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Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux
Enterprise 15 SP6

The document at hand provides an overview of both the AMD EPYC™ 9005 Series
Processors based on Zen5 and Zen5c cores. It details how some computational-in-

tensive workloads can be tuned on SUSE Linux Enterprise Server 15 SP6.
Disclaimer:

Documents published as part of the SUSE Best Practices series have been con-
tributed voluntarily by SUSE employees and third parties. They are meant to serve
as examples of how particular actions can be performed. They have been compiled
with utmost attention to detail. However, this does not guarantee complete ac-
curacy. SUSE cannot verify that actions described in these documents do what is
claimed or whether actions described have unintended consequences. SUSE LLC, its
affiliates, the authors, and the translators may not be held liable for possible errors
or the consequences thereof.
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1 Overview

The AMD EPYC 9005 Series Processor is the 5th generation of the AMD EPYC server class proces-
sor family. It is based on the Zen 5 microarchitecture introduced in 2024. AMD EPYC 9005
Series Processors based on Zen5 cores support up to 128 cores (256 threads) whereas AMD
EPYC 9005 Series Processors based on Zen5c cores support up to 192 cores (384 threads). Both
support 12 memory channels per socket. At the time of writing, 1-socket and 2-socket models
are expected to be available from Original Equipment Manufacturers (OEMs) in 2024. This doc-
ument provides an overview of the AMD EPYC 9005 Series Processors based on Zen5 cores and
how computational-intensive workloads can be tuned on SUSE Linux Enterprise Server 15 SP6.
Additional details about the AMD EPYC 9005 Series Processors based on ZenS5c cores are pro-
vided where appropriate.

2 AMD EPYC 9005 Series Processor (Zen5 cores)
architecture

Symmetric multiprocessing (SMP) systems are those that contain two or more physical processing
cores. Each core may have two threads if Symmetric multithreading (SMT) is enabled, with some
resources being shared between SMT siblings. To minimize access latencies, multiple layers of
caches are used with each level being larger but with higher access costs. Cores may share

different levels of cache which should be considered when tuning for a workload.

Historically, a single socket contained several cores sharing a hierarchy of caches and memory
channels and multiple sockets were connected via a memory interconnect. Modern configura-
tions may have multiple dies as a Multi-Chip Module (MCM) with one set of interconnects within
the socket and a separate interconnect for each socket. This means that some CPUs and memory
are faster to access than others depending on the “distance”. This should be considered when
tuning for Non-Uniform Memory Architecture (NUMA) as all memory accesses may not reference

local memory incurring a variable access penalty.

The 5th Generation AMD EPYC Processor has an MCM design with up to seventeen dies on
each package. From a topology point of view, this is significantly different to the 1st Generation
AMD EPYC Processor design. However, it is similar to the 4th Generation AMD EPYC Processor
other than the increase in die count. One die is a central IO die through which all off-chip
communication passes through. The basic building block of a compute die is an eight-core Core
CompleX (CCX) with its own L1-L3 cache hierarchy. Similar to the 4th Generation AMD EPYC
Processor, one Core Complex Die (CCD) consists of one CCX connected via an Infinity Link to
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the IO die, as opposed to two CCXs used in the 2nd Generation AMD EPYC Processor. This
allows direct communication within a CCD instead of using the IO link maintaining reduced
communication and memory access latency. A 128-core 5th Generation AMD EPYC Processor
socket therefore consists of 16 CCDs consisting of 16 CCXs (containing 8 cores each) or 128
cores in total (256 threads with SMP enabled) with one additional IO die for 17 dies in total.
This is a large increase in the core count relative to the 4th Generation AMD EPYC Processor.

Both the 4th and 5th Generation AMD EPYC Processors potentially have a larger L3 cache. In a
standard configuration, a 5th Generation AMD EPYC Processor has 32MB L3 cache. Some CPU
chips may also include an AMD V-Cache expansion that can triple the size of the L3 cache.
This potentially provides a major performance boost to applications as more active data can
be stored in low-latency cache. The exact performance impact is variable, but any memory-in-
tensive workload should benefit from having a lower average memory access latency because

of a larger cache.

Communication between the chip and memory happens via the 10 die. Each CCD has one ded-
icated Infinity Fabric link to the IO die. The practical consequence of this architecture versus
the 1st Generation AMD EPYC Processor is that the topology is simpler. The first generation had
separate memory channels per die and links between dies giving two levels of NUMA distance
within a single socket and a third distance when communicating between sockets. This meant
that a two-socket machine for EPYC had 4 NUMA nodes (3 levels of NUMA distance). The 2nd
Generation AMD EPYC Processor has only 2 NUMA nodes (2 levels of NUMA distance) which
makes it easier to tune and optimize. The NUMA distances are the same for the 3rd, 4th and
5th Generation AMD EPYC Processors.

The IO die has a total of 12 memory controllers supporting DDR5 Dual Inline Memory Modules
(DIMM:s) with the maximum supported speed expected to be DDR5-6000 at the time of writing.
This implies a peak channel bandwidth of 48 GB/sec or 576 GB/sec total throughput across a
socket. The exact bandwidth depends on the DIMMs selected, the number of memory channels
populated, how cache is used and the efficiency of the application. Where possible, all memory

channels should have a DIMM installed to maximize memory bandwidth.

While the topologies and basic layout is similar between the 4th and 5th Generation AMD EPYC
Processors, there are several micro-architectural differences. The Instructions Per Cycle (IPC) has
improved by 17% on average for enterprise and cloud workloads and 37% higher in Al and high
performance computing (HPC), although the exact improvement is workload-dependent. The

improvements result from a variety of factors including, increased cache bandwidth, a larger
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L1d cache, improvements in branch prediction, wider front-end, increased number of Arithmetic
Logic Units (ALUs), increased floating point throughput, support for AVX-512 with 512-bit da-
ta-path. The degree to which these changes affect performance varies between applications.

Power management on the links is careful to minimize the amount of power required. If the links
are idle, the power may be used to boost the frequency of individual cores. Hence, minimizing
access is not only important from a memory access latency point of view, but it also has an

impact on the speed of individual cores.

There are 128 IO lanes supporting PCle Gen 5.0 per socket. Lanes can be used as Infinity links,
PCI Express links, SATA links (maximum 32 links) or CXL 2.0 links (maximum 64 links). The
exact number of PCle 5.0 and configuration links vary by chip and motherboard. This allows
very large IO configurations and a high degree of flexibility, given that either IO bandwidth or
the bandwidth between sockets can be optimized, depending on the OEM requirements. The
most likely configuration is that the number of PCle links will be the same for 1- and 2-socket
machines, given that some lanes per socket will be used for inter-socket communication. While
some links must be used for inter-socket communication, adding a socket does not compromise

the number of available IO channels. The exact configuration used depends on the platform.

3 AMD EPYC 9005 Series Processor (Zen5 cores)
topology

Figure 1, “AMD EPYC 9005 Series Processors based on Zen5 cores Topology” below shows the topology
of an example two socket machine with a fully populated memory configuration generated by

the 1stopo tool.
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FIGURE 1: AMD EPYC 9005 SERIES PROCESSORS BASED ON ZEN5 CORES TOPOLOGY

This tool is part of the hwloc-gui package. The two “packages” correspond to each socket. The
CCXs consisting of 8 cores (16 threads) each should be clear, as each CCX has one L3 cache
and each socket has 16 CCXs resulting in 128 cores (256 threads). Not obvious are the links to
the IO die, but the IO die should be taken into account when splitting a workload to optimize
bandwidth to memory. In this example, the IO channels are not heavily used, but the focus will
be on CPU and memory-intensive loads. If optimizing for IO, it is recommended that, where

possible, the workload is located on the nodes local to the IO channel.

