
SUSE Best Practices
Development Tools

Introduction to the Python Library Pydantic

Pydantic
Python

Sushant Gaurav, Technical Writer (SUSE)

1 Introduction to the Python Library Pydantic

Introduction to the Python Library Pydantic

This document provides an introduction to Pydantic, a powerful Python library de-
signed for data validation and settings management, and details its most important
features.

Disclaimer: Documents published as part of the SUSE Best Practices series have
been contributed voluntarily by SUSE employees and third parties. They are meant
to serve as examples of how particular actions can be performed. They have been
compiled with utmost attention to detail. However, this does not guarantee com-
plete accuracy. SUSE cannot verify that actions described in these documents do
what is claimed or whether actions described have unintended consequences. SUSE
LLC, its affiliates, the authors, and the translators may not be held liable for possi-
ble errors or the consequences thereof.

2 Introduction to the Python Library Pydantic

Contents

1 Introduction 4

2 The role of BaseModel 5

3 Understanding Field function 7

4 Using Annotated for cleaner type definitions 9

5 Using validators and ValidationError in Pydantic 10

6 Dumping model data in Pydantic 14

7 Understanding computed fields in Pydantic 15

8 Working with nested models in Pydantic 17

9 Understanding serialization in Pydantic 21

10 FAQs 23

11 Legal notice 25

12 GNU Free Documentation License 26

3 Introduction to the Python Library Pydantic

1 Introduction
Data exchange is a fundamental part of modern applications, especially those that interact with
APIs, databases, or external services. In Python (https://docs.python.org/3/) , ensuring data is
structured, validated, and easily converted between formats is critical. This is where Pydantic
comes into the picture.

Pydantic (https://docs.pydantic.dev/latest/) is a powerful Python library designed for data vali-
dation and settings management. It uses Python type hints to define, parse, and enforce strict
typing on data models (https://docs.pydantic.dev/latest/concepts/models/) making it easier to
work with structured and semi-structured data.

Whether you are handling user input, API responses, or configuration les, Pydantic ensures
your application receives data in the correct format. If the data does not match the defined
schema, Pydantic raises clear and informative validation errors. This helps reduce the debugging
time and improves code reliability.

This document is intended to provide an initial introduction and overview of Pydantic. The
following sections cover the most important functions and features of Pydantic. However, the
document does not claim to be exhaustive.

1.1 Pydantic v1 vs. Pydantic v2: What changed?

Pydantic v2 represents a major upgrade over v1, offering improved performance, enhanced
type safety, cleaner validation syntax, and better serialization tools. Although many v1 models
will still work with v2, some migration steps (https://docs.pydantic.dev/latest/migration/) are
required due to changes in decorators and method names.

Key Differences at a Glance:

TABLE 1: COMPARISON: PYDANTIC V1 VS. PYDANTIC V2

Feature Pydantic v1 Pydantic v2

Validation engine Pure Python Rust-based core (faster)

Field validators @validator @field_validator

Model validators @root_validator @model_validator

Computed elds Via@property Native via @computed_field

4 Introduction to the Python Library Pydantic

https://docs.python.org/3/
https://docs.pydantic.dev/latest/
https://docs.pydantic.dev/latest/concepts/models/
https://docs.pydantic.dev/latest/migration/

Feature Pydantic v1 Pydantic v2

Type system Standard type hints Better support for advanced
typing

Strict type handling Limited Enhanced (StrictStr,
StrictInt, etc.)

Serialization .dict(), .json() _dump(), _dump_json()

Environment settings BaseSettings Improved support for config
and env parsing

Error reporting Simple More structured and user-
friendly

1.2 Major improvements in Pydantic v2

Improved Validation Flow

The introduction of before and after modes for both eld and model validators gives devel-
opers precise control over the validation lifecycle. This enables early rejection of bad data or
sophisticated cross-eld logic as needed.

Enhanced Serialization

Pydantic v2’s .model_dump() and .model_dump_json() provide a more flexible and consistent
serialization API, especially when dealing with computed elds or nested models.

2 The role of BaseModel
The core of Pydantic is the BaseModel (https://docs.pydantic.dev/latest/api/base_model/) class.
Every custom model in Pydantic is built by inheriting this base class. It provides essential func-
tionality, including:

Field definition and type enforcement

Built-in validation and error messaging

5 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/latest/api/base_model/

Data serialization and deserialization

Automatic type conversion when possible

By extending BaseModel, you gain access to a robust set of tools that ensure your data conforms
to the expected types and structures.

