les to check from stdin
for removing params: les which should be kept

baseStripLocales {list of locales}

Remove all locales, except for the ones given as the parameter.

baseStripTranslations {list of translations}

Remove all translations, except for the ones given as the parameter.

baseStripUnusedLibs

Remove libraries which are not directly linked against applications in the bin directories.

baseUpdateSysConfig {filename} {variable} {value}

Update the contents of a sysconfig variable

baseSystemdServiceInstalled {service}

Prints the path of the rst found systemd unit or mount with name passed as the rst
parameter.

60 Developing/Debugging Scripts



baseSysVServiceInstalled {service}

Prints the name ${service}  if a SysV init service with that name is found, otherwise it
prints nothing.

baseSystemdCall {service_name} {args}

Calls systemctl ${args} ${service_name}  if a systemd unit, a systemd mount or a
SysV init service with the ${service_name}  exist.

baseInsertService {servicename}

Activate the given service via systemctl .

baseRemoveService {servicename}

Deactivate the given service via systemctl .

baseService {servicename} {on|off}

Activate or deactivate a service via systemctl . The function requires the service name
and the value on  or off  as parameters.
Example to enable the sshd service on boot:

baseService sshd on

suseInsertService {servicename}

Calls baseInsertService and exists only for compatibility reasons.

suseRemoveService {servicename}

Calls baseRemoveService and exists only for compatibility reasons.

suseService {servicename} {on|off}

Calls baseService and exists only for compatibility reasons.

suseSetupProduct

Creates the /etc/products.d/baseproduct  link pointing to the product referenced by
either /etc/SuSE-brand  or /etc/os-release  or the latest prod  le available in /etc/
products.d

baseVagrantSetup

Configures the image to work as a vagrant box by performing the following changes:

add the vagrant  user to /etc/sudoers  or /etc/sudoers.d/vagrant

insert the insecure vagrant ssh key, apply recommended ssh settings and start the
ssh daemon

create the default shared folder /vagrant

61 Developing/Debugging Scripts



Debug {message}

Helper function to print the supplied message if the variable DEBUG is set to 1 (it is o
by default).

Echo {echo commandline}

Helper function to print a message to the controlling terminal.

Rm {list of files}

Helper function to delete les and log the deletion.

7.6.1.2.2 Profile Environment Variables

The .profile  environment le is created by KIWI NG and contains a specific set of variables
which are listed below.

$kiwi_compressed

The value of the compressed  attribute set in the type  element in config.xml .

$kiwi_delete

A list of all packages which are children of the packages  element with type="delete"
in config.xml .

$kiwi_drivers

A comma separated list of the driver entries as listed in the drivers  section of the con-
fig.xml .

$kiwi_iname

The name of the image as listed in config.xml .

$kiwi_iversion

The image version as a string.

$kiwi_keytable

The contents of the keytable setup as done in config.xml .

$kiwi_language

The contents of the locale setup as done in config.xml .

$kiwi_profiles

A comma separated list of profiles used to build this image.

$kiwi_timezone

The contents of the timezone setup as done in config.xml .

62 Developing/Debugging Scripts



$kiwi_type

The image type as extracted from the type  element in config.xml .

7.6.1.3 Configuration Tips

1. Locale configuration:
KIWI in order to set the locale relies on systemd-firstboot , which in turn writes the
locale configuration le /etc/locale.conf . The values for the locale settings are taken
from the description XML le in the <locale>  element under <preferences> .
KIWI assumes systemd adoption to handle these locale settings, in case the build distribu-
tion does not honor /etc/locale.conf  this is likely to not produce any effect on the lo-
cale settings. As an example, in SLE12 distribution the locale configuration is already pos-
sible by using the systemd toolchain, however this approach overlaps with SUSE specific
managers such as YaST. In that case using systemd-firstboot  is only effective if locales
in /etc/sysconfig/language  are not set or if the le does not exist at all. In SLE12 /
etc/sysconfig/language  has precendence over /etc/locale.conf  for compatibility
reasons and management tools could still relay on sysconfig  les for locale settings.
In any case the configuration is still possible in KIWI by using any distribution specific way
to configure the locale setting inside the config.sh  script or by adding any additional
configuration le as part of the overlay root-tree.

2. Stateless systemd UUIDs:
Machine ID les ( /etc/machine-id , /var/lib/dbus/machine-id ) may be created and
set during the image package installation depending on the distribution. Those UUIDs are
intended to be unique and set only once in each deployment.
If /etc/machine-id  does not exist or contains the string uninitialized  (systemd v249
and later), this triggers firstboot behaviour in systemd and services using Condition-
FirstBoot=yes  will run. Unless the le already contains a valid machine ID, systemd will
generate one and write it into the le, creating it if necessary. See the machine-id man page

(https://www.freedesktop.org/software/systemd/man/machine-id.html)  for more details.
Depending on whether firstboot behaviour should be triggered or not, /etc/machine-id
can be created, removed or lled with uninitialized  by config.sh .
To prevent that images include a generated machine ID, KIWI will clear /etc/ma-
chine-id  if it exists and does not contain the string uninitialized . This only applies
to images based on a dracut initrd, it does not apply for container images.

63 Developing/Debugging Scripts

https://www.freedesktop.org/software/systemd/man/machine-id.html
https://www.freedesktop.org/software/systemd/man/machine-id.html


Note
rw  might be necessary if /etc/machine-id  does not exist

For systemd to be able to write /etc/machine-id  on boot, it must either exist
already (so that a bind mount can be created) or /etc  must be writable.

By default, the root filesystem is mounted read-only by dracut/systemd, thus a miss-
ing /etc/machine-id  will result in an error on boot. The rw  option can be added
to the kernel commandline to force the initial mount to be read-write.

Note
Avoid inconsistent /var/lib/dbus/machine-id

Note that /etc/machine-id  and /var/lib/dbus/machine-idmust contain the
same unique ID. On modern systems /var/lib/dbus/machine-id  is already a
symlink to /etc/machine-id . However on older systems those might be two dif-
ferent les. This is the case for SLE-12 based images. If you are targeting these older
operating systems, it is recommended to add the symlink creation into config.sh :

#======================================
# Make machine-id consistent with dbus
#--------------------------------------
if [ -e /var/lib/dbus/machine-id ]; then
    rm /var/lib/dbus/machine-id
fi
ln -s /etc/machine-id /var/lib/dbus/machine-id

7.7 The Runtime Configuration File

KIWI NG supports an additional configuration le for runtime specific settings that do not belong
into the image description but which are persistent and would be unsuitable for command line
parameters.

64 The Runtime Configuration File



The runtime configuration le must adhere to the YAML (https://yaml.org/)  syntax and can be
provided via the global --config  option at call time of KIWI NG. If no config le is provided at
the commandline, KIWI NG searches for the runtime configuration le in the following locations:

1. ~/.config/kiwi/config.yml

2. /etc/kiwi.yml

A default runtime config le in /etc/kiwi.yml  is provided with the python3-kiwi package.
The le contains all settings as comments including a short description of each setting.

7.8 Customizing the Boot Process

Most Linux systems use a special boot image to control the system boot process after the system
rmware, BIOS or UEFI, hands control of the hardware to the operating system. This boot image
is called the initrd . The Linux kernel loads the initrd , a compressed cpio initial RAM disk,
into the RAM and executes init  or, if present, linuxrc .

Depending on the image type, KIWI NG creates the boot image automatically during the create
step. It uses a tool called dracut  to create this initrd. Dracut generated initrd archives can be
extended by custom modules to add functionality which is not natively provided by dracut itself.
In the scope of KIWI NG the following dracut modules are used:

kiwi-dump

Serves as an image installer. It provides the required implementation to install a KIWI NG
image on a selectable target. This module is required if one of the attributes installiso ,
installstick  or installpxe  is set to true  in the image type definition

kiwi-dump-reboot

Serves to boot the system into the installed image after installation is completed.

kiwi-live

Boots up a KIWI NG live image. This module is required if the iso  image type is selected

kiwi-overlay

Allows to boot disk images configured with the attribute overlayroot  set to true . Such
a disk has its root partition compressed and readonly and boots up using overlayfs for the
root filesystem using an extra partition on the same disk for persistent data.

65 Customizing the Boot Process

https://yaml.org/


kiwi-repart

Resizes an OEM disk image after installation onto the target disk to meet the size con-
straints configured in the oemconfig  section of the image description. The module takes
over the tasks to repartition the disk, resizing of RAID, LVM, LUKS and other layers and
resizing of the system filesystems.

kiwi-lib

Provides functions of general use and serves as a library usable by other dracut modules.
As the name implies, its main purpose is to function as library for the above mentioned
kiwi dracut modules.

Note
Using Custom Boot Image Support

Apart from the standard dracut based creation of the boot image, KIWI NG supports the
use of custom boot images for the image types oem  and pxe . The use of a custom boot
image is activated by setting the following attribute in the image description:

<type ... initrd_system="kiwi"/>

Along with this setting it is now mandatory to provide a reference to a boot image de-
scription in the boot  attribute like in the following example:

<type ... boot="netboot/suse-tumbleweed"/>

Such boot descriptions for the OEM and PXE types are currently still provided by the
KIWI NG packages but will be moved into its own repository and package soon.

The custom boot image descriptions allows a user to completely customize what and how
the initrd behaves by its own implementation. This concept is mostly used in PXE envi-
ronments which are usually highly customized and requires a specific boot and deploy-
ment workflow.

7.8.1 Boot Image Hook-Scripts

The dracut initrd system uses systemd  to implement a predefined workflow of services which
are documented in the bootup man page at:

http://man7.org/linux/man-pages/man7/dracut.bootup.7.html

66 Boot Image Hook-Scripts

http://man7.org/linux/man-pages/man7/dracut.bootup.7.html


To hook in a custom boot script into this workflow it’s required to provide a dracut module
which is picked up by dracut at the time KIWI NG calls it. The module les can be either provided
as a package or as part of the overlay directory in your image description

The following example demonstrates how to include a custom hook script right before the system
rootfs gets mounted.

1. Create a subdirectory for the dracut module:

$ mkdir -p root/usr/lib/dracut/modules.d/90my-module

2. Register the dracut module in a configuration le:

$ vi root/etc/dracut.conf.d/90-my-module.conf

add_dracutmodules+=" my-module "

3. Create the hook script:

$ touch root/usr/lib/dracut/modules.d/90my-module/my-script.sh

4. Create a module setup le in root/usr/lib/dracut/modules.d/90my-module/mod-
ule-setup.sh  with the following content:

#!/bin/bash

# called by dracut
check() {
    # check module integrity
}

# called by dracut
depends() {
    # return list of modules depending on this one
}

# called by dracut
installkernel() {
    # load required kernel modules when needed
    instmods _kernel_module_list_
}

# called by dracut
install() {
    declare moddir=${moddir}

67 Boot Image Hook-Scripts



    inst_multiple _tools_my_module_script_needs_

    inst_hook pre-mount 30 "${moddir}/my-script.sh"
}

Note
Declaring Extra Tools for Hook Scripts

The install() function called by dracut can define extra tools needed by a defined hook
script. The “inst_multiple” command and its parameters inform dracut to include these
extra tools/items in the initrd.

The tools/items defined here can be any le, but are usually executables and libraries
needed by the hook script.

Each le MUST be included in the Kiwi description either in a package, archive, or
in the “root” tree in the image description directory.

The parameters of the inst_multiple command are space separated.

Each parameter can be a single executable name if it exists in /bin, /sbin, /usr/bin,
or /usr/sbin directories.

Otherwise, a full pathname to the le is required. This is usually true for libraries
and other special les.

That’s it! At the time KIWI NG calls dracut the 90my-module  will be taken into account and
is installed into the generated initrd. At boot time systemd calls the scripts as part of the dra-
cut-pre-mount.service .

The dracut system offers a lot more possibilities to customize the initrd than shown in the exam-
ple above. For more information, visit the dracut project page (https://dracut.wiki.kernel.org/in-

dex.php/Main_Page) .

68 Boot Image Hook-Scripts

https://dracut.wiki.kernel.org/index.php/Main_Page
https://dracut.wiki.kernel.org/index.php/Main_Page


7.8.2 Boot Image Parameters

A dracut generated initrd in a KIWI NG image build process includes one or more of the KIWI
NG provided dracut modules. The following list documents the available kernel boot parameters
for this modules:

rd.kiwi.debug

Activates the debug log le for the KIWI NG part of the boot process at /run/initramfs/
log/boot.kiwi .

rd.kiwi.install.pxe

Tells an OEM installation image to lookup the system image on a remote location specified
in rd.kiwi.install.image .

rd.kiwi.install.image=URI

Specifies the remote location of the system image in a PXE based OEM installation

rd.kiwi.install.pass.bootparam

Tells an OEM installation image to pass an additional boot parameters to the kernel used to
boot the installed image. This can be used e.g. to pass on rst boot configuration for a PXE
image. Note, that options starting with rd.kiwi  are not passed on to avoid side effects.

rd.kiwi.oem.maxdisk=size[KMGT]

Configures the maximum disk size an unattended OEM installation should consider for
image deployment. Unattended OEM deployments default to deploying on /dev/sda
(more exactly, the rst device not filtered out by oem-device-filter ). With RAID con-
trollers, it can happen that your buch of big JBOD disks is for example /dev/sda  to /
dev/sdi  and the 480G RAID1 configured for OS deployment is /dev/sdj . With rd.ki-
wi.oem.maxdisk=500G  the deployment will land on that RAID disk.

rd.live.overlay.size

Tells a live ISO image the size for the tmpfs  filesystem that is used for the overlayfs
mount process. If the write area of the overlayfs mount uses this tmpfs, any new data
written during the runtime of the system will llup this space. The default value used is set
to 50%  which means one half of the available RAM space can be used for writing new data.

rd.live.overlay.persistent

Tells a live ISO image to prepare a persistent write partition.

69 Boot Image Parameters



rd.live.overlay.cowfs

Tells a live ISO image which filesystem should be used to store data on the persistent write
partition.

rd.live.cowfile.mbsize

Tells a live ISO image the size of the COW le in MB. When using tools like live-grub-
stick  the live ISO will be copied as a le on the target device and a GRUB loopback setup
is created there to boot the live system from le. In such a case the persistent write setup,
which usually creates an extra write partition on the target, will fail in almost all cases
because the target has no free and unpartitioned space available. Because of that a cow
file(live_system.cow) instead of a partition is created. The cow le will be created in the
same directory the live iso image le was read from by grub and takes the configured size
or the default size of 500MB.

rd.live.dir

Tells a live ISO image the directory which contains the live OS root directory. Defaults
to LiveOS .

rd.live.squashimg

Tells a live ISO image the name of the squashfs image le which holds the OS root. Defaults
to squashfs.img .

7.8.2.1 Boot Debugging

If the boot process encounters a fatal error, the default behavior is to stop the boot process
without any possibility to interact with the system. Prevent this behavior by activating dracut’s
builtin debug mode in combination with the kiwi debug mode as follows:

rd.debug rd.kiwi.debug

This should be set at the Kernel command line. With those parameters activated, the system will
enter a limited shell environment in case of a fatal error during boot. The shell contains a basic
set of commands and allows for a closer look to:

less /run/initramfs/log/boot.kiwi

70 Boot Image Parameters



7.9 Overview
KIWI NG builds so-called system images (a fully installed and optionally configured system in a
single le) of a Linux distribution in two steps (for further details, see Image Building Process

(#working-with-kiwi-image-building-process) ):

1. Prepare operation: generate an unpacked image tree of your image. The unpacked tree is
a directory containing the future le system of your image, generated from your image
description.

2. Create operation: the unpacked tree generated in step 1 is packaged into the format required
for the final usage (e.g. a qcow2  disk image to launch the image with QEMU).

KIWI NG executes these steps using the following components, which it expects to nd in the
description directory:

Chapter 8, Image Description:

The config.xml  le contains the image description, which is a collection of general set-
tings of the final image, like the image layout installed packages, present users, etc.

Note
The filename config.xml  is not mandatory, the image description le can also have
an arbitrary name plus the *.kiwi  extension. KIWI NG rst looks for a config.xml
le. If it cannot be found, it picks the rst *.kiwi  le.

Section 7.6, “User Defined Scripts”:

If present, custom configuration shell scripts run at different stages of the build process.
They can be used to ne tune the image in ways that are not possible via the settings
provided in config.xml .

Overlay tree directory:

The overlay tree is a folder (called root ) or a tarball (called root.tar.gz ) that contains
les and directories that will be copied into the unpacked image tree during the Prepare
operation. The copying is executed after all the packages included in config.xml  have
been installed. Any already present les are overwritten.

CD root user data:

For live ISO images and install ISO images an optional archive is supported. This is a tar
archive matching the name config-cdroot.tar[.compression_postfix] .

71 Overview

#working-with-kiwi-image-building-process
#working-with-kiwi-image-building-process


If present, the archive will be unpacked as user data on the ISO image. For example, this
is used to add license les or user documentation. The documentation can then be read
directly from the CD/DVD without booting from the media.

7.10 Image Building Process

KIWI NG creates images in a two step process: The rst step, the prepare operation, generates
a so-called unpacked image tree (directory) using the information provided in the config.xml
configuration le (see Chapter 8, Image Description)

The second step, the create operation, creates the packed image or image in the specified format
based on the unpacked image tree and the information provided in the config.xml  configu-
ration le.

72 Image Building Process



FIGURE 7.1: IMAGE CREATION ARCHITECTURE

7.10.1 The Prepare Step

As the rst step, KIWI NG creates an unpackaged image tree, also called “root tree”. This directory
will be the installation target for software packages to be installed during the image creation
process.

For the package installation, KIWI NG relies on the package manager specified in the package-
manager  element in config.xml . KIWI NG supports the following package managers: dnf ,
zypper  (default) and apt .

73 The Prepare Step



The prepare step consists of the following substeps:

1. Create Target Root Directory
By default KIWI NG aborts with an error if the target root tree already exists to avoid
accidental deletion of an existing unpacked image. The option --allow-existing-root
can be used to work based on an existing root tree

2. Bootstrap Target Root Directory
First, KIWI NG configures the package manager to use the repositories specified in the
configuration le, via the command line, or both. After the repository setup, the packages
specified in the bootstrap  section of the image description are installed in a temporary
directory external to the target root tree. This establishes the initial environment to support
the completion of the process in a chroot setting. At the end of the bootstrap  phase the
script post_bootstrap.sh  is executed, if present.

Note
The essential bootstrap packages are usually filesystem  and glibc-locale  to
specify as part of the bootstrap. The dependency chain of these two packages is
usually sufficient to populate the bootstrap environment with all required software
to support the installation of packages into the new root tree.

3. Install Packages
After the bootstrap  phase all other <packages>  sections are used to complete the instal-
lation as chroot operation. KIWI NG uses the package manager as installed in the boot-
strap  phase and installs all other packages as configured.

Note
The installation of software packages through the selected package manager may
install unwanted packages. Removing these packages can be accomplished by mark-
ing them for deletion in the image description, see Section 7.3.3, “Uninstall System

Packages”.

4. Apply the Overlay Tree

74 The Prepare Step



Next, KIWI NG applies all les and directories present in the overlay directory named
root  or in the compressed overlay root.tar.gz  to the target root tree. Files already
present in the target root directory are overwritten. This allows you to overwrite any le
that was installed by one of the packages during the installation phase.

5. Apply Archives
All archives specified in the archive  element of the config.xml  le are applied in the
specified order (top to bottom) after the overlay tree copy operation is complete (see
Section 7.3.2, “The archive element”). Files and directories are extracted relative to the top
level of the new root tree. As with the overlay tree, it is possible to overwrite les already
existing in the target root tree.

6. Execute the user-defined script config.sh
At the end of the preparation stage the script config.sh  is executed (if present). It is
run in the top level directory of the target root tree. The script’s primary function is to
complete the system configuration. For more details about custom scripts see Section 7.6,

“User Defined Scripts”

7. Modify the Root Tree
The unpacked image tree is now finished to be converted into the final image in the create
step. It is possible to make manual modifications to the unpacked tree before it is converted
into the final image.
Since the unpacked image tree is just a directory, it can be modified using the standard
tools. Optionally, it is also possible to “change root ( chroot )” into it, for instance to
invoke the package manager. Beside the standard le system layout, the unpacked image
tree contains an additional directory named /image  that is not present in a regular system.
It contains information KIWI NG requires during the create step, including a copy of the
config.xml  le.
By default, KIWI NG will not stop after the prepare step and will directly proceed with the
create step. Therfore to perform manual modifications, proceed as follows:

$ kiwi-ng system prepare $ARGS
$ # make your changes
$ kiwi-ng system create $ARGS

Warning
Modifications of the unpacked root tree

75 The Prepare Step



Do not make any changes to the system, since they are lost when re-running the
prepare  step again. Additionally, you may introduce errors that occur during the
create  step which are difficult to track. The recommended way to apply changes
to the unpacked image directory is to change the configuration and re-run the pre-
pare  step.

7.10.2 The Create Step

KIWI NG creates the final image during the create step: it converts the unpacked root tree into
one or multiple output les appropriate for the respective build type.

It is possible to create multiple images from the same unpacked root tree, for example, a self
installing OEM image and a virtual machine image from the same image description. The only
prerequisite is that both image types are specified in config.xml .

During the create step the following operations are performed by KIWI NG:

1. Execute the User-defined Script images.sh
At the beginning of the image creation process the script named images.sh  is executed
(if present). For more details about custom scripts see Section 7.6, “User Defined Scripts”

2. Create the Requested Image Type
KIWI NG converts the unpacked root into an output format appropriate for the requested
build type.

76 The Create Step



8 Image Description

Note
This document explains the toplevel structure of the KIWI NG image description document
for version 9.25.12

8.1 Image Description Elements

Note
This document provides a reference for the elements and attributes of the KIWI NG XML
document in version 9.25.12

8.1.1 

The image definition starts with an image tag and requires the schema format at version 7.4. The
attribute name specifies the name of the image which is also used for the filenames created by
KIWI. Because we don’t want spaces in filenames the name attribute must not have any spaces
in its name.

The following optional attributes can be inserted in the image tag:

displayname

Allows setup of the boot menu title for the selected boot loader. So you can have suse-
SLED-foo as the image name but a different name as the boot display name. Spaces are
not allowed in the display name because it causes problems for some boot loaders and
kiwi did not take the effort to separate the ones which can display them correctly from
the ones which can’t

id

sets an identification number which appears as le /etc/ImageID  within the image.

77 Image Description Elements



8.1.2 <include>

Optional include of XML le content from le

<image schemaversion="7.4" name="{exc_image_base_name}">
    <include from="file://description.xml"/>
</image>

with le description.xml  as follows:



This will replace the include  statement with the contents of description.xml . The validation
of the result happens after the inclusion of all include  references. The value for the from
attribute is interpreted as an URI, as of now only local URI types are supported as well as the
this://  resource locator which translates into the path to the KIWI image description.

Note
The include information must be embedded into an 

The following attributes of the type  element are relevant when building live ISO images:

flags : Specifies the live ISO technology and dracut module to use, can be set to overlay
or to dmsquash .

126 Build an ISO Hybrid Live Image



If set to overlay , the kiwi-live dracut module will be used to support a live ISO system
based on squashfs and overlayfs. If set to dmsquash , the dracut standard dmsquash-live
module will be used to support a live ISO system based on squashfs and the device mapper.
Note, both modules support a different set of live features. For details see Decision for a

live ISO technology (#live-features)

hybridpersistent : Accepts true  or false , if set to true  then the resulting image will
be created with a COW le to keep data persistent over a reboot

hybridpersistent_filesystem : The filesystem used for the COW le. Possible values
are ext4  or xfs , with ext4  being the default.

With the appropriate settings present in config.xml  KIWI NG can now build the image:

$ sudo kiwi-ng system build \
      --description kiwi/build-tests/x86/leap/test-image-live \
      --set-repo obs://openSUSE:Leap:15.3/standard \
      --target-dir /tmp/myimage

The resulting image is saved in the folder /tmp/myimage  and can be tested with QEMU:

$ sudo qemu -cdrom \
      kiwi-test-image-live.x86_64-1.15.3.iso \
      -m 4096 -serial stdio

The image is now complete and ready to use. See Section 11.1, “Deploy ISO Image on an USB Stick”

and Section 11.2, “Deploy ISO Image as File on a FAT32 Formated USB Stick” for further information
concerning deployment.

10.1.1 Decision for a live ISO technology

The decision for the overlay  vs. dmsquash  dracut module depends on the features one wants
to use. From a design perspective the overlay  module is conceived for live ISO deployments on
disk devices which allows the creation of a write partition or cow le. The dmsquash  module is
conceived as a generic mapping technology using device-mapper snapshots. The following list
describes important live ISO features and their support status compared to the overlay  and
dmsquash  modules.

127 Decision for a live ISO technology

#live-features
#live-features


ISO scan

Usable in the same way with both dracut modules. This feature allows to boot the live ISO
as a le from a grub loopback configured bootloader. The live-grub-stick  tool is just
one example that uses this feature. For details how to setup ISO scan with the overlay
module see Section 11.2, “Deploy ISO Image as File on a FAT32 Formated USB Stick”

ISO in RAM completely

Usable with the dmsquash  module through rd.live.ram . The overlay  module does not
support this mode but KIWI NG supports RAM only systems as OEM deployment into RAM
from an install ISO media. For details how to setup RAM only deployments in KIWI NG
see: Section 11.9, “Deploy and Run System in a RamDisk”

Overlay based on overlayfs

Usable with the overlay  module. A squashfs compressed readonly root gets overlayed
with a readwrite filesystem using the kernel overlayfs filesystem.

Overlay based on device mapper snapshots

Usable with the dmsquash  module. A squashfs compressed readonly root gets overlayed
with a readwrite filesystem using a device mapper snapshot. This method was the preferred
one before overlayfs existed in the Linux kernel.

Media Checksum Verification

Boot the live iso only for ISO checksum verification. This is possible with both modules but
the overlay  module uses the checkmedia  tool whereas the upstream dmsquash  module
uses checkisomd5 . The activation of the verification process is done by passing the ker-
nel option mediacheck  for the overlay  module and rd.live.check  for the dmsquash
module.

Live ISO through PXE boot

Boot the live image via the network. This is possible with both modules but uses different
technologies. The overlay  module supports network boot only in combination with the
AoE (Ata Over Ethernet) protocol. For details see Section 11.16, “Booting a Live ISO Image from

Network”. The dmsquash  module supports network boot by fetching the ISO image into
memory from root=live:  using the livenet  module.

Persistent Data

Keep new data persistent on a writable storage device. This can be done with both mod-
ules but in different ways. The overlay  module activates persistency with the kernel boot
parameter rd.live.overlay.persistent . If the persistent setup cannot be created the

128 Decision for a live ISO technology



fallback to the non persistent mode applies automatically. The overlay  module auto de-
tects if it is used on a disk or ISO scan loop booted from a le. If booted as disk, persistency
is setup on a new partition of that disk. If loop booted from le, persistency is setup on
a new cow le. The cow le/partition setup can be influenced with the kernel boot para-
meters: rd.live.overlay.cowfs  and rd.live.cowfile.mbsize . The dmsquash  mod-
ule configures persistency through the rd.live.overlay  option exclusively and does not
support the automatic creation of a write partition in disk mode.

10.2 Build a Virtual Disk Image

Abstract. This page explains how to build a simple disk image. It contains how to:

define a simple disk image in the image description

build a simple disk image

run it with QEMU

A simple Virtual Disk Image is a compressed system disk with additional metadata useful for
cloud frameworks like Amazon EC2, Google Compute Engine, or Microsoft Azure. It is used as
the native disk of a system and does not require an extra installation workflow or a complex
rst boot setup procedure which is why we call it a simple disk image.

To instruct KIWI NG to build a simple disk image add a type  element with image="oem"  in
config.xml  that has the oem-resize  feature disabled. An example configuration for a 42 GB
large VMDK image with 512 MB RAM, an IDE controller and a bridged network interface is
shown below:

<image schemaversion="7.4" name="Tumbleweed_appliance">
  <!-- snip -->
  <preferences>
    <type image="oem" filesystem="ext4" format="vmdk">
      <bootloader name="grub2" timeout="0"/>
      <size unit="G">42</size>
      <oemconfig>
          <oem-resize>false</oem-resize>
      </oemconfig>
      <machine memory="512" guestOS="suse" HWversion="4">
        <vmdisk id="0" controller="ide"/>
        <vmnic driver="e1000" interface="0" mode="bridged"/>
      </machine>

129 Build a Virtual Disk Image



    </type>
    <!-- additional preferences -->
  </preferences>
  <!-- snip -->
</image>

The following attributes of the type  element are of special interest when building simple disk
images:

format : Specifies the format of the virtual disk, possible values are: gce , ova , qcow2 ,
vagrant , vmdk , vdi , vhd , vhdx  and vhd-fixed .

formatoptions : Specifies additional format options passed to qemu-img . formatop-
tions  is a comma separated list of format specific options in a name=value  format like
qemu-img  expects it. KIWI NG will forward the settings from this attribute as a parameter
to the -o  option in the qemu-img  call.

The bootloader , size  and machine  child-elements of type  can be used to customize the
virtual machine image further. We describe them in the following sections: Setting up the Boot-

loader of the Image (#disk-bootloader) , Modifying the Size of the Image (#disk-the-size-element)

and Customizing the Virtual Machine (#disk-the-machine-element)

Once your image description is finished (or you are content with a image from the Section 2.4,

“Example Appliance Descriptions” and use one of them) build the image with KIWI NG:

$ sudo kiwi-ng system build \
     --description kiwi/build-tests/x86/leap/test-image-disk-simple \
     --set-repo obs://openSUSE:Leap:15.3/standard \
     --target-dir /tmp/myimage

The created image will be in the target directory /tmp/myimage  with the le extension .raw .

The live image can then be tested with QEMU:

$ sudo qemu \
    -drive file=kiwi-test-image-disk-simple.x86_64-1.15.3.raw,format=raw,if=virtio \
    -m 4096

For further information how to setup the image to work within a cloud framework see:

Section 11.4, “Image Description for Amazon EC2”

Section 11.5, “Image Description for Microsoft Azure”

Section 11.6, “Image Description for Google Compute Engine”

130 Build a Virtual Disk Image

#disk-bootloader
#disk-bootloader
#disk-the-size-element
#disk-the-machine-element


For information how to setup a Vagrant box, see: Section 11.7, “Image Description for Vagrant”.

10.2.1 Setting up the Bootloader of the Image

<preferences>
  <type>
     <bootloader name="grub2"/>
  </type>
</preferences>

The bootloader  element defines which bootloader will be used in the image and offers several
options for customizing its configuration.

For details, see: Section 8.1.4.14, “<preferences><type><bootloader>”

10.2.2 Modifying the Size of the Image

The size  child element of type  specifies the size of the resulting disk image. The following
example shows a image description where 20 GB are added to the virtual machine image of
which 5 GB are left unpartitioned:

<preferences>
  <type image="oem" format="vmdk">
    <size unit="G" additive="true" unpartitioned="5">20</size>
    <oemconfig>
        <oem-resize>false</oem-resize>
    </oemconfig>
  </type>
</preferences>

The following optional attributes can be used to customize the image size further:

unit : Defines the unit used for the provided numerical value, possible settings are M  for
megabytes and G  for gigabytes. The default unit are megabytes.

additive : boolean value that determines whether the provided value will be added
to the current image’s size ( additive="true" ) or whether it is the total size ( addi-
tive="false" ). The default is false .

unpartitioned : Specifies the image space in the image that will not be partitioned. This
value uses the same unit as defined in the attribute unit  or the default.

131 Setting up the Bootloader of the Image



10.2.3 Customizing the Virtual Machine

The machine  child element of type  can be used to customize the virtual machine configura-
tion which is used when the image is run, like the number of CPUs or the connected network
interfaces.

The following attributes are supported by the machine  element:

ovftype : The OVF configuration type. The Open Virtualization Format is a standard for
describing virtual appliances and distribute them in an archive called Open Virtual Appli-
ance (OVA). The standard describes the major components associated with a disk image.
The exact specification depends on the product using the format.
Supported values are zvm , powervm , xen  and vmware .

HWversion : The virtual machine’s hardware version ( vmdk  and ova  formats only), see
https://kb.vmware.com/s/article/1003746  for further details which value to choose.

arch : the VM architecture ( vmdk  format only), possible values are: ix86  (= i585  and
i686 ) and x86_64 .

xen_loader : the Xen target loader which is expected to load this guest, supported values
are: hvmloader , pygrub  and pvgrub .

guestOS : The virtual guest OS’ identification string for the VM (only applicable for vmdk
and ova  formats, note that the name designation is different for the two formats).

min_memory : The virtual machine’s minimum memory in MB ( ova  format only).

max_memory : The virtual machine’s maximum memory in MB ( ova  format only).

min_cpu : The virtual machine’s minimum CPU count ( ova  format only).

max_cpu : The virtual machine’s maximum CPU count ( ova  format only).

memory : The virtual machine’s memory in MB (all formats).

ncpus : The umber of virtual CPUs available to the virtual machine (all formats).

Additionally, machine  supports additional child elements that are covered in the following
subsections.

132 Customizing the Virtual Machine

https://kb.vmware.com/s/article/1003746


10.2.3.1 Modifying the VM Configuration Directly

The vmconfig-entry  element is used to add entries directly into the virtual machine’s config-
uration le. This is currently only supported for the vmdk  format where the provided strings
are directly pasted into the .vmx  le.

The vmconfig-entry  element has no attributes and can appear multiple times, the entries are
added to the configuration le in the provided order. Note, that KIWI NG does not check the
entries for correctness. KIWI NG only forwards them.

The following example adds the two entries numvcpus = "4"  and cpuid.coresPerSocket =
"2"  into the VM configuration le:

<preferences>
  <type image="oem" filesystem="ext4" format="vmdk">
    <machine memory="512" guestOS="suse" HWversion="4">
      <vmconfig-entry>numvcpus = "4"</vmconfig-entry>
      <vmconfig-entry>cpuid.coresPerSocket = "2"</vmconfig-entry>
    </machine>
  </type>
</preferences>

10.2.3.2 Adding Network Interfaces to the VM

Network interfaces can be explicitly specified for the VM when required via the vmnic  element.
This can be used to add another bridged interface or to specify the driver which is being used.

Note, that this element is only used for the vmdk  image format.

In the following example we add a bridged network interface using the e1000  driver:

<preferences>
  <type image="oem" filesystem="ext4" format="vmdk">
    <machine memory="4096" guestOS="suse" HWversion="4">
      <vmnic driver="e1000" interface="0" mode="bridged"/>
    </machine>
  </type>
</preferences>

The vmnic  element supports the following attributes:

interface : mandatory interface ID for the VM’s network interface.

driver : optionally the driver which will be used can be specified

133 Customizing the Virtual Machine



mac : this interfaces’ MAC address

mode : this interfaces’ mode.

Note that KIWI NG will not verify the values that are passed to these attributes, it will only
paste them into the appropriate configuration les.

10.2.3.3 Specifying Disks and Disk Controllers

The vmdisk  element can be used to customize the disks and disk controllers for the virtual
machine. This element can be specified multiple times, each time for each disk or disk controller
present.

Note that this element is only used for vmdk  and ova  image formats.

The following example adds a disk with the ID 0 using an IDE controller:

<preferences>
  <type image="oem" filesystem="ext4" format="vmdk">
    <machine memory="512" guestOS="suse" HWversion="4">
      <vmdisk id="0" controller="ide"/>
    </machine>
  </type>
</preferences>

Each vmdisk  element can be further customized via the following optional attributes:

controller : The disk controller used for the VM guest ( vmdk  format only). Supported
values are: ide , buslogic , lsilogic , lsisas1068 , legacyESX  and pvscsi .

device : The disk device to appear in the guest ( xen  format only).

diskmode : The disk mode ( vmdk  format only), possible values are: monolithicSparse ,
monolithicFlat , twoGbMaxExtentSparse , twoGbMaxExtentFlat  and streamOpti-
mized  (see also https://www.vmware.com/support/developer/converter-sdk/conv60_apiref-

erence/vim.OvfManager.CreateImportSpecParams.DiskProvisioningType.html ).

disktype : The type of the disk as it is internally handled by the VM ( ova  format only).
This attribute is currently unused.

id : The disk ID of the VM disk ( vmdk  format only).

134 Customizing the Virtual Machine

https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.OvfManager.CreateImportSpecParams.DiskProvisioningType.html
https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.OvfManager.CreateImportSpecParams.DiskProvisioningType.html


10.2.3.4 Adding CD/DVD Drives

KIWI NG supports the addition of IDE and SCSCI CD/DVD drives to the virtual machine using
the vmdvd  element for the vmdk  image format. In the following example we add two drives:
one with a SCSCI and another with a IDE controller:

<preferences>
  <type image="oem" filesystem="ext4">
    <machine memory="512" xen_loader="hvmloader">
      <vmdvd id="0" controller="scsi"/>
      <vmdvd id="1" controller="ide"/>
    </machine>
  </type>
</preferences>

The vmdvd  element features just these two mandatory attributes:

id : The CD/DVD ID of the drive

controller : The CD/DVD controller used for the VM guest, supported values are ide
and scsi .

10.3 Build an Expandable Disk Image
Abstract. This page explains how to build an expandable disk image. It contains how to:

build an expandable disk image

deploy an expandable disk image

run the deployed system

An expandable disk represents the system disk with the capability to auto expand the disk and
its filesystem to a custom disk geometry. This allows deploying the same disk image on target
systems with different hardware setup.

The following example shows how to build and deploy such a disk image based on openSUSE
Leap using a QEMU virtual machine as the target system:

1. Make sure you have checked out the example image descriptions, see Section 2.4, “Example

Appliance Descriptions”.

2. Build the image with KIWI NG:

$ sudo kiwi-ng --type oem system build \

135 Build an Expandable Disk Image



    --description kiwi/build-tests/x86/leap/test-image-disk \
    --set-repo obs://openSUSE:Leap:15.3/standard \
    --target-dir /tmp/myimage

Find the following result images below /tmp/myimage .

The disk image with the suffix .raw  is an expandable virtual disk. It can expand
itself to a custom disk geometry.

The installation image with the suffix install.iso  is a hybrid installation system
which contains the disk image and is capable to install this image on any target disk.

10.3.1 Deployment Methods

The basic idea behind an expandable disk image is to provide the virtual disk data for OEM
vendors to support easy deployment of the system to physical storage media.

There are the following basic deployment strategies:

1. Manual Deployment (#deploy-manually)

Manually deploy the disk image onto the target disk.

2. CD/DVD Deployment (#deploy-from-iso)

Boot the installation image and let KIWI NG’s installer deploy the disk image from CD/
DVD or USB stick onto the target disk.

3. Network Deployment (#deploy-from-network)

PXE boot the target system and let KIWI NG’s installer deploy the disk image from the
network onto the target disk.

10.3.2 Manual Deployment

The manual deployment method can be tested using virtualization software such as QEMU, and
an additional virtual target disk of a larger size. The following steps shows how to do it:

1. Create a target disk

$ qemu-img create target_disk 20g

136 Deployment Methods

#deploy-manually
#deploy-from-iso
#deploy-from-network


Note
Retaining the Disk Geometry

If the target disk geometry is less or equal to the geometry of the disk image itself,
the disk expansion performed for a physical disk install during the boot workflow
will be skipped and the original disk geometry stays untouched.

2. Dump disk image on target disk.

$ dd if=kiwi-test-image-disk.x86_64-1.15.3.raw of=target_disk conv=notrunc

3. Boot the target disk

$ sudo qemu -hda target_disk -m 4096 -serial stdio

At rst boot of the target_disk the system is expanded to the configured storage layout.
By default the system root partition and filesystem is resized to the maximum free space
available.

10.3.3 CD/DVD Deployment

The deployment from CD/DVD via the installation image can also be tested using virtualization
software such as QEMU. The following steps shows how to do it:

1. Create a target disk
Follow the steps above to create a virtual target disk

2. Boot the installation image as CD/DVD with the target disk attached.

$ sudo qemu -cdrom \
      kiwi-test-image-disk.x86_64-1.15.3.install.iso -hda target_disk \
      -boot d -m 4096 -serial stdio

Note
USB Stick Deployment

137 CD/DVD Deployment



Like any other ISO image built with KIWI NG, also the installation image is a hybrid
image. Thus it can also be used on USB stick and serve as installation stick image
like it is explained in Section 10.1, “Build an ISO Hybrid Live Image”

10.3.4 Network Deployment

The deployment from the network downloads the disk image from a PXE boot server. This
requires a PXE network boot server to be setup as explained in Section 11.13, “Setting Up a Network

Boot Server”

If the PXE server is running the following steps shows how to test the deployment process over
the network using a QEMU virtual machine as target system:

1. Make sure to create an installation PXE TAR archive along with your disk image by re-
placing the following setup in kiwi/build-tests/x86/leap/test-image-disk/appliance.kiwi
Instead of

<type image="oem" installiso="true"/>

setup

<type image="oem" installpxe="true"/>

2. Rebuild the image, unpack the resulting kiwi-test-image-disk.x86_64-1.15.3.in-
stall.tar.xz  le to a temporary directory and copy the initrd and kernel images to the
PXE server:

1. Unpack installation tarball

mkdir /tmp/pxe && cd /tmp/pxe
tar -xf kiwi-test-image-disk.x86_64-1.15.3.install.tar.xz

2. Copy kernel and initrd used for pxe boot

scp pxeboot.kiwi-test-image-disk.x86_64-1.15.3.initrd PXE_SERVER_IP:/srv/
tftpboot/boot/initrd
scp pxeboot.kiwi-test-image-disk.x86_64-1.15.3.kernel PXE_SERVER_IP:/srv/
tftpboot/boot/linux

138 Network Deployment



3. Copy the disk image, MD5 le, system kernel, initrd and bootoptions to the PXE boot
server:
Activation of the deployed system is done via kexec  of the kernel and initrd provided
here.

1. Copy system image and MD5 checksum

scp kiwi-test-image-disk.x86_64-1.15.3.xz PXE_SERVER_IP:/srv/tftpboot/image/
scp kiwi-test-image-disk.x86_64-1.15.3.md5 PXE_SERVER_IP:/srv/tftpboot/image/

2. Copy kernel, initrd and bootoptions used for booting the system via kexec

scp kiwi-test-image-disk.x86_64-1.15.3.initrd PXE_SERVER_IP:/srv/tftpboot/
image/
scp kiwi-test-image-disk.x86_64-1.15.3.kernel PXE_SERVER_IP:/srv/tftpboot/
image/
scp kiwi-test-image-disk.x86_64-1.15.3.config.bootoptions PXE_SERVER_IP:/srv/
tftpboot/image/

Note
The config.bootoptions le is used together with kexec to boot the previously
dumped image. The information in that le references the root of the dumped
image and can also include any other type of boot options. The le provided
with the KIWI NG built image is by default connected to the image present
in the PXE TAR archive. If other images got deployed the contents of this le
must be adapted to match the correct root reference.

4. Add/Update the kernel command line parameters
Edit your PXE configuration (for example pxelinux.cfg/default ) on the PXE server
and add these parameters to the append line, typically looking like this:

append initrd=boot/initrd rd.kiwi.install.pxe
 rd.kiwi.install.image=tftp://192.168.100.16/image/kiwi-test-image-
disk.x86_64-1.15.3.xz

The location of the image is specified as a source URI which can point to any location
supported by the curl  command. KIWI NG calls curl  to fetch the data from this URI.
This also means your image, MD5 le, system kernel and initrd could be fetched from any
server and doesn’t have to be stored on the PXE_SERVER .

139 Network Deployment



By default KIWI NG does not use specific curl  options or ags. However it is possible
to add custom ones by adding the rd.kiwi.install.pxe.curl_options  ag into the
kernel command line. curl  options are passed as comma separated values. Consider the
following example:

rd.kiwi.install.pxe.curl_options=--retry,3,--retry-delay,3,--speed-limit,2048

The above tells KIWI NG to call curl  with:

curl --retry 3 --retry-delay 3 --speed-limit 2048 -f <url>

This is specially handy when the deployment infraestructure requires some ne tuned
download behavior. For example, setting retries to be more robust over aky network
connections.

Note
KIWI NG just replaces commas with spaces and appends it to the curl  call. This is
relevant since command line options including commas will always fail.

Note
The initrd and Linux Kernel for pxe boot are always loaded via tftp from the PX-
E_SERVER .

1. Create a target disk
Follow the steps above to create a virtual target disk

2. Connect the client to the network and boot QEMU with the target disk attached to the
virtual machine.

$ sudo qemu -boot n -hda target_disk -m 4096

Note
QEMU bridged networking

140 Network Deployment



In order to let qemu connect to the network we recommend to setup a network
bridge on the host system and let qemu connect to it via a custom /etc/qemu-ifup.
For details see https://en.wikibooks.org/wiki/QEMU/Networking

10.3.5 OEM Customization

The deployment process of an oem image can be customized through the oemconfig  element
which is a child section of the type  element like the following example shows:

<oemconfig>
  <oem-swapsize>512</oem-swapsize>
</oemconfig>

The following list of optional oem  element settings exists:

oemconfig.oem-resize Element

Specify if the disk has the capability to expand itself to a new disk geometry or not. By
default, this feature is activated. The implementation of the resize capability is done in a
dracut module packaged as dracut-kiwi-oem-repart . If oem-resize  is set to false, the
installation of the corresponding dracut package can be skipped as well.

oemconfig.oem-boot-title Element

By default, the string OEM will be used as the boot manager menu entry when KIWI creates
the GRUB configuration during deployment. The oem-boot-title  element allows you to
set a custom name for the grub menu entry. This value is represented by the kiwi_oemti-
tle  variable in the initrd

oemconfig.oem-bootwait Element

Specify if the system should wait for user interaction prior to continuing the boot process
after the disk image has been dumped to the designated storage device (default value is
false). This value is represented by the kiwi_oembootwait  variable in the initrd

oemconfig.oem-reboot Element

Specify if the system is to be rebooted after the disk image has been deployed to the des-
ignated storage device (default value is false). This value is represented by the kiwi_oem-
reboot  variable in the initrd

141 OEM Customization

https://en.wikibooks.org/wiki/QEMU/Networking


oemconfig.oem-reboot-interactive Element

Specify if the system is to be rebooted after the disk image has been deployed to the desig-
nated storage device (default value is false). Prior to reboot a message is posted and must
be acknowledged by the user in order for the system to reboot. This value is represented
by the kiwi_oemrebootinteractive  variable in the initrd

oemconfig.oem-silent-boot Element

Specify if the system should boot in silent mode after the disk image has been deployed
to the designated storage device (default value is false). This value is represented by the
kiwi_oemsilentboot  variable in the initrd

oemconfig.oem-shutdown Element

Specify if the system is to be powered down after the disk image has been deployed to
the designated storage device (default value is false). This value is represented by the
kiwi_oemshutdown  variable in the initrd

oemconfig.oem-shutdown-interactive Element

Specify if the system is to be powered down after the disk image has been deployed to the
designated storage device (default value is false). Prior to shutdown a message is posted
and must be acknowledged by the user in order for the system to power o. This value is
represented by the kiwi_oemshutdowninteractive  variable in the initrd

oemconfig.oem-swap Element

Specify if a swap partition should be created. By default no swap partition will be created.
This value is represented by the kiwi_oemswap  variable in the initrd

oemconfig.oem-swapname Element

Specify the name of the swap space. By default the name is set to LVSwap . The default
already indicates that this setting is only useful in combination with the LVM volume
manager. In this case the swapspace is setup as a volume in the volume group and any
volume needs a name. The name set here is used to give the swap volume a name.

oemconfig.oem-swapsize Element

Set the size of the swap partition. If a swap partition is to be created and the size of the
swap partition is not specified with this optional element, KIWI will calculate the size of
the swap partition and create a swap partition equal to two times the RAM installed on
the system at initial boot time. This value is represented by the kiwi_oemswapMB  variable
in the initrd

142 OEM Customization



oemconfig.oem-systemsize Element

Set the size the operating system is allowed to consume on the target disk. The size limit
does not include any consideration for swap space or a recovery partition. In a setup without
a systemdisk element this value specifies the size of the root partition. In a setup including
a systemdisk element this value specifies the size of the LVM partition which contains all
specified volumes. Thus, the sum of all specified volume sizes plus the sum of the specified
freespace for each volume must be smaller or equal to the size specified with the oem-
systemsize  element. This value is represented by the variable kiwi_oemrootMB  in the
initrd

oemconfig.oem-unattended Element

The installation of the image to the target system occurs automatically without requiring
user interaction. If multiple possible target devices are discovered the image is deployed
to the rst device. kiwi_oemunattended  in the initrd

oemconfig.oem-skip-verify Element

Do not perform the checksum verification process after install of the image to the target
disk. The verification process computes the checksum of the image byte size installed to the
target and compares this value with the initrd embedded checksum information at build
time of the image. Depending on the size of the image and machine power the computation
can take some time.

10.3.6 Installation Media Customization

The installation media created for OEM network or CD/DVD deployments can be customized
with the installmedia  section which is a child section of the type  element as it appears in
the following example:

<installmedia>
  <initrd action="omit">
    <dracut module="network-legacy"/>
  </initrd>
</installmedia>

The installmedia  is only available for OEM image types that includes the request to create
an installation media.

The initrd  child element of installmedia  lists dracut modules, they can be omitted, added
or staticaly set the list of included ones. This is specified with the action  attribute and can
take action="omit" , action="add"  or action="set"  values.

143 Installation Media Customization



10.4 Build a Container Image

Abstract. This page explains how to build a Container Image. It contains

basic configuration explanation

how to build a Container Image

how to run it with a Container Runtime

KIWI NG is capable of building native Container Images from scratch and derived ones. KIWI
NG Container images are considered to be native since the KIWI NG tarball image is ready to
be loaded into a Container Runtime like Podman, Docker or Containerd, including common
container configurations.

The Container configuration metadata is provided to KIWI NG as part of the Section 1.1.1, “Com-

ponents of an Image Description” using the <containerconfig>  tag. The following configuration
metadata can be specified:

containerconfig  attributes:

name : Specifies the repository name of the Container Image.

tag : Sets the tag of the Container Image.

maintainer : Specifies the author eld of the container, this is equivalent to the MAIN-
TAINER  directive in a Dockerfile .

user : Sets the user name or user id (UID) to be used when running entrypoint  and
subcommand . Equivalent of the USER  directive of a Dockerfile .

workingdir : Sets the working directory to be used when running cmd  and entrypoint .
Equivalent of the WORKDIR  directive in a Dockerfile .

containerconfig  child tags:

subcommand : Provides the default execution parameters of the container. Equivalent of
the CMD  directive in a Dockerfile .

labels : Adds custom metadata to an image using key-value pairs. Equivalent to one or
more LABEL  directives in a Dockerfile .

expose : Define which ports can be exposed to the outside when running this container
image. Equivalent to one or more EXPOSE  directives in a Dockerfile .

144 Build a Container Image



environment : Sets environment variables using key-value pairs. Equivalent to one or mul-
tiple ENV  directives in a Dockerfile .

entrypoint : Sets the binary via which all commands inside the container will be execut-
ed. Equivalent of the ENTRYPOINT  directive in a Dockerfile .

volumes : Create mountpoints with the given name and mark them to hold external vol-
umes from the host or from other containers. Equivalent to one or more VOLUME  directives
in a Dockerfile .