The computer output below shows a conventional view of the topology using the numactl tool
which is slightly edited for clarity. The CPU IDs that map to each node are reported on the “node
X cpus:” lines. They note the NUMA distances on the table at the bottom of the computer output.
Node 0 and node 1 are a distance of 32 apart as they are on separate sockets. The distance is
not a guarantee of the access latency, it is an estimate of the relative difference. The general
interpretation of this distance would suggest that a remote node is 3.2 times longer than a local

memory access but the actual latency cost can be different.

epyc:~ # numactl --hardware

node 0 cpus: 0 .. 127 256 .. 383
node 0 size: 385996 MB

node 0 free: 384139 MB

node 1 cpus: 128 .. 255 384 .. 511
node 1 size: 386740 MB

node 1 free: 385440 MB

node distances:
node 0 1
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0: 10 32
1: 32 10

Note that the two sockets displayed are masking some details. There are multiple CCDs and
multiple channels meaning that there are slight differences in access latency even to “local”
memory. If an application is so sensitive to latency that it needs to be aware of the precise
relative distances, then the Nodes Per Socket (NPS) value can be adjusted in the BIOS. If adjusted,

numactl will show additional nodes and the relative distances between them.

Finally, the cache topology can be discovered in a variety of fashions. In addition to lstopo
which can provide the information, the level, size and ID of CPUs that share cache can be

identified from the files under /sys/devices/system/cpu/cpuN/cache.

4 AMD EPYC 9005 Series Processors (Zen5c cores)

The AMD EPYC 9005 Series Processors based on Zen5c cores launched in 2024. While the fun-
damental microarchitecture is based on the “Zen 5” compute core, it is optimized for density
and efficiency. Its physical layout takes less space and is designed to deliver more performance
per watt. There are some other important differences between it and the AMD EPYC 9005 Series
Processors based on Zen5 cores. Both processors are socket-compatible, have the same number of
memory channels and the same number of I/0O lanes. This means that the processors may be used
interchangeably on the same platform with the same limitation that dual-socket configurations
must use identical processors. Both processors use the same Instruction Set Architecture (ISA).

This means that code optimized for one processor will run without modification on the other.

Despite the compatible ISA, the processors are physically different using a manufacturing process
focused on increased density for both the CPU core and the physical cache. The L1 and L2 caches
have the same capacity. The L3 cache capacity per core is half the capacity of the AMD EPYC
9005 Series Processors based on Zen5 cores as twice as many cores are placed on each CCD. The
basic CCX structure in both processors is similar but each CCD with Zen5c has 16 cores instead
of 8. While 16 CCDs (with 1 CCX each) with Zen5 cores can be placed in a package, only 12
CCDs with Zen5c cores (each containing 16 cores) can be placed in a package. This increases the
maximum number of cores per socket from 128 cores to 192. Finally, the Thermal Design Points
(TDPs) differ for Zen5c cores, with different frequency scaling limits and generally a lower peak
frequency. While each individual Zen5c core may achieve less peak performance than the Zen5
core, the total peak compute throughput available is higher because of the increased number

of cores.
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The intended use case and workloads determine which processor is superior. The key advantage
of the AMD EPYC 9005 Series Processors based on Zen5c cores is packing more cores within
the same socket. This may benefit cloud or hyperscale environments in that more containers
or virtual machines can use uncontested CPUs for their workloads within the same physical
machine. As a result, physical space in data centers can potentially be reduced. It may also
benefit some HPC workloads that are primarily CPU and memory bound. For example, some
HPC workloads scale to the number of available cores working on data sets that are too large
to fit into a typical cache. For such workloads, the AMD EPYC 9005 Series Processors based on
Zen5c cores may be ideal.

5 Memory and CPU binding

NUMA is a scalable memory architecture for multiprocessor systems that can reduce contention
on a memory channel. A full discussion on tuning for NUMA is beyond the scope for this doc-
ument. But the document “A NUMA API for Linux” at https://halobates.de/numaapi3.pdf 2 pro-
vides a valuable introduction.

The default policy for programs is the “local policy”. A program which calls malloc() or mmap ()
reserves virtual address space but does not immediately allocate physical memory. The physical
memory is allocated the first time the address is accessed by any thread and, if possible, the
memory will be local to the accessing CPU. If the mapping is of a file, the first access may have

occurred at any time in the past so there are no guarantees about locality.

When memory is allocated to a node, it is less likely to move if a thread changes to a CPU on
another node or if multiple programs are remote-accessing the data unless Automatic NUMA
Balancing (NUMAB) is enabled (see Section 7, "Automatic NUMA balancing”). When NUMAB is en-
abled, unbound process accesses are sampled. If there are enough remote accesses, then the data
will be migrated to local memory. This mechanism is not perfect and incurs overhead of its own.
This can be important for performance for thread and process migrations between nodes to be

minimized and for memory placement to be carefully considered and tuned.

The taskset tool is used to set or get the CPU affinity for new or existing processes. An example
usage is to confine a new process to CPUs local to one node. Where possible, local memory will
be used. But if the total required memory is larger than the node, then remote memory can
still be used. In such configurations, it is recommended to size the workload such that it fits in
the node. This avoids that any of the data is being paged out when kswapd wakes to reclaim

memory from the local node.
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numactl controls both memory and CPU policies for processes that it launches and can modify
existing processes. In many respects, the parameters are easier to specify than taskset. For
example, it can bind a task to all CPUs on a specified node instead of having to specify individual
CPUs with taskset. Most importantly, it can set the memory allocation policy without requiring

application awareness.

Using policies, a preferred node can be specified where the task will use that node if memory is
available. This is typically used in combination with binding the task to CPUs on that node. If
a workload’s memory requirements are larger than a single node and predictable performance
is required, then the “interleave” policy will round-robin allocations from allowed nodes. This
gives suboptimal but predictable access latencies to main memory. More importantly, interleav-
ing reduces the probability that the operating system (OS) will need to reclaim any data belong-
ing to a large task.

Further improvements can be made to access latencies by binding a workload to a single CCD
within a node. As L3 caches are shared within a CCD on the 3rd, 4th and 5th Generation AMD
EPYC Processors, binding a workload to a CCD avoids L3 cache misses caused by workload
migration. This is an important difference from the 2nd Generation AMD EPYC Processor which

favored binding within a CCX.

In most respects, the guidance for optimal bindings for cache and nodes remains the same be-
tween the 3rd, 4th and 5th Generation AMD EPYC Processors. However, with SUSE Linux En-
terprise 15 SP6, the necessity to bind specifically to the L3 cache for optimal performance is
relaxed. The CPU scheduler in SUSE Linux Enterprise 15 SP6 has superior knowledge of the
cache topology of all generations of the AMD EPYC Processors and how to balance load between

CPU caches, NUMA nodes and memory channels.

@ Note: CPU Scheduler Awareness of Cache Topology
With SUSE Linux Enterprise 15 SP6 having superior knowledge of the CPU cache topology

and how to balance load, tuning specifically has a smaller impact to performance for a
given workload. This is not a limitation of the operating system. It is a side-effect of the

baseline performance being improved on AMD EPYC Processors in general.

See examples below on how taskset and numactl can be used to start commands bound to
different CPUs depending on the topology.

# Run a command bound to CPU 1
epyc:~ # taskset -c 1 [command]
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# Run a command bound to CPUs belonging to node 0
epyc:~ # taskset -c “cat /sys/devices/system/node/node®/cpulist’ [command]

# Run a command bound to CPUs belonging to nodes 0 and 1
epyc:~ # numactl —cpunodebind=0,1 [command]

# Run a command bound to CPUs that share L3 cache with cpu 1
epyc:~ # taskset -c “cat /sys/devices/system/cpu/cpul/cache/index3/shared cpu list"
[command]

5.1 Tuning for local access without binding

The ability to use local memory where possible and remote memory if necessary is valuable. But
there are cases where it is imperative that local memory always be used. If this is the case, the
first priority is to bind the task to that node. If that is not possible, then the command sysctl
vm.zone_reclaim_mode=1 can be used to aggressively reclaim memory if local memory is not

available.

@ Note: Potential Hazard with vm. zone reclaim mode

While this option is good from a locality perspective, it can incur high costs because of
stalls related to reclaim and the possibility that data from the task will be reclaimed. Treat

this option with a high degree of caution and testing.

5.2 Hazards with CPU binding

There are three major hazards to consider with CPU binding.

The first to watch for is remote memory nodes being used when the process is not allowed to
run on CPUs local to that node. The scenarios when this can occur are outside the scope of
this paper. However, a common reason is an I0-bound thread communicating with a kernel 10
thread on a remote node bound to the IO controller. In such a setup, the data buffers managed
by the application are stored in remote memory incurring an access cost for the IO.