Example (Product class inherits BaseModel class):

from pydantic import BaseModel

class Product(BaseModel):
price: int

2.1 Automatic type conversion

One of the most useful features of Pydantic is its ability to perform type coercion automatically.
When possible, Pydantic converts input data to match the declared type.

Example:

python
from pydantic import BaseModel

class Product(BaseModel):
 price: int

Product(price='99') # Allowed: '99' is converted to 99
Product(price='99a') # Raises ValidationError: cannot convert to int

Error:

Product(price='99a') # Raises ValidationError: cannot convert to int
 File "/Users/imsushant/Library/Python/3.9/lib/python/site-packages/pydantic/main.py",
 line 253, in __init__
 validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)
pydantic_core._pydantic_core.ValidationError: 1 validation error for Product
price
 Input should be a valid integer, unable to parse string as an integer [type=int_parsing,
 input_value='99a', input_type=str]
 For further information visit https://errors.pydantic.dev/2.11/v/int_parsing

In this example, a string containing numeric characters ('99') is accepted and converted to an
integer, while an invalid string ('99a') results in a validation error.

6 Introduction to the Python Library Pydantic

2.2 Real-world example (Parsing JSON)

Consider a scenario where your application receives JSON data from an external API:

{
 "id": "101",
 "name": "Sam",
 "salary": "12000"
}

You can use Pydantic to model and validate this data:

from pydantic import BaseModel

class Employee(BaseModel):
 id: int
 name: str
 salary: float

emp = Employee(**json_data)
print(emp)
Employee(id=101, name='Sam', salary=12000.0)

Note: Automatic conversion
Even though the id and salary elds arrive as strings, Pydantic automatically converts
them to the appropriate numeric types.

If you do not want or like the automatic conversion, Pydantic allows to enable the strict
feature. Read more in Section 3.1, “Enforcing strict types with Field(strict=True)”.

In the above example, the ** operator is unpacking the json_data dictionary into keyword
arguments.

3 Understanding Field function
In Pydantic, Field (https://docs.pydantic.dev/latest/api/fields/) is used to configure individual
model attributes. It allows you to define default values, add validation constraints, and provide
metadata such as titles, descriptions, or example values.

It is not mandatory but using Field helps improve clarity, maintainability, and control over
model behavior.

7 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/latest/api/fields/

The key use cases for Field include:

Defining default values

Setting validation constraints (such as minimum or maximum length)

Adding metadata (like descriptions or usage examples)

Customizing serialization or documentation behavior

The common parameters used with Field include:

default, title, description, examples

min_length, max_length, regex

ge (greater than or equal to), le (less than or equal to)

strict, frozen, and others

Example:

from pydantic import BaseModel, Field, PositiveInt

class User(BaseModel):
 id: int
 name: str = Field(min_length=3)
 age: PositiveInt = Field(default=18)

Here, name must be at least three characters long, and age must be non-negative, with a default
value of 18.

Note: Keep in mind:

To mark a eld as optional, wrap the type with Optional[...].

Use ... (Ellipsis) to mark a eld as required when no default is provided.

PositiveInt is a Pydantic type that automatically enforces the constraint that the
integer must be positive.

8 Introduction to the Python Library Pydantic

3.1 Enforcing strict types with Field(strict=True)

By default, Pydantic tries to coerce values into the expected type. This behavior is helpful in
many situations. But, in some scenarios, you may need stricter validation for sensitive or critical
elds. For such scenarios, use strict=True to enforce exact type matching:

Example:

from pydantic import BaseModel, Field

class User(BaseModel):
 age: int = Field(strict=True)

User(age="21") # Raises validation error: str is not int

4 Using Annotated for cleaner type definitions
The Annotated type was introduced in the typing module to allow additional metadata to be
attached to a type hint. Pydantic v2 adopts Annotated to define constraints, descriptions, and
eld-level metadata in a more structured and expressive way.

Learn more about the typing module at https://docs.python.org/3/library/typing.html .

