EWE SUSE SUSE Best Practices

Systems Management

How to Modify a Package in Open Build
Service
Quilting with OSC

Open Build Service
SUSE Linux Enterprise

Josef Moellers, Senior Developer SUSE Linux Enterprise Network Services (SUSE)

cWe SUSE

1 How to Modify a Package in Open Build Service



How to Modify a Package in Open Build Service

Quilting with OSC

This document leads you through the process of modifying a software package in
the Open Build Service (OBS) using the osc and quilt tools. It also discusses sim-
ple error cases, based upon the author’s own experiences, but it does not attempt to
be a full manual or to cover all options. The steps described here should work well,
but if you encounter any difficulties, you should consult the manuals or ask an ex-

pert for help.

This document does not intend to provide a guide for the Open Build Service. If
you want to learn more about OBS, visit the project’s Web page at http://open-
buildservice.org/ # and read the specific documentation there http://openbuildser-

vice.org/help/a

Disclaimer: Documents published as part of the SUSE Best Practices series have
been contributed voluntarily by SUSE employees and third parties. They are meant
to serve as examples of how particular actions can be performed. They have been
compiled with utmost attention to detail. However, this does not guarantee com-
plete accuracy. SUSE cannot verify that actions described in these documents do
what is claimed or whether actions described have unintended consequences. SUSE
LLGC, its affiliates, the authors, and the translators may not be held liable for possi-

ble errors or the consequences thereof.

2 How to Modify a Package in Open Build Service


http://openbuildservice.org/
http://openbuildservice.org/
http://openbuildservice.org/help/
http://openbuildservice.org/help/

10

11

12

Contents

Introduction: Open Build Service and the Tools osc and quilt 4

Repositories and Projects 6
Package 11

Getting the Package 12
Working on the Sources 16
Build the Package 23

Test 24

Submit 24

Propagate a patch 25
Conclusion 26

Legal notice 27

GNU Free Documentation License 28

How to Modify a Package in Open Build Service



1 Introduction: Open Build Service and the Tools osc
and quilt

The Open Build Service command line client osc is a tool developed to interact with OBS

servers. It provides many functions including:

¢ Creating, modifying and deleting the information (meta data) about projects and packages

and downloading or uploading their code and packaging
* Managing the repositories or targets that projects or packages build against
¢ Preparing and running local builds of packages

¢ Making and managing requests to modify packages in projects (so called Submit Requests)

quilt is a software utility for managing a series of changes to the source code of any computer
program. Such changes are often called “patches” or “patch sets”. quilt takes an arbitrary
number of patches and turns them into a single patch. In doing so, quilt makes it easier
for other programmers to test and evaluate the different changes before they are permanently
inserted into the source code. In short, quilt allows you to easily manage many patches by
keeping track of the changes each patch makes. Patches can be applied, un-applied, refreshed,

and more.

To understand how osc and quilt work, a few terms and technologies need to be described

more in detail:

* OBS manages repositories, such as devel:tools, SUSE:SLE-15:GA, or home: <username >.
Repositories are sometimes also called projects. In this documentation, projects are abbre-
viated as PRJ.

® A repository contains a set of packages, such as pam_krb5, ntp, wget, zypper. In this doc-
ument, packages are abbreviated as PKG. Keep in mind that a package can (and usually
will) appear in more than one repository, but for all practical purposes each one is a copy

in its own right.
* A package consists of a set of files, which contains:
® at least a spec file,

¢ an archive of pristine sources — these are the “original” sources for the package without

any patches applied — possibly accompanied by a signature file,

4 How to Modify a Package in Open Build Service



® a changes file,

® possibly a set of patches which are to be applied in a given sequence, the order being

defined by the spec file, and

¢ sometimes additional files, which are not part of the sources or which control some

aspects of the building process, for example an rpmlintrc file.

While there exists only one Open Build Service, it maintains two separate collections, or APIs

(as they are called in the documentation) of repositories:

¢ the external build service at https://api.opensuse.org A. It can be used by everyone. When

you log in to this Web site, you can view all projects available in the external build service.

¢ the internal build service where the SUSE products are maintained. Only SUSE employees
can access this Web site using their log in credentials. Here you can view the existing

projects in the internal build service.

@ Note: External Build Service

By default, the osc command works on the external build service only. To make it work
on the internal build service, you need to add the special option with argument -A int.
As this paper focuses on the external API of the Open Build Service, only the plain osc

command is used.

This document guides you through the process of modifying a package by updating it to a new

version, adding an existing upstream patch or by building a new patch.

