EWE SUSE SUSE Best Practices

Development Tools

Advanced Optimization and New
Capabilities of GCC 14

SUSE Linux Enterprise Server 15 SP6 and later
Development Tools Module

Martin Jambor, Toolchain Team Lead (SUSE)

Jan Hubicka, Toolchain Developer (SUSE)

Richard Biener, Toolchain Developer (SUSE)

Michael Matz, Toolchain Developer (SUSE)

Venkataramanan Kumar, PMTS Software System Design Eng (AMD)
Kim Naru, Engineering Manager (AMD)

c®E SUSE

1 Advanced Optimization and New Capabilities of GCC 14

Advanced Optimization and New Capabilities of GCC 14

The document at hand provides an overview of GCC 14.2 as the current Develop-
ment Tools Module compiler in SUSE Linux Enterprise 15 SP6. It focuses on the im-
portant optimization levels and options Link Time Optimization (LTO) and Pro-
file Guided Optimization (PGO). Their effects are demonstrated by compiling the
SPEC CPU benchmark suite for AMD EPYC 9005 Series Processors.

Disclaimer: Documents published as part of the SUSE Best Practices series have
been contributed voluntarily by SUSE employees and third parties. They are meant
to serve as examples of how particular actions can be performed. They have been
compiled with utmost attention to detail. However, this does not guarantee com-
plete accuracy. SUSE cannot verify that actions described in these documents do
what is claimed or whether actions described have unintended consequences. SUSE
LLC, its affiliates, the authors, and the translators may not be held liable for possi-
ble errors or the consequences thereof.

2 Advanced Optimization and New Capabilities of GCC 14

Contents

Overview 4

System compiler versus Development Tools Module compiler 5
Optimization levels and related options 12

Taking advantage of newer processors 15

Link Time Optimization (LTO) 16

Profile-Guided Optimization (PGO) 20

Performance evaluation: SPEC CPU 2017 21

Legal notice 42

GNU Free Documentation License 43

Advanced Optimization and New Capabilities of GCC 14

1 Overview

The first release of the GNU Compiler Collection (GCC) with the major version 14, GCC 14.1,
took place in May 2024. GCC 14.2, with fixes to over 100 bugs, was released in August of the
same year. Soon after, the openSUSE Tumbleweed Linux distribution began using this compiler
to build its packages. Subsequently, it has replaced the compiler in the SUSE Linux Enterprise
(SLE) Development Tools Module. GCC 14 is the first major version to support the new capa-
bilities of a wide range of computer architectures, including AMD CPUs based on the Zen 5
core. It also introduces many new features. These include the implementation of parts of the
most recent versions of various language specifications (particularly C23, C++23, and C++26),
along with their extensions (such as OpenMP and OpenACC). Additionally, there are numerous

generic improvements in optimization.

This document gives an overview of GCC 14. It focuses on selecting appropriate optimization
options for your application and stresses the benefits of advanced modes of compilation. First,
we describe the optimization levels the compiler offers, and other important options developers
often use. We explain when and how you can benefit from using Link Time Optimization (LTO)
and Profile Guided Optimization (PGO) builds. We also detail their effects when building a
set of well-known CPU intensive benchmarks. Finally, we look at how these perform on AMD
Zen 5 based AMD EPYC 9005 Series Processors.

4 Advanced Optimization and New Capabilities of GCC 14

2 System compiler versus Development Tools
Module compiler

The major version of the system compiler in SUSE Linux Enterprise 15 remains to be GCC 7,
regardless of the service pack level. This is to minimize the danger of any unintended changes

over the entire life time of the product.

slesl5: # gcc --version

gcc (SUSE Linux) 7.5.0

Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

That does not mean that, as a user of SUSE Linux Enterprise 15, you are forced to use a compiler
with features frozen in 2016. You can install an add-on module called Development Tools
Module which is included in the SUSE Linux Enterprise Server 15 subscription and contains a

much newer compiler.

At the time of writing this document, the compiler included in the Development Tools Module
is GCC 14.2. It is important to note, however, that unlike the system compiler, the major version
of the latest GCC from the module will change a few months after the upstream release of GCC
15.2 (scheduled for summer 2025), followed by GCC 16.2 (summer 2026), and so on. Note that
only the most recent compiler in the Development Tools Module is supported at any time, with
the exception of a six-month overlap period following an upgrade. Developers on a SUSE Linux
Enterprise Server 15 system therefore have always access to two supported GCC versions: the
almost unchanging system compiler and the most recent compiler from the Development Tools
Module.

Programs and libraries built with the compiler from the Development Tools Module can run on
computers running SUSE Linux Enterprise Server 15 which do not have the module installed.
All necessary runtime libraries are available from the main repositories of the operating system
itself, and new ones are added through the standard update mechanism. In this document, we
use the term GCC 14 to refer to any minor version within the major version 14, while GCC 14.2

specifically refers to that particular version. In practice they should be interchangeable.

5 Advanced Optimization and New Capabilities of GCC 14

2.1 When to use compilers from the Development Tools Module

Often you will find that the system compiler perfectly satisfies your needs. After all, it is the
compiler used to build the vast majority of packages and their updates in the system itself. On
the other hand, there are situations where a newer compiler is necessary, or where you want to
consider using a newer compiler to get some benefits of its ongoing development.

If the program or library you are building uses language features which are not supported by
GCC 7, you cannot use the system compiler. However, the compiler from the Development
Tools Module will usually be sufficiently new. The most obvious case is C++. GCC 14 has a
mature implementation of C++17 features, whereas the one in GCC 7 is only experimental and

incomplete. The GNU C++ Library which accompanies GCC 14 is also C++17 feature-complete.

o Important: Code using C++17 features

Code using C++17 features should always be compiled with the compiler from the Devel-
opment Tools Module. Linking two objects, such as an application and a shared library,
both using C++17—where one is built with g++ 8 or earlier and the other with g++ 9
or later—is especially risky. This is because C++ STL objects instantiated by the exper-
imental code may provide implementation and even ABI that is different from what the
mature implementation expects and vice versa. Issues caused by such a mismatch are

difficult to predict and may include silent data corruption.

Most of C++20 features are implemented in GCC 14 as experimental features. Try them out with
appropriate caution and avoid linking together code that uses them and is produced by different
compilers. Modules are only partially implemented Land require that the source file is compiled
with -fmodules-ts option. Similarly, coroutines 2 are also implemented but require that the
source file is compiled with the - fcoroutines switch. GCC 14 also experimentally implements
many C++23 and some C++26 features. If you are interested in the implementation status of any

particular C++ feature in the compiler or the standard library, consult the following pages:

® C++ Standards Support in GCC (https://gcc.gnu.org/projects/cxx-status.html)#, and

® The GNU C++ Library Manual (https://gcc.gnu.org/onlinedocs/gcc-14.2.0/libstdc++/manual) 2.

1 Proposals P1766R1 and P1815R2
2 Proposal P0912R5

6 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/onlinedocs/gcc-14.2.0/libstdc++/manual

Advances in supporting new language specifications are not limited to C++. GCC 14 experimen-
tally supports most of the new features from the ISO C23 standard, and the Fortran compiler
is also continuously improved. And if you use OpenMP or OpenACC extensions for parallel pro-
gramming, you will find that the compiler supports a lot of features of new versions of these

standards. For more details, visit the links at the end of this section.

In addition to new supported language constructs, GCC 14 offers improved diagnostics when it
reports errors and warnings to the user so that they are easier to understand and to be acted
upon. This is particularly useful when dealing with issues in templated C++ code. Furthermore,

there are several new warnings which help to avoid common programming mistakes.

