EWE SUSE SUSE Best Practices

Development Tools

Advanced Optimization and New
Capabilities of GCC 11

SUSE Linux Enterprise Server 15 SP3
Development Tools Module

Martin Jambor, Toolchain Developer (SUSE)

Jan Hubicka, Toolchain Developer (SUSE)

Richard Biener, Toolchain Developer (SUSE)
Martin Liska, Toolchain Developer (SUSE)

Michael Matz, Toolchain Team Lead (SUSE)

Brent Hollingsworth, Engineering Manager (AMD)

c®E SUSE

1 Advanced Optimization and New Capabilities of GCC 11

Advanced Optimization and New Capabilities of GCC 11

The document at hand provides an overview of GCC 11 as the current Develop-
ment Tools Module compiler in SUSE Linux Enterprise 15 SP3. It focuses on the im-
portant optimization levels and options Link Time Optimization (LTO) and Pro-
file Guided Optimization (PGO). Their effects are demonstrated by compiling the
SPEC CPU benchmark suite for AMD EPYC 7003 Series Processors and building
Mozilla Firefox for a generic x86 64 machine.

Disclaimer: Documents published as part of the SUSE Best Practices series have
been contributed voluntarily by SUSE employees and third parties. They are meant
to serve as examples of how particular actions can be performed. They have been
compiled with utmost attention to detail. However, this does not guarantee com-
plete accuracy. SUSE cannot verify that actions described in these documents do
what is claimed or whether actions described have unintended consequences. SUSE
LLGC, its affiliates, the authors, and the translators may not be held liable for possi-

ble errors or the consequences thereof.

2 Advanced Optimization and New Capabilities of GCC 11

10

Contents

Overview 4

System compiler versus Development Tools Module compiler 5
Optimization levels and related options 11

Taking advantage of newer processors 13

Link Time Optimization (LTO) 14

Profile-Guided Optimization (PGO) 18

Performance evaluation: SPEC CPU 2017 20

Performance evaluation: Mozilla Firefox 37

Legal notice 44

GNU Free Documentation License 45

Advanced Optimization and New Capabilities of GCC 11

1 Overview

The first release of the GNU Compiler Collection (GCC) with the major version 11, GCC 11.1,
took place in March 2021. In late May of the same year, the entire openSUSE Tumbleweed Linux
distribution was rebuilt with it and shipped to users. GCC 11.2, with fixes to over 95 bugs, was
released in July of the same year. Subsequently, it has replaced the compiler in the SUSE Linux
Enterprise (SLE) Development Tools Module. GCC 11 comes with many new features, such as
implementing parts of the most recent versions of specifications of various languages (especially
C2X, C++17, C++20) and their extensions (OpenMP, OpenACC), supporting new capabilities of a

wide range of computer architectures and numerous generic optimization improvements.

This document gives an overview of GCC 11. It focuses on selecting appropriate optimization
options for your application and stresses the benefits of advanced modes of compilation. First,
we describe the optimization levels the compiler offers and other important options developers
often use. We explain when and how you can benefit from using Link Time Optimization (LTO)
and Profile Guided Optimization (PGO) builds. We also detail their effects when building a
set of well known CPU intensive benchmarks, and we look at how these perform on AMD Zen
3 based EPYC 7003 Series Processors. Finally, we take a closer look at the effects they have on

a big software project: Mozilla Firefox.

4 Advanced Optimization and New Capabilities of GCC 11

2 System compiler versus Development Tools
Module compiler

The major version of the system compiler in SUSE Linux Enterprise 15 remains to be GCC 7,
regardless of the service pack level. This is to minimize the danger of any unintended changes

over the entire life time of the product.

slesl5: # gcc --version

gcc (SUSE Linux) 7.5.0

Copyright (C) 2017 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

That does not mean that, as a user of SUSE Linux Enterprise 15, you are forced to use a compil-
er with features frozen in 2016. You can install an add-on module called Development Tools
Module. This module is included in the SUSE Linux Enterprise Server 15 subscription and con-

tains a much newer compiler.

At the time of writing this document, the compiler included in the Development Tools Module
is GCC 11.2. Nevertheless, it is important to stress that, unlike the system compiler, the major
version of the most recent GCC from the module will change shortly after the upstream release
of GCC 12.2 (most likely in summer 2022), GCC 13.2 (summer 2023) and so forth. Note that
only the most recent compiler in the Development Tools Module is supported at any time, except
for a six months overlap period after the upgrade happened. Developers on a SUSE Linux Enter-
prise Server 15 system therefore have always access to two supported GCC versions: the almost
unchanging system compiler and the most recent compiler from the Development Tools Module.

Programs and libraries built with the compiler from the Development Tools Module can run on
computers running SUSE Linux Enterprise Server 15 which do not have the module installed.
All necessary runtime libraries are available from the main repositories of the operating system
itself, and new ones are added through the standard update mechanism. In the document at
hand, we use the term GCC 11 as synonym for any minor version of the major version 11 and

GCC 11.2, to refer to specifically that version. In practice, they should be interchangeable.

5 Advanced Optimization and New Capabilities of GCC 11

2.1 When to use compilers from the Development Tools Module

Often you will find that the system compiler perfectly satisfies your needs. After all, it is the
compiler used to build the vast majority of packages and their updates in the system itself. On
the other hand, there are situations where a newer compiler is necessary, or where you want to

consider using a newer compiler to get some benefits of its ongoing development.

If the program or library you are building uses language features which are not supported by
GCC 7, you cannot use the system compiler. However, the compiler from the Development Tools
Module will usually be sufficiently new. The most obvious case is C++. GCC 11 has a mature
implementation of C++17 features, whereas the one in GCC 7 is only experimental and incom-
plete. The GNU C++ Library which accompanies GCC 11 is also almost C++17 feature-complete.

Only hardware interference sizes ! are not implemented.

o Important: Code using C++17 features

Code using C++17 features should always be compiled with the compiler from the Devel-
opment Tools Module. Linking two objects, such as an application and a shared library,
which both use C++17, one was built with g++ 8 or earlier and the other with g++ 9 or
later is particularly dangerous because C++ STL objects instantiated by the experimental
code may provide implementation and even ABI that is different from what the mature
implementation expects and vice versa. Issues caused by such a mismatch are difficult to

predict and may include silent data corruption.

Most of C++20 features are implemented in GCC 11 as experimental features. Try them out
with appropriate caution and avoid linking together code that uses them and is produced by
different compilers. Modules are only partially implemented 2 and require that the source file is

compiled with -fmodules-ts option. Similarly, coroutines 3

are also implemented but require
that the source file is compiled with the -fcoroutines switch. If you are interested in the

implementation status of any particular C++ feature in the compiler, consult the following pages:

® C++ Standards Support in GCC (https://gcc.gnu.org/projects/cxx-status.html)#, and

® The GNU C++ Library Manual (https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manu-

al/manual)@.

—

Proposal PO154R1

N

Proposals P1766R1 and P1815R2

w

Proposal P0912R5

6 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual

Advances in supporting new language specifications are not limited to C++. GCC 11 supports
several new features from the ISO 202X C standard draft, and the Fortran compiler has also seen
many improvements. And if you use OpenMP or OpenACC extensions for parallel programming,
you will find that the compiler supports a lot of features of new versions of these standards. For

more details, visit the links at the end of this section.

In addition to new supported language constructs, GCC 11 offers improved diagnostics when it
reports errors and warnings to the user so that they are easier to understand and to be acted
upon. This is particularly useful when dealing with issues in templated C++ code. Furthermore,

there are several new warnings which help to avoid common programming mistakes.

Because GCC 11 is newer, it can generate code for many recent processors not supported by GCC
7. Such a list of processors would be too large to be displayed here. Nevertheless, in Section 7,
“Performance evaluation: SPEC CPU 2017" we specifically look at optimizing code for an AMD EPYC
7003 Series Processor which is based on AMD Zen 3 cores. The system compiler does not know
this kind of core and therefore cannot optimize for it. GCC 11, on the other hand, is the second
major release supporting AMD Zen 3 cores, and thus can often produce significantly faster code

for it.

Finally, the general optimization pipeline of the compiler has also significantly improved over
the years, which we will demonstrate in the last sections of this document. To find out more

about improvements in versions of GCC 8, 9, 10 and 11, visit their respective “changes” pages:

® GCC 8 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-8/

changes.html) @,

® GCC 9 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-9/

changes.html) @,

® GCC 10 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-10/

changes.html) 2, and

® GCC 11 Release Series Changes, New Features, and Fixes (https://gcc.gnu.org/gcc-11/

changes.html)2.