You might need to add a patch to several versions of the respective package in more than one
project. The reason is that, if you fix a bug, you often need to fix it in various SUSE Linux
Enterprise releases. For example, if you fix a bug in SUSE Linux Enterprise 11, you might also
need to fix it in SUSE Linux Enterprise 12. For this purpose we will use two tools:

® osc to manage the package(s) and

® quilt to manage the patch(es)

Using two tools occasionally requires switching from one tool to the other. At the “junctions”,
each of the tools will “enter the realm” of the other tool. But in good Unix tradition, each tool

performs its own job, while being aware of the other tool. The commands for both tools come

5 How to Modify a Package in Open Build Service


https://api.opensuse.org

with a very extensive set of subcommands and very good manual pages. Options explained or
mentioned in this document are usually placed after the subcommand. In consequence, for a

correct command, type .
osc mbranch -c <PKG>
and NOT

osc -c mbranch <PKG>

The former command requests to check out files from the created branches, while the latter
would specify to use an alternate configuration file “mbranch” with <PKG> as the subcom-

mand.
Both tools come with a built-in help system. To display the information for a given subcommand,

type:
osc help <subcommand>
or

quilt <subcommand> -h

2 Repositories and Projects

This chapter focuses on repositories. You will have to upload packages to repositories and move
packages from one repository to another. The term repository is often used as a synonym for
project. But strictly speaking a project is a set of packages and a repository is the location where

the files for these packages are stored.

@ Note: Colons

When you see colons (“:”) in a repository (or project) name, notionally replace them by
slashes (“/”), to make the file name look more familiar.

A project can be

* a software project (for example Apache, Base:System, or Linux-PAM)

® a home project (for example home:jmoellers)

6 How to Modify a Package in Open Build Service



¢ a branch (for example home:jmoellers:branches:Linux-PAM)

¢ a product project (for example SUSE:SLE-12-SP3:GA)

o Important

Product project is not an official term!

You can list all projects with the command osc 1ls /. For the external build service, this
command returns a rather long list of available projects (at the time of writing, almost 45,000

projects were available).

Each package included in a product usually goes through at least three repositories:

1. the development repository, or in short devel repo
2. Factory

3. the product repository

Often a fourth repository is needed, which is the branch that you create to work on the product.

In these cases a package passes through the following repositories:

¢ the development repository, or in short devel repo
® your branch

® once again the devel repo

e Factory

¢ the product repository

2.1 Upstream

Upstream is not a repository in the classical meaning, but usually it is the very basic source of a
package. It could be a Git repository that you clone, or a Web site from where you download
a TAR archive.

When you fix a bug, you should submit the patch to upstream to ensure it can be included into
future versions of the package. This has the advantage that next time you upgrade the package

from upstream, you might be able to drop one or more local patches. In addition, you contribute

7 How to Modify a Package in Open Build Service



your efforts to the community. However, getting the patch accepted might require some patience
and persistence, because some upstream maintainers have very special requirements regarding

how to fix a bug. But usually most upstream maintainers are grateful for any fixes.

2.2 Development Repository

The development repository, or in short devel repo, is where you keep a package locally, after
it has been downloaded or cloned from upstream. Most development repositories are located on
the external build service. Each development repository has one or more maintainers and one or

more bugowners.

Only the maintainer(s) and the bugowner(s) can submit to this repository. Other contributors
must branch the repository and then request the patch to be accepted by the maintainer(s) and/
or bugowner(s). You can, however, check out from the development repo, for example, if you
only want to have a look at the source code or if you need to analyze a problem without first
creating a branch (which takes up some space on the build servers).

You can find the devel repo of a package by typing
osc develproject <PRJ> <PKG>

The command:
osc develproject openSUSE:Factory cvs

will display the following output

devel:tools:scm

@ Note: Short Version

You can abbreviate develproject with the short version dp.

2.3 Factory

The Factory project is the rolling development code base for the openSUSE distribution Tumble-
weed. Factory is mainly used as an internal term for openSUSE's distribution developers, and the
target project for all contributions to openSUSE's main code base. There is a constant flow of
packages going into Factory. There is no package or feature freeze; therefore, the Factory repos-
itory is not guaranteed to be fully stable and is not intended to be used as a distribution itself.

8 How to Modify a Package in Open Build Service



The core system packages receive automated testing via openQA, the automated test tool for
Linux operating systems (for more information, see http://open.qa/ 7). When automated testing
is completed and the repository is in a consistent state, it is synchronized to the download mir-
rors. Then it is published as the openSUSE Tumbleweed distribution, the rolling release version
of the openSUSE project, featuring the newest technology (see https://www.opensuse.org/#Tum-
bleweed 7). It is of course also the basis for openSUSE Leap, the regular annual release from the

openSUSE project, with security and stability being the main focus.

