
SUSE Best Practices
Systems Management

Kernel Module Packages Manual
SUSE Linux Enterprise 12 SP2 or later and SUSE Linux Enterprise 15

SUSE Linux Enterprise Server 12 SP2 and later
SUSE Linux Enterprise Server 15

Document Owner: Ann Davis, Senior Software Engineer (SUSE)

1 Kernel Module Packages Manual

Kernel Module Packages Manual

SUSE Linux Enterprise 12 SP2 or later and SUSE Linux Enterprise 15

SUSE-based distributions use the RPM Package Manager for software management.
As such, any external kernel modules (these are kernel modules not included in
SUSE kernel packages) should be packaged in RPM packages. These RPMs should be
built in accordance with specific guidelines to ensure that the resulting Kernel Mod-
ule Packages (KMPs) can be installed and updated appropriately, in synchronization
with kernel updates.

This document specifies the requirements for RPM packages that contain kernel
modules, and describes the processes surrounding those packages including build-
ing, signing, installing and upgrading. A complete example is given and explained.

This version of the Kernel Module Packages Manual applies to SUSE Linux Enter-
prise Server 12 (Service Pack 2 and later), and SUSE Linux Enterprise Server 15,
and all products based on these versions.

Disclaimer: Documents published as part of the SUSE Best Practices series have
been contributed voluntarily by SUSE employees and third parties. They are meant
to serve as examples of how particular actions can be performed. They have been
compiled with utmost attention to detail. However, this does not guarantee com-
plete accuracy. SUSE cannot verify that actions described in these documents do
what is claimed or whether actions described have unintended consequences. SUSE
LLC, its affiliates, the authors, and the translators may not be held liable for possi-
ble errors or the consequences thereof.

2 Kernel Module Packages Manual

Contents

1 Scope 4

2 Background 4

3 Kernel packages 6

4 Kernel modules 7

5 Kernel Module Packages 8

6 RPM Provides and Requires 12

7 Building Kernel Module Packages 12

8 Signing 14

9 Deploying Kernel Module Packages 19

10 System installation and Kernel Module Packages 19

11 Kernel updates and Kernel Module Packages 20

12 Appendix A: Sample source for suse-hello Kernel Module Package 20

13 Appendix A.1: Sample spec file for signing modules during packaging 23

14 Appendix B: Changes and references 25

15 Legal notice 27

16 GNU Free Documentation License 28

3 Kernel Module Packages Manual

1 Scope

This version of the Kernel Module Packages Manual applies to:

SUSE Linux Enterprise Server 12 Service Pack 2 and later or SUSE Linux Enterprise Desktop
12 Service Pack 2 and later, and all products based on these versions

SUSE Linux Enterprise Server 15 and SUSE Linux Enterprise Desktop 15 (along with service
packs)

All products and extensions based on SUSE Linux Enterprise Server 12 SP2 or later and
SUSE Linux Enterprise Server 15

Developers who want to build for SUSE Linux Enterprise Server versions before SUSE Linux
Enterprise Server 12 SP2 should use previous versions of this document SUSE SolidDriver Docu-

mentation: Kernel Module Packages Manual for Code 11 (https://documentation.suse.com/sbp/all/

html/SBP-KMP-Manual/index.html) .

Appendix B provides a list of changes that have been made to this document to accommodate
new features.

2 Background

The Linux kernel supports adding functionality at runtime through kernel-loadable modules.
It includes more than 1500 modules, about 75 percent of which are hardware drivers. These
modules are shipped as part of the kernel packages. In some cases it is desirable to add additional
modules or replace existing ones. For example, a driver for a particular storage controller that
was not available at the time of product release might be added later to support new hardware.

Kernel modules interact with the kernel by the means of exported symbols, in a way similar to
how user space binaries use shared libraries. The /proc/kallsyms le lists all symbols currently
known to the kernel. To ensure that the kernel and modules refer to the same symbols, a version
checksum (modversion) is added to each symbol. The checksum is computed from the symbol's
type: in the case of function symbols, the checksum is determined by the function's parameters
and return type.

4 Kernel Module Packages Manual

https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html
https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html
https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html

When any of a function's parameters or the return type changes, the checksum changes as well.
This includes all the data types involved recursively:

If a function takes a struct task_struct as parameter and struct task_struct includes a eld of
type struct dentry, then a change to struct dentry will cause the symbol's version checksum to
change as well. Symbol version checksums for different kernel flavors (for example kernel-de-
fault versus kernel-xen) will not match, and symbol versions of the same kernel package on
different architectures will not match either. This mechanism ensures that the kernel and kernel
modules agree on the types of data structures that they use to communicate.

Unless symbol version checking is disabled, modules will load only if the checksums of the
symbols they use match the checksums of the symbols that the kernel exports. The exported
symbols and their version checksums comprise the kernel Application Binary Interface (kABI).
When an updated kernel includes kABI changes, kernel modules that use any modified symbols
must be updated as well.