7 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/gcc-8/changes.html
https://gcc.gnu.org/gcc-8/changes.html
https://gcc.gnu.org/gcc-9/changes.html
https://gcc.gnu.org/gcc-9/changes.html
https://gcc.gnu.org/gcc-10/changes.html
https://gcc.gnu.org/gcc-10/changes.html
https://gcc.gnu.org/gcc-11/changes.html
https://gcc.gnu.org/gcc-11/changes.html

2.2 Potential issues with the Development Tools Module Compiler

GCC 11 from the Development Tools Module can sometimes behave differently in a way that
can cause issues which were not present with the system compiler. Such problems encountered

by other users are listed in the following documents:
® Porting to GCC 8 (https://gcc.gnu.org/gcc-8/porting_to.html) A,
® Porting to GCC 9 (https://gcc.gnu.org/gcc-9/porting_to.html) 2, and
® Porting to GCC 10 (https://gcc.gnu.org/gcc-10/porting_to.html) @

® Porting to GCC 11 (https://gcc.gnu.org/gec-11/porting_to.html) 2.

To get an understanding of the problems, read through these four short pages. The document
at hand briefly mentions three such potential pitfalls.

The first one is that, for performance reasons, GCC 10 and later default to - fno-common which
means that a linker error will now be reported if the same variable is defined in two C compi-
lation units. This can happen if two or more . c files include the same header file which intends
to declare a variable but omits the extern keyword when doing so, inadvertently resulting in
multiple definitions. If you encounter such an error, you simply need to add the extern key-
word to the declaration in the header file and define the variable in only a single compilation
unit. Alternatively, you can compile your project with an explicit - fcommon if you are willing to

accept that this behavior is inconsistent with C++ and may incur speed and code size penalties.

Users compiling C++ sources should also be aware that g++ 11 defaults to -std=gnu+ + 17, the C
++17 standard with GNU extensions, instead of -std =gnu+ + 14. Moreover, some C++ Standard
Library headers have been changed to no longer include other headers that they do not depend

on. You may need to explicitly include <limits>, <memory>, <utility> or <thread>.

The final issue emphasized here is that the C++ compiler in GCC 8 and later now assumes that
no execution path in a non-void function simply reaches the end of the function without a
return statement. This means it is assumed that such code paths will never be executed, and
thus they will be eliminated. You should therefore pay special attention to warnings produced
by -Wreturn-type. This option is enabled by default and indicates which functions might be
affected.

8 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/gcc-8/porting_to.html
https://gcc.gnu.org/gcc-9/porting_to.html
https://gcc.gnu.org/gcc-10/porting_to.html
https://gcc.gnu.org/gcc-11/porting_to.html

2.3 Installing GCC 11 from the Development Tools Module

Similar to other modules and extensions for SUSE Linux Enterprise Server 15, you can activate
the Development Tools Module either using the command line tool SUSEConnect or using the

YaST setup and configuration tool. To use the former, carry out the following steps:
1. As root, start by listing the available and activated modules and extensions:

slesl5: # SUSEConnect --list-extensions

2. In the computer output, look for “Development Tools Module”:

Development Tools Module 15 SP3 x86 64
Activate with: SUSEConnect -p sle-module-development-tools/15.3/x86 64

If you see the text (Activated) next to the module name, the module is already ready to

be used. You can safely proceed to the installation of the compiler packages.
3. Otherwise, issue the activation command that is shown in the command output above:

slesl5: # SUSEConnect -p sle-module-development-tools/15.3/x86 64
Registering system to SUSE Customer Center

Updating system details on https://scc.suse.com ...
Activating sle-module-development-tools 15.3 x86 64 ...
-> Adding service to system ...

-> Installing release package ...

Successfully registered system

If you prefer to use YaST, the procedure is also straightforward. Run YaST as root and go to
the Add-On Products menu in the Software section. If “Development Tools Module” is among
the listed installed modules, you already have the module activated and can proceed with in-
stalling individual compiler packages. If not, click the Add button, select Select Extensions
and Modules from Registration Server, and YaST will guide you through a simple procedure
to add the module.

When you have the Development Tools Module installed, you can verify that the GCC 11 pack-

ages are available to be installed on your system:.
slesl5: # zypper search gccll

Refreshing service 'Basesystem Module 15 SP3 x86 64'.
Refreshing service 'Containers Module 15 SP3 x86 64'.

9 Advanced Optimization and New Capabilities of GCC 11

Refreshing service 'Desktop Applications Module 15 SP3 x86 64'.
Refreshing service 'Development Tools Module 15 SP3 x86 64'.
Refreshing service 'SUSE Linux Enterprise Server 15 SP3 x86 64'.
Refreshing service 'Server Applications Module 15 SP3 x86 64'.
Refreshing service 'Web _and Scripting Module 15 SP3 x86 64'.

Loading repository
Reading installed packages...

gccll

gccll-32bit
gccll-ada
gccll-ada-32bit
gccll-c++
gccll-c++-32bit
gccll-d
gccll-d-32bit
gccll-fortran
gccll-fortran-32bit
gccll-go
gccll-go-32bit
gccll-info
gccll-locale
gccll-obj-c++
gccll-obj-c++-32bit
gccll-objc
gccll-objc-32bit
gccll-testresults
gccll-testresults

libstdc++6-devel-gccll
libstdc++6-devel-gccll-32bit

libstdc++6-pp-gccll

libstdc++6-pp-gccll-32bit

data...

Summary

The GNU C Compiler and Support Files

The GNU C Compiler and Support Files

The GNU C Compiler 32bit support

GNU Ada Compiler Based on GCC (GNAT)

GNU Ada Compiler Based on GCC (GNAT)

The GNU C++ Compiler

The GNU C++ Compiler

GNU D Compiler

GNU D Compiler

The GNU Fortran Compiler and Support Files

The GNU Fortran Compiler and Support Files

GNU Go Compiler

GNU Go Compiler

Documentation for the GNU compiler collection
Locale Data for the GNU Compiler Collection

GNU Objective C++ Compiler

GNU Objective C++ Compiler

GNU Objective C Compiler

GNU Objective C Compiler

Testsuite results

Testsuite results

Include Files and Libraries mandatory for Development
Include Files and Libraries mandatory for Development
GDB pretty printers for the C++ standard library
GDB pretty printers for the C++ standard library

Now you can simply install the compilers for the programming languages you use with zypper:

slesl5: # zypper install gccll gccll-c++ gccll-fortran

The compilers are installed on your system, the executables are called gcc-11, g++-11, gfor-

tran-11 and so forth. It is also possible to install the packages in YaST. To do so, simply enter

the “Software Management” menu in the Software section and search for “gcc11”. Then select

the packages you want to install. Finally, click the Accept button.

10

Advanced Optimization and New Capabilities of GCC 11

@ Note: Newer compilers on openSUSE Leap 15.3

The community distribution openSUSE Leap 15.3 shares most of the base packages with
SUSE Linux Enterprise Server 15 SP3. The system compiler on systems running openSUSE
Leap 15.2 is also GCC 7.5. There is no Development Tools Module for the community dis-
tribution available, but a newer compiler is provided. Simply install the packages gccll,

gccll-c++, gccll-fortran, and the like.

3 Optimization levels and related options

GCC has a rich optimization pipeline that is controlled by approximately a hundred of command
line options. It would be impractical to force users to decide about each one of them whether
they want to have it enabled when compiling their code. Like all other modern compilers, GCC
therefore introduces the concept of optimization levels which allow the user to pick a config-
uration from a few common ones. Optionally, the user can tweak the selected level, but that

does not happen frequently.

The default is to not optimize. You can specify this optimization level on the command line as
-00. It is often used when developing and debugging a project. This means it is usually accompa-
nied with the command line switch -g so that debug information is emitted. As no optimizations
take place, no information is lost because of it. No variables are optimized away, the compiler
only inlines functions with special attributes that require it, and so on. As a consequence, the
debugger can almost always find everything it searches for in the running program and report on
its state very well. On the other hand, the resulting code is big and slow. Thus this optimization

level should not be used for release builds.

The most common optimization level for release builds is -02 which attempts to optimize the
code aggressively but avoids large compile times and excessive code growth. Optimization level
-03 instructs GCC to simply optimize as much as possible, even if the resulting code might be
considerably bigger and the compilation can take longer. Note that neither -02 nor -03 imply
anything about the precision and semantics of floating-point operations. Even at the optimiza-
tion level -03 GCC implements math functions so that they strictly follow the respective IEEE
and/or ISO rules. This often means that the compiled programs run markedly slower than nec-
essary if such strict adherence is not required. The command line switch - ffast-math is a com-

mon way to relax rules governing floating-point operations. It is out of scope of this document to

1" Advanced Optimization and New Capabilities of GCC 11

provide a list of the fine-grained options it enables and their meaning. However, if your software
crunches floating-point numbers and its runtime is a priority, you can look them up in the GCC

manual and review what semantics of floating-point operations you need.