In addition, Factory is used as the base repository containing the code stream for the development
of the next major version of SUSE Linux Enterprise and all related enterprise-class products.

Therefore it is all the more important to keep this repository up to date.

@ Note: Community Project

openSUSE:Factory is part of the openSUSE community project. This means it resides
outside of the official SUSE product projects, and is not regulated or controlled by SUSE.
Package maintainers are usually members of the openSUSE community.

A major rule has been established which is called “Factory First” . In theory, this means that
you need to submit any package that you want to see included in any version of openSUSE or
SUSE Linux Enterprise to Factory. In practice, you will submit your package or patch to the devel
repo first and then you will submit to Factory from there. As you branch and check out from
the devel repo, osc will automatically submit changes to the devel repo master. Once you have
submitted or updated a package in its devel repo, you (or the maintainer of the devel repo) must

submit the package to openSUSE:Factory.

o Important: Factory First Policy
After you have submitted or updated a package in the devel repo, you always need to
submit it to the next step! As long as the package is updated or patched only in its devel
repo, the new version of the package will not be included with any new release. Only
when it is submitted to openSUSE:Factory, it is available for incorporation into future

product releases. This policy is called “Factory First” !

From openSUSE:Factory, the package will later be submitted to a distribution repository, for
example to SUSE:SLE-15:GA. Usually this is done by the package maintainers, but occasionally

you might be asked to submit your new or updated package there.

9 How to Modify a Package in Open Build Service


http://open.qa/
https://www.opensuse.org/#Tumbleweed
https://www.opensuse.org/#Tumbleweed

2.4 Home Project

The Home Project is your private repository. It is called home: <username > (for example

home:jmoellers). In this repository, you store your own projects, and you create your branches.

2.5 Branch

When you create a branch from an existing project, for example from a devel repo of which you
are not the maintainer or bugowner, this is stored under home: <username > :branches. In

the following example:

home: jmoellers:branches:network:utilities/wget

home:jmoellers:branches: stands for the branch, network:utilities stands for the devel

project, and wget is the product.

Some maintainers or bugowners branch from their own devel repos, to ensure clean development

processes, and to allow for proper documentation.

The osc command records from which repository the branch was created. When you submit
changes back to your branch, it also makes a request to the maintainers of the package to accept

and submit the changes into the original repository.

2.6 Product Projects

For the purpose of this document, the term Product Projects refers to the repositories containing
the packages that are bundled into a SUSE product. When a new product is built, its repository
usually is named SUSE: < productname > :GA (for example SUSE:SLE-15:GA). At a later stage
of the lifecycle, after the General Availability (GA) of the product, when the service packs for a
product need to be created, a repository SUSE: < productname > :Update is set up. This is the
repository to which you now should submit your patches. The next service pack of a product
will be built from this repository.

@ Note: GA Production Repository

You cannot directly submit to the GA production repository. As the Factory First rule
applies, you submit to Factory. Then the product release team will fetch the package from
there. You can, however, submit to the Update repositories when you fix a bug in an

older release.

10 How to Modify a Package in Open Build Service



Each distribution and each service pack has its own repository (for example SLE-xx-SPyy). If
you fix a bug in a package’s devel repo (after which you submit the patch to openSUSE:Factory),

you may need to also fix it in the distribution repos.

This requires the following steps:

1. Creating branches for all versions which are currently in maintenance mode:

osc mbranch

2. Checking the branches out to your local disk. The previous step and this step can be com-

bined into one step:

osc mbranch -c

3. Creating one or more patches and modifying the associated files (for example the spec file)

4. Submitting the changes back to the product repo

The last step will not automatically update the package in the product repo. The package main-

tainer will do that after some necessary tests.

3 Package
The next paragraphs focus on packages. A package consists of:

® a spec file describing how the binary package is to be built from the sources,

e the pristine sources, means the unmodified base source archive which you usually download
from the upstream git repository, possibly accompanied by a signature file,

® a changes file containing a human readable list of the changes introduced with each

patch, and

* (possibly) a set of patches to be applied, for example functional enhancements, adaptations

to SUSE specifics or bug fixes

Other files might be included in a package, but they are not relevant for the purpose of this
document. You can find all files of a package in the source RPM.

The command osc 1s <PRJ> lists all packages of a project or repository.