Other Dockerfile  directives such as RUN , COPY  or ADD , can be mapped to KIWI NG using
the Section 1.1.1, “Components of an Image Description” script le to run bash commands or the
Section 1.1.1, “Components of an Image Description” to include additional les.

The following example illustrates how to build a Container Image based on openSUSE Leap:

1. Make sure you have checked out the example image descriptions, see Section 2.4, “Example

Appliance Descriptions”.

2. Include the Virtualization/containers  repository to your list:

$ zypper addrepo http://download.opensuse.org/repositories/Virtualization:/
containers/<DIST> container-tools

where the placeholder <DIST>  is the preferred distribution.

3. Install umoci  and skopeo  tools

$ zypper in umoci skopeo

4. Build the image with KIWI NG:

$ sudo kiwi-ng system build \
    --description kiwi/build-tests/x86/leap/test-image-docker \
    --set-repo obs://openSUSE:Leap:15.3/standard \
    --target-dir /tmp/myimage

5. Test the Container image.
First load the new image into your Container Runtime:

$ podman load -i kiwi-test-image-docker.x86_64-1.15.3.docker.tar.xz

and then run the image:

$ podman run --rm -it buildsystem /bin/bash

145 Build a Container Image



10.5 Build a WSL Container Image

Abstract. This page explains how to build a WSL/Appx container image. WSL stands for Win-
dows Subsystem Linux and is a zip based container format consumable by Windows 10 with
enabled WSL functionality.

KIWI NG is capable of building WSL images using the appx  utility. Make sure you have installed
a package that provides this command on your build host.

Once the build host has the appx  installed, the following image type setup is required in the
XML description config.xml :

<type image="appx" metadata_path="/meta/data"/>

The /meta/data  path specifies a path that provides additional information required for the
WSL-DistroLauncher . This component consists out of a Windows( exe ) executable le and an
AppxManifest.xml  le which references other les like icons and resource configurations for
the startup of the container under Windows.

Note
/meta/data

Except for the root filesystem tarball KIWI NG is not responsible for providing the meta
data required for the WSL-DistroLauncher . It is expected that the given metadata path
contains all the needed information. Typically this information is delivered in a package
provided by the Distribution and installed on the build host

10.5.1 Setup of the WSL-DistroLauncher

The contents of the AppxManifest.xml  will be changed by KIWI NG if a containerconfig
section is provided in the XML description. In the context of a WSL image the following container
configuration parameters are taken into account:

<containerconfig name="my-wsl-container">
    <history
        created_by="Organisation"
        author="Name"
        application_id="AppIdentification"
        package_version="https://docs.microsoft.com/en-us/windows/uwp/publish/package-
version-numbering"

146 Build a WSL Container Image



        launcher="WSL-DistroLauncher-exe-file"
    >Container Description Text</history>
</containerconfig>

All information provided here including the entire section is optional. If not provided the existing
AppxManifest.xml  stays untouched.

created_by

Provides the name of a publisher organisation. An appx container needs to be signed o
with a digital signature. If the image is build in the Open Build Service (OBS) this happens
automatically. Outside of OBS one needs to make sure the given publisher organisation
name matches the certificate used for signing.

author

Provides the name of the author and maintainer of this container

application_id

Provides an ID name for the container. The name must start with a letter and only allows
alphanumeric characters. KIWI NG will not validate the given name string because there
is no common criteria between the container architectures. KIWI NG just accepts any text.

package_version

Provides the version identification for the container. KIWI NG validates this against the
Microsoft Package Version Numbering (https://docs.microsoft.com/en-us/windows/uwp/pub-

lish/package-version-numbering)  rules.

launcher

Provides the binary le name of the launcher .exe  le.

Warning
There is no validation by KIWI NG if the contents of AppxManifest.xml  are valid or
complete to run the container. Users will nd out at call time, not before

The following example shows how to build a WSL image based on openSUSE TW:

1. Make sure you have checked out the example image descriptions, see Section 2.4, “Example

Appliance Descriptions”.

147 Setup of the WSL-DistroLauncher

https://docs.microsoft.com/en-us/windows/uwp/publish/package-version-numbering
https://docs.microsoft.com/en-us/windows/uwp/publish/package-version-numbering


2. Include the Virtualization/WSL  repository to your list:

$ zypper addrepo http://download.opensuse.org/repositories/Virtualization:/WSL/
<DIST> WSL

where the placeholder <DIST>  is the preferred distribution.

3. Install fb-util-for-appx  utility and a package that provides the WSL-DistroLauncher
metadata. See the above note about /meta/data

$ zypper in fb-util-for-appx DISTRO_APPX_METADATA_PACKAGE

Note
If you are building in the Open Build Service make sure to add the packages from
the zypper call above to your project config via osc meta -e prjconf  and a line
of the form support: PACKAGE_NAME  for each package that needs to be installed
on the Open Build Service worker that runs the KIWI NG build process.

4. Setup the image type:
Edit the XML description le: kiwi/build-tests/x86/tumbleweed/test-image-wsl/
appliance.kiwi  and add the following type and containerconfig:

<type image="appx" metadata_path="/meta/data">
    <containerconfig name="Tumbleweed">
        <history
            created_by="SUSE"
            author="KIWI-Team"
            application_id="tumbleweed"
            package_version="2003.12.0.0"
            launcher="openSUSE-Tumbleweed.exe"
        >Tumbleweed Appliance text based</history>
    </containerconfig>
</type>

Warning
If the configured metadata path does not exist the build will fail. Furthermore there
is no validation by KIWI NG that the contents of the metadata path are valid or
complete with respect to the requirements of the WSL-DistroLauncher

148 Setup of the WSL-DistroLauncher



5. Build the image with KIWI NG:

$ sudo kiwi-ng system build \
    --description kiwi/build-tests/x86/tumbleweed/test-image-wsl \
    --set-repo http://download.opensuse.org/tumbleweed/repo/oss \
    --target-dir /tmp/myimage

10.5.2 Testing the WSL image

For testing the image a Windows 10 system is required. As a rst step the optional feature named
Microsoft-Windows-Subsystem-Linux  must be enabled. For further details on how to setup
the Windows machine see the following documentation: Windows Subsystem for Linux (https://

docs.microsoft.com/en-us/windows/wsl/about)

10.6 Build KIS Image (Kernel, Initrd, System)

Abstract. This page explains how to build an image that consists out of three components. The
kernel an initrd and an optional root filesystem image. In KIWI NG terminology this is called KIS.

A KIS image is a collection of image components that are not associated with a dedicated use
case. This means from a KIWI NG perspective we don’t know in which environment these com-
ponents are later used. The predecessor of this image type was called pxe  under the assumption
that the components will be used in a pxe boot environment. However this assumption is not
neccessarily true and the image components are used in a different way. Because there are so
many possible deployment strategies for a kernel  plus initrd  and optional system root
filesystem , KIWI NG provides this as generic KIS  type that is generically usable.

The former pxe  image type will continue to exist but is expected to be used only in combination
with the legacy netboot  infrastructure as described in Section 11.14, “Build PXE Root File System

Image for the legacy netboot infrastructure”.

To add a KIS build to your appliance, create a type  element with image  set to kis  in your
config.xml  as shown below:

<preferences>
    <type image="kis"/>
</preferences>

149 Testing the WSL image

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about


With this image type setup KIWI NG will just build a kernel and initrd not associated to any
system root le system. Usually such an image is only useful with some custom dracut extensions
as part of the image description.

The following attributes of the type  element are often used when building KIS images:

filesystem : Specifies the root filesystem and triggers the build of an additional filesystem
image of that filesystem. The generated kernel command line options le (append le) will
then also include a root=  parameter that references this filesystem image UUID. If the
information from the append le should be used or not is optional.

kernelcmdline : Specifies kernel command line options that will be part of the generated
kernel command line options le (append le). By default the append le contains no
information or the reference to the root UUID if the filesystem  attribute is used.

All other attributes of the type  element that applies to an optional root filesystem image will
be effective in the system image of a KIS image as well.

With the appropriate settings present in config.xml  KIWI NG can now build the image:

$ sudo kiwi-ng --type kis system build \
    --description kiwi/build-tests/x86/tumbleweed/test-image-pxe \
    --set-repo http://download.opensuse.org/tumbleweed/repo/oss \
    --target-dir /tmp/myimage

The resulting image components are saved in the folder /tmp/myimage . Outside of a deployment
infrastructure the example KIS image can be tested with QEMU as follows:

$ sudo qemu
    -kernel /tmp/myimage/*.kernel \
    -initrd /tmp/myimage/*.initrd \
    -append $(cat /tmp/myimage/*.append) \
    -hda /tmp/myimage/kiwi-test-image-pxe.*-1.15.3 \
    -serial stdio

Note
For testing the components of a KIS image a deployment infrastructure and also a deploy-
ment process is usually needed. One example of a deployment infrastructure using PXE
is provided by KIWI NG with the netboot  infrastructure. However that netboot infra-
structure is no longer developed and only kept for compatibiliy reasons. For details see
Section 11.14, “Build PXE Root File System Image for the legacy netboot infrastructure”

150 Build KIS Image (Kernel, Initrd, System)



11 Working with Images

Note
This document provides a collection of worksheets which describes the creation and setup
of appliances to work within a number of different target environments.

11.1 Deploy ISO Image on an USB Stick

Abstract. This page provides further information for handling ISO images built with KIWI NG
and references the following articles:

Section 10.1, “Build an ISO Hybrid Live Image”

In KIWI NG all generated ISO images are created to be hybrid. This means, the image can be used
as a CD/DVD or as a disk. This works because the ISO image also has a partition table embedded.
With more and more computers delivered without a CD/DVD drive this becomes important.

The very same ISO image can be copied onto a USB stick and used as a bootable disk. The
following procedure shows how to do this:

1. Plug in a USB stick
Once plugged in, check which Unix device name the stick was assigned to. The following
command provides an overview about all linux storage devices:

$ lsblk

2. Dump the ISO image on the USB stick:

Warning
Make sure the selected device really points to your stick because the following
operation can not be revoked and will destroy all data on the selected device

$ dd if={exc_image_base_name}.x86_64-1.15.3.iso of=/dev/<stickdevice>

3. Boot from your USB Stick

151 Deploy ISO Image on an USB Stick



Activate booting from USB in your BIOS/UEFI. As many rmware has different procedures
on how to do it, look into your user manual. Many rmware offers a boot menu which
can be activated at boot time.

11.2 Deploy ISO Image as File on a FAT32 Formated
USB Stick

Abstract. This page provides further information for handling ISO images built with KIWI NG
and references the following articles:

Section 10.1, “Build an ISO Hybrid Live Image”

In KIWI NG, all generated ISO images are created to be hybrid. This means, the image can be
used as a CD/DVD or as a disk. The deployment of such an image onto a disk like an USB stick
normally destroys all existing data on this device. Most USB sticks are pre-formatted with a
FAT32 Windows File System and to keep the existing data on the stick untouched a different
deployment needs to be used.

The following deployment process copies the ISO image as an additional le to the USB stick
and makes the USB stick bootable. The ability to boot from the stick is configured through a
SYSLINUX feature which allows to loopback mount an ISO le and boot the kernel and initrd
directly from the ISO le.

The initrd loaded in this process must also be able to loopback mount the ISO le to access the
root filesystem and boot the live system. The dracut initrd system used by KIWI NG provides this
feature upstream called as “iso-scan”. Therefore all KIWI NG generated live ISO images supports
this deployment mode.

For copying the ISO le on the USB stick and the setup of the SYSLINUX bootloader to make use
of the “iso-scan” feature an extra tool named live-grub-stick  exists. The following procedure
shows how to setup the USB stick with live-grub-stick :

1. Install the live-grub-stick  package from software.opensuse.org:

2. Plug in a USB stick
Once plugged in, check which Unix device name the FAT32 partition was assigned to. The
following command provides an overview about all storage devices and their filesystems:

$ sudo lsblk --fs

152 Deploy ISO Image as File on a FAT32 Formated USB Stick



3. Call the live-grub-stick  command as follows:
Assuming “/dev/sdz1” was the FAT32 partition selected from the output of the lsblk
command:

$ sudo live-grub-stick {exc_image_base_name}.x86_64-1.15.3.iso /dev/sdz1

4. Boot from your USB Stick
Activate booting from USB in your BIOS/UEFI. As many rmware has different procedures
on how to do it, look into your user manual. EFI booting from iso image is not supported
at the moment, for EFI booting use –isohybrid option with live-grub-stick, however note
that all the data on the stick will be lost. Many rmware offers a boot menu which can be
activated at boot time. Usually this can be reached by pressing the Esc  or F12  keys.

11.3 Booting a Live ISO Images from Grub2

Abstract. This page provides further information for handling ISO images built with KIWI NG
and references the following articles:

Section 10.1, “Build an ISO Hybrid Live Image”

In KIWI NG, all generated ISO images are created to be hybrid. This means, the image can be
used as a CD/DVD or as a disk. This works because the ISO image also has a partition table
embedded. With more and more computers delivered without a CD/DVD drive this becomes
important. The deployment of such an image onto a disk like an USB stick normally destroys
all existing data on this device. It is also not possible to use USB stick as a data storage device.
Most USB sticks are pre-formatted with a FAT32 or exFAT Windows File System and to keep the
existing data on the stick untouched a different deployment needs to be used.

Fortunately Grub2 supports booting directly from ISO les. It does not matter whether it is
installed on your computer’s hard drive or on a USB stick. The following deployment process
copies the ISO image as an additional le to the USB stick or hard drive. The ability to boot
from the disk is configured through a Grub2 feature which allows to loopback mount an ISO
le and boot the kernel and initrd directly from the ISO le.

The initrd loaded in this process must also be able to loopback mount the ISO le to access
the root filesystem and boot the live system. Almost every Linux distribution supports fat32,
and more and more of them also support exFAT. For hard drives, Linux filesystems are also
supported.

153 Booting a Live ISO Images from Grub2



The dracut initrd system used by KIWI NG provides this feature upstream called as “iso-scan/
filename”. Therefore all KIWI NG generated live ISO images supports this deployment mode.

The following procedure shows how to setup Grub2 on your hard drive:

1. Copy the ISO image to a folder of your choice on your hard drive.

2. Add the following code to the “grub.cfg” le:
Be sure to set the path to the ISO image, you can set your own menu name. The drive
identification for Grub2 can be checked at boot time by pressing the ‘c’ key and typing ‘ls’.

submenu "Boot from openSUSE ISO" {
     iso_path="(hd0,gpt2)/path/to/openSUSE.iso"
     export iso_path
     loopback loop "$iso_path"
     root=(loop)
     source /boot/grub2/loopback.cfg
     loopback --delete loop
}

3. Restart your computer and select the added menu.

For USB sticks, the procedure is identical. You would then install Grub2 on the USB drive and
follow the steps above. The use of scripts such as “MultiOS-USB” is strongly recommended.

11.4 Image Description for Amazon EC2
Abstract. This page provides further information for handling Amazon EC2 images built with
KIWI NG and references the following articles:

Section 10.2, “Build a Virtual Disk Image”

A virtual disk image which is able to boot in the Amazon EC2 cloud framework has to comply
the following constraints:

Xen tools and libraries must be installed

cloud-init package must be installed

cloud-init configuration for Amazon must be provided

Grub bootloader modules for Xen must be installed

AWS tools must be installed

154 Image Description for Amazon EC2



Disk size must be set to 10G

Kernel parameters must allow for xen console

To meet this requirements add or update the KIWI NG image description as follows:

1. Software packages
Make sure to add the following packages to the package list

Note
Package names used in the following list matches the package names of the SUSE
distribution and might be different on other distributions.

<package name="aws-cli"/>
<package name="grub2-x86_64-xen"/>
<package name="xen-libs"/>
<package name="xen-tools-domU"/>
<package name="cloud-init"/>

2. Image Type definition
Update the oem image type setup as follows

<type image="oem"
      filesystem="ext4"
      kernelcmdline="console=xvc0 multipath=off net.ifnames=0"
      devicepersistency="by-label"
      firmware="ec2">
  <bootloader name="grub2" timeout="1"/>
  <size unit="M">10240</size>
  <machine xen_loader="hvmloader"/>
  <oemconfig>
      <oem-resize>false</oem-resize>
  </oemconfig>
</type>

3. Cloud Init setup
Cloud init is a service which runs at boot time and allows to customize the system by
activating one ore more cloud init modules. For Amazon EC2 the following configuration
le /etc/cloud/cloud.cfg  needs to be provided as part of the overlay les in your KIWI
NG image description

users:

155 Image Description for Amazon EC2



  - default

disable_root: true
preserve_hostname: false
syslog_fix_perms: root:root

datasource_list: [ NoCloud, Ec2, None ]

cloud_init_modules:
  - migrator
  - bootcmd
  - write-files
  - growpart
  - resizefs
  - set_hostname
  - update_hostname
  - update_etc_hosts
  - ca-certs
  - rsyslog
  - users-groups
  - ssh

cloud_config_modules:
  - mounts
  - ssh-import-id
  - locale
  - set-passwords
  - package-update-upgrade-install
  - timezone

cloud_final_modules:
  - scripts-per-once
  - scripts-per-boot
  - scripts-per-instance
  - scripts-user
  - ssh-authkey-fingerprints
  - keys-to-console
  - phone-home
  - final-message
  - power-state-change

system_info:
  default_user:
    name: ec2-user
    gecos: "cloud-init created default user"
    lock_passwd: True
    sudo: ["ALL=(ALL) NOPASSWD:ALL"]

156 Image Description for Amazon EC2



    shell: /bin/bash
  paths:
    cloud_dir: /var/lib/cloud/
    templates_dir: /etc/cloud/templates/
  ssh_svcname: sshd

An image built with the above setup can be uploaded into the Amazon EC2 cloud and registered
as image. For further information on how to upload to EC2 see: ec2uploadimg (https://github.com/

SUSE-Enceladus/ec2imgutils)

11.5 Image Description for Microsoft Azure

Abstract. This page provides further information for handling Azure disk images built with KIWI
NG and references the following articles:

Section 10.2, “Build a Virtual Disk Image”

A virtual disk image which is able to boot in the Microsoft Azure cloud framework has to comply
the following constraints:

Hyper-V tools must be installed

Microsoft Azure Agent must be installed

Disk size must be set to 30G

Kernel parameters must allow for serial console

To meet this requirements update the KIWI NG image description as follows:

1. Software packages
Make sure to add the following packages to the package list

Note
Package names used in the following list matches the package names of the SUSE
distribution and might be different on other distributions.

<package name="hyper-v"/>
<package name="python-azure-agent"/>

157 Image Description for Microsoft Azure

https://github.com/SUSE-Enceladus/ec2imgutils
https://github.com/SUSE-Enceladus/ec2imgutils


2. Image Type definition
Update the oem image type setup as follows

<type image="oem"
      filesystem="ext4"
      kernelcmdline="console=ttyS0 rootdelay=300 net.ifnames=0"
      devicepersistency="by-uuid"
      format="vhd-fixed"
      formatoptions="force_size"
      bootpartition="true"
      bootpartsize="1024">
  <bootloader name="grub2" timeout="1"/>
  <size unit="M">30720</size>
  <oemconfig>
      <oem-resize>false</oem-resize>
  </oemconfig>
</type>

An image built with the above setup can be uploaded into the Microsoft Azure cloud and
registered as image. For further information on how to upload to Azure see: azurectl (https://

github.com/SUSE-Enceladus/azurectl)

11.6 Image Description for Google Compute Engine

Abstract. This page provides further information for handling GCE images built with KIWI NG
and references the following articles:

Section 10.2, “Build a Virtual Disk Image”

A virtual disk image which is able to boot in the Google Compute Engine cloud framework has
to comply the following constraints:

KIWI NG type must be an expandable disk

Google Compute Engine init must be installed

Disk size must be set to 10G

Kernel parameters must allow for serial console

To meet this requirements update the KIWI NG image description as follows:

1. Software packages

158 Image Description for Google Compute Engine

https://github.com/SUSE-Enceladus/azurectl
https://github.com/SUSE-Enceladus/azurectl


Make sure to add the following packages to the package list

Note
Package names used in the following list matches the package names of the SUSE
distribution and might be different on other distributions.

<package name="google-compute-engine-init"/>

2. Image Type definition
To allow the image to be expanded to the configured disk geometry of the instance started
by Google Compute Engine it is suggested to let KIWI NG’s OEM boot code take over that
task. It would also be possible to try cloud-init’s resize module but we found conflicts when
two cloud init systems, google-compute-engine-init  and cloud-init  were used to-
gether. Thus for now we stick with KIWI NG’s boot code which can resize the disk from
within the initrd before the system gets activated through systemd.
Update the oem image type setup to be changed into an expandable type as follows:

<type image="oem"
      initrd_system="dracut"
      filesystem="ext4"
      kernelcmdline="console=ttyS0,38400n8 net.ifnames=0"
      format="gce">
  <bootloader name="grub2" timeout="1"/>
  <size unit="M">10240</size>
  <oemconfig>
      <oem-resize>true</oem-resize>
      <oem-swap>false</oem-swap>
  </oemconfig>
</type>

An image built with the above setup can be uploaded into the Google Compute Engine cloud and
registered as image. For further information on how to upload to Google see: google-cloud-
sdk  on software.opensuse.org

11.7 Image Description for Vagrant

Abstract. This page provides further information for handling Vagrant controlled disk images
built with KIWI NG and references the following article:

159 Image Description for Vagrant



Section 10.2, “Build a Virtual Disk Image”

Vagrant (https://www.vagrantup.com)  is a framework to implement consistent processing/test-
ing work environments based on Virtualization technologies. To run a system, Vagrant needs
so-called boxes. A box is a TAR archive containing a virtual disk image and some metadata.

To build Vagrant boxes, you can use Packer (https://www.packer.io)  which is provided by
Hashicorp itself. Packer is based on the official installation media (DVDs) as shipped by the
distribution vendor.

The KIWI NG way of building images might be helpful, if such a media does not exist or does not
suit your needs. For example, if the distribution is still under development or you want to use a
collection of your own repositories. Note, that in contrast to Packer KIWI NG only supports the
libvirt and VirtualBox providers. Other providers require a different box layout that is currently
not supported by KIWI NG.

In addition, you can use the KIWI NG image description as source for the Open Build Service

(https://openbuildservice.org)  which allows building and maintaining boxes.

Vagrant expects boxes to be setup in a specific way (for details refer to the Vagrant box documen-

tation (https://www.vagrantup.com/docs/boxes/base.html) .), applied to the referenced KIWI NG
image description from Section 10.2, “Build a Virtual Disk Image”, the following steps are required:

1. Update the image type setup

<type image="oem" filesystem="ext4" format="vagrant">
    <bootloader name="grub2" timeout="0"/>
    <vagrantconfig provider="libvirt" virtualsize="42"/>
    <size unit="G">42</size>
    <oemconfig>
        <oem-resize>false</oem-resize>
    </oemconfig>
</type>

This modifies the type to build a Vagrant box for the libvirt provider including a pre-
defined disk size. The disk size is optional, but recommended to provide some free space
on disk.
For the VirtualBox provider, the additional attribute virtualbox_guest_addition-
s_present  can be set to true  when the VirtualBox guest additions are installed in the
KIWI NG image:

<type image="oem" filesystem="ext4" format="vagrant">
    <bootloader name="grub2" timeout="0"/>
    <vagrantconfig

160 Image Description for Vagrant

https://www.vagrantup.com
https://www.packer.io
https://openbuildservice.org
https://openbuildservice.org
https://www.vagrantup.com/docs/boxes/base.html
https://www.vagrantup.com/docs/boxes/base.html


      provider="virtualbox"
      virtualbox_guest_additions_present="true"
      virtualsize="42"
    />
    <size unit="G">42</size>
    <oemconfig>
        <oem-resize>false</oem-resize>
    </oemconfig>
</type>

The resulting Vagrant box then uses the vboxfs  module for the synchronized folder in-
stead of rsync , that is used by default.

2. Add mandatory packages

<package name="sudo"/>
<package name="openssh"/>

3. Add additional packages
If you have set the attribute virtualbox_guest_additions_present  to true , add the
VirtualBox guest additions. For openSUSE the following packages are required:

<package name="virtualbox-guest-tools"/>
<package name="virtualbox-guest-x11"/>
<package name="virtualbox-guest-kmp-default"/>

Otherwise, you must add rsync :

<package name="rsync"/>

Note that KIWI NG cannot verify whether these packages are installed. If they are missing,
the resulting Vagrant box will be broken.

4. Add Vagrant user

<users group='vagrant'>
    <user name='vagrant' password='vh4vw1N4alxKQ' home='/home/vagrant'/>
</users>

This adds the vagrant user to the system and applies the name of the user as the password
for login.

5. Configure SSH, the default shared folder and sudo permissions

161 Image Description for Vagrant



Vagrant expects that it can login as the user vagrant  using an insecure public key . Fur-
thermore, vagrant also usually uses /vagrant  as the default shared folder and assumes
that the vagrant  user can invoke commands via sudo  without having to enter a pass-
word.
This can be achieved using the function baseVagrantSetup  in config.sh :

baseVagrantSetup

6. Additional customizations:
Additionally to baseVagrantSetup , you might want to also ensure the following:

If you have installed the Virtualbox guest additions into your box, then also load the
vboxsf  kernel module.

When building boxes for libvirt, then ensure that the default wired networking in-
terface is called eth0  and uses DHCP. This is necessary since libvirt uses dnsmasq
to issue IPs to the VMs. This step can be omitted for Virtualbox boxes.

An image built with the above setup creates a Vagrant box le with the extension .va-
grant.libvirt.box  or .vagrant.virtualbox.box . Add the box le to Vagrant with the com-
mand:

vagrant box add my-box image-file.vagrant.libvirt.box

Note
Using the box with the libvirt provider requires alongside a correct Vagrant installation:

the plugin vagrant-libvirt  to be installed

a running libvirtd daemon

Once added to Vagrant, boot the box and log in with the following sequence of vagrant  com-
mands:

vagrant init my-box
vagrant up --provider libvirt
vagrant ssh

162 Image Description for Vagrant



11.7.1 Customizing the embedded Vagrantfile

Warning
This is an advanced topic and not required for most users

Vagrant ship with an embedded Vagrantfile  that carries settings specific to this box, for
instance the synchronization mechanism for the shared folder. KIWI NG generates such a le
automatically for you and it should be sufficient for most use cases.

If a box requires different settings in the embedded Vagrantfile , then the user can provide
KIWI NG with a path to an alternative via the attribute embebbed_vagrantfile  of the va-
grantconfig  element: it specifies a relative path to the Vagrantfile  that will be included in
the finished box.

In the following example snippet from config.xml  we add a custom MyVagrantfile  into the
box (the le should be in the image description directory next to config.sh ):

<type image="oem" filesystem="ext4" format="vagrant">
    <bootloader name="grub2" timeout="0"/>
    <vagrantconfig
      provider="libvirt"
      virtualsize="42"
      embedded_vagrantfile="MyVagrantfile"
    />
    <size unit="G">42</size>
    <oemconfig>
        <oem-resize>false</oem-resize>
    </oemconfig>
</type>

The option to provide a custom Vagrantfile  can be combined with the usage of profiles (see
Section 7.4, “Image Profiles”), so that certain builds can use the automatically generated Vagrant-
file  (in the following example that is the Virtualbox build) and others get a customized one
(the libvirt profile in the following example):

<?xml version="1.0" encoding="utf-8"?>

<image schemaversion="7.4" name="{exc_image_base_name}">
  <!-- description goes here -->
  <profiles>
    <profile name="libvirt" description="Vagrant Box for Libvirt"/>
    <profile name="virtualbox" description="Vagrant Box for VirtualBox"/>
  </profiles>

163 Customizing the embedded Vagrantfile



  <!-- general preferences go here -->

  <preferences profiles="libvirt">
    <type
      image="oem"
      filesystem="ext4"
      format="vagrant">
        <bootloader name="grub2" timeout="0"/>
        <vagrantconfig
          provider="libvirt"
          virtualsize="42"
          embedded_vagrantfile="LibvirtVagrantfile"
        />
        <size unit="G">42</size>
        <oemconfig>
            <oem-resize>false</oem-resize>
        </oemconfig>
   </type>
   </preferences>
   <preferences profiles="virtualbox">
     <type
       image="oem"
       filesystem="ext4"
       format="vagrant">
         <bootloader name="grub2" timeout="0"/>
         <vagrantconfig
           provider="virtualbox"
           virtualbox_guest_additions_present="true"
           virtualsize="42"
         />
         <size unit="G">42</size>
         <oemconfig>
             <oem-resize>false</oem-resize>
         </oemconfig>
     </type>
   </preferences>

   <!-- remaining box description -->
 </image>

164 Customizing the embedded Vagrantfile



11.8 Image Description Encrypted Disk

Abstract. This page provides further information for handling disk images with an encrypted
root filesystem setup. The information here is based on top of the following article:

Section 10.2, “Build a Virtual Disk Image”

A virtual disk image can be partially or fully encrypted using the LUKS extension supported
by KIWI NG. A fully encrypted image also includes the data in /boot  to be encrypted. Such
an image requests the passphrase for the master key to be entered at the bootloader stage. A
partialy encrypted image keeps /boot  unencrypted and on an extra boot partition. Such an
image requests the passphrase for the master key later in the boot process when the root partition
gets accessed by the systemd mount service. In any case the master passphrase is requested only
once.

Update the KIWI NG image description as follows:

1. Software packages
Make sure to add the following package to the package list

Note
Package names used in the following list match the package names of the SUSE
distribution and might be different on other distributions.

<package name="cryptsetup"/>

2. Image Type definition
Update the oem image type setup as follows

Full disk encryption including /boot :

<type image="oem" filesystem="ext4" luks="linux" bootpartition="false">
    <oemconfig>
        <oem-resize>false</oem-resize>
    </oemconfig>
</type>

Encrypted root partition with an unencrypted extra /boot  partition:

<type image="oem" filesystem="ext4" luks="linux" bootpartition="true">

165 Image Description Encrypted Disk



    <oemconfig>
        <oem-resize>false</oem-resize>
    </oemconfig>
</type>

Note
The value for the luks  attribute sets the master passphrase for the LUKS keyring.
Therefore the XML description becomes security critical and should only be read-
able by trustworthy people. Alternatively the credentials information can be stored
in a key le and referenced as:

<type luks="file:///path/to/keyfile"/>

11.9 Deploy and Run System in a RamDisk

Abstract. This page provides further information for handling oem images built with KIWI NG
and references the following articles:

Section 10.3, “Build an Expandable Disk Image”

If a machine should run the OS completely in memory without the need for any persistent
storage, the approach to deploy the image into a ramdisk serves this purpose. KIWI NG allows
to create a bootable ISO image which deploys the image into a ramdisk and activates that image
with the following oem type definition:

<type image="oem" filesystem="ext4" installiso="true" initrd_system="dracut"
 installboot="install" kernelcmdline="rd.kiwi.ramdisk ramdisk_size=2048000">
    <bootloader name="grub2" timeout="1"/>
    <oemconfig>
        <oem-skip-verify>true</oem-skip-verify>
        <oem-unattended>true</oem-unattended>
        <oem-unattended-id>/dev/ram1</oem-unattended-id>
        <oem-swap>false</oem-swap>
        <oem-multipath-scan>false</oem-multipath-scan>
     </oemconfig>
 </type>

166 Deploy and Run System in a RamDisk



The type specification above builds an installation ISO image which deploys the System Image
into the specified ramdisk device (/dev/ram1). The setup of the ISO image boots with a short
boot timeout of 1sec and just runs through the process without asking any questions. In a ramdisk
deployment the optional target verification, swap space and multipath targets are out of scope
and therefore disabled.

The configured size of the ramdisk specifies the size of the OS disk and must be at least of
the size of the System Image. The disk size can be configured with the following value in the
kernelcmdline attribute:

ramdisk_size=kbyte-value”

An image built with the above setup can be tested in QEMU as follows:

$ sudo qemu -cdrom \
      {exc_image_base_name}.x86_64-1.15.3.install.iso \
      -serial stdio

Note
Enough Main Memory

The machine, no matter if it’s a virtual machine like QEMU or a real machine, must pro-
vide enough RAM to hold the image in the ramdisk as well as have enough RAM available
to operate the OS and its applications. The KIWI NG build image with the extension .raw
provides the System Image which gets deployed into the RAM space. Substract the size of
the System Image from the RAM space the machine offers and make sure the result is still
big enough for the use case of the appliance. In case of a virtual machine, attach enough
main memory to t this calculation. In case of QEMU this can be done with the -m  option

Like all other oem KIWI NG images, also the ramdisk setup supports all the deployments methods
as explained in Section 10.3.1, “Deployment Methods” This means it’s also possible to dump the ISO
image on a USB stick let the system boot from it and unplug the stick from the machine because
the system was deployed into RAM

Note
Limitations Of RamDisk Deployments

167 Deploy and Run System in a RamDisk



Only standard images which can be booted by a simple root mount and root switch can
be used. Usually KIWI NG calls kexec after deployment such that the correct, for the
image created dracut initrd, will boot the image. In case of a RAM only system kexec
does not work because it would loose the ramdisk contents. Thus the dracut initrd driving
the deployment is also the environment to boot the system. There are cases where this
environment is not suitable to boot the system.

11.10 Custom Disk Partitions

Abstract. This page provides details about the opportunities and limitations to customize the
partition table in addition to the volume management settings from Section 11.11, “Custom Disk

Volumes”.

KIWI NG has its own partitioning schema which is defined according to several different user
configurations: boot rmware, boot partition, expandable layouts, etc. Those supported features
have an impact on the partitioning schema.

MBR or GUID partition tables are not flexible, carry limitations and are tied to some specific disk
geometry. Because of that the preferred alternative to disk layouts based on traditional partition
tables is using flexible approaches like logic volumes.

However, on certain conditions additional entries to the low level partition table are needed.
For this purpose the <partitions>  section exists and allows to add custom entries like shown
in the following example:

<partitions>
    <partition name="var" size="100" mountpoint="/var" filesystem="ext3"/>
</partitions>

Each <partition>  entry puts a partition of the configured size in the low level partition table,
creates a filesystem on it and includes it to the system’s fstab le. If parts of the root filesystem
are moved into its own partition like it’s the case in the above example, this partition will also
contain the data that gets installed during the image creation process to that area.

The following attributes must/can be set to configured a partition entry:

name=”identifier”

Mandatory name of the partition as handled by KIWI NG.

168 Custom Disk Partitions



Note
There are the following reserved names which cannot be used because they are
already represented by existing attributes: root , readonly , boot , prep , spare ,
swap , efi_csm  and efi .

partition_name=”name”

Optional name of the partition as it appears when listing the table contents with tools
like gdisk . If no name is set KIWI NG constructs a name of the form p.lx(identifi-
er_from_name_attr)

partition_type=”type_identifier”

Optional partition type identifier as handled by KIWI NG. Allowed values are t.linux
and t.raid . If not specified t.linux  is the default.

size=”size_string”

Mandatory size of the partition. A size string can end with M  or G  to indicate a mega-Byte
or giga-Byte value. Without a unit specification mega-Byte is used.

mountpoint=”path”

Mandatory mountpoint to mount the partition in the system.

filesystem=”btrfs|ext2|ext3|ext4|squashfs|xfs

Mandatory filesystem configuration to create one of the supported filesystems on the par-
tition.

clone=”number”

Optional setting to indicate that this partition should be cloned number  of times. A clone
partition is content wise an exact byte for byte copy of the origin. However, to avoid
conflicts at boot time the UUID of any cloned partition will be made unique. In the sequence
of partitions, the clone(s) will always be created rst followed by the partition considered
the origin. The origin partition is the one that will be referenced and used by the system

Despite the customization options of the partition table shown above there are the following
limitations:

1. By default the root partition is always the last one

169 Custom Disk Partitions



Disk imags build with KIWI NG are designed to be expandable. For this feature to work the
partition containing the system rootfs must always be the last one. If this is unwanted for
some reason KIWI NG offers an opportunity for one extra/spare partition with the option
to be also placed at the end of the table. For details lookup spare_part  in Section 8.1,

“Image Description Elements”

2. By default there are no gaps in the partition table
The way partitions are configured is done such that there are no gaps in the table of the
image. However, leaving some space free at the end of the partition geometry is possible
in the following ways:

Deploy with unpartitioned free space.
To leave space unpartitioned on rst boot of a disk image it is possible to configure
an <oem-systemsize>  which is smaller than the disk the image gets deployed to.
Details about this setting can be found in Section 8.1, “Image Description Elements”

Build with unpartitioned free space.
To leave space unpartitioned at build time of the image it is possible to disable
<oem-resize>  and configure an <oem-systemsize>  which is smaller than the kiwi
calculated disk size or the xed setting for the disk size via the size>  element.

Build with unpartitioned free space.
Setting some unpartitioned free space on the disk can be done using the unparti-
tioned  attribute of size  element in type’s section. For details see Section 10.2.2,

“Modifying the Size of the Image”

Resize built image adding unpartitioned free space.
A built image can be resized by using the kiwi-ng image resize  command and
set a new extended size for the disk. See KIWI NG commands docs Section 4.8, “kiwi-ng

image resize”.

11.11 Custom Disk Volumes

Abstract. This chapter provides high level explanations on how to handle volumes or subvol-
umes definitions for disk images using KIWI NG.

KIWI NG supports defining custom volumes by using the logical volume manager (LVM) for the
Linux kernel or by setting volumes at filesystem level when filesystem supports it (e.g. btrfs).

170 Custom Disk Volumes



Volumes are defined in the KIWI NG description le config.xml , using systemdisk . This
element is a child of the type . Volumes themselves are added via (multiple) volume  child
elements of the systemdisk  element:

<image schemaversion="7.4" name="openSUSE-Leap-15.1">
  <type image="oem" filesystem="btrfs" preferlvm="true">
    <systemdisk name="vgroup">
      <volume name="usr/lib" size="1G" label="library"/>
      <volume name="@root" freespace="500M"/>
      <volume name="etc_volume" mountpoint="etc" copy_on_write="false"/>
      <volume name="bin_volume" size="all" mountpoint="/usr/bin"/>
    </systemdisk>
  </type>
</image>

Additional non-root volumes are created for each volume  element. Volume details can be de-
fined by setting the following volume  attributes:

name : Required attribute representing the volume’s name. Additionally, this attribute is
interpreted as the mountpoint if the mountpoint  attribute is not used.

mountpoint : Optional attribute that specifies the mountpoint of this volume.

size : Optional attribute to set the size of the volume. If no suffix ( M  or G ) is used, then
the value is considered to be in megabytes.

Note
Special name for the root volume

One can use the @root  name to refer to the volume mounted at / , in case some
specific size attributes for the root volume have to be defined. For instance:

<volume name="@root" size="4G"/>

In addition to the custom size of the root volume it’s also possible to setup the name
of the root volume as follows:

<volume name="@root=rootlv" size="4G"/>

If no name for the root volume is specified the default name: LVRoot applies.

freespace : Optional attribute defining the additional free space added to the volume. If
no suffix ( M  or G ) is used, the value is considered to be in megabytes.

171 Custom Disk Volumes



label : Optional attribute to set filesystem label of the volume.

copy_on_write : Optional attribute to set the filesystem copy-on-write attribute for this
volume.

filesystem_check : Optional attribute to indicate that this filesystem should perform the
validation to become filesystem checked. The actual constraints if the check is performed
or not depends on systemd and filesystem specific components. If not set or set to false
no system component will be triggered to run an eventual filesystem check, which results
in this filesystem to be never checked. The latter is the default.

Warning
The size attributes for filesystem volumes, as for btrfs, are ignored and have no effect.

The systemdisk  element additionally supports the following optional attributes:

name : The volume group name, by default kiwiVG  is used. This setting is only relevant
for LVM volumes.

preferlvm : Boolean value instructing KIWI NG to prefer LVM even if the used filesystem
has its own volume management system.

11.12 Partition Clones

Abstract. This page provides details about the partition clone feature and its use cases

KIWI NG allows to create block level clones of certain partitions used in the image. Clones can
be created from the root , boot  and any other partition listed in the <partitions>  element.

A partition clone is a simple byte dump from one block storage device to another. However,
this would cause conflicts during boot of the system because all unique identifiers like the UUID
of a filesystem will no longer be unique. The clone feature of KIWI NG takes care of this part
and re-creates the relevant unique identifiers per cloned partition. KIWI NG allows this also for
complex partitions like LVM, LUKS or RAID.

The partition clone(s) will always appear rst in the partition table, followed by the origin
partition. The origin partition is the one whose identifier will be referenced and used by the
system. By default no cloned partition will be mounted or used by the system at boot time.

172 Partition Clones



Let’s take a look at the following example:

<type image="oem" root_clone="1" boot_clone="1" firmware="uefi" filesystem="xfs"
 bootpartition="true" bootfilesystem="ext4">
    <partitions>
        <partition name="home" size="10" mountpoint="/home" filesystem="ext3" clone="2"/>
    </partitions>
</type>

With the above setup KIWI NG will create a disk image that contains the following partition
table:

Number  Start (sector)    End (sector)  Size       Code  Name
   1            2048            6143   2.0 MiB     EF02  p.legacy
   2            6144           47103   20.0 MiB    EF00  p.UEFI
   3           47104          661503   300.0 MiB   8300  p.lxbootclone1
   4          661504         1275903   300.0 MiB   8300  p.lxboot
   5         1275904         1296383   10.0 MiB    8300  p.lxhomeclone1
   6         1296384         1316863   10.0 MiB    8300  p.lxhomeclone2
   7         1316864         1337343   10.0 MiB    8300  p.lxhome
   8         1337344         3864575   1.2 GiB     8300  p.lxrootclone1
   9         3864576         6287326   1.2 GiB     8300  p.lxroot

When booting the system only the origin partitions p.lxboot , p.lxroot  and p.lxhome  will
be mounted and visible in e.g. /etc/fstab , the bootloader or the initrd. Thus partition clones
are present as a data source but are not relevant for the operating system from a functional
perspective.

As shown in the above example there is one clone request for root and boot and a two clone
requests for the home partition. KIWI NG does not sanity- check the provided number of clones
(e.g. whether your partition table can hold that many partitions).

Warning
There is a limit how many partitions a partition table can hold. This also limits how many
clones can be created.

173 Partition Clones



11.12.1 Use Case

Potential use cases for which a clone of one or more partitions is useful include among others:

Factory Resets:

Creating an image with the option to rollback to the state of the system at deployment
time can be very helpful for disaster recovery

System Updates with Rollbacks e.g A/B:

Creating an image which holds extra space allowing to rollback modified data can make
a system more robust. For example in a simple A/B update concept, partition A would get
updated but would ip to B if A is considered broken after applying the update.

Note
Most probably any use case based on partition clones requires additional software to
manage them. KIWI NG provides the option to create the clone layout but it does not
provide the software to implement the actual use case for which the partition clones are
needed.

Developers writing applications based on a clone layout created with KIWI NG can leverage the
metadata le /config.partids . This le is created at build time and contains the mapping
between the partition name  and the actual partition number in the partition table. For partition
clones, the following naming convention applies:

kiwi_(name)PartClone(id)="(partition_number)"

The (name)  is either taken from the name  attribute of the <partition>  element or it is a
xed name assigned by KIWI NG. There are the following reserved partition names for which
cloning is supported:

root

readonly

boot

For the mentioned example this will result in the following /config.partids :

kiwi_BiosGrub="1"
kiwi_EfiPart="2"
kiwi_bootPartClone1="3"

174 Use Case



kiwi_BootPart="4"
kiwi_homePartClone1="5"
kiwi_homePartClone2="6"
kiwi_HomePart="7"
kiwi_rootPartClone1="8"
kiwi_RootPart="9"

11.13 Setting Up a Network Boot Server

Abstract. This page provides general information how to setup a network boot server that pro-
vides all services needed for the PXE boot protocol

To be able to deploy a system through the PXE boot protocol, you need to set up a network
boot server providing the services DHCP and tftp. With dnsmasq  an utility exists which allows
to setup all needed services at once:

11.13.1 Installing and Configuring DHCP and TFTP with dnsmasq

The following instructions can only serve as an example. Depending on your network structure,
the IP addresses, ranges and domain settings needs to be adapted to allow the DHCP server to
work within your network. If you already have a DHCP server running in your network, make
sure that the filename  and next-server  directives are correctly set on this server.

The following steps describe how to set up dnsmasq to work as DHCP and TFTP server.

1. Install the dnsmasq  package.

2. Create the le /etc/dnsmasq.conf  and insert the following content

# Don't function as a DNS server.
port=0

# Log information about DHCP transactions.
log-dhcp

# Set the root directory for files available via FTP,
# usually "/srv/tftpboot":
tftp-root=TFTP_ROOT_DIR

enable-tftp

dhcp-range=BOOT_SERVER_IP,proxy

175 Setting Up a Network Boot Server



In the next step it’s required to decide for the boot method. There is the PXE loader pro-
vided via pxelinux.0 from the syslinux package and there is the GRUB loader provided
via the grub package.

Note
Placeholders

Replace all placeholders (written in uppercase) with data fitting your network set-
up.

2.1. insert the following content to use pxelinux.0:

# The boot filename, Server name, Server Ip Address
dhcp-boot=pxelinux.0,,BOOT_SERVER_IP

# Disable re-use of the DHCP servername and filename fields as extra
# option space. That's to avoid confusing some old or broken
# DHCP clients.
dhcp-no-override

# PXE menu.  The first part is the text displayed to the user.
# The second is the timeout, in seconds.
pxe-prompt="Booting FOG Client", 1

# The known types are x86PC, PC98, IA64_EFI, Alpha, Arc_x86,
# Intel_Lean_Client, IA32_EFI, BC_EFI, Xscale_EFI and X86-64_EFI
# This option is first and will be the default if there is no input
# from the user.
pxe-service=X86PC, "Boot to FOG", pxelinux.0
pxe-service=X86-64_EFI, "Boot to FOG UEFI", ipxe
pxe-service=BC_EFI, "Boot to FOG UEFI PXE-BC", ipxe

Note
On boot of a network client with that configuration the default pxelinux.0 config le is
expected at TFTP_ROOT_DIR/pxelinux.cfg/default

2.2. insert the following content to use grub:

# The boot filename, Server name, Server Ip Address
dhcp-boot=boot/grub2/i386-pc/core.0,,BOOT_SERVER_IP

176 Installing and Configuring DHCP and TFTP with dnsmasq



When using grub the referenced dhcp-boot grub module must be genereated. To do this change
the directory to TFTP_ROOT_DIR  and create the setvars.conf  with the following content:

set root=(tftp)
set net_default_server=BOOT_SERVER_IP
set prefix=boot/grub2

Now call the following commands to create the grub module

$ grub2-mknetdir --net-directory=TFTP_ROOT_DIR --subdir=boot/grub2
$ grub2-mkimage -O i386-pc-pxe \
    --output boot/grub2/i386-pc/core.0 \
    --prefix=/boot/grub2 \
    -c setvars.conf \
  pxe tftp

Note
On boot of a network client with that configuration the grub config le is expected at
TFTP_ROOT_DIR/boot/grub2/grub.cfg

Run the dnsmasq server by calling:

systemctl start dnsmasq

11.14 Build PXE Root File System Image for the legacy
netboot infrastructure
Abstract. This page explains how to build a le system image for use with KIWI NG’s PXE boot
infrastructure. It contains:

how to build a PXE le system image

how to setup the PXE le system image on the PXE server

how to run it with QEMU

PXE (https://en.wikipedia.org/wiki/Preboot_Execution_Environment)  is a network boot protocol
that is shipped with most BIOS implementations. The protocol sends a DHCP request to get an
IP address. When an IP address is assigned, it uses the TFTP (https://en.wikipedia.org/wiki/Triv-

177 Build PXE Root File System Image for the legacy netboot infrastructure

https://en.wikipedia.org/wiki/Preboot_Execution_Environment
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol


ial_File_Transfer_Protocol)  protocol to download a Kernel and boot instructions. Contrary to
other images built with KIWI NG, a PXE image consists of separate boot, kernel and root filesys-
tem images, since those images need to be made available in different locations on the PXE
boot server.

A root filesystem image which can be deployed via KIWI NG’s PXE netboot infrastructure rep-
resents the system rootfs in a linux filesystem. A user could loop mount the image and access the
contents of the root filesystem. The image does not contain any information about the system
disk its partitions or the bootloader setup. All of these information is provided by a client config-
uration le on the PXE server which controlls how the root filesystem image should be deployed.

Many different deployment strategies are possible, e.g root over NBD (https://en.wikipedi-

a.org/wiki/Network_block_device)  (network block device), AoE (https://en.wikipedia.org/wi-

ki/ATA_over_Ethernet)  (ATA over Ethernet), or NFS for diskless and diskfull clients. This par-
ticular example shows how to build an overlayfs-based union system based on openSUSE Leap
for a diskless client which receives the squashfs compressed root le system image in a ramdisk
overlayed via overlayfs and writes new data into another ramdisk on the same system. As disk-
less client, a QEMU virtual machine is used.

1. Make sure you have checked out the example image descriptions, see Section 2.4, “Example

Appliance Descriptions”.

2. Build the image with KIWI NG:

$ sudo kiwi-ng --profile Flat system build \
    --description kiwi/build-tests/x86/tumbleweed/test-image-pxe \
    --set-repo http://download.opensuse.org/tumbleweed/repo/oss \
    --target-dir /tmp/mypxe-result

3. Change into the build directory:

$ cd /tmp/mypxe-result

4. Copy the initrd and the kernel to /srv/tftpboot/boot :

$ cp *.initrd /srv/tftpboot/boot/initrd
$ cp *.kernel /srv/tftpboot/boot/linux

5. Copy the system image and its MD5 sum to /srv/tftpboot/image :

$ cp kiwi-test-image-pxe.x86_64-1.15.3 /srv/tftpboot/image
$ cp kiwi-test-image-pxe.x86_64-1.15.3.md5 /srv/tftpboot/image

178 Build PXE Root File System Image for the legacy netboot infrastructure

https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/Network_block_device
https://en.wikipedia.org/wiki/ATA_over_Ethernet
https://en.wikipedia.org/wiki/ATA_over_Ethernet


6. Adjust the PXE configuration le. The configuration le controls which kernel and initrd
is loaded and which kernel parameters are set. A template has been installed at /srv/
tftpboot/pxelinux.cfg/default  from the kiwi-pxeboot  package. The minimal con-
figuration required to boot the example image looks like to following:

DEFAULT KIWI-Boot

LABEL KIWI-Boot
    kernel boot/linux
    append initrd=boot/initrd
    IPAPPEND 2

7. Create the image client configuration le:

$ vi /srv/tftpboot/KIWI/config.default

IMAGE=/dev/ram1;kiwi-test-image-pxe.x86_64;1.15.3;192.168.100.2;4096
UNIONFS_CONFIG=/dev/ram2,/dev/ram1,overlay

All PXE boot based deployment methods are controlled by a client configuration le. The
above configuration tells the client where to nd the image and how to activate it. In this
case the image will be deployed into a ramdisk (ram1) and overlay mounted such that
all write operations will land in another ramdisk (ram2). KIWI NG supports a variety of
different deployment strategies based on the rootfs image created beforehand. For details,
refer to PXE Client Setup Configuration (#pxe-legacy-client-config)

8. Connect the client to the network and boot. This can also be done in a virtualized envi-
ronment using QEMU as follows:

$ sudo qemu -boot n -m 4096

11.14.1 PXE Client Setup Configuration

All PXE boot based deployment methods are controlled by configuration les located in /srv/
tftpboot/KIWI  on the PXE server. Such a configuration le can either be client-specific (con-
fig.MAC_ADDRESS, for example config.00.AB.F3.11.73.C8), or generic (config.default).