The most aggressive optimization level is -0fast which does imply -ffast-math along with
a few options that disregard strict standard compliance. In GCC 11 this level also means the
optimizers may introduce data races when moving memory stores which may not be safe for
multithreaded applications. Additionally, the Fortran compiler can take advantage of associa-
tivity of math operations even across parentheses and convert big memory allocations on the
heap to allocations on stack. The last mentioned transformation may cause the code to violate
maximum stack size allowed by ulimit which is then reported to the user as a segmentation
fault. We often use level -0fast to build benchmarks. It is a shorthand for the options on top
of -03 which often make them run faster and the benchmarks are usually written in a way that

they still run correctly.

If you feed the compiler with huge machine-generated input, especially if individual functions
happen to be extremely large, the compile time can become an issue even when using -02. In
such cases, use the most lightweight optimization level -01 that avoids running almost all opti-
mizations with quadratic complexity. Finally, the -0s level directs the compiler to aggressively

optimize for the size of the binary.

@ Note: Optimization level recommendation

Usually we recommend using -02. This is the optimization level we use to build most
SUSE and openSUSE packages, because at this level the compiler makes balanced size
and speed trade-offs when building a general-purpose operating system. However, we
suggest using -03 if you know that your project is compute-intensive and is either small
or an important part of your actual workload. Moreover, if the compiled code contains
performance-critical floating-point operations, we strongly advise that you investigate

whether -ffast-math or any of the fine-grained options it implies can be safely used.

If your project and the techniques you use to debug or instrument it do not depend on ELF symbol
interposition, you may consider trying to speed it up by using - fno-semantic-interposition.
This allows the compiler to inline calls and propagate information even when it would be illegal
if a symbol changed during dynamic linking. Using this option to signal to the compiler that in-
terposition is not going to happen is known to significantly boost performance of some projects,

most notably the Python interpreter.

12 Advanced Optimization and New Capabilities of GCC 11

Some projects use - fno-strict-aliasing to work around type punning problems in the source
code. This is not recommended except for very low-level hand-optimized code such as the Linux
kernel. Type-based alias analysis is a very powerful tool. It is used to enable other transforma-
tions, such as store-to-load propagation that in turn enables other high level optimizations, such

as aggressive inlining, vectorization and others.

With the -g switch GCC tries hard to generate useful debug information even when optimizing.
However, a lot of information is irrecoverably lost in the process. Debuggers also often struggle
to present the user with a view of the state of a program in which statements are not necessarily
executed in the original order. Debugging optimized code can therefore be a challenging task

but usually is still somewhat possible.

The complete list of optimization and other command line switches is available in the compiler
manual, provided in the info format in the package gccll-info or online at the GCC project

Web site (https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gcc/) .

Bear in mind that although almost all optimizing compilers have the concept of optimization
levels and their optimization levels often have the same names as those in GCC, they do not
necessarily mean to make the same trade-offs. Famously, GCC's -0s optimizes for size much
more aggressively than LLVM/Clang's level with the same name. Therefore, it often produces
slower code; the more equivalent option in Clang is -0z which GCC does not have. Similarly,
-02 can have different meanings for different compilers. For example, the difference between
-02 and -03 is much bigger in GCC than in LLVM/Clang.

@ Note: Changing the optimization level with cmake

If you use cmake to configure and set up builds of your application, be aware that
its release optimization level defaults to -03 which might not be what you want. To
change it, you must modify the CMAKE C FLAGS RELEASE, CMAKE CXX_FLAGS RELEASE
and/or CMAKE Fortran FLAGS RELEASE variables, since they are appended at the end
of the compilation command lines, thus overwriting any level set in the variables
CMAKE C_FLAGS, CMAKE CXX_FLAGS, and the like.

4 Taking advantage of newer processors

By default GCC assumes that you want to run the compiled program on a wide variety of CPUs,
including fairly old ones, regardless of the selected optimization level. On architectures like
x86 64 and aarch64 the generated code will only contain instructions available on every CPU

13 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gcc/
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/gcc/

model of the architecture, including the earliest ones. On x86 64 in particular this means that
the programs will use the SSE and SSE2 instruction sets for floating-point and vector operations

but not any more recent ones.

If you know that the generated binary will run only on machines supporting newer instruction
set extensions, you can specify it on the command line. Their complete list is available in the
manual, but the most prominent one is -march which lets you select a CPU model to generate
code for. For example, if you know that your program will only be executed on AMD EPYC 7003
Series Processors which is based on AMD Zen 3 cores or processors that are compatible with
it, you can instruct GCC to take advantage of all the instructions the CPU supports with option
-march=znver3. Note that on SUSE Linux Enterprise Server 15, the system compiler does not
know this particular value of the switch; you need to use GCC 11 from the Development Tools

Module to optimize code for these processors.

To run the program on the machine on which you are compiling it, you can have the compiler
auto-detect the target CPU model for you with the option -march=native. This only works if
the compiler is new enough. The system compiler of SUSE Linux Enterprise Server, for example,
misidentifies AMD EPYC 7003 Series Processors as being based on the AMD Zen 1 core. Among
other things, this means that it only emits 128bit vector instructions, even though the CPU has
data-paths wide enough to efficiently process 256bit ones. Again, the easy solution is to use the

compiler from the Development Tools Module when targeting recent processors.

5 Link Time Optimization (LTO)

Figure 1 outlines the classic mode of operation of a compiler and a linker. Pieces of a program are
compiled and optimized in chunks defined by the user called compilation units to produce so-
called object files which already contain binary machine instructions and which are combined
together by a linker. Because the linker works at such low level, it cannot perform much opti-
mization and the division of the program into compilation units thus presents a profound barrier

to optimization.

14 Advanced Optimization and New Capabilities of GCC 11

filel.c GCC filel.o ——|Id/gold a.out

file2.c GCC file2.0
file3.c GCC file3.0
filed.c GCC file4.o

FIGURE 1: TRADITIONAL PROGRAM BUILD

This limitation can be overcome by rearranging the process so that the linker does not receive
as its input the almost finished object files containing machine instructions, but is invoked on
files containing so called intermediate language (IL) which is a much richer representation of
each original compilation unit (see figure figure 2). The linker identifies the input as not yet
entirely compiled and invokes a linker plugin which in turn runs the compiler again. But this
time it has at its disposal the representation of the entire program or library that is being built.
The compiler makes decisions about what optimizations across function and compilation unit
boundaries will be carried out and then divides the program into a set of partitions. Each of
the partitions is further optimized independently, and machine code is emitted for it, which is

finally linked the traditional way. Processing of the partitions is performed in parallel.

15 Advanced Optimization and New Capabilities of GCC 11

filel.c GCC filel.o (IL) Id/gold a.out

file2.c GCC file2.0 (IL) LTO plugin

file3.c GCC file3.0 (IL) Whole Program
Analysis

partition 1

\ partition 2

filed.c GCC filed.o (IL)

partition n

FIGURE 2:

To use Link Time Optimization, all you need do is to add the - flto switch to the compilation
command line. The vast majority of packages in the Linux distribution openSUSE Tumbleweed
has been built with LTO for over two years without any major problems. A lot of work has been
put into emitting good debug information when building with LTO too. Thus the debugging
experience is not severely limited anymore as it was a couple of years ago.

LTO in GCC always consists of a whole program analysis (WPA) stage followed by the majority
of the compilation process performed in parallel, which greatly reduces the build times of most
projects. To control the parallelism, you can explicitly cap the number of parallel compilation
processes by n if you specify - flto=n at linker command line. Alternatively, it is possible to use
the GNU make jobserver with - flto=jobserv while also prepending the makefile rule invoking
link step with character + to instruct GNU make to keep the jobserver available to the linker
process. You can also use - flto=auto which instructs GCC to search for the jobserver and if it

is not found, use all available CPU threads.

Note that there is a principal architectural difference in how GCC and LLVM/Clang approach
LTO. Clang provides two LTO mechanisms, so-called thin LTO and full LTO. In full LTO, LLVM
processes the whole program as if it was a single translation unit which does not allow for
any parallelism. GCC can be configured to operate in this way with the option -flto-parti-
tion=one. LLVM in thin LTO mode can compile different compilation units in parallel and makes
possible inlining across compilation unit boundaries, but not most other types of cross-module
optimizations. This mechanism therefore has inherently higher code quality penalty than full
LTO or the approach of GCC.