1" How to Modify a Package in Open Build Service



Example:

osc ls devel:tools:scm

This command lists all packages in the source code management section of the development

tools: from EasyMercurial through bugzilla, cvs, git, osc, rcs, trac, down to xmlto.
With the command osc search (or short osc se) you can find the project(s) a package is in:

Example:

osc se bugzilla

Besides listing the home projects of contributors who have created branches of the bugzilla

package, this command returns the following information:

devel:tools:scm bugzilla

4 Getting the Package
At a certain point in time, you need to modify a package. You

1. either have worked out a fix for a bug yourself,
2. or found an upstream patch that you want to include,

3. or you want to upgrade a package to a new version.

If you want to update a package, you should use the existing one as the skeleton. You also you
must keep and amend the changes file. If you want to write a patch or use an existing patch,

you need the current version of the package because you simply add your patch to the package.

At this stage, you should also have a clear idea of the directory structure you want to use. One
option is to store all your patches and packages under your HOME directory. But you can also
consider to create subdirectories by topics for the work you currently have in progress. In any
case, the meta data that are stored by osc ensure that the package is submitted to the correct

directory.

12 How to Modify a Package in Open Build Service



4.1 Development Repository - Maintainer or Bugowner

You can always check out the sources from the devel repo. But as long as you are not the main-
tainer or bugowner of that repository, you usually cannot submit your changes directly. The tool
osc knows where a package comes from and will automatically submit it back to the correct
repository.

After you moved to the directory where you want to work on the sources, you can check out

the current revision of the package by running the command:

osc co <PRJ> <PKG>

where <PRJ> is the project the package is part of and <PKG> is the package’s name.

Example:
osc co devel:languages:perl perl-RPM-VersionSort

This command checks out a complete directory tree and creates devel:languages:perl/perl-
RPM-VersionSort. Inside the perl-RPM-VersionSort directory, all required files are available:
spec file, source archive, changes file, patches etc.

In case you have created several working directories and you try to check out a package you

already have a working copy of, you will get an error message:
error: ‘PRJ/PKG’ is already an initialized osc working copy

Change to the indicated directory and update the content running the command
cd <PRJ>/<PKG>; osc update

or short
cd <PRJ>/<PKG>; osc up

This will check out any changed files and tell you which revision is the current one. Everything

is now set and you may proceed to Section 5, “Working on the Sources”.

13 How to Modify a Package in Open Build Service



4.2 Development Repository - Non-Maintainer or Non-Bugowner

There are at least two situations where you must not check out directly from the devel repo:

1. If you need to patch an already released package, the devel repo usually holds a more
current version than the released package. You must not update the release version of such

a package (the procedure devel repo — factory — product repo will not work).

2. If you are not the maintainer or bugowner of the package, you cannot submit your changes

back to the devel repo.

In these cases you need to create a branch first. Then you need to check out the sources from
this branch.

4.2.1 Branching

The branch you work on will be created on the build server. When you have finished your work
and submitted your changes, remove the branch on the build server to free up resources. If you

need the branch for additional tasks, you can remove it also at a later point in time.

Create a branch with the command
osc branch <PRJ> <PKG>

This command creates the subdirectory home: <username > :branches: <PRJ>/<PKG > on
the server and populates it with the source files (spec file, pristine sources, changes file, current

set of patches, etc.) of the package.

If the patch also needs to be applied to maintained versions, this means versions already released
as a product, use the command osc mbranch <PKG> to branch the projects. The “m” in

“mbranch” stands for “multiple” , and not as often wrongly assumed for “maintenance” .

@ Note: Add Package Name

Make sure you add the package name and not the project name to the command osc
branch. mbranch automatically detects in which releases the package is under mainte-
nance and creates the appropriate directory structure. Both commands osc branch and
osc mbranch provide a list of the files they have created a branch for, and allow you to

easily see which releases you need to work on.

14 How to Modify a Package in Open Build Service



4.2.2 Check Out

The commands osc branch and osc mbranch only create a branch on the build server. To
create a branch on your local system including copies of the packages you want to work on,
check them out with the command

osc co home:<username>:branches:<PRJ><PKG>

Remember you check out a package from the devel repo in the same way.

This command creates the directory structure home: <username >:branches: <PR-

J>/<PKG> in the current directory on your local machine and populates it with all files.

If you created your new subdirectory by mistake within the wrong local directory, you can
remove the newly created one with the command rm -rf. Then move to the correct directory

where the new subdirectory should be located, and check out again.