In an environment with heterogeneous clients, this allows to have a default configuration suit-
able for the majority of clients, to have configurations suitable for a group of clients (for ex-
ample machines with similar or identical hardware), and individual configurations for selected
machines.

179 PXE Client Setup Configuration

#pxe-legacy-client-config


The configuration le contains data about the image and about configuration, synchronization,
and partition parameters. The configuration le has got the following general format:

IMAGE="device;name;version;srvip;bsize;compressed,...,"

DISK="device"
PART="size;id;Mount,...,size;id;Mount"
RAID="raid-level;device1;device2;..."

AOEROOT=ro-device[,rw-device]
NBDROOT="ip-address;export-name;device;swap-export-name;swap-device;write-export-
name;write-device"
NFSROOT="ip-address;path"

UNIONFS_CONFIGURATION="rw-partition,compressed-partition,overlayfs"

CONF="src;dest;srvip;bsize;[hash],...,src;dest;srvip;bsize;[hash]"

KIWI_BOOT_TIMEOUT="seconds"
KIWI_KERNEL_OPTIONS="opt1 opt2 ..."

REBOOT_IMAGE=1
RELOAD_CONFIG=1
RELOAD_IMAGE=1

Note
Quoting the Values

The configuration le is sourced by Bash, so the same quoting rules as for Bash apply.

Not all configuration options needs to be specified. It depends on the setup of the client which
configuration values are required. The following is a collection of client setup examples which
covers all supported PXE client configurations.

11.14.1.1 Setup Client with Remote Root

To serve the image from a remote location and redirect all write operations on a tmpfs, the
following setup is required:

# When using AoE, see vblade toolchain for image export

180 PXE Client Setup Configuration



AOEROOT=/dev/etherd/e0.1
UNIONFS_CONFIG=tmpfs,aoe,overlay

# When using NFS, see exports manual page for image export

NFSROOT="192.168.100.2;/srv/tftpboot/image/root"
UNIONFS_CONFIG=tmpfs,nfs,overlay

# When using NBD, see nbd-server manual page for image export

NBDROOT=192.168.100.2;root_export;/dev/nbd0
UNIONFS_CONFIG=tmpfs,nbd,overlay

The above setup shows the most common use case where the image built with KIWI NG is
populated over the network using either AoE, NBD or NFS in combination with overlayfs which
redirects all write operations to be local to the client. In any case a setup of either AoE, NBD
or NFS on the image server is required beforehand.

11.14.1.2 Setup Client with System on Local Disk

To deploy the image on a local disk the following setup is required:

Note
In the referenced x86/tumbleweed/test-image-pxe XML description the pxe  type must
be changed as follows and the image needs to be rebuild:

<type image="pxe" filesystem="ext3" boot="netboot/suse-tumbleweed"/>

IMAGE="/dev/sda2;kiwi-test-image-pxe.x86_64;1.15.3;192.168.100.2;4096"
DISK="/dev/sda"
PART="5;S;X,X;L;/"

The setup above will create a partition table on sda with a 5MB swap partition (no mountpoint)
and the rest of the disk will be a Linux(L) partition with /  as mountpoint. The ( X ) in the PART
setup specifies a place holder to indicate the default behaviour.

181 PXE Client Setup Configuration



11.14.1.3 Setup Client with System on Local MD RAID Disk

To deploy the image on a local disk with prior software RAID configuration, the following setup
is required:

Note
In the referenced x86/tumbleweed/test-image-pxe XML description the pxe  type must
be changed as follows and the image needs to be rebuild:

<type image="pxe" filesystem="ext3" boot="netboot/suse-tumbleweed"/>

RAID="1;/dev/sda;/dev/sdb"
IMAGE="/dev/md1;kiwi-test-image-pxe.x86_64;1.15.3;192.168.100.2;4096"
PART="5;S;x,x;L;/"

The rst parameter of the RAID line is the RAID level. So far only raid1 (mirroring) is supported.
The second and third parameter specifies the raid disk devices which make up the array. If a
RAID line is present all partitions in PART  will be created as RAID partitions. The rst RAID is
named md0 , the second one md1  and so on. It is required to specify the correct RAID partition
in the IMAGE  line according to the PART  setup. In this case md0  is reserved for the SWAP space
and md1  is reserved for the system.

11.14.1.4 Setup Loading of Custom Configuration File(s)

In order to load for example a custom /etc/hosts  le on the client, the following setup is
required:

CONF="hosts;/etc/hosts;192.168.1.2;4096;ffffffff"

On boot of the client KIWI NG’s boot code will fetch the hosts  le from the root of the server
(192.168.1.2) with 4k blocksize and deploy it as /etc/hosts  on the client. The protocol is
by default tftp but can be changed via the kiwiservertype  kernel commandline option. For
details, see Setup a Different Download Protocol and Server (#custom-download-server)

182 PXE Client Setup Configuration

#custom-download-server


11.14.1.5 Setup Client to Force Reload Image

To force the reload of the system image even if the image on the disk is up-to-date, the following
setup is required:

RELOAD_IMAGE=1

The option only applies to configurations with a DISK/PART setup

11.14.1.6 Setup Client to Force Reload Configuration Files

To force the reload of all configuration les specified in CONF, the following setup is required:

RELOAD_CONFIG=1

By default only configuration les which has changed according to their md5sum value will be
reloaded. With the above setup all les will be reloaded from the PXE server. The option only
applies to configurations with a DISK/PART setup

11.14.1.7 Setup Client for Reboot After Deployment

To reboot the system after the initial deployment process is done the following setup is required:

REBOOT_IMAGE=1

11.14.1.8 Setup custom kernel boot options

To deactivate the kernel mode setting on local boot of the client the following setup is required:

KIWI_KERNEL_OPTIONS="nomodeset"

Note
This does not influence the kernel options passed to the client if it boots from the network.
In order to setup those the PXE configuration on the PXE server needs to be changed

11.14.1.9 Setup a Custom Boot Timeout

To setup a 10sec custom timeout for the local boot of the client the following setup is required.

183 PXE Client Setup Configuration



KIWI_BOOT_TIMEOUT="10"

Note
This does not influence the boot timeout if the client boots o from the network.

11.14.1.10 Setup a Different Download Protocol and Server

By default all downloads controlled by the KIWI NG linuxrc code are performed by an atftp
call using the TFTP protocol. With PXE the download protocol is xed and thus you cannot
change the way how the kernel and the boot image ( initrd ) is downloaded. As soon as Linux
takes over, the download protocols http, https and ftp are supported too. KIWI NG uses the curl
program to support the additional protocols.

To select one of the additional download protocols the following kernel parameters need to be
specified

kiwiserver=192.168.1.1 kiwiservertype=ftp

To set up this parameters edit the le /srv/tftpboot/pxelinux.cfg/default  on your PXE
boot server and change the append line accordingly.

Note
Once configured all downloads except for kernel and initrd are now controlled by the
given server and protocol. You need to make sure that this server provides the same
directory and le structure as initially provided by the kiwi-pxeboot  package

11.15 Booting a Root Filesystem from Network
Abstract. This page provides further information for handling KIS images built with KIWI NG
and references the following article:

Section 10.6, “Build KIS Image (Kernel, Initrd, System)”

In KIWI NG, the kiwi-overlay  dracut module can be used to boot from a remote exported
root filesystem. The exported device is visible as block device on the network client. KIWI NG
supports the two export backends NBD  (Network Block Device) and AoE  (ATA over Ethernet)

184 Booting a Root Filesystem from Network



for this purpose. A system that is booted in this mode will read the contents of the root filesystem
from a remote location and targets any write action into RAM by default. The kernel cmdline
option rd.root.overlay.write  can be used to specify an alternative device to use for writing.
The two layers (read and write) are combined using the overlayfs  filesystem.

For remote boot of a network client, the PXE boot protocol is used. This functionality requires
a network boot server setup on the system. Details how to setup such a server can be found in
Section 11.13, “Setting Up a Network Boot Server”.

Before the KIS image can be build, the following configuration step is required:

Create dracut configuration to include the kiwi-overlay  module

$ cd kiwi/build-tests/x86/tumbleweed/test-image-pxe
$ mkdir -p root/etc/dracut.conf.d
$ cd root/etc/dracut.conf.d
$ echo 'add_dracutmodules+=" kiwi-overlay "' > overlay.conf

Now the KIS image can be build as shown in Section 10.6, “Build KIS Image (Kernel, Initrd, System)”.
After the build, the following configuration steps are required to boot from the network:

1. Copy initrd/kernel from the KIS build to the PXE server
The PXE boot process loads the configured kernel and initrd from the PXE server. For this
reason, the following les must be copied to the PXE server as follows:

$ cp *.initrd /srv/tftpboot/boot/initrd
$ cp *.kernel /srv/tftpboot/boot/linux

2. Export Root FileSystem to the Network
Access to the root filesystem is implemented using either the AoE or the NBD protocol.
This requires the export of the root filesystem image as remote block device:

Export via AoE:

Install the vblade  package on the system which is expected to export the root filesys-
tem

185 Booting a Root Filesystem from Network



Note
Not all versions of AoE are compatible with any kernel. This means the kernel
on the system exporting the root filesystem image must provide a compatible
aoe kernel module compared to the kernel used inside of the root filesystem
image.

Once done, export the filesystem from the KIS build above as follows:

$ vbladed 0 1 IFACE {exc_image_base_name}.x86_64-1.15.3

The above command exports the given filesystem image le as a block storage device
to the network of the given IFACE. On any machine except the one exporting the le,
it will appear as /dev/etherd/e0.1  once the aoe  kernel module was loaded. The
two numbers, 0 and 1 in the above example, classifies a major and minor number
which is used in the device node name on the reading side, in this case e0.1 .

Note
Only machines in the same network of the given INTERFACE can see the ex-
ported block device.

Export via NBD:

Install the nbd  package on the system which is expected to export the root filesystem
Once done, export the filesystem from the KIS build above as follows:

$ losetup /dev/loop0 {exc_image_base_name}.x86_64-1.15.3

$ vi /etc/nbd-server/config

  [generic]
      user = root
      group = root
  [export]
      exportname = /dev/loop0

$ nbd-server

3. Setup boot entry in the PXE configuration

186 Booting a Root Filesystem from Network



Note
The following step assumes that the pxelinux.0 loader has been configured on the
boot server to boot up network clients

Edit the le /srv/tftpboot/pxelinux.cfg/default  and create a boot entry of the form:

Using NBD:

LABEL Overlay-Boot
    kernel boot/linux
    append initrd=boot/initrd root=overlay:nbd=server-ip:export

The boot parameter root=overlay:nbd=server-ip:export  specifies the NBD
server IP address and the name of the export as used in /etc/nbd-server/config

Using AoE:

LABEL Overlay-Boot
    kernel boot/linux
    append initrd=boot/initrd root=overlay:aoe=AOEINTERFACE

The boot parameter root=overlay:aoe=AOEINTERFACE  specifies the interface
name as it was exported by the vbladed  command

4. Boot from the Network
Within the network which has access to the PXE server and the exported root filesystem
image, any network client can now boot the system. A test based on QEMU can be done
as follows:

$ sudo qemu -boot n

11.16 Booting a Live ISO Image from Network

Abstract. This page provides further information for handling ISO images built with KIWI NG
and references the following articles:

187 Booting a Live ISO Image from Network



Section 10.1, “Build an ISO Hybrid Live Image”

In KIWI NG, live ISO images can be configured to boot via the PXE boot protocol. This function-
ality requires a network boot server setup on the system. Details how to setup such a server can
be found in Section 11.13, “Setting Up a Network Boot Server”.

After the live ISO was built as shown in Section 10.1, “Build an ISO Hybrid Live Image”, the following
configuration steps are required to boot from the network:

1. Extract initrd/kernel From Live ISO
The PXE boot process loads the configured kernel and initrd from the PXE server. For this
reason, those two les must be extracted from the live ISO image and copied to the PXE
server as follows:

$ mount {exc_image_base_name}.x86_64-1.15.3.iso /mnt
$ cp /mnt/boot/x86_64/loader/initrd /srv/tftpboot/boot/initrd
$ cp /mnt/boot/x86_64/loader/linux /srv/tftpboot/boot/linux
$ umount /mnt

Note
This step must be repeated with any new build of the live ISO image

2. Export Live ISO To The Network
Access to the live ISO le is implemented using the AoE protocol in KIWI NG. This requires
the export of the live ISO le as remote block device which is typically done with the
vblade  toolkit. Install the following package on the system which is expected to export
the live ISO image:

$ zypper in vblade

Note
Not all versions of AoE are compatible with any kernel. This means the kernel on the
system exporting the live ISO image must provide a compatible aoe kernel module
compared to the kernel used in the live ISO image.

Once done, export the live ISO image as follows:

$ vbladed 0 1 INTERFACE {exc_image_base_name}.x86_64-1.15.3.iso

188 Booting a Live ISO Image from Network



The above command exports the given ISO le as a block storage device to the network
of the given INTERFACE. On any machine except the one exporting the le, it will appear
as /dev/etherd/e0.1  once the aoe  kernel module was loaded. The two numbers, 0 and
1 in the above example, classifies a major and minor number which is used in the device
node name on the reading side, in this case e0.1 . The numbers given at export time must
match the AOEINTERFACE name as described in the next step.

Note
Only machines in the same network of the given INTERFACE can see the exported
live ISO image. If virtual machines are the target to boot the live ISO image they
could all be connected through a bridge. In this case INTERFACE is the bridge
device. The availability scope of the live ISO image on the network is in general
not influenced by KIWI NG and is a task for the network administrators.

3. Setup live ISO boot entry in PXE configuration

Note
The following step assumes that the pxelinux.0 loader has been configured on the
boot server to boot up network clients

Edit the le /srv/tftpboot/pxelinux.cfg/default  and create a boot entry of the form:

LABEL Live-Boot
    kernel boot/linux
    append initrd=boot/initrd rd.kiwi.live.pxe root=live:AOEINTERFACE=e0.1

The boot parameter rd.kiwi.live.pxe  tells the KIWI NG boot process to setup the
network and to load the required aoe  kernel module.

The boot parameter root=live:AOEINTERFACE=e0.1  specifies the interface name
as it was exported by the vbladed  command from the last step. Currently only AoE
(Ata Over Ethernet) is supported.

4. Boot from the Network

189 Booting a Live ISO Image from Network



Within the network which has access to the PXE server and the exported live ISO image,
any network client can now boot the live system. A test based on QEMU is done as follows:

$ sudo qemu -boot n

11.17 Setting Up YaST at First Boot

Abstract. This page provides information how to setup the KIWI NG XML description to start
the SUSE YaST system setup utility at rst boot of the image

To be able to use YaST in a non interactive way, create a YaST profile which tells the autoyast
module what to do. To create the profile, run:

yast autoyast

Once the YaST profile exists, update the KIWI NG XML description as follows:

1. Edit the KIWI NG XML le and add the following package to the <packages type="im-
age">  section:

<package name="yast2-firstboot"/>

2. Copy the YaST profile le as overlay le to your KIWI NG image description overlay
directory:

cd IMAGE_DESCRIPTION_DIRECTORY
mkdir -p root/etc/YaST2
cp PROFILE_FILE root/etc/YaST2/firstboot.xml

3. Copy and activate the YaST firstboot template. This is done by the following instructions
which needs to be written into the KIWI NG config.sh  which is stored in the image
description directory:

sysconfig_firsboot=/etc/sysconfig/firstboot
sysconfig_template=/var/adm/fillup-templates/sysconfig.firstboot
if [ ! -e "${sysconfig_firsboot}" ]; then
    cp "${sysconfig_template}" "${sysconfig_firsboot}"
fi

touch /var/lib/YaST2/reconfig_system

190 Setting Up YaST at First Boot



11.18 Add or Update the Fstab File
Abstract. This page provides further information for customizing the /etc/fstab  le which
controls the mounting of filesystems at boot time.

In KIWI NG, all major filesystems that were created at image build time are handled by KIWI
NG itself and setup in /etc/fstab . Thus there is usually no need to add entries or change the
ones added by KIWI NG. However depending on where the image is deployed later it might be
required to pre-populate fstab entries that are unknown at the time the image is build.

Possible use cases are for example:

Adding NFS locations that should be mounted at boot time. Using autofs would be an
alternative to avoid additional entries to fstab. The information about the NFS location
will make this image specific to the target network. This will be independent of the mount
method, either fstab or the automount map has to provide it.

Adding or changing entries in a read-only root system which becomes effective on rst
boot but can’t be added at that time because of the read-only characteristics.

Note
Modifications to the fstab le are a critical change. If done wrongly the risk exists that
the system will not boot. In addition this type of modification makes the image specific
to its target and creates a dependency to the target hardware, network, etc… Thus this
feature should be used with care.

The optimal way to provide custom fstab information is through a package. If this can’t be done
the les can also be provided via the overlay le tree of the image description.

KIWI NG supports three ways to modify the contents of the /etc/fstab  le:

Providing an /etc/fstab.append  file

If that le exists in the image root tree, KIWI NG will take its contents and append it to
the existing /etc/fstab  le. The provided /etc/fstab.append  le will be deleted after
successful modification.

Providing an /etc/fstab.patch  file

The /etc/fstab.patch  represents a patch le that will be applied to /etc/fstab  using
the patch  program. This method also allows to change the existing contents of /etc/
fstab . On success /etc/fstab.patch  will be deleted.

191 Add or Update the Fstab File



Providing an /etc/fstab.script  file

The /etc/fstab.script  represents an executable which is called as chrooted process.
This method is the most flexible one and allows to apply any change. On success /etc/
fstab.script  will be deleted.

Note
All three variants to handle the fstab le can be used together. Appending happens rst,
patching afterwards and the script call is last. When using the script call, there is no
validation that checks if the script actually handles fstab or any other le in the image
rootfs.

11.19 Building Images with Profiles

KIWI NG supports so-called profiles inside the XML image description. Profiles act as namespaces
for additional settings to be applied on top of the defaults. For further details, see Section 7.4,

“Image Profiles”.

11.19.1 Local Builds

To execute local KIWI NG builds with a specific, selected profile, add the command line ag
--profile=$PROFILE_NAME :

$ sudo kiwi-ng --type oem --profile libvirt system build \
      --description kiwi/build-tests/x86/leap/test-image-vagrant \
      --set-repo obs://openSUSE:Leap:15.3/standard \
      --target-dir /tmp/myimage

Consult the manual page of kiwi  for further details: Section 4.1.1, “SYNOPSIS”.

11.19.2 Building with the Open Build Service

The Open Build Service (OBS) support profiles via the multibuild (https://openbuildser-

vice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html)  feature.

192 Building Images with Profiles

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html


To enable and use the profiles, follow these steps:

1. Add the following XML comment to your config.xml :

<!-- OBS-Profiles: @BUILD_FLAVOR@ -->

It must be added before the opening 

2. Add a le _multibuild  into your package’s repository with the following contents:

<multibuild>
  <flavor>profile_1</flavor>
  <flavor>profile_2</flavor>
</multibuild>

Add a line <flavor>$PROFILE</flavor>  for each profile that you want OBS to build.

Note, by default, OBS excludes the build without any profile enabled.

Running a build of a multibuild enabled repository via osc  can be achieved via the -M
$PROFILE  ag:

$ osc build -M $PROFILE

11.20 Building in the Open Build Service

Note
Abstract

This document gives a brief overview how to build images with KIWI NG in version
9.25.12 inside of the Open Build Service. A tutorial on the Open Buildservice itself can
be found here: https://en.opensuse.org/openSUSE:Build_Service_Tutorial

193 Building in the Open Build Service

https://en.opensuse.org/openSUSE:Build_Service_Tutorial


The next generation KIWI NG is fully integrated with the Open Build Service. In order to start it’s
best to checkout one of the integration test image build projects from the base Testing project
Virtualization:Appliances:Images:Testing_$ARCH:$DISTRO  at:

https://build.opensuse.org

For example the test images for SUSE on x86 can be found here (https://build.open-

suse.org/project/show/Virtualization:Appliances:Images:Testing_x86:leap) .

11.20.1 Advantages of using the Open Build Service (OBS)

The Open Build Service offers multiple advantages over running KIWI NG locally:

OBS will host the latest successful build for you without having to setup a server yourself.

As KIWI NG is fully integrated into OBS, OBS will automatically rebuild your images if one
of the included packages or one of its dependencies or KIWI NG itself get updated.

The builds will no longer have to be executed on your own machine, but will run on OBS,
thereby saving you resources. Nevertheless, if a build fails, you get a notification via email
(if enabled in your user’s preferences).

11.20.2 Differences Between Building Locally and on OBS

Note, there is a number of differences when building images with KIWI NG using the Open Build
Service. Your image that build locally just ne, might not build without modifications.

194 Advantages of using the Open Build Service (OBS)

https://build.opensuse.org
https://build.opensuse.org/project/show/Virtualization:Appliances:Images:Testing_x86:leap
https://build.opensuse.org/project/show/Virtualization:Appliances:Images:Testing_x86:leap


The notable differences to running KIWI NG locally include:

OBS will pick the KIWI NG package from the repositories configured in your project, which
will most likely not be the same version that you are running locally. This is especially
relevant when building images for older versions like SUSE Linux Enterprise. Therefore,
include the custom appliances repository as described in the following section: Recommen-

dations (#obs-recommended-settings) .

When KIWI NG runs on OBS, OBS will extract the list of packages from config.xml  and
use it to create a build root. In contrast to a local build (where your distributions package
manager will resolve the dependencies and install the packages), OBS will not build your
image if there are multiple packages that could be chosen to satisfy the dependencies of
your packages . This shows errors like this:

unresolvable: have choice for SOMEPACKAGE: SOMEPAKAGE_1 SOMEPACKAGE_2

This can be solved by explicitly specifying one of the two packages in the project config-
uration via the following setting:

Prefer: SOMEPACKAGE_1

Place the above line into the project configuration, which can be accessed either via the
web interface (click on the tab Project Config  on your project’s main page) or via osc
meta -e prjconf .

Warning
We strongly encourage you to remove your repositories from config.xml  and move
them to the repository configuration in your project’s settings. This usually prevents
the issue of having the choice for multiple package version and results in a much
smoother experience when using OBS.

By default, OBS builds only a single build type and the default profile. If your appliance
uses multiple build types, put each build type into a profile, as OBS cannot handle multiple
build types.
There are two options to build multiple profiles on OBS:

1. Use the 

2. Use the multibuild (https://openbuildservice.org/help/manuals/obs-user-guide/cha.ob-

s.multibuild.html)  feature.

The rst option is simpler to use, but has the disadvantage that your appliances are built
sequentially. The multibuild  feature allows to build each profile as a single package,
thereby enabling parallel execution, but requires an additional _multibuild  le. For the
above example config.xml  would have to be adapted as follows:

<?xml version="1.0" encoding="utf-8"?>

<!-- OBS-Profiles: @BUILD_FLAVOR@ -->

<image schemaversion="7.4" name="openSUSE-Leap-15.1">
  <!-- image description with the profiles foo_profile and bar_profile
</image>

The le _multibuild  would have the following contents:

<multibuild>
  <flavor>foo_profile</flavor>
  <flavor>bar_profile</flavor>
</multibuild>

Subfolders in OBS projects are ignored by default by osc  and must be explicitly added
via osc add $FOLDER . Bear that in mind when adding the overlay les inside the root/
directory to your project.

OBS ignores le permissions. Therefore config.sh  and images.sh  will always be exe-
cuted through BASH (see also: Section 7.6, “User Defined Scripts”).

196 Differences Between Building Locally and on OBS

https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html
https://openbuildservice.org/help/manuals/obs-user-guide/cha.obs.multibuild.html


11.20.3 Recommendations

11.20.3.1 Working with OBS

Although OBS is an online service, it is not necessary to test every change by uploading it. OBS
will use the same process as osc build  does, so if your image builds locally via osc build
it should also build online on OBS.

11.20.3.2 Repository Configuration

When setting up the project, enable the images  repository: the images  repository’s checkbox
can be found at the bottom of the selection screen that appears when clicking Add from a
Distribution  in the Repositories  tab. Or specify it manually in the project configuration
(it can be accessed via osc meta -e prj ):

<repository name="images">
  <arch>x86_64</arch>
</repository>

Furthermore, OBS requires additional repositories from which it obtains your dependent pack-
ages. These repositories can be provided in two ways:

1. Add the repositories to the project configuration on OBS and omit them from config.xml .
Provide only the following repository inside the image description:

<repository type="rpm-md">
  <source path="obsrepositories:/"/>
</repository>

This instructs OBS to inject the repositories from your project into your appliance.
Additional repositories can be added by invoking osc meta -e prj  and adding a line of
the following form as a child of <repository name="images"> :

<path project="$OBS_PROJECT" repository="$REPOSITORY_NAME"/>

The order in which you add repositories matters: if a package is present in multiple repos-
itories, then it is taken from the rst repository. The last repository is subject to path
expansion: its repository paths are included as well.

197 Recommendations



Don’t forget to add the repository from the Virtualization:Appliances:Builder
project, providing the latest stable version of KIWI NG (which you are very likely using
for your local builds).
The following example repository configuration adds the repositories from the Virtual-
ization:Appliances:Builder  project and those from the latest snapshot of openSUSE
Tumbleweed:

<project name="Virtualization:Appliances:Images:openSUSE-Tumbleweed">
  <title>Tumbleweed JeOS images</title>
  <description>Host JeOS images for Tumbleweed</description>
  <repository name="images">
    <path project="Virtualization:Appliances:Builder" repository="Factory"/>
    <path project="openSUSE:Factory" repository="snapshot"/>
    <arch>x86_64</arch>
  </repository>
</project>

The above can be simplified further using the path expansion of the last repository to:

<project name="Virtualization:Appliances:Images:openSUSE-Tumbleweed">
  <title>Tumbleweed JeOS images</title>
  <description>Host JeOS images for Tumbleweed</description>
  <repository name="images">
    <path project="Virtualization:Appliances:Builder" repository="Factory"/>
    <arch>x86_64</arch>
  </repository>
</project>

Now Virtualization:Appliances:Builder  is the last repository, which’ repositories
are included into the search path. As openSUSE:Factory/snapshot  is among these, it
can be omitted from the repository list.

2. Keep the repositories in your config.xml  configuration le. If you have installed the lat-
est stable KIWI NG as described in Chapter 2, Installation then you should add the following
repository to your projects configuration (accessible via osc meta -e prjconf ), so that
OBS will pick the latest stable KIWI NG version too:

<repository name="images">
  <path project="Virtualization:Appliances:Builder" repository="$DISTRO"/>
  <arch>x86_64</arch>
</repository>

198 Recommendations



Replace $DISTRO  with the appropriate name for the distribution that you are currently
building and optionally adjust the architecture.

We recommend to use the rst method, as it integrates better into OBS. Note that your image
description will then no longer build outside of OBS though. If building locally is required, use
the second method.

Warning
Adding the repositories to project’s configuration makes it impossible to build images for
different distributions from the same project.

Since the repositories are added for every package in your project, all your image builds
will share the same repositories, thereby resulting in conflicts for different distributions.

We recommend to create a separate project for each distribution. If that is impossible,
you can keep all your repositories (including Virtualization:Appliances:Builder ) in
config.xml . That however usually requires a large number of workarounds via Prefer:
settings in the project configuration and is thus not recommended.

11.20.3.3 Project Configuration

The Open Build Service will by default create the same output le as KIWI NG when run locally,
but with a custom filename ending (that is unfortunately unpredictable). This has the conse-
quence that the download URL of your image will change with every rebuild (and thus break
automated scripts). OBS can create symbolic links with static names to the latest build by adding
the following line to the project configuration:

Repotype: staticlinks

If build Vagrant images (see Section 11.7, “Image Description for Vagrant”) add the repository-type
vagrant . OBS creates a boxes/  subdirectory in your download repositories, which contains
JSON les for Vagrant .

If you have added your repositories to config.xml , you probably see errors of the following
type:

unresolvable: have choice for SOMEPACKAGE: SOMEPAKAGE_1 SOMEPACKAGE_2

199 Recommendations



Instead of starting from scratch and manually adding Prefer:  statements to the project config-
uration, we recommend to copy the current project configuration of the testing project Virtu-
alization:Appliances:Images:Testing_$ARCH:$DISTRO  into your own project. It provides
a good starting point and can be adapted to your OBS project.

11.21 Using SUSE Product ISO To Build
Abstract. This page provides information how to use the SUSE media ISO with KIWI NG

When building an image with KIWI NG, the image description usually points to a number of
public/private package source repositories from which the new image root tree will be creat-
ed. Alternatively the vendor provided product ISO image(s) can be used. The contents of the
ISO (DVD) media also provides package source repositories but organized in a vendor specific
structure. As a user it’s important to know about this structure such that the KIWI NG image
description can consume it.

To use a SUSE product media the following steps are required:

Mount the ISO media from le or DVD drive:

$ sudo mount Product_ISO_file.iso|DVD_drive /media/suse

Lookup all Product  and Module  directories:
Below /media/suse  there is a directory structure which provides package repositories in
directories starting with Product-XXX  and Module-XXX . It depends on the package list
in the KIWI NG image description from which location a package or a dependency of the
package is taken. Therefore it is best practice to browse through all the directories and
create a <repository>  definition for each of them in the KIWI NG image description like
the following example shows:

<repository alias="DVD-1-Product-SLES">
    <source path="file:///media/suse/Product-SLES"/>
</repository>

<repository alias="DVD-1-Module-Basesystem">
    <source path="file:///media/suse/Module-Basesystem"/>
</repository>

Once all the individual product and module repos has been created in the KIWI NG image
description, the build process can be started as usual.

200 Using SUSE Product ISO To Build



Note
Because of the manual mount process the /media/suse  location stays busy after KIWI
NG has created the image. The cleanup of this resource is a responsibility of the user and
not done by KIWI NG

11.22 Circumvent debootstrap

Abstract. This page provides information how to build Debian based images with apt  but with-
out using debootstrap  to bootstrap the image root tree

When building Debian based images KIWI NG uses two tools to create the image root tree.
First it calls debootstrap  to initialize a minimal root tree and next it chroot’s into that tree
to complete the installation via apt . The reason why it is done that way is because apt  does
not(yet) support to install packages into an empty root directory like it is done with all other
packagemanager interfaces implemented in KIWI NG.

The use of debootstrap  comes along with some prerequisites and limitations:

It can only use one repository to bootstrap from

It can only use an official archive repo

It has its own dependency resolver different from apt

If one ore more of this properties turns into an issue, KIWI NG allows for an alternative process
which is based on a prebuilt bootstrap-root archive provided as a package.

To make use of a bootstrap_package , the name of that package needs to be referenced in the
KIWI NG description as follows:

<packages type="bootstrap" bootstrap_package="bootstrap-root">
    <package name="a"/>
    <package name="b"/>
</packages>

The boostrap process now changes in a way that the provided bootstrap_package boot-
strap-root  will be installed on the build host machine. Next KIWI NG searches for a tar archive
le /var/lib/bootstrap/bootstrap-root.ARCH.tar.xz , where ARCH  is the name of the host
architecture e.g x86_64 . If found the archive gets unpacked and serves as the bootstrap root tree

201 Circumvent debootstrap



to begin with. The optionally provided additional bootstrap packages, a  and b  in this example
will be installed like system packages via chroot  and apt . Usually no additional bootstrap
packages are needed as they could all be handled as system packages.

11.22.1 How to Create a bootstrap_package

Changing the setup in KIWI NG to use a bootstrap_package  rather then letting debootstrap
do the job comes with the task to create that package providing the bootstrap root tree. There
are more than one way to do this. The following procedure is just one example and requires
some background knowledge about the Open Build Service OBS (https://build.opensuse.org)

and its KIWI NG integration.

1. Create an OBS project and repository setup that matches your image target

2. Create an image build package

osc mkpac bootstrap-root

3. Create the following appliance.kiwi  le

<image schemaversion="7.4" name="bootstrap-root">
    <description type="system">
        <author>The Author</author>
        <contact>author@example.com</contact>
        <specification>prebuilt bootstrap rootfs for ...</specification>
    </description>

    <preferences>
        <version>1.0.1</version>
        <packagemanager>apt</packagemanager>
        <type image="tbz"/>
    </preferences>

    <repository type="rpm-md">
        <source path="obsrepositories:/"/>
    </repository>

    <packages type="image">
        <!-- packages included so OBS adds it as a build dependency, however this is
 installed by debootstrap -->
        <package name="mawk"/>
    </packages>

202 How to Create a bootstrap_package

https://build.opensuse.org


    <packages type="bootstrap">
        <!-- bootstrap done via debootstrap -->
    </packages>
</image>

osc add appliance.kiwi
osc ci

4. Package the image build results into a debian package
In step 3. the bootstrap root tarball was created but not yet packaged. A debian package
is needed such that it can be referenced with the bootstrap_package  attribute and the
repository providing it. The simplest way to package the bootstrap-root  tarball is to
create another package in OBS and use the tarball le as its source.

203 How to Create a bootstrap_package



12 Contributing

Note
Abstract

This document describes the development process of KIWI NG and how you can be part
of it. This description applies to version 9.25.12.

12.1 Using KIWI NG in a Python Project

Note
Abstract

KIWI NG is provided as python module under the kiwi namespace. It is available for the
python 3 version. The following description applies for KIWI NG version 9.25.12.

KIWI NG can also function as a module for other Python projects. The following example demon-
strates how to read an existing image description, add a new repository definition and export
the modified description on stdout.

import sys
import logging

from kiwi.xml_description import XMLDescription
from kiwi.xml_state import XMLState

description = XMLDescription('path/to/kiwi/XML/config.xml')

xml_data = description.load()

xml_state = XMLState(
    xml_data=xml_data, profiles=[], build_type='iso'
)

xml_state.add_repository(
    repo_source='http://repo',
    repo_type='rpm-md',
    repo_alias='myrepo',

204 Using KIWI NG in a Python Project



    repo_prio=99
)

xml_data.export(
    outfile=sys.stdout, level=0
)

All classes are written in a way to care for a single responsibility in order to allow for re-use
on other use cases. Therefore it is possible to use KIWI NG outside of the main image building
scope to manage e.g the setup of loop devices, filesystems, partitions, etc…

This means KIWI NG provides you a way to describe a system but you are free to make use of
the kiwi description format or not. The following example shows how to use kiwi to create a
simple filesystem image which contains your host tmp  directory.

import logging

from kiwi.storage.loop_device import LoopDevice
from kiwi.filesystem import FileSystem

loop_provider = LoopDevice(
    filename='my_tmp.ext4', filesize_mbytes=100
)
loop_provider.create()

filesystem = FileSystem.new(
    'ext4', loop_provider, '/tmp/'
)
filesystem.create_on_device(
    label='TMP'
)
filesystem.sync_data()

205 Using KIWI NG in a Python Project



12.2 Plugin Architecture
Each command provided by KIWI NG is written as a task plugin under the kiwi.tasks namespace.
As a developer you can extend KIWI NG with custom task plugins if the following conventions
are taken into account:

12.2.1 Naming Conventions

Task Plugin File Name

The le name of a task plugin must follow the pattern <service>_<command>.py . This
allows to invoke the task with kiwi-ng service command ...

Task Plugin Option Handling

KIWI NG uses the docopt module to handle options. Each task plugin must use docopt to
allow option handling.

Task Plugin Class

The implementation of the plugin must be a class that matches the naming convention:
<Service><Command>Task . The class must inherit from the CliTask  base class. On start-
up of the plugin, KIWI NG expects an implementation of the process  method.

Task Plugin Entry Point

Registration of the plugin must be done in setup.py  using the entry_points  concept
from Python’s setuptools.

'packages': ['kiwi_plugin'],
'entry_points': {
    'kiwi.tasks': [
        'service_command=kiwi_plugin.tasks.service_command'
    ]
}

12.2.2 Example Plugin

Note
The following example assumes an existing Python project which was set up according
to the Python project rules and standards.

206 Plugin Architecture



1. Assuming the project namespace is kiwi_relax_plugin.
Create the task plugin directory kiwi_relax_plugin/tasks

2. Create the entry point in setup.py .
Assuming we want to create the service named relax providing the command justdoit
this would be the following entry point definition in setup.py :

'packages': ['kiwi_relax_plugin'],
'entry_points': {
    'kiwi.tasks': [
        'relax_justdoit=kiwi_relax_plugin.tasks.relax_justdoit'
    ]
}

3. Create the plugin code in the le kiwi_relax_plugin/tasks/relax_justdoit.py  with
the following content:

"""
usage: kiwi-ng relax justdoit -h | --help
       kiwi-ng relax justdoit --now

commands:
    justdoit
        time to relax

options:
    --now
        right now. For more details about docopt
        see: http://docopt.org
"""
# These imports requires kiwi to be part of your environment
# It can be either installed from pip into a virtual development
# environment or from the distribution package manager
from kiwi.tasks.base import CliTask
from kiwi.help import Help

class RelaxJustdoitTask(CliTask):
    def process(self):
        self.manual = Help()
        if self.command_args.get('help') is True:
            # The following will invoke man to show the man page
            # for the requested command. Thus for the call to
            # succeed a manual page needs to be written and
            # installed by the plugin
            return self.manual.show('kiwi::relax::justdoit')

207 Example Plugin



        print(
            'https://genius.com/Frankie-goes-to-hollywood-relax-lyrics'
        )

4. Test the plugin

$ ./setup.py develop
$ kiwi-ng relax justdoit --now

12.3 Write Integration Tests for the Scripts
Kiwi ships a set of helper functions that can be used in config.sh  (see also: Section 7.6, “User

Defined Scripts”). These utilize containers to run the individual functions and verify that they
resulted in the desired state.

Ensure that you have either podman  or docker  installed and configured on your system. The
integration tests will use podman  in rootless mode by default, if it is installed on your system.
You can select docker  instead by setting the environment variable CONTAINER_RUNTIME  to
docker . Then you can run the integration tests via tox:

$ tox -e scripts -- -n NUMBER_OF_THREADS

The tests are written using the pytest-container (https://github.com/dcermak/pytest_container)

plugin. If applicable please leverage the utility functions and fixtures of that plugin, e.g. the au-
to_container  and auto_container_per_test  fixtures in conjunction with testinfra (https://

testinfra.readthedocs.io/) .

12.3.1 Test Setup

The script tests can be run inside different containers, which are setup in test/scripts/con-
ftest.py . This le contains the CONTAINERS  list with all currently present images. These im-
ages get pulled and build when needed and the functions.sh  is copied into /bin/ , so that
it is available in PATH .

To use any of these containers, you can either define the global variable CONTAINER_IMAGES  in
a test module and use the auto_container  fixture or parametrize (https://docs.pytest.org/en/

stable/parametrize.html)  the container  fixture indirectly:

@pytest.mark.parametrize("container_per_test", (TUMBLEWEED, LEAP_15_3), indirect=True)

208 Write Integration Tests for the Scripts

https://github.com/dcermak/pytest_container
https://testinfra.readthedocs.io/
https://testinfra.readthedocs.io/
https://docs.pytest.org/en/stable/parametrize.html
https://docs.pytest.org/en/stable/parametrize.html


def test_RmWorks(container_per_test):
    # create the file /root/foobar
    container_per_test.connection.run_expect([0], "touch /root/foobar")
    assert container_per_test.connection.file("/root/foobar").exists

    # source the functions and execute our function under test
    container_per_test.connection.run_expect([0], ". /bin/functions.sh && Rm /root/
foobar")

    # verify the result
    assert not container_per_test.connection.file("/root/foobar").exists

We used the _per_test  variant of the container  fixture in the above example. This fixture
ensures that this container is only used in a single test function. You should use this variant
for tests that mutate the system under test, as otherwise hard to debug race conditions could
occur. For tests that only perform reads, you can omit the _per_test  suffix and the container
environment will be shared with other tests. This improves execution speed, but comes at the
expense of safety in case mutation does occur.

For further information please refer to the documentation of pytest-container (https://github.com/

dcermak/pytest_container) .

12.4 Extending KIWI NG with Custom Operations

Note
Abstract

Users building images with KIWI NG need to implement their own infrastructure if the
image description does not provide a way to embed custom information which is outside
of the scope of the general schema as it is provided by KIWI NG today.

This document describes how to create an extension plugin for the KIWI NG schema to
add and validate additional information in the KIWI NG image description.

Such a schema extension can be used in an additional KIWI NG task plugin to provide a
new subcommand for KIWI NG. As of today there is no other plugin interface except for
providing additional KIWI NG commands implemented.

Depending on the demand for custom plugins, the interface to hook in code into other
parts of the KIWI NG processing needs to be extended.

This description applies for version 9.25.12.

209 Extending KIWI NG with Custom Operations

https://github.com/dcermak/pytest_container
https://github.com/dcermak/pytest_container


12.4.1 The <extension> Section

The main KIWI NG schema supports an extension section which allows to specify any XML
structure and attributes as long as they are connected to a namespace. According to this any
custom XML structure can be implemented like the following example shows:



Any toplevel namespace must exist only once

Multiple different toplevel namespaces are allowed, e.g my_plugin_a, my_plugin_b

12.4.2 RELAX NG Schema for the Extension

If an extension section is found, KIWI NG looks up its namespace and asks the main XML catalog
for the schema le to validate the extension data. The schema le must be a RELAX NG schema in
the .rng format. We recommend to place the schema as /usr/share/xml/kiwi/my_plugin.rng

For the above example the RELAX NG Schema in the compressed format my_plugin.rnc  would
look like this:

namespace my_plugin = "http://www.my_plugin.com"

start =
    k.my_feature

div {
    k.my_feature.attlist = empty
    k.my_feature =
        element my_plugin:my_feature {
            k.my_feature.attlist &
            k.title
        }
}

div {

210 The <extension> Section



    k.title.name.attribute =
        attribute name { text }
    k.title.attlist = k.title.name.attribute
    k.title =
        element my_plugin:title {
            k.title.attlist
        }
}

In order to convert this schema to the .rng format just call:

$ trang -I rnc -O rng my_plugin.rnc /usr/share/xml/kiwi/my_plugin.rng

12.4.3 Extension Schema in XML catalog

As mentioned above the mapping from the extension namespace to the correct RELAX NG
schema le is handled by a XML catalog le. The XML catalog for the example use here looks
like this:

<?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
    <system
        systemId="http://www.my_plugin.com"
        uri="file:////usr/share/xml/kiwi/my_plugin.rng"/>
</catalog>

For resolving the catalog KIWI NG uses the xmlcatalog  command and the main XML catalog
from the system which is /etc/xml/catalog .

Note
It depends on the distribution and its version how the main catalog gets informed about
the existence of the KIWI NG extension catalog le. Please consult the distribution manual
about adding XML catalogs.

If the following command provides the information to the correct RELAX NG schema le you
are ready for a rst test:

$ xmlcatalog /etc/xml/catalog http://www.my_plugin.com

211 Extension Schema in XML catalog



12.4.4 Using the Extension

In order to test your extension place the example extension section from the beginning of this
document into one of your image description’s config.xml  le

The following example will read the name attribute from the title section of the my_feature root
element and prints it:

import logging

from kiwi.xml_description import XMLDescription

description = XMLDescription('path/to/kiwi/XML/config.xml')
description.load()

my_plugin = description.get_extension_xml_data('my_plugin')

print(my_plugin.getroot()[0].get('name'))

12.5 The Basics

The core appliance builder is developed in Python and follows the test driven development rules.

If you want to implement a bigger feature, consider opening an issue on GitHub rst to discuss
the changes. Or join the discussion in the #kiwi  channel on Riot.im (https://about.riot.im) .

12.6 Fork the upstream repository

1. On GitHub, navigate to: https://github.com/OSInside/kiwi

2. In the top-right corner of the page, click Fork .

12.7 Create a local clone of the forked repository

$ git clone https://github.com/YOUR-USERNAME/kiwi

$ git remote add upstream https://github.com/OSInside/kiwi.git

212 Using the Extension

https://about.riot.im
https://github.com/OSInside/kiwi


12.8 Install Required Operating System Packages
KIWI NG requires the following additional packages which are not provided by pip . Those will
be installed by calling the install_devel_packages.sh  helper script from the checked out
Git repository as follows:

$ sudo helper/install_devel_packages.sh

Note
The helper script checks for the package managers zypper  and dnf  and associates a
distribution with it. If you use a distribution that does not use one of those package
managers the script will not install any packages and exit with an error message. In
this case we recommend to take a look at the package list encoded in the script and
adapt to your distribution and package manager as needed. Because distributions also
changes on a regular basis it might happen that the install_devel_packages  helper is
not 100% accurate or outdated depending on your host system. In this case the following
list describes the needed components and we are happy to received feedback or patches
to make install_devel_packages  a better experience.

XML processing libraries

libxml2  and libxslt  (for lxml )

Python header files, GCC compiler and glibc-devel header files

Required for python modules that hooks into shared library context and often named sim-
ilar to: python3-devel

Spell Checking library

Provided by the enchant  library

ShellCheck

ShellCheck (https://github.com/koalaman/shellcheck)  script linter.

ISO creation program xorriso .

LaTeX documentation build environment

A full LaTeX installation is required to build the PDF documentation .

Host Requirements To Build Images

A set of tools needed to build images and provided by the kiwi-systemdeps  package

213 Install Required Operating System Packages

https://github.com/koalaman/shellcheck


12.9 Create a Python Virtual Development
Environment
The following commands initializes and activates a development environment for Python 3:

Note
KIWI NG uses tox to create a devel environment and to run tests, linters and other tasks in
the tox generated environment. A tox version >= 3.3 is required for this setup process.
On your host a python version >= 3.7 is required for tox to work.

$ tox -e devel
$ source .tox/devel/bin/activate

The commands above automatically creates the application script called kiwi-ng , which allows
you to run KIWI NG from the Python sources inside the virtual environment:

$ kiwi-ng --help

Warning
The virtualenv’s $PATH  will not be taken into account when calling KIWI NG via sudo !
Use the absolute path to the KIWI NG executable to run an actual build using your local
changes:

$ sudo $PWD/.tox/devel/bin/kiwi-ng system build ...

To leave the development mode, run:

$ deactivate

To resume your work, cd  into your local Git repository and call:

$ source .tox/devel/bin/activate

Alternatively, you can launch single commands inside the virtualenv without sourcing it directly:

$ tox -e devel -- kiwi-ng --version

214 Create a Python Virtual Development Environment



12.10 Running the Unit Tests
We use tox  to run the unit tests. Tox sets up its own virtualenvs inside the .tox  directory
for multiple Python versions and should thus not be invoked from inside your development
virtualenv.

Before submitting your changes via a pull request, ensure that all tests pass and that the code
has the required test coverage via the command:

$ tox

We also include pytest-xdist  in the development virtualenv which allows to run the unit
tests in parallel. It is turned o by default but can be enabled via:

$ tox -- "-n NUMBER_OF_PROCESSES"

where you can insert an arbitrary number as NUMBER_OF_PROCESSES  (or a shell command like
$(nproc) ). Note that the double quotes around -n NUMBER_OF_PROCESSES  are required (oth-
erwise tox  will consume this command line ag instead of forwarding it to pytest ).

The previous call would run the unit tests for different Python versions, check the source code
for errors and build the documentation.

If you want to see the available targets, use the option -l  to let tox  print a list of them:

$ tox -l

To only run a special target, use the -e  option. The following example runs the test cases for
the Python 3.11 interpreter only:

$ tox -e unit_py3_11

12.11 Create a Branch for each Feature or Bugfix
Code changes should be done in an extra Git branch. This allows for creating GitHub pull requests
in a clean way. See also: Collaborating with issues and pull requests (https://help.github.com/en/

categories/collaborating-with-issues-and-pull-requests)

$ git checkout -b my-topic-branch

Make and commit your changes.

215 Running the Unit Tests

https://help.github.com/en/categories/collaborating-with-issues-and-pull-requests
https://help.github.com/en/categories/collaborating-with-issues-and-pull-requests


Note
You can make multiple commits which is generally useful to give your changes a clear
structure and to allow us to better review your work.

Note
Your work is important and must be signed to ensure the integrity of the repository and
the code. Thus we recommend to setup a signing key as documented in Signing Git Patches

(#signing-git-patches) .

$ git commit -S -a

Run the tests and code style checks. All of these are also performed by GitLab CI (https://git-

lab.com/kiwi3)  when a pull request is created.

$ tox

Once everything is done, push your local branch to your forked repository and create a pull
request into the upstream repository.

$ git push origin my-topic-branch

Thank you much for contributing to KIWI NG. Your time and work effort is very much appre-
ciated!

12.12 Coding Style

KIWI NG follows the general PEP8 guidelines with the following exceptions:

We do not use free functions at all. Even utility functions must be part of a class, but should
be either prefixed with the @classmethod  or @staticmethod  decorators (whichever is
more appropriate).

Do not set module and class level variables, put these into the classes’ __init__  method.

The names of constants are not written in all capital letters.

216 Coding Style

#signing-git-patches
#signing-git-patches
https://gitlab.com/kiwi3
https://gitlab.com/kiwi3


12.12.1 Documentation

KIWI NG uses Sphinx (https://www.sphinx-doc.org/en/master/)  for the API and user documen-
tation.

In order to build the HTML documentation call:

tox -e doc

or to build the full documentation (including a PDF generated by LaTeX ):

tox -e packagedoc

Document all your classes, methods, their parameters and their types using the standard reStruc-

turedText (https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html)  syntax as
supported by Sphinx, an example class is documented as follows:

class Example:
    """
    **Example class**

    :param str param: A parameter
    :param bool : Source file name to compress
    :param list supported_zipper: List of supported compression tools
    :attr Optional[str] attr: A class attribute
    """
    def __init__(self, param, param_w_default=False):
        self.attr = param if param_w_default else None

    def method(self, param):
        """
        A method that takes a parameter.

        :param list param: a parameter
        :return: whether param is very long
        :rtype: bool
        """
        return len(param) > 50

Try to stick to the following guidelines when documenting source code:

Classes should be documented directly in their main docstring and not in __init__ .

Document every function parameter and every public attribute including their types.

Only public methods should be documented, private methods don’t have to, unless they
are complex and it is not easy to grasp what they do (which should be avoided anyway).

217 Documentation

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html


Please also document any user-facing changes that you implementing (e.g. adding a new build
type) in the user documentation, which can be found in doc/source . General documentation
should be put into the working_with_kiwi/  subfolder, whereas documentation about more
specialized topics would belong into the building/  subfolder.

Adhere to a line limit of 75 characters when writing the user facing documentation .

12.13 Additional Information
The following sections provides further information about the repository integrity, version, pack-
age and documentation management.

12.13.1 Signing Git Patches

To ensure the integrity of the repository and the code base, patches sent for inclusion should
be signed with a GPG key.

To prepare Git to sign commits, follow these instructions:

1. Create a key suitable for signing (it is not recommended to use existing keys to not mix
it with your email environment):

$ gpg2 --expert --full-gen-key

2. Either choose a RSA key for signing (option (4) ) or an ECC key for signing (option (10) ).
For a RSA key choose a key size of 4096 bits and for a ECC key choose Curve 25519
(option (1) ). Enter a reasonable validity period (we recommend 2 to 5 years). Complete
the key generation by entering your name and email address.