16 Advanced Optimization and New Capabilities of GCC 11

5.1 Most notable benefits of LTO

Applications built with LTO are often faster, mainly because the compiler can inline calls to
functions in another compilation unit. This possibility also allows programmers to structure
their code according to its logical division because they are not forced to put function definitions
into header files to enable their inlining. Because the compiler cannot inline all calls conveying
information known at compilation time, GCC tracks and propagates constants, value ranges
and devirtualization contexts from the call sites to the callees, often even when passed in an
aggregate or by reference. These can then subsequently save unnecessary computations. LTO

allows such propagation across compilation unit boundaries, too.

Link Time Optimization with whole program analysis also offers many opportunities to shrink
the code size of the built project. Thanks to symbol promotion and inter-procedural unreachable
code elimination, functions and their parts which are not necessary in any particular project can
be removed even when they are not declared static and are not defined in an anonymous
namespace. Automatic attribute discovery can identify C++ functions that do not throw exceptions
which allows the compiler to avoid generating a lot of code in exception cleanup regions. Iden-
tical code folding can find functions with the same semantics and remove all but one of them.
The code size savings are often very significant and a compelling reason to use LTO even for
applications which are not CPU-bound.

@ Note: Building libraries with LTO

The symbol promotion is controlled by resolution information given to the linker and
depends on type of the DSO build. When producing a dynamically loaded shared library,
all symbols with default visibility can be overwritten by the dynamic linker. This blocks
the promotion of all functions not declared inline, thus it is necessary to use the hidden
visibility wherever possible to achieve best results. Similar problems happen even when
building static libraries with - rdynamic.

5.2 Potential issues with LTO

As noted earlier, the vast majority of packages in the openSUSE Tumbleweed distribution are
built with LTO without any need to tweak them, and they work fine. Nevertheless, some low-
level constructs pose a problem for LTO. One typical issue are symbols defined in inline assembly
which can happen to be placed in a different partition from their uses and subsequently fail
the final linking step. To build such projects with LTO, the assembler snippets defining symbols

17 Advanced Optimization and New Capabilities of GCC 11

must be placed into a separate assembler source file so that they only participate in the final
linking step. Global register variables are not supported by LTO, and programs either must
not use this feature or be built the traditional way.

Another notable limitation of LTO is that it does not support symbol versioning implemented with
special inline assembly snippets (as opposed to a linker map file). To define symbol versions in
the source files, you can do so with the new symver function attribute. As an example, the follow-
ing snippet will make the function foo v1 implement foo in node VERS 1 (which must be spec-
ified in the version script supplied to the linker). Consult the manual (https://gcc.gnu.org/online-

docs/gcc/Common-Function-Attributes.html#index-symver-function-attribute) @ for more details.

__attribute ((__symver ("foo@VERS 1")))
int foo vl (void)

{

}

Sometimes the extra power of LTO reveals pre-existing problems which do not manifest them-
selves otherwise. Violations of (strict) aliasing rules and C++ one definition rule tend to cause
misbehavior significantly more often; the latter is fortunately reported by the -Wodr warning
which is on by default and should not be ignored. We have also seen cases where the use of
the flatten function attribute led to unsustainable amount of inlining with LTO. Furthermore,
LTO is not a good fit for code snippets compiled by configure scripts (generated by autoconf)
to discover the availability of various features, especially when the script then searches for a
string in the generated assembly.

Finally, we needed to configure the virtual machines building the biggest openSUSE packages to
have more memory than when not using LTO. Whereas in the traditional mode of compilation
1 GB of RAM per core was enough to build Mozilla Firefox, the serial step of LTO means the

build-bots need 16 GB even when they have fewer than 16 cores.

6 Profile-Guided Optimization (PGO)

Optimizing compilers frequently make decisions that depend on which path through the code
they consider most likely to be executed, how many times a loop is expected to iterate, and
similar estimates. They also often face trade-offs between potential runtime benefits and code
size growth. Ideally, they would optimize only frequently executed (also called hot) bits of a

program for speed and everything else for size to reduce strain on caches and make the distrib-

18 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-symver-function-attribute
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-symver-function-attribute

ution of the built software cheaper. Unfortunately, guessing which parts of a program are the
hot ones is difficult, and even sophisticated estimation algorithms implemented in GCC are no

match for a measurement.

If you do not mind adding an extra level of complexity to the build system of your project, you
can make such measurement part of the process. The makefile (or any other) build script needs
to compile the project twice. The first time it needs to compile with the -fprofile-generate
option and then execute the resulting binary in one or multiple train runs during which it will
save information about the behavior of the program to special files. Afterward, the project needs
to be rebuilt again, this time with the -fprofile-use option which instructs the compiler to
look for the files with the measurements and use them when making optimization decisions, a
process called Profile-Guided Optimization (PGO).

It is important that the train run exhibits the same characteristics as the real workload. Unless
you use the option -fprofile-partial-training in the second build, it needs to exercise the
code that is also the most frequently executed in real use, otherwise it will be optimized for size
and PGO would make more harm than good. With the option, GCC reverts to guessing properties
of portions of the projects not exercised in the train run, as if they were compiled without profile
feedback. This however also means that the code size will not perform better or shrink as much

as one would expect from a PGO build.

On the other hand, train runs do not need to be a perfect simulation of the real workload. For
example, even though a test suite should not be a very good train run in theory because it
disproportionally often tests various corner cases, in practice many projects use it as a train run

and achieve significant runtime improvements with real workloads, too.

Profiles collected using an instrumented binary for multithreaded programs may be inconsistent
because of missed counter updates. You can use -fprofile-correction in addition to -fpro-
file-use so that GCC uses heuristics to correct or smooth out such inconsistencies instead of

emitting an error.

Profile-Guided Optimization can be combined and is complimentary to Link Time Optimization.
While LTO expands what the compiler can do, PGO informs it about which parts of the program
are the important ones and should be focused on. The following sections detail this by means
of two rather different case studies.

19 Advanced Optimization and New Capabilities of GCC 11

7 Performance evaluation; SPEC CPU 2017

Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation that publishes a
variety of industry standard benchmarks to evaluate performance and other characteristics of
computer systems. Its latest suite of CPU intensive workloads, SPEC CPU 2017, is often used to
compare compilers and how well they optimize code with different settings because the included
benchmarks are well known and represent a wide variety of computation-heavy programs. This

section highlights selected results of a GCC 11 evaluation using the suite.

Note that when we use SPEC to perform compiler comparisons, we are lenient toward some
official SPEC rules which system manufacturers need to observe to claim an official score for
their system. We disregard the concepts of base and peak metrics and simply focus on results of
compilations using a particular set of options. We even patched several benchmarks:

¢ Benchmarks 502.gcc_r, 505.mcf r, 511.povray r, and 527.cam4 r contain an imple-
mentation of quicksort which violates (strict) C/C++ aliasing rules which can lead to erro-
neous behavior when optimizing at link time. SPEC decided not to change the released
benchmarks and simply suggests that these benchmarks are built with the - fno-strict-
aliasing option when they are built with GCC. That makes evaluation of compilers using
SPEC problematic, gauging their ability to use aliasing rules to facilitate optimizations is
important. We have therefore disabled it only for the problematic qsort functions with

the following function attribute:
__attribute ((optimize("-fno-strict-aliasing")))

As a result, the only benchmark which we compile with -fno-strict-aliasing is
500.perlbench r.

® We have increased the tolerance of 549.fotonik3d r to rounding errors after it became
clear the intention was that the compiler can use relaxed semantics of floating-point
operations in the benchmark (see GCC bug 84201 (https://gcc.gnu.org/bugzilla/show_bug.c-
gi?id=84201) 7).

For these and other reasons, all the results in this document are non-reportable. Finally, SPEC
2017 CPU offers so-called speed and rate metrics. For our purposes, we mostly ignore the differ-
ences and simply run the benchmarks configured for rate metrics (mainly because the runtimes

are smaller) but we always run all benchmarks single-threaded.

20 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84201
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84201

SPEC specifies a base runtime for each benchmark and defines a rate as the ratio of the base
runtime and the median measured runtime (this rate is a separate concept from the rate metrics).
The overall suite score is then calculated as geometric mean of these ratios. The bigger the rate
or score, the better it is. In the remainder of this section, we report runtimes using relative rates
and their geometric means as they were measured on an AMD EPYC 7543P Processor running
SUSE Linux Enterprise Server 15 SP3.

7.1 Benefits of LTO and PGO

In Section 3, “Optimization levels and related options” we recommend that HPC workloads are com-
piled with -03 and benchmarks with -0fast. But it is still interesting to look at integer crunch-
ing benchmarks built with only -02 because that is how Linux distributions often build the
programs from which they were extracted. We have already mentioned that almost the whole
openSUSE Tumbleweed distribution is now built with LTO, and selected packages with PGO,

and the following paragraphs demonstrate why.