During their multi-year lifecycle, products like SUSE Linux Enterprise Server undergo continu-
ous changes. Different kinds of updates like service packs (SPs), maintenance/security updates,
and customer-specific updates (Program Temporary Fixes) are released. The Application Binary
Interface (ABI) between the kernel and kernel modules is volatile. Some kernel updates will
change the kernel ABI (kABI) by adding or removing exported symbols, or existing symbol
checksums can change in a kernel update because of changes in data structures they reference.
SUSE strives to keep the kernel ABI stable in maintenance and security and customer-specific
updates, but sometimes changes cannot be avoided. In service packs, SUSE reserves the right
to introduce more intrusive changes, which increases the likelihood of ABI changes. SUSE be-
lieves that the added flexibility outweighs the disadvantages of breaking older modules. For full
discussion of this topic, see the documentation SUSE SolidDriver Documentation: SUSE Kernel ABI

Stability (https://drivers.suse.com/doc/SolidDriver/SUSE_Kernel_ABI_Stability.html) and The Linux

Kernel Driver Interface (http://www.kroah.com/log/linux/stable_api_nonsense.html) from Greg
Kroah-Hartman (also provided as stable_api_nonsense.txt in the upstream kernel source tree).

SUSE Linux Enterprise-based operating systems include technology to ensure that kernel mod-
ules can be reused or updated in synchronization with kernel updates. To use this technology,
kernel modules must be packaged into Kernel Module Packages (KMPs) as defined in this doc-
ument.

5 Kernel Module Packages Manual

https://drivers.suse.com/doc/SolidDriver/SUSE_Kernel_ABI_Stability.html
https://drivers.suse.com/doc/SolidDriver/SUSE_Kernel_ABI_Stability.html
http://www.kroah.com/log/linux/stable_api_nonsense.html
http://www.kroah.com/log/linux/stable_api_nonsense.html

3 Kernel packages

Each product based on SUSE Linux Enterprise 12 SP2 or SUSE Linux Enterprise 15 contains a
set of kernel packages that share the same version and release number; they are built from the
same kernel sources. These packages are:

kernel-FLAVOR , kernel-FLAVOR-base

The binary kernel packages. Each architecture has its own set of kernel flavors (for example
kernel-default , kernel-debug , etc.). These are the packages that the kernel modules will
be used with.

The kernel-FLAVOR-base packages are subsets of the kernel-FLAVOR packages, intended for
use with minimal installs. They are not installed by default.

kernel-source

The kernel source tree, generated by unpacking the vanilla kernel sources and applying all
necessary patches. Although the kernel-FLAVOR packages technically are not built from the
kernel-source package, they are built from the same source tree. This tree should be used
for module building.

kernel-devel , kernel-macros

Kernel-level headers, makefiles, and RPM macros and templates required for development of
external kernel modules.

kernel-syms , kernel-FLAVOR-devel

Kernel symbol version information for compiling external modules. The kernel-FLAVOR-devel
package is required for building external modules. If this package is not used, the resulting
modules will be missing symbol version information, which will cause them to break during
kernel updates. The kernel-syms package is a placeholder package which depends on the
kernel-FLAVOR-devel packages for all kernel flavors.

6 Kernel Module Packages Manual

For more information, refer to the document “Working With The SUSE 2.6.x and 3.x Ker-
nel Sources” from Andreas Gruenbacher and Michal Marek. This document is provided as
README.SUSE in the SUSE kernel-source package.

4 Kernel modules
Documentation on general kernel module building can be found in abundance on the Internet.
Two good lectures are:

Peter Jay Salzman, Michael Burian, Ori Pomerantz: The Linux Kernel Module Programming
Guide, http://www.tldp.org/LDP/lkmpg/2.6/html/index.html

Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman: Linux Device Drivers, Third
Edition, February 2005, http://www.oreilly.com/catalog/linuxdrive3/ (also available online
at http://lwn.net/Kernel/LDD3/)

SUSE-specific information is found in the above-mentioned README.SUSE in the ker-

nel-source package.

When built, kernel module binaries are installed below /lib/modules/VERSION-RELEASE-FLA-
VOR on the le system (example: /lib/modules/4.4.73-5-default for the SUSE Linux En-
terprise Server 12 SP3 kernel-default-4.4.73-5 package). Different kernels have different
module directories, and will usually not see each other's modules.

Update modules are modules intended to replace or augment the modules that are provided in
the kernel packages. Update modules must be stored below the /lib/modules/VERSION-RE-
LEASE-FLAVOR/updates/ directory. Modules in the updates/ directory have precedence over
other modules with the same name. Never replace modules from the kernel package by over-
writing les: this would lead to inconsistencies between the le system and the RPM database.

Note: Where to store modules
Modules intended to take precedence over in-kernel modules of the same name should be
stored below /lib/modules/VERSION-RELEASE-FLAVOR/updates/ . Other add-on mod-
ules can be stored below /lib/modules/VERSION-RELEASE-FLAVOR/extra/ .

Modules usually remain compatible with a range of kernel-FLAVOR packages. To make such
modules visible to other kernel-FLAVOR packages, symbolic links to compatible modules are
put in /lib/modules/VERSION-RELEASE-FLAVOR/weak-updates/ directories. Modules in the

7 Kernel Module Packages Manual

http://www.tldp.org/LDP/lkmpg/2.6/html/index.html
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/

weak-updates/ directory have lower priority than modules in the updates/ directory, but
higher priority than all other modules in /lib/modules/VERSION-RELEASE-FLAVOR . If more
than one compatible module is available for a kernel, the module with the highest kernel release
is chosen. Kernel Module Packages must never directly install modules into weak-updates/
directories.