Because GCC 14 is newer, it can generate code for many recent processors not supported by GCC
7. Such a list of processors would be too large to be enumerated here. Nevertheless, in Section 7,
“Performance evaluation: SPEC CPU 2017” we specifically look at optimizing code for AMD EPYC
9005 Series Processors which are based on AMD Zen 5 cores. The system compiler does not know
this kind of core and therefore cannot optimize for it. On the other hand, GCC 14.2 can both
detect and optimize for Zen 5.

Finally, the general optimization pipeline of the compiler has also significantly improved over
the years. To find out more about improvements in versions of GCC 8 through 14, visit their

respective “changes” pages:

® GCC 8 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-8/

changes.html) 2,

® GCC 9 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-9/

changes.html)#,

® GCC 10 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-10/

changes.html)#,

® GCC 11 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-11/

changes.html) 2,

® GCC 12 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-12/

changes.html) &,

® GCC 13 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-13/

changes.html) 2, and

® GCC 14 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-14/

changes.html) 2.

7 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/gcc-8/changes.html
https://gcc.gnu.org/gcc-8/changes.html
https://gcc.gnu.org/gcc-9/changes.html
https://gcc.gnu.org/gcc-9/changes.html
https://gcc.gnu.org/gcc-10/changes.html
https://gcc.gnu.org/gcc-10/changes.html
https://gcc.gnu.org/gcc-11/changes.html
https://gcc.gnu.org/gcc-11/changes.html
https://gcc.gnu.org/gcc-12/changes.html
https://gcc.gnu.org/gcc-12/changes.html
https://gcc.gnu.org/gcc-13/changes.html
https://gcc.gnu.org/gcc-13/changes.html
https://gcc.gnu.org/gcc-14/changes.html
https://gcc.gnu.org/gcc-14/changes.html

2.2 Potential issues with the Development Tools Module Compiler

GCC 14 from the Development Tools Module can sometimes behave differently in a way that
can cause issues which were not present with the system compiler. Such problems encountered

by other users are listed in the following documents:
® Porting to GCC 8 (https://gcc.gnu.org/gcc-8/porting_to.html) 4,
® Porting to GCC 9 (https://gcc.gnu.org/gcc-9/porting_to.html) A,
® Porting to GCC 10 (https://gcc.gnu.org/gcc-10/porting_to.html) @,
® Porting to GCC 11 (https://gcc.gnu.org/gcc-11/porting_to.html) &,

® Porting to GCC 12 (https://gcc.gnu.org/gcc-12/porting_to.html) @,

Porting to GCC 13 (https://gcc.gnu.org/gcc-13/porting_to.html)#, and

® Porting to GCC 14 (https://gcc.gnu.org/gcc-14/porting_to.html) @

To get an understanding of the problems, read through these pages, all but the last one are fairly
short. The document at hand briefly mentions a few most common potential pitfalls.

Starting with GCC 14, the C compiler treats some situations which were never allowed since
the 1999 revision ISO C as errors. In GCC 13 and before, the compiler only generated warnings

for them:

¢ Implicit int types (-Werror=implicit-int)

Implicit function declarations (-Werror=implicit-function-declaration),

® Wrong or misspelled function prototypes (-Werror=declaration-missing-parame-
ter-type),

Incorrect uses of the return statement (-Werror=return-mismatch),

Using pointers as integers and vice versa (-Werror=int-conversion), and

¢ Type mismatches of pointer types (-Werror=incompatible-pointer-types)

We strongly recommend that you take the time to fix any of the above problems if you encounter
them in your code. They have been a frequent source of bugs, portability and even security
issues. More information about all of these cases together with the most common ways of ad-
dressing them are given in the “Porting to GCC 14” document referenced above. If the code

8 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/gcc-8/porting_to.html
https://gcc.gnu.org/gcc-9/porting_to.html
https://gcc.gnu.org/gcc-10/porting_to.html
https://gcc.gnu.org/gcc-11/porting_to.html
https://gcc.gnu.org/gcc-12/porting_to.html
https://gcc.gnu.org/gcc-13/porting_to.html
https://gcc.gnu.org/gcc-14/porting_to.html

is written in a version of C before the 1999 ISO standard, you can tell the compiler by using
the -std=gnu89 or - std=c89 option, which will again allow those constructs. If your code uses
features of this standard or a later one and for some reason it is not possible to fix it, you can
either turn a specific class of the new errors back to warnings with a corresponding -Wno-er -

ror= option or use a new compiler switch - fpermissive to do so for all of the above.

@ Note: Impact on build environment probing

Many code snippets (also called probes) generated by autoconf to discover the availability
of various features work in the way that they trigger a compile error when a feature is
missing. The new errors may cause compilation to fail when it worked before and thus
lead to features being silently disabled even when they are actually available. autoconf
has supported C99 compilers since version 2.69 in its generic, core probes. However,
earlier versions or very specific probes might rely on C features that were removed in
C99 and thus fail with GCC 14. In cases where this is a concern, you can compare the
generated config.log, config.h and other generated files using diff to ensure there

are no unexpected differences.

The second common pitfall is that GCC 10 and later default to - fno-common for performance
reasons. This means a linker error will now be reported if the same variable is defined in two C
compilation units. This can happen if two or more . c files include the same header file which
intends to declare a variable but omits the extern keyword when doing so, inadvertently re-
sulting in multiple definitions. If you encounter such an error, you need to add the extern key-
word to the declaration in the header file and define the variable in only a single compilation
unit. Alternatively, you can compile your project with an explicit - fcommon if you are willing to

accept that this behavior is inconsistent with C++ and may incur speed and code size penalties.

Users compiling C++ sources should also be aware that g++ version 11 and later default to -
std=gnu++17, the C++17 standard with GNU extensions, instead of -std=gnu++14. Moreover,
some C++ Standard Library headers have been changed to no longer include other headers that
they do not depend on. You may need to explicitly include <limits>, <memory>, <utility>

or <thread>.

The final issue emphasized here is that the C++ compiler in GCC 8 and later now assumes that no
execution path in a non-void function reaches the end of the function without a return statement.
This means it is assumed that such code paths will never be executed, and thus they will be
eliminated. You should therefore pay special attention to warnings produced by -Wreturn-type.
This option is enabled by default and indicates which functions are affected.

9 Advanced Optimization and New Capabilities of GCC 14

2.3 Installing GCC 14 from the Development Tools Module

Similar to other modules and extensions for SUSE Linux Enterprise Server 15, you can activate
the Development Tools Module using either the command line tool SUSEConnect or the YaST

setup and configuration tool. To use the former, carry out the following steps:
1. As root, start by listing the available and activated modules and extensions:

slesl5: # SUSEConnect --list-extensions
2. In the computer output, look for “Development Tools Module”:

Development Tools Module 15 SP6 x86 64
Activate with: suseconnect -p sle-module-development-tools/15.6/x86 64

If you see the text (Activated) next to the module name, the module is already ready to

be used. You can safely proceed to the installation of the compiler packages.
3. Otherwise, issue the activation command that is shown in the command output above:

slesl5: # suseconnect -p sle-module-development-tools/15.6/x86 64
Registering system to SUSE Customer Center

Updating system details on https://scc.suse.com ...
Activating sle-module-development-tools 15.6 x86 64 ...
-> Adding service to system ...

-> Installing release package ...

Successfully registered system

If you prefer to use YaST, the procedure is also straightforward. Run YaST as root and go to
the Add-On Products menu in the Software section. If “Development Tools Module” is among
the listed installed modules, you already have the module activated and can proceed with in-
stalling individual compiler packages. If not, click the Add button, select Select Extensions
and Modules from Registration Server, and YaST will guide you through a simple procedure
to add the module.

When you have the Development Tools Module installed, you can verify that the GCC 14 pack-

ages are available to be installed on your system:.
slesl5: # zypper search gccl4d

Refreshing service 'Basesystem Module 15 SP6 x86 64'.
Refreshing service 'Certifications Module 15 SP6 x86 64'.