130%
120%
110% M Standard
EmLTO
PGO
100% B LTO+PGO

90%

80%

FIGURE 3: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 11.2 AND -02

Figure 3 shows the overall performance effect on the whole integer benchmark suite as captured
by the geometric mean of all individual benchmark rates. The remarkable uplift of performance
when using PGO is mostly down to much quicker 525.x264 r (see figure 4). The reason is that
with profile feedback GCC performs vectorization also at -02 and this benchmark benefits a great
deal from vectorization. In practice it really should be compiled with at least -03. Nevertheless,
several benchmarks which are derived from programs that are typically compiled with -02 also

benefit from these advanced modes of compilation, as can be seen in figure 5.

21 Advanced Optimization and New Capabilities of GCC 11

525.x264_r HLTO+PGO PGO

HLTO H Standard

0% 50% 100% 150% 200% 250%

FIGURE 4: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF 525.X264_R BUILT WITH GCC 11.2 AND -02

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

HLTO+PGO
523.xalancbmk_r PGO

ELTO
531.deepsjeng_r B Standard

541.leela_r

548.exchange2_r

557.xz_r

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 5: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF THE REST OF THE INTEGER BENCHMARKS BUILT WITH
GCC 11.2 AND -02

Figure 6 shows their other important advantage which is the reduction of the size of the binaries
(measured without debug info), which can be significant with LTO or a combination of LTO and
PGO. Note that it does not depict that the size of benchmark 548.exchange2 r grew by 250%
and 50% when built with PGO or both PGO and LTO respectively, which looks huge but the
growth is from a particularly small base. Keep in mind that it is the only Fortran benchmark in
the integer suite and that the size penalty is offset by significant speed-up, making the trade-off
reasonable, especially in the LTO +PGO case. For completeness, we show this result in figure 7

22 Advanced Optimization and New Capabilities of GCC 11

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

B LTO+PGO

PGO 523.xalancbmk _r
ELTO
B Normal 525.x264 _r

531.deepsjeng_r

541.leela_r

557.xz_r

140% 120% 100% 80% 60% 40% 20% 0%

FIGURE 6: BINARY SIZE (SMALLER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH GCC 11.2 AND
-02

_ 548.exchange2_r

H LTO+PGO PGO
HLTO ® Normal
300% 250% 200% 150% 100% 50% 0%

FIGURE 7: BINARY SIZE (SMALLER IS BETTER) OF 548.EXCHANGE2_R BUILT WITH GCC 11.2 AND -02

The runtime benefits and binary size savings are also substantial when using the optimization
level -0fast and option -march=native to allow the compiler to take full advantage of all in-
structions that the AMD EPYC 7543P Processor supports. Figure 8 shows the respective geometric
means, the seemingly underwhelming overall performance of the compilation methods using
PGO are caused by the fact that GCC 11 can optimize 548.exchange2 r much better than pre-
vious versions, but only without profile feedback. This happens because of shortcomings in how
the compiler updates internal profile information during the new important transformations
which have been addressed for GCC 12. When evaluating these compilation methods on integer
SPEC benchmarks, it is perhaps better to look at individual scores as they are shown in figure
9. If we excluded 548.exchange2 r, the geometric mean of LTO +PGO method would exceed
110% of the standard one. Even though optimization levels -03 and -0fast are permitted to be
relaxed about the final binary size, PGO and especially LTO can bring it nicely down at these
levels, too. Figure 70 depicts the relative binary sizes of all integer benchmarks.

23 Advanced Optimization and New Capabilities of GCC 11

130%

120%

110% H Normal

ELTO
PGO
HLTO+PGO

FIGURE 8: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 11.2 USING
-OFAST AND -MARCH=NATIVE

100%

90%

80%

500.perlbench_r

502.gcc_r

505.mcf _r

520.omnetpp_r

523.xalancbmk_r E LTO+PGO

PGO
ELTO
® Normal

525.x264 r

531.deepsjeng_r

541.leela_r

548.exchange2_r

557.xz_r

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 9: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH GCC
11.2 USING -OFAST AND -MARCH=NATIVE

24 Advanced Optimization and New Capabilities of GCC 11

500.perlbench_r

502.gcc_r

505.mcf r

520.omnetpp_r

B LTO+PGO 523.xalancbmk_r
PGO

ELTO 525.x264 _r

B Normal
531.deepsjeng_r
541.leela_r
548.exchange2_r
557.xz_r

120% 100% 80% 60% 40% 20% 0%

FIGURE 10: BINARY SIZE (SMALLER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 11.2 USING -OFAST AND
-MARCH=NATIVE

Many of the SPEC 2017 floating-point benchmarks measure how well a given system can opti-
mize and execute a handful of number crunching loops and they often come from performance
sensitive programs written with traditional compilation method in mind. Consequently there are
fewer cross-module dependencies, identifying hot paths is less crucial and the effect of LTO and
PGO on most of the floating-point benchmarks is often limited. Nevertheless, there are impor-
tant cases when these modes of compilation also bring about significant performance increases.
Figure 11 shows the effect of these methods on individual benchmarks when compiled at -0fast
and targeting the full ISA of the AMD EPYC 7543P Processor.

25 Advanced Optimization and New Capabilities of GCC 11

503.bwaves_r
507.cactuBSSN_r
508.namd_r
510.parest_r

511.povray_r

519.lbm_r
B LTO+PGO
521.wrf r PGO
ELTO
526.blender_r B Normal

527.cam4_r
538.imagick_r
544.nab _r

549 .fotonik3d_r

554.roms_r

0% 20 40% 60% 80% 100% 120% 140%

FIGURE 11: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL FLOATING-POINT BENCHMARKS BUILT
WITH GCC 11.2 USING -OFAST AND -MARCH=NATIVE

The problematic case of 521.wrf r is an unfortunate result of SPEC scripts re-compiling parts
of the benchmark when building the verifying utility and GCC 11 not being able to merge the
measured profile of the benchmark train run and verification®. In practice this issue should be
easy to avoid and upcoming GCC 12 has been enhanced to merge measured profiles even in this
case. Excluding this problematic benchmark, the geometric mean of rates using PGO+LTO is
5% higher. Binary size savings of PGO and LTO are sometimes even bigger than those achieved

on integer benchmarks, as can be seen on figure 72

4 See GCC bug 90364 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90364) .

26 Advanced Optimization and New Capabilities of GCC 11

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90364

503.bwaves_r
507.cactuBSSN_r
508.namd _r
510.parest_r

511.povray_r

il

519.lbm_r

H LTO+PGO

PGO 521.wrf_r

ELTO

B Normal 526.blender_r
527.cam4_r
538.imagick_r
544 .nab r
549 .fotonik3d_r
554.roms_r

120% 100% 80% 60% 40% 20% 0%

FIGURE 12: BINARY SIZE (SMALLER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH GCC 11.2 USING -OFAST AND
-MARCH=NATIVE

7.2 GCC11.2 comparedto GCC7.5

In previous sections we have recommended the use of GCC 11.2 from the Development Tools
Module over the system compiler. Among other reasons, we did so because of its more powerful
optimization pipeline and its support for newer CPUs. This section compares SPEC CPU 2017
obtained with GCC 7.5, which corresponds to the system compiler in SUSE Linux Enterprise
Server 15, and GCC 11.2 on an AMD EPYC 7543P Processor, when all benchmarks are compiled
with -0fast and -march=native. Note that the latter option means that both compilers differ

in their CPU targets because GCC 7.5 does not know the Zen 3 core. This in turn means that

27 Advanced Optimization and New Capabilities of GCC 11

in large part the optimization benefits presented here present themselves because the newer
compiler can take advantage of the full width of vector paths in the processor whereas the old
one uses only a half. Nevertheless, be aware that simply using wider vectors everywhere often
backfires. GCC has made substantial advancements over the recent years to avoid such issues,
both in its vectorizer and other optimizers. It is therefore much better placed to use the extra

vector width appropriately and produce code which utilizes the processor better in general.

130%
120%
110% mGCC7

GCC 7 (LTO)
100% mGCC 11

m GCC 11 (LTO)

90%

80%
Geometric mean

FIGURE 13: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH GCC 7.5 AND 11.2
(-OFAST -MARCH=NATIVE)

Figure 13 captures the benefits of using the modern compiler with integer workloads in the form
of relative improvements of the geometric mean of the whole SPEC INTrate 2017 suite. Figure
14 dives deeper and shows which particular benchmarks gained most in terms of performance.
It was already mentioned that 525.x264 r especially benefits from vectorization and therefore
it is not surprising it has improved a lot. 531.deepsjeng r is faster chiefly because it can emit
better code for count trailing zeros (CTZ) operation which it performs frequently. In the previous
chapter we also claimed that GCC 11 can optimize 548.exchange2 r particularly well, it does so
by specializing different invocations of the hottest recursive function, and it also clearly shows

in the picture.