3. Add the key ID to your git configuration, by running the following git config  com-
mands:

$ git config --local user.signingkey $YOUR_SIGN_KEY_ID
$ git config --local commit.gpgSign true

Omitting the ag --local  will make these settings global for all repositories (they will
be added to ~/.gitconfig ). You can nd your signkey’s ID via:

$ gpg2 --list-keys --keyid-format long $YOUR_EMAIL
pub   rsa4096/AABBCCDDEEFF0011 2019-04-26 [S] [expires: 2021-04-16]

218 Additional Information



AAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBB
uid                 [ultimate] YOU <$YOUR_EMAIL>

The key’s ID in this case would be AABBCCDDEEFF0011 . Note that your signkey will have
only a [S]  after the creation date, not a [SC]  (then you are looking at your ordinary
GPG key that can also encrypt).

12.13.2 Bumping the Version

The KIWI NG project follows the Semantic Versioning (https://semver.org)  scheme. We use the
bumpversion  tool for consistent versioning.

Follow these instructions to bump the major, minor, or patch part of the KIWI NG version. Ensure
that your repository is clean (i.e. no modified and unknown les exist) beforehand running
bumpversion .

For backwards-compatible bug fixes:

$ bumpversion patch

For additional functionality in a backwards-compatible manner. When changed, the patch
level is reset to zero:

$ bumpversion minor

For incompatible API changes. When changed, the patch and minor levels are reset to zero:

$ bumpversion major

12.13.3 Creating a RPM Package

We provide a template for a RPM spec le in package/python-kiwi-spec-template  alongside
with a rpmlint configuration le and an automatically updated python-kiwi.changes .

To create the necessary les to build a RPM package via rpmbuild , run:

$ make build

The sources are collected in the dist/  directory. These can be directly build it with rpmbuild ,
fedpkg , or submitted to the Open Build Service using osc .

219 Bumping the Version

https://semver.org


13 Python API

Note
This API documentation covers KIWI NG 9.25.12

13.1 kiwi Package

13.1.1 Submodules

13.1.2 kiwi.app Module

kiwi.app.App

Bases: object
Implements creation of task instances
Each task class implements a process method which is called when constructing an instance
of App

13.1.3 kiwi.cli Module

kiwi.cli.Cli

Bases: object
Implements the main command line interface
An instance of the Cli class builds the entry point for the application and implements
methods to load further command plugins which itself provides their own command line
interface

kiwi.cli.Cli.get_command

Extract selected command name

Returns

command name

220 kiwi Package



Return type

str

kiwi.cli.Cli.get_command_args

Extract argument dict for selected command

Returns

Contains dictionary of command arguments

{
    '--command-option': 'value'
}

Return type

dict

kiwi.cli.Cli.get_global_args

Extract argument dict for global arguments

Returns

Contains dictionary of global arguments

{
    '--global-option': 'value'
}

Return type

dict

kiwi.cli.Cli.get_servicename

Extract service name from argument parse result

Returns

service name

Return type

str

kiwi.cli.Cli.invoke_kiwicompat

Execute kiwicompat with provided legacy KIWI command line arguments
Example:

invoke_kiwicompat(
    '--build', 'description', '--type', 'vmx',
    '-d', 'destination'

221 kiwi.cli Module



)

Parameters

compat_args  () – legacy kiwi command arguments

kiwi.cli.Cli.load_command

Loads task class plugin according to service and command name

Returns

loaded task module

Return type

object

kiwi.cli.Cli.show_and_exit_on_help_request

Execute man to show the selected manual page

13.1.4 kiwi.command Module

kiwi.command.Command

Bases: object
Implements command invocation
An instance of Command provides methods to invoke external commands in blocking and
non blocking mode. Control of stdout and stderr is given to the caller

kiwi.command.Command.call

Execute a program and return an io le handle pair back. stdout and stderr are both
on different channels. The caller must read from the output le handles in order
to actually run the command. This can be done using the CommandIterator from
command_process
Example:

process = Command.call(['ls', '-l'])

Parameters

command  () – command and arguments

custom_env  () – custom os.environ

Returns

Contains process results in command type

222 kiwi.command Module



command(
    output='string', output_available=bool,
    error='string', error_available=bool,
    process=subprocess
)

Return type

namedtuple

kiwi.command.Command.run

Execute a program and block the caller. The return value is a hash containing the
stdout, stderr and return code information. Unless raise_on_error is set to false an
exception is thrown if the command exits with an error code not equal to zero
Example:

result = Command.run(['ls', '-l'])

Parameters

command  () – command and arguments

custom_env  () – custom os.environ

raise_on_error  () – control error behaviour

stderr_to_stdout  () – redirects stderr to stdout

Returns

Contains call results in command type

command(output='string', error='string', returncode=int)

Return type

namedtuple

kiwi.command.command_call_type

Bases: tuple

kiwi.command.command_call_type.error

Alias for eld number 2

kiwi.command.command_call_type.error_available

Alias for eld number 3

kiwi.command.command_call_type.output

Alias for eld number 0

223 kiwi.command Module



kiwi.command.command_call_type.output_available

Alias for eld number 1

kiwi.command.command_call_type.process

Alias for eld number 4

kiwi.command.command_type

Bases: tuple

kiwi.command.command_type.error

Alias for eld number 1

kiwi.command.command_type.output

Alias for eld number 0

kiwi.command.command_type.returncode

Alias for eld number 2

13.1.5 kiwi.command_process Module

kiwi.command_process.CommandIterator

Bases: object
Implements an Iterator for Instances of Command

Parameters

command  () – instance of subprocess

kiwi.command_process.CommandIterator.get_error_code

Provide return value from processed command

Returns

errorcode

Return type

int

kiwi.command_process.CommandIterator.get_error_output

Provide data which was sent to the stderr channel

Returns

stderr data

224 kiwi.command_process Module



Return type

str

kiwi.command_process.CommandIterator.get_pid

Provide process ID of command while running

Returns

pid

Return type

int

kiwi.command_process.CommandIterator.kill

Send kill signal SIGTERM to command process

kiwi.command_process.CommandProcess

Bases: object
Implements processing of non blocking Command calls
Provides methods to iterate over non blocking instances of the Command class with and
without progress information

Parameters

command  () – instance of subprocess

log_topic  () – topic string for logging

kiwi.command_process.CommandProcess.create_match_method

create a matcher function pointer which calls the given method as
method(item_to_match, data) on dereference

Parameters

method  () – function reference

Returns

function pointer

Return type

object

kiwi.command_process.CommandProcess.poll

Iterate over process, raise on error and log output

225 kiwi.command_process Module



kiwi.command_process.CommandProcess.poll_and_watch

Iterate over process don’t raise on error and log stdout and stderr

kiwi.command_process.CommandProcess.poll_show_progress

Iterate over process and show progress in percent raise on error and log output

Parameters

items_to_complete  () – all items

match_method  () – method matching item

kiwi.command_process.CommandProcess.returncode

13.1.6 kiwi.defaults Module

kiwi.defaults.Defaults

Bases: object
Implements default values
Provides static methods for default values and state information

kiwi.defaults.Defaults.get

Implements get method for profile elements

Parameters

key  () – profile keyname

Returns

key value

Return type

str

kiwi.defaults.Defaults.get_archive_image_types

Provides list of supported archive image types

Returns

archive names

Return type

list

226 kiwi.defaults Module



kiwi.defaults.Defaults.get_bios_image_name

Provides bios core boot binary name

Returns

name

Return type

str

kiwi.defaults.Defaults.get_bios_module_directory_name

Provides x86 BIOS directory name which stores the pc binaries

Returns

directory name

Return type

str

kiwi.defaults.Defaults.get_boot_image_description_path

Provides the path to nd custom kiwi boot descriptions

Returns

directory path

Return type

str

kiwi.defaults.Defaults.get_boot_image_strip_file

Provides the le path to bootloader strip metadata. This le contains information
about the les and directories automatically striped out from the kiwi initrd

Returns

le path

Return type

str

kiwi.defaults.Defaults.get_buildservice_env_name

Provides the base name of the environment le in a buildservice worker

Returns

le basename

227 kiwi.defaults Module



Return type

str

kiwi.defaults.Defaults.get_common_functions_file

Provides the le path to config functions metadata.
This le contains bash functions used for system configuration or in the boot code
from the kiwi initrd

Returns

le path

Return type

str

kiwi.defaults.Defaults.get_container_base_image_tag

Provides the tag used to identify base layers during the build of derived images.

Returns

tag

Return type

str

kiwi.defaults.Defaults.get_container_compression

Provides default container compression

Returns

True

Return type

bool

kiwi.defaults.Defaults.get_container_image_types

Provides list of supported container image types

Returns

container names

Return type

list

kiwi.defaults.Defaults.get_custom_rpm_bootstrap_macro_name

Returns the rpm bootstrap macro le name created in the custom rpm macros path

228 kiwi.defaults Module



Returns

filename

Return type

str

kiwi.defaults.Defaults.get_custom_rpm_image_macro_name

Returns the rpm image macro le name created in the custom rpm macros path

Returns

filename

Return type

str

kiwi.defaults.Defaults.get_custom_rpm_macros_path

Returns the custom macros directory for the rpm database.

Returns

path name

Return type

str

kiwi.defaults.Defaults.get_default_boot_mbytes

Provides default boot partition size in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_default_boot_timeout_seconds

Provides default boot timeout in seconds

Returns

seconds

Return type

int

kiwi.defaults.Defaults.get_default_bootloader

Return default bootloader name which is grub2

229 kiwi.defaults Module



Returns

bootloader name

Return type

str

kiwi.defaults.Defaults.get_default_container_created_by

Provides the default ‘created by’ history entry for containers.

Returns

the specific kiwi version used for the build

Return type

str

kiwi.defaults.Defaults.get_default_container_name

Provides the default container name.

Returns

name

Return type

str

kiwi.defaults.Defaults.get_default_container_subcommand

Provides the default container subcommand.

Returns

command as a list of arguments

Return type

list

kiwi.defaults.Defaults.get_default_container_tag

Provides the default container tag.

Returns

tag

Return type

str

kiwi.defaults.Defaults.get_default_disk_start_sector

Provides the default initial disk sector for the rst disk partition.

230 kiwi.defaults Module



Returns

sector value

Return type

int

kiwi.defaults.Defaults.get_default_efi_boot_mbytes

Provides default EFI partition size in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_default_efi_partition_table_type

Provides the default partition table type for e rmwares.

Returns

partition table type name

Return type

str

kiwi.defaults.Defaults.get_default_firmware

Provides default rmware for specified architecture

Parameters

arch  () – machine architecture name

Returns

rmware name

Return type

str

kiwi.defaults.Defaults.get_default_inode_size

Provides default size of inodes in bytes. This is only relevant for inode based filesys-
tems

Returns

bytesize value

231 kiwi.defaults Module



Return type

int

kiwi.defaults.Defaults.get_default_legacy_bios_mbytes

Provides default size of bios_grub partition in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_default_live_iso_root_filesystem

Provides default live iso root filesystem type

Returns

filesystem name

Return type

str

kiwi.defaults.Defaults.get_default_live_iso_type

Provides default live iso union type

Returns

live iso type

Return type

str

kiwi.defaults.Defaults.get_default_package_manager

Returns the default package manager name if none is configured in the image de-
scription

Returns

package manager name

Return type

str

kiwi.defaults.Defaults.get_default_packager_tool

Provides the packager tool according to the package manager

232 kiwi.defaults Module



Parameters

package_manager  () – package manger name

Returns

packager tool binary name

Return type

str

kiwi.defaults.Defaults.get_default_prep_mbytes

Provides default size of prep partition in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_default_uri_type

Provides default URI type
Absolute path specifications used in the context of an URI will apply the specified
default mime type

Returns

URI mime type

Return type

str

kiwi.defaults.Defaults.get_default_video_mode

Uses auto mode for default video. See get_video_mode_map for details on the value
depending which bootloader is used

Returns

auto

Return type

str

kiwi.defaults.Defaults.get_default_volume_group_name

Provides default LVM volume group name

Returns

name

233 kiwi.defaults Module



Return type

str

kiwi.defaults.Defaults.get_disk_format_types

Provides supported disk format types

Returns

disk types

Return type

list

kiwi.defaults.Defaults.get_disk_image_types

Provides supported disk image types

Returns

disk image type names

Return type

list

kiwi.defaults.Defaults.get_dracut_conf_name

Provides le path of dracut config le to be used with KIWI

Returns

le path name

Return type

str

kiwi.defaults.Defaults.get_ec2_capable_firmware_names

Provides list of EC2 capable rmware names. These are those for which kiwi supports
the creation of disk images bootable within the Amazon EC2 public cloud

Returns

rmware names

Return type

list

kiwi.defaults.Defaults.get_efi_capable_firmware_names

Provides list of EFI capable rmware names. These are those for which kiwi supports
the creation of an EFI bootable disk image

234 kiwi.defaults Module



Returns

rmware names

Return type

list

kiwi.defaults.Defaults.get_efi_image_name

Provides architecture specific EFI boot binary name

Parameters

arch  () – machine architecture name

Returns

name

Return type

str

kiwi.defaults.Defaults.get_efi_module_directory_name

Provides architecture specific EFI directory name which stores the EFI binaries for
the desired architecture.

Parameters

arch  () – machine architecture name

Returns

directory name

Return type

str

kiwi.defaults.Defaults.get_efi_vendor_directory

Provides EFI vendor directory if present
Looks up distribution specific EFI vendor directory

Parameters

root_path  () – path to e mountpoint

Returns

directory path or None

Return type

str

235 kiwi.defaults Module



kiwi.defaults.Defaults.get_exclude_list_for_non_physical_devices

Provides the list of folders that are not associated with a physical device. KIWI returns
the basename of the folders typically used as mountpoint for those devices.

Returns

list of le and directory names

Return type

list

kiwi.defaults.Defaults.get_exclude_list_for_removed_files_detection

Provides list of les/dirs to exclude from the removed les detection in a delta root
build

kiwi.defaults.Defaults.get_exclude_list_for_root_data_sync

Provides the list of les or folders that are created by KIWI for its own purposes.
Those les should be not be included in the resulting image.

Returns

list of le and directory names

Return type

list

kiwi.defaults.Defaults.get_exclude_list_from_custom_exclude_files

Provides the list of folders that are excluded by the optional metadata le image/ex-
clude_files.yaml

Returns

list of le and directory names

Parameters

root_dir  () – image root directory

Return type

list

kiwi.defaults.Defaults.get_failsafe_kernel_options

Provides failsafe boot kernel options

Returns

list of kernel options

236 kiwi.defaults Module



['option=value', 'option']

Return type

list

kiwi.defaults.Defaults.get_filesystem_image_types

Provides list of supported filesystem image types

Returns

filesystem names

Return type

list

kiwi.defaults.Defaults.get_firmware_types

Provides supported architecture specific rmware types

Returns

rmware types per architecture

Return type

dict

kiwi.defaults.Defaults.get_grub_basic_modules

Provides list of basic grub modules

Parameters

multiboot  () – grub multiboot mode

Returns

list of module names

Return type

list

kiwi.defaults.Defaults.get_grub_bios_core_loader

Provides grub bios image
Searches distribution specific locations to nd the core bios image below the given
root path

Parameters

root_path  () – image root path

237 kiwi.defaults Module



Returns

le path or None

Return type

str

kiwi.defaults.Defaults.get_grub_bios_modules

Provides list of grub bios modules

Parameters

multiboot  () – grub multiboot mode

Returns

list of module names

Return type

list

kiwi.defaults.Defaults.get_grub_boot_directory_name

Provides grub2 data directory name in boot/ directory
Depending on the distribution the grub2 boot path could be either boot/grub2 or
boot/grub. The method will decide for the correct base directory name according to
the name pattern of the installed grub2 tools

Returns

directory basename

Return type

str

kiwi.defaults.Defaults.get_grub_efi_font_directory

Provides distribution specific EFI font directory used with grub.

Parameters

root_path  () – image root path

Returns

le path or None

Return type

str

kiwi.defaults.Defaults.get_grub_efi_modules

Provides list of grub e modules

238 kiwi.defaults Module



Parameters

multiboot  () – grub multiboot mode

Returns

list of module names

Return type

list

kiwi.defaults.Defaults.get_grub_ofw_modules

Provides list of grub ofw modules (ppc)

Returns

list of module names

Return type

list

kiwi.defaults.Defaults.get_grub_path

Provides grub path to given search le
Depending on the distribution grub could be installed below a grub2 or grub direc-
tory. grub could also reside in /usr/lib as well as in /usr/share. Therefore this infor-
mation needs to be dynamically looked up

Parameters

root_path  () – root path to start the lookup from

filename  () – filename to search

raise_on_error  () – raise on not found, defaults to True

The method returns the path to the given grub search le. By default it raises a
KiwiBootLoaderGrubDataError exception if the le could not be found in any of the
search locations. If raise_on_error is set to False and no le could be found the function
returns None

Returns

lepath

Return type

str

239 kiwi.defaults Module



kiwi.defaults.Defaults.get_grub_s390_modules

Provides list of grub ofw modules (s390)

Returns

list of module names

Return type

list

kiwi.defaults.Defaults.get_imported_root_image

Provides the path to an imported root system image
If the image description specified a derived_from attribute the le from this attribute
is copied into the root_dir using the name as provided by this method

Parameters

root_dir  () – image root directory

Returns

le path name

Return type

str

kiwi.defaults.Defaults.get_install_volume_id

Provides default value for ISO volume ID for install media

Returns

name

Return type

str

kiwi.defaults.Defaults.get_iso_boot_path

Provides arch specific relative path to boot les on kiwi iso filesystems

Returns

relative path name

Return type

str

kiwi.defaults.Defaults.get_iso_tool_category

Provides default iso tool category

240 kiwi.defaults Module



Returns

name

Return type

str

kiwi.defaults.Defaults.get_isolinux_bios_grub_loader

Return name of eltorito grub image used as isolinux loader in BIOS mode if isolin-
ux.bin should not be used

Returns

le base name

Return type

str

kiwi.defaults.Defaults.get_kis_image_types

Provides supported kis image types

Returns

kis image type names

Return type

list

kiwi.defaults.Defaults.get_live_dracut_modules_from_flag

Provides ag_name to dracut modules name map
Depending on the value of the ag attribute in the KIWI image description specific
dracut modules need to be selected

Returns

dracut module names as list

Return type

list

kiwi.defaults.Defaults.get_live_image_types

Provides supported live image types

Returns

live image type names

Return type

list

241 kiwi.defaults Module



kiwi.defaults.Defaults.get_live_iso_persistent_boot_options

Provides list of boot options passed to the dracut kiwi-live module to setup persistent
writing

Returns

list of boot options

Return type

list

kiwi.defaults.Defaults.get_luks_key_length

Provides key length to use for random luks keys

kiwi.defaults.Defaults.get_lvm_overhead_mbytes

Provides empiric LVM overhead size in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_min_partition_mbytes

Provides default minimum partition size in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_min_volume_mbytes

Provides default minimum LVM volume size in mbytes

Returns

mbsize value

Return type

int

kiwi.defaults.Defaults.get_mok_manager

Provides Mok Manager le path
Searches distribution specific locations to nd the Mok Manager EFI binary

242 kiwi.defaults Module



Parameters

root_path  () – image root path

Returns

le path or None

Return type

str

kiwi.defaults.Defaults.get_obs_api_server_url

Provides the default API server url to access the public open buildservice API

Returns

url path

Return type

str

kiwi.defaults.Defaults.get_obs_download_server_url

Provides the default download server url hosting the public open buildservice repos-
itories

Returns

url path

Return type

str

kiwi.defaults.Defaults.get_oci_archive_tool

Provides the default OCI archive tool name.

Returns

name

Return type

str

kiwi.defaults.Defaults.get_part_mapper_tool

Provides the default partition mapper tool name.

Returns

name

243 kiwi.defaults Module



Return type

str

kiwi.defaults.Defaults.get_platform_name

Provides the machine architecture name as used by KIWI
This is the architecture name as it is returned by ‘uname -m’ with one exception for
the 32bit x86 architecture which is handled as ‘ix86’ in general

Returns

architecture name

Return type

str

kiwi.defaults.Defaults.get_preparer

Provides ISO preparer name

Returns

name

Return type

str

kiwi.defaults.Defaults.get_profile_file

Return name of profile le for given root directory

kiwi.defaults.Defaults.get_publisher

Provides ISO publisher name

Returns

name

Return type

str

kiwi.defaults.Defaults.get_recovery_spare_mbytes

Provides spare size of recovery partition in mbytes

Returns

mbsize value

Return type

int

244 kiwi.defaults Module



kiwi.defaults.Defaults.get_removed_files_name

Provides base le name to store removed les in a delta root build

kiwi.defaults.Defaults.get_schema_file

Provides le path to kiwi RelaxNG schema

Returns

le path

Return type

str

kiwi.defaults.Defaults.get_shared_cache_location

Provides the shared cache location
This is a directory which shares data from the image buildsystem host with the image
root system. The location is returned as an absolute path stripped o by the leading
‘/’. This is because the path is transparently used on the host /<cache-dir> and
inside of the image imageroot/<cache-dir>

Returns

directory path

Return type

str

kiwi.defaults.Defaults.get_shim_loader

Provides shim loader le path
Searches distribution specific locations to nd shim.efi below the given root path

Parameters

root_path  () – image root path

Returns

shim_loader_type | None

Return type

NamedTuple

kiwi.defaults.Defaults.get_shim_vendor_directory

Provides shim vendor directory
Searches distribution specific locations to nd shim.efi below the given root path and
return the directory name to the le found

245 kiwi.defaults Module



Parameters

root_path  () – image root path

Returns

directory path or None

Return type

str

kiwi.defaults.Defaults.get_signed_grub_loader

Provides shim signed grub loader le path
Searches distribution specific locations to nd a grub EFI binary within the given
root path

Parameters

root_path  () – image root path

Returns

grub_loader_type | None

Return type

NamedTuple

kiwi.defaults.Defaults.get_snapper_config_template_file

Provides the default configuration template le for snapper. The location in etc/ are
preferred over les in usr/

Returns

le path

Return type

str

kiwi.defaults.Defaults.get_solvable_location

Provides the directory to store SAT solvables for repositories. The solvable les are
used to perform package dependency and metadata resolution

Returns

directory path

Return type

str

246 kiwi.defaults Module



kiwi.defaults.Defaults.get_swapsize_mbytes

Provides swapsize in MB

kiwi.defaults.Defaults.get_sync_options

Provides list of default data sync options

Returns

list of rsync options

Return type

list

kiwi.defaults.Defaults.get_syslinux_modules

Returns list of syslinux modules to include on ISO images that boots via isolinux

Returns

base le names

Return type

list

kiwi.defaults.Defaults.get_syslinux_search_paths

syslinux is packaged differently between distributions. This method returns a list of
directories to search for syslinux data

Returns

directory names

Return type

list

kiwi.defaults.Defaults.get_temp_location

Provides the base temp directory location
This is the directory used to store any temporary les and directories created by kiwi
during runtime

Returns

directory path

Return type

str

kiwi.defaults.Defaults.get_unsigned_grub_loader

Provides unsigned grub e loader le path

247 kiwi.defaults Module



Searches distribution specific locations to nd a distro grub EFI binary within the
given root path

Parameters

root_path  () – image root path

Returns

le path or None

Return type

str

kiwi.defaults.Defaults.get_vagrant_config_virtualbox_guest_additions

Provides the default value for vagrantconfig.virtualbox_guest_addition-

s_present

Returns

whether guest additions are expected to be present in the vagrant box

Return type

bool

kiwi.defaults.Defaults.get_vendor_grubenv

kiwi.defaults.Defaults.get_video_mode_map

Provides video mode map
Assign a tuple to each kernel vesa hex id for each of the supported bootloaders

Returns

video type map

{'kernel_hex_mode': video_type(grub2='mode', isolinux='mode')}

Return type

dict

kiwi.defaults.Defaults.get_volume_id

Provides default value for ISO volume ID

Returns

name

Return type

str

248 kiwi.defaults Module



kiwi.defaults.Defaults.get_xsl_stylesheet_file

Provides the le path to the KIWI XSLT style sheets

Returns

le path

Return type

str

kiwi.defaults.Defaults.get_xz_compression_options

Provides compression options for the xz compressor

Returns

Contains list of options

['--option=value']

Return type

list

kiwi.defaults.Defaults.is_buildservice_worker

Checks if build host is an open buildservice machine
The presence of /.buildenv on the build host indicates we are building inside of the
open buildservice

Returns

True if obs worker, else False

Return type

bool

kiwi.defaults.Defaults.is_x86_arch

Checks if machine architecture is x86 based
Any arch that matches 32bit and 64bit x86 architecture causes the method to return
True. Anything else will cause the method to return False

Return type

bool

kiwi.defaults.Defaults.project_file

Provides the python module base directory search path
The method uses the resource_filename method to identify les and directories from
the application

249 kiwi.defaults Module



Parameters

filename  () – relative project le

Returns

absolute le path name

Return type

str

kiwi.defaults.Defaults.set_custom_runtime_config_file

Sets the runtime config le once

Parameters

filename  () – a le path name

kiwi.defaults.Defaults.set_platform_name

Sets the platform architecture once

Parameters

name  () – an architecture name

kiwi.defaults.Defaults.set_shared_cache_location

Sets the shared cache location once

Parameters

location  () – a location path

kiwi.defaults.Defaults.set_temp_location

Sets the temp directory location once

Parameters

location  () – a location path

kiwi.defaults.Defaults.to_profile

Implements method to add list of profile keys and their values to the specified in-
stance of a Profile class

Parameters

profile  () – Profile instance

kiwi.defaults.grub_loader_type

Bases: tuple

250 kiwi.defaults Module



kiwi.defaults.grub_loader_type.binaryname

Alias for eld number 1

kiwi.defaults.grub_loader_type.filename

Alias for eld number 0

kiwi.defaults.shim_loader_type

Bases: tuple

kiwi.defaults.shim_loader_type.binaryname

Alias for eld number 1

kiwi.defaults.shim_loader_type.filename

Alias for eld number 0

kiwi.defaults.unit_type

Bases: tuple

kiwi.defaults.unit_type.byte

Alias for eld number 0

kiwi.defaults.unit_type.gb

Alias for eld number 3

kiwi.defaults.unit_type.kb

Alias for eld number 1

kiwi.defaults.unit_type.mb

Alias for eld number 2

13.1.7 kiwi.exceptions Module

kiwi.exceptions.KiwiAnyMarkupPluginError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the python anymarkup module failed to load.

kiwi.exceptions.KiwiArchiveSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an unsupported image archive type is used.

kiwi.exceptions.KiwiArchiveTarError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

251 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


Exception raised if impossible to determine which tar command version is installed on the
underlying system

kiwi.exceptions.KiwiBootImageSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an unsupported initrd system type is used.

kiwi.exceptions.KiwiBootLoaderConfigSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a configuration for an unsupported bootloader is requested.

kiwi.exceptions.KiwiBootLoaderGrubDataError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if no grub installation was found.

kiwi.exceptions.KiwiBootLoaderGrubFontError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if no grub unicode font was found.

kiwi.exceptions.KiwiBootLoaderGrubInstallError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if grub install to master boot record has failed.

kiwi.exceptions.KiwiBootLoaderGrubModulesError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the synchronisation of modules from the grub installation to the boot
space has failed.

kiwi.exceptions.KiwiBootLoaderGrubPlatformError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to use grub on an unsupported platform.

kiwi.exceptions.KiwiBootLoaderGrubSecureBootError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the Microsoft signed shim loader or grub2 loader could not be found
in the image root system

kiwi.exceptions.KiwiBootLoaderInstallSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an installation for an unsupported bootloader is requested.

252 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiBootLoaderTargetError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the target to read the bootloader path from is not a disk or an iso image.

kiwi.exceptions.KiwiBootLoaderZiplInstallError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the installation of zipl has failed.

kiwi.exceptions.KiwiBootLoaderZiplPlatformError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a configuration for an unsupported zipl architecture is requested.

kiwi.exceptions.KiwiBootLoaderZiplSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the data set to configure the zipl bootloader is incomplete.

kiwi.exceptions.KiwiBootStrapPhaseFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the bootstrap phase of the system prepare command has failed.

kiwi.exceptions.KiwiBuildahError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised on inconsistent buildah class calls

kiwi.exceptions.KiwiBundleError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the system bundle command has failed.

kiwi.exceptions.KiwiCommandCapabilitiesError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception is raised when some the CommandCapabilities methods fails, usually meaning
there is some issue trying to parse some command output.

kiwi.exceptions.KiwiCommandError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an external command called via a Command instance has returned with
an exit code != 0 or could not be called at all.

kiwi.exceptions.KiwiCommandNotFound

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

253 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


Exception raised if any executable command cannot be found in the evironment PATH
variable.

kiwi.exceptions.KiwiCommandNotLoaded

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a kiwi command task module could not be loaded.

kiwi.exceptions.KiwiCompatError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the given kiwi compatibility command line could not be understood
by the compat option parser.

kiwi.exceptions.KiwiCompressionFormatUnknown

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the compression format of the data could not be detected.

kiwi.exceptions.KiwiConfigFileFormatNotSupported

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if kiwi description le format is not supported.

kiwi.exceptions.KiwiConfigFileNotFound

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if no kiwi XML description was found.

kiwi.exceptions.KiwiContainerBuilderError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception is raised when something fails during a container image build procedure.

kiwi.exceptions.KiwiContainerImageSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt to create a container instance for an unsupported container
type is performed.

kiwi.exceptions.KiwiContainerSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an error in the creation of the container archive happened.

kiwi.exceptions.KiwiCredentialsError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if required credentials information is missing

254 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiCustomPartitionConflictError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the entry in a custom partition setup conflicts with an existing partition
table layout setting

kiwi.exceptions.KiwiDataStructureError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the XML description failed to parse the data structure.

kiwi.exceptions.KiwiDebootstrapError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if not enough user data to call debootstrap were provided or the deboot-
strap has failed.

kiwi.exceptions.KiwiDecodingError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception is raised on decoding literals failure

kiwi.exceptions.KiwiDescriptionInvalid

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the XML description failed to validate the XML schema.

kiwi.exceptions.KiwiDeviceProviderError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a storage provide is asked for its managed device but no such device
exists.

kiwi.exceptions.KiwiDiskBootImageError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a kiwi boot image does not provide the requested data, e.g kernel, or
hypervisor les.

kiwi.exceptions.KiwiDiskFormatSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to create a disk format instance of an unsupported
disk format.

kiwi.exceptions.KiwiDiskGeometryError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

255 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


Exception raised if the disk geometry (partition table) could not be read or evaluated
against their expected geometry and capabilities.

kiwi.exceptions.KiwiDistributionNameError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the distribution name could not be found. The information is extracted
from the boot attribute of the XML description. If no boot attribute is present or does not
match the naming conventions the exception is raised.

kiwi.exceptions.KiwiError

Bases: Exception
Base class to handle all known exceptions
Specific exceptions are implemented as sub classes of KiwiError
Attributes

Parameters

message  () – Exception message text

kiwi.exceptions.KiwiExtensionError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an extension section of the same namespace is used multiple times as
toplevel section within the extension section. Each extension must have a single toplevel
entry point qualified by its namespace

kiwi.exceptions.KiwiFileAccessError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if accessing a le or its metadata failed

kiwi.exceptions.KiwiFileNotFound

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the requested le could not be found.

kiwi.exceptions.KiwiFileSystemSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to build an unsupported or unspecified filesystem.

kiwi.exceptions.KiwiFileSystemSyncError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the data sync from the system into the loop mounted filesystem image
failed.

256 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiFormatSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the requested disk format could not be created.

kiwi.exceptions.KiwiHelpNoCommandGiven

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the request for the help page is executed without a command to show
the help for.

kiwi.exceptions.KiwiImageResizeError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the request to resize a disk image failed. Reasons could be a missing
raw disk reference or a wrong size specification.

kiwi.exceptions.KiwiImportDescriptionError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the XML description data and scripts could not be imported into the
root of the image.

kiwi.exceptions.KiwiIncludFileNotFoundError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the le reference in an <include> statement could not be found

kiwi.exceptions.KiwiInstallBootImageError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the required les to boot an installation image could not be found, e.g
kernel or hypervisor.

kiwi.exceptions.KiwiInstallMediaError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a request for an installation media is made but the system image type
is not an oem type.

kiwi.exceptions.KiwiInstallPhaseFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the install phase of a system prepare command has failed.

kiwi.exceptions.KiwiIsoLoaderError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if no isolinux loader le could be found.

257 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiIsoMetaDataError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an inconsistency in the ISO header was found such like invalid eltorito
specification or a broken path table.

kiwi.exceptions.KiwiIsoToolError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an iso helper tool such as isoinfo could not be found on the build system.

kiwi.exceptions.KiwiKernelLookupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the search for the kernel image le failed

kiwi.exceptions.KiwiKisBootImageError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a required boot le e.g the kernel could not be found in the process
of building a kis image.

kiwi.exceptions.KiwiLiveBootImageError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to use an unsupported live iso type.

kiwi.exceptions.KiwiLoadCommandUndefined

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if no command is specified for a given service on the commandline.

kiwi.exceptions.KiwiLogFileSetupFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the log le could not be created.

kiwi.exceptions.KiwiLogSocketSetupFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the Unix Domain log socket could not be created.

kiwi.exceptions.KiwiLoopSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if not enough user data to create a loop device is specified.

kiwi.exceptions.KiwiLuksSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

258 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


Exception raised if not enough user data is provided to setup the luks encryption on the
given device.

kiwi.exceptions.KiwiMappedDeviceError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the device to become mapped does not exist.

kiwi.exceptions.KiwiMarkupConversionError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the markup format conversion is not possible.

kiwi.exceptions.KiwiMountKernelFileSystemsError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a kernel filesystem such as proc or sys could not be mounted.

kiwi.exceptions.KiwiMountSharedDirectoryError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the host <-> image shared directory could not be mounted.

kiwi.exceptions.KiwiNotImplementedError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a functionality is not yet implemented.

kiwi.exceptions.KiwiOCIArchiveToolError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the requested OCI archive tool is not supported

kiwi.exceptions.KiwiOffsetError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the offset for a seek operation does not match the expected data to write

kiwi.exceptions.KiwiPackageManagerSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to create a package manager instance for an
unsupported package manager.

kiwi.exceptions.KiwiPackagesDeletePhaseFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the packages deletion phase in system prepare fails.

259 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiPartitionTooSmallError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the specified partition size is smaller than the required bytes to store
the data

kiwi.exceptions.KiwiPartitionerGptFlagError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to set an unknown partition ag for an entry in
the GPT table.

kiwi.exceptions.KiwiPartitionerMsDosFlagError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to set an unknown partition ag for an entry in
the MSDOS table.

kiwi.exceptions.KiwiPartitionerSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to create an instance of a partitioner for an un-
supporte partitioner.

kiwi.exceptions.KiwiPrivilegesError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if root privileges are required but not granted.

kiwi.exceptions.KiwiProfileNotFound

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a specified profile does not exist in the XML configuration.

kiwi.exceptions.KiwiRaidSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if invalid or not enough user data is provided to create a raid array on
the specified storage device.

kiwi.exceptions.KiwiRepositorySetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to create an instance of a repository for an un-
supported package manager.

kiwi.exceptions.KiwiRequestError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

260 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


Exception raised if a package request could not be processed by the corresponding package
manager instance.

kiwi.exceptions.KiwiRequestedTypeError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to build an image for an unsupported image type.

kiwi.exceptions.KiwiResizeRawDiskError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an attempt was made to resize the image disk to a smaller size than
the current one. Simply shrinking a disk image le is not possible without data corruption
because the partitions were setup to use the entire disk geometry as it ts into the le.
A successful shrinking operation would require the filesystems and the partition table to
be reduced which is not done by the provided simple storage resize method. In addition
without the user overwriting the disk size in the XML setup, kiwi will calculate the mini-
mum required size in order to store the data. Thus in almost all cases it will not be possible
to store the data in a smaller disk.

kiwi.exceptions.KiwiResultError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the image build result pickle information could not be created or loaded.

kiwi.exceptions.KiwiRootDirExists

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the specified image root directory already exists and should not be re-
used.

kiwi.exceptions.KiwiRootImportError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception is raised when something fails during the root import procedure.

kiwi.exceptions.KiwiRootInitCreationError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the initialization of a new image root directory has failed.

kiwi.exceptions.KiwiRpmDirNotRemoteError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the provided rpm-dir repository is not local

261 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiRuntimeConfigFileError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the provided custom runtime config le could not be found

kiwi.exceptions.KiwiRuntimeConfigFormatError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the expected format in the yaml KIWI runtime config le does not match

kiwi.exceptions.KiwiRuntimeError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a runtime check has failed.

kiwi.exceptions.KiwiSatSolverJobError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a sat solver job can not be done, e.g because the requested package or
collection does not exist in the registered repository metadata

kiwi.exceptions.KiwiSatSolverJobProblems

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the sat solver operations returned with solver problems e.g package
conflicts

kiwi.exceptions.KiwiSatSolverPluginError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the python solv module failed to load. The solv module is provided by
SUSE’s rpm package python-solv and provides a python binding to the libsolv C library

kiwi.exceptions.KiwiSchemaImportError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the schema le could not be read by lxml.RelaxNG.

kiwi.exceptions.KiwiScriptFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a user script returned with an exit code != 0.

kiwi.exceptions.KiwiSetupIntermediateConfigError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the setup of the temporary image system configuration for the duration
of the build process has failed.

262 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiShellVariableValueError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if a given python value cannot be converted into a string representation
for use in shell scripts

kiwi.exceptions.KiwiSizeError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception is raised when the convertion from a given size in string format to a number.

kiwi.exceptions.KiwiSolverRepositorySetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the repository type is not supported for the creation of a SAT solvable

kiwi.exceptions.KiwiSystemDeletePackagesFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the deletion of a package has failed in the corresponding package man-
ager instance.

kiwi.exceptions.KiwiSystemInstallPackagesFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the installation of a package has failed in the corresponding package
manager instance.

kiwi.exceptions.KiwiSystemUpdateFailed

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the package upgrade has failed in the corresponding package manager
instance.

kiwi.exceptions.KiwiTargetDirectoryNotFound

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the specified target directory to store the image results was not found.

kiwi.exceptions.KiwiTemplateError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the substitution of variables in a configuration le template has failed.

kiwi.exceptions.KiwiTypeNotFound

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if no build type was found in the XML description.

263 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiUmountBusyError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the attempt to umount a resource has failed

kiwi.exceptions.KiwiUnknownServiceName

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an unknown service name was provided on the commandline.

kiwi.exceptions.KiwiUriOpenError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the urllib urlopen request has failed

kiwi.exceptions.KiwiUriStyleUnknown

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if an unsupported URI style was used in the source definition of a repos-
itory.

kiwi.exceptions.KiwiUriTypeUnknown

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the protocol type of an URI is unknown in the source definition of a
repository.

kiwi.exceptions.KiwiValidationError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the XML validation against the schema has failed.

kiwi.exceptions.KiwiVhdTagError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the GUID tag is not provided in the expected format.

kiwi.exceptions.KiwiVolumeGroupConflict

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the requested LVM volume group already is in use on the build system.

kiwi.exceptions.KiwiVolumeManagerSetupError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the preconditions for volume mangement support are not met or an
attempt was made to create an instance of a volume manager for an unsupported volume
management system.

264 kiwi.exceptions Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.exceptions.KiwiVolumeRootIDError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the root volume can not be found. This concept currently exists only
for the btrfs subvolume system.

kiwi.exceptions.KiwiVolumeTooSmallError

Bases: KiwiError  (#kiwi.exceptions.KiwiError)

Exception raised if the specified volume size is smaller than the required bytes to store
the data

13.1.8 kiwi.firmware Module

kiwi.firmware.FirmWare

Bases: object
Implements rmware specific methods
According to the selected rmware some parameters in a disk image changes. This class
provides methods to provide rmware dependant information

param object xml_state

instance of XMLState

kiwi.firmware.FirmWare.bios_mode

Check if BIOS mode is requested

Returns

True or False

Return type

bool

kiwi.firmware.FirmWare.ec2_mode

Check if EC2 mode is requested

Returns

True or False

Return type

bool

265 kiwi.firmware Module

#kiwi.exceptions.KiwiError
#kiwi.exceptions.KiwiError


kiwi.firmware.FirmWare.efi_mode

Check if EFI mode is requested

Returns

The requested EFI mode or None if no EFI mode requested

Return type

str

kiwi.firmware.FirmWare.get_efi_partition_size

Size of EFI partition. Returns 0 if no such partition is needed

Returns

mbsize value

Return type

int

kiwi.firmware.FirmWare.get_legacy_bios_partition_size

Size of legacy bios_grub partition if legacy BIOS mode is required. Returns 0 if no
such partition is needed

Returns

mbsize value

Return type

int

kiwi.firmware.FirmWare.get_partition_table_type

Provides partition table type according to architecture and rmware

Returns

partition table name

Return type

str

kiwi.firmware.FirmWare.get_prep_partition_size

Size of Prep partition if OFW mode is requested. Returns 0 if no such partition is
needed

Returns

mbsize value

266 kiwi.firmware Module



Return type

int

kiwi.firmware.FirmWare.legacy_bios_mode

Check if the legacy boot from BIOS systems should be activated

Returns

True or False

Return type

bool

kiwi.firmware.FirmWare.ofw_mode

Check if OFW mode is requested

Returns

True or False

Return type

bool

kiwi.firmware.FirmWare.opal_mode

Check if Opal mode is requested

Returns

True or False

Return type

bool

13.1.9 kiwi.help Module

kiwi.help.Help

Bases: object
Implements man page help for kiwi commands
Each kiwi command implements their own manual page, which is shown if the positional
argument ‘help’ is passed to the command.

kiwi.help.Help.show

Call man to show the command specific manual page

267 kiwi.help Module



All kiwi commands store their manual page in the section ‘8’ of the man system. The
calling process is replaced by the man process

Parameters

command  () – man page name

13.1.10 kiwi.kiwi Module

kiwi.kiwi.extras

Overwritten method from docopt
Shows our own usage message for -h|–help

Parameters

help  () – indicate to show help

version  () – version string

options  () –

list of option tuples

[option(name='name', value='value')]

Parameters

doc  () – docopt doc string

kiwi.kiwi.main

kiwi - main application entry point
Initializes a global log object and handles all errors of the application. Every known error
is inherited from KiwiError, everything else is passed down until the generic Exception
which is handled as unexpected error including the python backtrace

kiwi.kiwi.usage

Instead of the docopt way to show the usage information we provide a kiwi specific usage
information. The usage data now always consists out of:

1. the generic call kiwi-ng [global options] service <command> [<args>]

2. the command specific usage defined by the docopt string short form by default, long
form with -h | –help

268 kiwi.kiwi Module



3. the global options

Parameters

command_usage  () – usage data

13.1.11 kiwi.logger Module

kiwi.logger.Logger

Bases: Logger
Extended logging facility based on Python logging

Parameters

name  () – name of the logger

kiwi.logger.Logger.getLogFlags

Return logging ags

Returns

Dictionary with ags and their activation status

Return type

dict

kiwi.logger.Logger.getLogLevel

Return currently used log level

Returns

log level number

Return type

int

kiwi.logger.Logger.get_logfile

Return le path name of logfile

Returns

le path

Return type

str

269 kiwi.logger Module



kiwi.logger.Logger.progress

Custom progress log information. progress information is intentionally only logged
to stdout and will bypass any handlers. We don’t want this information to show up
in the log le

Parameters

current  () – current item

total  () – total number of items

prefix  () – prefix name

bar_length  () – length of progress bar

kiwi.logger.Logger.setLogFlag

Set logging ag for further properties of the logging facility Available ags are:

run-scripts-in-screen

Parameters

flag  () – name

kiwi.logger.Logger.setLogLevel

Set custom log level for all console handlers

Parameters

level  () – log level number

kiwi.logger.Logger.set_color_format

Set color format for all console handlers

kiwi.logger.Logger.set_log_socket

Set log socket handler

Parameters

filename  () – UDS socket le path. Note if there is no server listening on the
socket the log handler setup will fail

kiwi.logger.Logger.set_logfile

Set logfile handler

Parameters

filename  () – logfile le path

270 kiwi.logger Module



13.1.12 kiwi.logger_color_formatter Module

kiwi.logger_color_formatter.ColorFormatter

Bases: Formatter
Extended standard logging Formatter
Extended format supporting text with color metadata
Example:

ColorFormatter(message_format, '%H:%M:%S')

kiwi.logger_color_formatter.ColorFormatter.format

Creates a logging Formatter with support for color messages

Parameters

record  () – logging message record

Returns

result from format_message

Return type

str

kiwi.logger_color_formatter.ColorMessage

Bases: object
Implements color messages for Python logging facility
Has to implement the format_message method to serve as message formatter

kiwi.logger_color_formatter.ColorMessage.format_message

Message formatter with support for embedded color sequences
The Message is allowed to contain the following color metadata:

$RESET, reset to no color mode

$BOLD, bold

$COLOR, color the following text

$LIGHTCOLOR, light color the following text

The color of the message depends on the level and is defined in the ColorMessage
constructor

271 kiwi.logger_color_formatter Module



Parameters

level  () – color level name

message  () – text

Returns

color message with escape sequences

Return type

str

13.1.13 kiwi.logger_filter Module

kiwi.logger_filter.DebugFilter

Bases: Filter
Extended standard debug logging Filter

kiwi.logger_filter.DebugFilter.filter

Only messages with record level DEBUG can pass for messages with another level
an extra handler is used

Parameters

record  () – logging message record

Returns

True|False

Return type

bool

kiwi.logger_filter.ErrorFilter

Bases: Filter
Extended standard error logging Filter

kiwi.logger_filter.ErrorFilter.filter

Only messages with record level DEBUG can pass for messages with another level
an extra handler is used

Parameters

record  () – logging message record

272 kiwi.logger_filter Module



Returns

True|False

Return type

bool

kiwi.logger_filter.InfoFilter

Bases: Filter
Extended standard logging Filter

kiwi.logger_filter.InfoFilter.filter

Only messages with record level INFO can pass for messages with another level an
extra handler is used

Parameters

record  () – logging message record

Returns

True|False

Return type

bool

kiwi.logger_filter.LoggerSchedulerFilter

Bases: Filter
Extended standard logging Filter

kiwi.logger_filter.LoggerSchedulerFilter.filter

Messages from apscheduler scheduler instances are filtered out They conflict with
console progress information

Parameters

record  () – logging message record

Returns

True|False

Return type

bool

kiwi.logger_filter.WarningFilter

Bases: Filter

273 kiwi.logger_filter Module



Extended standard warning logging Filter

kiwi.logger_filter.WarningFilter.filter

Only messages with record level WARNING can pass for messages with another level
an extra handler is used

Parameters

record  () – logging message record

Returns

True|False

Return type

bool

13.1.14 kiwi.mount_manager Module

kiwi.mount_manager.MountManager

Bases: object
Implements methods for mounting, umounting and mount checking
If a MountManager instance is used to mount a device the caller must care for the time
when umount needs to be called. The class does not automatically release the mounted
device, which is intentional

param string device

device node name

param string mountpoint

mountpoint directory name

param dict attributes

optional attributes to store

kiwi.mount_manager.MountManager.bind_mount

Bind mount the device to the mountpoint

kiwi.mount_manager.MountManager.get_attributes

Return attributes dict for this mount manager

kiwi.mount_manager.MountManager.is_mounted

Check if mounted

274 kiwi.mount_manager Module



Returns

True or False

Return type

bool

kiwi.mount_manager.MountManager.mount

Standard mount the device to the mountpoint

Parameters

options  () – mount options

kiwi.mount_manager.MountManager.overlay_mount

kiwi.mount_manager.MountManager.tmpfs_mount

tmpfs mount the device to the mountpoint

kiwi.mount_manager.MountManager.umount

Umount by the mountpoint directory
Wait up to 10sec trying to umount. If the resource stays busy the call will raise
an exception unless raise_on_busy is set to False. In case the umount failed and
raise_on_busy is set to False, the method returns False to indicate the error condition.

Returns

True or False

Return type

bool

kiwi.mount_manager.MountManager.umount_lazy

Umount by the mountpoint directory in lazy mode
Release the mount in any case, however the time when the mounted resource is
released by the kernel depends on when the resource enters the non busy state

13.1.15 kiwi.path Module

kiwi.path.Path

Bases: object
Directory path helpers

kiwi.path.Path.access

Check whether path can be accessed with the given mode.