Reasons to use Annotated:

Avoids mixing logic between type declaration and eld definition

Keeps the syntax cleaner and easier to read

Enhances compatibility with tools like https://fastapi.tiangolo.com/ FastAPIthat gener-
ate documentation from model metadata

Example: Classic Field usage without Annotated

from pydantic import BaseModel, Field

class Patient(BaseModel):
 name: str = Field(
 title="Patient Name",
 description="It contains the name of the patient",
 examples=["Aman", "Suman"]
)

Example: Modern usage with Annotated

9 Introduction to the Python Library Pydantic

https://docs.python.org/3/library/typing.html
https://fastapi.tiangolo.com/

from typing import Annotated
from pydantic import BaseModel, Field

class Patient(BaseModel):
 name: Annotated[
 str,
 Field(
 title="Patient Name",
 description="It contains the name of the patient",
 examples=["Aman", "Suman"]
)
]

Example: Combining constraints and metadata

This approach ensures clean definitions, enforces constraints, and provides rich metadata for
tools and documentation.

from typing import Annotated
from pydantic import BaseModel, Field

class Patient(BaseModel):
 name: Annotated[
 str,
 Field(
 title="Patient Name",
 description="It contains the name of the patient",
 min_length=2,
 examples=["Aman", "Suman"]
)
]
 age: Annotated[
 int,
 Field(
 ge=0,
 description="Patient age (non-negative)"
)
]

5 Using validators and ValidationError in Pydantic
Pydantic supports custom data validation through validators (https://docs.pydantic.dev/lat-

est/concepts/validators/) . Validators provide ne-grained control over how elds or models
are validated, making them useful when the built-in validation logic is insufficient.

10 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/latest/concepts/validators/
https://docs.pydantic.dev/latest/concepts/validators/

Pydantic includes two primary types of validators:

field validators (https://docs.pydantic.dev/latest/concepts/validators/#field-validators) and

model validators (https://docs.pydantic.dev/latest/concepts/validators/#model-validators)

5.1 Field validators

Field-level validators allow you to define custom logic for individual elds. These validators
are declared using the @field_validator decorator. Introduced in Pydantic v2, this decorator
must be used in combination with Python's standard @classmethod decorator.

Example:

from pydantic import BaseModel, field_validator

class User(BaseModel):
 username: str

 @field_validator("username")
 @classmethod
 def validate_username(cls, value):
 if " " in value:
 raise ValueError("Username must not contain spaces")
 return value

In the above example:

@classmethod is applied rst.

field_validator decorator contains the eld name to validate.

cls refers to the model class (User).

value is the input provided for the username eld.

Note: Correct order of decorators
The correct order of decorators is crucial. The @classmethod decorator must be applied
before the @field_validator decorator, as Pydantic v2's @field_validator expects a
class method (not a static method or instance method).

You can even apply a single validator to multiple elds.

11 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/latest/concepts/validators/#field-validators
https://docs.pydantic.dev/latest/concepts/validators/#model-validators

Example:

from pydantic import BaseModel, field_validator

class User(BaseModel):
 username: str
 email: str

 @field_validator("username", "email")
 @classmethod
 def no_spaces_allowed(cls, value, info):
 if " " in value:
 raise ValueError(f"{info.field_name} must not contain spaces")
 return value

In the above example, the no_spaces_allowed() function is executed once per eld, and the
info parameter provides metadata such as the current eld name.

Note: Field validators
Field validators execute before type coercion by default, which makes them ideal for
validating raw input values.

5.2 Model validators

Model-level validators are methods used to validate the entire data model at once. They are
useful for performing cross-eld validation, where the validation of one eld depends on the
value of another, or for complex checks that involve multiple elds. In Pydantic v2, you use the
@model_validator decorator for this purpose. This decorator replaces the earlier @root_val-
idator from Pydantic v1.

from pydantic import BaseModel, model_validator

class User(BaseModel):
 password: str
 confirm_password: str

 @model_validator(mode="after")
 def passwords_match(self):
 if self.password != self.confirm_password:
 raise ValueError("Passwords do not match")
 return self

12 Introduction to the Python Library Pydantic

In the above example, self resembles the instance of the model.

5.3 Validator modes (before and after)

You can control when a validator runs using the mode argument:

mode="before" executes before standard Pydantic validation.

mode="after" executes after Pydantic validation and type coercion.