Kernel modules must never be installed as individual les on a production system, but always
as part of a Kernel Module Package.

5 Kernel Module Packages

SUSE has worked closely with the Linux Foundation Driver Backport Workgroup to establish
a standard structure for building Kernel Module Packages for all RPM-based distributions. The
information in this document includes the standards as appropriate.

Kernel Module Package spec les define a main package, and a sub-package for each kernel
flavor supported. The kernel-flavor-specific sub-packages are defined with the %kernel_mod-
ule_package RPM macro. The macro automatically determines for which kernel flavors to gen-
erate sub-packages. Several options are available to modify the macro's behavior, which are
described below:

%kernel_module_package [-f lelist] [-p preamble] [-n name] [-v version] [-r release]
[-t template] [-x flavor] [-b]

The main package of a Kernel Module Package can either contain no %les section, in which
case rpm will not create a binary package with the main package's name, or the les section
can also be used for the user space part associated with the kernel modules that end up in the
kernel specific sub-packages. The example Kernel Module Package in Appendix A has a main
package without a %les section.

Kernel Module Packages must adhere to the following rules:

The package Name should consist of two components: a unique provider prefix, and a
driver name. Hyphens are disallowed in the provider prefix, and allowed in the driver
name. The provider prefix serves to create a non-overlapping name space for all providers.

8 Kernel Module Packages Manual

The sub-package names are composed of the main package name, followed by a dash, the
string “kmp”, followed by another dash and the flavor of the supported kernel. The rst
component (main package name) can be overridden with a different value by using the -
n option of the %kernel_module_package macro.

The kernel module package Version can have an arbitrary value.
The sub-package versions are composed of the main package version, followed by an un-
derscore, and the version of the kernel source used during the build.
Since sub-packages already include the supported kernel's flavor in their name, the flavor
is not again included in the sub-package's version. Dashes in the kernel release are replaced
by underscores. The rst component (main package version) can be overridden with the
-v option of the %kernel_module_package macro.

The kernel module package Release can be assigned freely as required. It must be incre-
mented at least once for each package release.
The sub-package release numbers equal the main package's release number. It can be over-
ridden with the -r option of the %kernel_module_package macro.

The appropriate Requires and Provides tags are computed automatically by rpm as de-
scribed in the RPM Provides and Requires section below. Requires and Provides tags in
the spec le will only be effective for the main package.

Kernel modules must be installed below /lib/modules/VERSION-RELEASE-FLAVOR/up-
dates/ .

Packages must be signed with a public/private key pair, and the public key of the pri-
vate/public key-pair used for signing must be made known to RPM. See Section 8.1, “Signing

packages” for details.

The %description tag will be applied to both the main package and the sub-packages.

The %kernel_module_package macro uses a default sub-package template that should work for
most KMPs. This template can be overridden using the macro's -t option. The default template
takes care of the following:

When a KMP package is installed, depmod is called to update module dependency infor-
mation and various maps. Symbolic links pointing at the new modules are created in other
kernels' weak-modules/ directories for all compatible modules. Initial RAM disks used
during booting are re-created automatically if they contain some of the added modules.

9 Kernel Module Packages Manual

Using the macro's -b option will force the recreation of the initial RAM disk regardless
of whether the existing RAM disk contains modules with the same names as the modules
being installed.

Note: RAM disk rebuild
The -b option simply forces a RAM disk rebuild using the existing RAM disk con-
figuration. If the existing RAM disk configuration does not include previous versions
of the new modules being installed, using the -b option will not include the new
modules in the new RAM disk. In such cases, the Kernel Module Package spec le
also needs to make appropriate RAM disk configuration changes to include the new
modules. This can for example be done by creating or updating les in /etc/dra-
cut.conf.d .

When a KMP is removed, depmod is called to update module dependency information and
various maps. The symbolic links pointing to the modules being removed are removed
as well. Initial RAM disks are re-created in case they did contain some of the removed
modules.

By default, each kernel-specific sub-package will have the following list of les, which can sep-
arately be overridden with the -f option:

%defattr (-,root,root)
/lib/modules/%2-%1

Additional sub-package preamble lines such as Requires, Provides, and Obsoletes tags can be
specified with the -p option. File name arguments specified in -f , -p and -t should be given
as absolute path names (for example %_sourcedir/file) and should be listed as sources. The
following substitutions are defined in those les:

%1 Flavor of the sub-package (for example: default)

%2 Kernel release string without flavor (for example: 4.4.73-5)

%{-v*} The sub-package version

%{-r*} The sub-package release

Some Kernel Module Packages may make sense only for some of the kernel flavors a given
architecture supports. A list of flavors to exclude from the build should be passed with the -x
option to the %kernel_module_package macro.

10 Kernel Module Packages Manual

Appendix A contains an example Kernel Module Package spec le and the source code referenced
by it. When this spec le and its accompanying source is built into an x86_64 RPM as described
in section Section 7, “Building Kernel Module Packages”, the BuildRequires tag in the spec le will
pull the module-init-tools , kernel-source , kernel-syms and kernel-devel packages
into the build root.

Note: Dependency
The %kernel_module_package_buildreqs macro does not need to explicitly list “ker-
nel-source” since the kernel-syms package has a dependency on the kernel-source
package.