275 kiwi.path Module



Parameters

path  () – The path that should be checked for access.

mode  () – Which access mode should be checked. This value must be a
bit-wise or of one or more of the following constants: os.F_OK  (note that
this one is zero), os.X_OK , os.R_OK  and os.W_OK

kwargs  – further keyword arguments are forwarded to os.access()

Returns

Boolean value whether this access mode is allowed

Return type

bool

Raises

ValueError  – if the supplied mode is invalid

kiwi.exceptions.KiwiFileNotFound  (#kiwi.exceptions.KiwiFileNot-

Found)  – if the path does not exist or is not accessible by the current user

kiwi.path.Path.create

Create path and all sub directories to target

Parameters

path  () – path name

kiwi.path.Path.move_to_root

Change the given path elements to a new root directory

Parameters

root  () – the root path to trim

elements  () – list of path names

Returns

changed elements

Return type

list

276 kiwi.path Module

#kiwi.exceptions.KiwiFileNotFound
#kiwi.exceptions.KiwiFileNotFound


kiwi.path.Path.rebase_to_root

Include the root prefix for the given paths elements

Parameters

root  () – the new root path

elements  () – list of path names

Returns

changed elements

Return type

list

kiwi.path.Path.remove

Delete empty path, causes an error if target is not empty

Parameters

path  () – path name

kiwi.path.Path.remove_hierarchy

Recursively remove an empty path and its sub directories starting at a given root
directory. Ignore non empty or protected paths and leave them untouched

Parameters

root  () – start at directory

path  () – path name below root

kiwi.path.Path.rename

Move path from cur name to new name

Parameters

cur  () – current path name

new  () – new path name

kiwi.path.Path.sort_by_hierarchy

Sort given list of path names by their hierachy in the tree
Example:

result = Path.sort_by_hierarchy(['/var/lib', '/var'])

277 kiwi.path Module



Parameters

path_list  () – list of path names

Returns

hierachy sorted path_list

Return type

list

kiwi.path.Path.which

Lookup le name in PATH

Parameters

filename  () – le base name

alternative_lookup_paths  () – list of additional lookup paths

custom_env  () – a custom os.environ

access_mode  () – one of the os access modes or a combination of them
(os.R_OK, os.W_OK and os.X_OK). If the provided access mode does not
match the le is considered not existing

root_dir  () – the root path to look at

Returns

absolute path to le or None

Return type

str

kiwi.path.Path.wipe

Delete path and all contents

Parameters

path  () – path name

13.1.16 kiwi.privileges Module

kiwi.privileges.Privileges

Bases: object
Implements check for root privileges

278 kiwi.privileges Module



kiwi.privileges.Privileges.check_for_root_permissions

Check if we are effectively root on the system. If not an exception is thrown

Returns

True or raise an Exception

Return type

bool

13.1.17 kiwi.runtime_checker Module

kiwi.runtime_checker.RuntimeChecker

Bases: object
Implements build consistency checks at runtime

kiwi.runtime_checker.RuntimeChecker.check_appx_naming_conventions_valid

When building wsl images there are some naming conventions that must be fulfilled
to run the container on Microsoft Windows

kiwi.runtime_checker.RuntimeChecker.check_architecture_supports_iso_firmware_setup

For creating ISO images a different bootloader setup is performed depending on the
configured rmware. If the rmware is set to bios, isolinux is used and that limits
the architecture to x86 only. In any other case the appliance configured bootloader
is used. This check examines if the host architecture is supported with the configured
rmware on request of an ISO image.

kiwi.runtime_checker.RuntimeChecker.check_boot_description_exists

If a kiwi initrd is used, a lookup to the specified boot description is done and fails
early if it does not exist

kiwi.runtime_checker.RuntimeChecker.check_consistent_kernel_in_boot_and_system_image

If a kiwi initrd is used, the kernel used to build the kiwi initrd and the kernel used
in the system image must be the same in order to avoid an inconsistent boot setup

kiwi.runtime_checker.RuntimeChecker.check_container_tool_chain_installed

When creating container images the specific tools are used in order to import and
export OCI or Docker compatible images. This check searches for those tools to be
installed in the build system and fails if it can’t nd them

279 kiwi.runtime_checker Module



kiwi.runtime_checker.RuntimeChecker.check_dracut_module_for_disk_oem_in_package_list

OEM images if configured to use dracut as initrd system requires the KIWI provided
dracut-kiwi-oem-repart module to be installed at the time dracut is called. Thus this
runtime check examines if the required package is part of the package list in the
image description.

kiwi.runtime_checker.RuntimeChecker.check_dracut_module_for_disk_overlay_in_package_list

Disk images configured to use a root filesystem overlay requires the KIWI provided
kiwi-overlay dracut module to be installed at the time dracut is called. Thus this
runtime check examines if the required package is part of the package list in the
image description.

kiwi.runtime_checker.RuntimeChecker.check_dracut_module_for_live_iso_in_package_list

Live ISO images uses a dracut initrd to boot and requires the KIWI provided kiwi-live
dracut module to be installed at the time dracut is called. Thus this runtime check
examines if the required package is part of the package list in the image description.

kiwi.runtime_checker.RuntimeChecker.check_dracut_module_for_oem_install_in_package_list

OEM images if configured to use dracut as initrd system and configured with one
of the installiso, installstick or installpxe attributes requires the KIWI provided dra-
cut-kiwi-oem-dump module to be installed at the time dracut is called. Thus this run-
time check examines if the required package is part of the package list in the image
description.

kiwi.runtime_checker.RuntimeChecker.check_dracut_module_versions_compatible_to_kiwi

KIWI images which makes use of kiwi dracut modules has to use module versions
compatible with the version of this KIWI builder code base. This is important to
avoid inconsistencies between the way how kiwi includes its own dracut modules
and former version of those dracut modules which could be no longer compatible
with the builder. Therefore this runtime check maintains a min_version constraint
for which we know this KIWI builder to be compatible with.

kiwi.runtime_checker.RuntimeChecker.check_efi_mode_for_disk_overlay_correctly_setup

Disk images configured to use a root filesystem overlay only supports the standard
EFI mode and not secure boot. That’s because the shim setup performs changes to the
root filesystem which can not be applied during the bootloader setup at build time
because at that point the root filesystem is a read-only squashfs source.

280 kiwi.runtime_checker Module



kiwi.runtime_checker.RuntimeChecker.check_image_include_repos_publicly_resolvable

Verify that all repos marked with the imageinclude attribute can be resolved into a
http based web URL

kiwi.runtime_checker.RuntimeChecker.check_image_type_unique

Verify that the selected image type is unique within the range of the configured types
and profiles.

kiwi.runtime_checker.RuntimeChecker.check_image_version_provided

Kiwi requires a <version> element to be specified as part of at least one <prefer-
ences> section.

kiwi.runtime_checker.RuntimeChecker.check_include_references_unresolvable

Raise for still included <include> statements as not resolvable. The KIWI XSLT
processing replaces the specified include directive(s) with the given le reference(s).
If this action did not happen for example on nested includes, it can happen that they
stay in the document as sort of waste.

kiwi.runtime_checker.RuntimeChecker.check_initrd_selection_required

If the boot attribute is used without selecting kiwi as the initrd_system, the setting
of the boot attribute will not have any effect. We assume that configurations which
explicitly specify the boot attribute wants to use the custom kiwi initrd system and
not dracut.

kiwi.runtime_checker.RuntimeChecker.check_luksformat_options_valid

Options set via the luksformat element are passed along to the cryptsetup tool. Only
options that are known to the tool should be allowed. Thus this runtime check looks
up the provided option names if they exist in the cryptsetup version used on the
build host

kiwi.runtime_checker.RuntimeChecker.check_mediacheck_installed

If the image description enables the mediacheck attribute the required tools to run
this check must be installed on the image build host

kiwi.runtime_checker.RuntimeChecker.check_partuuid_persistency_type_used_with_mbr

The devicepersistency setting by-partuuid can only be used in combination with a
partition table type that supports UUIDs. In any other case Linux creates artificial
values for PTUUID and PARTUUID from the disk signature which can change without
touching the actual partition table. We consider this unsafe and only allow the use of
by-partuuid in combination with partition tables that actually supports it properly.

281 kiwi.runtime_checker Module



kiwi.runtime_checker.RuntimeChecker.check_repositories_configured

Verify that there are repositories configured

kiwi.runtime_checker.RuntimeChecker.check_swap_name_used_with_lvm

The optional oem-swapname is only effective if used together with the LVM volume
manager. A name for the swap space can only be set if it is created as a LVM volume.
In any other case the name does not apply to the system

kiwi.runtime_checker.RuntimeChecker.check_syslinux_installed_if_isolinux_is_used

ISO images that are configured to use isolinux requires the host to provide a set of
syslinux binaries.

kiwi.runtime_checker.RuntimeChecker.check_target_directory_not_in_shared_cache

The target directory must be outside of the kiwi shared cache directory in order to
avoid busy mounts because kiwi bind mounts the cache directory into the image root
tree to access host caching information

Parameters

target_dir  () – path name

kiwi.runtime_checker.RuntimeChecker.check_volume_label_used_with_lvm

The optional volume label in a systemdisk setup is only effective if the LVM, logical
volume manager system is used. In any other case where the filesystem itself offers
volume management capabilities there are no extra filesystem labels which can be
applied per volume

kiwi.runtime_checker.RuntimeChecker.check_volume_setup_defines_multiple_fullsize_volumes

The volume size specification ‘all’ makes this volume to take the rest space available
on the system. It’s only allowed to specify one all size volume

kiwi.runtime_checker.RuntimeChecker.check_volume_setup_defines_reserved_labels

kiwi.runtime_checker.RuntimeChecker.check_volume_setup_has_no_root_definition

The root volume in a systemdisk setup is handled in a special way. It is not allowed
to setup a custom name or mountpoint for the root volume. Therefore the size of
the root volume can be setup via the @root volume name. This check looks up the
volume setup and searches if there is a configuration for the ‘/’ mountpoint which
would cause the image build to fail

282 kiwi.runtime_checker Module



kiwi.runtime_checker.RuntimeChecker.check_xen_uniquely_setup_as_server_or_guest

If the image is classified to be used as Xen image, it can be either a Xen Server(dom0)
or a Xen guest. The image configuration is checked if the information uniquely iden-
tifies the image as such

kiwi.runtime_checker.dracut_module_type

Bases: tuple

kiwi.runtime_checker.dracut_module_type.min_version

Alias for eld number 1

kiwi.runtime_checker.dracut_module_type.package

Alias for eld number 0

13.1.18 kiwi.runtime_config Module

kiwi.runtime_config.RuntimeConfig

Bases: object
Implements reading of runtime configuration le:

1. Check for –config provided from the CLI

2. ~/.config/kiwi/config.yml

3. /etc/kiwi.yml

The KIWI runtime configuration le is a yaml formatted le containing information to
control the behavior of the tools used by KIWI.

Parameters

reread  () – reread runtime config

kiwi.runtime_config.RuntimeConfig.get_bundle_compression

Return boolean value to express if the image bundle should contain XZ compressed
image results or not.

bundle:

compress: true|false

If compression of image build results is activated the size of the bundle is smaller and
the download speed increases. However the image must be uncompressed before use

283 kiwi.runtime_config Module



If no compression is explicitly configured, the provided default value applies

Parameters

default  () – Default value

Returns

True or False

Return type

bool

kiwi.runtime_config.RuntimeConfig.get_container_compression

Return compression for container images

container:

compress: xz|none|true|false

if no or invalid configuration data is provided, the default compression from the
Defaults class is returned

Returns

True or False

Return type

bool

kiwi.runtime_config.RuntimeConfig.get_credentials_verification_metadata_signing_key_file

Return verification metadata signing key le, used for signature creation of rootfs
verification metadata:

credentials:

verification_metadata_signing_key_file: …

There is no default value for this setting available

Returns

le path name or ‘’

Return type

str

284 kiwi.runtime_config Module



kiwi.runtime_config.RuntimeConfig.get_disabled_runtime_checks

Returns disabled runtime checks. Checks can be disabled with:

runtime_checks:

disable: check_container_tool_chain_installed

if the provided string does not match any RuntimeChecker method it is just ignored.

kiwi.runtime_config.RuntimeConfig.get_iso_tool_category

Return tool category which should be used to build iso images

iso:

tool_category: xorriso

if no or invalid configuration exists the default tool category from the Defaults class
is returned

Returns

A name

Return type

str

kiwi.runtime_config.RuntimeConfig.get_mapper_tool

Return partition mapper tool

mapper:

part_mapper: partx

if no configuration exists the default tool from the Defaults class is returned

Returns

A name

Return type

str

kiwi.runtime_config.RuntimeConfig.get_max_size_constraint

Returns the maximum allowed size of the built image. The value is returned in bytes
and it is specified in build_constraints element with the max_size attribute. The value
can be specified in bytes or it can be specified with m=MB or g=GB.

285 kiwi.runtime_config Module



build_constraints:

max_size: 700m

if no configuration exists None is returned

Returns

byte value or None

Return type

int

kiwi.runtime_config.RuntimeConfig.get_obs_api_credentials

Return OBS API credentials if configured:

obs:

user:

user_name: user_credentials

Returns

List of Dicts with credentials per user

Return type

list

kiwi.runtime_config.RuntimeConfig.get_obs_api_server_url

Return URL of buildservice API server in:

obs:

api_url: …

if no configuration exists the API server from the Defaults class is returned

Returns

URL type data

Return type

str

286 kiwi.runtime_config Module



kiwi.runtime_config.RuntimeConfig.get_obs_download_server_url

Return URL of buildservice download server in:

obs:

download_url: …

if no configuration exists the downloadserver from the Defaults class is returned

Returns

URL type data

Return type

str

kiwi.runtime_config.RuntimeConfig.get_oci_archive_tool

Return OCI archive tool which should be used on creation of container archives for
OCI compliant images, e.g docker

oci:

archive_tool: umoci

if no configuration exists the default tool from the Defaults class is returned

Returns

A name

Return type

str

kiwi.runtime_config.RuntimeConfig.get_package_changes

Return boolean value to express if the image build and bundle should contain
a .changes le. The .changes le contains the package changelog information from
all packages installed into the image.

bundle:

has_package_changes: true|false

By default the creation is switched on. When building in the Open Build Service
the default is switched o because obs provides a .report le containing the same
information.

287 kiwi.runtime_config Module



Parameters

default  () – Default value

Returns

True or False

Return type

bool

kiwi.runtime_config.RuntimeConfig.get_xz_options

Return list of XZ compression options in:

xz:

options: …

if no configuration exists None is returned

Returns

Contains list of options

['--option=value']

Return type

list

kiwi.runtime_config.RuntimeConfig.is_obs_public

Check if the buildservice configuration is public or private in:

obs:

public: true|false

if no configuration exists we assume to be public

Returns

True or False

Return type

bool

13.1.19 kiwi.version Module

Global version information used in kiwi and the package

288 kiwi.version Module



13.1.20 kiwi.xml_description Module

kiwi.xml_description.XMLDescription

Bases: object
Implements data management for the image description
Supported description markup languages are XML, YAML, JSON and INI. The provided
input le is converted into XML, transformed to the current RelaxNG schema via XSLT and
validated against this result.

XSLT Style Sheet processing to apply on this version of kiwi

Schema Validation based on RelaxNG schema

Loading XML data into internal data structures

Attributes

Parameters

description  () – path to description le

derived_from  () – path to base description le

kiwi.xml_description.XMLDescription.get_extension_xml_data

Return the xml etree parse result for the specified extension namespace

Parameters

namespace_name  () – name of the extension namespace

Returns

result of etree.parse

Return type

object

kiwi.xml_description.XMLDescription.load

Read XML description, validate it against the schema and the schematron rules and
pass it to the autogenerated(generateDS) parser.

Returns

instance of XML toplevel domain (image)

Return type

object

289 kiwi.xml_description Module



13.1.21 kiwi.xml_state Module

kiwi.xml_state.XMLState

Bases: object
Implements methods to get stateful information from the XML data

Parameters

xml_data  () – parse result from XMLDescription.load()

profiles  () – list of used profiles

build_type  () – build <type> section reference

kiwi.xml_state.XMLState.add_container_config_label

Adds a new label in the containerconfig section, if a label with the same name is
already defined in containerconfig it gets overwritten by this method.

Parameters

label_name  () – the string representing the label name

value  () – the value of the label

kiwi.xml_state.XMLState.add_repository

Add a new repository section at the end of the list

Parameters

repo_source  () – repository URI

repo_type  () – type name defined by schema

repo_alias  () – alias name

repo_prio  () – priority number, package manager specific

repo_imageinclude  () – setup repository inside of the image

repo_package_gpgcheck  () – enable/disable package gpg checks

repo_signing_keys  () – list of signing key le names

components  () – component names for debian repos

distribution  () – base distribution name for debian repos

repo_gpgcheck  () – enable/disable repo gpg checks

290 kiwi.xml_state Module



kiwi.xml_state.XMLState.copy_bootdelete_packages

Copy packages marked as bootdelete to the packages type=delete section in the
target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_bootincluded_archives

Copy archives marked as bootinclude to the packages type=bootstrap section in the
target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_bootincluded_packages

Copy packages marked as bootinclude to the packages type=bootstrap section in the
target xml state. The package will also be removed from the packages type=delete
section in the target xml state if present there

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_bootloader_section

Copy bootloader section from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_build_type_attributes

Copy specified attributes from this build type section to the target xml state build
type section

Parameters

attribute_names  () – type section attributes

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_displayname

Copy image displayname from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

291 kiwi.xml_state Module



kiwi.xml_state.XMLState.copy_drivers_sections

Copy drivers sections from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_machine_section

Copy machine sections from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_name

Copy image name from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_oemconfig_section

Copy oemconfig sections from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_preferences_subsections

Copy subsections of the preferences sections, matching given section names, from
this xml state to the target xml state

Parameters

section_names  () – preferences subsection names

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_repository_sections

Copy repository sections from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

wipe  () – delete all repos in target prior to copy

kiwi.xml_state.XMLState.copy_strip_sections

Copy strip sections from this xml state to the target xml state

292 kiwi.xml_state Module



Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.copy_systemdisk_section

Copy systemdisk sections from this xml state to the target xml state

Parameters

target_state  () – XMLState instance

kiwi.xml_state.XMLState.delete_repository_sections

Delete all repository sections matching configured profiles

kiwi.xml_state.XMLState.delete_repository_sections_used_for_build

Delete all repository sections used to build the image matching configured profiles

kiwi.xml_state.XMLState.get_archives_target_dirs

Dict of archive names and target dirs for packages section(s), if any :return: archive
names and its target dir :rtype: dict

kiwi.xml_state.XMLState.get_bootloader_config_options

List of custom options used in the bootloader configuration

kiwi.xml_state.XMLState.get_bootloader_install_options

List of custom options used in the bootloader installation

kiwi.xml_state.XMLState.get_bootloader_options

List of custom options used in the process to run bootloader setup workloads

kiwi.xml_state.XMLState.get_bootloader_shim_options

List of custom options used in the process to setup secure boot

kiwi.xml_state.XMLState.get_bootstrap_archives

List of archive names from the type=”bootstrap” packages section(s)

Returns

archive names

Return type

list

kiwi.xml_state.XMLState.get_bootstrap_archives_target_dirs

Dict of archive names and target dirs from the type=”bootstrap” packages sec-
tion(s) :return: archive names and its target dir :rtype: dict

293 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_bootstrap_collection_type

Collection type for packages sections matching type=”bootstrap”

Returns

collection type name

Return type

str

kiwi.xml_state.XMLState.get_bootstrap_collections

List of collection names from the packages sections matching type=”bootstrap”

Returns

collection names

Return type

list

kiwi.xml_state.XMLState.get_bootstrap_package_name

bootstrap_package name from type=”bootstrap” packages section

Returns

bootstrap_package name

Return type

str

kiwi.xml_state.XMLState.get_bootstrap_packages

List of package names from the type=”bootstrap” packages section(s)
The list gets the selected package manager appended if there is a request to install
packages inside of the image via a chroot operation

Parameters

plus_packages  () – list of additional packages

Returns

package names

Return type

list

kiwi.xml_state.XMLState.get_bootstrap_packages_sections

List of packages sections matching type=”bootstrap”

294 kiwi.xml_state Module



Returns

list of <packages> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_bootstrap_products

List of product names from the packages sections matching type=”bootstrap”

Returns

product names

Return type

list

kiwi.xml_state.XMLState.get_build_type_bootloader_console

Return bootloader console setting for selected build type

Returns

console string

Return type

str

kiwi.xml_state.XMLState.get_build_type_bootloader_name

Return bootloader name for selected build type

Returns

bootloader name

Return type

str

kiwi.xml_state.XMLState.get_build_type_bootloader_section

First bootloader section from the build type section

Returns

<bootloader> section reference

Return type

xml_parse::bootloader

kiwi.xml_state.XMLState.get_build_type_bootloader_serial_line_setup

Return bootloader serial line setup parameters for the selected build type

295 kiwi.xml_state Module



Returns

serial line setup

Return type

str

kiwi.xml_state.XMLState.get_build_type_bootloader_settings_section

First bootloadersettings section from the build type bootloader section

Returns

<bootloadersettings> section reference

Return type

xml_parse::bootloadersettings

kiwi.xml_state.XMLState.get_build_type_bootloader_targettype

Return bootloader target type setting. Only relevant for the zipl bootloader because
zipl is installed differently depending on the storage target it runs later

Returns

target type string

Return type

str

kiwi.xml_state.XMLState.get_build_type_bootloader_timeout

Return bootloader timeout setting for selected build type

Returns

timeout string

Return type

str

kiwi.xml_state.XMLState.get_build_type_bootloader_timeout_style

Return bootloader timeout style setting for selected build type

Returns

timeout_style string

Return type

str

296 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_build_type_bootloader_use_disk_password

Indicate whether the bootloader configuration should use the password protecting
the encrypted root volume.

Returns

True|False

Return type

bool

kiwi.xml_state.XMLState.get_build_type_bundle_format

Return bundle_format for build type
The bundle_format string is validated against the available name tags from kiwi.sys-
tem.result::result_name_tags.

Returns

bundle format string

Return type

str

kiwi.xml_state.XMLState.get_build_type_containerconfig_section

First containerconfig section from the build type section

Returns

<containerconfig> section reference

Return type

xml_parse::containerconfig

kiwi.xml_state.XMLState.get_build_type_format_options

Disk format options returned as a dictionary

Returns

format options

Return type

dict

kiwi.xml_state.XMLState.get_build_type_machine_section

First machine section from the build type section

Returns

<machine> section reference

297 kiwi.xml_state Module



Return type

xml_parse::machine

kiwi.xml_state.XMLState.get_build_type_name

Default build type name

Returns

Content of image attribute from build type

Return type

str

kiwi.xml_state.XMLState.get_build_type_oemconfig_section

First oemconfig section from the build type section

Returns

<oemconfig> section reference

Return type

xml_parse::oemconfig

kiwi.xml_state.XMLState.get_build_type_partitions_section

First partitions section from the build type section

Returns

<partitions> section reference

Return type

xml_parse::partitions

kiwi.xml_state.XMLState.get_build_type_size

Size information from the build type section. If no unit is set the value is treated as
mbytes

Parameters

include_unpartitioned  () – sets if the unpartitioned area should be included
in the computed size or not

Returns

mbytes

Return type

int

298 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_build_type_spare_part_fs_attributes

Build type specific list of filesystem attributes applied to the spare partition.

Returns

list of strings or empty list

Return type

list

kiwi.xml_state.XMLState.get_build_type_spare_part_size

Size information for the spare_part size from the build type. If no unit is set the value
is treated as mbytes

Returns

mbytes

Return type

int

kiwi.xml_state.XMLState.get_build_type_system_disk_section

First system disk section from the build type section

Returns

<systemdisk> section reference

Return type

xml_parse::systemdisk

kiwi.xml_state.XMLState.get_build_type_unpartitioned_bytes

Size of the unpartitioned area for image in megabytes

Returns

mbytes

Return type

int

kiwi.xml_state.XMLState.get_build_type_vagrant_config_section

First vagrantconfig section from the build type section

Returns

<vagrantconfig> section reference

Return type

xml_parse::vagrantconfig

299 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_build_type_vmconfig_entries

List of vmconfig-entry section values from the rst machine section in the build type
section

Returns

<vmconfig_entry> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_build_type_vmdisk_section

First vmdisk section from the rst machine section in the build type section

Returns

<vmdisk> section reference

Return type

xml_parse::vmdisk

kiwi.xml_state.XMLState.get_build_type_vmdvd_section

First vmdvd section from the rst machine section in the build type section

Returns

<vmdvd> section reference

Return type

xml_parse::vmdvd

kiwi.xml_state.XMLState.get_build_type_vmnic_entries

vmnic section(s) from the rst machine section in the build type section

Returns

list of <vmnic> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_collection_modules

Dict of collection modules to enable and/or disable

Returns

Dict of the form:

{

300 kiwi.xml_state Module



    'enable': [
        "module:stream", "module"
    ],
    'disable': [
        "module"
    ]
}

Return type

dict

kiwi.xml_state.XMLState.get_collection_type

Collection type from packages sections matching given section type.
If no collection type is specified the default collection type is set to: onlyRequired

Parameters

section_type  () – type name from packages section

Returns

collection type name

Return type

str

kiwi.xml_state.XMLState.get_collections

List of collection names from the packages sections matching type=section_type and
type=build_type

Returns

collection names

Return type

list

kiwi.xml_state.XMLState.get_container_config

Dictionary of containerconfig information
Takes attributes and subsection data from the selected <containerconfig> section
and stores it in a dictionary

kiwi.xml_state.XMLState.get_derived_from_image_uri

Uri object of derived image if configured
Specific image types can be based on a master image. This method returns the loca-
tion of this image when configured in the XML description

301 kiwi.xml_state Module



Returns

Instance of Uri

Return type

object

kiwi.xml_state.XMLState.get_description_section

The description section

Returns

description_type tuple providing the elements author contact and specification

Return type

tuple

kiwi.xml_state.XMLState.get_disk_start_sector

First disk sector number to be used by the rst disk partition.

Returns

number

Return type

int

kiwi.xml_state.XMLState.get_distribution_name_from_boot_attribute

Extract the distribution name from the boot attribute of the build type section.
If no boot attribute is configured or the contents does not match the kiwi defined
naming schema for boot image descriptions, an exception is thrown

Returns

lowercase distribution name

Return type

str

kiwi.xml_state.XMLState.get_drivers_list

List of driver names from all drivers sections matching configured profiles

Returns

driver names

Return type

list

302 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_fs_create_option_list

List of root filesystem creation options
The list contains elements with the information from the fscreateoptions attribute
string that got split into its substring components

Returns

list with create options

Return type

list

kiwi.xml_state.XMLState.get_fs_mount_option_list

List of root filesystem mount options
The list contains one element with the information from the fsmountoptions attribute.
The value there is passed along to the -o mount option

Returns

max one element list with mount option string

Return type

list

kiwi.xml_state.XMLState.get_image_packages_sections

List of packages sections matching type=”image”

Returns

list of <packages> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_image_version

Image version from preferences section.
Multiple occurences of version in preferences sections are not forbidden, however
only the rst version found defines the final image version

Returns

Content of <version> section

Return type

str

303 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_include_section_reference_file_names

List of all <include> section le name references

Returns

List[str]

Return type

list

kiwi.xml_state.XMLState.get_initrd_system

Name of initrd system to use
Depending on the image type a specific initrd system is either pre selected or free of
choice according to the XML type setup.

Returns

‘dracut’, ‘kiwi’ or ‘none’

Return type

str

kiwi.xml_state.XMLState.get_installmedia_initrd_modules

Gets the list of modules to append in installation initrds

Returns

a list of dracut module names

Return type

list

kiwi.xml_state.XMLState.get_locale

Gets list of locale names if configured. Takes the rst locale setup from the existing
preferences sections into account.

Returns

List of names or None

Return type

list|None

kiwi.xml_state.XMLState.get_luks_credentials

Return key or passphrase credentials to open the luks pool

Returns

data

304 kiwi.xml_state Module



Return type

str

kiwi.xml_state.XMLState.get_luks_format_options

Return list of luks format options

Returns

list of options

Return type

list

kiwi.xml_state.XMLState.get_oemconfig_oem_multipath_scan

State value to activate multipath maps. Returns a boolean value if specified or False

Returns

Content of <oem-multipath-scan> section value

Return type

bool

kiwi.xml_state.XMLState.get_oemconfig_oem_resize

State value to activate/deactivate disk resize. Returns a boolean value if specified or
True to set resize on by default

Returns

Content of <oem-resize> section value

Return type

bool

kiwi.xml_state.XMLState.get_oemconfig_oem_systemsize

State value to retrieve root partition size

Returns

Content of <oem-systemsize> section value

Return type

int

kiwi.xml_state.XMLState.get_oemconfig_swap_mbytes

Return swapsize in MB if requested or None
Operates on the value of oem-swap and if set to true returns the given size or the
default value.

305 kiwi.xml_state Module



Returns

Content of <oem-swapsize> section value or default

Return type

int

kiwi.xml_state.XMLState.get_oemconfig_swap_name

Return the swap space name
Operates on the value of oem-swapname and if set returns the configured name or
the default name: LVSwap
The name of the swap space is used only if the image is configured to use the LVM
volume manager. In this case swap is a volume and the volume takes a name. In any
other case the given name will have no effect.

Returns

Content of <oem-swapname> section value or default

Return type

str

kiwi.xml_state.XMLState.get_package_manager

Get configured package manager from selected preferences section

Returns

Content of the <packagemanager> section

Return type

str

kiwi.xml_state.XMLState.get_package_sections

List of package sections from the given packages sections. Each list element contains
a tuple with the <package> section reference and the <packages> section this
package belongs to
If a package entry specfies an architecture, it is only taken if the host architecture
matches the configured architecture

Parameters

packages_sections  () – <packages>

Returns

Contains list of package_type tuples

306 kiwi.xml_state Module



[package_type(packages_section=object, package_section=object)]

Return type

list

kiwi.xml_state.XMLState.get_packages_sections

List of packages sections matching given section type(s)

Parameters

section_types  () – type name(s) from packages sections

Returns

list of <packages> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_partitions

Dictionary of configured partitions.
Each entry in the dict references a ptable_entry_type Each key in the dict references
the name of the partition entry as handled by KIWI

Returns

Contains dict of ptable_entry_type tuples

{
    'NAME': ptable_entry_type(
        mbsize=int,
        clone=int,
        partition_name=str,
        partition_type=str,
        mountpoint=str,
        filesystem=str
    )
}

Return type

dict

kiwi.xml_state.XMLState.get_preferences_sections

All preferences sections for the selected profiles that match the host architecture

Returns

list of <preferences> section reference(s)

307 kiwi.xml_state Module



Return type

list

kiwi.xml_state.XMLState.get_products

List of product names from the packages sections matching type=section_type and
type=build_type

Parameters

section_type  () – type name from packages section

Returns

product names

Return type

list

kiwi.xml_state.XMLState.get_release_version

Get configured release version from selected preferences section

Returns

Content of the <release-version> section or ‘’

Return type

str

kiwi.xml_state.XMLState.get_repositories_signing_keys

Get list of signing keys specified on the repositories

kiwi.xml_state.XMLState.get_repository_sections

List of all repository sections matching configured profiles

Returns

<repository> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_repository_sections_used_for_build

List of all repositorys sections used to build the image and matching configured pro-
files.

Returns

<repository> section reference(s)

308 kiwi.xml_state Module



Return type

list

kiwi.xml_state.XMLState.get_repository_sections_used_in_image

List of all repositorys sections to be configured in the resulting image matching con-
figured profiles.

Returns

<repository> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_root_filesystem_uuid

Return preserved UUID

kiwi.xml_state.XMLState.get_root_partition_uuid

Return preserved PARTUUID

kiwi.xml_state.XMLState.get_rpm_check_signatures

Gets the rpm-check-signatures configuration ag. Returns False if not present.

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.get_rpm_excludedocs

Gets the rpm-excludedocs configuration ag. Returns False if not present.

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.get_rpm_locale

Gets list of locale names to filter out by rpm if rpm-locale-filtering is switched on
the the list always contains: [POSIX, C, C.UTF-8] and is extended by the optionaly
configured locale

Returns

List of names or None

309 kiwi.xml_state Module



Return type

list|None

kiwi.xml_state.XMLState.get_rpm_locale_filtering

Gets the rpm-locale-filtering configuration ag. Returns False if not present.

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.get_strip_files_to_delete

Items to delete from strip section

Returns

item names

Return type

list

kiwi.xml_state.XMLState.get_strip_libraries_to_keep

Libraries to keep from strip section

Returns

librarie names

Return type

list

kiwi.xml_state.XMLState.get_strip_list

List of strip names matching the given section type and profiles

Parameters

section_type  () – type name from packages section

Returns

strip names

Return type

list

kiwi.xml_state.XMLState.get_strip_tools_to_keep

Tools to keep from strip section

310 kiwi.xml_state Module



Returns

tool names

Return type

list

kiwi.xml_state.XMLState.get_system_archives

List of archive names from the packages sections matching type=”image” and
type=build_type

Returns

archive names

Return type

list

kiwi.xml_state.XMLState.get_system_archives_target_dirs

Dict of archive names and its target dir from the packages sections matching
type=”image” and type=build_type :return: archive names and its target dir :rtype:
dict

kiwi.xml_state.XMLState.get_system_collection_type

Collection type for packages sections matching type=”image”

Returns

collection type name

Return type

str

kiwi.xml_state.XMLState.get_system_collections

List of collection names from the packages sections matching type=”image”

Returns

collection names

Return type

list

kiwi.xml_state.XMLState.get_system_ignore_packages

List of ignore package names from the packages sections matching type=”image”
and type=build_type

311 kiwi.xml_state Module



Returns

package names

Return type

list

kiwi.xml_state.XMLState.get_system_packages

List of package names from the packages sections matching type=”image” and
type=build_type

Returns

package names

Return type

list

kiwi.xml_state.XMLState.get_system_products

List of product names from the packages sections matching type=”image”

Returns

product names

Return type

list

kiwi.xml_state.XMLState.get_to_become_deleted_packages

List of package names from the type=”delete” or type=”uninstall” packages sec-
tion(s)

Parameters

force  () – return “delete” type if True, “uninstall” type otherwise

Returns

package names

Return type

list

kiwi.xml_state.XMLState.get_user_groups

List of group names matching specified user
Each entry in the list is the name of a group and optionally its group ID separated
by a colon, that the specified user belongs to. The rst item in the list is the login or
primary group. The list will be empty if no groups are specified in the description le.

312 kiwi.xml_state Module



Returns

groups data for the given user

Return type

list

kiwi.xml_state.XMLState.get_users

List of configured users.
Each entry in the list is a single xml_parse::user instance.

Returns

list of <user> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_users_sections

All users sections for the selected profiles

Returns

list of <users> section reference(s)

Return type

list

kiwi.xml_state.XMLState.get_vagrant_config_virtualbox_guest_additions

Attribute virtualbox_guest_additions_present from the rst vagrantconfig section.

Returns

True|False

Return type

bool

kiwi.xml_state.XMLState.get_volume_group_name

Volume group name from selected <systemdisk> section

Returns

volume group name

Return type

str

313 kiwi.xml_state Module



kiwi.xml_state.XMLState.get_volume_management

Provides information which volume management system is used

Returns

name of volume manager

Return type

str

kiwi.xml_state.XMLState.get_volumes

List of configured systemdisk volumes.
Each entry in the list is a tuple with the following information

name: name of the volume

size: size of the volume

realpath: system path to lookup volume data. If no mountpoint is set the volume
name is used as data path.

mountpoint: volume mount point and volume data path

fullsize: takes all space True|False

attributes: list of volume attributes handled via chattr

Returns

Contains list of volume_type tuples

[
    volume_type(
        name=volume_name,
        parent=volume_parent,
        size=volume_size,
        realpath=path,
        mountpoint=path,
        fullsize=True,
        label=volume_label,
        attributes=['no-copy-on-write'],
        is_root_volume=True|False
    )
]

Return type

list

314 kiwi.xml_state Module



kiwi.xml_state.XMLState.is_xen_guest

Check if build type setup specifies a Xen Guest (domX) The check is based on the
architecture, the rmware and xen_loader configuration values:

We only support Xen setup on the x86_64 architecture

Firmware pointing to ec2 means the image is targeted to run in Amazon EC2
which is a Xen guest

Machine setup with a xen_loader attribute also indicates a Xen guest target

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.is_xen_server

Check if build type domain setup specifies a Xen Server (dom0)

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.package_matches_host_architecture

Tests if the given package section is applicable for the current host architecture. If no
architecture is specified within the section it is considered as a match returning True.
Note: The XML section pointer must provide an arch attribute

Parameters

section  – XML section object

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.preferences_matches_host_architecture

Tests if the given preferences section is applicable for the current host architecture.
If no architecture is specified within the section it is considered as a match returning
True.

315 kiwi.xml_state Module



Note: The XML section pointer must provide an arch attribute

Parameters

section  – XML section object

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.profile_matches_host_architecture

Tests if the given profile section is applicable for the current host architecture. If no
architecture is specified within the section it is considered as a match returning True.
Note: The XML section pointer must provide an arch attribute

Parameters

section  – XML section object

Returns

True or False

Return type

bool

kiwi.xml_state.XMLState.resolve_this_path

Resolve any this:// repo source path into the path representing the target inside of
the image description directory

kiwi.xml_state.XMLState.set_container_config_tag

Set new tag name in containerconfig section
In order to set a new tag value an existing containerconfig and tag setup is required

Parameters

tag  () – tag name

kiwi.xml_state.XMLState.set_derived_from_image_uri

Set derived_from attribute to a new value
In order to set a new value the derived_from attribute must be already present in the
image configuration

Parameters

uri  () – URI

316 kiwi.xml_state Module



kiwi.xml_state.XMLState.set_repository

Overwrite repository data of the rst repository

Parameters

repo_source  () – repository URI

repo_type  () – type name defined by schema

repo_alias  () – alias name

repo_prio  () – priority number, package manager specific

repo_imageinclude  () – setup repository inside of the image

repo_package_gpgcheck  () – enable/disable package gpg checks

repo_signing_keys  () – list of signing key le names

components  () – component names for debian repos

distribution  () – base distribution name for debian repos

repo_gpgcheck  () – enable/disable repo gpg checks

kiwi.xml_state.XMLState.set_root_filesystem_uuid

Store UUID provided in uuid as state information

Parameters

uuid  () – UUID

kiwi.xml_state.XMLState.set_root_partition_uuid

Store PARTUUID provided in uuid as state information

Parameters

uuid  () – PARTUUID

kiwi.xml_state.description_type

Bases: tuple

kiwi.xml_state.description_type.author

Alias for eld number 0

kiwi.xml_state.description_type.contact

Alias for eld number 1

317 kiwi.xml_state Module



kiwi.xml_state.description_type.specification

Alias for eld number 2

kiwi.xml_state.package_type

Bases: tuple

kiwi.xml_state.package_type.package_section

Alias for eld number 1

kiwi.xml_state.package_type.packages_section

Alias for eld number 0

kiwi.xml_state.size_type

Bases: tuple

kiwi.xml_state.size_type.additive

Alias for eld number 1

kiwi.xml_state.size_type.mbytes

Alias for eld number 0

kiwi.xml_state.volume_type

Bases: tuple

kiwi.xml_state.volume_type.attributes

Alias for eld number 7

kiwi.xml_state.volume_type.fullsize

Alias for eld number 5

kiwi.xml_state.volume_type.is_root_volume

Alias for eld number 8

kiwi.xml_state.volume_type.label

Alias for eld number 6

kiwi.xml_state.volume_type.mountpoint

Alias for eld number 4

kiwi.xml_state.volume_type.name

Alias for eld number 0

kiwi.xml_state.volume_type.parent

Alias for eld number 1

318 kiwi.xml_state Module



kiwi.xml_state.volume_type.realpath

Alias for eld number 3

kiwi.xml_state.volume_type.size

Alias for eld number 2

13.1.22 Module Contents

13.2 kiwi.archive Package

13.2.1 Submodules

13.2.2 kiwi.archive.cpio Module

kiwi.archive.cpio.ArchiveCpio

Bases: object
Extraction/Creation of cpio archives

Parameters

filename  () – filename to use for archive extraction or creation

kiwi.archive.cpio.ArchiveCpio.create

Create cpio archive

Parameters

source_dir  () – data source directory

exclude  () – list of excluded items

kiwi.archive.cpio.ArchiveCpio.extract

Extract cpio archive contents

Parameters

dest_dir  () – target data directory

319 Module Contents



13.2.3 kiwi.archive.tar Module

kiwi.archive.tar.ArchiveTar

Bases: object
Extraction/Creation of tar archives
The tarle python module is not used by that class, since it does not provide support
for some relevant features in comparison to the GNU tar command (e.g. numeric-owner).
Moreover tarle lacks support for xz compression under Python v2.7.

Parameters

filename  () – filename to use for archive extraction or creation

create_from_file_list  () – use le list not entire directory to create the
archive

file_list  () – list of les and directorie names to archive

kiwi.archive.tar.ArchiveTar.append_files

Append les to an already existing uncompressed tar archive

Parameters

source_dir  () – data source directory

files_to_append  () – list of items to append

options  () – custom options

kiwi.archive.tar.ArchiveTar.create

Create uncompressed tar archive

Parameters

source_dir  () – data source directory

exclude  () – list of excluded items

options  () – custom creation options

kiwi.archive.tar.ArchiveTar.create_gnu_gzip_compressed

Create gzip compressed tar archive

320 kiwi.archive.tar Module



Parameters

source_dir  () – data source directory

exclude  () – list of excluded items

kiwi.archive.tar.ArchiveTar.create_xz_compressed

Create XZ compressed tar archive

Parameters

source_dir  () – data source directory

exclude  () – list of excluded items

options  () – custom tar creation options

xz_options  () – custom xz compression options

kiwi.archive.tar.ArchiveTar.extract

Extract tar archive contents

Parameters

dest_dir  () – target data directory

13.2.4 Module Contents

13.3 kiwi.boot.image Package

13.3.1 Submodules

13.3.2 kiwi.boot.image.base Module

kiwi.boot.image.base.BootImageBase

Bases: object
Base class for boot image(initrd) task

321 Module Contents



kiwi.boot.image.base.BootImageBase.cleanup

Cleanup temporary boot image data if any

kiwi.boot.image.base.BootImageBase.create_initrd

Implements creation of the initrd

Parameters

mbrid  ( kiwi.system.identifier.SystemIdentifier  ) – instance of
SystemIdentifier

basename  () – base initrd le name

install_initrd  () – installation media initrd

Implementation in specialized boot image class

kiwi.boot.image.base.BootImageBase.get_boot_description_directory

Provide path to the boot image XML description

Returns

path name

Return type

str

kiwi.boot.image.base.BootImageBase.get_boot_names

Provides kernel and initrd names for the boot image

Returns

Contains boot_names_type tuple

boot_names_type(
    kernel_name='INSTALLED_KERNEL',
    initrd_name='DRACUT_OUTPUT_NAME',
    kernel_version='KERNEL_VERSION',
    kernel_filename='KERNEL_FILE_NAME'
)

Return type

kiwi.boot.image.base.boot_names_type

kiwi.boot.image.base.BootImageBase.has_initrd_support

Indicates if this instance supports actual creation of an initrd

322 kiwi.boot.image.base Module



The method needs to be overwritten by the subclass implementing preparation and
creation of an initrd

kiwi.boot.image.base.BootImageBase.import_system_description_elements

Copy information from the system image relevant to create the boot image to the
boot image state XML description

kiwi.boot.image.base.BootImageBase.include_file

Include le to boot image
For kiwi boot images this is done by adding package or archive definitions with the
bootinclude attribute. Thus for kiwi boot images the method is a noop

Parameters

filename  () – le path name

install_media  () – include also for installation media initrd

kiwi.boot.image.base.BootImageBase.include_module

Include module to boot image
For kiwi boot no modules configuration is required. Thus in such a case this method
is a noop.

Parameters

module  () – module to include

install_media  () – include the module for install initrds

kiwi.boot.image.base.BootImageBase.is_prepared

Check if initrd system is prepared.

Returns

True or False

Return type

bool

kiwi.boot.image.base.BootImageBase.load_boot_xml_description

Load the boot image description referenced by the system image description boot
attribute

kiwi.boot.image.base.BootImageBase.omit_module

Omit module to boot image

323 kiwi.boot.image.base Module



For kiwi boot no modules configuration is required. Thus in such a case this method
is a noop.

Parameters

module  () – module to omit

install_media  () – omit the module for install initrds

kiwi.boot.image.base.BootImageBase.post_init

Post initialization method
Implementation in specialized boot image class

kiwi.boot.image.base.BootImageBase.prepare

Prepare new root system to create initrd from. Implementation is only needed if there
is no other root system available
Implementation in specialized boot image class

kiwi.boot.image.base.BootImageBase.set_static_modules

Set static modules list for boot image
For kiwi boot no modules configuration is required. Thus in such a case this method
is a noop.

Parameters

modules  () – list of modules to include

install_media  () – lists the modules for install initrds

kiwi.boot.image.base.BootImageBase.write_system_config_file

Writes relevant boot image configuration into configuration le that will be part of
the system image.
This is used to configure any further boot image rebuilds after deployment. For in-
stance, initrds recreated on kernel update.
For kiwi boot no specific configuration is required for initrds recreation, thus this
method is a noop in that case.

Parameters

config  () – dictonary including configuration parameters

config_file  () – configuration le to write

324 kiwi.boot.image.base Module



kiwi.boot.image.base.boot_names_type

Bases: tuple

kiwi.boot.image.base.boot_names_type.initrd_name

Alias for eld number 1

kiwi.boot.image.base.boot_names_type.kernel_filename

Alias for eld number 3

kiwi.boot.image.base.boot_names_type.kernel_name

Alias for eld number 0

kiwi.boot.image.base.boot_names_type.kernel_version

Alias for eld number 2

13.3.3 kiwi.boot.image.dracut Module

kiwi.boot.image.dracut.BootImageDracut

Bases: BootImageBase  (#kiwi.boot.image.base.BootImageBase)

Implements creation of dracut boot(initrd) images.

kiwi.boot.image.dracut.BootImageDracut.create_initrd

Create kiwi .profile environment to be included in dracut initrd. Call dracut as chroot
operation to create the initrd and move the result into the image build target directory

Parameters

mbrid  ( kiwi.system.identifier.SystemIdentifier  ) – unused

basename  () – base initrd le name

install_initrd  () – unused

kiwi.boot.image.dracut.BootImageDracut.has_initrd_support

This instance supports initrd preparation and creation

kiwi.boot.image.dracut.BootImageDracut.include_file

Include le to dracut boot image

Parameters

filename  () – le path name

install_media  () – unused

325 kiwi.boot.image.dracut Module

#kiwi.boot.image.base.BootImageBase


kiwi.boot.image.dracut.BootImageDracut.include_module

Include module to dracut boot image

Parameters

module  () – module to include

install_media  () – unused

kiwi.boot.image.dracut.BootImageDracut.omit_module

Omit module to dracut boot image

Parameters

module  () – module to omit

install_media  () – unused

kiwi.boot.image.dracut.BootImageDracut.post_init

Post initialization method
Initialize empty list of dracut caller options

kiwi.boot.image.dracut.BootImageDracut.prepare

Prepare dracut caller environment

Setup machine_id(s) to be generic and rebuild by dracut on boot

kiwi.boot.image.dracut.BootImageDracut.set_static_modules

Set static dracut modules list for boot image

Parameters

modules  () – list of the modules to include

install_media  () – unused

kiwi.boot.image.dracut.BootImageDracut.write_system_config_file

Writes modules configuration into a dracut configuration le.

Parameters

config  () – a dictionary containing the modules to add and omit

conf_file  () – configuration le to write

326 kiwi.boot.image.dracut Module



13.3.4 kiwi.boot.image.builtin_kiwi Module

kiwi.boot.image.builtin_kiwi.BootImageKiwi

Bases: BootImageBase  (#kiwi.boot.image.base.BootImageBase)

Implements preparation and creation of kiwi boot(initrd) images
The kiwi initrd is a customized rst boot initrd which allows to control the rst boot an
appliance. The kiwi initrd replaces itself after rst boot by the result of dracut.

kiwi.boot.image.builtin_kiwi.BootImageKiwi.cleanup

Cleanup temporary boot image data if any

kiwi.boot.image.builtin_kiwi.BootImageKiwi.create_initrd

Create initrd from prepared boot system tree and compress the result

Parameters

mbrid  ( kiwi.system.identifier.SystemIdentifier  ) – instance of
ImageIdentifier

basename  () – base initrd le name

install_initrd  () – installation media initrd

kiwi.boot.image.builtin_kiwi.BootImageKiwi.has_initrd_support

This instance supports initrd preparation and creation

kiwi.boot.image.builtin_kiwi.BootImageKiwi.post_init

Post initialization method
Creates custom directory to prepare the boot image root filesystem which is a separate
image to create the initrd from

kiwi.boot.image.builtin_kiwi.BootImageKiwi.prepare

Prepare new root system suitable to create a kiwi initrd from it

13.3.5 Module Contents

kiwi.boot.image.BootImage

Bases: object
BootImge Factory

327 kiwi.boot.image.builtin_kiwi Module

#kiwi.boot.image.base.BootImageBase


Parameters

xml_state  () – Instance of XMLState

target_dir  () – target dir to store the initrd

root_dir  () – system image root directory

signing_keys  () – list of package signing keys

kiwi.boot.image.BootImage.new

13.4 kiwi.bootloader.config Package

13.4.1 Submodules

13.4.2 kiwi.bootloader.config.base Module

kiwi.bootloader.config.base.BootLoaderConfigBase

Bases: object
Base class for bootloader configuration

Parameters

xml_state  () – instance of XMLState

root_dir  () – root directory path name

custom_args  () – custom bootloader arguments dictionary

kiwi.bootloader.config.base.BootLoaderConfigBase.create_efi_path

Create standard EFI boot directory structure

Parameters

in_sub_dir  () – toplevel directory

Returns

Full qualified EFI boot path

328 kiwi.bootloader.config Package



Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.failsafe_boot_entry_requested

Check if a failsafe boot entry is requested

Returns

True or False

Return type

bool

kiwi.bootloader.config.base.BootLoaderConfigBase.get_boot_cmdline

Boot commandline arguments passed to the kernel

Parameters

boot_device  () – boot device node. If no extra boot device exists then
boot device equals root device. In case of an overlay setup the boot device
equals the readonly root device

write_device  () – optional overlay write device node

Returns

kernel boot arguments

Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.get_boot_path

Bootloader lookup path on boot device
If the bootloader reads the data it needs to boot, it does that from the configured
boot device. Depending if that device is an extra boot partition or the root partition
or or based on a non standard filesystem like a btrfs snapshot, the path name varies

Parameters

target  () – target name: disk|iso

Returns

path name

Return type

str

329 kiwi.bootloader.config.base Module



kiwi.bootloader.config.base.BootLoaderConfigBase.get_boot_theme

Bootloader Theme name

Returns

theme name

Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.get_boot_timeout_seconds

Bootloader timeout in seconds
If no timeout is specified the default timeout applies

Returns

timeout seconds

Return type

int

kiwi.bootloader.config.base.BootLoaderConfigBase.get_continue_on_timeout

Check if the boot should continue after boot timeout or not

Returns

True or False

Return type

bool

kiwi.bootloader.config.base.BootLoaderConfigBase.get_gfxmode

Graphics mode according to bootloader target
Bootloaders which support a graphics mode can be configured to run graphics in a
specific resolution and colors. There is no standard for this setup which causes kiwi to
create a mapping from the kernel vesa mode number to the corresponding bootloader
graphics mode setup

Parameters

target  () – bootloader name

Returns

boot graphics mode

Return type

str

330 kiwi.bootloader.config.base Module



kiwi.bootloader.config.base.BootLoaderConfigBase.get_install_image_boot_default

Provide the default boot menu entry identifier for install images
The install image can be configured to provide more than one boot menu entry. Menu
entries configured are:

[0] Boot From Hard Disk

[1] Install

[2] Failsafe Install

The installboot attribute controlls which of these are used by default. If not specified
the boot from hard disk entry will be the default. Depending on the specified loader
type either an entry number or name will be returned.

Parameters

loader  () – bootloader name

Returns

menu name or id

Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.get_menu_entry_install_title

Prefixed menu entry title for install images
If no displayname is specified in the image description, the menu title is constructed
from the image name

Returns

title text

Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.get_menu_entry_title

Prefixed menu entry title
If no displayname is specified in the image description, the menu title is constructed
from the image name and build type

Parameters

plain  () – indicate to add built type into title text

331 kiwi.bootloader.config.base Module



Returns

title text

Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.post_init

Post initialization method
Store custom arguments by default

Parameters

custom_args  () – custom bootloader arguments

kiwi.bootloader.config.base.BootLoaderConfigBase.quote_title

Quote special characters in the title name
Not all characters can be displayed correctly in the bootloader environment. There-
fore a quoting is required

Parameters

name  () – title name

Returns

quoted text

Return type

str

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_disk_boot_images

Create bootloader images for disk boot
Some bootloaders requires to build a boot image the bootloader can load from a
specific offset address or from a standardized path on a filesystem.

Parameters

boot_uuid  () – boot device UUID

lookup_path  () – custom module lookup path

Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_disk_image_config

Create boot config le to boot from disk.

332 kiwi.bootloader.config.base Module



Parameters

boot_uuid  () – boot device UUID

root_uuid  () – root device UUID

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

boot_options  () – custom options dictionary required to setup the boot-
loader. The scope of the options covers all information needed to setup
and configure the bootloader and gets effective in the individual imple-
mentation. boot_options should not be mixed up with commandline op-
tions used at boot time. This information is provided from the get_*_cmd-
line methods. The contents of the dictionary can vary between bootload-
ers or even not be needed

Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_install_boot_images

Create bootloader images for ISO boot an install media

Parameters

mbrid  () – mbrid le name on boot device

lookup_path  () – custom module lookup path

Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_install_image_config

Create boot config le to boot from install media in EFI mode.