10 Advanced Optimization and New Capabilities of GCC 14

Refreshing service
Refreshing
Refreshing
Refreshing
Refreshing
Refreshing
Refreshing

Loading repository

service
service
service
service
service
service

'Containers Module 15 SP6 x86 64'.

'Desktop Applications Module 15 SP6 x86 64'.
'Development Tools Module 15 SP6 x86 64'.
'Python 3 Module 15 SP6 x86 64'.
'SUSE_Linux_Enterprise Server 15 SP6 x86 64'.
'SUSE_Package Hub 15 SP6 x86 64'.

'Web and Scripting Module 15 SP6 x86 64'.
data...

Reading installed packages...

gcclsd
gccld
gccld-32bit
gccl4d-ada

gccld-ada-32bit

gccld-c++

gccld-c++-32bit

gccla-d
gccl4d-d-32bit

gccl4d-fortran-

gccld-go

gccld-go-32bit

gccld-info
gccl4d-locale
gccla-m2

gccld-m2-32bit

gccld-obj-c++

Summary

The GNU C Compiler and Support Files

The GNU C Compiler and Support Files

The GNU C Compiler 32bit support

GNU Ada Compiler Based on GCC (GNAT)

GNU Ada Compiler Based on GCC (GNAT)

The GNU C++ Compiler

The GNU C++ Compiler

GNU D Compiler

GNU D Compiler

GNU Fortran Compiler and Support Files

32bit The GNU Fortran Compiler and Support Files

GNU Go Compiler

GNU Go Compiler

Documentation for the GNU compiler collection

Locale Data for the GNU Compiler Collection
GNU Modula-2 Compiler

GNU Modula-2 Compiler

GNU Objective C++ Compiler

I
+
|
I
|
|
I
I
|
I
I
| gccld-fortran
I
I
|
I
I
|
I
I
|
I
I
|
I
I

gccld-obj-c++-32bit GNU Objective C++ Compiler

gccld-objc GNU Objective C Compiler

gccld-objc-32bit GNU Objective C Compiler

gccl4d-PIE A default configuration to build all binaries in PIE mode

libquadmath@-devel-gccl4d
libstdc++6-devel-gccld

The

GNU Fortran Compiler Quadmath Runtime Library Develop

Include Files and Libraries mandatory for Development

Now you can install the compilers for the programming languages you use with zypper:

slesl5: # zypper install gccl4 gccld-c++ gccld-fortran

The compilers are installed on your system, the executables are called gcc-14, g++-14, gfor-

tran-14 and so forth. It is also possible to install the packages in YaST. To do so, enter the

“Software Management” menu in the Software section and search for “gcc14”. Then select the

packages you want to install. Finally, click the Accept button.

11

Advanced Optimization and New Capabilities of GCC 14

@ Note: Newer compilers on openSUSE Leap 15.6
The community distribution openSUSE Leap 15.6 shares the base packages with SUSE

Linux Enterprise Server 15 SP6. The system compiler on systems running openSUSE Leap
15.6 is also GCC 7.5. There is no Development Tools Module for the community distrib-
ution available, but a newer compiler is provided. Install the packages gcc14, gccl4-c

++, gccld-fortran, and the like.

3 Optimization levels and related options

GCC has a rich optimization pipeline that is controlled by approximately a hundred of command
line options. It would be impractical to force users to decide about each one of them whether
they want to have it enabled when compiling their code. Like all other modern compilers, GCC
therefore introduces the concept of optimization levels which allow the user to pick a config-
uration from a few common ones. Optionally, the user can tweak the selected level, but that
does not happen frequently.

The default is to not optimize. You can specify this optimization level on the command line
as -00. It is often used when developing and debugging a project. This means it is usually
accompanied with the command line switch -g so that debug information is emitted. As no
optimizations take place, no information is lost because of it. No variables are optimized away,
the compiler only inlines functions with special attributes that require it, and so forth. As a
consequence, the debugger can almost always find everything it searches for in the running
program and report on its state very well. On the other hand, the resulting code is big and slow.

Thus this optimization level should not be used for release builds.

The most common optimization level for release builds is -02 which attempts to optimize the
code aggressively but avoids large compile times and excessive code growth. Optimization level
-03 instructs GCC to optimize as much as possible, even if the resulting code might be consider-
ably bigger and the compilation can take longer. Note that neither -02 nor -03 imply anything
about the precision and semantics of floating-point operations. Even at the optimization level
-03 GCC implements math operations and functions so that they follow the respective IEEE and/
or ISO rules * with the exception of allowing floating-point expression contraction, for example

when fusing an addition and a multiplication into one operation4. This often means that the

3 When the rounding mode is set to the default round-to-nearest (look up -frounding-math in the manual).

4 See documentation of -ffp-contract.

12 Advanced Optimization and New Capabilities of GCC 14

compiled programs run markedly slower than necessary if such strict adherence is not required.
The command line switch - ffast-math is a common way to relax rules governing floating-point
operations. It is out of scope of this document to provide a list of the fine-grained options it
enables and their meaning. However, if your software crunches floating-point numbers and its
runtime is a priority, you can look them up in the GCC manual and review what semantics of
floating-point operations you need.

The most aggressive optimization level is -0fast which does imply - ffast-math along with a
few options that disregard strict standard compliance. In GCC 14, this level also means the op-
timizers may introduce data races when moving memory stores which may not be safe for mul-
tithreaded applications, and disregards the possibility of ELF symbol interposition happening at
runtime. Additionally, the Fortran compiler can take advantage of associativity of math opera-
tions even across parentheses and convert big memory allocations on the heap to allocations
on stack. The last mentioned transformation may cause the code to violate maximum stack size
allowed by ulimit which is then reported to the user as a segmentation fault. To work around
this issue, you can use ulimit -S with a sufficiently high limit, or ulimit -S unlimited. We
often use level -0fast to build benchmarks. It is a shorthand for the options on top of -03 which
often make them run faster. Most benchmarks are intentionally written in a way that they run

correctly even when these rules are relaxed.

If you feed the compiler with huge machine-generated input, especially if individual functions
happen to be extremely large, the compile time can become an issue even when using -02. In
such cases, use the most lightweight optimization level -01 that avoids running almost all opti-
mizations with quadratic complexity. Finally, the -0s level directs the compiler to aggressively

optimize for the size of the binary.

@ Note: Optimization level recommendation

Usually we recommend using -02. This is the optimization level we use to build most
SUSE and openSUSE packages, because at this level the compiler makes balanced size
and speed trade-offs when building a general-purpose operating system. However, we
suggest using -03 if you know that your project is compute-intensive and is either small
or an important part of your actual workload. Moreover, if the compiled code contains
performance-critical floating-point operations, we strongly advise that you investigate

whether -ffast-math or any of the fine-grained options it implies can be safely used.

13 Advanced Optimization and New Capabilities of GCC 14

If your project and the techniques you use to debug or instrument it do not depend on ELF symbol
interposition, you may consider trying to speed it up by using - fno-semantic-interposition.
This allows the compiler to inline calls and propagate information even when it would be illegal
if a symbol changed during dynamic linking. Using this option to signal to the compiler that in-
terposition is not going to happen is known to significantly boost performance of some projects,

most notably the Python interpreter.

Some projects use - fno-strict-aliasing to work around type punning problems in the source
code. This is not recommended except for very low-level hand-optimized code such as the Linux
kernel. Type-based alias analysis is a very powerful tool. It is used to enable other transforma-
tions, such as store-to-load propagation that in turn enables other high level optimizations, such

as aggressive inlining, vectorization and others.

With the -g switch GCC tries hard to generate useful debug information even when optimizing.
However, a lot of information is irrecoverably lost in the process. Debuggers also often struggle
to present the user with a view of the state of a program in which statements are not necessarily
executed in the original order. Debugging optimized code can therefore be a challenging task

but usually is still somewhat possible.