Now assume that the required packages are available in SUSE Linux Enterprise Server 12 SP3
(kernel 4.4.73-5), and that the default kernel flavor is available on that platform. Assuming a
release number of “0”, rpm would then create the following packages:

suse-hello-kmp-default-1.0_k4.4.73_5-0.x86_64.rpm

The generated packages would contain the following module, and require and provide the fol-
lowing symbols:

TABLE 1: PACKAGE INFORMATION

Package Requires Provides Modules

suse-hel-
lo-kmp-
default

ksym(default:__fentry__) =
bdfb6dbb

ksym(default:module_lay-
out) = 86aec989

ksym(default:param_op-
s_int) = dbc5e1fa

ksym(default:printk) =
27e1a049

ksym(default:exported_func-
tion) = e52d5bcf

/lib/mod-
ules/ 4.4.73-5-
default/ up-
dates/hello.ko

11 Kernel Module Packages Manual

6 RPM Provides and Requires
Kernels export symbols that kernel modules use. Symbols have version checksums attached, and
the checksums of the exported kernel symbols must match the checksums of the kernel symbols
that the Kernel Module Package uses.

Similarly, at an RPM level, each kernel-FLAVOR package (for example kernel-default) pro-
vides the symbols and checksums that are exported by that flavor of the kernel, and each Kernel
Module Package requires the specific kernel symbols and checksums needed by the module(s)
that it contains. Installation of a KMP will succeed as long as an installed kernel package pro-
vides the symbols and checksums that are required by the KMP.

When modules in Kernel Module Packages export additional symbols, such symbols are mapped
to Provides of those packages. Modules in other Kernel Module Packages may require those
symbols. As an example, assume that a Kernel Module Package provides an exported function as
ksym(default:exported_function) = e52d5bcf. Any Kernel Module Package that uses this function
would require this same symbol and checksum.

7 Building Kernel Module Packages

In addition to the C and kernel programming skills required for writing the kernel module
source code, creating proper Kernel Module Packages requires some familiarity with the rpm
command and with build environments. For more information on kernel module building re-
fer to the above-mentioned Linux Kernel Module Programming Guide (http://www.tldp.org/LDP/

lkmpg/2.6/html/index.html) and the book Linux Device Drivers (http://www.oreilly.com/cata-

log/linuxdrive3/) . Additional SUSE-specific kernel and kernel module information can be found
in the README.SUSE in the kernel-source package. SUSE recommends using the example pack-
age found in Appendix A as a template to reduce the complexities related to RPM. A lot of
additional information on RPM can be found at http://www.rpm.org/ , including a reference to
the excellent Maximum RPM.

SUSE strongly recommends using the kernel build infrastructure (kbuild) for building and
installing the kernel modules, as done in the example package. kbuild is documented in the
le /usr/src/linux/Documentation/kbuild/ from the kernel-source package. Trying to
emulate kbuild will lead to various problems including mis-compilations and missing or wrong
symbol versions, and increased support load because of subtle breakages.

12 Kernel Module Packages Manual

http://www.tldp.org/LDP/lkmpg/2.6/html/index.html
http://www.tldp.org/LDP/lkmpg/2.6/html/index.html
http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://www.rpm.org/

To achieve consistent and reproducible builds in a defined environment independent of the
software installed on the system used for building, use the build script from the build.rpm
package. This script sets up a build environment from the RPM packages the script is pointed at.
The packages are then built in this environment using chroot (see the chroot(1) manual page
at https://linux.die.net/man/1/chroot). All SUSE packages are built using the same mechanism.
When building Kernel Module Packages with build.rpm , the following options of the build
script are particularly relevant:

--root directory

Define the directory in which to set up the build environment. Defaults to the BUILD_ROOT
environment variable, and to /var/tmp/build-root if unset.

--RPMs path1[:path2:...]

Define where build will look for packages for constructing the build environment. The directories
are searched recursively. Packages found earlier in the path have precedence over packages
found later, similar to how the PATH environment variable works. Defaults to the BUILD_RPMS
environment variable, and to /media/dvd/suse if unset. The --rpms option must only be
specified once.

--clean, --no-init

Reconstruct the build environment entirely from scratch (--clean), or start the build without
initializing the build environment (--no-init), which skips checking whether all packages in
the build environment are up-to-date.

Build stores the created packages below home/abuild/rpmbuild/ in the build environment.

On dual-architecture machines, packages for the other supported architecture can be built by
running the build script inside an architecture selector. On Intel 64/AMD64, the selector is called
linux32, on IBM POWER this is ppc32, and on IBM Z the selector is called s390x. The same build
environment cannot be reused for different architectures unless it is reinitialized with build's
--clean option.

See the build(1) manual page for further information.

13 Kernel Module Packages Manual

https://linux.die.net/man/1/chroot

Note: Building external modules
For building external modules, you need to have both the kernel-source and ker-
nel-FLAVOR-devel packages installed in the build environment. The BuildRequires line
in spec les takes care of this: the %kernel_module_package_buildreqs macro spec-
ifies the kernel-syms package, which pulls in the kernel-source package and the
kernel-FLAVOR-devel packages because of its dependency on them. Without the ker-
nel-syms package the module build can still succeed depending on how you do the build,
but the resulting modules will have module symbol versions disabled. Kernel Module
Packages without module symbol versions will appear to match any kernel although in
fact they do not. This can easily lead to very hard-to-diagnose system malfunctions.