28 Advanced Optimization and New Capabilities of GCC 11

2o
I

D XA D
I

e — = cccL(LTo)

I mGCC 11

Sty 2020202 == GCC7(LTO)

EGCC7
/1

sy =

I
8 AN g

0% 20% 40% 60% 80% 100% 120% 140% 160%

FIGURE 14: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF SELECTED INTEGER BENCHMARKS BUILT WITH GCC
7.5 AND 11.2 (-OFAST -MARCH=NATIVE)

Floating-point computations tend to particularly benefit from vectorization advancements and
so it should be no surprise that the fprate benchmarks also improve substantially when compiled
with GCC 11, as shown in figure 75. Figure 16 provides a detailed look at which benchmarks
contributed most to the overall score difference. The 7% regression of 519. lbm_r is an issue we
did not previously see on Zen 2 based processors. We do not yet know why it takes place but it
only happens with LTO and not when using both PGO and LTO.

130%

120%

mGCC7
GCC 7 (LTO)

mGCC 11

m GCC 11 (LTO)

110%

100%

90%

80%

FIGURE 15: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH GCC 7.5 AND 11.2
(-OFAST -MARCH=NATIVE)

29 Advanced Optimization and New Capabilities of GCC 11

503.bwaves _r

510.parest_r

519.lbm_r
521.wrf_r B GCC 11 (LTO)
mGCC11
527.cam4_r GCC 7 (LTO)
B GCC7
538.imagick_r

549.fotonik3d_r

554.roms_r

0% 20% 40% 60% 80% 100% 120% 140% 160%

FIGURE 16: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF SELECTED FLOATING-POINT BENCHMARKS BUILT
WITH GCC 7.5 AND 11.2 (-OFAST -MARCH=NATIVE)

7.3 Effects of -ffast-math on floating-point performance

In Section 3, “Optimization levels and related options” we pointed out that, if you do not relax the
semantics of floating-point math functions even though you do not need strict adherence to all
respective IEEE and/or ISO rules, you are likely to be leaving some performance on the table.
This section uses the SPEC fprate 2017 test suite to illustrate how much performance that might
be.

We have built the benchmarking suite (without LTO or PGO) using optimization level -03 and
-march=native to target the native ISA of our AMD EPYC 7543P Processor and we compared
its runtime score against the suite built with these options and - ffast-math. As you can see in
figure 17, the geometric means grew by over 8%, but a quick look at figure 78 will tell you that
there are benchmarks with scores which improved twice as much and that of 503.bwaves r

grew by over 50%.

30 Advanced Optimization and New Capabilities of GCC 11

130%

120%

110%
M Plain -O3

m -O3 -ffast-math
100%

90%

80%

FIGURE 17: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH GCC 11.2 AND -0O3
-MARCH=NATIVE, WITHOUT AND WITH -FFAST-MATH

503 D e
510 parest_+
S0t
W -O3 -ffast-math
= v

0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

FIGURE 18: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF SELECTED FLOATING-POINT BENCHMARKS BUILT
WITH GCC 11.2 AND -03 -MARCH=NATIVE, WITHOUT AND WITH -FFAST-MATH

7.4 Comparison with other compilers

The toolchain team at SUSE regularly uses the SPEC CPU 2017 suite to compare the optimization
capabilities of GCC with other compilers, mainly Intel ICC and LLVM/Clang. In the final section
of this case study we will share how the Development Module compiler stands compared to these
competitors on SUSE Linux Enterprise Server 15 SP3. Before we start, we should emphasize that
the comparison has been carried out by people who have much better knowledge of GCC than
of the other compilers and are not “unbiased”. Also, keep in mind that everything we explained
previously about how we carry out the measurements and patch the benchmarks also applies
to this section. On the other hand, the results often guide our work and therefore we strive to

be accurate.

31 Advanced Optimization and New Capabilities of GCC 11

Even though ICC is not intended as a compiler for AMD processors, it is known for its high-
level optimization capabilities, especially when it comes to vectorization. Thus we believe com-
parisons with it are useful even on AMD CPUs. We have therefore compiled SPEC suite with
ICC 2021.3.0 with options -0fast and -march=core-avx2 option and compared the runtimes
on the AMD EPYC 7543P Processor with binaries produced with GCC 11.2 with -0fast and

-march=native.

130%
120%
H ICC (LTO)
mGCC
100% B GCC (LTO)

90%

80%

FIGURE 19: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC INTRATE 2017 BUILT WITH ICC 2021.3.0 AND
GCC11.2

Figure 19 depicts the respective geometric means of rates of all the integer benchmarks when
compiled with the two compilers, without and with LTO, relative to performance of ICC without
LTO. Unlike the previous version, GCC manages to achieve better score in both the tradition-
al compilation mode and with LTO. Figure 20 shows that while ICC achieves better scores on
benchmark 505.mcf r and with LTO also on 531.deepsjeng_ r and 548.exchange2 r, in all
other cases GCC takes the lead.

32 Advanced Optimization and New Capabilities of GCC 11

500.perlbench_r

502.gcc_r
505.mcf_r
520.omnetpp_r

523.xalancbmk_r B GCC (LTO)

m GCC
mICC (LTO)
miCcC

525.x264_r
531.deepsjeng_r
541.leela_r
548.exchange2_r

557.xz_r

0% 20% 40% 60% 80% 100% 120% 140% 160%

FIGURE 20: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF INDIVIDUAL INTEGER BENCHMARKS BUILT WITH ICC
2021.3.0 AND GCC 11.2

In the previous version of this document from the last year we needed to conclude that ICC
was achieving substantially better scores on the floating-point suite because it used its own
math library which had much faster implementation of some key functions such as complex
exponential than the glibc one in SUSE Linux Enterprise Server 15 SP2. Fortunately, SUSE Linux
Enterprise Server 15 SP3 ships with a newer glibc 2.31 which comes with faster implementations
of these functions and other features that allow us to report better scores relative to ICC this
year. So much so that GCC wins by a small margin when it comes to geometric mean of rates,

as you can see on Figure 21.

33 Advanced Optimization and New Capabilities of GCC 11

130%

120%
B ICC (LTO)
mGCC

100% B GCC (LTO)

90%

80%

FIGURE 21: OVERALL PERFORMANCE (BIGGER IS BETTER) OF SPEC FPRATE 2017 BUILT WITH 1CC 2021.3.0 AND
GCC11.2

It is important to look at individual results too because most of this difference is because of
GCC optimizes 549. fotonik3d r far better than ICC (see figure 22). We have not examined the
difference but have observed big wins for GCC on this benchmark even on an Intel Cascade
Lake machine. Looking at other benchmarks the results are more even and ICC achieves better
scores on a number of them (see figure 23). Nevertheless, GCC is generally competitive against

this high-performance compiler.

549 fotonlk3d_r h = GCC (LTO) mGCC

mICC (LTO) ®mICC
0% 50% 100% 150% 200% 250%

FIGURE 22: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF 549.FOTONIK3D_R BUILT WITH ICC 2021.3.0 AND
GCC11.2

34 Advanced Optimization and New Capabilities of GCC 11

503.bwaves_r
507.cactuBSSN_r
508.namd _r
510.parest_r
511.povray _r
519.lbm_r
521.wrf_r
526.blender_r
527.cam4 r
538.imagick_r
544.nab_r

554.roms_r

0% 20% 40% 60% 80% 100% 120%

B GCC (LTO)
mGCC

B ICC (LTO)
micC

FIGURE 23: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF THE REST OF THE FLOATING POINT BENCHMARKS

BUILT WITH ICC 2021.3.0 AND GCC 11.2

Comparisons with LLVM/Clang 13.0 are incomplete because although the newest release of

this compiler suite already contains a Fortran compiler called flang, we could not compile all

SPEC Fortran benchmarks with it. Moreover, the status of flang is not clear to us, and strace

indicates that it internally invokes the system gfortran compiler rather than using the LLVM

infrastructure.

Therefore we have excluded benchmarks using Fortran from our comparison with LLVM/Clang

13.0. We have built the clang and clang++ compilers from sources obtained from the official
git repository (tag L1lvmorg-13.0.0), used it to compile the SPEC CPU 2017 suite with -0fast

and -march=native and compared the performance against the suites built with GCC 11.2 with

the same options. When using Clang's LTO to compile SPEC, we selected the full variant.