While tasks may be bound to CPUs, the resources they are accessing, such as network or storage
devices, may not have interrupts routed locally. irgbalance generally makes good decisions.
But in cases where the network or IO is extremely high-performance or the application has very
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low latency requirements, it may be necessary to disable irgbalance using systemctl. When
that is done, the IRQs for the target device need to be routed manually to CPUs local to the
target workload for optimal performance.

The second is that guides about CPU binding tend to focus on binding to a single CPU. This
is not always optimal when the task communicates with other threads, as fixed bindings poten-
tially miss an opportunity for the processes to use idle CPUs sharing a common cache. This is
particularly true when dispatching IO, be it to disk or a network interface, where a task may
benefit from being able to migrate close to the related threads. It also applies to pipeline-based
communicating threads for a computational workload. Hence, focus initially on binding to CPUs
sharing L3 cache. Then consider whether to bind based on an L1/L2 cache or a single CPU using

the primary metric of the workload to establish whether the tuning is appropriate.

The final hazard is similar: if many tasks are bound to a smaller set of CPUs, then the subset of

CPUs could be oversaturated even though there is spare CPU capacity available.

5.3 cpusets and memory control groups

cpusets are ideal when multiple workloads must be isolated on a machine in a predictable fashion.
cpusets allow a machine to be partitioned into subsets. These sets may overlap, and in that
case they suffer from similar problems as CPU affinities. In the event there is no overlap, they
can be switched to “exclusive” mode which treats them completely in isolation with relatively
little overhead. Similarly, they are well suited when a primary workload must be protected from
interference because of low-priority tasks. In such cases the low-priority tasks can be placed in a
cpuset. The caveat with cpusets is that the overhead is higher than using scheduler and memory
policies. Ordinarily, the accounting code for cpusets is completely disabled. But when a single

cpuset is created, there is a second layer of checks against scheduler and memory policies.

Similarly, memcg can be used to limit the amount of memory that can be used by a set of process-
es. When the limits are exceeded, the memory will be reclaimed by tasks within memcg directly
without interfering with any other tasks. This is ideal for ensuring there is no inference between
two or more sets of tasks. Similar to cpusets, there is some management overhead incurred.
This means, if tasks can simply be isolated on a NUMA boundary, then this is preferred from a
performance perspective. The major hazard is that, if the limits are exceeded, then the processes

directly stall to reclaim the memory which can incur significant latencies.
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@ Note

Without memcg, when memory gets low, the global reclaim daemon does work in the
background and if it reclaims quickly enough, no stalls are incurred. When using memcg,
observe the allocstall counter in /proc/vmstat as this can detect early if stalling is

a problem.

6 High performance storage devices and interrupt
affinity

High performance storage devices like Non-Volatile Memory Express (NVMe) or Serial Attached
SCSI (SAS) controller are designed to take advantage of parallel IO submission. These devices
typically support a large number of submit and receive queues, which are tied to MSI-X inter-
rupts. Ideally, these devices should provide as many MSI-X vectors as there are CPUs in the
system. To achieve the best performance, each MSI-X vector should be assigned to an individual
CPU.

7 Automatic NUMA balancing

Automatic NUMA Balancing (NUMAB) is a feature that identifies and relocates pages that are
being accessed remotely for applications that are not NUMA-aware. There are cases where it is
impractical or impossible to specify policies. In such cases, the balancing should be sufficient for
throughput-sensitive workloads, but on occasion, NUMAB may be considered hazardous as it
incurs a cost. Under ideal conditions, an application is NUMA aware and uses memory policies
to control what memory is accessed and NUMAB simply ignores such regions. However, even
if an application does not use memory policies, it is possible that the application still accesses
mostly local memory and NUMAB adds overhead confirming that accesses are local which is
an unnecessary cost. For latency-sensitive workloads, the sampling for NUMA balancing may
be too unpredictable and would prefer to incur the remote access cost or interleave memory
instead of using NUMA. The final corner case where NUMA balancing is a hazard happens when
the number of runnable tasks always exceeds the number of CPUs in a single node. In this case,
the load balancer (and potentially affine wakes) may pull tasks away from the preferred node

as identified by NUMAB resulting in excessive sampling and migrations.
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If the workloads can be manually optimized with policies, then consider disabling NUMAB by
specifying numa_balancing=disable on the kernel command line or via sysctl kernel.nu-
ma_balancing. The same applies if it is known that the application is mostly accessing local

memory.

@ Note: Changes to Automatic NUMA Balancing

While a disconnect between CPU Scheduler and NUMA Balancing placement decisions
still potentially exists in SUSE Linux Enterprise 15 SP6 when the machine is heavily over-
loaded, the impact is much reduced relative to previous releases for most scenarios. The
placement decisions made by the CPU Scheduler and NUMA Balancing are now coupled.
Situations where the CPU scheduler and NUMA Balancing make opposing decisions are

relatively rare.

8 Evaluating workloads

The first and foremost step when evaluating how a workload should be tuned is to establish a
primary metric such as latency, throughput, operations per second or elapsed time. When each
tuning step is considered or applied, it is critical that the primary metric be examined before
conducting any further analysis. This is to avoid intensive focus on a relatively wrong bottleneck.
Make sure that the metric is measured multiple times to ensure that the result is reproducible
and reliable within reasonable boundaries. When that is established, analyze how the workload
is using different system resources to determine what area should be the focus. The focus in this
paper is on how CPU and memory is used. But other evaluations may need to consider the IO
subsystem, network subsystem, system call interfaces, external libraries, etc. The methodologies
that can be employed to conduct this are outside the scope of this paper. But the book “Sys-
tems Performance: Enterprise and the Cloud” by Brendan Gregg (see http://www.brendangreg-

g.com/systems-performance-2nd-edition-book.htm! #) is a recommended primer on the subject.

8.1 CPU utilization and saturation

Decisions on whether to bind a workload to a subset of CPUs require that the CPU utilization
and any saturation risk is known. Both the ps and pidstat commands can be used to sample

the number of threads in a system. Typically, pidstat yields more useful information with the
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important exception of the run state. A system may have many threads, but if they are idle,
they are not contributing to utilization. The mpstat command can report the utilization of each
CPU in the system.

High utilization of a small subset of CPUs may be indicative of a single-threaded workload that
is pushing the CPU to the limits and may indicate a bottleneck. Conversely, low utilization may
indicate a task that is not CPU-bound, is idling frequently or is migrating excessively. While each
workload is different, load utilization of CPUs may show a workload that can run on a subset
of CPUs to reduce latencies because of either migrations or remote accesses. When utilization is
high, it is important to determine if the system could be saturated. The vmstat tool reports the
number of runnable tasks waiting for a CPU in the “r” column where any value over 1 indicates
that wakeup latencies may be incurred. While the exact wakeup latency can be calculated using
trace points, knowing that there are tasks queued is an important step. If a system is saturated,

it may be possible to tune the workload to use fewer threads.

Overall, the initial intent should be to use CPUs from as few NUMA nodes as possible to reduce
access latency. However, there are exceptions. The AMD EPYC 9005 Series Processor has a
large number of high-speed memory channels to main memory, so consider the workload thread
activity. If they are cooperating threads or sharing data, isolate them on as few nodes as possible
to minimize cross-node memory accesses. If the threads are completely independent with no
shared data, it may be best to isolate them on a subset of CPUs from each node. This is to
maximize the number of available memory channels and throughput to main memory. For some
computational workloads, it may be possible to use hybrid models such as MPI for parallelization

across nodes and OpenMP for threads within nodes.

@ Note: Updating tuning for AMD EPYC 9005 Series Processor
It is expected that tuning based on the AMD EPYC 7003 Series Processor will also usually

perform optimally on latter series processors including AMD EPYC 9005 series. The main
consideration is to account for potential differences in L3 cache sizes because of AMD
V-Cache if workloads are tuned specifically for cache size. Also, keep in mind that CPU
bindings based on caches may potentially be relaxed on SUSE Linux Enterprise 15 SP6.
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8.2 Transparent Huge Pages

Huge pages are a feature that can improve performance in many cases. This is achieved by
reducing the number of page faults, the cost of translating virtual addresses to physical addresses
because of fewer layers in the page table and being able to cache translations for a larger portion
of memory. Transparent Huge Pages (THP) is supported for private anonymous memory that
automatically backs mappings with huge pages where anonymous memory could be allocated as
heap, malloc (), mmap (MAP_ANONYMOUS), etc. There is also support for using THP pages backed
by tmpfs which can be configured at mount time using the huge= mount option. While the THP

feature has existed for a long time, it has evolved significantly.