The complete list of optimization and other command line switches is available in the compiler
manual. The manual is provided in the info format in the package gccl4-info or online at the

GCC project Web site (https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/) A .

Keep in mind that while nearly all optimizing compilers have optimization levels, and these
levels often share the same names as those in GCC, they don't necessarily involve the same trade-
offs. Famously, GCC's -0s optimizes for size much more aggressively than LLVM/Clang's level
with the same name. Therefore, it often produces slower code; the more equivalent option in
Clang is -0z. Similarly, -02 can have different meanings for different compilers. For example,
the difference between -02 and -03 is much bigger in GCC than in LLVM/Clang.

@ Note: Changing the optimization level with cmake
If you use cmake to configure and set up builds of your application, be aware that
its release optimization level defaults to -03 which might not be what you want. To
change it, you must modify the CMAKE C FLAGS RELEASE, CMAKE CXX FLAGS RELEASE
and/or CMAKE Fortran FLAGS RELEASE variables. Since they are appended at the end
of the compilation command lines, they are overwriting any level set in the variables
CMAKE_C_FLAGS, CMAKE_CXX_FLAGS, and the like.

14 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-14.2.0/gcc/

4 Taking advantage of newer processors

By default, GCC assumes that you want to run the compiled program on a wide variety of CPUs,
including fairly old ones, regardless of the selected optimization level. On architectures like
x86 64 and aarch64 the generated code will only contain instructions available on every CPU
model of the architecture, including the earliest ones. On x86 64 in particular this means that
the programs will use the SSE and SSE2 instruction sets for floating-point and vector operations

but not any more recent ones.

If you know that the generated binary will run only on machines supporting newer instruction
set extensions, you can specify it on the command line. Their complete list is available in the
manual, but the most prominent one is -march which lets you select a CPU model to generate
code for. For example, if you know that your program will only be executed on AMD EPYC
9005 Series Processors based on AMD Zen 5 cores or processors that are compatible with it,
you can instruct GCC to take advantage of all the instructions the CPU supports with option
-march=znver5. Note that, on SUSE Linux Enterprise Server 15, the system compiler does not
know this particular value of the switch. You need to use GCC 14 from the Development Tools

Module to optimize code for these processors.

To run the program on the machine on which you are compiling it, you can have the compiler
auto-detect the target CPU model for you with the option -march=native. This only works if
the compiler is new enough. The system compiler of SUSE Linux Enterprise Server, for example,
misidentifies AMD EPYC 9005 Series Processors as being based on the AMD Zen 1 core. Among
other things, this means that it only emits 128 bit vector instructions, even though the CPU has
data-paths wide enough to efficiently execute 512 bit ones. Again, the easy solution is to use
the compiler from the Development Tools Module when targeting recent processors.

@ Note: Running 32-bit code

SUSE Linux Enterprise Server does not support compilation of 32-bit applications, it on-
ly offers runtime support for 32-bit binaries. To do so, you will need 32-bit libraries
your binary depends on which likely include at least glibc which can be found in pack-
age glibc-32bit. See chapter 20 (32-bit and 64-bit applications in a 64-bit system environ-
ment) of the Administration Guide (https://documentation.suse.com/sles/15-SP6/html/SLES-

all/cha-64bit.ntml) # for more information.

15 Advanced Optimization and New Capabilities of GCC 14

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-64bit.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-64bit.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-64bit.html

5 Link Time Optimization (LTO)

Figure 1 outlines the classic mode of operation of a compiler and a linker. Pieces of a program are
compiled and optimized in chunks defined by the user called compilation units to produce so-
called object files. These object files already contain binary machine instructions and are com-
bined together by a linker. Because the linker works at such low level, it cannot perform much
optimization and the division of the program into compilation units thus presents a profound

barrier to optimization.

filel.c GCC filelof———— |d a.out
file2.c GCC file2.0
file3.c GCC file3.0
filed.c GCC filed.o

FIGURE 1: TRADITIONAL PROGRAM BUILD

This limitation can be overcome by rearranging the process so that the linker does not receive
as its input the almost finished object files containing machine instructions, but is invoked on
files containing so called intermediate language (IL). This is a much richer representation of each
original compilation unit (see figure figure 2). The linker identifies the input as not yet entirely
compiled and invokes a linker plugin which in turn runs the compiler again. But this time it has
at its disposal the representation of the entire program or library that is being built. The compiler
makes decisions about what optimizations across function and compilation unit boundaries will
be carried out and then divides the program into a set of partitions. Each of the partitions is
further optimized independently, and machine code is emitted for it, which is finally linked the

traditional way. Processing of the partitions is performed in parallel.

16 Advanced Optimization and New Capabilities of GCC 14

filel.c GCC filel.o (IL) Id a.out

file2.c GCC file2.0 (IL) LTO plugin

file3.c GCC file3.0 (IL) Wh;lij;ziram partition 1
\‘ partition 2
filed.c GCC file4.o (IL)
partition n
FIGURE 2:

To use Link Time Optimization, all you need do is to add the - flto switch to the compilation
command line. The vast majority of packages in the Linux distribution openSUSE Tumbleweed
has been built with LTO for over five years without any major problems. A lot of work has been
put into emitting good debug information when building with LTO too. Thus the debugging

experience is not severely limited anymore as it was seven years ago.

LTO in GCC always consists of a whole program analysis (WPA) stage followed by the majority
of the compilation process performed in parallel, which greatly reduces the build times of most
projects. To control the parallelism, you can explicitly cap the number of parallel compilation
processes by n if you specify - flto=n at linker command line. Alternatively, it is possible to use
the GNU make jobserver with - flto=jobserv while also prepending the makefile rule invoking
link step with character + to instruct GNU make to keep the jobserver available to the linker
process. However, this modification of makefiles is not necessary with make version 4.4 or

newer.

You can also use -flto=auto which instructs GCC to search for the jobserver and if it is not
found, use all available CPU threads.

Note that there is a principal architectural difference in how GCC and LLVM/Clang approach
LTO. Clang provides two LTO mechanisms, so-called thin LTO and full LTO. In full LTO, LLVM
processes the whole program as if it was a single translation unit which does not allow for

17 Advanced Optimization and New Capabilities of GCC 14

any parallelism. GCC can be configured to operate in this way with the option -flto-parti-
tion=one. LLVM in thin LTO mode can compile different compilation units in parallel and makes
possible inlining across compilation unit boundaries, but not most other types of cross-module
optimizations. This mechanism therefore has inherently higher code quality penalty than full
LTO or the approach of GCC.

5.1 Most notable benefits of LTO

Applications built with LTO are often faster, mainly because the compiler can inline calls to
functions in another compilation unit. This possibility also allows programmers to structure
their code according to its logical division because they are not forced to put function definitions
into header files to enable their inlining. Since the compiler cannot inline all calls conveying
information known at compilation time, GCC tracks and propagates constants, value ranges,
memory reference information and devirtualization contexts from the call sites to the callees,
even when passed in an aggregate or by reference. These can then subsequently save unnecessary
computations or enable subsequent optimizations and speed up the built program or library.
LTO allows such propagation across compilation unit boundaries, too.

Link Time Optimization with whole program analysis also offers many opportunities to shrink
the code size of the built project. Thanks to symbol promotion and inter-procedural unreachable
code elimination, functions and their parts which are not necessary in any particular project can
be removed even when they are not declared static and are not defined in an anonymous
namespace. Automatic attribute discovery can identify C++ functions that do not throw exceptions.
This allows the compiler to avoid generating a lot of code in exception cleanup regions. Identical
code folding can find functions with the same semantics and remove all but one of them. The code
size savings are often very significant and a compelling reason to use LTO even for applications
which are not CPU-bound.