8 Signing

Signing (as applied to a piece of software) is the process of digitally tagging the software to
verify the author and guarantee that the software has not been altered since it was signed.
SUSE Linux Enterprise Server and SUSE Linux Enterprise Desktop include utilities to sign and
validate signatures on packages and repositories. In addition, SUSE Linux Enterprise Server and
SUSE Linux Enterprise Desktop 12 and later versions include technology to sign and validate
signatures on kernel modules.

The following sections describe how to sign packages and kernel modules. The topic of repository
signing is beyond the scope of this document.

8.1 Signing packages

All packages that are provided in SUSE Linux Enterprise Server and SUSE Linux Enterprise
Desktop are digitally signed with the SUSE Build key. SolidDriver/PLDP packages that are built
on the SolidDriver Build Server by the SUSE SolidDriver team are automatically signed with
the SUSE SolidDriver/PLDP key. For more information, visit https://drivers.suse.com/doc/Us-

age/Package_Signing_Key.html#package-signing-key . Partners who build and/or provide their
own packages are encouraged to sign them with their company keys.

14 Kernel Module Packages Manual

https://drivers.suse.com/doc/Usage/Package_Signing_Key.html#package-signing-key
https://drivers.suse.com/doc/Usage/Package_Signing_Key.html#package-signing-key

For testing purposes, developers can sign packages using their own personal and/or test keys.
RPM uses GnuPG (gpg) for signing. To sign packages, a private/public key pair must be installed
on the GNU Privacy Guard (GPG) keyring of the signing user (see the --gen-key option in the
gpg(1) manual page at https://linux.die.net/man/1/gpg). Then the following command can be
used to sign a package:

$ rpm --eval “%define _signature gpg” \
 --eval “%define _gpg_name build@suse.com” \
 --addsign package.rpm

Ensure to replace build@suse.com with the identity that identifies your signing key).

A package can only be signed once. Another --addsign operation will replace an existing old
signature, and will add the new one.

The public key used for signing must then be exported into a le with the command:

$ gpg --armor --export build >build-pubkey.txt

Next, import the key into the RPM database with the command:

$ rpm --import build-pubkey.txt

You can verify that both package signing and key import have succeeded with RPM's --check-
sig option (note the “gpg” in the output):

$ rpm --checksig package.rpm
package.rpm: (sha1) dsa sha1 md5 gpg OK

The public key exported to build-pubkey.txt must be delivered to customers in a way that
they will trust. It must be imported into the RPM database on systems on which the signed
packages are to be installed.

8.2 Signing module object files (UEFI Secure Boot)

Although using signed packages and other OS security features can secure an installed and
running system, they cannot prevent system subversion before the OS has booted. To address
pre-OS security concerns, the UEFI Secure Boot specification (see http://www.uefi.org/specs)
details a protocol to prevent the loading of boot loaders or kernels (including modules) that are
not signed with an approved digital key stored in the system rmware.

The UEFI Secure Boot specification allows for variation in implementation. A simple way to
implement secure boot is to ensure that the base system (as provided by the system vendor)
contains all the keys that will be used by the boot loader, the OS, and any drivers. But having

15 Kernel Module Packages Manual

https://linux.die.net/man/1/gpg
http://www.uefi.org/specs

the system vendor simply place all needed keys into the rmware is not a full solution, as it
does not give appropriate control to the system user/owner. SUSE's secure boot implementation
addresses this control issue by extending the secure-boot-enabled EFI shim loader to accept
keys that have been approved by the system owner. Thus, if there is a need to load a module
with an unrecognized key, the key can be added to the “approved key” database (reboot and
system-owner approval required).

8.2.1 Creating a key and certificate

Module signing requires having access to a digital key and certificate. Official keys and certifi-
cates are generally maintained by an organization's security team or by build services (such as
the Open Build Service or the SolidDriver/PLDP Build Service). Developers and packagers can
also generate their own keys and certificates for example for testing purposes.

To create a key and certificate using the openssl req command, type the following:

export USER="your company name"
openssl req -new -x509 -newkey rsa:2048 -sha256 -keyout key.asc -out cert.der \
 -outform der -nodes -days 4745 -addext "extendedKeyUsage=codeSigning" \
 -subj "/CN=$USER/"

The above sequence of commands will create a key.asc key le and a cert.der x509 certifi-
cate in the current working directory. The 4745 option generates a certificate which will be
valid for 13 years.

Note: Extended Key Usage (EKU) setting
The -addext "extendedKeyUsage=codeSigning" openssl option has been added to this
document as of October 2021. The EKU codeSigning setting is now required for latest
kernel releases of SUSE Linux Enterprise 15 SP2 and all kernels of subsequent service
packs to accept the certificate for signature verification of kernel modules.

The -addext option requires OpenSSL version 1.1.1 or later. For earlier versions of
OpenSSL, consult the documentation for setting the EKU.

16 Kernel Module Packages Manual

8.2.2 Signing modules during packaging

Signing modules as part of the packaging process requires making several changes to the KMP
spec le. The spec le template in Appendix A.1 includes these changes, which are:

1. List the certificate le as a %Source le. The top-level directory of the build structure
(where the spec le is located) should include both a private key le and a certificate le.
The spec le should list the certificate as a %Source le. The spec le should not list the
key le (since the private key should not be included in the source KMP).