Many tuning guides recommend disabling THP because of problems with early implementations.
Specifically, when the machine was running for long enough, the use of THP could incur severe
latencies and could aggressively reclaim memory in certain circumstances. These problems were
resolved by the time SUSE Linux Enterprise Server 15 SP2 was released, and this is still the case
for SUSE Linux Enterprise Server 15 SP6. This means there are no good grounds for automatically
disabling THP because of severe latency issues without measuring the impact. However, there

are exceptions that are worth considering for specific workloads.

Some high-end in-memory databases and other applications aggressively use mprotect() to en-
sure that unprivileged data is never leaked. If these protections are at the base page granularity,
then there may be many THP splits and rebuilds that incur overhead. It can be identified if this
is a potential problem by using strace or perf trace to detect the frequency and granularity
of the system call. If they are high-frequency, consider disabling THP. It can also be sometimes

inferred from observing the thp_split and thp_collapse_alloc counters in /proc/vmstat.

Workloads that sparsely address large mappings may have a higher memory footprint when
using THP. This could result in premature reclaim or fallback to remote nodes. An example
would be HPC workloads operating on large sparse matrices. If memory usage is much higher
than expected, compare memory usage with and without THP to decide if the trade-off is not
worthwhile. This may be critical on AMD EPYC 7003, 9004 and 9005 Series Processor given
that any spillover will congest the Infinity links and potentially cause cores to run at a lower

frequency.
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@ Note: Sparsely addressed memory

This is specific to sparsely addressed memory. A secondary hint for this case may be that
the application primarily uses large mappings with a much higher Virtual Size (VSZ, see
Section 8.4, "Memory utilization and saturation”) than Resident Set Size (RSS). Applications
which densely address memory benefit from the use of THP by achieving greater band-

width to memory.

Parallelized workloads that operate on shared buffers with thread counts exceeding the number
of available CPUs on a single node may experience a slowdown with THP if the granularity
of partitioning is not aligned to the huge page. The problem is that if a large shared buffer
is partitioned on a 4K boundary, then false sharing may occur whereby one thread accesses
a huge page locally and other threads access it remotely. If this situation is encountered, the
granularity of sharing should be increased to the THP size. But if that is not possible, disabling
THP is an option.

Applications that are extremely latency-sensitive or must always perform in a deterministic
fashion can be hindered by THP. While there are fewer faults, the time for each fault is higher
as memory must be allocated and cleared before being visible. The increase in fault times may
be in the microsecond granularity. Ensure this is a relevant problem as it typically only applies
to extremely latency-sensitive applications. The secondary problem is that a kernel daemon
periodically scans a process looking for contiguous regions that can be backed by huge pages.
When creating a huge page, there is a window during which that memory cannot be accessed by
the application and new mappings cannot be created until the operation is complete. This can be
identified as a problem with thread-intensive applications that frequently allocate memory. In
this case, consider effectively disabling khugepaged by setting a large value in /sys/kernel/mm/
transparent hugepage/khugepaged/alloc_sleep millisecs. This will still allow THP to be

used opportunistically while avoiding stalls when calling malloc() or mmap().

THP can be disabled. To do so, specify transparent_hugepage=disable on the kernel com-
mand line, at runtime via /sys/kernel/mm/transparent hugepage/enabled or on a per-
process basis by using a wrapper to execute the workload that calls prctl(PR_SET_TH-
P_DISABLE).
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8.3 User/kernel footprint

Assuming an application is mostly CPU- or memory-bound, it is useful to determine if the foot-
print is primarily in user space or kernel space. This gives a hint where tuning should be focused.
The percentage of CPU time can be measured on a coarse-grained fashion using vmstat or a
fine-grained fashion using mpstat. If an application is mostly spending time in user space, then
the focus should be on tuning the application itself. If the application is spending time in the
kernel, then it should be determined which subsystem dominates. The strace or perf trace
commands can measure the type, frequency and duration of system calls as they are the prima-
ry reasons an application spends time within the kernel. In some cases, an application may be
tuned or modified to reduce the frequency and duration of system calls. In other cases, a profile

is required to identify which portions of the kernel are most relevant as a target for tuning.

8.4 Memory utilization and saturation

The traditional means of measuring memory utilization of a workload is to examine the Virtual
Size (VSZ) and Resident Set Size (RSS). This can be done by using either the ps or pidstat tool.
This is a reasonable first step but is potentially misleading when shared memory is used and
multiple processes are examined. VSZ is simply a measure of memory space reservation and is
not necessarily used. RSS may be double accounted if it is a shared segment between multiple
processes. The file /proc/pid/maps can be used to identify all segments used and whether
they are private or shared. The file /proc/pid/smaps and /proc/pid/smaps rollup reveals
more detailed information including the Proportional Set Size (PSS). PSS is an estimate of RSS
except it is divided between the number of processes mapping that segment, which can give
a more accurate estimate of utilization. Note that the smaps and smaps rollup files are very
expensive to read and should not be monitored at a high frequency. This is especially the case if
workloads are using large amounts of address space, many threads or both. Finally, the Working
Set Size (WSS) is the amount of active memory required to complete computations during an
arbitrary phase of a program’s execution. It is not a value that can be trivially measured. But
conceptually it is useful as the interaction between WSS relative to available memory affects

memory residency and page fault rates.

On NUMA systems, the first saturation point is a node overflow when the “local” policy is in
effect. Given no binding of memory, when a node is filled, a remote node’s memory will be used

transparently and background reclaim will take place on the local node. Two consequences of
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this are that remote access penalties will be used and old memory from the local node will be
reclaimed. If the WSS of the application exceeds the size of a local node, then paging and re-
faults may be incurred.

The first item to identify is whether a remote node overflow occurred, which is accounted for
in /proc/vmstat as the numa_hit, numa_miss, numa_foreign, numa_interleave, numa_local

and numa_other counters:

® numa_hit is incremented when an allocation uses the preferred node where preferred may

be either a local node or one specified by a memory policy.
® numa_miss is incremented when an alternative node is used to satisfy an allocation.

* numa_foreign is rarely useful but is accounted against a node that was preferred. It is a

subtle distinction from numa_miss that is rarely useful.

* numa_interleave is incremented when an interleave policy was used to select allowed

nodes in a round-robin fashion.
* numa_local increments when a local node is used for an allocation regardless of policy.

* numa_other is used when a remote node is used for an allocation regardless of policy.

For the local memory policy, the numa_hit and numa_miss counters are the most important
to pay attention to. An application that is allocating memory that starts incrementing the nu-
ma_miss implies that the first level of saturation has been reached. If monitoring the proc is
undesirable, then the numastat provides the same information. If this is observed on the AMD
EPYC 9005 Series Processor, it may be valuable to bind the application to nodes that represent
dies on a single socket. If the ratio of hits to misses is close to 1, consider an evaluation of the

interleave policy to avoid unnecessary reclaim.

@ Note: NUMA statistics
These NUMA statistics only apply at the time a physical page is allocated and are not

related to the reference behavior of the workload. For example, if a task running on node
0 allocates memory local to node 0, then it will be accounted for as a node_hit in the
statistics. However, if the memory is shared with a task running on node 1, all the accesses
may be remote, which is a miss from the perspective of the hardware but not accounted
for in /proc/vmstat. Detecting remote and local accesses at the hardware level requires
using the hardware’s Performance Monitoring Unit to detect. See perf-mem(1) for further

details.
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When the first saturation point is reached, reclaim will be active. This can be observed by mon-
itoring the pgscan_kswapd and pgsteal_kswapd counters in /proc/vmstat. If this is matched
with an increase in major faults or minor faults, then it may be indicative of severe thrashing.
In this case, the interleave policy should be considered. An ideal tuning option is to identify if
shared memory is the source of the usage. If this is the case, then interleave the shared memory
segments. This can be done in some circumstances using numactl or by modifying the applica-

tion directly.