@ Note: Building libraries with LTO

The symbol promotion is controlled by resolution information given to the linker and
depends on type of the DSO build. When producing a dynamically loaded shared library,
all symbols with default visibility can be overwritten by the dynamic linker. This blocks
the promotion of all functions not declared inline, thus it is necessary to use the hidden
visibility wherever possible to achieve best results. Similar problems happen even when

building static libraries with - rdynamic.

18 Advanced Optimization and New Capabilities of GCC 14

5.2 Potential issues with LTO

As mentioned earlier, the vast majority of packages in the openSUSE Tumbleweed distribution
are built with LTO by default and work fine without any tweaks. Nevertheless, some low-level
constructs pose a problem for LTO. One typical issue are symbols defined in inline assembly which
can happen to be placed in a different partition from their uses and subsequently fail the final
linking step. To build such projects with LTO, the assembler snippets defining symbols must
be placed into a separate assembler source file so that they only participate in the final linking
step. Global register variables are not supported by LTO, and programs either must not use
this feature or be built the traditional way. You can also exclude some compilation units from
LTO (by compiling them without - flto or appending -fno-1to to the compilation command
line), while the rest of the program can still benefit from using this feature.

Another notable limitation of LTO is that it does not support symbol versioning implemented with
special inline assembly snippets (as opposed to a linker map file). To define symbol versions in
the source files, you can do so with the symver function attribute. As an example, the following
snippet will make the function foo v1 implement foo in node VERS 1 (which must be speci-
fied in the version script supplied to the linker). Consult the manual (https://gcc.gnu.org/online-

docs/gcc/Common-Function-Attributes.html#index-symver-function-attribute) @ for more details.

__attribute ((__symver ("foo@VERS 1")))
int foo vl (void)

{

}

Sometimes the extra power of LTO reveals pre-existing problems which do not manifest them-
selves otherwise. Violations of (strict) aliasing rules and C++ one definition rule tend to cause
misbehavior significantly more often. The latter is fortunately reported by the -Wodr warning
which is on by default and should not be ignored. We have also seen cases where the use of
the flatten function attribute led to unsustainable amount of inlining with LTO. Furthermore,
LTO is not a good fit for code snippets compiled by configure scripts (generated by autoconf)
to discover the availability of various features, especially when the script then searches for a
string in the generated assembly.

Finally, we needed to configure the virtual machines building the biggest openSUSE packages to
have more memory than when not using LTO. Whereas in the traditional mode of compilation
1 GB of RAM per core was enough to build Mozilla Firefox, the serial step of LTO means the

build-bots need 16 GB even when they have fewer than 16 cores.

19 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-symver-function-attribute
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-symver-function-attribute

6 Profile-Guided Optimization (PGO)

Optimizing compilers frequently make decisions that depend on which path through the code
they consider most likely to be executed, how many times a loop is expected to iterate, and
similar estimates. They also often face trade-offs between potential runtime benefits and code
size growth. Ideally, they would optimize only frequently executed (also called hot) bits of a
program for speed and everything else for size to reduce strain on caches and make the distrib-
ution of the built software cheaper. Unfortunately, guessing which parts of a program are the
hot ones is difficult, and even sophisticated estimation algorithms implemented in GCC are no

match for a measurement.

If you do not mind adding an extra level of complexity to the build system of your project, you
can make such measurement part of the process. The makefile (or any other) build script needs
to compile the project twice. The first time it needs to compile with the - fprofile-generate
option and then execute the resulting binary in one or multiple train runs during which it will
save information about the behavior of the program to special files. Afterward, the project needs
to be rebuilt again, this time with the -fprofile-use option. This instructs the compiler to
look for the files with the measurements and use them when making optimization decisions, a
process called Profile-Guided Optimization (PGO).

It is important that the train run exhibits the same characteristics as the real workload. Unless
you use the option -fprofile-partial-training in the second build, it needs to exercise the
code that is also the most frequently executed in real use, otherwise it will be optimized for size
and PGO would make more harm than good. With the option, GCC reverts to guessing properties
of portions of the projects not exercised in the train run, as if they were compiled without profile
feedback. This however also means that this code will not perform better or shrink as much as

one would expect from a PGO build.

On the other hand, train runs do not need to be a perfect simulation of the real workload. For
example, even though a test suite should not be a very good train run in theory because it
disproportionally often tests various corner cases, in practice many projects use it as a train run

and achieve significant runtime improvements with real workloads, too.

Profiles collected using an instrumented binary for multithreaded programs may be inconsistent
because of missed counter updates. You can use - fprofile-correction in addition to -fpro-
file-use so that GCC uses heuristics to correct or smooth out such inconsistencies instead of

emitting an error.

20 Advanced Optimization and New Capabilities of GCC 14

Profile-Guided Optimization can be combined and is complimentary to Link Time Optimization.
While LTO expands what the compiler can do, PGO informs it about which parts of the program
are the important ones and should be focused on. The case study in the following section shows

how the two techniques work with each other on a well-known set of benchmarks.

7 Performance evaluation; SPEC CPU 2017

Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation that publishes a
variety of industry standard benchmarks to evaluate performance and other characteristics of
computer systems. Its latest suite of CPU intensive workloads, SPEC CPU 2017, is often used
to compare compilers and how well they optimize code with different settings. This is because
the included benchmarks are well known and represent a wide variety of computation-heavy
programs. The following section highlights selected results of a GCC 14 evaluation using the
suite.

Note that when we use SPEC to perform compiler comparisons, we are lenient toward some of-
ficial SPEC rules which system manufacturers need to observe to claim an official score for their
system. We disregard the concepts of base and peak metrics and focus on results of compilations

using a particular set of options. We even patched several benchmarks:

¢ Benchmarks 502.gcc_r, 505.mcf r, 511.povray r, and 527.cam4 r contain an imple-
mentation of quicksort which violates (strict) C/C++ aliasing rules which can lead to erro-
neous behavior when optimizing at link time. SPEC decided not to change the released
benchmarks and suggests that these benchmarks are built with the -fno-strict-alias-
ing option when they are built with GCC. That makes evaluation of compilers using SPEC
problematic, examining their ability to use aliasing rules to facilitate optimizations is im-
portant. We have therefore disabled it only for the problematic qsort functions with the

following function attribute:

__attribute ((optimize("-fno-strict-aliasing")))

21 Advanced Optimization and New Capabilities of GCC 14

As a result, the only benchmark which we compile with -fno-strict-aliasing is
500.perlbench r.

® Benchmark 511.povray r cannot be built with option - fno-finite-math-only which is
a part of options enabled by - ffast-math for reasons described in GCC bug 107021 (https://
gcc.gnu.org/bugzilla/show_bug.cgi?id=107021) 2. The -0fast measurements using GCC 14
or Clang 19 in this section therefore append -fno-finite-math-only to the compilation
command lines, but again only for this one benchmark.

® We have increased the tolerance of 549.fotonik3d r to rounding errors after it became
clear the intention was that the compiler can use relaxed semantics of floating-point
operations in the benchmark (see GCC bug 84201 (https://gcc.gnu.org/bugzilla/show_bug.c-
gi?id=84201)2).

Moreover, SPEC 2017 CPU offers so-called speed and rate metrics. For our purposes, we mostly
ignore the differences and run the benchmarks configured for rate metrics (mainly because the
runtimes are smaller) but we always run all benchmarks single-threaded. For these and other
reasons, all the results in this document are non-reportable.

Finally, SPEC specifies a base runtime for each benchmark and defines a rate as the ratio of
the base runtime and the median measured runtime (this rate is a separate concept from the
rate metrics). The overall suite score is then calculated as geometric mean of these ratios. The
bigger the rate or score, the better it is. In the remainder of this section, we report runtimes
using relative rates and their geometric means as they were measured on an AMD EPYC 9755
Processor running SUSE Linux Enterprise Server 15 SP6.