4.2.3 Branch and Check Out

When you update or modify a package, you usually need to perform both steps, branching the
repository, and checking out the package. You can easily combine both steps into one command

by typing
osc branchco <PRJ> <PKG>

or by using the short command version

osc bco <PRJ> <PKG>

If you have used the osc mbranch command for branching, you cannot combine the two steps

mbranch and checkout into one command. However, you can specify the --checkout option

by typing
osc mbranch —-checkout <PKG>

or in short

osc mbranch -c <PKG>

@ Note: Add Package Name

Make sure you add the package name and not the project name to the command, as this
command will branch and check out all projects where the respective package is under

maintenance.

15 How to Modify a Package in Open Build Service



5 Working on the Sources

The sources are now available on your local system and you can start modifying them. Change
to the package’s working directory. If you checked out from the devel repo or from a distribution

repo, type the command
cd <PRJ>/<PKG>
If you have branched and checked out of that branch, type the command
cd home:<username>:branches:<PRJ>/<PKG>
Inside the current working directory, you should find at least the following files:
1. the spec file <PKG>. spec,
2. the pristine sources, for example <PKG>-<vers>.tar.bz2,
3. the changes file <PKG>.changes,
4. any patches,

5. possibly some other files that belong to this package like an rpmlintrc file.
Your next steps depend on whether you want to

1. upgrade the package to a new version, which is explained in Section 5.1, “Upgrading”, or

2. patch the package to add functionality or fix a bug, which is explained in Section 5.2, “Patch-
ing”.

5.1 Upgrading

When you upgrade the package to a new version of the sources, you must also check if any
of the old patches are obsoleted by the new version and if they still apply without (major)
problems. You might hit upon an obsolete or faulty patch when one or more patches have been
submitted and accepted upstream and integrated into the sources. Existing patches sometimes
do not apply without problems when the relevant source sections have changed considerably,
thus confusing the patching program. Fixing issues caused by faulty patches can become an
iterative and painful process.

16 How to Modify a Package in Open Build Service



5.1.1 Pristine Sources

As you created a complete set of new sources, the first step should be to replace the old sources
by the new ones. Do not forget to remove the old sources to avoid any “hiccup” within the build
service. You might however want to save the old sources to a subdirectory of your HOME direc-
tory for reference and fallback. In addition, if the sources come with a checksum (for example

an MD5SUM) or a signature, you should include it.

5.1.2 SpecFile

Modify the spec File to reflect the new release (version, release, source name). First, disable
all existing patches, as some of them might be obsolete or have problems being applied (for
example if the sources have changed considerably to disrupt the patch program). You can also

temporarily move all patches to another directory and bring them back in when required.

5.1.3 Build the Source Tree
Set up the source tree by running the command:

quilt setup <PKG>.spec

As there are no patches (yet) available, this command mainly unpacks the TAR archive.

@ Note: Asterisk Wild Card

Often you can use the command quilt setup *.spec with the asterisk wild card,
because usually there is only one spec file. As quilt setup accepts only a single non-
option argument, no damage occurs if more than one spec file exists. However, a warning

message is emitted. This means you can redo the command with the desired spec file.

5.1.4 Check the Patches

Now, one by one, inspect the patches that you removed previously. Determine whether they are

still needed. As these are ordinary “patch” type patches, you can use the command

patch —dry-run -pl < <wherever>/patchfile

to see if the patch applies well. As some patches were built one directory level deeper, you might

need to change to that directory and exchange the -pl with -p0.

17 How to Modify a Package in Open Build Service



If the patch works well, use the command

quilt import <wherever>/patchfile

to import the patch and add it to the series file.

With the command quilt push (no further arguments) you actually apply the patch. Add the
patch to the spec file, while keeping the original numbering, and continue with Section 6, “Build

the Package”.

If you prefer, you can re-introduce all the patches you removed earlier and build the package

subsequently. You can also add one patch at a time and build the package after each addition.

If a patch is not accepted, you most probably need to re-create it. Section 5.2, “Patching” details
how to build a new patch. When you have finished adding all the patches, proceed to Section 6,
“Build the Package”.

5.2 Patching

The previous paragraphs describe how to update a package to a new release or version. But
usually, you need to work on an existing package and add a patch to fix a bug or implement

a feature.

If an upstream patch is already available you can use that patch (see Section 5.1.4, “Check the
Patches”). This can be the case if, for example, you need to fix a security vulnerability and

someone else has already posted a patch for it.

In other cases, you need to create the patch yourself. This can be the case if you
® cannot apply an existing patch,
* have analyzed a problem and found a fix yourself,

® or implemented a new feature.

Start by checking out the sources as described in section Section 4, “Getting the Package”. Then

proceed to work on the sources.

5.2.1 Setup

At this stage, you have branched and checked out the package. It now resides in its directory, and
consists of the spec file, the TAR archive, any patches, the changes file and some additional
files.