TABLE 2: VALIDATOR TYPES

Validator Type before Mode after Mode (Default)

Field Validator Receives raw input Receives parsed and type-co-
erced value

Model Validator Receives raw input dictio-
nary

Receives fully validated mod-
el instance

In short, use "before" when you need to clean or reject invalid data early. Use "after" for
final checks, consistency validation, or business logic after all elds have been validated.

5.4 Key differences between field and model validator

Although @field_validator("username", "email")` accepts multiple elds, it still processes
each eld independently. This means that the validator runs separately for each eld, even
if the logic is identical. This approach can lead to redundant processing and is not ideal for
validations that depend on multiple elds. In such cases, using a @model_validator is more
efficient and appropriate, as it processes the entire model at once and allows for cross-eld
validation in a single pass.

TABLE 3: DIFFERENCES BETWEEN VALIDATOR TYPES

Aspect Field Validator Model Validator

Execution Per eld Once per model instance

Input Single eld value (+ meta-
data)

Entire model (either raw or
parsed)

13 Introduction to the Python Library Pydantic

Aspect Field Validator Model Validator

Use Case Field-level validation and
transformation

Cross-eld validation, busi-
ness logic

5.5 Handling validation errors

Whenever validation fails, Pydantic raises a ValidationError (https://docs.pydantic.dev/lat-

est/concepts/validators/#raising-validation-errors) . This exception provides a detailed break-
down of the issue, including the eld name, the error message, and the error type.

Example:

from pydantic import BaseModel, ValidationError

class Product(BaseModel):
 price: float

try:
 Product(price="free")
except ValidationError as e:
 print(e)

Output:
1 validation error for Product
price
Input should be a valid number (type=type_error.float)

To programmatically inspect errors, you can use e.errors() which returns a list of structured
error dictionaries.

6 Dumping model data in Pydantic
Pydantic models provide two helpful methods to extract data:

.model_dump() (https://docs.pydantic.dev/latest/concepts/serialization/#modelmod-

el_dump) returns the model as a standard Python dict.

.model_dump_json() (https://docs.pydantic.dev/latest/concepts/serialization/#modelmod-

el_dump_json) returns the model data as a JSON string.

14 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/latest/concepts/validators/#raising-validation-errors
https://docs.pydantic.dev/latest/concepts/validators/#raising-validation-errors
https://docs.pydantic.dev/latest/concepts/serialization/#modelmodel_dump
https://docs.pydantic.dev/latest/concepts/serialization/#modelmodel_dump
https://docs.pydantic.dev/latest/concepts/serialization/#modelmodel_dump_json
https://docs.pydantic.dev/latest/concepts/serialization/#modelmodel_dump_json

These methods are commonly used when serializing models for storage, logging, or API respons-
es.

Example:

from pydantic import BaseModel

class User(BaseModel):
 name: str
 age: int

user = User(name="Sam", age=25)

model_dump() returns a Python dictionary
dumped_user = user.model_dump()

print(dumped_user)
Output: {'name': 'Sam', 'age': 25}

print(type(dumped_user))
Output: <class 'dict'>

model_dump_json() returns a JSON-formatted string
json_user = user.model_dump_json()

print(json_user)
Output: {"name":"Sam","age":25}

print(type(json_user))
Output: <class 'str'>

To learn about these methods in detail, check Section 9, “Understanding serialization in Pydantic”.

7 Understanding computed fields in Pydantic

In many applications, certain values are not provided directly by the user but are derived
from other elds. These values are known as computed fields (https://docs.pydantic.dev/2.0/us-

age/computed_fields/) .

Pydantic v2 provides support for computed elds through the @computed_field decorator. This
eliminates the need for workarounds, such as using @property, and provides better integration
with Pydantics Serialization (https://docs.pydantic.dev/latest/concepts/serialization/) system.

15 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/2.0/usage/computed_fields/
https://docs.pydantic.dev/2.0/usage/computed_fields/
https://docs.pydantic.dev/latest/concepts/serialization/

Example:

from pydantic import BaseModel, computed_field

class Rectangle(BaseModel):
 width: float
 height: float

 @computed_field
 def area(self) -> float:
 return self.width * self.height

In the above example:

area is computed dynamically based on width and height.

the @computed_field decorator registers the method as a virtual eld.