More severe saturation is observed if the pgscan_direct and pgsteal_direct counters are
also increasing. These counters indicate that the application is stalling while memory is being
reclaimed. If the application was bound to individual nodes, increasing the number of available
nodes will alleviate the pressure. If the application is unbound, it indicates that the WSS of the
workload exceeds all available memory. It can only be alleviated by tuning the application to

use less memory or increasing the amount of RAM available.

A more generalized view of resource pressure for CPU, memory and IO can be measured using
the kernel Pressure Stall Information feature enabled with the command line psi=1. When en-
abled, proc files under /proc/pressure show if some or all active tasks were stalled recently
contending on a resource. This information is not always available in production. But if the in-
formation is available, the memory pressure information may be used to guide whether a deeper
analysis is necessary and which resource is the bottleneck.

As before, whether to use memory nodes from one socket or two sockets depends on the appli-
cation. If the individual processes are independent, either socket can be used. Where possible,
keep communicating processes on the same socket to maximize memory throughput while min-

imizing the socket interconnect traffic.

8.5 Other resources

The analysis of other resources is outside the scope of this paper. However, a common scenario
is that an application is I0-bound. A superficial check can be made using the vmstat tool. This
tool checks what percentage of CPU time is spent idle combined with the number of processes
that are blocked and the values in the bi and bo columns. Similarly, if PSI is enabled, then the
IO pressure file will show whether some or all active tasks are losing time because of lack of
resources. Further analysis is required to determine if an application is IO rather than CPU- or

memory-bound. However, this is a sufficient check to start with.
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9 Power management

Modern CPUs balance power consumption and performance through Performance States (P-
States). Low utilization workloads may use lower P-States to conserve power while still achiev-
ing acceptable performance. When a CPU is idle, lower power idle states (C-States) can be se-
lected to further conserve power. However, this comes with higher exit latencies when lower
power states are selected. It is further complicated by the fact that, if individual cores are idle
and running at low power, the additional power can be used to boost the performance of active
cores. This means this scenario is not a straightforward balance between power consumption
and performance. More complexity is added on the AMD EPYC 7003, 9004 and 9005 Series

Processors whereby spare power may be used to boost either cores or the Infinity links.

The 5th Generation AMD EPYC Processor is capable of making adjustments to voltage and fre-
quency depending on the historical state of the CPU. There is a latency penalty when switching
P-States, but the AMD EPYC 9005 Series Processor is capable of making fine-grained adjustments
to reduce the likelihood that the latency is a bottleneck. On SUSE Linux Enterprise Server 15
SP6, cpufreq subsystem uses the acpi_cpufreq driver by default for AMD EPYC 9005 Series
Processors. However, this may change in the future SUSE Linux Enterprise Server releases as
work is in progress to enableamd-pstate driver for AMD EPYC 9005 Series Processors. cpufreq
subsystem allows P-States to be configured to match requested performance. However, this is
limited in terms of the full capabilities of the hardware. It cannot boost the frequency beyond
the maximum stated frequencies, and if a target is specified, then the highest frequency below
the target will be used. A special case is if the governor is set to performance. In this situation
the hardware will use the highest available frequency in an attempt to work quickly and then
return to idle.

What should be determined is whether power management is likely to be a factor for a work-
load. A single thread workload that is CPU-bound is likely to run at the highest frequency on a
single core. Lastly, a workload that does not communicate heavily with other processes and is
mostly CPU-bound is unlikely to experience any side effects because of power management. The
exceptions are when load balancing moves tasks away from active CPUs if there is a compute

imbalance between NUMA nodes or the machine is heavily overloaded.

The workloads that are most likely to be affected by power management are those that:

¢ synchronously communicate between multiple threads.
¢ idle frequently.

® have low CPU utilization overall.
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It will be further compounded if the threads are sensitive to wakeup latency.

Power management is critical, not only for power savings, but because power saved from idling
inactive cores can be used to boost the performance of active cores. On the other side, low
utilization tasks may take longer to complete if the task is not active long enough for the CPU to
run at a high frequency. In some cases, problems can be avoided by configuring a workload to
use the minimum number of CPUs necessary for its active tasks. Deciding that means monitoring
the power state of CPUs.

The P-State and C-State of each CPU can be examined using the turbostat utility. The computer
output below shows an example, slightly edited to fit the page, where a workload is busy on
CPU 0 and other workloads are idle. A useful exercise is to start a workload and monitor the
output of turbostat paying close attention to CPUs that have moderate utilization and running
at a lower frequency. If the workload is latency-sensitive, it is grounds for either minimizing the

number of CPUs available to the workload or configuring power management.

Pac. Die Core CPU Avg M Busy% Bzy M TSC_ M IPC IRQ POLL C1  C2 POLL% C1% (2%

s = - = 5 0.31 1664 2737 1.36 137633 135 3475 99475 0.00 0.11 101.10
0 0 0 0 88 5.38 1638 2696 1.40 1065 O 1 924 0.00 0.00 94.66
0 0 0 256 202 5.79 3494 2696 2.68 1088 0 9 739 0.00 0.03 94.21
0 0 1 1 12 0.73 1622 2696 1.27 493 0 16 344 0.00 0.69 98.59
0 0 1 257 12 0.81 1506 2696 1.22 936 0 682 0.00 0.03 99.18
0 0 2 2 9 0.58 1505 2696 1.20 506 0 5 361 0.00 0.04 99.40
0 0 2 258 9 0.59 1507 2696 1.39 672 0 489 0.00 0.02 99.41

@ Note: turbostat error: Too many open files

Default value of the number of file descriptors that a process may allocate
(RLIMIT_NOFILE) is set to 1024 on SLE15-SP6. turbostat needs to open 1028 file de-
scriptors on a system with 512 CPUs. Although its possible for an application to increase
the current limit, the version of turbostat that ships with SLE15-SP6 at the time of writ-
ing is not changing this limit. As a result it fails with error open failed: Too many open
files. A fix for this issue is on the way. Meanwhile, turbostat can be run after locally

changing this limit by running the command ulimit -n 1029.

If tuning CPU frequency management is appropriate, the following actions can be taken to set

the management policy to performance using the cpupower utility:
epyc:~# cpupower frequency-set -g performance

Setting cpu: 0
Setting cpu: 1
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Setting cpu: 2

Persisting it across reboots can be done via a local init script, via udev or via one-shot systemd
service file if necessary. Note that turbostat will still show that idling CPUs use a low frequen-
cy. The impact of the policy is that the highest P-State will be used as soon as possible when
the CPU is active. In some cases, a latency bottleneck will occur because of a CPU exiting idle.
If this is identified on the AMD EPYC 9005 Series Processor, restrict the C-state by specifying
processor.max_cstate=2 if lower P-States exist on the kernel command line. This will prevent
CPUs from entering lower C-states. The availability of P-states can be determined with cpupow-
er idle-info. It is expected on the AMD EPYC 9005 Series Processor that the exit latency
from C1 is very low. But by allowing C2, it reduces interference from the idle loop injecting
micro-operations into the pipeline and should be the best state overall. It is also possible to set
the max idle state on individual cores using cpupower idle-set. If SMT is enabled, the idle

state should be set on both siblings.

10 Security mitigation

On occasion, a security fix is applied to a distribution that has a performance impact. The most
notable example is Meltdown and multiple variants of Spectre but includes others such as
ForeShadow (L1TF). The AMD EPYC 9005 Series Processor is immune to the Meltdown variant
and page table isolation is never active. However, it is vulnerable to a subset of Spectre variants
although retbleed is a notable exception. The following table lists all security vulnerabilities
that affect the 5th Generation AMD EPYC Processor. In addition, it specifies which mitigations
are enabled by default for SUSE Linux Enterprise Server 15 SP6.