35 Advanced Optimization and New Capabilities of GCC 11

500.perlbench_r

502.gcc_r

505.mcf_r

520.omnetpp_r

B GCC (LTO)
523.xalancbmk_r mGCC
LLVM 13 (LTO)
525.x264_r HLLVM13

531.deepsjeng_r

541.leela_r

557.xz_r

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 24: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF C/C++ INTEGER BENCHMARKS BUILT WITH CLANG
13 AND GCC 11.2

Figure 24 captures the integer benchmarks with significant performance differences. Clang scores
one notable win with 531.deepsjeng r, which we can mostly pin down to an if-conversion
transformation which we are not certain is generally profitable, and is slightly faster with
557.xz_r. On the other hand, GCC wins on the benchmark derived from itself and is remark-
ably faster on 500.perlbench r, 505.mcf r and 525.x264 r. If we omitted the one Fortran
benchmark in calculating the overall geometric mean, GCC would win by 5% both with and

without LTO against the equivalent result of LLVM/Clang.

The floating point benchmark suite contains many more Fortran benchmarks, which makes the
comparison more difficult. For more information, refer to figure 25 capturing the significant dif-
ferences in scores of benchmarks written entirely in C/C++. Overall, LLVM/Clang has managed
a slight lead, geometric mean of the GCC rates of the seven benchmarks is 2% lower than that
of LLVM/Clang. In the case of 544.nab_r, we have identified and addressed one of the causes

and the next release of GCC will manage to narrow the gap by roughly a half.

36 Advanced Optimization and New Capabilities of GCC 11

508.namd_r

510.parest_r

511.povray_r

B GCC (LTO)
519.lbm_r mGCC
LLVM 13 (LTO)
526.blender _r HLLVM 13

538.imagick_r

544.nab_r

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 25: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF C/C++ FLOATING POINT BENCHMARKS BUILT WITH
CLANG 13 AND GCC 11.2

8 Performance evaluation: Mozilla Firefox

Benchmarks such as SPEC CPU 2017 are very useful to gauge how compilers optimize a partic-
ular type of computation when it is embedded in a small- to medium-size project. Nevertheless,
many real-world applications are much bigger. This fact alone presents a significant challenge
to optimizing compilers. When there are too many opportunities for a transformation which
has a potential to increase performance but comes with a substantial code size growth, such as
inlining, the compiler simply cannot go ahead and proceed with all of them because the final
size of the binary would be unacceptably big. To monitor how well GCC manages to optimize
big real applications, we regularly build and benchmark the popular Mozilla Firefox browser >,

This section summarizes our latest findings.

We use Mozilla's own Treeherder project to build Firefox with different compilers and options,
and their Talos and Perfherder infrastructure to evaluate their performance. The evaluation
framework compares different binaries using several benchmarks which it can run sufficiently

many times to eliminate their noise. The CPUs used in Mozilla Talos to benchmark x86_64 Linux

5 For older results, see for example the previous version of this paper on GCC 10 (https://documentation.suse.com/sbp/
devel-tools/html/SBP-GCC-10/)# or this blog post (http://hubicka.blogspot.com/2019/05/gcc-9-link-time-and-inter-procedur-
al.html) 2.

37 Advanced Optimization and New Capabilities of GCC 11

https://documentation.suse.com/sbp/devel-tools/html/SBP-GCC-10/
https://documentation.suse.com/sbp/devel-tools/html/SBP-GCC-10/
http://hubicka.blogspot.com/2019/05/gcc-9-link-time-and-inter-procedural.html
http://hubicka.blogspot.com/2019/05/gcc-9-link-time-and-inter-procedural.html

builds are Intel E3-1585L v5. But as shown further on, we measured similar results on an AMD
Ryzen 7 5800X 8-Core Processor, although on simpler benchmarks and with much fewer data
points.

Another important difference to traditional benchmarks is that most of Mozilla Firefox is imple-
mented in a shared object file compiled as position independent code. This limits code generation
in some situations, such as data segment relocations or global variable addressing ®. Note that
all Firefox binaries, regardless of the compiler used, were built with the following options in

addition to any that are explicitly called out:

-fno-sized-deallocation -fno-aligned-new -fno-strict-aliasing -fPIC -fno-exceptions
-fno-rtti -fno-math-errno -fno-exceptions -fno-fomit-frame-pointer
Unfortunately, Mozilla Firefox is one of the projects which has elected to use -fno-strict-
aliasing rather than fix aliasing violations in their code, despite the performance implications
it has.

To compare the two compilers, we needed to deal with cases when the skia and gl libraries
compile different code with GCC and different with Clang because in the latter it uses Clang-
specific vector extensions. We have simply used the following pre-compiled assembly files in

place of the original sources:

./9fx/skia/skia/src/opts/SkOpts_ssse3.s

./9fx/skia/skia/src/opts/SkOpts.s

./9fx/skia/skia/src/opts/SkOpts_sse4l.s

./g9fx/skia/skia/src/opts/SkOpts_avx.s

./g9fx/skia/skia/src/opts/SkOpts hsw.s

./gfx/skia/skia/src/opts/SkOpts_sse42.s

./gfx/wr/swgl/src/gl.s
When we compare any two Firefox binaries, we start by looking at their size, excluding debug
information sections. The size is often important by itself, such as when applications are updat-
ed over slower networks, but it is also a sign of how well the compiler can distinguish perfor-
mance sensitive and rarely executed pieces of a project. To evaluate runtime performance, in
this document we selected four benchmarks. The chief benchmark among them is tp50 7 which
measures the time it takes Firefox to load the tp5 Web page test set which contains a collection
of 151 pages originally picked from a list of 500 most popular ones in 2011. We also look at

tp50 responsiveness test 8 measuring how responsive Firefox is while carrying out a non-trivial

6 For further details, see “How To Write Shared Libraries” by Ulrich Drepper (https://akkadia.org/drepper/dsohowto.pdf) 2.
7 https://firefox-source-docs.mozilla.org/testing/perfdocs/talos.html#tp50 2

8 https://firefox-source-docs.mozilla.org/testing/perfdocs/talos.html#responsiveness 7

38 Advanced Optimization and New Capabilities of GCC 11

https://akkadia.org/drepper/dsohowto.pdf
https://firefox-source-docs.mozilla.org/testing/perfdocs/talos.html#tp5o
https://firefox-source-docs.mozilla.org/testing/perfdocs/talos.html#responsiveness

workload. The last Talos test we have chosen to focus on is called perf reftest singletons % It is
a micro-benchmark that loads simple HTML pages and then measures basic manipulation with
their elements, such as adding a row to a table. This benchmark itself is part of the train run
in PGO builds, and thus the PGO binaries should be well trained for it. Finally, we have used
Speedometer 2.0 '° to cross-check selected results from Talos on an AMD Ryzen 7 5800X 8-Core
Processor. Speedometer is a rather simple benchmark which simulates user actions for adding,
completing, and removing to-do items using DOM APIs in different ways. Speedometer is also

part of the profile train run.

8.1 Effects of -03 compared to -02 and of LTO and PGO

Mozilla Firefox is a large application. The code size should therefore definitely play a role when
deciding how to compile it. On the other hand, a Web browser is also likely to be a substantial
part of a typical desktop workload. Thus gains in performance can easily justify binary size
increases. As a consequence, Firefox is typically built with -03. Figure 26 depicts the sizes of the
Firefox libxul library, which contains the bulk of the browser, when built with GCC 11 using
the Mozilla Treeherder infrastructure with the optimization levels and modes most discussed in
this document. Again, you can see that LTO can reduce the code size to an extent that more
than offsets the difference between -03 and -02. Note that, since a big portion of Firefox is
written in Rust and the whole program analysis is limited to the parts written in C++, the LTO
benefits are smaller than the typical case, in terms of both size and performance. Work on the
Rust GCC front-end has started only recently but we hope that we will overcome this limitation.
Nevertheless, as demonstrated throughout this case study, LTO combined with PGO is by far the

best option, not only in code size comparison but also in any other measurement.

m-O2 ®-O2 (LTO) = -O3 m-O3 (LTO) m-03 (LTO+PGO)
120% 100% 80% 60% 40% 20% 0%

FIGURE 26: CODE SIZE (SMALLER IS BETTER) OF FIREFOX BINARIES BUILT WITH GCC 11.2 WITH DIFFERENT
OPTIONS

9 https://firefox-source-docs.mozilla.org/testing/perfdocs/talos.html#perf_reftest_singletons 2

10 https://browserbench.org/Speedometer2.0/ 2

39 Advanced Optimization and New Capabilities of GCC 11

https://firefox-source-docs.mozilla.org/testing/perfdocs/talos.html#perf_reftest_singletons
https://browserbench.org/Speedometer2.0/

When not employing neither LTO nor PGO, the performance difference between -02 and -03
is visible but modest in the tp50 benchmark results, somewhat more pronounced looking at
singletons benchmark, but barely visible in the measure of responsiveness. Our data indicate
that the use of LTO regresses the responsiveness benchmark by 2-3% at both -02 and -03. The
size of the performance drop is close to the noise level and so difficult to investigate but we
believe it takes place because the code growth limits, when applied on the entire binary, prevent

useful inlining which is allowed when growth limits are applied to individual compilation units.