Note: Naming
To be recognized by the kernel Makefile, the key le must be named “sign-
ing_key.priv” and the certificate le must be named “signing_key.x509”. The exam-
ple above describes how to use the openssl req command to create a key.asc
key le and a cert.der certificate le; to use these les at packaging-time, they
should be renamed to “signing_key.priv” and “signing_key.x509”.

2. Invoke the %kernel_module_package macro with the -c %_sourcedir/sign-

ing_key.x509 option to generate a <name>-ueficert package which installs the certifi-
cate and calls the mokutil utility to enroll the public key. The actual module signing is
handled in the %install section of the spec le.

3. Add %install section code to invoke the kernel-sign-le le to sign the modules.

Note: Own Keys and Certificates
The Appendix A.1 sample spec le is designed to be used by developers and packagers
who provide their own keys and certificates and their own build environments. Develop-
ers/packagers who use the Open Build Service should modify their spec le as described
in the pesign-obs-integration package README (https://github.com/openSUSE/pesign-obs-

integration/blob/master/README) .

8.2.3 Signing an existing KMP

The pesign-obs-integration package in SUSE Linux Enterprise Server provides a mod-
sign-repackage utility that can be used to sign kernel modules in an existing KMP. mod-
sign-repackage unpacks the original RPM, signs any included modules and re-creates the

17 Kernel Module Packages Manual

https://github.com/openSUSE/pesign-obs-integration/blob/master/README
https://github.com/openSUSE/pesign-obs-integration/blob/master/README

RPM. It also creates a second <NAME>-ueficert RPM that installs the certificate and calls the
mokutil utility to enroll the public key. The re-packaged RPM will have a dependency on the
<NAME>-ueficert RPM, ensuring that the certificates will be installed at the same time as the
module(s).

To repackage the suse-hello-kmp-default-1.0_k4.4.73_5-0.x86_64.rpm package with the
key and the certificate created above, do the following:

modsign-repackage -c ./cert.der -k ./key.asc
 ./suse-hello-kmp-default-1.0-k4.4.73_5-0.x86_64.rpm

The above command creates the following directories and les in the current working directory:

./RPMS/
 x86_64/
 suse-hello-kmp-default-1.0-k4.4.73_5-0.x86_64.rpm
 suse-hello-ueficert-1.0-0.x86_64.rpm

To see the module signature, unpack the repackaged KMP and use the modinfo command to
view the module signature info:

rpm2cpio suse-hello-kmp-default-1.0-k4.4.73_5-0.x86_64.rpm | cpio -idv
modinfo ./lib/modules/4.4.73-5-default/updates/hello.ko | grep signature

Note: rpm-build must be installed
modsign-repackage uses the /usr/bin/rpmbuild utility which is provided by the
SUSE Linux Enterprise Server rpm-build package. This means the rpm-build package
must be installed to use modsign-repackage .

8.2.4 Installation of secure-boot-enabled KMPs

As discussed above, secure-boot-enabled KMPs include an additional <NAME>-ueficert pack-
age to install the certificate and enroll the public key. The <NAME>-kmp-<flavor> packages
require the <NAME>-ueficert package.

After the <NAME>-ueficert package is installed, the system must be rebooted and the new-
ly-enrolled key approved by the system owner before the key (and thus the signed modules)
can be used.

The mokutil utility can also be used on its own to view and manage keys in the key database.

18 Kernel Module Packages Manual

9 Deploying Kernel Module Packages

Kernel Module Packages can be provided as stand-alone RPMs. However, SUSE encourages dis-
tributing them via add-on products (for drivers that do not need to be included in the installa-
tion kernel), or in driver update disks or full bootable driver kits (for drivers that do need to
be included in the installation kernel).

Add-on products can be created using the YaST Add-on Creator module in the SUSE Linux En-
terprise Server 12 Software Development Kit (SDK). They can also be created manually using
the information available in the section Creating Add-Ons from the document Update Media

HOWTO (ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO) .

Driver update disks can be created using the information in the section SUSE Update Media
Howto from the document Creating Add-Ons (https://www.novell.com/developer/creating_add-on-

s.html) . To create full custom bootable installation media, use the mksusecd utility included
in SUSE Linux Enterprise Server. Note that mksusecd does not include a man page but provides
detailed usage information via mksusecd --help .

10 System installation and Kernel Module Packages

Initial system installation is carried out by YaST from some installation media (CDs or DVDs,
network locations, etc.). As noted above, support for additional hardware that the installation
media do not provide can be added with Driver Update Disks or Bootable Driver Kits/Installation
Kits. This is most important to enable hardware needed for booting, such as storage controllers.

Update media such as Driver Update Disks and Bootable Driver Kits/Installation Kits provide
two kinds of modules: those which the kernel that runs the installation uses, and those which are
installed onto the final target system. Both types of modules are provided by including Kernel
Module Packages on the update media. In addition, update media can contain scripts which are
run at specific times during the installation.

After the initial YaST installation, additional driver packages can be installed using any of the
mechanisms for installing RPM packages (YaST Add-on Products, YaST Software Management,
YaST Online Update, the rpm command, etc.). The add-on product format supports the ability
to register the system for an update site.