7.1 Benefits of LTO and PGO

In Section 3, “Optimization levels and related options” we recommend that HPC workloads are com-
piled with -03 and benchmarks with -0fast. But it is still interesting to look at integer crunch-
ing benchmarks built with only -02 because that is how Linux distributions often build the
programs from which they were extracted. We have already mentioned that almost the whole
openSUSE Tumbleweed distribution is now built with LTO, and selected packages with PGO,

and the following paragraphs demonstrate why.

22 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107021
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107021
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84201
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84201

130%

120%
110% W Standard
mLTO
PGO
100% E LTO+PGO

90%

80%

FIGURE 3: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 14.2 AND -02

Figure 3 shows the overall performance effect on the whole integer benchmark suite as captured
by the geometric mean of all individual benchmark rates. Employing both PGO and LTO results
in remarkable relative uplift of 16.5%. That is despite the fact that starting with GCC 12, the
compiler can conservatively auto-vectorize code in 525.x264 r also at plain -02, whereas pre-
viously it was only automatically performed with PGO at this level. Nevertheless, this bench-
mark still benefits a lot from the more advanced modes of compilation, together with several
others which are derived from programs that are typically compiled with -02. This is illustrated

in figure 4.

23 Advanced Optimization and New Capabilities of GCC 14

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

523.xalancbmk_r H LTO+PGO
PGO
525.x264 _r ELTO
W Standard

531.deepsjeng_r

541 leela_r

548.exchange2_r

557.xz_r

0% 20% 40% 60% 80% 100% 120% 140% 160%

FIGURE 4: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH GCC
14.2 AND -02

Figure 5 shows another important advantage of LTO and PGO which is significant reduction of
the size of the binaries (measured without debug info). Note that it does not depict that the size
of benchmark 548.exchange2 r grew to 260% and 174% of the original size when built with
PGO or both PGO and LTO respectively, which looks huge but the growth is from a particularly
small base. It is the only Fortran benchmark in the integer suite and, most importantly, the size
penalty is offset by significant speed-up, making the trade-off reasonable. For completeness, we

show this result in figure 6

24 Advanced Optimization and New Capabilities of GCC 14

500.perlbench_r

502.gcc_r

505.mcf r

520.omnetpp_r

B L TO+PGO

PGO 523.xalancbmk_r
HLTO
B Normal 525.x264_r

531.deepsjeng_r

541.leela_r

557.xz_r

120% 100% 80% 60% 40% 20% 0%

FIGURE 5: BINARY SIZE (SMALLER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH GCC 14.2 AND
-02

B LTO+PGO PGO 548.exchange2_r

mLTO H Normal

300% 250% 200% 150% 100% 50% 0%

FIGURE 6: BINARY SIZE (SMALLER IS BETTER) OF 548.EXCHANGE2_R BUILT WITH GCC 14.2 AND -02

The runtime benefits and binary size savings are also easily visible when using the optimization
level -0fast and option -march=native to allow the compiler to take full advantage of all in-
structions that the AMD EPYC 9755 Processor supports. Figure 7 shows the respective geometric
means, and figure 8 shows how rates change for individual benchmarks. Even at the aggressive
optimization level PGO brings about clear benefits for benchmarks derived from interpreters and
compilers like 500.perlbench r and 502.gcc_r but the compiler can struggle to correctly up-
date the measured profile information when performing complex inter-procedural optimizations
like in the case of 548.exchange2 r leading to the technique actually decreasing performance.
Lastly, even though optimization levels -03 and -0fast are permitted to be relaxed about the
final binary size, PGO and especially LTO can bring it nicely down at these levels, too. Figure 9
depicts the relative binary sizes of all integer benchmarks.

25 Advanced Optimization and New Capabilities of GCC 14

130%

120%

110% B Normal
ELTO

100%

PGO
B LTO+PGO
90%

FIGURE 7: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 14.2 USING
-OFAST AND -MARCH=NATIVE

80%

500.perlbench_r

|
502.goc, 1 |
|
505, mof ey
|
520.omnetpp_r _

|

523.xalancbmk_r — B LTO+PGO
I PeO

525.X264.1 | mLTO

————— " Normal

531.deepsjeng_r
|

541 loela r

|

548.exchange2_r _
|

557.xz_r _

|

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 8: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH GCC
14.2 USING -OFAST AND -MARCH=NATIVE

26 Advanced Optimization and New Capabilities of GCC 14

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

HLTO+PGO 523.xalancbmk_r

PGO
ELTO
B Normal

525.x264_r

531.deepsjeng_r

541.leela_r

548.exchange2_r

557.xz_r

120% 100% 80% 60% 40% 20%

:
S

FIGURE 9: BINARY SIZE (SMALLER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 14.2 USING -OFAST AND
-MARCH=NATIVE

Many of the SPEC 2017 floating-point benchmarks measure how well a given system can op-
timize and execute a handful of number crunching loops. They often come from performance
sensitive programs written with traditional compilation method in mind. As a result, there are
fewer cross-module dependencies, making the identification of hot paths less critical. Conse-
quently, the overall impact of LTO and PGO on the suite is often minimal. Nevertheless, there
are important cases when these modes of compilation also bring about significant performance
increases. Figure 10 shows the effect of these methods on individual benchmarks when compiled
at -0fast and targeting the full ISA of the AMD EPYC 9755 Processor. Furthermore, binary size
savings of PGO and LTO are sometimes even bigger than those achieved on integer benchmarks,

as can be seen in figure 11

Unfortunately, in the case of 538.1imagick r benchmark there is a big mismatch in between the
code paths exercised in the train run which is used to measure which parts of the program need to
be optimized for speed and the actual reference run which is then used to obtain the benchmark

score. This is exactly the problem we warn against in Section 6, “Profile-Guided Optimization (PGO)”

27 Advanced Optimization and New Capabilities of GCC 14

and it has the predictable detrimental effect on performance.’ Moreover, because the important
loop, which is not appropriately optimized because it is not executed in the train run, is in a
function in which there is another loop which is heavily executed in the train run, even using
the -fprofile-partial-training does not help to mitigate the problem. This is a bug in the
SPEC CPU suite and it means that the overall performance score even decreases by 1% when
using both LTO and PGO.

503.bwaves, r

507.cactuBSSN_r

508.namcl_r

=
510.parest_r

511, povray | ey

510, om,_r I —

E— " LTO+PGO
521.wrf_r PGO
|
E— =LTO
526.blender_r ® Normal

527.camd_r

538.imagick_r

544.nab, & |

549 fotonikad_r I —

554 roms,_ 1

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 10: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL FLOATING-POINT BENCHMARKS BUILT
WITH GCC 14.2 USING -OFAST AND -MARCH=NATIVE

5 See GCC bug 111551 (https://gcc.gnu.org/bugzilla/show_bug.cgi?zid=111551) 7 for more details.

28 Advanced Optimization and New Capabilities of GCC 14

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=111551

503.bwaves_r
507.cactuBSSN_r
508.namd_r
510.parest_r

511.povray_r

519.lbm_r

B LTO+PGO

PGO 521.wrf_r

ELTO

® Normal 526.blender_r
527.cam4_r
538.imagick_r
544.nab_r

549.fotonik3d_r

554.roms_r

i

120% 100% 80% 60% 40% 20%

:
S

FIGURE 11: BINARY SIZE (SMALLER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH GCC 14.2 USING -OFAST AND
-MARCH=NATIVE

7.2 GCC14.2 compared to GCC7.5

In previous sections we have recommended the use of GCC 14.2 from the Development Tools
Module over the system compiler. Among other reasons, we did so because of its more powerful
optimization pipeline and its support for newer CPUs. This section compares SPEC CPU 2017
built with GCC 7.5, the system compiler in SUSE Linux Enterprise Server 15, and GCC 14.2 on an
AMD EPYC 9755 Processor, when all benchmarks are compiled with -0fast and -march=na-
tive. Note that the latter option means that both compilers differ in their CPU targets because
GCC 7.5 does not know the Zen 5 core. This in turn means that in large part the optimization
benefits presented here exist because the old compiler only issues 128bit (AVX2) vector opera-
tions whereas the newer one can take full advantage of AVX512. Nevertheless, be aware that
using wider vectors everywhere often backfires. GCC has made substantial advancements over

29 Advanced Optimization and New Capabilities of GCC 14

the recent years to avoid such issues, both in its vectorizer and other optimizers. It is therefore
much better placed to use the extra vector width appropriately and produce code which utilizes

the processor better in general.