Parameters

mbrid  () – mbrid le name on boot device

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

333 kiwi.bootloader.config.base Module



Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_live_boot_images

Create bootloader images for ISO boot a live ISO image

Parameters

mbrid  () – mbrid le name on boot device

lookup_path  () – custom module lookup path

Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_live_image_config

Create boot config le to boot live ISO image in EFI mode.

Parameters

mbrid  () – mbrid le name on boot device

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.setup_sysconfig_bootloader

Create or update etc/sysconfig/bootloader by parameters required according to the
bootloader setup
Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.write

Write config data to config le.
Implementation in specialized bootloader class required

kiwi.bootloader.config.base.BootLoaderConfigBase.write_meta_data

Write bootloader setup meta data les

Parameters

root_device  () – root device node

write_device  () – overlay root write device node

boot_options  () – kernel options as string

334 kiwi.bootloader.config.base Module



Implementation in specialized bootloader class optional

13.4.3 kiwi.bootloader.config.grub2 Module

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2

Bases: BootLoaderConfigBase  (#kiwi.bootloader.config.base.BootLoaderConfigBase)

grub2 bootloader configuration.

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.post_init

grub2 post initialization method

Parameters

custom_args  () –
Contains grub config arguments

{'grub_directory_name': 'grub|grub2'}

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.setup_disk_boot_images

Create/Provide grub2 boot images and metadata
In order to boot from the disk grub2 modules, images and theme data needs to be
created and provided at the correct place in the filesystem

Parameters

boot_uuid  () – boot device UUID

lookup_path  () – custom module lookup path

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.setup_disk_image_config

Create grub2 config le to boot from disk using grub2-mkconfig

Parameters

boot_uuid  () – unused

root_uuid  () – unused

hypervisor  () – unused

kernel  () – unused

initrd  () – unused

boot_options  () –

335 kiwi.bootloader.config.grub2 Module

#kiwi.bootloader.config.base.BootLoaderConfigBase


options dictionary that has to contain the root and boot device and optional volume
configuration. KIWI has to mount the system prior to run grub2-mkconfig.

{
    'root_device': string,
    'boot_device': string,
    'efi_device': string,
    'system_volumes':
        volume_manager_instance.get_volumes(),
    'system_root_volume':
        volume_manager_instance.get_root_volume_name()
}

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.setup_install_boot_images

Create/Provide grub2 boot images and metadata
In order to boot from the ISO grub2 modules, images and theme data needs to be
created and provided at the correct place on the iso filesystem

Parameters

mbrid  () – mbrid le name on boot device

lookup_path  () – custom module lookup path

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.setup_install_image_config

Create grub2 config le to boot from an ISO install image

Parameters

mbrid  () – mbrid le name on boot device

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.setup_live_boot_images

Create/Provide grub2 boot images and metadata
Calls setup_install_boot_images because no different action required

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.setup_live_image_config

Create grub2 config le to boot a live media ISO image

336 kiwi.bootloader.config.grub2 Module



Parameters

mbrid  () – mbrid le name on boot device

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.write

Write bootloader configuration

writes grub.cfg template by KIWI if template system is used

creates an embedded fat e image for EFI ISO boot

kiwi.bootloader.config.grub2.BootLoaderConfigGrub2.write_meta_data

Write bootloader setup meta data les

cmdline arguments initialization

etc/default/grub setup le

etc/default/zipl2grub.conf.in (s390 only)

etc/sysconfig/bootloader

Parameters

root_device  () – root device node

write_device  () – overlay root write device node

boot_options  () – kernel options as string

iso_boot  () – indicate target is an ISO

13.4.4 kiwi.bootloader.config.isolinux Module

kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux

Bases: BootLoaderConfigBase  (#kiwi.bootloader.config.base.BootLoaderConfigBase)

isolinux bootloader configuration.

337 kiwi.bootloader.config.isolinux Module

#kiwi.bootloader.config.base.BootLoaderConfigBase


kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux.post_init

isolinux post initialization method

Parameters

custom_args  () – custom isolinux config arguments

kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux.setup_install_boot_images

Provide isolinux boot metadata
No extra boot images must be created for isolinux

Parameters

mbrid  () – unused

lookup_path  () – unused

kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux.setup_install_image_config

Create isolinux.cfg in memory from a template suitable to boot from an ISO image
in BIOS boot mode

Parameters

mbrid  () – mbrid le name on boot device

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux.setup_live_boot_images

Provide isolinux boot metadata
No extra boot images must be created for isolinux

Parameters

mbrid  () – unused

lookup_path  () – unused

kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux.setup_live_image_config

Create isolinux.cfg in memory from a template suitable to boot a live system from
an ISO image in BIOS boot mode

338 kiwi.bootloader.config.isolinux Module



Parameters

mbrid  () – mbrid le name on boot device

hypervisor  () – hypervisor name

kernel  () – kernel name

initrd  () – initrd name

kiwi.bootloader.config.isolinux.BootLoaderConfigIsoLinux.write

Write isolinux.cfg and isolinux.msg le

13.4.5 Module Contents

kiwi.bootloader.config.BootLoaderConfig

Bases: object
BootLoaderConfig factory

Parameters

name  () – bootloader name

xml_state  () – instance of XMLState

root_dir  () – root directory path name

custom_args  () – custom bootloader config arguments dictionary

kiwi.bootloader.config.BootLoaderConfig.new

13.5 kiwi.bootloader.install Package

13.5.1 Submodules

13.5.2 kiwi.bootloader.install.base Module

kiwi.bootloader.install.base.BootLoaderInstallBase

Bases: object

339 Module Contents



Base class for bootloader installation on device

Parameters

root_dir  () – root directory path name

device_provider  () – instance of DeviceProvider

custom_args  () – custom arguments dictionary

kiwi.bootloader.install.base.BootLoaderInstallBase.install

Install bootloader on self.device
Implementation in specialized bootloader install class required

kiwi.bootloader.install.base.BootLoaderInstallBase.install_required

Check if bootloader needs to be installed
Implementation in specialized bootloader install class required

kiwi.bootloader.install.base.BootLoaderInstallBase.post_init

Post initialization method
Store custom arguments by default

Parameters

custom_args  () – custom bootloader arguments

kiwi.bootloader.install.base.BootLoaderInstallBase.secure_boot_install

Run shim-install in self.device for secure boots
Implementation in specialized bootloader install class required

13.5.3 kiwi.bootloader.install.grub2 Module

kiwi.bootloader.install.grub2.BootLoaderInstallGrub2

Bases: BootLoaderInstallBase  (#kiwi.bootloader.install.base.BootLoaderInstallBase)

grub2 bootloader installation

kiwi.bootloader.install.grub2.BootLoaderInstallGrub2.install

Install bootloader on disk device

kiwi.bootloader.install.grub2.BootLoaderInstallGrub2.install_required

Check if grub2 has to be installed

340 kiwi.bootloader.install.grub2 Module

#kiwi.bootloader.install.base.BootLoaderInstallBase


Take architecture and rmware setup into account to check if bootloader code in a
boot record is required

Returns

True or False

Return type

bool

kiwi.bootloader.install.grub2.BootLoaderInstallGrub2.post_init

grub2 post initialization method

Parameters

custom_args  () –
Contains custom grub2 bootloader arguments

{
    'target_removable': bool,
    'system_volumes': list_of_volumes,
    'system_root_volume': root volume name if required
    'firmware': FirmWare_instance,
    'efi_device': string,
    'boot_device': string,
    'root_device': string
}

kiwi.bootloader.install.grub2.BootLoaderInstallGrub2.secure_boot_install

Run shim-install in self.device for secure boots
Implementation in specialized bootloader install class required

kiwi.bootloader.install.grub2.BootLoaderInstallGrub2.set_disk_password

13.5.4 Module Contents

kiwi.bootloader.install.BootLoaderInstall

Bases: object
BootLoaderInstall Factory

Parameters

name  () – bootloader name

root_dir  () – root directory path name

341 Module Contents



device_provider  () – instance of DeviceProvider

custom_args  () – custom arguments dictionary

kiwi.bootloader.install.BootLoaderInstall.new

13.6 kiwi.bootloader Package

13.6.1 Module Contents

13.7 kiwi.bootloader.template Package

13.7.1 Submodules

13.7.2 kiwi.bootloader.template.grub2 Module

kiwi.bootloader.template.grub2.BootLoaderTemplateGrub2

Bases: object
grub2 configuraton le templates

kiwi.bootloader.template.grub2.BootLoaderTemplateGrub2.get_install_template

Bootloader configuration template for install media

Parameters

failsafe  () – with failsafe true|false

hybrid  () – with hybrid true|false

terminal  () – output terminal name

Returns

instance of Template

342 kiwi.bootloader Package



Return type

Template

kiwi.bootloader.template.grub2.BootLoaderTemplateGrub2.get_iso_template

Bootloader configuration template for live ISO media

Parameters

failsafe  () – with failsafe true|false

hybrid  () – with hybrid true|false

terminal  () – output terminal name

Returns

instance of Template

Return type

Template

kiwi.bootloader.template.grub2.BootLoaderTemplateGrub2.get_multiboot_install_template

Bootloader configuration template for install media with hypervisor, e.g Xen dom0

Parameters

failsafe  () – with failsafe true|false

terminal  () – output terminal name

Returns

instance of Template

Return type

Template

kiwi.bootloader.template.grub2.BootLoaderTemplateGrub2.get_multiboot_iso_template

Bootloader configuration template for live ISO media with hypervisor, e.g Xen dom0

Parameters

failsafe  () – with failsafe true|false

terminal  () – output terminal name

343 kiwi.bootloader.template.grub2 Module



Returns

instance of Template

Return type

Template

13.7.3 kiwi.bootloader.template.isolinux Module

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux

Bases: object
isolinux configuraton le templates

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux.get_install_message_template

Bootloader template for text message le in install mode. isolinux displays this as
menu if no graphics mode can be initialized

Returns

instance of Template

Return type

Template

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux.get_install_template

Bootloader configuration template for install media

Parameters

failsafe  () – with failsafe true|false

with_theme  () – with graphics theme true|false

Returns

instance of Template

Return type

Template

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux.get_message_template

Bootloader template for text message le. isolinux displays this as menu if no graphics
mode can be initialized

344 kiwi.bootloader.template.isolinux Module



Returns

instance of Template

Return type

Template

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux.get_multiboot_install_tem-

plate

Bootloader configuration template for install media with hypervisor, e.g Xen dom0

Parameters

failsafe  () – with failsafe true|false

with_theme  () – with graphics theme true|false

Returns

instance of Template

Return type

Template

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux.get_multiboot_template

Bootloader configuration template for live media with hypervisor, e.g Xen dom0

Parameters

failsafe  () – with failsafe true|false

with_theme  () – with graphics theme true|false

Returns

instance of Template

Return type

Template

kiwi.bootloader.template.isolinux.BootLoaderTemplateIsoLinux.get_template

Bootloader configuration template for live media

Parameters

failsafe  () – with failsafe true|false

with_theme  () – with graphics theme true|false

345 kiwi.bootloader.template.isolinux Module



Returns

instance of Template

Return type

Template

13.7.4 Module Contents

13.8 kiwi.boot Package

13.8.1 Module Contents

13.9 kiwi.builder Package

13.9.1 Submodules

13.9.2 kiwi.builder.archive Module

kiwi.builder.archive.ArchiveBuilder

Bases: object
Root archive image builder

Parameters

xml_state  () – Instance of XMLState

target_dir  () – target directory path name

root_dir  () – root directory path name

custom_args  () – Custom processing arguments defined as hash keys: * xz_op-
tions: string of XZ compression parameters

346 Module Contents



kiwi.builder.archive.ArchiveBuilder.create

Create a root archive tarball
Build a simple XZ compressed root tarball from the image root tree
Image types which triggers this builder are:

image=”tbz”

image=”cpio”

Returns

result

Return type

instance of Result

13.9.3 kiwi.builder.container Module

kiwi.builder.container.ContainerBuilder

Bases: object
Container image builder

Parameters

xml_state  () – Instance of XMLState

target_dir  () – target directory path name

root_dir  () – root directory path name

custom_args  () – Custom processing arguments defined as hash keys: * xz_op-
tions: string of XZ compression parameters

kiwi.builder.container.ContainerBuilder.create

Builds a container image which is usually a data archive including container specific
metadata.
Image types which triggers this builder are:

image=”docker”

image=”oci”

image=”appx”

347 kiwi.builder.container Module



Returns

result

Return type

instance of Result

13.9.4 kiwi.builder.disk Module

kiwi.builder.disk.DiskBuilder

Bases: object
Disk image builder

Parameters

xml_state  () – Instance of XMLState

target_dir  () – Target directory path name

root_dir  () – Root directory path name

custom_args  () – Custom processing arguments defined as hash keys: * sign-
ing_keys: list of package signing keys * xz_options: string of XZ compression
parameters

kiwi.builder.disk.DiskBuilder.append_unpartitioned_space

Extends the raw disk if an unpartitioned area is specified

kiwi.builder.disk.DiskBuilder.create

Build a bootable disk image and optional installation image The installation image
is a bootable hybrid ISO image which embeds the disk image and an image installer
Image types which triggers this builder are:

image=”oem”

Returns

result

Return type

instance of Result

kiwi.builder.disk.DiskBuilder.create_disk

Build a bootable raw disk image

348 kiwi.builder.disk Module



Raises

kiwi.exceptions.KiwiInstallMediaError   – if install media is re-
quired and image type is not oem

kiwi.exceptions.KiwiVolumeManagerSetupError   – root overlay at
the same time volumes are defined is not supported

Returns

result

Return type

instance of Result

kiwi.builder.disk.DiskBuilder.create_disk_format

Create a bootable disk format from a previously created raw disk image

Parameters

result_instance  () – instance of Result

Returns

updated result_instance

Return type

instance of Result

kiwi.builder.disk.DiskBuilder.create_install_media

Build an installation image. The installation image is a bootable hybrid ISO image
which embeds the raw disk image and an image installer

Parameters

result_instance  () – instance of Result

Returns

updated result_instance with installation media

Return type

instance of Result

13.9.5 kiwi.builder.filesystem Module

kiwi.builder.filesystem.FileSystemBuilder

Bases: object

349 kiwi.builder.filesystem Module



Filesystem image builder

Parameters

xml_state  () – Instance of XMLState

target_dir  () – target directory path name

root_dir  () – root directory path name

custom_args  () – Custom processing arguments defined as hash keys: * None

kiwi.builder.filesystem.FileSystemBuilder.create

Build a mountable filesystem image
Image types which triggers this builder are:

image=”ext2”

image=”ext3”

image=”ext4”

image=”btrfs”

image=”xfs”

Returns

result

Return type

instance of Result

13.9.6 kiwi.builder.install Module

kiwi.builder.install.InstallImageBuilder

Bases: object
Installation image builder

Parameters

xml_state  () – instance of XMLState

root_dir  () – system image root directory

350 kiwi.builder.install Module



target_dir  () – target directory path name

boot_image_task  () – instance of BootImage

custom_args  () – Custom processing arguments defined as hash keys: * xz_op-
tions: string of XZ compression parameters

kiwi.builder.install.InstallImageBuilder.create_install_iso

Create an install ISO from the disk_image as hybrid ISO bootable via legacy BIOS,
EFI and as disk from Stick
Image types which triggers this builder are:

installiso=”true|false”

installstick=”true|false”

kiwi.builder.install.InstallImageBuilder.create_install_pxe_archive

Create an oem install tar archive suitable for installing a disk image via the network
using the PXE boot protocol. The archive contains:

The raw system image xz compressed

The raw system image checksum metadata le

The append le template for the boot server

The system image initrd for kexec

The install initrd

The kernel

Image types which triggers this builder are:

installpxe=”true|false”

13.9.7 kiwi.builder.live Module

kiwi.builder.live.LiveImageBuilder

Bases: object
Live image builder

351 kiwi.builder.live Module



Parameters

xml_state  () – instance of XMLState

target_dir  () – target directory path name

root_dir  () – root directory path name

custom_args  () – Custom processing arguments

kiwi.builder.live.LiveImageBuilder.create

Build a bootable hybrid live ISO image
Image types which triggers this builder are:

image=”iso”

Raises

kiwi.exceptions.KiwiLiveBootImageError   – if no kernel or hipervisor is
found in boot image tree

Returns

result

Return type

instance of Result

13.9.8 kiwi.builder.kis Module

kiwi.builder.kis.KisBuilder

Bases: object
Filesystem based image builder.

Parameters

xml_state  () – instance of XMLState

target_dir  () – target directory path name

root_dir  () – system image root directory

custom_args  () – Custom processing arguments defined as hash keys: * sign-
ing_keys: list of package signing keys * xz_options: string of XZ compression
parameters

352 kiwi.builder.kis Module



kiwi.builder.kis.KisBuilder.create

Build a component image consisting out of a boot image(initrd) plus its appropriate
kernel les and the root filesystem image with a checksum.
Image types which triggers this builder are:

image=”kis”

image=”pxe”

Raises

kiwi.exceptions.KiwiKisBootImageError   – if no kernel or hipervisor is
found in boot image tree

Returns

result

Return type

instance of Result

13.9.9 Module Contents

kiwi.builder.ImageBuilder

Bases: object
Image builder factory

kiwi.builder.ImageBuilder.new

13.10 kiwi.container Package

13.10.1 Submodules

13.10.2 kiwi.container.oci Module

kiwi.container.oci.ContainerImageOCI

Bases: ContainerImageBase

353 Module Contents



Create oci container from a root directory

Parameters

root_dir  () – root directory path name

custom_args  () –

Custom processing arguments defined as hash keys:
Example

{
    'container_name': 'name',
    'container_tag': '1.0',
    'additional_names': ['current', 'foobar'],
    'entry_command': ['/bin/bash', '-x'],
    'entry_subcommand': ['ls', '-l'],
    'maintainer': 'tux',
    'user': 'root',
    'workingdir': '/root',
    'expose_ports': ['80', '42'],
    'volumes': ['/var/log', '/tmp'],
    'environment': {'PATH': '/bin'},
    'labels': {'name': 'value'},
    'history': {
        'created_by': 'some explanation here',
        'comment': 'some comment here',
        'author': 'tux'
    }
}

kiwi.container.oci.ContainerImageOCI.create

Create compressed oci system container tar archive

Parameters

filename  () – archive le name

base_image  () – archive used as a base image

ensure_empty_tmpdirs  () – exclude system tmp directories

compress_archive  () – compress container archive

kiwi.container.oci.OciConfig

Bases: TypedDict

354 kiwi.container.oci Module



kiwi.container.oci.OciConfig.additional_names

kiwi.container.oci.OciConfig.container_name

kiwi.container.oci.OciConfig.container_tag

kiwi.container.oci.OciConfig.entry_command

kiwi.container.oci.OciConfig.entry_subcommand

kiwi.container.oci.OciConfig.environment

kiwi.container.oci.OciConfig.expose_ports

kiwi.container.oci.OciConfig.history

kiwi.container.oci.OciConfig.labels

kiwi.container.oci.OciConfig.maintainer

kiwi.container.oci.OciConfig.user

kiwi.container.oci.OciConfig.volumes

kiwi.container.oci.OciConfig.workingdir

13.10.3 Module Contents

kiwi.container.ContainerImage

Bases: object
Container Image factory

Parameters

name  () – container system name

root_dir  () – root directory path name

custom_args  () – custom arguments

kiwi.container.ContainerImage.new

355 Module Contents



13.11 kiwi.container.setup Package

13.11.1 Submodules

13.11.2 kiwi.container.setup.base Module

kiwi.container.setup.base.ContainerSetupBase

Bases: object
Base class for setting up the root system to create a container image from for e.g docker.
The methods here are generic to linux systems following the FHS standard and modern
enough e.g based on systemd
Attributes

root_dir

root directory path name

custom_args

dict of custom arguments

kiwi.container.setup.base.ContainerSetupBase.deactivate_bootloader_setup

Container bootloader setup
Tell the system there is no bootloader configuration it needs to care for. A container
does not boot

kiwi.container.setup.base.ContainerSetupBase.deactivate_root_filesystem_check

Container filesystem check setup
The root filesystem of a container could be an overlay or a mapped device. In any case
it should not be checked for consistency as this is should be done by the container
infrastructure

kiwi.container.setup.base.ContainerSetupBase.deactivate_systemd_service

Container system services setup
Init systems among others also controls services which starts at boot time. A container
does not really boot. Thus some services needs to be deactivated

Parameters

name  () – systemd service name

356 kiwi.container.setup Package



kiwi.container.setup.base.ContainerSetupBase.get_container_name

Container name

Returns

name

Return type

str

kiwi.container.setup.base.ContainerSetupBase.post_init

Post initialization method
Implementation in specialized container setup class

Parameters

custom_args  () – unused

kiwi.container.setup.base.ContainerSetupBase.setup

Setup container metadata
Implementation in specialized bootloader class required

kiwi.container.setup.base.ContainerSetupBase.setup_root_console

Container console setup
/dev/console should be allowed to login by root

13.11.3 kiwi.container.setup.docker Module

kiwi.container.setup.docker.ContainerSetupDocker

Bases: ContainerSetupOCI
Docker container setup

13.11.4 Module Contents

kiwi.container.setup.ContainerSetup

Bases: object
container setup factory

kiwi.container.setup.ContainerSetup.new

357 kiwi.container.setup.docker Module



13.12 kiwi.filesystem Package

13.12.1 Submodules

13.12.2 kiwi.filesystem.base Module

kiwi.filesystem.base.FileSystemBase

Bases: object
Implements base class for filesystem interface

Parameters

device_provider  () – Instance of a class based on DeviceProvider required
for filesystems which needs a block device for creation. In most cases the Devi-
ceProvider is a LoopDevice

root_dir  () – root directory path name

custom_args  () – custom filesystem arguments

kiwi.filesystem.base.FileSystemBase.create_on_device

Create filesystem on block device
Implement in specialized filesystem class for filesystems which requires a block de-
vice for creation, e.g ext4.

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – UUID name

kiwi.filesystem.base.FileSystemBase.create_on_file

Create filesystem from root data tree
Implement in specialized filesystem class for filesystems which requires a data tree
for creation, e.g squashfs.

358 kiwi.filesystem Package



Parameters

filename  () – result le path name

label  () – label name

exclude  () – list of exclude dirs/les

kiwi.filesystem.base.FileSystemBase.create_verification_metadata

Write verification block at the end of the device

Parameters

device_node  () – Target device node, if not specified the root device from this
instance is used

kiwi.filesystem.base.FileSystemBase.create_verity_layer

Create veritysetup on device

Parameters

block  () – Number of blocks to use for veritysetup. If not specified the
entire root device is used

filename  () – Target filename to use for VeritySetup. If not specified the
filename or block special provided at object construction time is used

kiwi.filesystem.base.FileSystemBase.get_mountpoint

Provides mount point directory
Effective use of the directory is guaranteed only after sync_data

Returns

directory path name

Return type

string

kiwi.filesystem.base.FileSystemBase.mount

Mount the filesystem

kiwi.filesystem.base.FileSystemBase.post_init

Post initialization method
Store dictionary of custom arguments if not empty. This overrides the default custom
argument hash

359 kiwi.filesystem.base Module



Parameters

custom_args  () –
custom arguments

{
    'create_options': ['option'],
    'mount_options': ['option'],
    'meta_data': {
        'key': 'value'
    }
}

kiwi.filesystem.base.FileSystemBase.set_uuid

Create new random filesystem UUID
Implement in specialized filesystem class for filesystems which supports the concept
of an UUID and allows to change it

kiwi.filesystem.base.FileSystemBase.sync_data

Copy root data tree into filesystem

Parameters

exclude  () – list of exclude dirs/les

kiwi.filesystem.base.FileSystemBase.umount

Umounts the filesystem in case it is mounted, does nothing otherwise

13.12.3 kiwi.filesystem.btrfs Module

kiwi.filesystem.btrfs.FileSystemBtrfs

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of btrfs filesystem

kiwi.filesystem.btrfs.FileSystemBtrfs.create_on_device

Create btrfs filesystem on block device

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

360 kiwi.filesystem.btrfs Module

#kiwi.filesystem.base.FileSystemBase


unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – UUID name

kiwi.filesystem.btrfs.FileSystemBtrfs.set_uuid

Create new random filesystem UUID

13.12.4 kiwi.filesystem.clicfs Module

kiwi.filesystem.clicfs.FileSystemClicFs

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of clicfs filesystem

kiwi.filesystem.clicfs.FileSystemClicFs.create_on_file

Create clicfs filesystem from data tree
There is no label which could be set for clicfs thus this parameter is not used
There is no option to exclude data from clicfs thus this parameter is not used

Parameters

filename  () – result le path name

label  () – unused

exclude  () – unused

kiwi.filesystem.clicfs.FileSystemClicFs.post_init

Post initialization method
Initialize temporary container_dir directory to store clicfs embeded filesystem

Parameters

custom_args  () – unused

13.12.5 kiwi.filesystem.ext2 Module

kiwi.filesystem.ext2.FileSystemExt2

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of ext2 filesystem

kiwi.filesystem.ext2.FileSystemExt2.create_on_device

Create ext2 filesystem on block device

361 kiwi.filesystem.clicfs Module

#kiwi.filesystem.base.FileSystemBase
#kiwi.filesystem.base.FileSystemBase


Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – UUID name

kiwi.filesystem.ext2.FileSystemExt2.set_uuid

Create new random filesystem UUID

13.12.6 kiwi.filesystem.ext3 Module

kiwi.filesystem.ext3.FileSystemExt3

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of ext3 filesystem

kiwi.filesystem.ext3.FileSystemExt3.create_on_device

Create ext3 filesystem on block device

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – UUID name

kiwi.filesystem.ext3.FileSystemExt3.set_uuid

Create new random filesystem UUID

13.12.7 kiwi.filesystem.ext4 Module

kiwi.filesystem.ext4.FileSystemExt4

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

362 kiwi.filesystem.ext3 Module

#kiwi.filesystem.base.FileSystemBase
#kiwi.filesystem.base.FileSystemBase


Implements creation of ext4 filesystem

kiwi.filesystem.ext4.FileSystemExt4.create_on_device

Create ext4 filesystem on block device

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – UUID name

kiwi.filesystem.ext4.FileSystemExt4.set_uuid

Create new random filesystem UUID

13.12.8 kiwi.filesystem.fat16 Module

kiwi.filesystem.fat16.FileSystemFat16

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of fat16 filesystem

kiwi.filesystem.fat16.FileSystemFat16.create_on_device

Create fat16 filesystem on block device

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – Volume Label, there is no real UUID on fat

kiwi.filesystem.fat16.FileSystemFat16.set_uuid

Create new random filesystem UUID

363 kiwi.filesystem.fat16 Module

#kiwi.filesystem.base.FileSystemBase


13.12.9 kiwi.filesystem.fat32 Module

kiwi.filesystem.fat32.FileSystemFat32

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of fat32 filesystem

kiwi.filesystem.fat32.FileSystemFat32.create_on_device

Create fat32 filesystem on block device

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – Volume Label, there is no real UUID on fat

kiwi.filesystem.fat32.FileSystemFat32.set_uuid

Create new random filesystem UUID

13.12.10 kiwi.filesystem.isofs Module

kiwi.filesystem.isofs.FileSystemIsoFs

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of iso filesystem

kiwi.filesystem.isofs.FileSystemIsoFs.create_on_file

Create iso filesystem from data tree
There is no label which could be set for iso filesystem thus this parameter is not used

Parameters

filename  () – result le path name

label  () – unused

exclude  () – unused

364 kiwi.filesystem.fat32 Module

#kiwi.filesystem.base.FileSystemBase
#kiwi.filesystem.base.FileSystemBase


13.12.11 kiwi.filesystem.setup Module

kiwi.filesystem.setup.FileSystemSetup

Bases: object
Implement filesystem setup methods
Methods from this class provides information from the root directory required before build-
ing a filesystem image

Parameters

xml_state  () – Instance of XMLState

root_dir  () – root directory path

kiwi.filesystem.setup.FileSystemSetup.get_size_mbytes

Precalculate the requires size in mbytes to store all data from the root directory in
the requested filesystem. Return the configured value if present, if not return the
calculated result

Parameters

filesystem  () – name

Returns

mbytes

Return type

int

13.12.12 kiwi.filesystem.squashfs Module

kiwi.filesystem.squashfs.FileSystemSquashFs

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of squashfs filesystem

kiwi.filesystem.squashfs.FileSystemSquashFs.create_on_file

Create squashfs filesystem from data tree
There is no label which could be set for squashfs thus this parameter is not used

365 kiwi.filesystem.setup Module

#kiwi.filesystem.base.FileSystemBase


Parameters

filename  () – result le path name

label  () – unused

exclude  () – list of exclude dirs/les

13.12.13 kiwi.filesystem.xfs Module

kiwi.filesystem.xfs.FileSystemXfs

Bases: FileSystemBase  (#kiwi.filesystem.base.FileSystemBase)

Implements creation of xfs filesystem

kiwi.filesystem.xfs.FileSystemXfs.create_on_device

Create xfs filesystem on block device

Parameters

label  () – label name

size  () – size value, can also be counted from the end via -X The value
is interpreted in units of: unit

unit  () – unit name. Default unit is set to: defaults.UNIT.kb

uuid  () – UUID name

kiwi.filesystem.xfs.FileSystemXfs.set_uuid

Create new random filesystem UUID

13.12.14 Module Contents

kiwi.filesystem.FileSystem

Bases: object
FileSystem factory

Parameters

name  () – filesystem name

device_provider  () – Instance of DeviceProvider

366 kiwi.filesystem.xfs Module

#kiwi.filesystem.base.FileSystemBase


root_dir  () – root directory path name

custom_args  () – dict of custom filesystem arguments

kiwi.filesystem.FileSystem.new

13.13 kiwi.iso_tools Package

13.13.1 Submodules

13.13.2 kiwi.iso_tools.base Module

kiwi.iso_tools.base.IsoToolsBase

Bases: object
Base Class for Parameter API for iso creation tools

kiwi.iso_tools.base.IsoToolsBase.add_efi_loader_parameters

Add ISO creation parameters to embed the EFI loader
Implementation in specialized tool class

kiwi.iso_tools.base.IsoToolsBase.create_iso

Create iso le
Implementation in specialized tool class

Parameters

filename  () – unused

hidden_files  () – unused

kiwi.iso_tools.base.IsoToolsBase.get_tool_name

Return caller name for iso creation tool
Implementation in specialized tool class

Returns

tool name

367 kiwi.iso_tools Package



Return type

str

kiwi.iso_tools.base.IsoToolsBase.has_iso_hybrid_capability

Indicate if the iso tool has the capability to embed a partition table into the iso such
that it can be used as both; an iso and a disk
Implementation in specialized tool class

kiwi.iso_tools.base.IsoToolsBase.init_iso_creation_parameters

Create a set of standard parameters for the main isolinux loader
Implementation in specialized tool class

Parameters

custom_args  () – unused

kiwi.iso_tools.base.IsoToolsBase.list_iso

List contents of an ISO image

Parameters

isofile  () – unused

kiwi.iso_tools.base.IsoToolsBase.setup_media_loader_directory

13.13.3 kiwi.iso_tools.xorriso Module

kiwi.iso_tools.xorriso.IsoToolsXorrIso

Bases: IsoToolsBase  (#kiwi.iso_tools.base.IsoToolsBase)

xorriso wrapper class
Implementation of Parameter API for iso creation tools using the libburnia project. Ad-
dressed here is the tool xorriso

kiwi.iso_tools.xorriso.IsoToolsXorrIso.add_efi_loader_parameters

Add ISO creation parameters to embed the EFI loader
In order to boot the ISO from EFI, the EFI binary is added as alternative loader to
the ISO creation parameter list. The EFI binary must be included into a fat filesystem
in order to become recognized by the rmware. For details about this le refer to
_create_embedded_fat_efi_image() from bootloader/config/grub2.py

kiwi.iso_tools.xorriso.IsoToolsXorrIso.create_iso

Creates the iso le with the given filename using xorriso

368 kiwi.iso_tools.xorriso Module

#kiwi.iso_tools.base.IsoToolsBase


Parameters

filename  () – output filename

hidden_files  () – list of hidden les

kiwi.iso_tools.xorriso.IsoToolsXorrIso.get_tool_name

Lookup xorriso in search path

Raises

kiwi.exceptions.KiwiIsoToolError   – if xorriso tool is not found

Returns

xorriso tool path

Return type

str

kiwi.iso_tools.xorriso.IsoToolsXorrIso.has_iso_hybrid_capability

Indicate if the iso tool has the capability to embed a partition table into the iso such
that it can be used as both; an iso and a disk

Returns

True or False

Return type

bool

kiwi.iso_tools.xorriso.IsoToolsXorrIso.init_iso_creation_parameters

Create a set of standard parameters

Parameters

custom_args  () – custom ISO meta data

13.13.4 kiwi.iso_tools.iso Module

kiwi.iso_tools.iso.Iso

Bases: object
Implements helper methods around the creation of ISO filesystems

kiwi.iso_tools.iso.Iso.set_media_tag

Include checksum tag in the ISO so it can be verified with the mediacheck program.

369 kiwi.iso_tools.iso Module



Parameters

isofile  () – path to the ISO le

kiwi.iso_tools.iso.Iso.setup_isolinux_boot_path

Write the base boot path into the isolinux loader binary

Raises

kiwi.exceptions.KiwiIsoLoaderError   – if loader/isolinux.bin is not found

13.13.5 Module Contents

kiwi.iso_tools.IsoTools

Bases: object
IsoTools factory

kiwi.iso_tools.IsoTools.new

13.14 kiwi.package_manager Package

13.14.1 Submodules

13.14.2 kiwi.package_manager.base Module

kiwi.package_manager.base.PackageManagerBase

Bases: object
Implements base class for Package Management

Parameters

repository  () – instance of Repository

root_dir  () – root directory path name

package_requests  () – list of packages to install or delete

collection_requests  () – list of collections to install

product_requests  () – list of products to install

370 Module Contents



kiwi.package_manager.base.PackageManagerBase.clean_leftovers

Cleans package manager related data not needed in the resulting image such as cus-
tom macros
Implementation in specialized package manager class

kiwi.package_manager.base.PackageManagerBase.cleanup_requests

Cleanup request queues

kiwi.package_manager.base.PackageManagerBase.database_consistent

kiwi.package_manager.base.PackageManagerBase.dump_reload_package_database

kiwi.package_manager.base.PackageManagerBase.get_error_details

Provide further error details
In case the package manager call failed this method will return package manager
specific error information if there is any

Returns

further error data as str or empty str

Return type

str

kiwi.package_manager.base.PackageManagerBase.has_failed

Evaluate given result return code
Any returncode != 0 is considered an error unless overwritten in specialized package
manager class

Parameters

returncode  () – return code number

Returns

True|False

Return type

boolean

kiwi.package_manager.base.PackageManagerBase.match_package_deleted

Match expression to indicate a package has been deleted
Implementation in specialized package manager class

371 kiwi.package_manager.base Module



Parameters

package_name  () – unused

package_manager_output  () – unused

Returns

True|False

Return type

bool

kiwi.package_manager.base.PackageManagerBase.match_package_installed

Match expression to indicate a package has been installed
Implementation in specialized package manager class

Parameters

package_name  () – unused

package_manager_output  () – unused

Returns

True|False

Return type

bool

kiwi.package_manager.base.PackageManagerBase.post_init

Post initialization method
Implementation in specialized package manager class

Parameters

custom_args  () – unused

kiwi.package_manager.base.PackageManagerBase.post_process_delete_requests

Process extra code required after deleting packages
Implementation in specialized package manager class

kiwi.package_manager.base.PackageManagerBase.post_process_install_requests_bootstrap

Process extra code required after bootstrapping
Implementation in specialized package manager class

372 kiwi.package_manager.base Module



kiwi.package_manager.base.PackageManagerBase.process_delete_requests

Process package delete requests (chroot)
Implementation in specialized package manager class

Parameters

force  () – unused

kiwi.package_manager.base.PackageManagerBase.process_install_requests

Process package install requests for image phase (chroot)
Implementation in specialized package manager class

kiwi.package_manager.base.PackageManagerBase.process_install_requests_bootstrap

Process package install requests for bootstrap phase (no chroot)
Implementation in specialized package manager class

kiwi.package_manager.base.PackageManagerBase.process_only_required

Setup package processing only for required packages
Implementation in specialized package manager class

kiwi.package_manager.base.PackageManagerBase.process_plus_recommended

Setup package processing to also include recommended dependencies
Implementation in specialized package manager class

kiwi.package_manager.base.PackageManagerBase.request_collection

Queue a package collection
Implementation in specialized package manager class

Parameters

name  () – unused

kiwi.package_manager.base.PackageManagerBase.request_package

Queue a package request
Implementation in specialized package manager class

Parameters

name  () – unused

kiwi.package_manager.base.PackageManagerBase.request_package_exclusion

Queue a package exclusion(skip) request
Implementation in specialized package manager class

Parameters

name  () – unused

373 kiwi.package_manager.base Module



kiwi.package_manager.base.PackageManagerBase.request_package_lock

kiwi.package_manager.base.PackageManagerBase.request_product

Queue a product request
Implementation in specialized package manager class

Parameters

name  () – unused

kiwi.package_manager.base.PackageManagerBase.setup_repository_modules

Setup repository modules and streams
Implementation in specialized package manager class

Parameters

collection_modules  () – unused

kiwi.package_manager.base.PackageManagerBase.update

Process package update requests (chroot)
Implementation in specialized package manager class

13.14.3 kiwi.package_manager.dnf4 Module

kiwi.package_manager.dnf4.PackageManagerDnf4

Bases: PackageManagerBase  (#kiwi.package_manager.base.PackageManagerBase)

*Implements base class for installation/deletion of packages and collections using
dnf*

Parameters

dnf_args  () – dnf arguments from repository runtime configuration

command_env  () – dnf command environment from repository runtime config-
uration

kiwi.package_manager.dnf4.PackageManagerDnf4.clean_leftovers

Cleans package manager related data not needed in the resulting image such as cus-
tom macros

kiwi.package_manager.dnf4.PackageManagerDnf4.match_package_deleted

Match expression to indicate a package has been deleted

374 kiwi.package_manager.dnf4 Module

#kiwi.package_manager.base.PackageManagerBase


Parameters

package_name  () – package_name

package_manager_output  () – dnf status line

Returns

True|False

Return type

bool

kiwi.package_manager.dnf4.PackageManagerDnf4.match_package_installed

Match expression to indicate a package has been installed
This match for the package to be installed in the output of the dnf command is not
100% accurate. There might be false positives due to sub package names starting
with the same base package name

Parameters

package_name  () – package_name

package_manager_output  () – dnf status line

Returns

True|False

Return type

bool

kiwi.package_manager.dnf4.PackageManagerDnf4.post_init

Post initialization method

Parameters

custom_args  () – custom dnf arguments

kiwi.package_manager.dnf4.PackageManagerDnf4.post_process_install_requests_bootstrap

Move the rpm database to the place as it is expected by the rpm package installed
during bootstrap phase

Parameters

root_bind  () – unused

delta_root  () – unused

375 kiwi.package_manager.dnf4 Module



kiwi.package_manager.dnf4.PackageManagerDnf4.process_delete_requests

Process package delete requests (chroot)

Parameters

force  () – force deletion: true|false

Raises

kiwi.exceptions.KiwiRequestError   – if none of the packages to delete is
installed.

Returns

process results in command type

Return type

namedtuple

kiwi.package_manager.dnf4.PackageManagerDnf4.process_install_requests

Process package install requests for image phase (chroot)

Returns

process results in command type

Return type

namedtuple

kiwi.package_manager.dnf4.PackageManagerDnf4.process_install_requests_bootstrap

Process package install requests for bootstrap phase (no chroot)

Parameters

root_bind  () – unused

bootstrap_package  () – unused

Returns

process results in command type

Return type

namedtuple

kiwi.package_manager.dnf4.PackageManagerDnf4.process_only_required

Setup package processing only for required packages

376 kiwi.package_manager.dnf4 Module



kiwi.package_manager.dnf4.PackageManagerDnf4.process_plus_recommended

Setup package processing to also include recommended dependencies.

kiwi.package_manager.dnf4.PackageManagerDnf4.request_collection

Queue a collection request

Parameters

name  () – dnf group ID name

kiwi.package_manager.dnf4.PackageManagerDnf4.request_package

Queue a package request

Parameters

name  () – package name

kiwi.package_manager.dnf4.PackageManagerDnf4.request_package_exclusion

Queue a package exclusion(skip) request

Parameters

name  () – package name

kiwi.package_manager.dnf4.PackageManagerDnf4.request_product

Queue a product request
There is no product definition in the fedora repo data

Parameters

name  () – unused

kiwi.package_manager.dnf4.PackageManagerDnf4.setup_repository_modules

Setup repository modules and streams

Parameters

collection_modules  () –
Expect dict of the form:

{
    'enable': [
        "module:stream", "module"
    ],
    'disable': [
        "module"
    ]
}

377 kiwi.package_manager.dnf4 Module



kiwi.package_manager.dnf4.PackageManagerDnf4.update

Process package update requests (chroot)

Returns

process results in command type

Return type

namedtuple

13.14.4 kiwi.package_manager.zypper Module

kiwi.package_manager.zypper.PackageManagerZypper

Bases: PackageManagerBase  (#kiwi.package_manager.base.PackageManagerBase)

Implements Installation/Deletion of packages/collections with zypper

Parameters

zypper_args  () – zypper arguments from repository runtime configuration

command_env  () – zypper command environment from repository runtime con-
figuration

kiwi.package_manager.zypper.PackageManagerZypper.clean_leftovers

Cleans package manager related data not needed in the resulting image such as cus-
tom macros

kiwi.package_manager.zypper.PackageManagerZypper.has_failed

Evaluate given result return code
In zypper any return code == 0 or >= 100 is considered success. Any return code
different from 0 and < 100 is treated as an error we care for. Return codes >= 100
indicates an issue like ‘new kernel needs reboot of the system’ or similar which we
don’t care in the scope of image building

Parameters

returncode  () – return code number

Returns

True|False

Return type

boolean

378 kiwi.package_manager.zypper Module

#kiwi.package_manager.base.PackageManagerBase


kiwi.package_manager.zypper.PackageManagerZypper.match_package_deleted

Match expression to indicate a package has been deleted

Parameters

package_name  () – package_name

package_manager_output  () – zypper status line

Returns

True|False

Return type

bool

kiwi.package_manager.zypper.PackageManagerZypper.match_package_installed

Match expression to indicate a package has been installed
This match for the package to be installed in the output of the zypper command is
not 100% accurate. There might be false positives due to sub package names starting
with the same base package name

Parameters

package_name  () – package_name

package_manager_output  () – zypper status line

Returns

True|False

Return type

bool

kiwi.package_manager.zypper.PackageManagerZypper.post_init

Post initialization method
Store custom zypper arguments

Parameters

custom_args  () – custom zypper arguments

kiwi.package_manager.zypper.PackageManagerZypper.post_process_install_requests_boot-

strap

Move the rpm database to the place as it is expected by the rpm package installed
during bootstrap phase

379 kiwi.package_manager.zypper Module



Parameters

root_bind  () – unused

delta_root  () – unused

kiwi.package_manager.zypper.PackageManagerZypper.process_delete_requests

Process package delete requests (chroot)

Parameters

force  () – force deletion: true|false

Raises

kiwi.exceptions.KiwiRequestError   – if none of the packages to delete is
installed

Returns

process results in command type

Return type

namedtuple

kiwi.package_manager.zypper.PackageManagerZypper.process_install_requests

Process package install requests for image phase (chroot)

Returns

process results in command type

Return type

namedtuple

kiwi.package_manager.zypper.PackageManagerZypper.process_install_requests_bootstrap

Process package install requests for bootstrap phase (no chroot)

Parameters

root_bind  () – unused

bootstrap_package  () – unused

Returns

process results in command type

Return type

namedtuple

380 kiwi.package_manager.zypper Module



kiwi.package_manager.zypper.PackageManagerZypper.process_only_required

Setup package processing only for required packages

kiwi.package_manager.zypper.PackageManagerZypper.process_plus_recommended

Setup package processing to also include recommended dependencies.

kiwi.package_manager.zypper.PackageManagerZypper.request_collection

Queue a collection request

Parameters

name  () – zypper pattern name

kiwi.package_manager.zypper.PackageManagerZypper.request_package

Queue a package request

Parameters

name  () – package name

kiwi.package_manager.zypper.PackageManagerZypper.request_package_exclusion

Queue a package exclusion(skip) request

Parameters

name  () – package name

kiwi.package_manager.zypper.PackageManagerZypper.request_product

Queue a product request

Parameters

name  () – zypper product name

kiwi.package_manager.zypper.PackageManagerZypper.setup_repository_modules

Repository modules not supported for zypper. The method does nothing in this scope

Parameters

collection_modules  () – unused

kiwi.package_manager.zypper.PackageManagerZypper.update

Process package update requests (chroot)

Returns

process results in command type

Return type

namedtuple

381 kiwi.package_manager.zypper Module



13.14.5 Module Contents

kiwi.package_manager.PackageManager

Bases: object
Package manager factory

Parameters

repository  () – instance of Repository

package_manager  () – package manager name

custom_args  () – custom package manager arguments list

Raises

kiwi.exceptions.KiwiPackageManagerSetupError   – if the requested package
manager type is not supported

Returns

package manager

Return type

PackageManagerBase subclass

kiwi.package_manager.PackageManager.new

13.15 kiwi.partitioner Package

13.15.1 Submodules

13.15.2 kiwi.partitioner.base Module

kiwi.partitioner.base.PartitionerBase

Bases: object
Base class for partitioners

kiwi.partitioner.base.PartitionerBase.create

Create partition

382 Module Contents



Implementation in specialized partitioner class

Parameters

name  () – unused

mbsize  () – unused

type_name  () – unused

flags  () – unused

kiwi.partitioner.base.PartitionerBase.get_id

Current partition number
Zero indicates no partition has been created so far

Returns

partition number

Return type

int

kiwi.partitioner.base.PartitionerBase.post_init

Post initialization method
Implementation in specialized partitioner class

kiwi.partitioner.base.PartitionerBase.resize_table

Resize partition table

Parameters

entries  () – unused

kiwi.partitioner.base.PartitionerBase.set_flag

Set partition ag
Implementation in specialized partitioner class

Parameters

partition_id  () – unused

flag_name  () – unused

kiwi.partitioner.base.PartitionerBase.set_hybrid_mbr

Turn partition table into hybrid table if supported

383 kiwi.partitioner.base Module



Implementation in specialized partitioner class

kiwi.partitioner.base.PartitionerBase.set_mbr

Turn partition table into MBR (msdos table)
Implementation in specialized partitioner class

kiwi.partitioner.base.PartitionerBase.set_start_sector

Set start sector of rst partition as configured

Parameters

start_sector  () – unused
Does nothing by default

13.15.3 kiwi.partitioner.dasd Module

kiwi.partitioner.dasd.PartitionerDasd

Bases: PartitionerBase  (#kiwi.partitioner.base.PartitionerBase)

Implements DASD partition setup

kiwi.partitioner.dasd.PartitionerDasd.create

Create DASD partition

Parameters

name  () – partition name

mbsize  () – partition size

type_name  () – unused

flags  () – unused

kiwi.partitioner.dasd.PartitionerDasd.post_init

Post initialization method
Setup fdasd partition type/ag map

kiwi.partitioner.dasd.PartitionerDasd.resize_table

Resize partition table
Nothing to be done here for DASD devices

Parameters

entries  () – unused

384 kiwi.partitioner.dasd Module

#kiwi.partitioner.base.PartitionerBase


13.15.4 kiwi.partitioner.gpt Module

kiwi.partitioner.gpt.PartitionerGpt

Bases: PartitionerBase  (#kiwi.partitioner.base.PartitionerBase)

Implements GPT partition setup

kiwi.partitioner.gpt.PartitionerGpt.create

Create GPT partition

Parameters

name  () – partition name

mbsize  () – partition size

type_name  () – partition type

flags  () – additional ags

kiwi.partitioner.gpt.PartitionerGpt.post_init

Post initialization method
Setup gdisk partition type/ag map

kiwi.partitioner.gpt.PartitionerGpt.resize_table

Resize partition table

Parameters

entries  () – number of default entries

kiwi.partitioner.gpt.PartitionerGpt.set_flag

Set GPT partition ag

Parameters

partition_id  () – partition number

flag_name  () – name from ag map

kiwi.partitioner.gpt.PartitionerGpt.set_hybrid_mbr

Turn partition table into hybrid GPT/MBR table

kiwi.partitioner.gpt.PartitionerGpt.set_mbr

Turn partition table into MBR (msdos table)

385 kiwi.partitioner.gpt Module

#kiwi.partitioner.base.PartitionerBase


13.15.5 kiwi.partitioner.msdos Module

kiwi.partitioner.msdos.PartitionerMsDos

Bases: PartitionerBase  (#kiwi.partitioner.base.PartitionerBase)

Implement old style msdos partition setup

kiwi.partitioner.msdos.PartitionerMsDos.create

Create msdos partition

Parameters

name  () – partition name

mbsize  () – partition size

type_name  () – partition type

flags  () – additional ags

kiwi.partitioner.msdos.PartitionerMsDos.post_init

Post initialization method
Setup sfdisk partition type/ag map

kiwi.partitioner.msdos.PartitionerMsDos.resize_table

Resize partition table
Nothing to be done here for msdos table

Parameters

entries  () – unused

kiwi.partitioner.msdos.PartitionerMsDos.set_flag

Set msdos partition ag

Parameters

partition_id  () – partition number

flag_name  () – name from ag map

kiwi.partitioner.msdos.PartitionerMsDos.set_start_sector

Set start sector of rst partition as configured. fdisk and friends are not able to work
correctly if the start sector of the rst partition is any different from 2048.