19 Kernel Module Packages Manual

ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO
ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO
https://www.novell.com/developer/creating_add-ons.html
https://www.novell.com/developer/creating_add-ons.html

Note: initrd
Any drivers required for getting to and accessing the root le system must be part of the
initial RAM disk. YaST will automatically include necessary kernel modules in the initrd
created during installation. But when Kernel Module Packages are installed by hand or are
updated, it can be necessary to explicitly rebuild the initrd to include the new modules.
As noted in Section 5, “Kernel Module Packages”, a Kernel Module Package will automatically
rebuild the initrd in its %postinstall script if the module being installed is already part
of the existing initrd or if the -b option to the %kernel_module_package macro is used.

The -b option simply forces a RAM disk rebuild using the existing RAM disk configura-
tion: If the existing RAM disk configuration does not include the module being installed,
then simply using the -b option will not include the new module in the new RAM disk.
In such cases, the Kernel Module Package also needs to make appropriate RAM disk con-
figuration changes (for example by creating or updating les in /etc/dracut.conf.d)
to include the new module.

11 Kernel updates and Kernel Module Packages
After all software repositories that should be checked for updates have been added, the package
manager will automatically detect when new kernel packages and new Kernel Module Packages
become available. The dependencies between those packages will ensure that the installed kernel
packages match the installed Kernel Module Packages.

12 Appendix A: Sample source for suse-hello
Kernel Module Package
The following sample is described in the section Section 5, “Kernel Module Packages”. For a sample
spec le that signs modules during packaging, see Appendix A.1.

suse-hello.spec

norootforbuild

Name: suse-hello
Version: 1.0
Release: 0
Summary: Sample Kernel Module Package

20 Kernel Module Packages Manual

License: GPL-2.0
Group: System/Kernel
Source0: %{name}-%{version}.tar.bz2
BuildRequires: %kernel_module_package_buildreqs
BuildRoot: %{_tmppath}/%{name}-%{version}-build

%kernel_module_package

%description
This package contains the hello.ko module.

%prep
%setup
set -- *
mkdir source
mv "$@" source/
mkdir obj

%build
for flavor in %flavors_to_build; do
 rm -rf obj/$flavor
 cp -r source obj/$flavor
 make -C %{kernel_source $flavor} modules M=$PWD/obj/$flavor
done

%install
export INSTALL_MOD_PATH=$RPM_BUILD_ROOT
export INSTALL_MOD_DIR=updates
for flavor in %flavors_to_build; do
 make -C %{kernel_source $flavor} modules_install M=$PWD/obj/$flavor
done

The following two les should be compressed to form the suse-hello-1.0.tar.bz2 TAR
archive referenced as Source0 in the suse-hello.spec le above.

suse-hello-1.0/Kbuild

obj-m := hello.o
hello-y += main.o

suse-hello-1.0/main.c

/*
 * main.c - A demo kernel module.
 *
 * Copyright (C) 2003, 2004, 2005, 2006
 * Andreas Gruenbacher <agruen@suse.de>, SUSE Labs
 *

21 Kernel Module Packages Manual

 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * A copy of the GNU General Public License can be obtained from
 * http://www.gnu.org/.
 */

#include <linux/module.h>
#include <linux/init.h>

MODULE_AUTHOR("Andreas Gruenbacher <agruen@suse.de>");
MODULE_DESCRIPTION("Hello world module");
MODULE_LICENSE("GPL");

int param;

module_param(param, int, 0);
MODULE_PARM_DESC(param, "Example parameter");

void exported_function(void)
{
 printk(KERN_INFO "Exported function called.\n");
}
EXPORT_SYMBOL_GPL(exported_function);

int __init init_hello(void)
{
 printk(KERN_INFO "Hello world.\n");
 return 0;
}

void __exit exit_hello(void)
{
 printk(KERN_INFO "Goodbye world.\n");
}

module_init(init_hello);
module_exit(exit_hello);

22 Kernel Module Packages Manual

13 Appendix A.1: Sample spec file for signing
modules during packaging
The following spec le can be used to sign modules during packaging as described in Section
8.2.2 above.

suse-hello.spec

norootforbuild

Name: suse-hello
Version: 1.0
Release: 0
Summary: Sample Kernel Module Package
License: GPL-2.0
Group: System/Kernel
Source0: %{name}-%{version}.tar.bz2
Required to sign modules: Include certificate named “signing_key.x509”
Build structure should also include a private key named “signing_key.priv”
Private key should not be listed as a source file
Source1: signing_key.x509
BuildRequires: %kernel_module_package_buildreqs
BuildRoot: %{_tmppath}/%{name}-%{version}-build

Required to sign modules: The -c option tells the macro to generate a
suse-hello-ueficert subpackage that enrolls the certificate
%kernel_module_package -c %_sourcedir/signing_key.x509

%description
This package contains the hello.ko module.