18 How to Modify a Package in Open Build Service



The TAR archive contains the pristine sources. These are the unmodified sources cloned from a
Git repository or downloaded from the project’s upstream Web site. Most packages also already
come with a set of patches. Extract the source files from the TAR archive and apply these patches

first, as specified in the spec file, before starting to build your own patch.
Quilt offers subcommands that will do this for you.

Initialize the source tree from the TAR archive. Unpack the TAR archive and prepare for the

application of the %prep section of the spec file with the command

quilt setup <packagename>.spec

You can also try to use the asterisk wild card *. spec, but if a package has more than one spec

file, using the wild card does not work. If this is the case, quilt alerts you.

While the command quilt setup prepares the sources, it does not apply the patches. It merely
creates a series file which contains the list of patches from the spec file in the correct order.

To apply the patches, change to the source directory and run the command quilt push -a.

This command applies the patches in the order specified in the series file. The output of this
command shows you which patches are applied to which files, and if everything went smoothly

during the application. You are now prepared to add your own patch.

@ Note: Symbolic Link

Occasionally, especially if there are no patches to be applied, you need do create a symbol-

ic link from the source directory to the checkout directory by typing ln -s .. patches.

5.2.2 Building the patch

When you build a new patch, you first need to name it. To do so, in the root of the source tree

(this is where you just ran the command quilt push -a), run the command

quilt new <patchname>

For a guide on how to name the patch, see the instructions on the openSUSE Web site at https://

en.opensuse.org/openSUSE:Packaging_Patches_guidelines#Patch_naming <@

@ Note: Name Your Patch

Do not forget to name your new patch, else any changes you make will be added to the

last patch!

19 How to Modify a Package in Open Build Service


https://en.opensuse.org/openSUSE:Packaging_Patches_guidelines#Patch_naming
https://en.opensuse.org/openSUSE:Packaging_Patches_guidelines#Patch_naming

To keep everything under control, you must not use your favorite editor to modify a file (al-
though it is perfectly fine to peek into a file using your editor). From the root of the source

tree, run the command:
quilt edit dir/file

This command does some “bookkeeping”; for example it saves the original version of the file.
Then it invokes your editor (from the EDITOR environment variable) on the respective file.

Subsequently it adds some more information so that the changes later end up in your patch.

You can run the command quilt edit on several files at once:

quilt edit dirl/filel dir2/file2

You can also run quilt edit multiple times on the same file, reverting and amending previous
changes. Only the differences between the original version and the end version are recorded in
the patch. The first time you run this command the original file is saved. Each time you leave
the editor, the current state of the file is compared to this copy and the patch is created from
the differences. If you, for example, make thousands of changes, which, in effect, only change

one line, then the patch will contain only the changes to this single line.

When you build a patch, you should follow these rules:

1. Make sure you include all required changes in one patch. Do not combine multiple fixes

in one patch.

2. Create multiple patches, if required.

This will make it easier to remove a single patch later, for example if the changes are accepted

upstream.

5.2.3 Including the Patch

When you have finished the modifications of the sources, run the command quilt refresh to

make sure that the patch is stored in the same directory as all other patches.

Then change to the checkout directory by typing c¢d .. and prepare for the inclusion of the
patch.

5.2.3.1 Build Service

Now make your patch known to the build service with the command osc ar.

20 How to Modify a Package in Open Build Service



You can also use the command osc add <patchname> but the former one helps you to remove

files no longer needed.

5.2.3.2 SpecFile

Next, add the patch to the spec file. Add at least two lines:

Patch<n>: <patchname>

and
%patch<n> -pl

The first line belongs to the header section, usually right after any Source <n>: lines. Above
the Patch < n>: line you should also add a comment line describing what the patch tries to
accomplish. Make sure to align the patch name with any other columns above, for example the

Source <n>: lines.

The second line goes into the %prep section, again appended to the end of any list of existing
%patch <n> lines. Don't forget that the command quilt edit creates a patch with a patch

level of -p1.

@ Note: Adding Lines to Spec File

Whenever you add these two lines, keep to the given style, aligning columns and append-
ing lines to already existing sets of lines of the same type. Also, do not fill holes in the
patch numbers: your patches number is the number of the last patch plus one. If your
patch is the first one, then it is named Patchl.

5.2.3.3 Changes

Another important file is the changes file. The naming convention usually is <pack-

age>.changes. This file is maintained through the command osc vc.

This command opens an editor on the given changes file. As there is not much space to fill
in your changes, try to limit the number of items you want to include here. This is especially
difficult if you update a package where a lot of changes were made upstream. In this case,
mention only the most important changes and refer to the respective change log on the Web.