Note: Not included by default
Computed elds are not included in serialized outputs by default, preserving a clear
boundary between user-provided input and derived values.

7.1 Including Computed Fields in Output

By default, computed elds are excluded from methods such as .model_dump() and .mod-
el_dump_json(). To include them, use the include_computed=True argument:

rect = Rectangle(width=10, height=5)
 print(rect.model_dump())
 # Output: {'width': 10, 'height': 5}

 print(rect.model_dump(include_computed=True))
 # Output: {'width': 10, 'height': 5, 'area': 50}

This behavior is intentional as it ensures that:

computed values are not accidentally persisted or sent over APIs.

only explicitly requested values are included.

expensive calculations are avoided unless needed.

16 Introduction to the Python Library Pydantic

8 Working with nested models in Pydantic
Pydantic supports nested models, enabling developers to represent structured, hierarchical data
in a clean and intuitive way. This is particularly useful in applications that deal with complex
schemas such as user profiles, blog posts, or nested comment threads (where one model depends
on or contains another).

Nested models in Pydantic allow you to:

Represent relationships like UserProfile -> Address -> Country

Encapsulate multi-level structured data (for example, Blog -> Comment -> Author)

Validate recursive structures (for example, trees, chat threads)

Pydantic offers three main types of nested model patterns, which are detailed in the next sec-
tions.

8.1 Standard nesting (referencing other models)

The most common way to create nested data structures in Pydantic is through composition. This
involves referencing one Pydantic model inside another using type annotations. This approach
allows you to build layered schemas, where a complex model is composed of simpler, reusable
components, and it ensures each part is validated correctly.

class Lesson(BaseModel):
 title: str
 content: str

class Module(BaseModel):
 name: str

 lessons: List[Lesson] # Nested model: referencing Lesson inside Module

This setup allows each Module to encapsulate a list of validated Lesson instances, promoting
reusability and data consistency.

8.2 Self-referencing models (recursive structures)

Pydantic also supports models that reference themselves. These are especially useful for repre-
senting recursive structures such as tree hierarchies or nested folders.

17 Introduction to the Python Library Pydantic

class Node(BaseModel):
 name: str
 children: List['Node'] # Forward reference using a string

Node.model_rebuild()

Because the class refers to itself and has not yet been fully constructed at the time of annotation,
Pydantic requires model_rebuild() to resolve the forward reference. This ensures the children
eld is properly typed for validation and schema generation.

8.3 Forward referencing between multiple models

For mutually dependent models where, for example, an Employee references a Manager, and the
Manager holds a list of Employee instances, Pydantic supports forward references using string
annotations.

class Employee(BaseModel):
 name: str
 manager: 'Manager' = None # String-based forward reference

class Manager(BaseModel):
 name: str
 team: List[Employee] = []

Resolve circular references
Employee.model_rebuild()
Manager.model_rebuild()

Without model_rebuild(), these forward references would remain unresolved and lead to val-
idation errors or incorrect schema generation.

8.4 Model inheritance

Pydantic models can also be extended using class inheritance, following standard Python prin-
ciples. This pattern is useful for creating specialized models that share common elds and be-
havior with a parent model.

Example:

from pydantic import BaseModel

class Person(BaseModel):
 name: str

18 Introduction to the Python Library Pydantic

 age: int

class Worker(Person):
 company: str
 team: str

Creating an instance of the derived model
worker = Worker(name="Alice", age=30, company="TechCorp", team="Engineering")

print(worker.model_dump())
Output: {'name': 'Alice', 'age': 30, 'company': 'TechCorp', 'team': 'Engineering'}

In this example, the Worker model inherits the name and age elds from the Person model and
adds its own unique elds, company and team. This approach promotes code reuse and helps
maintain consistency across related models.

While inheritance is a powerful feature, Pydantic generally recommends using composition (as
seen in standard nesting) over inheritance in most cases. Composition typically leads to more
flexible and loosely coupled code, which can be easier to maintain and extend in the long run.

8.4.1 Importance of model_rebuild()

When forward references are used (either to the same model or another model that has not been
defined yet), model_rebuild() is necessary to:

re-evaluate type hints that were expressed as strings.

replace string references with actual class objects.

finalize model eld definitions for accurate parsing and validation.

This post-definition step allows Pydantic to maintain correctness in complex model structures.