TABLE 1: SECURITY MITIGATIONS FOR AMD EPYC 9005 SERIES PROCESSORS

Vulnerability Affected Mitigations
ITLB Multihit No N/A
L1TF No N/A
MDS No N/A
Meltdown No N/A
MMIO Stale Data No N/A
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Vulnerability Affected Mitigations

Retbleed No N/A
Speculative Store Bypass Yes prctl and seccomp policy
Spectre v1 Yes usercopy/swapgs barriers

and _ user pointer sanitiza-

tion

Spectre v2 Yes Retpoline, RSB filling, and
conditional IBPB, IBRS FW,
and STIBP

SRBDS No N/A

TSX Async Abort No N/A

Register File Data Sampling  No N/A

(RFDS)

Gather Data Sampling (GDS) No N/A

Speculative Return Stack No N/A

Overflow (SRSO)

If it can be guaranteed that the server is in a trusted environment running only known code
that is not malicious, the mitigations=o0ff parameter can be specified on the kernel command
line. This option disables all security mitigations and may improve performance in some cases.
However, at the time of writing and in most cases, the gain on an AMD EPYC 9005 Series
Processor is marginal when compared to other CPUs. Evaluate carefully whether the gain is

worth the risk and if unsure, leave the mitigations enabled.

11 Hardware-based profiling

The AMD EPYC 9005 Series Processor has extensive Performance Monitoring Unit (PMU) ca-
pabilities. Advanced monitoring of a workload can be conducted via the perf. The command
supports a range of hardware events including cycles, L1 cache access/misses, TLB access/miss-
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es, retired branch instructions and mispredicted branches. To identify what subsystem may be
worth tuning in the OS, the most useful invocation is perf record -a -e cycles sleep
30. This captures 30 seconds of data for the entire system. You can also call perf record -e
cycles command to gather a profile of a given workload. Specific information on the OS can be
gathered through tracepoints or creating probe points with perf or trace-cmd. But the details
on how to conduct such analyses are beyond the scope of this paper.

12 Compiler selection

SUSE Linux Enterprise ships with multiple versions of GCC. SUSE Linux Enterprise 15 SP6 service
packs ship with GCC 7 which at the time of writing is GCC 7.5.0 with the package version
7-3.9.1. The intention is to avoid unintended consequences when porting code that may affect
the building and operation of applications. The GCC 7 development originally started in 2016,
with a branch created in 2017 and GCC 7.5 released in 2019. This means that the system

compiler has no awareness of the AMD EPYC 7002 or later Series processors.

Fortunately, the add-on Developer Tools Module includes additional compilers with the latest
version currently based on GCC 13.2.1. This compiler is capable of generating optimized code
targeted at the 4th Generation AMD EPYC Processor using the znver4 target. It also provides
additional support for OpenMP 5.0, extends the support of OpenMP 5.1 features and very limited
first support of OpenMP 5.2 features. Unlike the system compiler, the major version of GCC
shipped with the Developer Tools Module can change during the lifetime of the product. It is
expected that GCC 14 will be included in future releases for generating optimized code for the
5th Generation AMD EPYC Processor. Unfortunately, at the time of writing, there is not a version
of GCC available optimized for the AMD EPYC 9005 Series Processor specifically.

The OS packages are built against a generic target. However, where applications and benchmarks
can be rebuilt from source, the minimum option should be -march=znver4 for GCC 13 and later

versions of GCC.

Further information on how to install the Developer Tools Module and how to build optimized
versions of applications can be found in the guide Advanced optimization and new capabilities of
GCC 12 (https://documentation.suse.com/sbp/devel-tools/html/SBP-GCC-12/index.html) <.
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13 Candidate workloads

The workloads that will benefit most from the 5th Generation AMD EPYC Processor architecture
are those that can be parallelized and are either memory or I0-bound. This is particularly true
for workloads that are “NUMA friendly”. They can be parallelized, and each thread can operate
independently for most of the workload’s lifetime. For memory-bound workloads, the primary
benefit will be taking advantage of the high bandwidth available on each channel. For I0-bound
workloads, the primary benefit will be realized when there are multiple storage devices, each
of which is connected to the node local to a task issuing IO.

13.1 Testsetup

The following sections will demonstrate how an OpenMP and MPI workload can be configured
and tuned on an AMD EPYC 9005 Series Processor reference platform. The system has two
processors, each with 128 cores and SMT enabled for a total of 256 cores (512 logical CPUs).
The peak bandwidth available to the machine depends on the type of DIMMs installed and how
the DIMM slots are populated. Note that the peak theoretical transfer speed is rarely reached in
practice, given that it can be affected by the mix of reads/writes and the location and temporal

proximity of memory locations accessed.

TABLE 2: TEST SETUP

CPU 2x AMD EPYC 9755

Platform AMD Engineering Sample Platform
Drive Samsung SSD PM9A1 512GB

oS SUSE Linux Enterprise Server 15 SP6
Memory Type 24x 32GB DDRS

Memory Interleaving Channel

Memory Speed 4800 MT/sec

Kernel command line mitigations=off
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13.2 Test workload: STREAM

STREAM is a memory bandwidth benchmark created by Dr. John D. McCalpin from the Univer-
sity of Virginia (for more information, see https://www.cs.virginia.edu/stream/#). It can be used
to measure bandwidth of each cache level and bandwidth to main memory while calculating
four basic vector operations. Each operation can exhibit different throughputs to main memory
depending on the locations and type of access.

The benchmark was configured to run both single-threaded and parallelized with OpenMP to
take advantage of multiple memory controllers. The array of elements for the benchmark was
set at 536,870,912 elements at compile time so that each array was 4096MB in size for a to-
tal memory footprint of approximately 12288 MB. The size was selected in line with the rec-
ommendation from STREAM that the array sizes be at least 4 times the total size of L3 cache
available in the system. Pay special attention to the exact size of the L3 cache if V-Cache is
present. An array-size offset was used so that the separate arrays for each parallelized thread
would not share a Transparent Huge Page. The reason is that NUMA balancing may choose to
migrate shared pages leading to some distortion of the results.

TABLE 3: TEST WORKLOAD: STREAM
Compiler gce-13 (SUSE Linux) 13.2.1

Compiler flags -0fast -march=znver4 -mcmodel=medium
-DOFFSET=512

OpenMP compiler flag -fopenmp

OpenMP environment variables OMP_PROC BIND=SPREAD
OMP_NUM THREADS=32

The march=znver4 is a reflection of the compiler available in SUSE Linux Enterprise 15 SP6 at
the time of writing. It should be checked if a later GCC version is available in the Developer
Tools Module that supported march=znver5. The number of OpenMP threads was selected to
have at least one thread running for every memory channel by having one thread per L3 cache
available. The OMP_PROC_BIND parameter spreads the threads such that one thread is bound to
each available dedicated L3 cache to maximize available bandwidth. This can be verified using

perf, as illustrated below with slight editing for formatting and clarity.

epyc:~ # perf record -e sched:sched migrate task ./stream
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epyc:~ # perf script

stream-nnn x: sched:sched migrate task: comm=stream pid=494780 prio=120
orig cpu=0 dest cpu=8

stream-nnn x: sched:sched migrate task: comm=stream pid=494781 prio=120
orig cpu=0 dest cpu=16

stream-nnn x: sched:sched migrate task: comm=stream pid=494782 prio=120
orig cpu=0 dest cpu=24

stream-nnn x: sched:sched migrate task: comm=stream pid=494783 prio=120
orig cpu=0 dest cpu=32

stream-nnn x: sched:sched migrate task: comm=stream pid=494784 prio=120
orig cpu=0 dest cpu=40

stream-nnn x: sched:sched migrate task: comm=stream pid=494785 prio=120
orig cpu=0 dest cpu=48

stream-nnn x: sched:sched migrate task: comm=stream pid=494786 prio=120
orig cpu=0 dest cpu=56

Several options were considered for the test system that were unnecessary for STREAM running
on the AMD EPYC 9005 Series Processor but may be useful in other situations. STREAM perfor-
mance can be limited if a load/store instruction stalls to fetch data. CPUs may automatically
prefetch data based on historical behavior but it is not guaranteed. In limited cases, depending
on the CPU and workload, this may be addressed by specifying - fprefetch-loop-arrays and
depending on whether the workload is store-intensive, -mprefetchwt1l. However, care must be
taken as an explicitly scheduled prefetch may disable a CPU’s predictive algorithms and degrade
performance. Similarly, for some workloads branch mispredictions can be a major problem,
and in some cases breach mispredictions can be offset against I-Cache pressure by specifying -
funroll-loops. In the case of STREAM on the test system, the CPU accurately predicted the
branches rendering the unrolling of loops unnecessary. For math-intensive workloads it can
be beneficial to link the application with - lmvec depending on the application. In the case of
STREAM, the workload did not use significant math-based operations and so this option was not
used. Some styles of code blocks and loops can also be optimized to use vectored operations by
specifying - ftree-vectorize and explicitly adding support for CPU features such as -mavx2. In
all cases, STREAM does not benefit as its operations are very basic. But it should be considered
on an application-by-application basis and when building support libraries such as numerical
libraries. In all cases, experimentation is recommended but caution advised. This holds partic-
ularly true when considering options like prefetch that may have been advisable on much older
CPUs or completely different workloads. Such options are not universally beneficial or always
suitable for modern CPUs such as the AMD EPYC 9005 Series Processors.