130%
120%
110% mGCC7
GCC 7 (LTO)
mGCC 14
100%

® GCC 14 (LTO)

90%

80%

FIGURE 12: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 7.5 AND 14.2
(-OFAST -MARCH=NATIVE)

Figure 12 captures the benefits of using the modern compiler with integer workloads in the form
of relative improvements of the geometric mean of the whole SPEC INTrate 2017 suite. Figure
13 dives deeper and shows which particular benchmarks gained most in terms of performance.
It was already mentioned that 525.x264 r especially benefits from vectorization and therefore
it is not surprising it has improved a lot. 531.deepsjeng_r is faster chiefly because it can emit
better code for count trailing zeros (CTZ) operation which it performs frequently. Finally, modern
GCC can optimize 548.exchange2 r particularly well by specializing different invocations of

the hottest recursive function and it also clearly shows in the picture.

520.omnetpp_r

525.x264 r
B GCC 14 (LTO)
531.deepsjeng_r B GCC 14
GCC 7 (LTO)
541.leela_r mGCC7

548.exchange2_r

0% 20% 40% 60% 80% 100%120%140%160%180%200%

FIGURE 13: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF SELECTED INTEGER BENCHMARKS BUILT WITH GCC
7.5 AND 14.2 (-OFAST -MARCH=NATIVE)

30 Advanced Optimization and New Capabilities of GCC 14

Floating-point computations tend to particularly benefit from vectorization advancements. Thus
it should be no surprise that the FPrate benchmarks also improve substantially when compiled
with GCC 14.2, which also emits AVX512 instructions for a Zen 5 based CPU. The overall boost
is shown in figure 14 whereas figure 15 provides a detailed look at which benchmarks contributed

most to the overall score difference.

130%
120%
110% mGCC7
GCC 7 (LTO)
m GCC 14
100%

B GCC 14 (LTO)

90%

80%

FIGURE 14: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH GCC 7.5 AND 14.2
(-OFAST -MARCH=NATIVE)

31 Advanced Optimization and New Capabilities of GCC 14

s !

S0 S S N L

S N e,
1

S
1

sy =

)

— B GCC 14 (LTO)

e ——— mocc 1
1 GCC 7 (LTO)

e mocer

S

58 kI
549.fotonik3d_r =

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 15: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF SELECTED FLOATING-POINT BENCHMARKS BUILT
WITH GCC 7.5 AND 14.2 (-OFAST -MARCH=NATIVE)

7.3 Effects of - ffast-math on floating-point performance

In Section 3, “Optimization levels and related options”, we highlighted that if you do not relax the
semantics of floating-point math functions, despite not needing strict adherence to all IEEE and/
or ISO rules, you are likely to sacrifice some performance. This section uses the SPEC FPrate

2017 test suite to illustrate how much performance that might be.

We have built the benchmarking suite using optimization level -03, LTO (though without PGO)
and -march=native to target the native ISA of our AMD EPYC 9755 Processor. Then we com-

pared its runtime score against the suite built with these options and - ffast-math. As you can

32 Advanced Optimization and New Capabilities of GCC 14

see in figure 16, the geometric mean grew by over 13%. But a quick look at figure 77 will tell
you that there are four benchmarks with scores which improved by more than 15% and that

of 538.1imagick r grew by over 60%.

130%
120%
110%
M Plain -O3
W -O3 -ffast-math
100%

90%

80%

FIGURE 16: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH GCC 14.2 AND -O3
-FLTO -MARCH=NATIVE, WITHOUT AND WITH -FFAST-MATH

33 Advanced Optimization and New Capabilities of GCC 14

503.bwaves_r
507.cactuBSSN _r
508.namd_r
510.parest_r
511.povray_r
519.lbm_r

521.wrf r B -O3 -ffast-math

M Plain -O3
526.blender_r
527.cam4 r
538.imagick_r
544.nab_r

549.fotonik3d_r

554.roms_r

0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

FIGURE 17: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL FLOATING-POINT BENCHMARKS BUILT
WITH GCC 14.2 AND -O3 -FLTO -MARCH=NATIVE, WITHOUT AND WITH -FFAST-MATH

7.4 Comparison with other compilers

The toolchain team at SUSE regularly uses the SPEC CPU 2017 suite to compare the optimization
capabilities of GCC with other compilers, mainly LLVM/Clang and ICX from Intel. In the final
section of this case study, we will discuss how the Development Module compiler compares to
its competitors on SUSE Linux Enterprise Server 15 SP6. Before we begin, it is important to
note that the comparison was conducted by individuals with significantly more expertise in GCC
than in the other compilers, and they are not completely “unbiased”. Also, keep in mind that

34 Advanced Optimization and New Capabilities of GCC 14

everything we explained previously about how we carry out the measurements and patch the
benchmarks also applies to this section. However, since the results inform our own work, rest

assured that we strive for accuracy.

We have built the clang, clang++ and flang-new compilers from sources obtained from the
official git repository (tag 1lvmorg-19.1.4), used it to compile the SPEC CPU 2017 suite with
-0fast and -march=native and compared the performance against the suites built with GCC
14.2 with the same options. When using Clang's LTO to compile SPEC, we selected the full
variant because it is more powerful in terms of optimization capabilities even though it is not

suitable for building large projects.

130.00%
120.00%
110.00% ELLVM
LLVM (LTO)
mGCC
100.00% m GCC (LTO)
90.00%
80.00%

FIGURE 18: OVERALL PERFORMANCE (BIGGER IS BETTER) OF C/C++ INTEGER BENCHMARKS BUILT WITH CLANG
19 AND GCC 14.2

Figure 18 shows that the geometric mean of the whole SPEC INTrate 2017 suite is quite sub-
stantially better when the benchmarks are compiled with GCC. To be fair, a disproportionate
amount of the difference is because GNU Fortran can optimize 548.exchange2 r much better
than LLVM (see figure 18). Given that the LLVM Fortran front-end is relatively new and the op-
timization opportunities in this particular benchmark are quite specific, the result may not be

relevant for many users.

—
el meccio) moce
LLVM (LTO) = LLVM
0% 50% 100% 150% 200% 250%

FIGURE 19: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF 548. EXCHANGE2_R BENCHMARKS BUILT WITH
CLANG 19 AND GCC 14.2

35 Advanced Optimization and New Capabilities of GCC 14

500.perlbench_r
502.gcc_r
505.mcf_r
520.omnetpp_r
523.xalancbmk_r
525.x264_r
531.deepsjeng_r
541.leela_r
557.xz_r

0% 20% 40%

60% 80%

100%

® GCC (LTO)
mGCC

LLVM (LTO)
ELLVM

120% 140% 160%

FIGURE 20: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF C/C++ INTEGER BENCHMARKS BUILT WITH CLANG

19 AND GCC 14.2

Figure 20 shows relative rates of integer benchmarks written in C/C+ + and the compilers per-

form fairly similarly there. GCC wins by a significant margin on 505.mcf _r, 531.deepsjeng r

and 500.perlbench r but clearly loses when compiling 525.x264 r. This is because the com-

piler chooses a vectorizing factor that is too large

for the important loops in this video encoder.