Parameters

start_sector  () – sector size

386 kiwi.partitioner.msdos Module

#kiwi.partitioner.base.PartitionerBase


13.15.6 Module Contents

kiwi.partitioner.Partitioner

Bases: object
Partitioner factory

Parameters

table_type  () – Table type name

storage_provider  () – Instance of class based on DeviceProvider

start_sector  () – sector number

extended_layout  () – support extended layout for msdos table

kiwi.partitioner.Partitioner.new

13.16 kiwi.repository Package

13.16.1 Submodules

13.16.2 kiwi.repository.base Module

kiwi.repository.base.RepositoryBase

Bases: object
Implements base class for package manager repository handling
Attributes

Parameters

root_bind  () – instance of RootBind

root_dir  () – root directory path name

shared_location  () – shared directory between image root and build system
root

kiwi.repository.base.RepositoryBase.add_repo

Add repository

387 Module Contents



Implementation in specialized repository class

Parameters

name  () – unused

uri  () – unused

repo_type  () – unused

prio  () – unused

dist  () – unused

components  () – unused

user  () – unused

secret  () – unused

credentials_file  () – unused

repo_gpgcheck  () – unused

pkg_gpgcheck  () – unused

sourcetype  () – unused

use_for_bootstrap  () – unused

customization_script  () – unused

kiwi.repository.base.RepositoryBase.cleanup_unused_repos

Cleanup/Delete unused repositories
Only configured repositories according to the image configuration are allowed to be
active when building
Implementation in specialized repository class

kiwi.repository.base.RepositoryBase.delete_all_repos

Delete all repositories
Implementation in specialized repository class

kiwi.repository.base.RepositoryBase.delete_repo

Delete repository
Implementation in specialized repository class

388 kiwi.repository.base Module



Parameters

name  () – unused

kiwi.repository.base.RepositoryBase.delete_repo_cache

Delete repository cache
Implementation in specialized repository class

Parameters

name  () – unused

kiwi.repository.base.RepositoryBase.import_trusted_keys

Imports trusted keys into the image
Implementation in specialized repository class

Parameters

signing_keys  () – list of the key les to import

kiwi.repository.base.RepositoryBase.post_init

Post initialization method
Implementation in specialized repository class

Parameters

custom_args  () – unused

kiwi.repository.base.RepositoryBase.run_repo_customize

Run an optional customization script

Parameters

script_path  () – unused

repo_file  () – unused

kiwi.repository.base.RepositoryBase.runtime_config

Repository runtime configuration and environment
Implementation in specialized repository class

kiwi.repository.base.RepositoryBase.setup_package_database_configuration

Setup package database configuration
Implementation in specialized repository class

kiwi.repository.base.RepositoryBase.use_default_location

Call repository operations with default repository manager setup

389 kiwi.repository.base Module



Implementation in specialized repository class

13.16.3 kiwi.repository.dnf4 Module

kiwi.repository.dnf4.RepositoryDnf4

Bases: RepositoryBase  (#kiwi.repository.base.RepositoryBase)

Implements repository handling for dnf package manager

Parameters

shared_dnf_dir  () – shared directory between image root and build system
root

runtime_dnf_config_file  () – dnf runtime config le name

command_env  () – customized os.environ for dnf

runtime_dnf_config  () – instance of ConfigParser

kiwi.repository.dnf4.RepositoryDnf4.add_repo

Add dnf repository

Parameters

name  () – repository base le name

uri  () – repository URI

repo_type  () – repostory type name

prio  () – dnf repostory priority

dist  () – unused

components  () – unused

user  () – unused

secret  () – unused

credentials_file  () – unused

repo_gpgcheck  () – enable repository signature validation

pkg_gpgcheck  () – enable package signature validation

390 kiwi.repository.dnf4 Module

#kiwi.repository.base.RepositoryBase


sourcetype  () – source type, one of ‘baseurl’, ‘metalink’ or ‘mirrorlist’

use_for_bootstrap  () – unused

customization_script  () – custom script called after the repo le was
created

kiwi.repository.dnf4.RepositoryDnf4.cleanup_unused_repos

Delete unused dnf repositories
Repository configurations which are not used for this build must be removed other-
wise they are taken into account for the package installations

kiwi.repository.dnf4.RepositoryDnf4.delete_all_repos

Delete all dnf repositories

kiwi.repository.dnf4.RepositoryDnf4.delete_repo

Delete dnf repository

Parameters

name  () – repository base le name

kiwi.repository.dnf4.RepositoryDnf4.delete_repo_cache

Delete dnf repository cache
The cache data for each repository is stored in a directory and additional les all
starting with the repository name. The method glob deletes all les and directories
matching the repository name followed by any characters to cleanup the cache in-
formation

Parameters

name  () – repository name

kiwi.repository.dnf4.RepositoryDnf4.import_trusted_keys

Imports trusted keys into the image

Parameters

signing_keys  () – list of the key les to import

kiwi.repository.dnf4.RepositoryDnf4.post_init

Post initialization method
Store custom dnf arguments and create runtime configuration and environment

Parameters

custom_args  () – dnf arguments

391 kiwi.repository.dnf4 Module



kiwi.repository.dnf4.RepositoryDnf4.runtime_config

dnf runtime configuration and environment

Returns

dnf_args:list, command_env:dict

Return type

dict

kiwi.repository.dnf4.RepositoryDnf4.setup_package_database_configuration

Setup rpm macros for bootstrapping and image building

1. Create the rpm image macro which persists during the build

2. Create the rpm bootstrap macro to make sure for bootstrapping the rpm data-
base location matches the host rpm database setup. This macro only persists
during the bootstrap phase. If the image was already bootstrapped a compat
link is created instead.

kiwi.repository.dnf4.RepositoryDnf4.use_default_location

Setup dnf repository operations to store all data in the default places

13.16.4 kiwi.repository.zypper Module

kiwi.repository.zypper.RepositoryZypper

Bases: RepositoryBase  (#kiwi.repository.base.RepositoryBase)

Implements repo handling for zypper package manager

Parameters

shared_zypper_dir  () – shared directory between image root and build sys-
tem root

runtime_zypper_config_file  () – zypper runtime config le name

runtime_zypp_config_file  () – libzypp runtime config le name

zypper_args  () – zypper caller args plus additional custom args

command_env  () – customized os.environ for zypper

runtime_zypper_config  () – instance of ConfigParser

392 kiwi.repository.zypper Module

#kiwi.repository.base.RepositoryBase


kiwi.repository.zypper.RepositoryZypper.add_repo

Add zypper repository

Parameters

name  () – repository name

uri  () – repository URI

repo_type  () – repostory type name

prio  () – zypper repostory priority

dist  () – unused

components  () – unused

user  () – credentials username

secret  () – credentials password

credentials_file  () – zypper credentials le

repo_gpgcheck  () – enable repository signature validation

pkg_gpgcheck  () – enable package signature validation

sourcetype  () – unused

use_for_bootstrap  () – unused

customization_script  () – custom script called after the repo le was
created

kiwi.repository.zypper.RepositoryZypper.cleanup_unused_repos

Delete unused zypper repositories
zypper creates a system solvable which is unwanted for the purpose of building im-
ages. In addition zypper fails with an error message ‘Failed to cache rpm database’
if such a system solvable exists and a new root system is created
All other repository configurations which are not used for this build must be removed
too, otherwise they are taken into account for the package installations

kiwi.repository.zypper.RepositoryZypper.delete_all_repos

Delete all zypper repositories

kiwi.repository.zypper.RepositoryZypper.delete_repo

Delete zypper repository

393 kiwi.repository.zypper Module



Parameters

name  () – repository name

kiwi.repository.zypper.RepositoryZypper.delete_repo_cache

Delete zypper repository cache
The cache data for each repository is stored in a list of directories of the same name
as the repository name. The method deletes these directories to cleanup the cache
information

Parameters

name  () – repository name

kiwi.repository.zypper.RepositoryZypper.import_trusted_keys

Imports trusted keys into the image

Parameters

signing_keys  () – list of the key les to import

kiwi.repository.zypper.RepositoryZypper.post_init

Post initialization method
Store custom zypper arguments and create runtime configuration and environment

Parameters

custom_args  () – zypper arguments

kiwi.repository.zypper.RepositoryZypper.runtime_config

zypper runtime configuration and environment

kiwi.repository.zypper.RepositoryZypper.setup_package_database_configuration

Setup rpm macros for bootstrapping and image building

1. Create the rpm image macro which persists during the build

2. Create the rpm bootstrap macro to make sure for bootstrapping the rpm data-
base location matches the host rpm database setup. This macro only persists
during the bootstrap phase. If the image was already bootstrapped a compat
link is created instead.

3. Create zypper compat link

kiwi.repository.zypper.RepositoryZypper.use_default_location

Setup zypper repository operations to store all data in the default places

394 kiwi.repository.zypper Module



13.16.5 Module Contents

kiwi.repository.Repository

Bases: object
Repository factory

Parameters

root_bind  () – instance of RootBind

package_manager  () – package manager name

custom_args  () – list of custom package manager arguments to setup the repos-
itory

Raises

kiwi.exceptions.KiwiRepositorySetupError   – if package_manager is not sup-
ported

kiwi.repository.Repository.new

13.17 kiwi.repository.template Package

13.17.1 Submodules

13.17.2 kiwi.repository.template.apt Module

kiwi.repository.template.apt.PackageManagerTemplateAptGet

Bases: object
apt-get configuration le template

kiwi.repository.template.apt.PackageManagerTemplateAptGet.get_host_template

apt-get package manager template for apt-get called outside of the image, not ch-
rooted

Return type

Template

395 Module Contents



kiwi.repository.template.apt.PackageManagerTemplateAptGet.get_image_template

apt-get package manager template for apt-get called inside of the image, chrooted

Return type

Template

13.17.3 Module Contents

13.18 kiwi.solver.repository Package

13.18.1 Submodules

13.18.2 kiwi.solver.repository.base Module

kiwi.solver.repository.base.SolverRepositoryBase

Bases: object
Base class interface for SAT solvable creation.

Parameters

uri  () – Instance of Uri

user  () – User name for uri authentication

secret  () – Secret token for uri authentication

kiwi.solver.repository.base.SolverRepositoryBase.create_repository_solvable

Create SAT solvable for this repository from previously created intermediate solv-
ables by merge and store the result solvable in the specified target_dir

Parameters

target_dir  () – path name

Returns

le path to solvable

396 Module Contents



Return type

str

kiwi.solver.repository.base.SolverRepositoryBase.download_from_repository

Download given source le from the repository and store it as target le
The repo_source location is used relative to the repository location and will be part
of a mime type source like: file://repo_path/repo_source

Parameters

repo_source  () – source le in the repo

target  () – le path

Raises

kiwi.exceptions.KiwiUriOpenError   – if the download fails

kiwi.solver.repository.base.SolverRepositoryBase.get_repo_type

kiwi.solver.repository.base.SolverRepositoryBase.is_uptodate

Check if repository metadata is up to date

Returns

True or False

Return type

bool

kiwi.solver.repository.base.SolverRepositoryBase.timestamp

Return repository timestamp
The retrieval of the repository timestamp depends on the type of the repository and is
therefore supposed to be implemented in the specialized Solver Repository classes. If
no such implementation exists the method returns the value ‘static’ to indicate there
is no timestamp information available.

Return type

str

kiwi.solver.repository.rpm_md.SolverRepositoryRpmMd

Bases: SolverRepositoryBase  (#kiwi.solver.repository.base.SolverRepositoryBase)

Class for SAT solvable creation for rpm-md type repositories.

397 kiwi.solver.repository.base Module

#kiwi.solver.repository.base.SolverRepositoryBase


kiwi.solver.repository.rpm_md.SolverRepositoryRpmMd.timestamp

Get timestamp from the rst primary metadata

Returns

time value as text

Return type

str

kiwi.solver.repository.rpm_dir.SolverRepositoryRpmDir

Bases: SolverRepositoryBase  (#kiwi.solver.repository.base.SolverRepositoryBase)

Class for SAT solvable creation for rpm_dir type repositories.

kiwi.solver.repository.suse.SolverRepositorySUSE

Bases: SolverRepositoryBase  (#kiwi.solver.repository.base.SolverRepositoryBase)

Class for SAT solvable creation for SUSE type repositories.

13.18.3 Module Contents

kiwi.solver.repository.SolverRepository

Bases: object
Repository factory for creation of SAT solvables

param object uri

Instance of Uri

kiwi.solver.repository.SolverRepository.new

13.19 kiwi.solver Package

13.19.1 Submodules

13.19.2 kiwi.solver.sat Module

kiwi.solver.sat.Sat

Bases: object

398 Module Contents

#kiwi.solver.repository.base.SolverRepositoryBase
#kiwi.solver.repository.base.SolverRepositoryBase


Sat Solver class to run package solver operations
The class uses SUSE’s libsolv sat plugin

kiwi.solver.sat.Sat.add_repository

Add a repository solvable to the pool. This basically add the required repository
metadata which is needed to run a solver operation later.

Parameters

solver_repository  () – Instance of SolverRepository

kiwi.solver.sat.Sat.set_dist_type

kiwi.solver.sat.Sat.solve

Solve dependencies for the given job list. The list is allowed to contain element names
of the following format:

name describes a package name

pattern:name describes a package collection name whose metadata type is
called ‘pattern’ and stored as such in the repository metadata. Usually SUSE
repos uses that

group:name describes a package collection name whose metadata type is called
‘group’ and stored as such in the repository metadata. Usually RHEL/Cen-
tOS/Fedora repos uses that

Parameters

job_names  () – list of strings

skip_missing  () – skip job if not found

ignore_recommended  () – do not include recommended packages

Raises

kiwi.exceptions.KiwiSatSolverJobProblems   – if solver reports solving
problems

Returns

Transaction result information

Return type

dict

399 kiwi.solver.sat Module



13.19.3 Module Contents

13.20 kiwi.storage Package

13.20.1 Submodules

13.20.2 kiwi.storage.device_provider Module

kiwi.storage.device_provider.DeviceProvider

Bases: object
Base class for any class providing storage devices

kiwi.storage.device_provider.DeviceProvider.get_byte_size

Size of device in bytes

Parameters

device  () – node name

Returns

byte value from blockdev

Return type

int

kiwi.storage.device_provider.DeviceProvider.get_device

Representation of device nodes
Could provide one ore more devices representing the storage Implementation in spe-
cialized device provider class

kiwi.storage.device_provider.DeviceProvider.get_uuid

UUID of device

Parameters

device  () – node name

Returns

UUID from blkid

400 Module Contents



Return type

str

kiwi.storage.device_provider.DeviceProvider.is_loop

Check if device provider is loop based
By default this is always False and needs an implementation in the the specialized
device provider class

Returns

True or False

Return type

bool

13.20.3 kiwi.storage.disk Module

kiwi.storage.disk.Disk

Bases: DeviceProvider  (#kiwi.storage.device_provider.DeviceProvider)

Implements storage disk and partition table setup

kiwi.storage.disk.Disk.activate_boot_partition

Activate boot partition
Note: not all Partitioner instances supports this

kiwi.storage.disk.Disk.create_boot_partition

Create boot partition
Populates kiwi_BootPart(id) and optional kiwi_BootPartClone(id)

Parameters

mbsize  () – partition size string

clone  () – create [clone] cop(y/ies) of the boot partition

kiwi.storage.disk.Disk.create_custom_partitions

Create partitions from custom data set

table_entries = {
    map_name: ptable_entry_type
}

401 kiwi.storage.disk Module

#kiwi.storage.device_provider.DeviceProvider


Parameters

table  () – partition table spec

kiwi.storage.disk.Disk.create_efi_csm_partition

Create EFI bios grub partition
Populates kiwi_BiosGrub(id)

Parameters

mbsize  () – partition size string

kiwi.storage.disk.Disk.create_efi_partition

Create EFI partition
Populates kiwi_EfiPart(id)

Parameters

mbsize  () – partition size string

kiwi.storage.disk.Disk.create_hybrid_mbr

Turn partition table into a hybrid GPT/MBR table
Note: only GPT tables supports this

kiwi.storage.disk.Disk.create_mbr

Turn partition table into MBR (msdos table)
Note: only GPT tables supports this

kiwi.storage.disk.Disk.create_prep_partition

Create prep partition
Populates kiwi_PrepPart(id)

Parameters

mbsize  () – partition size string

kiwi.storage.disk.Disk.create_root_lvm_partition

Create root partition for use with LVM
Populates kiwi_RootPart(id)

Parameters

mbsize  () – partition size string

clone  () – create [clone] cop(y/ies) of the lvm roo partition

kiwi.storage.disk.Disk.create_root_partition

Create root partition

402 kiwi.storage.disk Module



Populates kiwi_RootPart(id) and kiwi_BootPart(id) if no extra boot partition is re-
quested

Parameters

mbsize  () – partition size string

clone  () – create [clone] cop(y/ies) of the root partition

kiwi.storage.disk.Disk.create_root_raid_partition

Create root partition for use with MD Raid
Populates kiwi_RootPart(id) and kiwi_RaidPart(id) as well as the default raid device
node at boot time which is configured to be kiwi_RaidDev(/dev/mdX)

Parameters

mbsize  () – partition size string

clone  () – create [clone] cop(y/ies) of the raid root partition

kiwi.storage.disk.Disk.create_root_readonly_partition

Create root readonly partition for use with overlayfs
Populates kiwi_ReadOnlyPart(id), the partition is meant to contain a squashfs read-
only filesystem. The partition size should be the size of the squashfs filesystem in
order to avoid wasting disk space

Parameters

mbsize  () – partition size string

clone  () – create [clone] cop(y/ies) of the ro root partition

kiwi.storage.disk.Disk.create_spare_partition

Create spare partition for custom use
Populates kiwi_SparePart(id)

Parameters

mbsize  () – partition size string

kiwi.storage.disk.Disk.create_swap_partition

Create swap partition
Populates kiwi_SwapPart(id)

403 kiwi.storage.disk Module



Parameters

mbsize  () – partition size string

kiwi.storage.disk.Disk.get_device

Names of partition devices
Note that the mapping requires an explicit map() call

Returns

instances of MappedDevice

Return type

dict

kiwi.storage.disk.Disk.get_public_partition_id_map

Populated partition name to number map

kiwi.storage.disk.Disk.is_loop

Check if storage provider is loop based
The information is taken from the storage provider. If the storage provider is loop
based the disk is it too

Returns

True or False

Return type

bool

kiwi.storage.disk.Disk.map_partitions

Map/Activate partitions
In order to access the partitions through a device node it is required to map them if
the storage provider is loop based

kiwi.storage.disk.Disk.set_start_sector

Set start sector
Note: only effective on DOS tables

kiwi.storage.disk.Disk.wipe

Zap (destroy) any GPT and MBR data structures if present For DASD disks create a
new VTOC table

kiwi.storage.disk.ptable_entry_type

Bases: tuple

404 kiwi.storage.disk Module



kiwi.storage.disk.ptable_entry_type.clone

Alias for eld number 1

kiwi.storage.disk.ptable_entry_type.filesystem

Alias for eld number 5

kiwi.storage.disk.ptable_entry_type.mbsize

Alias for eld number 0

kiwi.storage.disk.ptable_entry_type.mountpoint

Alias for eld number 4

kiwi.storage.disk.ptable_entry_type.partition_name

Alias for eld number 2

kiwi.storage.disk.ptable_entry_type.partition_type

Alias for eld number 3

13.20.4 kiwi.storage.loop_device Module

kiwi.storage.loop_device.LoopDevice

Bases: DeviceProvider  (#kiwi.storage.device_provider.DeviceProvider)

Create and manage loop device le for block operations

Parameters

filename  () – loop le name to create

filesize_mbytes  () – size of the loop le

blocksize_bytes  () – blocksize used in loop driver

kiwi.storage.loop_device.LoopDevice.create

Setup a loop device of the blocksize given in the constructor The le to loop is cre-
ated with the size specified in the constructor unless an existing one should not be
overwritten

Parameters

overwrite  () – overwrite existing le to loop

kiwi.storage.loop_device.LoopDevice.get_device

Device node name

405 kiwi.storage.loop_device Module

#kiwi.storage.device_provider.DeviceProvider


Returns

device node name

Return type

str

kiwi.storage.loop_device.LoopDevice.is_loop

Always True

Returns

True

Return type

bool

13.20.5 kiwi.storage.luks_device Module

kiwi.storage.luks_device.LuksDevice

Bases: DeviceProvider  (#kiwi.storage.device_provider.DeviceProvider)

Implements luks setup on a storage device

Parameters

storage_provider  () – Instance of class based on DeviceProvider

kiwi.storage.luks_device.LuksDevice.create_crypto_luks

Create luks device. Please note the passphrase is readable at creation time of this
image. Make sure your host system is secure while this process runs

Parameters

passphrase  () – credentials

osname  () – distribution name to match distribution specific options for
cryptsetup

options  () – further cryptsetup options

keyfile  () – le path name le path name which contains an alternative
key to unlock the luks device

root_dir  () – root dir path

406 kiwi.storage.luks_device Module

#kiwi.storage.device_provider.DeviceProvider


kiwi.storage.luks_device.LuksDevice.create_crypttab

Create crypttab, setting the UUID of the storage device

Parameters

filename  () – le path name

kiwi.storage.luks_device.LuksDevice.create_random_keyfile

Create keyfile with random data

Parameters

filename  () – le path name

kiwi.storage.luks_device.LuksDevice.get_device

Instance of MappedDevice providing the luks device

Returns

mapped luks device

Return type

kiwi.storage.mapped_device.MappedDevice

kiwi.storage.luks_device.LuksDevice.is_loop

Check if storage provider is loop based
Return loop status from base storage provider

Returns

True or False

Return type

bool

13.20.6 kiwi.storage.mapped_device Module

kiwi.storage.mapped_device.MappedDevice

Bases: DeviceProvider  (#kiwi.storage.device_provider.DeviceProvider)

Hold a reference on a single device

Parameters

device_provider  () – Instance of class based on DeviceProvider

device  () – Device node name

407 kiwi.storage.mapped_device Module

#kiwi.storage.device_provider.DeviceProvider


kiwi.storage.mapped_device.MappedDevice.get_device

Mapped device node name

Returns

device node name

Return type

str

kiwi.storage.mapped_device.MappedDevice.is_loop

Check if storage provider is loop based
Return loop status from base storage provider

Returns

True or False

Return type

bool

13.20.7 kiwi.storage.raid_device Module

kiwi.storage.raid_device.RaidDevice

Bases: DeviceProvider  (#kiwi.storage.device_provider.DeviceProvider)

Implement raid setup on a storage device

Parameters

storage_provider  () – Instance of class based on DeviceProvider

kiwi.storage.raid_device.RaidDevice.create_degraded_raid

Create a raid array in degraded mode with one device missing. This only works in
the raid levels 0(striping) and 1(mirroring)

Parameters

raid_level  () – raid level name

kiwi.storage.raid_device.RaidDevice.create_raid_config

Create mdadm config le from mdadm request

Parameters

filename  () – config le name

408 kiwi.storage.raid_device Module

#kiwi.storage.device_provider.DeviceProvider


kiwi.storage.raid_device.RaidDevice.get_device

Instance of MappedDevice providing the raid device

Returns

mapped raid device

Return type

kiwi.storage.mapped_device.MappedDevice

kiwi.storage.raid_device.RaidDevice.is_loop

Check if storage provider is loop based
Return loop status from base storage provider

Returns

True or False

Return type

bool

13.20.8 kiwi.storage.clone_device Module

kiwi.storage.clone_device.CloneDevice

Bases: DeviceProvider  (#kiwi.storage.device_provider.DeviceProvider)

Implements device cloning

kiwi.storage.clone_device.CloneDevice.clone

Clone source device to target device(s)

Parameters

target_devices  () – List of target DeviceProvider instances

13.20.9 kiwi.storage.setup Module

kiwi.storage.setup.DiskSetup

Bases: object
Implements disk setup methods
Methods from this class provides information required before building a disk image

409 kiwi.storage.clone_device Module

#kiwi.storage.device_provider.DeviceProvider


Parameters

xml_state  () – Instance of XMLState

root_dir  () – root directory path name

kiwi.storage.setup.DiskSetup.boot_partition_size

Size of the boot partition in mbytes

Returns

boot size mbytes

Return type

int

kiwi.storage.setup.DiskSetup.get_boot_label

Filesystem Label to use for the boot partition

Returns

label name

Return type

str

kiwi.storage.setup.DiskSetup.get_disksize_mbytes

Precalculate disk size requirements in mbytes

Parameters

root_clone  () – root partition gets cloned, N+1 times the size is needed

boot_clone  () – boot partition gets cloned, N+1 times the size is needed

Returns

disk size mbytes

Return type

int

kiwi.storage.setup.DiskSetup.get_efi_label

Filesystem Label to use for the EFI partition

Returns

label name

410 kiwi.storage.setup Module



Return type

str

kiwi.storage.setup.DiskSetup.get_root_label

Filesystem Label to use for the root partition
If not specified in the XML configuration the default root label is set to ‘ROOT’

Returns

label name

Return type

str

kiwi.storage.setup.DiskSetup.need_boot_partition

Decide if an extra boot partition is needed. This is done with the bootpartition at-
tribute from the type, however if it is not set it depends on some other type configu-
ration parameters if we need a boot partition or not

Returns

True or False

Return type

bool

13.20.10 Module Contents

13.21 kiwi.storage.subformat Package

13.21.1 Submodules

13.21.2 kiwi.storage.subformat.base Module

kiwi.storage.subformat.base.DiskFormatBase

Bases: object

411 Module Contents



Base class to create disk formats from a raw disk image

Parameters

xml_state  () – Instance of XMLState

root_dir  () – root directory path name

arch  () – Defaults.get_platform_name

target_dir  () – target directory path name

custom_args  () – custom format options dictionary

kiwi.storage.subformat.base.DiskFormatBase.create_image_format

Create disk format
Implementation in specialized disk format class required

kiwi.storage.subformat.base.DiskFormatBase.get_qemu_option_list

Create list of qemu options from custom_args dict

Parameters

custom_args  () – arguments

Returns

qemu option list

Return type

list

kiwi.storage.subformat.base.DiskFormatBase.get_target_file_path_for_format

Create target le path name for specified format

Parameters

format_name  () – disk format name

Returns

le path name

Return type

str

kiwi.storage.subformat.base.DiskFormatBase.has_raw_disk

Check if the base raw disk image exists

412 kiwi.storage.subformat.base Module



Returns

True or False

Return type

bool

kiwi.storage.subformat.base.DiskFormatBase.post_init

Post initialization method
Implementation in specialized disk format class if required

Parameters

custom_args  () – unused

kiwi.storage.subformat.base.DiskFormatBase.resize_raw_disk

Resize raw disk image to specified size. If the request would actually shrink the disk
an exception is raised. If the disk got changed the method returns True, if the new
size is the same as the current size nothing gets resized and the method returns False

Parameters

size  () – size in bytes

Returns

True or False

Return type

bool

kiwi.storage.subformat.base.DiskFormatBase.store_to_result

Store result le of the format conversion into the provided result instance.
By default only the converted image le will be stored as compressed le. Subformats
which creates additional metadata les or want to use other result ags needs to
overwrite this method

Parameters

result  () – Instance of Result

13.21.3 kiwi.storage.subformat.gce Module

kiwi.storage.subformat.gce.DiskFormatGce

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

413 kiwi.storage.subformat.gce Module

#kiwi.storage.subformat.base.DiskFormatBase


Create GCE - Google Compute Engine image format

kiwi.storage.subformat.gce.DiskFormatGce.create_image_format

Create GCE disk format and manifest

kiwi.storage.subformat.gce.DiskFormatGce.get_target_file_path_for_format

Google requires the image name to follow their naming convetion. Therefore it’s
required to provide a suitable name by overriding the base class method

Parameters

format_name  () – gce

Returns

le path name

Return type

str

kiwi.storage.subformat.gce.DiskFormatGce.post_init

GCE disk format post initialization method
Store disk tag from custom args

Parameters

custom_args  () –
custom gce argument dictionary

{'--tag': 'billing_code'}

kiwi.storage.subformat.gce.DiskFormatGce.store_to_result

Store result le of the gce format conversion into the provided result instance. In
this case compression is unwanted because the gce tarball is already created as a
compressed archive

Parameters

result  () – Instance of Result

13.21.4 kiwi.storage.subformat.ova Module

kiwi.storage.subformat.ova.DiskFormatOva

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create ova disk format, based on vmdk

414 kiwi.storage.subformat.ova Module

#kiwi.storage.subformat.base.DiskFormatBase


kiwi.storage.subformat.ova.DiskFormatOva.create_image_format

Create ova disk format using ovftool from https://www.vmware.com/support/develop-

er/ovf

kiwi.storage.subformat.ova.DiskFormatOva.post_init

vmdk disk format post initialization method
Store qemu options as list from custom args dict

Parameters

custom_args  () – custom qemu arguments dictionary

kiwi.storage.subformat.ova.DiskFormatOva.store_to_result

Store the resulting ova le into the provided result instance.

Parameters

result  () – Instance of Result

13.21.5 kiwi.storage.subformat.qcow2 Module

kiwi.storage.subformat.qcow2.DiskFormatQcow2

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create qcow2 disk format

kiwi.storage.subformat.qcow2.DiskFormatQcow2.create_image_format

Create qcow2 disk format

kiwi.storage.subformat.qcow2.DiskFormatQcow2.post_init

qcow2 disk format post initialization method
Store qemu options as list from custom args dict

Parameters

custom_args  () – custom qemu arguments dictionary

kiwi.storage.subformat.qcow2.DiskFormatQcow2.store_to_result

Store result le of the format conversion into the provided result instance.
In case of a qcow2 format we store the result uncompressed Since the format conver-
sion only takes the real bytes into account such that the sparseness of the raw disk
will not result in the output format and can be taken one by one

Parameters

result  () – Instance of Result

415 kiwi.storage.subformat.qcow2 Module

https://www.vmware.com/support/developer/ovf
https://www.vmware.com/support/developer/ovf
#kiwi.storage.subformat.base.DiskFormatBase


13.21.6 kiwi.storage.subformat.vagrant_base Module

kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Base class for creating vagrant boxes.
The documentation of the vagrant box format can be found here: https://www.vagrant-

up.com/docs/boxes/format.html  In a nutshell, a vagrant box is a tar, tar.gz or zip archive
of the following:

1. metadata.json : A json le that contains the name of the provider and arbitrary
additional data (that vagrant doesn’t care about).

2. Vagrantfile : A Vagrantfile which defines the boxes’ MAC address. It can be also
used to define other settings of the box, e.g. the method via which the /vagrant/
directory is shared. This le is either automatically generated by KIWI or we use
a le that has been provided by the user (depends on the setting in vagrantcon-
fig.embebbed_vagrantfile )

3. The actual virtual disk image: this is provider specific and vagrant simply forwards
it to your virtual machine provider.

Required methods/variables that child classes must implement:

vagrant_post_init()   (#kiwi.storage.subformat.vagrant_base.DiskFormatVagrant-

Base.vagrant_post_init)

post initializing method that has to specify the vagrant provider name in provider
and the box name in image_format . Note: new providers also needs to be speci-
fied in the schema and the box name needs to be registered to  kiwi.defaults.Default-

s.get_disk_format_types

create_box_img()   (#kiwi.storage.subformat.vagrant_base.DiskFormatVagrant-

Base.create_box_img)

Optional methods:

get_additional_metadata()   (#kiwi.storage.subformat.vagrant_base.DiskFormatVa-

grantBase.get_additional_metadata)

get_additional_vagrant_config_settings()   (#kiwi.storage.subformat.va-

grant_base.DiskFormatVagrantBase.get_additional_vagrant_config_settings)

416 kiwi.storage.subformat.vagrant_base Module

#kiwi.storage.subformat.base.DiskFormatBase
https://www.vagrantup.com/docs/boxes/format.html
https://www.vagrantup.com/docs/boxes/format.html
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.vagrant_post_init
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.vagrant_post_init
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.create_box_img
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.create_box_img
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.get_additional_metadata
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.get_additional_metadata
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.get_additional_vagrant_config_settings
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.get_additional_vagrant_config_settings


kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.create_box_img

Provider specific image creation step: this function creates the actual box image. It
must be implemented by a child class.

kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.create_image_format

Create a vagrant box for any provider. This includes:

creation of box metadata.json

creation of box Vagrantfile (either from scratch or by using the user provided
Vagrantfile)

creation of result format tarball from the les created above

kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.get_additional_metadata

Provide create_image_format()  (#kiwi.storage.subformat.vagrant_base.DiskFormat-

VagrantBase.create_image_format)  with additional metadata that will be included
in metadata.json .
The default implementation returns an empty dictionary.

Returns

A dictionary that is serializable to JSON

Return type

dict

kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.get_additional_vagrant_con-

fig_settings

Supply additional configuration settings for vagrant to be included in the resulting
box.
This function can be used by child classes to customize the behavior for different
providers: the supplied configuration settings get forwarded to VagrantConfigTem-
plate.get_template()  as the parameter custom_settings  and included in the
Vagrantfile .
The default implementation returns nothing.

Returns

additional vagrant settings

Return type

str

417 kiwi.storage.subformat.vagrant_base Module

#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.create_image_format
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.create_image_format


kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.post_init

vagrant disk format post initialization method
store vagrantconfig information provided via custom_args

Parameters

custom_args  () –
Contains instance of xml_parse::vagrantconfig

{'vagrantconfig': object}

kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.store_to_result

Store result le of the vagrant format conversion into the provided result instance. In
this case compression is unwanted because the box is already created as a compressed
tarball

Parameters

result  () – Instance of Result

kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase.vagrant_post_init

Vagrant provider specific post initialization method
Setup vagrant provider and box name. This information must be set by the specialized
provider class implementation to make the this base class methods effective

13.21.7 kiwi.storage.subformat.vagrant_libvirt Module

kiwi.storage.subformat.vagrant_libvirt.DiskFormatVagrantLibVirt

Bases: DiskFormatVagrantBase  (#kiwi.storage.subformat.vagrant_base.DiskFormatVagrant-

Base)

Create a vagrant box for the libvirt provider

kiwi.storage.subformat.vagrant_libvirt.DiskFormatVagrantLibVirt.create_box_img

Creates the qcow2 disk image box for libvirt vagrant provider

Parameters

temp_image_dir  () – Path to the temporary directory used to build the box
image

Returns

A list of les relevant for the libvirt box to be included in the vagrant box

418 kiwi.storage.subformat.vagrant_libvirt Module

#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase


Return type

list

kiwi.storage.subformat.vagrant_libvirt.DiskFormatVagrantLibVirt.get_additional_metadata

Provide box metadata needed to create the box in vagrant

Returns

Returns a dictionary containing the virtual image format and the size of the
image.

Return type

dict

kiwi.storage.subformat.vagrant_libvirt.DiskFormatVagrantLibVirt.get_additional_vagrant_con-

fig_settings

Returns settings for the libvirt provider telling vagrant to use kvm.

Returns

ruby code to be evaluated as string

Return type

str

kiwi.storage.subformat.vagrant_libvirt.DiskFormatVagrantLibVirt.vagrant_post_init

Vagrant provider specific post initialization method
Setup vagrant provider and box name. This information must be set by the specialized
provider class implementation to make the this base class methods effective

13.21.8 kiwi.storage.subformat.vagrant_virtualbox
Module

kiwi.storage.subformat.vagrant_virtualbox.DiskFormatVagrantVirtualBox

Bases: DiskFormatVagrantBase  (#kiwi.storage.subformat.vagrant_base.DiskFormatVagrant-

Base)

Create a vagrant box for the virtualbox provider

kiwi.storage.subformat.vagrant_virtualbox.DiskFormatVagrantVirtualBox.create_box_img

Create the vmdk image for the Virtualbox vagrant provider.
This function creates the vmdk disk image and the ovf le. The latter is created via
the class VirtualboxOvfTemplate .

419 kiwi.storage.subformat.vagrant_virtualbox Module

#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase
#kiwi.storage.subformat.vagrant_base.DiskFormatVagrantBase


Parameters

temp_image_dir  () – Path to the temporary directory used to build the box
image

Returns

A list of les relevant for the virtualbox box to be included in the vagrant box

Return type

list

kiwi.storage.subformat.vagrant_virtualbox.DiskFormatVagrantVirtualBox.get_additional_va-

grant_config_settings

Configure the default shared folder to use rsync when guest additions are not present
inside the box.

Returns

ruby code to be evaluated as string

Return type

str

kiwi.storage.subformat.vagrant_virtualbox.DiskFormatVagrantVirtualBox.vagrant_post_init

Vagrant provider specific post initialization method
Setup vagrant provider and box name. This information must be set by the specialized
provider class implementation to make the this base class methods effective

13.21.9 kiwi.storage.subformat.vdi Module

kiwi.storage.subformat.vdi.DiskFormatVdi

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create vdi disk format

kiwi.storage.subformat.vdi.DiskFormatVdi.create_image_format

Create vdi disk format

kiwi.storage.subformat.vdi.DiskFormatVdi.post_init

vdi disk format post initialization method
Store qemu options as list from custom args dict

Parameters

custom_args  () – custom qemu arguments dictionary

420 kiwi.storage.subformat.vdi Module

#kiwi.storage.subformat.base.DiskFormatBase


13.21.10 kiwi.storage.subformat.vhd Module

kiwi.storage.subformat.vhd.DiskFormatVhd

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create vhd disk format

kiwi.storage.subformat.vhd.DiskFormatVhd.create_image_format

Create vhd disk format

kiwi.storage.subformat.vhd.DiskFormatVhd.post_init

vhd disk format post initialization method
Store qemu options as list from custom args dict

Parameters

custom_args  () – custom qemu arguments dictionary

13.21.11 kiwi.storage.subformat.vhdfixed Module

kiwi.storage.subformat.vhdfixed.DiskFormatVhdFixed

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create vhd image format in xed subformat

kiwi.storage.subformat.vhdfixed.DiskFormatVhdFixed.create_image_format

Create vhd xed disk format

kiwi.storage.subformat.vhdfixed.DiskFormatVhdFixed.post_init

vhd disk format post initialization method
Store qemu options as list from custom args dict Extract disk tag from custom args

Parameters

custom_args  () –
custom vhdfixed and qemu argument dictionary

{'--tag': 'billing_code', '--qemu-opt': 'value'}

kiwi.storage.subformat.vhdfixed.DiskFormatVhdFixed.store_to_result

Store result le of the vhdfixed format conversion into the provided result instance.
In this case compressing the result is preferred as vhdfixed is not a compressed or
dynamic format.

421 kiwi.storage.subformat.vhd Module

#kiwi.storage.subformat.base.DiskFormatBase
#kiwi.storage.subformat.base.DiskFormatBase


Parameters

result  () – Instance of Result

13.21.12 kiwi.storage.subformat.vhdx Module

kiwi.storage.subformat.vhdx.DiskFormatVhdx

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create vhdx image format in dynamic subformat

kiwi.storage.subformat.vhdx.DiskFormatVhdx.create_image_format

Create vhdx dynamic disk format

kiwi.storage.subformat.vhdx.DiskFormatVhdx.post_init

vhdx disk format post initialization method
Store qemu options as list from custom args dict

Parameters

custom_args  () – custom qemu arguments dictionary

13.21.13 kiwi.storage.subformat.vmdk Module

kiwi.storage.subformat.vmdk.DiskFormatVmdk

Bases: DiskFormatBase  (#kiwi.storage.subformat.base.DiskFormatBase)

Create vmdk disk format

kiwi.storage.subformat.vmdk.DiskFormatVmdk.create_image_format

Create vmdk disk format and machine settings le

kiwi.storage.subformat.vmdk.DiskFormatVmdk.post_init

vmdk disk format post initialization method
Store qemu options as list from custom args dict

Parameters

custom_args  () – custom qemu arguments dictionary

kiwi.storage.subformat.vmdk.DiskFormatVmdk.store_to_result

Store result les of the vmdk format conversion into the provided result instance.
This includes the vmdk image le and the VMware settings le

422 kiwi.storage.subformat.vhdx Module

#kiwi.storage.subformat.base.DiskFormatBase
#kiwi.storage.subformat.base.DiskFormatBase


Parameters

result  () – Instance of Result

13.21.14 Module Contents

kiwi.storage.subformat.DiskFormat

Bases: object
DiskFormat factory

Parameters

name  () – Format name

xml_state  () – Instance of XMLState

root_dir  () – root directory path name

target_dir  () – target directory path name

kiwi.storage.subformat.DiskFormat.new

13.22 kiwi.storage.subformat.template Package

13.22.1 Submodules

13.22.2 kiwi.storage.subformat.template.vmware_settings
Module

kiwi.storage.subformat.template.vmware_settings.VmwareSettingsTemplate

Bases: object
VMware machine settings template

kiwi.storage.subformat.template.vmware_settings.VmwareSettingsTemplate.get_template

VMware machine configuration template

423 Module Contents



Parameters

memory_setup  () – with main memory setup true|false

cpu_setup  () – with number of CPU’s setup true|false

network_setup  () – with network emulation true|false

iso_setup  () – with CD/DVD drive emulation true|false

disk_controller  () – add disk controller setup to template

iso_controller  () – add CD/DVD controller setup to template

network_mac  () – add static MAC address setup to template

network_driver  () – add network driver setup to template

network_connection_type  () – add connection type to template

Return type

Template

13.22.3 kiwi.storage.subformat.template.vagrant_config
Module

kiwi.storage.subformat.template.vagrant_config.VagrantConfigTemplate

Bases: object
Generate a Vagrantfile configuration template
This class creates a simple template for the Vagrantfile that is included inside a vagrant box.
The included Vagrantfile carries additional information for vagrant: by default that is noth-
ing, but depending on the provider additional information need to be present. These can
be passed via the parameter custom_settings  to the method get_template()  (#kiwi.s-

torage.subformat.template.vagrant_config.VagrantConfigTemplate.get_template) .
Example usage:
The default without any additional settings will result in this Vagrantfile:

>>> vagrant_config = VagrantConfigTemplate()
>>> print(
...     vagrant_config.get_template()
... )

424 kiwi.storage.subformat.template.vagrant_config Module

#kiwi.storage.subformat.template.vagrant_config.VagrantConfigTemplate.get_template
#kiwi.storage.subformat.template.vagrant_config.VagrantConfigTemplate.get_template


Vagrant.configure("2") do |config|
end

If your provider/box requires additional settings, provide them as follows:

>>> extra_settings = dedent('''
... config.vm.hostname = "no-dead-beef"
... config.vm.provider :special do |special|
...   special.secret_settings = "please_work"
... end
... ''').strip()
>>> print(
...     vagrant_config.get_template(extra_settings)
... )
Vagrant.configure("2") do |config|
  config.vm.hostname = "no-dead-beef"
  config.vm.provider :special do |special|
    special.secret_settings = "please_work"
  end
end

kiwi.storage.subformat.template.vagrant_config.VagrantConfigTemplate.get_template

Return a new template with custom_settings  included and indented appropriately.

Parameters

custom_settings  () – String of additional settings that get pasted into the
Vagrantfile template. The string is put at the correct indentation level for you,
but the internal indentation has to be provided by the caller.

Returns

A string with custom_settings  inserted at the appropriate position. The tem-
plate has one the variable mac_address  that must be substituted.

Return type

str

13.22.4 kiwi.storage.subformat.template.virtualbox_ovf
Module

kiwi.storage.subformat.template.virtualbox_ovf.VirtualboxOvfTemplate

Bases: object
Generate a OVF le template for a vagrant virtualbox box

425 kiwi.storage.subformat.template.virtualbox_ovf Module



This class provides a template for virtualbox’ ovf configuration le that is embedded inside
the vagrant box. The template itself was extracted from a vagrant box that was build via
packer and from a script provided by Neal Gompa.

kiwi.storage.subformat.template.virtualbox_ovf.VirtualboxOvfTemplate.get_template

Return the actual ovf template. The following values must be substituted: - vm_name :
the name of this VM - disk_image_capacity : Size of the virtual disk image in GB
- vm_description : a description of this VM

13.22.5 Module contents

13.23 kiwi.system Package

13.23.1 Submodules

13.23.2 kiwi.system.identifier Module

kiwi.system.identifier.SystemIdentifier

Bases: object
Create a random ID to identify the system
The information is used to create the mbrid le as an example

Parameters

image_id  () – hex identifier string

kiwi.system.identifier.SystemIdentifier.calculate_id

Calculate random hex id
Using 4 tuples of rand in range from 1..0xfe

kiwi.system.identifier.SystemIdentifier.get_id

Current hex identifier

Returns

hex id

426 Module contents



Return type

str

kiwi.system.identifier.SystemIdentifier.write

Write current hex identifier to le

Parameters

filename  () – le path name

kiwi.system.identifier.SystemIdentifier.write_to_disk

Write current hex identifier to MBR at offset 0x1b8 on disk

Parameters

device_provider  () – Instance based on DeviceProvider

13.23.3 kiwi.system.kernel Module

kiwi.system.kernel.Kernel

Bases: object
Implementes kernel lookup and extraction from given root tree

Parameters

root_dir  () – root directory path name

kernel_names  () – list of kernel names to search for functions.sh::suseStrip-
Kernel() provides a normalized le so that we do not have to search for many
different names in this code

kiwi.system.kernel.Kernel.copy_kernel

Copy kernel to specified target
If no le_name is given the target filename is set as kernel-<kernel.version>.kernel

Parameters

target_dir  () – target path name

filename  () – base filename in target

kiwi.system.kernel.Kernel.copy_xen_hypervisor

Copy xen hypervisor to specified target

427 kiwi.system.kernel Module



If no le_name is given the target filename is set as hypervisor-<xen.name>

Parameters

target_dir  () – target path name

filename  () – base filename in target

kiwi.system.kernel.Kernel.get_kernel

Lookup kernel les and provide filename and version

Parameters

raise_on_not_found  () – sets the method to raise an exception if the kernel
is not found

Raises

kiwi.exceptions.KiwiKernelLookupError   – if raise_on_not_found ag is
active and kernel is not found

Returns

tuple with filename, kernelname and version

Return type

tuple|None

kiwi.system.kernel.Kernel.get_xen_hypervisor

Lookup xen hypervisor and provide filename and hypervisor name

Returns

tuple with filename and hypervisor name

Return type

tuple|None

kiwi.system.kernel.kernel_type

Bases: tuple

kiwi.system.kernel.kernel_type.filename

Alias for eld number 1

kiwi.system.kernel.kernel_type.name

Alias for eld number 0

428 kiwi.system.kernel Module



kiwi.system.kernel.kernel_type.version

Alias for eld number 2

kiwi.system.kernel.xen_hypervisor_type

Bases: tuple

kiwi.system.kernel.xen_hypervisor_type.filename

Alias for eld number 0

kiwi.system.kernel.xen_hypervisor_type.name

Alias for eld number 1

13.23.4 kiwi.system.prepare Module

kiwi.system.prepare.SystemPrepare

Bases: object
Implements preparation and installation of a new root system

Parameters

xml_state  () – instance of XMLState

root_dir  () – Path to new root directory

allow_existing  () – Allow using an existing root_dir

kiwi.system.prepare.SystemPrepare.clean_package_manager_leftovers

This methods cleans some package manager artifacts created at run time such as
macros

kiwi.system.prepare.SystemPrepare.delete_packages

Delete one or more packages using the package manager inside of the new root di-
rectory. If the removal is set with force  ag only listed packages are deleted and
any dependency break or leftover is ignored.

Parameters

manager  () – instance of a PackageManager  subclass

packages  () – package list

force  () – force deletion true|false

429 kiwi.system.prepare Module



Raises

kiwi.exceptions.KiwiSystemDeletePackagesFailed   – if installation
process fails

kiwi.system.prepare.SystemPrepare.install_bootstrap

Install system software using the package manager from the host, also known as
bootstrapping

Parameters

manager  () – instance of a PackageManager  subclass

plus_packages  () – list of additional packages

Raises

kiwi.exceptions.KiwiBootStrapPhaseFailed   – if the bootstrapping
process fails either installing packages or including bootstrap archives

kiwi.system.prepare.SystemPrepare.install_packages

Install one or more packages using the package manager inside of the new root di-
rectory

Parameters

manager  () – instance of a PackageManager  subclass

packages  () – package list

Raises

kiwi.exceptions.KiwiSystemInstallPackagesFailed   – if installation
process fails

kiwi.system.prepare.SystemPrepare.install_system

Install system software using the package manager inside of the new root directory.
This is done via a chroot operation and requires the desired package manager to
became installed via the bootstrap phase

Parameters

manager  () – instance of a PackageManager  subclass

Raises

kiwi.exceptions.KiwiInstallPhaseFailed   – if the install process fails ei-
ther installing packages or including any archive

430 kiwi.system.prepare Module



kiwi.system.prepare.SystemPrepare.pinch_system

Delete packages marked for deletion in the XML description. If force param is set to
False uninstalls packages marked with type="uninstall"  if any; if force is set to
True deletes packages marked with type="delete"  if any.

Parameters

manager  () – instance of PackageManager  subclass

force  () – Forced deletion True|False

Raises

kiwi.exceptions.KiwiPackagesDeletePhaseFailed   – if the deletion pack-
ages process fails

kiwi.system.prepare.SystemPrepare.setup_repositories

Set up repositories for software installation and return a package manager for per-
forming software installation tasks

Parameters

clear_cache  () – Flag the clear cache before configure anything

signing_keys  () – Keys imported to the package manager

target_arch  () – Target architecture name

Returns

instance of PackageManager  subclass

Return type

kiwi.package_manager.PackageManager

kiwi.system.prepare.SystemPrepare.update_system

Install package updates from the used repositories. the process uses the package man-
ager from inside of the new root directory

Parameters

manager  () – instance of a PackageManager  subclass

Raises

kiwi.exceptions.KiwiSystemUpdateFailed   – if packages update fails

431 kiwi.system.prepare Module



13.23.5 kiwi.system.profile Module

kiwi.system.profile.Profile

Bases: object
Create bash readable .profile environment from the XML description

Parameters

xml_state  () – instance of :class`XMLState`

kiwi.system.profile.Profile.add

Add key/value pair to profile dictionary

Parameters

key  () – profile key

value  () – profile value

kiwi.system.profile.Profile.create

Create bash quoted profile

Parameters

filename  () – le path name

kiwi.system.profile.Profile.delete

kiwi.system.profile.Profile.get_settings

Return all profile elements that has a value

13.23.6 kiwi.system.result Module

kiwi.system.result.Result

Bases: object
Collect image building results

Parameters

result_files  () – dict of result les

class_version  () – Result  (#kiwi.system.result.Result)  class version

xml_state  () – instance of XMLState

432 kiwi.system.profile Module

#kiwi.system.result.Result


kiwi.system.result.Result.add

Add result tuple to result_files list

Parameters

key  () – name

filename  () – le path name

use_for_bundle  () – use when bundling results true|false

compress  () – compress when bundling true|false

shasum  () – create shasum when bundling true|false

kiwi.system.result.Result.add_bundle_format

kiwi.system.result.Result.dump

Picke dump this instance to a le

Parameters

filename  () – le path name

portable  () – If set to true also create a .json formatted variant of the
dump le which contains the elements of this instance that could be ex-
pressed in a portable json document. Default is set to: True

Raises

kiwi.exceptions.KiwiResultError   – if pickle fails to dump Result  (#ki-

wi.system.result.Result)  instance

kiwi.system.result.Result.get_results

Current list of result tuples

kiwi.system.result.Result.load

Load pickle dumped filename into a Result instance

Parameters

filename  () – le path name

Raises

kiwi.exceptions.KiwiResultError   – if filename does not exist or pickle
fails to load filename

433 kiwi.system.result Module

#kiwi.system.result.Result
#kiwi.system.result.Result


kiwi.system.result.Result.print_results

Print results human readable

kiwi.system.result.Result.verify_image_size

Verifies the given image le does not exceed the size limit. Throws an exception if
the limit is exceeded. If the size limit is set to None no verification is done.

Parameters

size_limit  () – The size limit for filename in bytes.

filename  () – File to verify.