8.5 Example: Nested Comment model

The following is an example of a nested Comment model as commonly found in blog platforms.
It incorporates all three nested model concepts:

Referencing an Author model

Self-referencing through nested replies

Forward referencing using strings

19 Introduction to the Python Library Pydantic

from pydantic import BaseModel
from typing import List, Optional

class Author(BaseModel):
 user_id: int
 username: str

class Comment(BaseModel):
 comment_id: int
 content: str
 author: Author # Standard nesting
 replies: Optional[List['Comment']] = None # Self-referencing

Comment.model_rebuild()

author1 = Author(user_id=1, username="Sam")

reply1 = Comment(
 comment_id=2,
 content="Replying to your comment!",
 author=author1
)

main_comment = Comment(
 comment_id=1,
 content="This is the main comment",
 author=author1,
 replies=[reply1]
)

print(main_comment.model_dump(indent=2))

Output:

{
 "comment_id": 1,
 "content": "This is the main comment",
 "author": {
 "user_id": 1,
 "username": "Sam"
 },
 "replies": [
 {
 "comment_id": 2,
 "content": "Replying to your comment!",
 "author": {
 "user_id": 1,

20 Introduction to the Python Library Pydantic

 "username": "Sam"
 },
 "replies": null
 }
]
}

9 Understanding serialization in Pydantic

Serialization (https://docs.pydantic.dev/latest/concepts/serialization/) in Pydantic refers to the
process of converting a model into a format suitable for storage or transmission.

This typically means converting a model to a dictionary (dictdict) or a JSON string (str).

Pydantic also handles deserialization, which converts raw input data into structured model in-
stances.

Pydantic supports two key directions in serialization, which are detailed below.

9.1 Up derialization (deserialization)

Up serialization, also known as deserialization, is the process of converting raw data such as a
dictionary or JSON object into a Pydantic model. This enables structured handling of unstruc-
tured input data.

Example:

data = {"name": "Sam", "joined": "2023-07-24T10:00:00"}
user = User(**data) # Deserializes raw dict into a User model

9.2 Down serialization

Down serialization refers to converting a Pydantic model into a format like a Python dictionary
or a JSON string. This is typically used when the model data needs to be sent over a network,
saved to a le, or logged.

21 Introduction to the Python Library Pydantic

https://docs.pydantic.dev/latest/concepts/serialization/

9.3 Methods for serialization

9.3.1 model_dump()

The model_dump() method converts a Pydantic model into a standard Python dictionary It
excludes computed elds by default unless include_computed=True is specified.It is best suited
for internal Python logic, debugging, or when the data remains within the application.

9.3.2 model_dump_json()

The model_dump_json() method returns a JSON-formatted string. It automatically converts
non-JSON-native types (such as datetime or Decimal) into JSON-compatible representations,
such as ISO 8601 strings. It is ideal for API communication, le storage, or external logging.

Example with datetime:E

from pydantic import BaseModel
from datetime import datetime

class User(BaseModel):
 name: str
 joined: datetime

Up serialization: Create model from raw data
user = User(name="Sam", joined="2023-07-24T10:00:00")

Down serialization: Convert to dictionary
print(user.model_dump())
Output: {'name': 'Sam', 'joined': datetime.datetime(2023, 7, 24, 10, 0)}

Down serialization: Convert to JSON string
print(user.model_dump_json())
Output: {"name": "Sam", "joined": "2023-07-24T10:00:00"}

22 Introduction to the Python Library Pydantic

10 FAQs

10.1 How does field aliasing affect serialization in Pydantic?

Pydantic supports aliasing eld names using the alias parameter in the Field() function. This
is particularly useful when you need to conform to naming conventions, such as camelCase in
API responses.

from pydantic import BaseModel, Field

class User(BaseModel):
 full_name: str = Field(..., alias="fullName")

user = User(fullName="Sam")
print(user.model_dump(by_alias=True)) # {'fullName': 'Sam'}

To ensure aliases are included in the serialized output, set by_alias=True when calling mod-
el_dump() or model_dump_json().

10.2 Are model_dump() and model_dump_json() available in
Pydantic v1?

No. These methods are part of Pydantic v2. In Pydantic v1, serialization was handled using the
dict() and json() methods.