29 Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6



In the case of STREAM running on the AMD EPYC 9005 Series Processor, it was sufficient to
enable -0fast. This includes the -03 optimizations to enable vectorization. In addition, it gives
some leeway for optimizations that increase the code size with additional options for fast math

that may not be standards-compliant.

For OpenMP, the SPREAD option was used to spread the load across L3 caches. OpenMP has
a variety of different placement options if manually tuning placement. But careful attention
should be paid to OMP_PLACES, given the importance of the L3 Cache topology in AMD EPYC
9005 Series Processors, if the operating system does not automatically place tasks appropriately.
At the time of writing, it is not possible to specify 13cache as a place similar to what MPI
has. In this case, the topology will need to be examined either with library support such as
hwloc, directly via the sysfs or manually. While it is possible to guess via the CPUID, it is
not recommended as CPUs may be offlined or the enumeration may vary between platforms
because of BIOS implementations. An example specification of places based on L3 cache for the

test system is:

{0:8,256:8}, {8:8,264:8}, {16:8,272:8}, {24:8,280:8}, {32:8,288:8}, {40:8,296:8},
{48:8,304:8}, {56:8,312:8}, {64:8,320:8}, {72:8,328:8}, {80:8,336:8}, {88:8,344:8},
{96:8,352:8}, {104:8,360:8}, {112:8,368:8}, {120:8,376:8}, {128:8,384:8}, {136:8,392:8},
{144:8,400:8}, {152:8,408:8}, {160:8,416:8}, {168:8,424:8}, {176:8,432:8}, {184:8,440:8},
{192:8,448:8}, {200:8,456:8}, {204:8,464:8}, {216:8,472:8}, {224:8,480:8}, {232:8,488:8},
{240:8,496:8}, {248:8,504:8}

Figure 2, “STREAM Bandwidth, Single Threaded and Parallelized” shows the reported bandwidth for
the single, parallelized and parallelized with proper placement cases. The single-threaded band-
width for the basic Copy vector operation on a single core was 51.3 GB/sec. This is higher than
the theoretical maximum of a single DIMM, but the IO die interleave accesses, and caching
effects and prefetch still apply. The total throughput for each parallel operation with SPREAD
enabled ranged from 600 GB/sec to 700 GB/sec depending on the type of operation and how
efficiently memory bandwidth was used. This is twice as much compared to default placement
by OpenMP. This is very roughly scaling with the number of memory channels available on
the machine.

@ Note: STREAM scores

Higher STREAM scores can be reported by reducing the array sizes so that cache is par-
tially used with the maximum score requiring that each threads memory footprint fits
inside the L1 cache. Additionally, it is possible to achieve results closer to the theoretical

maximum by manual optimization of the STREAM benchmark using vectored instructions

30 Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6



and explicit scheduling of loads and stores. The purpose of this configuration was to il-
lustrate the impact of properly binding a workload that can be fully parallelized with
data-independent threads.
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FIGURE 2: STREAM BANDWIDTH, SINGLE THREADED AND PARALLELIZED

13.3 Test workload: NASA Parallel Benchmark

NASA Parallel Benchmark (NPB) is a small set of compute-intensive kernels designed to evaluate
the performance of supercomputers. They are small compute kernels derived from Computational
Fluid Dynamics (CFD) applications. The problem size can be adjusted for different memory sizes.
Reference implementations exist for both MPI and OpenMP. This setup will focus on the MPI
reference implementation.

While each application behaves differently, one common characteristic is that the workload is
very context-switch intensive, barriers frequently yield the CPU to other tasks and the lifetime of
individual processes can be very short-lived. The following paragraphs detail the tuning selected

for this workload.
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The most basic step is setting the CPU governor to “performance” although it is not mandatory.
This can address issues with short-lived or mobile tasks failing to run long enough for a higher
P-State to be selected even though the workload is very throughput-sensitive. The migration
cost parameter is set to reduce the frequency in which the load balancer will move an individual

task. The minimum granularity is adjusted to reduce overscheduling effects.

Depending on the computational kernel used, the workload may require a power-of-two number
or a square number of processes to be used. However, note that using all available CPUs can
mean that the application can contend with itself for CPU time. Furthermore, as IO may be
issued to shared memory backed by disk, there are system threads that also need CPU time.
Finally, if there is CPU contention, MPI tasks can be stalled waiting on an available CPU and
OpenMPI may yield tasks prematurely if it detects there are more MPI tasks than CPUs available.
These factors should be carefully considered when tuning for parallelized workloads in general

and MPI workloads in particular.

In the specific case of testing NPB on the System Under Test, there was usually a limited advan-
tage to limiting the number of CPUs used. For the Embarrassingly Parallel (EP) load in particular,
it benefits from using all available CPUs. Hence, the default configuration used all available
CPUs (512) which is both a power-of-two and square number of CPUs because it was a sensi-
ble starting point. However, this is not universally true. Using perf, it was found that some
workloads are memory-bound and do not benefit from a high degree of parallelization. In ad-
dition, for the final configuration, some workloads were parallelized to have one task per L3
cache in the system to maximize cache usage. The exception was the Scalar Pentadiagonal (SP)
workload which was both memory-bound and benefited from using all available CPUs. As the
number of cores can vary between chips and the number of populated memory channels, the
tuning parameters used for this test may not be universally true for all AMD EPYC platforms.
This highlights that there is no universal good choice for optimizing a workload for a platform.

Thus, experimentation and validation of tuning parameters is vital.

The basic compilation flags simply turned on all safe optimizations. The tuned flags used -0fast
which can be unsafe for some mathematical workloads but generated the correct output for NPB.
The other flags used the optimal instructions available on the distribution compiler and vector-
ized some operations. GCC 13 is more strict in terms of matching types in Fortran. Depending
on the version of NPB used, it may be necessary to specify the - fallow-argument-mismatch or

-fallow-invalid-boz to compile unless the source code is modified.
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As NPB uses shared files, an XFS partition was used for the temporary files. It is, however, only
used for mapping shared files and is not a critical path for the benchmark and no IO tuning is
necessary. In some cases, with MPI applications, it will be possible to use a tmpfs partition for
OpenMPI. This avoids unnecessary IO assuming the increased physical memory usage does not

cause the application to be paged out.

TABLE 4: TEST WORKLOAD: NASA PARALLEL BENCHMARK

Compiler gcc-13 (SUSE Linux) 13.2.1
OpenMPI openmpi4-4.1.6-150600.1.6.x86_64
Default compiler flags -m64 -03 -mcmodel=large
Default number processes 512

Selective number processes bt=256 ep=512 1u=256 mg=256 sp=256

Fortran compiler flags -fallow-argument-mismatch -fallow-invalid-boz

Tuned compiler flags -0fast -march=znver4 -mtune=znver4 -ftree-vectorize
CPU governor performance cpupower frequency-set -g performance

mpirun parameters -mca btl "openib,udapl -np 512 --bind-to 13cache

mpirun environment TMPDIR=/xfs-data-partition

Figure 3, "NAS MPI Results” shows the time, as reported by the benchmark, for each of the kernels

to complete.
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FIGURE 3: NAS MPI RESULTS

The gcc-7-default test used the system compiler, all available CPUs, basic compilation options
and the performance governor. The second test gcc-13-default used an alternative compiler.
gce-13-tuned used additional compilation options, and bound tasks to L3 caches gaining between
1.5% and 40.6% performance on average relative to gcc-7-default. The final test selective used
processes that either used all CPUs, avoided heavy overloaded or limited processes to one per L3
cache, showing additional between 2.35% and 37.66% depending on the computational kernel.