It is possible to mitigate the problem using compiler option -mprefer-vector-width=128, with

which it is only 9% slower than Clang/LLVM, as you can see in figure 271. Another option yield-

ing similar runtime of the benchmark is to use masked vectorized epilogues by passing option

—param vect-partial-vector-usage=1 to the compiler. Note that PGO can substantially help

in this case too. The upcoming version, GCC 15, aims to solve the problem without a need for

extra options by producing multiple cascading vector epilogues.

I
S

0% 20% 40% 60% 80% 100%

® GCC (LTO-128) W GCC (128)
LLVM (LTO) mLLVM
120%

FIGURE 21: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF 525.X264_R BENCHMARK BUILT WITH CLANG 19

AND WITH GCC 14.2 USING -MPREFER-VECTOR-WIDTH=128

36

Advanced Optimization and New Capabilities of GCC 14

The comparison of geometric mean of scores of SPEC FPrate 2017 suite when built with the
two compiler suites is depicted in figure 22. The floating point benchmark suite includes many
more Fortran benchmarks, and it is clear that GCC has an advantage in having a mature opti-
mization pipeline for this language. This is particularly evident when compiling 503.bwaves_r,
519.1bm rand 527.cam4_r (see figure 23). The comparison of performance of individual bench-
marks also shows that the performance of 538. imagick_r is substantially bigger when compiled
with GCC 14.2 while Clang/LLVM has an edge when optimizing 508.namd_r and 544.nab _r.

130.00%
120.00%
110.00% mLLVM
LLVM (LTO)
mGCC
100.00% m GCC (LTO)
90.00%
80.00%

FIGURE 22: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH CLANG 19 AND GCC
14.2

37 Advanced Optimization and New Capabilities of GCC 14

S03.bwaves I —

S07.CactuBSSN_I p—
.
S08.NaMd_I —
I
S10.parest I —
]

SHLPOVIZY. ! —
|
S ——

—— HGCC (LTO)
S2LWrT_I — mGce

] LLVM (LTO)

526.blender_r _ HLLVM
I

ey !

I

S g O T
]

Sadnetr
|
549.fotonik3d_r _
|

SS4.I0MS I —

0% 50% 100% 150% 200% 250% 300%

FIGURE 23: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF FLOATING POINT BENCHMARKS BUILT WITH CLANG
19 AND GCC 14.2

Although Intel compilers are not designed for AMD processors, they are well-known for their
high-level optimization capabilities, particularly in vectorization. Therefore, we have tradition-
ally included ICC in our comparisons of compilers. Recently, however, Intel decided to discon-
tinue this compiler and redirect its users toward ICX, a new compiler built on top of LLVM. In
consequence, we have also shifted our focus to ICX. To keep the amount of data presented in
this section manageable, we will focus on comparing only binaries built with LTO -0fast and

-march=native.

38 Advanced Optimization and New Capabilities of GCC 14

130%

120%
B ICX (LTO)
mGCC

100% B GCC (LTO)

90%

80%

FIGURE 24: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH 1CX 2025.0.1 AND
GCC14.2

Figure 24 shows that the new ICX compiler takes the lead in overall SPEC INTrate assessment.
The results of individual benchmarks (see figure 25), however, illustrate that the majority of
the lead is due to one benchmark, 525.x264 r, and for the same reasons we outlined when
discussing LLVM/Clang results. GCC picks too large vectorizing factor and the mitigation is again
using -mprefer-vector-width=128 which leads to a much narrower gap (see figure 26). When
looking at the other benchmarks (see figure 25), GCC achieves comparable results. In fact, if we
excluded benchmark 525.x264 r from the computations of the geometric means, GCC would
achieve a slightly better score than ICX in the LTO case. At this point we want to re-iterate that

the next version of GCC aims to solve this problem without a need for extra compiler options.

39 Advanced Optimization and New Capabilities of GCC 14

500.perlbench_r
502.gcc_r
505.mcf_r

520.omnetpp_r

523.xalancbmk_r B GCC (LTO)
mGCC
525.x264 _r H ICX (LTO)
HICX

531.deepsjeng_r

541.leela_r
548.exchange2_r

557.xz_r

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 25: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH ICX
2025.0.1 AND GCC 14.2

525.x264_r B GCC (LTO-128) m GCC (128)

W ICX (LTO) mICX

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 26: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF 525.X264_R BENCHMARK BUILT WITH ICX 2025.0.1
AND WITH GCC 14.2 USING -MPREFER-VECTOR-WIDTH=128

If we look at the geometric means that the two compilers can achieve when they are used to
build SPEC FPrate suite, GCC wins by 17% or 19% without and with LTO respectively (see
figure 27). Even in this case it is important to look at individual results though as the overall
picture is more nuanced (see figure 28). There are benchmarks where GCC is much better (most
prominently 538.imagick r and 554.roms_r) but there are also those where the competition
produces considerably faster code (especially 519.1bm r and 544.nab _r). Nevertheless, the
conclusion is that GCC manages to perform consistently and competitively against these high-

performance compilers.

40 Advanced Optimization and New Capabilities of GCC 14

130%

120%
B ICX (LTO)
mGCC
100% ® GCC (LTO)

90%

80%

FIGURE 27: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH 1CX 2025.0.1 AND

GCC14.2

503.bwaves_r

507.cactuBSSN_r

508.namd_r

510.parest_r

511.povray_r

519.lbm_r
B GCC (LTO)
521.wrf _r B GCC
B ICX (LTO)
526.blender_r mICX
527.cam4_r
538.imagick_r
544.nab_r

549.fotonik3d_r

554.roms_r

rllrmmm

0% 50% 100% 150% 200% 250% 300%

FIGURE 28: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL FLOATING POINT BENCHMARKS BUILT
WITH 1CX 2025.0.1 AND GCC 14.2

4 Advanced Optimization and New Capabilities of GCC 14

8 Legal notice

Copyright ©2006-2025 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ #. Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this

document may be trademarks or registered trademarks of their respective owners.

Documents published as part of the SUSE Best Practices series have been contributed voluntar-
ily by SUSE employees and third parties. They are meant to serve as examples of how particular
actions can be performed. They have been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. SUSE cannot verify that actions described in these
documents do what is claimed or whether actions described have unintended consequences.
SUSE LLG, its affiliates, the authors, and the translators may not be held liable for possible errors

or the consequences thereof.

Below we draw your attention to the license under which the articles are published.

42 Advanced Optimization and New Capabilities of GCC 14

http://www.suse.com/company/legal/

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

43 Advanced Optimization and New Capabilities of GCC 14

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add

an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
0. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-

edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

44 Advanced Optimization and New Capabilities of GCC 14

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original

versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

45 Advanced Optimization and New Capabilities of GCC 14

http://www.gnu.org/copyleft/

	Advanced Optimization and New Capabilities of GCC 14
	Contents
	1. Overview
	2. System compiler versus Development Tools Module compiler
	2.1. When to use compilers from the Development Tools Module
	2.2. Potential issues with the Development Tools Module Compiler
	2.3. Installing GCC 14 from the Development Tools Module

	3. Optimization levels and related options
	4. Taking advantage of newer processors
	5. Link Time Optimization (LTO)
	5.1. Most notable benefits of LTO
	5.2. Potential issues with LTO

	6. Profile-Guided Optimization (PGO)
	7. Performance evaluation: SPEC CPU 2017
	7.1. Benefits of LTO and PGO
	7.2. GCC 14.2 compared to GCC 7.5
	7.3. Effects of -⁠ffast-math on floating-point performance
	7.4. Comparison with other compilers

	8. Legal notice
	9. GNU Free Documentation License