LTO improves performance slightly in all the other benchmarks. The gain is small but it should
be assessed together with the code size LTO brings about. The real speed-up comes only when
PGO is added into the formula, leading to performance gain of 9% in the responsiveness test
and over 17% in all other benchmarks. This observation holds for both the data measured using
the Talos and Perfherder systems (figure 27) and speedometer results we obtained manually on
an AMD Ryzen 7 5800X 8-Core Processor (figure 28). This is especially remarkable when you

consider that the binary is more than 20% smaller than a simple -02 build.

m-02 m-02 (LTO) = -O3 m-O3 (LTO) m-03 (LTO+PGO)

tp50

responsiveness

singletons

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 27: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF FIREFOX BUILT WITH GCC 11.2 WITH DIFFERENT
OPTIONS, RUNNING ON MOZILLA TALOS INFRASTRUCTURE

40 Advanced Optimization and New Capabilities of GCC 11

m-02 m-02 (LTO) = -O3 m-03 (LTO) m-03 (LTO+PGO)

speedometer 2.0
0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 28: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF FIREFOX BUILT WITH GCC 11.2 WITH DIFFERENT
OPTIONS, RUNNING SPEEDOMETER 2.0 ON AN AMD RYZEN 7 5800X 8-CORE PROCESSOR

8.2 GCC11.2 comparedto GCC7.5

Section 7.2 demonstrates that GCC 11 produces much faster code when targeting modern CPUs
such as the AMD EPYC 7003 Series Processor, often because it can take advantage of vector
instructions of the new hardware. This section aims to show that GCC 11 produces faster code
also when emitting instructions for any x86 64 system and running on processors that are not
as new. We have compared Firefox binaries built with GCC 7.5 and 11.2 using -02 optimiza-
tion level and classic compilation method, that is not with LTO nor PGO. Unfortunately, our
attempts to build a modern Firefox with them and the old compiler have failed. The sizes of the
binary produced by both compilers are very similar but the one created with GCC 10 has always
performed noticeably better. In the tp50 responsiveness benchmark, the simple -02 build was
10% faster (see figure 29).

EGCC7-02 mGCC 11-02

tp50
responsiveness

singletons

0% 20% 40% 60% 80% 100% 120%

FIGURE 29: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF FIREFOX BUILT WITH GCC 7.5 AND 11.2, RUNNING
ON MOZILLA TALOS INFRASTRUCTURE

4 Advanced Optimization and New Capabilities of GCC 11

8.3 Comparison with Clang 13

To evaluate how GCC is doing compared to other compilers, we regularly compare the Firefox
binaries produced by GCC to those emitted by LLVM/Clang, which is currently the preferred
compiler by the team at Mozilla. Before we proceed, we should emphasize that the authors of
this document are not nearly as familiar with LLVM/Clang as they are with GCC, and that they
are not “unbiased”. On the other hand, our findings in such comparisons guide our own future

work and therefore we strive to be accurate.

Because the notion of compilation levels is somewhat different in both of these compilers, we
have focused on evaluating how they build Firefox using -03 in the traditional way, when using
LTO (in Clang's case its thin variant), and when using both PGO and LTO. Possibly the most
striking differences are between code sizes of the results (see figure 30). When using plain -03,
GCC produces a 9% larger binary than Clang. With LTO, GCC manages to shrink the code size to
more than undo this difference, whereas Clang uses the extra cross-module inlining opportunities
to grow the code by 12%. The difference is even more pronounced with PGO in addition to LTO,
which enables Clang to produce a binary that is 5% smaller than using neither of them, while
GCC creates the smallest binary of all, 22% smaller than Clang using the same options and 24%
than itself when using plain -03.

B Clang -O3 = Clang -O3 (LTO) m Clang -O3 (LTO+PGO)
EGCC-0O3 mGCC-0O3LTO mGCC-03 (LTO+PGO)

120% 100% 80% 60% 40% 20% 0%

FIGURE 30: CODE SIZE (SMALLER IS BETTER) OF FIREFOX BINARIES BUILT WITH GCC 11.2 AND CLANG 11

Runtime comparisons measured on Talos can be found in figure 37. In the tp50 benchmark, the
GCC with the help of both PGO and LTO manages to produce code that is 10% quicker, the
performance using other compilation methods was comparable. In the responsiveness measure-
ment, it was Clang that was 6% faster when using both PGO and LTO. Like in the previous
case, other respective compilation methods of the two compilers performed similarly, except
for the LTO regression discussed in section 8.7. In the singletons benchmark, GCC was always

distinctly faster.

42 Advanced Optimization and New Capabilities of GCC 11

B Clang -O3 ™ Clang -O3 (LTO) m Clang -O3 (LTO+PGO)
B GCC-03 mGCC-O3LTO mGCC-03(LTO+PGO)

tp50

responsiveness

singletons

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 31: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF FIREFOX WITH GCC 11.2 AND CLANG 11, RUNNING
ON MOZILLA TALOS INFRASTRUCTURE

Running speedometer on an AMD Ryzen 7 5800X 8-Core Processor (see figure 32) did not show
any meaningful difference in performance of the code produced by the two compilers. The worst
runtime measured for a given compilation method of one compiler was always worse than the
best one of the other. As we have emphasized earlier though, in the case of the most powerful
method, GCC can achieve this performance while producing a binary that is 22% smaller than

Clang.

B Clang -O3 ™ Clang -O3 (LTO) m Clang -O3 (LTO+PGO)
B GCC-03 mGCC-0O3(LTO) mGCC -03 (LTO+PGO)

speedometer 2.0

0% 20% 40% 60% 80% 100% 120% 140%

FIGURE 32: RUNTIME PERFORMANCE (BIGGER IS BETTER) OF FIREFOX WITH GCC 11.2 AND CLANG 11, RUNNING
SPEEDOMETER 2.0 ON AN AMD RYZEN 7 5800X 8-CORE PROCESSOR

43 Advanced Optimization and New Capabilities of GCC 11

9 Legal notice

Copyright ©2006-2025 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ #. Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this

document may be trademarks or registered trademarks of their respective owners.

Documents published as part of the SUSE Best Practices series have been contributed voluntar-
ily by SUSE employees and third parties. They are meant to serve as examples of how particular
actions can be performed. They have been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. SUSE cannot verify that actions described in these
documents do what is claimed or whether actions described have unintended consequences.
SUSE LLG, its affiliates, the authors, and the translators may not be held liable for possible errors

or the consequences thereof.

Below we draw your attention to the license under which the articles are published.

44 Advanced Optimization and New Capabilities of GCC 11

http://www.suse.com/company/legal/

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

45 Advanced Optimization and New Capabilities of GCC 11

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add

an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
0. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-

edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

46 Advanced Optimization and New Capabilities of GCC 11

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original

versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

47 Advanced Optimization and New Capabilities of GCC 11

http://www.gnu.org/copyleft/

	Advanced Optimization and New Capabilities of GCC 11
	Contents
	1. Overview
	2. System compiler versus Development Tools Module compiler
	2.1. When to use compilers from the Development Tools Module
	2.2. Potential issues with the Development Tools Module Compiler
	2.3. Installing GCC 11 from the Development Tools Module

	3. Optimization levels and related options
	4. Taking advantage of newer processors
	5. Link Time Optimization (LTO)
	5.1. Most notable benefits of LTO
	5.2. Potential issues with LTO

	6. Profile-Guided Optimization (PGO)
	7. Performance evaluation: SPEC CPU 2017
	7.1. Benefits of LTO and PGO
	7.2. GCC 11.2 compared to GCC 7.5
	7.3. Effects of -⁠ffast-math on floating-point performance
	7.4. Comparison with other compilers

	8. Performance evaluation: Mozilla Firefox
	8.1. Effects of -⁠O3 compared to -⁠O2 and of LTO and PGO
	8.2. GCC 11.2 compared to GCC 7.5
	8.3. Comparison with Clang 13

	9. Legal notice
	10. GNU Free Documentation License