21 How to Modify a Package in Open Build Service



In the change file, you must mention the following information:

® A BUGZILLA reference if a bug was fixed with this patch. To help others find the bug,
prepend the number with a shorthand for bugzilla: bsc (suse.com), bnc (novell.com),
boo (opensuse.org) followed by a hash sign (for example bsc#1234567)

® A FATE reference if you add a feature. Like the BUGZILLA references, this consists of the
word “fate” followed by a hash, followed by the FATE number (for example fate#123456).

¢ The patch name

¢ The Common Vulnerabilities and Exposures (CVE) ID if the patch closes a security issue
(for example CVE-1234-5678).

For more information about how to create a changes file, refer to the openSUSE Web page at
https://en.opensuse.org/openSUSE:Creating_a_changes_file_(RPM) 7,

If you have more than one BUGZILLA or FATE reference, because the bug was reported or the
feature was requested for more than one release, you must add all references. To avoid the

rejection of your patch, make sure that you include the requested information in the changes
file.

5.2.4 Commit

o Important: Embargoed Bugs
Occasionally you will be asked to fix a bug that is EMBARGOED. These bugs usually con-
cern security violations (CVEs). This means no information has been released yet about

this bug. Never commit anything to OBS while bugs are still embargoed.

If your local machine runs one of the architectures the package will need to be built for, you

can build it locally with the command osc build.

This command creates a build environment on your local machine, installs tools and packages
required to build the package and actually builds it. You can use this command also to keep all

the information local. After the package is built, you can immediately get it and test it locally.

22 How to Modify a Package in Open Build Service


https://en.opensuse.org/openSUSE:Creating_a_changes_file_(RPM)

At this stage, you have:

1. added your patch(es) to the spec file (<some editor> *.spec)
2. added an entry to the changes file (with the command osc vc)

3. made your patches known to osc (with the command osc ar)

To send the changed files to the build server and build the package, run the command osc

commit without further arguments. This command:

1. starts an editor to allow you to add a message; even if you have already added information

to the changes, an additional commit message is helpful
2. synchronizes the files on the build server with the local files by:
a. adding or removing files according to the command osc arand
b. transferring modified files

3. triggers one or more builds for various architectures and/or releases

6 Build the Package

When you use the command osc commit to submit your changes, the build service starts to
build the package for various projects and architectures. Depending upon the load, this may

take a while. You can check the progress by running the command osc r.

The output shows three columns containing:

1. the project (for example openSUSE_Leap_42.2 or openSUSE _Factory)
2. the architecture (for example x86_64 or ppc64)

3. the status (for example scheduled, building, succeeded, or failed)

If the status includes an asterisk (for example succeeded*), this means the status is outdated.
You should always double check if a status is outdated. If you are in doubt, use the command
osc buildlog or osc bl to check the status. If the status is building, succeeded, or failed,
look at the build log using the osc bl <PRJ> <ARCH> subcommand for further information

(<PRJ> is the project and <ARCH > is the machine architecture).

23 How to Modify a Package in Open Build Service



In the early stages of the build process, the osc r command does not return any output. In
such cases repeat the command. If osc r consistently includes an asterisk, run the osc bl
command to verify if the status is really outdated.

@ Note: Dates and Times

Dates and times in the build log output are displayed in Coordinated Universal Time
(UTaQ).

The build log is also very useful if a build has failed: the output contains information about what

caused the failure. Use this information to fix the cause and re-commit.

/ Test

When the package has been built (you can find the list of packages built at the end of the build
log output), you should test your changes. Depending on the kind of package you have been

working on, you can
¢ use a physical machine from the Orthos pool or
® set up a virtual machine
You obtain the packages using the command
osc getbinaries <PRJ> <ARCH>

If you also want to get the source RPM, add the option --sources.

The files are saved in the directory binaries in the current directory. Use the option -d DIR/- -
destdir=DIR to specify a different destination. The command displays a list of fetched files.

8 Submit

After you have tested the package successfully, you usually want to release it. This task is called

submit.

If you haven’t done so already, add a comment to the changelog with the command osc vc

24 How to Modify a Package in Open Build Service



To submit the package, type osc sr. This command requires no further arguments as the
changes are submitted to where the package was checked out from beforehand. Also, if you
submit to your branch, a request is sent to the maintainer or to the bugowner of the package
to include the changes into the repository where you branched from. If you are the maintainer
or bugowner and had checked out from the devel repo, this command updates the devel repo.
If you branched via the command osc mbranch and you submit now to one of the branches,
the command osc sr will detect this and will “request to open a NEW maintenance incident
instead”. If you submitted from an mbranch or to your personal branch, your work is done:
others will follow up and finish the work.