%prep
%setup
Required to sign modules: Copy the signing key to the build area
cp %_sourcedir/signing_key.* .
set -- *
mkdir source
mv "$@" source/
mkdir obj

%build
for flavor in %flavors_to_build; do
 rm -rf obj/$flavor
 cp -r source obj/$flavor
 make -C %{kernel_source $flavor} modules M=$PWD/obj/$flavor
done

23 Kernel Module Packages Manual

%install
export INSTALL_MOD_PATH=$RPM_BUILD_ROOT
export INSTALL_MOD_DIR=updates
for flavor in %flavors_to_build; do
 make -C %{kernel_source $flavor} modules_install M=$PWD/obj/$flavor
 # Required to sign modules: Invoke kernel-sign-file to sign each module
 for x in $(find $INSTALL_MOD_PATH/lib/modules/*-$flavor/ -name '*.ko'); do
 /usr/lib/rpm/pesign/kernel-sign-file -i pkcs7 sha256 $PWD/obj/$flavor/
signing_key.priv $PWD/obj/$flavor/signing_key.x509 $x
 done
done

24 Kernel Module Packages Manual

14 Appendix B: Changes and references

14.1 Documentation updates: Changes from the previous version
of the document

February 12, 2022 - andavis@suse.com

Added information and sample spec le (Appendix A.1) for signing modules during pack-
aging.

October 12, 2021 - sbahling@suse.com

Added "codeSigning" Extended Key Usage option to OpenSSL command for creating key/
certificate for kernel module signing.

November 19, 2018 - andavis@suse.com

This document is based on the previous version Kernel Module Packages Manual for Code 11

(https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html) with the following
changes:

Limit scope to SUSE Linux Enterprise Server 12 SP2 and later and SUSE Linux Enterprise
Server 15. Previous versions of SUSE Linux Enterprise Server are covered by the previous
version of this document.

Remove instructions for signing during packaging.

Remove OBS-specific spec le example.

14.2 References

SUSE SolidDriver Documentation: Kernel Module Packages Manual for Code 11, https://

documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html

SUSE SolidDriver Documentation: SUSE Kernel ABI Stability, https://drivers.suse.com/doc/

SolidDriver/SUSE_Kernel_ABI_Stability.html

Greg Kroah-Hartman: The Linux Kernel Driver Interface, http://www.kroah.com/log/lin-

ux/stable_api_nonsense.html (also provided as stable_api_nonsense.txt in the upstream
kernel source tree)

25 Kernel Module Packages Manual

https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html
https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html
https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html
https://documentation.suse.com/sbp/all/html/SBP-KMP-Manual/index.html
https://drivers.suse.com/doc/SolidDriver/SUSE_Kernel_ABI_Stability.html
https://drivers.suse.com/doc/SolidDriver/SUSE_Kernel_ABI_Stability.html
http://www.kroah.com/log/linux/stable_api_nonsense.html
http://www.kroah.com/log/linux/stable_api_nonsense.html

Andreas Gruenbacher, Michal Marek: Working With The SUSE 2.6.x and 3.x Kernel Sources
(provided as README.SUSE in SUSE kernel-source packages)

Peter Jay Salzman, Michael Burian, Ori Pomerantz: The Linux Kernel Module Programming
Guide, http://www.tldp.org/LDP/lkmpg/2.6/html/index.html

Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman: Linux Device Drivers, Third
Edition, February 2005, http://www.oreilly.com/catalog/linuxdrive3/ (also available online
at http://lwn.net/Kernel/LDD3/

UEFI Specification, http://www.uefi.org/specs

Update Media HOWTO, ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO

Creating Add-Ons, https://www.novell.com/developer/creating_add-ons.html

26 Kernel Module Packages Manual

http://www.tldp.org/LDP/lkmpg/2.6/html/index.html
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/
http://www.uefi.org/specs
ftp://ftp.suse.com/pub/people/hvogel/Update-Media-HOWTO
https://www.novell.com/developer/creating_add-ons.html

15 Legal notice
Copyright ©2006-2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ . Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this
document may be trademarks or registered trademarks of their respective owners.

Documents published as part of the SUSE Best Practices series have been contributed voluntar-
ily by SUSE employees and third parties. They are meant to serve as examples of how particular
actions can be performed. They have been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. SUSE cannot verify that actions described in these
documents do what is claimed or whether actions described have unintended consequences.
SUSE LLC, its affiliates, the authors, and the translators may not be held liable for possible errors
or the consequences thereof.

Below we draw your attention to the license under which the articles are published.

27 Kernel Module Packages Manual

http://www.suse.com/company/legal/

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not t the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent le format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference
in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must
also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

28 Kernel Module Packages Manual

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least ve of the principal
authors of the Document (all of its principal authors, if it has fewer than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-
edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

29 Kernel Module Packages Manual

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

30 Kernel Module Packages Manual

http://www.gnu.org/copyleft/

	Kernel Module Packages Manual
	Contents
	1. Scope
	2. Background
	3. Kernel packages
	4. Kernel modules
	5. Kernel Module Packages
	6. RPM Provides and Requires
	7. Building Kernel Module Packages
	8. Signing
	8.1. Signing packages
	8.2. Signing module object files (UEFI Secure Boot)
	8.2.1. Creating a key and certificate
	8.2.2. Signing modules during packaging
	8.2.3. Signing an existing KMP
	8.2.4. Installation of secure-boot-enabled KMPs

	9. Deploying Kernel Module Packages
	10. System installation and Kernel Module Packages
	11. Kernel updates and Kernel Module Packages
	12. Appendix A: Sample source for suse-hello Kernel Module Package
	13. Appendix A.1: Sample spec file for signing modules during packaging
	14. Appendix B: Changes and references
	14.1. Documentation updates: Changes from the previous version of the document
	14.2. References

	15. Legal notice
	16. GNU Free Documentation License