Raises

kiwi.exceptions.KiwiResultError   – if filename exceeds the size limit

kiwi.system.result.result_file_type

Bases: tuple

kiwi.system.result.result_file_type.compress

Alias for eld number 2

kiwi.system.result.result_file_type.filename

Alias for eld number 0

kiwi.system.result.result_file_type.shasum

Alias for eld number 3

kiwi.system.result.result_file_type.use_for_bundle

Alias for eld number 1

kiwi.system.result.result_name_tags

Bases: tuple

kiwi.system.result.result_name_tags.A

Alias for eld number 2

kiwi.system.result.result_name_tags.I

Alias for eld number 3

kiwi.system.result.result_name_tags.M

Alias for eld number 5

kiwi.system.result.result_name_tags.N

Alias for eld number 0

434 kiwi.system.result Module



kiwi.system.result.result_name_tags.P

Alias for eld number 1

kiwi.system.result.result_name_tags.T

Alias for eld number 4

kiwi.system.result.result_name_tags.m

Alias for eld number 6

kiwi.system.result.result_name_tags.p

Alias for eld number 7

13.23.7 kiwi.system.root_bind Module

kiwi.system.root_bind.RootBind

Bases: object
Implements binding/copying of host system paths into the new root directory

Parameters

root_dir  () – root directory path name

cleanup_files  () – list of les to cleanup, delete

mount_stack  () – list of mounted directories for cleanup

dir_stack  () – list of directories for cleanup

config_files  () – list of initial config les

bind_locations  () – list of kernel filesystems to bind mount

shared_location  () – shared directory between image root and build system
root

kiwi.system.root_bind.RootBind.cleanup

Cleanup mounted locations, directories and intermediate config les

kiwi.system.root_bind.RootBind.mount_kernel_file_systems

Bind mount kernel filesystems

Raises

kiwi.exceptions.KiwiMountKernelFileSystemsError   – if some kernel
filesystem fails to mount

435 kiwi.system.root_bind Module



kiwi.system.root_bind.RootBind.mount_shared_directory

Bind mount shared location
The shared location is a directory which shares data from the image buildsystem
host with the image root system. It is used for the repository setup and the package
manager cache to allow chroot operations without being forced to duplicate this data

Parameters

host_dir  () – directory to share between image root and build system root

Raises

kiwi.exceptions.KiwiMountSharedDirectoryError   – if mount fails

kiwi.system.root_bind.RootBind.setup_intermediate_config

Create intermediate config les
Some config les e.g etc/hosts needs to be temporarly copied from the buildsystem
host to the image root system in order to allow e.g DNS resolution in the way as it is
configured on the buildsystem host. These config les only exists during the image
build process and are not part of the final image

Raises

kiwi.exceptions.KiwiSetupIntermediateConfigError   – if the manage-
ment of intermediate configuration les fails

kiwi.system.root_bind.RootBind.umount_kernel_file_systems

Umount kernel filesystems

Raises

kiwi.exceptions.KiwiMountKernelFileSystemsError   – if some kernel
filesystem fails to mount

13.23.8 kiwi.system.root_init Module

kiwi.system.root_init.RootInit

Bases: object
Implements creation of new root directory for a linux system
Host system independent static default les and device nodes are created to initialize a
new base system

Parameters

root_dir  () – root directory path name

436 kiwi.system.root_init Module



kiwi.system.root_init.RootInit.create

Create new system root directory
The method creates a temporary directory and initializes it for the purpose of building
a system image from it. This includes the following setup:

create core system paths

create static core device nodes

On success the contents of the temporary location are synced to the specified root_dir
and the temporary location will be deleted. That way we never work on an incomplete
initial setup

Raises

kiwi.exceptions.KiwiRootInitCreationError   – if the init creation fails
at some point

kiwi.system.root_init.RootInit.delete

Force delete root directory and its contents

13.23.9 kiwi.system.setup Module

kiwi.system.setup.SystemSetup

Bases: object
Implementation of system setup steps supported by kiwi
Kiwi is not responsible for the system configuration, however some setup steps needs to be
performed in order to provide a minimal work environment inside of the image according
to the desired image type.

Parameters

xml_state  () – instance of XMLState

root_dir  () – root directory path name

kiwi.system.setup.SystemSetup.call_config_host_overlay_script

Call config-host-overlay.sh script _NON_ chrooted

kiwi.system.setup.SystemSetup.call_config_overlay_script

Call config-overlay.sh script chrooted

437 kiwi.system.setup Module



kiwi.system.setup.SystemSetup.call_config_script

Call config.sh script chrooted

kiwi.system.setup.SystemSetup.call_disk_script

Call disk.sh script chrooted

kiwi.system.setup.SystemSetup.call_edit_boot_config_script

Call configured editbootconfig script _NON_ chrooted
Pass the boot filesystem name and the partition number of the boot partition as pa-
rameters to the call

Parameters

filesystem  () – boot filesystem name

boot_part_id  () – boot partition number

working_directory  () – directory name

kiwi.system.setup.SystemSetup.call_edit_boot_install_script

Call configured editbootinstall script _NON_ chrooted
Pass the disk le name and the device node of the boot partition as parameters to
the call

Parameters

diskname  () – le path name

boot_device_node  () – boot device node name

working_directory  () – directory name

kiwi.system.setup.SystemSetup.call_image_script

Call images.sh script chrooted

kiwi.system.setup.SystemSetup.call_post_bootstrap_script

Call post_bootstrap.sh script chrooted

kiwi.system.setup.SystemSetup.call_pre_disk_script

Call pre_disk_sync.sh script chrooted

kiwi.system.setup.SystemSetup.cleanup

Delete all traces of a kiwi description which are not required in the later image

438 kiwi.system.setup Module



kiwi.system.setup.SystemSetup.create_fstab

Create etc/fstab from given Fstab object
Custom fstab modifications are possible and handled in the following order:

1. Look for an optional fstab.append le which allows to append custom fstab
entries to the final fstab. Once embedded the fstab.append le will be deleted

2. Look for an optional fstab.patch le which allows to patch the current contents
of the fstab le with a given patch le. Once patched the fstab.patch le will
be deleted

3. Look for an optional fstab.script le which is called chrooted for the purpose
of updating the fstab le as appropriate. Note: There is no validation in place
that checks if the script actually handles fstab or any other le in the image
rootfs. Once called the fstab.script le will be deleted

Parameters

fstab  () – instance of Fstab

kiwi.system.setup.SystemSetup.create_init_link_from_linuxrc

kiwi boot images provides the linuxrc script, however the kernel also expects an init
executable to be present. This method creates a hard link to the linuxrc le

kiwi.system.setup.SystemSetup.create_recovery_archive

Create a compressed recovery archive from the root tree for use with kiwi’s recvoery
system. The method creates additional data into the image root filesystem which is
deleted prior to the creation of a new recovery data set

kiwi.system.setup.SystemSetup.export_modprobe_setup

Export etc/modprobe.d to given root_dir

Parameters

target_root_dir  () – path name

kiwi.system.setup.SystemSetup.export_package_changes

Export image package changelog for comparision of actual changes of the installed
packages

Parameters

target_dir  () – path name

439 kiwi.system.setup Module



kiwi.system.setup.SystemSetup.export_package_list

Export image package list as metadata reference used by the open buildservice

Parameters

target_dir  () – path name

kiwi.system.setup.SystemSetup.export_package_verification

Export package verification result as metadata reference used by the open buildser-
vice

Parameters

target_dir  () – path name

kiwi.system.setup.SystemSetup.import_cdroot_files

Copy cdroot les from the image description to the specified target directory. Sup-
ported is a tar archive named config-cdroot.tar[.compression-postfix]

Parameters

target_dir  () – directory to unpack archive to

kiwi.system.setup.SystemSetup.import_description

Import XML descriptions, custom scripts, archives and script helper methods

kiwi.system.setup.SystemSetup.import_image_identifier

Create etc/ImageID identifier le

kiwi.system.setup.SystemSetup.import_overlay_files

Copy overlay les from the image description to the image root tree. Supported are
a root/ directory or a root.tar.gz tarball. The root/ directory takes precedence over
the tarball.
In addition the method also supports profile specific overlay les which are searched
in a directory of the same name as the profile name.
The overall order for including overlay les is as follows:

1. root/ dir or root.tar.gz

2. PROFILE_NAME/ dir(s) in the order of the selected profiles

Parameters

follow_links  () – follow symlinks true|false

preserve_owner_group  () – preserve permissions true|false

440 kiwi.system.setup Module



kiwi.system.setup.SystemSetup.import_repositories_marked_as_imageinclude

Those <repository> sections which are marked with the imageinclude attribute
should be permanently added to the image repository configuration

kiwi.system.setup.SystemSetup.script_exists

Check if provided script base name exists in the image description

Parameters

name  () – script base name

kiwi.system.setup.SystemSetup.set_selinux_file_contexts

Initialize the security context elds (extended attributes) on the les matching the
security_context_file

Parameters

security_context_file  () – path le name

kiwi.system.setup.SystemSetup.setup_groups

Add groups for configured users

kiwi.system.setup.SystemSetup.setup_keyboard_map

Setup console keyboard

kiwi.system.setup.SystemSetup.setup_locale

Setup UTF8 system wide locale

kiwi.system.setup.SystemSetup.setup_machine_id

Setup systemd machine id
There are various states of /etc/machine-id:

1. Does not exist: Triggers ConditionFirstBoot, but does not work if the filesystem
is initially read-only (booted without “rw”).

2. Exists, is empty: Does not trigger ConditionFirstBoot, but works with read-only
mounts.

3. Exists, contains the string “uninitialized”: Same as b), but triggers Condition-
FirstBoot. Supported by systemd v247+ only.

4. Exists, contains a valid ID.

See the machine-id(5) man page for details.

441 kiwi.system.setup Module



In images, d) is not desirable, so truncate the le. This is the previous behaviour and
what existing images expect. If the image has one of the other states, keep it as-is.

kiwi.system.setup.SystemSetup.setup_permissions

Check and Fix permissions using chkstat
Call chkstat in system mode which reads /etc/sysconfig/security to determine the
configured security level and applies the appropriate permission definitions from
the /etc/permissions* les. It’s possible to provide those les as overlay les in the
image description to apply a certain permission setup when needed. Otherwise the
default setup as provided on the package level applies.
It’s required that the image root system has chkstat installed. If not present KIWI
skips this step and continuous with a warning.

kiwi.system.setup.SystemSetup.setup_plymouth_splash

Setup the KIWI configured splash theme as default
The method uses the plymouth-set-default-theme tool to setup the theme for the
plymouth splash system. Only in case the tool could be found in the image root, it is
assumed plymouth splash is in use and the tool is called in a chroot operation

kiwi.system.setup.SystemSetup.setup_selinux_file_contexts

Set SELinux le security contexts if the default context le is found

kiwi.system.setup.SystemSetup.setup_timezone

Setup timezone symlink

kiwi.system.setup.SystemSetup.setup_users

Add/Modify configured users

13.23.10 kiwi.system.shell Module

kiwi.system.shell.Shell

Bases: object
Special character handling for shell evaluated code

kiwi.system.shell.Shell.format_to_variable_value

Format given variable value to return a string value representation that can be
sourced by shell scripts. If the provided value is not representable as a string (list,
dict, tuple etc) an exception is raised

442 kiwi.system.shell Module



Parameters

value  () – a python variable

Raises

kiwi.exceptions.KiwiShellVariableValueError   – if value is an iterable

Returns

string value representation

Return type

str

kiwi.system.shell.Shell.quote

Quote characters which have a special meaning for bash but should be used as normal
characters. actually I had planned to use pipes.quote but it does not quote as I had
expected it. e.g ‘name_wit_a_$’ does not quote the $ so we do it on our own for the
scope of kiwi

Parameters

message  () – message text

Returns

quoted text

Return type

str

kiwi.system.shell.Shell.quote_key_value_file

Quote given input le which has to be of the form key=value to be able to become
sourced by the shell

Parameters

filename  () – le path name

Returns

list of quoted text

Return type

List[str]

kiwi.system.shell.Shell.run_common_function

Run a function implemented in config/functions.sh

443 kiwi.system.shell Module



Parameters

name  () – function name

parameters  () – function arguments

13.23.11 kiwi.system.size Module

kiwi.system.size.SystemSize

Bases: object
Provide source tree size information

Parameters

source_dir  () – source directory path name

kiwi.system.size.SystemSize.accumulate_files

Calculate sum of all les in the source tree

Returns

number of les

Return type

int

kiwi.system.size.SystemSize.accumulate_mbyte_file_sizes

Calculate data size of all data in the source tree

Parameters

exclude  () – list of paths to exclude

Returns

mbytes

Return type

int

kiwi.system.size.SystemSize.customize

Increase the sum of all le sizes by an empiric factor
Each filesystem has some overhead it needs to manage itself. Thus the plain data size
is always smaller as the size of the container which embeds it. This method increases
the given size by a filesystem specific empiric factor to ensure the given data size can
be stored in a filesystem of the customized size

444 kiwi.system.size Module



Parameters

size  () – mbsize to update

requested_filesystem  () – filesystem name

Returns

mbytes

Return type

int

13.23.12 kiwi.system.uri Module

kiwi.system.uri.Uri

Bases: object
Normalize and manage URI types

kiwi.system.uri.Uri.alias

Create hex representation of uuid4
If the repository definition from the XML description does not provide an alias, kiwi
creates one for you. However it’s better to assign a human readable alias in the XML
configuration

Returns

alias name as hex representation of uuid4

Return type

str

kiwi.system.uri.Uri.credentials_file_name

Filename to store repository credentials

Returns

credentials le name

Return type

str

kiwi.system.uri.Uri.get_fragment

Returns the fragment part of the URI.

445 kiwi.system.uri Module



Returns

fragment part of the URI if any, empty string otherwise

Return type

str

kiwi.system.uri.Uri.is_public

Check if URI is considered to be publicly reachable

Returns

True|False

Return type

bool

kiwi.system.uri.Uri.is_remote

Check if URI is a remote or local location

Returns

True|False

Return type

bool

kiwi.system.uri.Uri.print_sensitive

kiwi.system.uri.Uri.translate

Translate repository location according to their URI type
Depending on the URI type the provided location needs to be adapted e.g updated
by the service URL in case of an open buildservice project name

Raises

kiwi.exceptions.KiwiUriStyleUnknown   – if the uri scheme can’t be detect-
ed, is unknown or it is inconsistent with the build environment

Parameters

check_build_environment  () – specify if the uri translation should depend on
the environment the build is called in. As of today this only effects the transla-
tion result if the image build happens inside of the Open Build Service

Returns

translated repository location

446 kiwi.system.uri Module



Return type

str

13.23.13 kiwi.system.users Module

kiwi.system.users.Users

Bases: object
Operations on users and groups in a root directory

Parameters

root_dir  () – root directory path name

kiwi.system.users.Users.group_add

Add group with options

Parameters

group_name  () – group name

options  () – groupadd options

kiwi.system.users.Users.group_exists

Check if group exists

Parameters

group_name  () – group name

Returns

True|False

Return type

bool

kiwi.system.users.Users.setup_home_for_user

Setup user home directory

Parameters

user_name  () – user name

group_name  () – group name

home_path  () – path name

447 kiwi.system.users Module



kiwi.system.users.Users.user_add

Add user with options

Parameters

user_name  () – user name

options  () – useradd options

kiwi.system.users.Users.user_exists

Check if user exists

Parameters

user_name  () – user name

Returns

True|False

Return type

bool

kiwi.system.users.Users.user_modify

Modify user with options

Parameters

user_name  () – user name

options  () – usermod options

448 kiwi.system.users Module



13.23.14 Module Contents

13.24 kiwi.tasks package

13.24.1 Submodules

13.24.2 kiwi.tasks.base Module

kiwi.tasks.base.CliTask

Bases: object
Base class for all task classes, loads the task and provides the interface to the command
options and the XML description
Attributes

should_perform_task_setup

Indicates if the task should perform the setup steps which covers the following
task configurations: * setup debug level * setup logfile * setup color output

kiwi.tasks.base.CliTask.load_xml_description

Load, upgrade, validate XML description

Parameters

description_directory  () – Path to the image description

kiwi_file  () – Basename of kiwi le which contains the main image
configuration elements. If not specified kiwi searches for a le named
config.xml or a le matching .kiwi

kiwi.tasks.base.CliTask.quadruple_token

Helper method for commandline options of the form –option a,b,c,d
Make sure to provide a common result for option values which separates the infor-
mation in a comma separated list of values

Parameters

option  () – comma separated option string

449 Module Contents



Returns

common option value representation

Return type

list

kiwi.tasks.base.CliTask.run_checks

This method runs the given runtime checks excluding the ones disabled in the runtime
configuration le.

Parameters

checks  () – A dictionary with the runtime method names as keys and their
arguments list as the values.

kiwi.tasks.base.CliTask.tentuple_token

Helper method for commandline options of the form –option a,b,c,d,e,f,g,h,i,j
Make sure to provide a common result for option values which separates the infor-
mation in a comma separated list of values

Parameters

option  () – comma separated option string

Returns

common option value representation

Return type

list

13.24.3 kiwi.tasks.result_bundle Module

kiwi.tasks.result_bundle.ResultBundleTask

Bases: CliTask  (#kiwi.tasks.base.CliTask)

Implements result bundler
Attributes

450 kiwi.tasks.result_bundle Module

#kiwi.tasks.base.CliTask


manual

Instance of Help

kiwi.tasks.result_bundle.ResultBundleTask.process

Create result bundle from the image build results in the specified target directory.
Each result image will contain the specified bundle identifier as part of its filename.
Uncompressed image les will also become xz compressed and a sha sum will be
created from every result image

13.24.4 kiwi.tasks.result_list Module

kiwi.tasks.result_list.ResultListTask

Bases: CliTask  (#kiwi.tasks.base.CliTask)

Implements result listing
Attributes

manual

Instance of Help

kiwi.tasks.result_list.ResultListTask.process

List result information from a previous system command

13.24.5 kiwi.tasks.system_build Module

kiwi.tasks.system_build.SystemBuildTask

Bases: CliTask  (#kiwi.tasks.base.CliTask)

Implements building of system images
Attributes

manual

Instance of Help

kiwi.tasks.system_build.SystemBuildTask.process

Build a system image from the specified description. The build command combines
the prepare and create commands

451 kiwi.tasks.result_list Module

#kiwi.tasks.base.CliTask
#kiwi.tasks.base.CliTask


13.24.6 kiwi.tasks.system_create Module

kiwi.tasks.system_create.SystemCreateTask

Bases: CliTask  (#kiwi.tasks.base.CliTask)

Implements creation of system images
Attributes

manual

Instance of Help

kiwi.tasks.system_create.SystemCreateTask.process

Create a system image from the specified root directory the root directory is the result
of a system prepare command

13.24.7 kiwi.tasks.system_prepare Module

kiwi.tasks.system_prepare.SystemPrepareTask

Bases: CliTask  (#kiwi.tasks.base.CliTask)

Implements preparation and installation of a new root system
Attributes

manual

Instance of Help

kiwi.tasks.system_prepare.SystemPrepareTask.process

Prepare and install a new system for chroot access

13.24.8 kiwi.tasks.system_update Module

kiwi.tasks.system_update.SystemUpdateTask

Bases: CliTask  (#kiwi.tasks.base.CliTask)

Implements update and maintenance of root systems
Attributes

452 kiwi.tasks.system_create Module

#kiwi.tasks.base.CliTask
#kiwi.tasks.base.CliTask
#kiwi.tasks.base.CliTask


manual

Instance of Help

kiwi.tasks.system_update.SystemUpdateTask.process

Update root system with latest repository updates and optionally allow to add or
delete packages. the options to add or delete packages can be used multiple times

13.24.9 Module Contents

13.25 kiwi.utils Package

13.25.1 Submodules

13.25.2 kiwi.utils.checksum Module

kiwi.utils.block.BlockID

Bases: object
Get information from a block device

Parameters

device  () – block device node name name. The device can also be specified as
UUID=<uuid>

kiwi.utils.block.BlockID.get_blkid

Retrieve information for specified metadata ID from block device

Parameters

id_type  () – metadata ID, see man blkid for details

Returns

ID of the block device

Return type

str

453 Module Contents



kiwi.utils.block.BlockID.get_filesystem

Retrieve filesystem type from block device

Returns

filesystem type

Return type

str

kiwi.utils.block.BlockID.get_label

Retrieve filesystem label from block device

Returns

block device label

Return type

str

kiwi.utils.block.BlockID.get_partition_count

Retrieve number of partitions from block device

Returns

A number

Return type

int

kiwi.utils.block.BlockID.get_uuid

Retrieve filesystem uuid from block device

Returns

uuid for the filesystem of the block device

Return type

str

13.25.3 kiwi.utils.block Module

kiwi.utils.checksum.Checksum

Bases: object
Manage checksum creation for les

454 kiwi.utils.block Module



Parameters

source_filename  () – source le name to build checksum for

checksum_filename  () – target le with checksum information

kiwi.utils.checksum.Checksum.matches

Compare given checksum with reference checksum stored in the provided filename.
If the checksum matches the method returns True, or False in case it does not match

Parameters

checksum  () – checksum string to compare

filename  () – filename containing checksum

Returns

True or False

Return type

bool

kiwi.utils.checksum.Checksum.md5

Create md5 checksum

Parameters

filename  () – filename for checksum

Returns

checksum

Return type

str

kiwi.utils.checksum.Checksum.sha256

Create sha256 checksum

Parameters

filename  () – filename for checksum

13.25.4 kiwi.utils.compress Module

kiwi.utils.compress.Compress

Bases: object

455 kiwi.utils.compress Module



File compression / decompression

Parameters

keep_source  () – Request to keep the uncompressed source

source_filename  () – Source le name to compress

supported_zipper  () – List of supported compression tools

compressed_filename  () – Compressed le name path with compression suffix

uncompressed_filename  () – Uncompressed le name path

kiwi.utils.compress.Compress.get_format

Detect compression format

Returns

compression format name or None if it couldn’t be inferred

Return type

Optional[str]

kiwi.utils.compress.Compress.gzip

Create gzip(max compression) compressed le

kiwi.utils.compress.Compress.uncompress

Uncompress with format autodetection
By default the original source le will be changed into the uncompressed variant. If
temporary is set to True a temporary le is created instead

Parameters

temporary  () – uncompress to a temporary le

kiwi.utils.compress.Compress.xz

Create XZ compressed le

Parameters

options  () – custom xz compression options

13.25.5 kiwi.utils.sync Module

kiwi.utils.sync.DataSync

Bases: object

456 kiwi.utils.sync Module



Sync data from a source directory to a target directory

kiwi.utils.sync.DataSync.sync_data

Sync data from source to target using the rsync protocol

Parameters

options  () – rsync options

exclude  () – le patterns to exclude

force_trailing_slash  () – add ‘/’ to source_dir if not present

A speciality of the rsync tool is that it behaves differently if the given source_dir ends
with a ‘/’ or not. If it ends with a slash the data structure below will be synced to the
target_dir. If it does not end with a slash the source_dir and its contents are synced
to the target_dir. For example

source
  └── some_data

1. $ rsync -a source target

target
  └── source
        └── some_data

2. $ rsync -a source/ target

target
  └── some_data

The parameter force_trailing_slash can be used to make sure rsync behaves like shown
in the second case. If set to true a ‘/’ is appended to the given source_dir if not already
present

kiwi.utils.sync.DataSync.target_supports_extended_attributes

Check if the target directory supports extended filesystem attributes

Returns

True or False

Return type

bool

457 kiwi.utils.sync Module



13.25.6 kiwi.utils.sysconfig Module

kiwi.utils.sysconfig.SysConfig

Bases: object
Read and Write sysconfig style les

Parameters

source_file  () – source le path

kiwi.utils.sysconfig.SysConfig.get

kiwi.utils.sysconfig.SysConfig.write

Write back source le with changed content but in same order

13.25.7 Module Contents

13.26 kiwi.volume_manager Package

13.26.1 Submodules

13.26.2 kiwi.volume_manager.base Module

kiwi.volume_manager.base.VolumeManagerBase

Bases:  kiwi.storage.device_provider.DeviceProvider
Implements base class for volume management interface

Parameters

mountpoint  () – root mountpoint for volumes

device_map  () – dictionary of low level DeviceProvider intances

root_dir  () – root directory path name

volumes  () – list of volumes from XMLState::get_volumes()

458 kiwi.utils.sysconfig Module



volume_group  () – volume group name

volume_map  () – map volume name to device node

mount_list  () – list of volume MountManager’s

device  () – storage device node name

custom_args  () – custom volume manager arguments for all volume manager
and filesystem specific tasks

custom_filesystem_args  () – custom filesystem creation and mount argu-
ments, subset of the custom_args information suitable to be passed to a FileSys-
tem instance

Raises

kiwi.exceptions.KiwiVolumeManagerSetupError   – if the given root_dir doesn’t
exist

kiwi.volume_manager.base.VolumeManagerBase.apply_attributes_on_volume

kiwi.volume_manager.base.VolumeManagerBase.create_verification_metadata

Write verification block on LVM devices is not supported

kiwi.volume_manager.base.VolumeManagerBase.create_verity_layer

veritysetup on LVM devices is not supported

kiwi.volume_manager.base.VolumeManagerBase.create_volume_paths_in_root_dir

Implements creation of volume paths in the given root directory

kiwi.volume_manager.base.VolumeManagerBase.create_volumes

Implements creation of volumes
Implementation in specialized volume manager class required

Parameters

filesystem_name  () – unused

kiwi.volume_manager.base.VolumeManagerBase.get_canonical_volume_list

Implements hierarchical sorting of volumes according to their paths and provides
information about the volume configured as the one eating all the rest space

Returns

list of canonical_volume_type tuples

459 kiwi.volume_manager.base Module



Return type

list

kiwi.volume_manager.base.VolumeManagerBase.get_device

Return current DeviceProvider dictionary

Returns

device_map

Return type

dict

kiwi.volume_manager.base.VolumeManagerBase.get_fstab

Implements setup of the fstab entries. The method should return a list of fstab com-
patible entries

Parameters

persistency_type  () – unused

filesystem_name  () – unused

kiwi.volume_manager.base.VolumeManagerBase.get_mountpoint

Provides mount point directory
Effective use of the directory is guaranteed only after sync_data

Returns

directory path name

Return type

string

kiwi.volume_manager.base.VolumeManagerBase.get_root_volume_name

Provides name of the root volume
This is by default set to ‘/’. Volume Managers that supports the concept of sub-vol-
umes overrides this method

Returns

directory path name

Return type

string

460 kiwi.volume_manager.base Module



kiwi.volume_manager.base.VolumeManagerBase.get_volume_mbsize

Implements size lookup for the given path and desired filesystem according to the
specified size type

Parameters

volume  () – volume to check size for

all_volumes  () – list of all volume tuples

filesystem_name  () – filesystem name

resize_on_boot  – specify the time of the resize. If the resize happens at
boot time the volume size is only the minimum size to just store the data. If
the volume size is xed and does not change at boot time the returned size
is the requested size which can be greater than the minimum needed size.

Returns

mbsize

Return type

int

kiwi.volume_manager.base.VolumeManagerBase.get_volumes

Implements return of dictionary of volumes and their mount options

kiwi.volume_manager.base.VolumeManagerBase.is_loop

Check if storage provider is loop based
The information is taken from the storage provider. If the storage provider is loop
based the volume manager is it too

Returns

True of False

Return type

bool

kiwi.volume_manager.base.VolumeManagerBase.mount_volumes

Implements mounting of all volumes below one master directory
Implementation in specialized volume manager class required

kiwi.volume_manager.base.VolumeManagerBase.post_init

Post initialization method

461 kiwi.volume_manager.base Module



Implementation in specialized volume manager class if required

Parameters

custom_args  () – unused

kiwi.volume_manager.base.VolumeManagerBase.set_property_readonly_root

Implements setup of read-only root property

kiwi.volume_manager.base.VolumeManagerBase.setup

Implements setup required prior to the creation of volumes
Implementation in specialized volume manager class required

Parameters

name  () – unused

kiwi.volume_manager.base.VolumeManagerBase.setup_mountpoint

Implements creation of a master directory holding the mounts of all volumes

kiwi.volume_manager.base.VolumeManagerBase.sync_data

Implements sync of root directory to mounted volumes

Parameters

exclude  () – le patterns to exclude

kiwi.volume_manager.base.VolumeManagerBase.umount_volumes

Implements umounting of all volumes
Implementation in specialized volume manager class required

13.26.3 kiwi.volume_manager.btrfs Module

kiwi.volume_manager.btrfs.VolumeManagerBtrfs

Bases: VolumeManagerBase  (#kiwi.volume_manager.base.VolumeManagerBase)

Implements btrfs sub-volume management

Parameters

subvol_mount_list  () – list of mounted btrfs subvolumes

toplevel_mount  () – MountManager  for root mountpoint

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.create_volumes

Create configured btrfs subvolumes

462 kiwi.volume_manager.btrfs Module

#kiwi.volume_manager.base.VolumeManagerBase


Any btrfs subvolume is of the same btrfs filesystem. There is no way to have different
filesystems per btrfs subvolume. Thus the filesystem_name has no effect for btrfs

Parameters

filesystem_name  () – unused

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.get_fstab

Implements creation of the fstab entries. The method returns a list of fstab compatible
entries

Parameters

persistency_type  () – by-label | by-uuid

filesystem_name  () – unused

Returns

list of fstab entries

Return type

list

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.get_mountpoint

Provides btrfs root mount point directory
Effective use of the directory is guaranteed only after sync_data

Returns

directory path name

Return type

string

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.get_root_volume_name

Provides name of the root volume

Returns

directory path name

Return type

string

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.get_volumes

Return dict of volumes

463 kiwi.volume_manager.btrfs Module



Returns

volumes dictionary

Return type

dict

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.mount_volumes

Mount btrfs subvolumes

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.post_init

Post initialization method
Store custom btrfs initialization arguments

Parameters

custom_args  () – custom btrfs volume manager arguments

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.set_property_readonly_root

Sets the root volume to be a readonly filesystem

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.setup

Setup btrfs volume management
In case of btrfs an optional toplevel subvolume is created and marked as default
volume. If snapshots are activated via the custom_args the setup method also creates
the .snapshots/1/snapshot subvolumes. There is no concept of a volume manager
name, thus the name argument is not used for btrfs

Parameters

name  () – unused

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.sync_data

Sync data into btrfs filesystem
If snapshots are activated the root filesystem is synced into the rst snapshot

Parameters

exclude  () – les to exclude from sync

kiwi.volume_manager.btrfs.VolumeManagerBtrfs.umount_volumes

Umount btrfs subvolumes

Returns

True if all subvolumes are successfully unmounted

464 kiwi.volume_manager.btrfs Module



Return type

bool

13.26.4 kiwi.volume_manager.lvm Module

kiwi.volume_manager.lvm.VolumeManagerLVM

Bases: VolumeManagerBase  (#kiwi.volume_manager.base.VolumeManagerBase)

Implements LVM volume management

kiwi.volume_manager.lvm.VolumeManagerLVM.create_volumes

Create configured lvm volumes and filesystems
All volumes receive the same filesystem

Parameters

filesystem_name  () – volumes filesystem name

kiwi.volume_manager.lvm.VolumeManagerLVM.get_device

Dictionary of MappedDevice instances per volume
Note: The mapping requires an explicit create_volumes() call

Returns

root plus volume device map

Return type

dict

kiwi.volume_manager.lvm.VolumeManagerLVM.get_fstab

Implements creation of the fstab entries. The method returns a list of fstab compatible
entries

Parameters

persistency_type  () – unused

filesystem_name  () – volumes filesystem name

Returns

fstab entries

Return type

list

465 kiwi.volume_manager.lvm Module

#kiwi.volume_manager.base.VolumeManagerBase


kiwi.volume_manager.lvm.VolumeManagerLVM.get_volumes

Return dict of volumes

Returns

volumes dictionary

Return type

dict

kiwi.volume_manager.lvm.VolumeManagerLVM.mount_volumes

Mount lvm volumes

kiwi.volume_manager.lvm.VolumeManagerLVM.post_init

Post initialization method
Store custom lvm initialization arguments

Parameters

custom_args  () – custom lvm volume manager arguments

kiwi.volume_manager.lvm.VolumeManagerLVM.setup

Setup lvm volume management
In case of LVM a new volume group is created on a PV initialized storage device

Parameters

name  () – volume group name

kiwi.volume_manager.lvm.VolumeManagerLVM.umount_volumes

Umount lvm volumes

Returns

True if all subvolumes are successfully unmounted

Return type

bool

13.26.5 Module Contents

kiwi.volume_manager.VolumeManager

Bases: object
VolumeManager factory

466 Module Contents



Parameters

name  () – volume management name

device_map  () – dictionary of low level DeviceProvider intances

root_dir  () – root directory path name

volumes  () – list of volumes from XMLState::get_volumes()

custom_args  () – dictionary of custom volume manager arguments

kiwi.volume_manager.VolumeManager.new

467 Module Contents


	Building Linux System Appliances with KIWI Next Generation (KIWI NG) 9.25.12
	Contents
	Preface
	1. The Appliance Concept
	2. Use Cases
	3. Contact

	Chapter 1. Overview
	1.1. Basic Workflow
	1.1.1. Components of an Image Description

	1.2. Conceptual Overview
	1.3. Terminology
	1.4. System Requirements

	Chapter 2. Installation
	2.1. Installation from OBS
	2.2. Installation from Distribution Repositories
	2.3. Installation for SUSE Linux Enterprise
	2.4. Example Appliance Descriptions

	Chapter 3. Quick Start
	3.1. Before you start
	3.2. Choose a First Image
	3.3. Build your First Image
	3.4. Run your Image
	3.5. Tweak and Customize your Image

	Chapter 4. Working from the Command Line
	4.1. kiwi-ng
	4.1.1. SYNOPSIS
	4.1.2. DESCRIPTION
	4.1.3. GLOBAL OPTIONS
	4.1.4. EXAMPLE

	4.2. kiwi-ng result list
	4.2.1. SYNOPSIS
	4.2.2. DESCRIPTION
	4.2.3. OPTIONS

	4.3. kiwi-ng result bundle
	4.3.1. SYNOPSIS
	4.3.2. DESCRIPTION
	4.3.3. OPTIONS

	4.4. kiwi-ng system prepare
	4.4.1. SYNOPSIS
	4.4.2. DESCRIPTION
	4.4.3. OPTIONS

	4.5. kiwi-ng system update
	4.5.1. SYNOPSIS
	4.5.2. DESCRIPTION
	4.5.3. OPTIONS

	4.6. kiwi-ng system build
	4.6.1. SYNOPSIS
	4.6.2. DESCRIPTION
	4.6.3. OPTIONS
	4.6.4. URI_TYPES

	4.7. kiwi-ng system create
	4.7.1. SYNOPSIS
	4.7.2. DESCRIPTION
	4.7.3. OPTIONS

	4.8. kiwi-ng image resize
	4.8.1. SYNOPSIS
	4.8.2. DESCRIPTION
	4.8.3. OPTIONS

	4.9. kiwi-ng image info
	4.9.1. SYNOPSIS
	4.9.2. DESCRIPTION
	4.9.3. OPTIONS


	Chapter 5. Troubleshooting
	5.1. Build Host Constraints
	5.2. Architectures
	5.3. Host Security Settings Conflicts with KIWI
	5.4. Incompatible Filesystem Settings on Host vs. Image

	Chapter 6. KIWI Plugins
	6.1. Building in a Self-Contained Environment
	6.1.1. Requirements
	6.1.2. Building with the boxbuild command
	6.1.3. Sharing Backends

	6.2. Building based on Containers
	6.2.1. Installation
	6.2.2. Concept
	6.2.3. Create a stash
	6.2.4. Rebuild from a stash
	6.2.5. Turn a container into a VM image


	Chapter 7. Concept and Workflow
	7.1. Host Requirements To Build Images
	7.2. Setting up Repositories
	7.2.1. Adding repositories
	7.2.1.1. Supported repository paths


	7.3. Adding and Removing Packages
	7.3.1. The package element
	7.3.2. The archive element
	7.3.3. Uninstall System Packages
	7.3.4. The product and namedCollection element
	7.3.5. The ignore element

	7.4. Image Profiles
	7.5. Adding Users
	7.6. User Defined Scripts
	7.6.1. Developing/Debugging Scripts
	7.6.1.1. Script Template for config.sh / images.sh
	7.6.1.2. Functions and Variables Provided by KIWI NG
	7.6.1.2.1. Functions
	7.6.1.2.2. Profile Environment Variables

	7.6.1.3. Configuration Tips


	7.7. The Runtime Configuration File
	7.8. Customizing the Boot Process
	7.8.1. Boot Image Hook-Scripts
	7.8.2. Boot Image Parameters
	7.8.2.1. Boot Debugging


	7.9. Overview
	7.10. Image Building Process
	7.10.1. The Prepare Step
	7.10.2. The Create Step


	Chapter 8. Image Description
	8.1. Image Description Elements
	8.1.1. <image>
	8.1.2. <include>
	8.1.3. <description>
	8.1.4. <preferences>
	8.1.4.1. <preferences><version>
	8.1.4.2. <preferences><packagemanager>
	8.1.4.3. <preferences><rpm-locale-filtering>
	8.1.4.4. <preferences><rpm-check-signatures>
	8.1.4.5. <preferences><rpm-excludedocs>
	8.1.4.6. <preferences><keytable>
	8.1.4.7. <preferences><timezone>
	8.1.4.8. <preferences><locale>
	8.1.4.9. <preferences><bootsplash-theme>
	8.1.4.10. <preferences><bootloader-theme>
	8.1.4.11. <preferences><release-version>
	8.1.4.12. <preferences><type>
	8.1.4.13. <preferences><type><luksformat>
	8.1.4.14. <preferences><type><bootloader>
	8.1.4.15. <preferences><type><containerconfig>
	8.1.4.16. <preferences><type><vagrantconfig>
	8.1.4.17. <preferences><type><systemdisk>
	8.1.4.18. <preferences><type><bootloader><bootloadersettings>
	8.1.4.19. <preferences><type><partitions>
	8.1.4.20. <preferences><type><oemconfig>
	8.1.4.21. <preferences><type><size>
	8.1.4.22. <preferences><type><machine>
	8.1.4.23. <preferences><type><installmedia>

	8.1.5. <repository>
	8.1.5.1. <repository><source>

	8.1.6. <packages>
	8.1.6.1. <packages><package>
	8.1.6.2. <packages><namedCollection>
	8.1.6.3. <packages><collectionModule>
	8.1.6.4. <packages><archive>
	8.1.6.5. <packages><ignore>
	8.1.6.6. <packages><product>

	8.1.7. <users>
	8.1.8. <profiles>

	8.2. Main Root
	8.3. Image Identity
	8.4. Image Preferences
	8.5. Image Software Sources
	8.6. Image Content Setup
	8.7. Image Users
	8.8. Image Namespace
	8.9. Image Includes

	Chapter 9. Image Types
	9.1. Image Results
	9.2. Image Bundle Format

	Chapter 10. Building Images for Supported Types
	10.1. Build an ISO Hybrid Live Image
	10.1.1. Decision for a live ISO technology

	10.2. Build a Virtual Disk Image
	10.2.1. Setting up the Bootloader of the Image
	10.2.2. Modifying the Size of the Image
	10.2.3. Customizing the Virtual Machine
	10.2.3.1. Modifying the VM Configuration Directly
	10.2.3.2. Adding Network Interfaces to the VM
	10.2.3.3. Specifying Disks and Disk Controllers
	10.2.3.4. Adding CD/DVD Drives


	10.3. Build an Expandable Disk Image
	10.3.1. Deployment Methods
	10.3.2. Manual Deployment
	10.3.3. CD/DVD Deployment
	10.3.4. Network Deployment
	10.3.5. OEM Customization
	10.3.6. Installation Media Customization

	10.4. Build a Container Image
	10.5. Build a WSL Container Image
	10.5.1. Setup of the WSL-DistroLauncher
	10.5.2. Testing the WSL image

	10.6. Build KIS Image (Kernel, Initrd, System)

	Chapter 11. Working with Images
	11.1. Deploy ISO Image on an USB Stick
	11.2. Deploy ISO Image as File on a FAT32 Formated USB Stick
	11.3. Booting a Live ISO Images from Grub2
	11.4. Image Description for Amazon EC2
	11.5. Image Description for Microsoft Azure
	11.6. Image Description for Google Compute Engine
	11.7. Image Description for Vagrant
	11.7.1. Customizing the embedded Vagrantfile

	11.8. Image Description Encrypted Disk
	11.9. Deploy and Run System in a RamDisk
	11.10. Custom Disk Partitions
	11.11. Custom Disk Volumes
	11.12. Partition Clones
	11.12.1. Use Case

	11.13. Setting Up a Network Boot Server
	11.13.1. Installing and Configuring DHCP and TFTP with dnsmasq

	11.14. Build PXE Root File System Image for the legacy netboot infrastructure
	11.14.1. PXE Client Setup Configuration
	11.14.1.1. Setup Client with Remote Root
	11.14.1.2. Setup Client with System on Local Disk
	11.14.1.3. Setup Client with System on Local MD RAID Disk
	11.14.1.4. Setup Loading of Custom Configuration File(s)
	11.14.1.5. Setup Client to Force Reload Image
	11.14.1.6. Setup Client to Force Reload Configuration Files
	11.14.1.7. Setup Client for Reboot After Deployment
	11.14.1.8. Setup custom kernel boot options
	11.14.1.9. Setup a Custom Boot Timeout
	11.14.1.10. Setup a Different Download Protocol and Server


	11.15. Booting a Root Filesystem from Network
	11.16. Booting a Live ISO Image from Network
	11.17. Setting Up YaST at First Boot
	11.18. Add or Update the Fstab File
	11.19. Building Images with Profiles
	11.19.1. Local Builds
	11.19.2. Building with the Open Build Service

	11.20. Building in the Open Build Service
	11.20.1. Advantages of using the Open Build Service (OBS)
	11.20.2. Differences Between Building Locally and on OBS
	11.20.3. Recommendations
	11.20.3.1. Working with OBS
	11.20.3.2. Repository Configuration
	11.20.3.3. Project Configuration


	11.21. Using SUSE Product ISO To Build
	11.22. Circumvent debootstrap
	11.22.1. How to Create a bootstrap_package


	Chapter 12. Contributing
	12.1. Using KIWI NG in a Python Project
	12.2. Plugin Architecture
	12.2.1. Naming Conventions
	12.2.2. Example Plugin

	12.3. Write Integration Tests for the Scripts
	12.3.1. Test Setup

	12.4. Extending KIWI NG with Custom Operations
	12.4.1. The <extension> Section
	12.4.2. RELAX NG Schema for the Extension
	12.4.3. Extension Schema in XML catalog
	12.4.4. Using the Extension

	12.5. The Basics
	12.6. Fork the upstream repository
	12.7. Create a local clone of the forked repository
	12.8. Install Required Operating System Packages
	12.9. Create a Python Virtual Development Environment
	12.10. Running the Unit Tests
	12.11. Create a Branch for each Feature or Bugfix
	12.12. Coding Style
	12.12.1. Documentation

	12.13. Additional Information
	12.13.1. Signing Git Patches
	12.13.2. Bumping the Version
	12.13.3. Creating a RPM Package


	Chapter 13. Python API
	13.1. kiwi Package
	13.1.1. Submodules
	13.1.2. kiwi.app Module
	13.1.3. kiwi.cli Module
	13.1.4. kiwi.command Module
	13.1.5. kiwi.command_process Module
	13.1.6. kiwi.defaults Module
	13.1.7. kiwi.exceptions Module
	13.1.8. kiwi.firmware Module
	13.1.9. kiwi.help Module
	13.1.10. kiwi.kiwi Module
	13.1.11. kiwi.logger Module
	13.1.12. kiwi.logger_color_formatter Module
	13.1.13. kiwi.logger_filter Module
	13.1.14. kiwi.mount_manager Module
	13.1.15. kiwi.path Module
	13.1.16. kiwi.privileges Module
	13.1.17. kiwi.runtime_checker Module
	13.1.18. kiwi.runtime_config Module
	13.1.19. kiwi.version Module
	13.1.20. kiwi.xml_description Module
	13.1.21. kiwi.xml_state Module
	13.1.22. Module Contents

	13.2. kiwi.archive Package
	13.2.1. Submodules
	13.2.2. kiwi.archive.cpio Module
	13.2.3. kiwi.archive.tar Module
	13.2.4. Module Contents

	13.3. kiwi.boot.image Package
	13.3.1. Submodules
	13.3.2. kiwi.boot.image.base Module
	13.3.3. kiwi.boot.image.dracut Module
	13.3.4. kiwi.boot.image.builtin_kiwi Module
	13.3.5. Module Contents

	13.4. kiwi.bootloader.config Package
	13.4.1. Submodules
	13.4.2. kiwi.bootloader.config.base Module
	13.4.3. kiwi.bootloader.config.grub2 Module
	13.4.4. kiwi.bootloader.config.isolinux Module
	13.4.5. Module Contents

	13.5. kiwi.bootloader.install Package
	13.5.1. Submodules
	13.5.2. kiwi.bootloader.install.base Module
	13.5.3. kiwi.bootloader.install.grub2 Module
	13.5.4. Module Contents

	13.6. kiwi.bootloader Package
	13.6.1. Module Contents

	13.7. kiwi.bootloader.template Package
	13.7.1. Submodules
	13.7.2. kiwi.bootloader.template.grub2 Module
	13.7.3. kiwi.bootloader.template.isolinux Module
	13.7.4. Module Contents

	13.8. kiwi.boot Package
	13.8.1. Module Contents

	13.9. kiwi.builder Package
	13.9.1. Submodules
	13.9.2. kiwi.builder.archive Module
	13.9.3. kiwi.builder.container Module
	13.9.4. kiwi.builder.disk Module
	13.9.5. kiwi.builder.filesystem Module
	13.9.6. kiwi.builder.install Module
	13.9.7. kiwi.builder.live Module
	13.9.8. kiwi.builder.kis Module
	13.9.9. Module Contents

	13.10. kiwi.container Package
	13.10.1. Submodules
	13.10.2. kiwi.container.oci Module
	13.10.3. Module Contents

	13.11. kiwi.container.setup Package
	13.11.1. Submodules
	13.11.2. kiwi.container.setup.base Module
	13.11.3. kiwi.container.setup.docker Module
	13.11.4. Module Contents

	13.12. kiwi.filesystem Package
	13.12.1. Submodules
	13.12.2. kiwi.filesystem.base Module
	13.12.3. kiwi.filesystem.btrfs Module
	13.12.4. kiwi.filesystem.clicfs Module
	13.12.5. kiwi.filesystem.ext2 Module
	13.12.6. kiwi.filesystem.ext3 Module
	13.12.7. kiwi.filesystem.ext4 Module
	13.12.8. kiwi.filesystem.fat16 Module
	13.12.9. kiwi.filesystem.fat32 Module
	13.12.10. kiwi.filesystem.isofs Module
	13.12.11. kiwi.filesystem.setup Module
	13.12.12. kiwi.filesystem.squashfs Module
	13.12.13. kiwi.filesystem.xfs Module
	13.12.14. Module Contents

	13.13. kiwi.iso_tools Package
	13.13.1. Submodules
	13.13.2. kiwi.iso_tools.base Module
	13.13.3. kiwi.iso_tools.xorriso Module
	13.13.4. kiwi.iso_tools.iso Module
	13.13.5. Module Contents

	13.14. kiwi.package_manager Package
	13.14.1. Submodules
	13.14.2. kiwi.package_manager.base Module
	13.14.3. kiwi.package_manager.dnf4 Module
	13.14.4. kiwi.package_manager.zypper Module
	13.14.5. Module Contents

	13.15. kiwi.partitioner Package
	13.15.1. Submodules
	13.15.2. kiwi.partitioner.base Module
	13.15.3. kiwi.partitioner.dasd Module
	13.15.4. kiwi.partitioner.gpt Module
	13.15.5. kiwi.partitioner.msdos Module
	13.15.6. Module Contents

	13.16. kiwi.repository Package
	13.16.1. Submodules
	13.16.2. kiwi.repository.base Module
	13.16.3. kiwi.repository.dnf4 Module
	13.16.4. kiwi.repository.zypper Module
	13.16.5. Module Contents

	13.17. kiwi.repository.template Package
	13.17.1. Submodules
	13.17.2. kiwi.repository.template.apt Module
	13.17.3. Module Contents

	13.18. kiwi.solver.repository Package
	13.18.1. Submodules
	13.18.2. kiwi.solver.repository.base Module
	13.18.3. Module Contents

	13.19. kiwi.solver Package
	13.19.1. Submodules
	13.19.2. kiwi.solver.sat Module
	13.19.3. Module Contents

	13.20. kiwi.storage Package
	13.20.1. Submodules
	13.20.2. kiwi.storage.device_provider Module
	13.20.3. kiwi.storage.disk Module
	13.20.4. kiwi.storage.loop_device Module
	13.20.5. kiwi.storage.luks_device Module
	13.20.6. kiwi.storage.mapped_device Module
	13.20.7. kiwi.storage.raid_device Module
	13.20.8. kiwi.storage.clone_device Module
	13.20.9. kiwi.storage.setup Module
	13.20.10. Module Contents

	13.21. kiwi.storage.subformat Package
	13.21.1. Submodules
	13.21.2. kiwi.storage.subformat.base Module
	13.21.3. kiwi.storage.subformat.gce Module
	13.21.4. kiwi.storage.subformat.ova Module
	13.21.5. kiwi.storage.subformat.qcow2 Module
	13.21.6. kiwi.storage.subformat.vagrant_base Module
	13.21.7. kiwi.storage.subformat.vagrant_libvirt Module
	13.21.8. kiwi.storage.subformat.vagrant_virtualbox Module
	13.21.9. kiwi.storage.subformat.vdi Module
	13.21.10. kiwi.storage.subformat.vhd Module
	13.21.11. kiwi.storage.subformat.vhdfixed Module
	13.21.12. kiwi.storage.subformat.vhdx Module
	13.21.13. kiwi.storage.subformat.vmdk Module
	13.21.14. Module Contents

	13.22. kiwi.storage.subformat.template Package
	13.22.1. Submodules
	13.22.2. kiwi.storage.subformat.template.vmware_settings Module
	13.22.3. kiwi.storage.subformat.template.vagrant_config Module
	13.22.4. kiwi.storage.subformat.template.virtualbox_ovf Module
	13.22.5. Module contents

	13.23. kiwi.system Package
	13.23.1. Submodules
	13.23.2. kiwi.system.identifier Module
	13.23.3. kiwi.system.kernel Module
	13.23.4. kiwi.system.prepare Module
	13.23.5. kiwi.system.profile Module
	13.23.6. kiwi.system.result Module
	13.23.7. kiwi.system.root_bind Module
	13.23.8. kiwi.system.root_init Module
	13.23.9. kiwi.system.setup Module
	13.23.10. kiwi.system.shell Module
	13.23.11. kiwi.system.size Module
	13.23.12. kiwi.system.uri Module
	13.23.13. kiwi.system.users Module
	13.23.14. Module Contents

	13.24. kiwi.tasks package
	13.24.1. Submodules
	13.24.2. kiwi.tasks.base Module
	13.24.3. kiwi.tasks.result_bundle Module
	13.24.4. kiwi.tasks.result_list Module
	13.24.5. kiwi.tasks.system_build Module
	13.24.6. kiwi.tasks.system_create Module
	13.24.7. kiwi.tasks.system_prepare Module
	13.24.8. kiwi.tasks.system_update Module
	13.24.9. Module Contents

	13.25. kiwi.utils Package
	13.25.1. Submodules
	13.25.2. kiwi.utils.checksum Module
	13.25.3. kiwi.utils.block Module
	13.25.4. kiwi.utils.compress Module
	13.25.5. kiwi.utils.sync Module
	13.25.6. kiwi.utils.sysconfig Module
	13.25.7. Module Contents

	13.26. kiwi.volume_manager Package
	13.26.1. Submodules
	13.26.2. kiwi.volume_manager.base Module
	13.26.3. kiwi.volume_manager.btrfs Module
	13.26.4. kiwi.volume_manager.lvm Module
	13.26.5. Module Contents