If you submitted to the devel repo, to fulfill the Factory first policy, you should then submit the
changes to Factory/> with the command

osc sr <PRJ>/<PKG> openSUSE:Factory

This will not immediately submit the package to Factory, but it will be marked for submission.
When the package is accepted in the devel repo, it will automatically be submitted to Factory,

where it again needs to be accepted.

All requests can be inspected at

e the Open Build Service at https://build.opensuse.org/request/show/<RequestID (https://

build.opensuse.org/request/show/<RequestiD>) # for normal submit requests, or at

¢ the Internal Build Service for maintenance requests.

After a certain period of time your new package will be accepted.

9 Propagate a patch

Sometimes you need to patch a package in more than one repository.

A useful technique to do so is to start at one end of the sequence of releases. This could be
the oldest or the newest release, for example the version in the devel repo. Now work your way
down to the other end, to the newest or the oldest release. At the start end, you build the patch
and test it. Then you change to the next (newer or older) package instance and use the patch
from the previous step as the basis (use patch —-dry-run, quilt import, quilt push). In
theory this approach assumes that, at each step, the package will not have changed much so
the patch from the previous step can be applied, albeit with some correction. Sometimes this
does not work; then you need to re-write the patch from scratch. But usually this method works,

saves some time and prevents errors.

25 How to Modify a Package in Open Build Service


https://build.opensuse.org/request/show/%3CRequestID%3E
https://build.opensuse.org/request/show/%3CRequestID%3E

10 Conclusion

In summary, the tasks you usually perform to modify a package and submit a patch are the

following:

1.

2.

10.

11.

12.

13.

14.

15.

osc bco <PRJ> <PKG>

cd home:<username>:branches:..
quilt setup *.spec

cd <sources>

quilt push -a

. write your patch/modify the package

quilt refresh

cd ..

osc ar (Don't forget this step!)

EDITOR *.spec (add the patch)
osc vc (add description)

osc commit

osc r

osc bl <REPOSITORY> <PKG>

osc submitrequest

After having followed all the steps above, you have submitted your first patch. If you have

learned new things, don’t hesitate to share your knowledge with others. If you stumbled across

a problem not covered in this paper, or if you found another solution that saves some work,

don’t hesitate to send your feedback to doc-team@suse.com and help enhance this document.

26

How to Modify a Package in Open Build Service



11 Legal notice

Copyright ©2006-2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ #. Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this

document may be trademarks or registered trademarks of their respective owners.

Documents published as part of the SUSE Best Practices series have been contributed voluntar-
ily by SUSE employees and third parties. They are meant to serve as examples of how particular
actions can be performed. They have been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. SUSE cannot verify that actions described in these
documents do what is claimed or whether actions described have unintended consequences.
SUSE LLG, its affiliates, the authors, and the translators may not be held liable for possible errors

or the consequences thereof.

Below we draw your attention to the license under which the articles are published.

27 How to Modify a Package in Open Build Service


http://www.suse.com/company/legal/

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

28 How to Modify a Package in Open Build Service



It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add

an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
0. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-

edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

29 How to Modify a Package in Open Build Service



If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original

versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

30 How to Modify a Package in Open Build Service


http://www.gnu.org/copyleft/

	How to Modify a Package in Open Build Service
	Contents
	1. Introduction: Open Build Service and the Tools osc and quilt
	2. Repositories and Projects
	2.1. Upstream
	2.2. Development Repository
	2.3. Factory
	2.4. Home Project
	2.5. Branch
	2.6. Product Projects

	3. Package
	4. Getting the Package
	4.1. Development Repository – Maintainer or Bugowner
	4.2. Development Repository - Non-Maintainer or Non-Bugowner
	4.2.1. Branching
	4.2.2. Check Out
	4.2.3. Branch and Check Out


	5. Working on the Sources
	5.1. Upgrading
	5.1.1. Pristine Sources
	5.1.2. Spec File
	5.1.3. Build the Source Tree
	5.1.4. Check the Patches

	5.2. Patching
	5.2.1. Setup
	5.2.2. Building the patch
	5.2.3. Including the Patch
	5.2.3.1. Build Service
	5.2.3.2. Spec File
	5.2.3.3. Changes

	5.2.4. Commit


	6. Build the Package
	7. Test
	8. Submit
	9. Propagate a patch
	10. Conclusion
	11. Legal notice
	12. GNU Free Documentation License