If you're upgrading from v1 to v2, note the following changes:

model.dict() model.model_dump_json()

10.3 What happens if a field contains a non-serializable object
during model_dump_json()?

If a eld contains a non-JSON-serializable object, such as a custom class or complex data type,
model_dump_json() will raise a TypeError. To handle this, you can either preprocess the data
or define custom json_encoders in your model's configuration.

class Config:
 json_encoders = {

23 Introduction to the Python Library Pydantic

 CustomType: lambda v: str(v)
 }

10.4 Can I exclude certain fields when using model_dump() or
model_dump_json()?

Yes. Both methods support parameters like exclude, include, and exclude_unset.

model.model_dump(exclude={"password"})

These options help you control exactly what gets serialized. It is useful when returning partial
responses or removing sensitive data like passwords or tokens.

10.5 Is it possible to serialize nested models using model_dump()
or model_dump_json()?

Yes. Nested models are fully supported. When serialized, they are recursively converted to dic-
tionaries or JSON strings.

class Address(BaseModel):
 city: str

class User(BaseModel):
 name: str
 address: Address

user = User(name="Sushant", address=Address(city="Delhi"))
print(user_dump())
{'name': 'Sushant', 'address': {'city': 'Delhi'}}

10.6 How to print compact or pretty-printed JSON output using
model_dump_json()?

By default, model_dump_json() produces compact JSON. If you want pretty-printed (indented)
output, you can pass formatting arguments using the indent parameter.

user_dump_json(indent=2)

24 Introduction to the Python Library Pydantic

11 Legal notice
Copyright ©2006-2025 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ . Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this
document may be trademarks or registered trademarks of their respective owners.

Documents published as part of the SUSE Best Practices series have been contributed voluntar-
ily by SUSE employees and third parties. They are meant to serve as examples of how particular
actions can be performed. They have been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. SUSE cannot verify that actions described in these
documents do what is claimed or whether actions described have unintended consequences.
SUSE LLC, its affiliates, the authors, and the translators may not be held liable for possible errors
or the consequences thereof.

Below we draw your attention to the license under which the articles are published.

25 Introduction to the Python Library Pydantic

http://www.suse.com/company/legal/

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not t the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent le format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference
in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

26 Introduction to the Python Library Pydantic

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least ve of the principal
authors of the Document (all of its principal authors, if it has fewer than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-
edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

27 Introduction to the Python Library Pydantic

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

28 Introduction to the Python Library Pydantic

http://www.gnu.org/copyleft/

	Introduction to the Python Library Pydantic
	Contents
	1. Introduction
	1.1. Pydantic v1 vs. Pydantic v2: What changed?
	1.2. Major improvements in Pydantic v2

	2. The role of BaseModel
	2.1. Automatic type conversion
	2.2. Real-world example (Parsing JSON)

	3. Understanding Field function
	3.1. Enforcing strict types with Field(strict=True)

	4. Using Annotated for cleaner type definitions
	5. Using validators and ValidationError in Pydantic
	5.1. Field validators
	5.2. Model validators
	5.3. Validator modes (before and after)
	5.4. Key differences between field and model validator
	5.5. Handling validation errors

	6. Dumping model data in Pydantic
	7. Understanding computed fields in Pydantic
	7.1. Including Computed Fields in Output

	8. Working with nested models in Pydantic
	8.1. Standard nesting (referencing other models)
	8.2. Self-referencing models (recursive structures)
	8.3. Forward referencing between multiple models
	8.4. Model inheritance
	8.4.1. Importance of model_rebuild()

	8.5. Example: Nested Comment model

	9. Understanding serialization in Pydantic
	9.1. Up derialization (deserialization)
	9.2. Down serialization
	9.3. Methods for serialization
	9.3.1. model_dump()
	9.3.2. model_dump_json()

	10. FAQs
	10.1. How does field aliasing affect serialization in Pydantic?
	10.2. Are model_dump() and model_dump_json() available in Pydantic v1?
	10.3. What happens if a field contains a non-serializable object during model_dump_json()?
	10.4. Can I exclude certain fields when using model_dump() or model_dump_json()?
	10.5. Is it possible to serialize nested models using model_dump() or model_dump_json()?
	10.6. How to print compact or pretty-printed JSON output using model_dump_json()?

	11. Legal notice
	12. GNU Free Documentation License