In some cases, it will be necessary to compile an application that can run on different CPUs. In
such cases, -march=znver4 may not be suitable if it generates binaries that are incompatible
with other vendors. In such cases, it is possible to specify the ISA-specific options that are cross-
compatible with many x86-based CPUs such as -mavx2, -mfma, -msse2 or msse4a while favoring
optimal code generation for AMD EPYC 9005 Series Processors with -mtune=znver4. This can be
used to strike a balance between excellent performance on a single CPU and great performance

on multiple CPUs.
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14 Tuning AMD EPYC 9005 Processors (Zen5c cores)

As the Zen5 and Zen5c cores are ISA-compatible, no code tuning or compiler setting changes
should be necessary. For Cloud environments, partitioning or any binding of Virtual CPUs to
Physical CPUs may need to be adjusted to account for the increased number of cores. The ad-
ditional cores may also allow additional containers or virtual machines to be hosted on the
same physical machine without CPU contention. Similarly, the degree of parallelization for HPC
workloads may need to be adjusted. In cases where the workload is tuned based on the number
of CCD’s, adjustments may be necessary for the changed number of CCDs. An exception are cases
where the workload already hits scaling limits. While tuning based on the different number of
CCXs is possible, it should only be necessary for applications with very strict latency require-
ments. As the size of the cache per core is halved, partitioning based on cache sizes may also
need to be adjusted. In some cases, where workloads are tuned based on the output of tools like

hwloc partitioning may adjust automatically but any static partitioning should be re-examined.

When configuring workloads for AMD EPYC 9005 Series Processors based on either Zen5 for
Zen5c cores, the most important task is to set expectations. While super-linear scaling is possi-
ble, it should not be expected. It may be possible to achieve super-linear scaling in Cloud Envi-
ronments for the number of instances hosted without performance loss if individual containers
or virtual machines are not utilizing 100% of CPU. However, it should be planned carefully
and tested. This would be particularly true in cases where multiple instances are hosted that
have different times of day or year for active phases. The normal expectation is a best case of
33% gain for CPU-intensive workloads because of the increased number of cores. But sub-linear
scaling is common because of resource contention. Contention between SMT siblings, memory
bandwidth, memory availability, memory interconnects, thread communication overhead or pe-
ripheral devices may prevent perfect linear scaling even for perfectly parallelized applications.
Similarly, not all applications can scale perfectly. It is possible for performance to plateau and
even regress as the degree of parallelization increases.

15 Performance Monitoring Unit changes

Support for the following Zen related perf changes are present in SUSE Linux Enterprise 15 SP6:

1. AMD Performance Monitoring V2 (PerfMonV2) (v5.19) Zen4 +
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¢ global registers allowing enabling/disabling of multiple counters concurrently (via

a single MSR operation)
¢ dynamic detection of available PMUs

2. AMD Zen4 IBS extensions (v5.19 kernel, v6.0 perf userspace) Zen4 +

¢ DataSrc extension allowing the source of data to be decoded.
Perf script and perf record (raw trace) will now report DataSrc details for tagged

load/store operations. See perf-amd-ibs(1) for more details.

¢ IBS L3 miss filtering.
Enabled by specifying an 13missonly =1 event parameter to perf. See perf-amd-ibs(1)

for more details.
3. Last Branch Record Extension v2 (LbrExtV2) (v6.1) Zen4 +
® 1LBR Freeze on PMI
e Hardware branch filtering providing additional specificity
¢ Branch speculation information
4. JSON event file updates for Zen 4 (v6.2 perf userspace) Zen4 +

® This adds event information from the "Core Performance Monitor", "L3 Cache Perfor-
mance Monitor", "Fabric Performance Monitor Counter" and "Performance Measure-
ment" sections of the AMD Processor Programming Reference (PPR) documentation
for Zen4.

Please note. Zen5 JSON event updates (perf userspace) were added in Linux v6.10 and will
be supported in a subsequent SLE release. Support for Zen 4 unified memory controller events

(kernel and perf userspace) is expected to be available in a similar timeframe.

16 Using AMD EPYC 9005 Series Processors for
virtualization

Running Virtual Machines (VMs) has some aspects in common with running “regular” tasks on
a host operating system. Therefore, most of the tuning advice described so far in this document

are valid and applicable to this section too.
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However, virtualization workloads do pose their own specific challenges and some special con-
siderations need to be made, to achieve a better tailored and more effective set of tuning advice,
for cases where a server is used only as a virtualization host. And this is especially relevant for

large systems, such as AMD EPYC 9005 Series Processors.

This is because:

¢ VMs typically run longer, and consume more memory, than most of others “regular” OS

processes.

® VMs can be configured to behave either as NUMA-aware or non NUMA-aware “workloads”.

In fact, VMs often run for hours, days, or even months, without being terminated or restarted.
Therefore, it is almost never acceptable to pay the price of suboptimal resource partitioning and
allocation, even when there is the expectation that things will be better next time. For example,
it is always desirable that vCPUs run close to the memory that they are accessing. For reasonably
big NUMA aware VMs, this happens only with proper mapping of the virtual NUMA nodes of
the guest to physical NUMA nodes on the host. For smaller, NUMA-unaware VMs, that means
allocating all their memory on the smallest possible number of host NUMA nodes, and making

their vCPUs run on the pCPUs of those nodes as much as possible.

Also, poor mapping of virtual machine resources (virtual CPUs and memory, but also I0) on
the host topology induces performance degradation to everything that runs inside the virtual
machine — and potentially even to other components of the system .

Regarding NUMA-awareness, a VM is called out to be NUMA aware if a (virtual) NUMA topology
is defined and exposed to the VM itself and if the OS that the VM runs (guest OS) is also NUMA
aware. On the contrary, a VM is called NUMA-unaware if either no (virtual) NUMA topology is
exposed or the guest OS is not NUMA aware.

VMs that are large enough (in terms of amount of memory and number of virtual CPUs) to span
multiple host NUMA nodes, benefit from being configured as NUMA aware VMs. However, even
for small and NUMA-unaware VMs, wise placement of their memory on the host nodes, and
effective mapping of their virtual CPUs (vCPUs) on the host physical CPUs (pCPUs) is key for
achieving good and consistent performance.

This second half of the present document focuses on tuning a system where CPU and memory
intensive workloads run inside VMs. We will explain how to configure and tune both the host

and the VMs, in a way that performance comparable to the ones of the host can be achieved.
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Both the Kernel-based Virtual Machine (KVM) and the Xen-Project hypervisor (Xen), as available
in SUSE Linux Enterprise Server 15 SP6, provide mechanisms to enact this kind of resource
partitioning and allocation. Note that this document focuses on the former (KVM), but it includes

some hints about how to deal with the latter as well.

@ Note: Virtual Machine types

KVM only supports one type of VM - a fully hardware-based virtual machine (HVM).
Under Xen, VMs can be paravirtualized (PV) or hardware virtualized machines (HVM).

Xen HVM guests with paravirtualized interfaces enabled (called PVHVM, or HVM) are
very similar to KVM VMs, which are based on hardware virtualization but also employ
paravirtualized IO (VirtIO). In this document, we always refer to Xen VMs of the (PV)HVM

type.

17 Resources allocation and tuning of the host

No details are given, here, about how to install and configure a system so that it becomes a suit-
able virtualization host. For similar instructions, refer to the SUSE documentation at SUSE Lin-
ux Enterprise Server 15 SP4 Virtualization Guide: Installation of Virtualization Components (https://

documentation.suse.com/sles/15-SP6/html/SLES-all/cha-vt-installation.html) 2.

The same applies to configuring things such as networking and storage, either for the host or for
the VMs. For similar instructions, refer to suitable chapters of OS and virtualization documenta-
tion and manuals. As an example, to know how to assign network interfaces (or ports) to one or
more VMs, for improved network throughput, refer to SUSE Linux Enterprise Server 15 SP6 Virtu-
alization Guide: Assigning a Host PCl Device to a VM Guest (https://documentation.suse.com/sles/15-
SP6/html/SLES-all/cha-libvirt-config-gui.html#sec-libvirt-config-pci) <.

17.1  Allocating resources to the host OS

Even if the main purpose of a server is “limited” to running VMs, some activities will be carried
out on the host OS. In fact, in both Xen and KVM, the host OS is at least responsible for helping
with the IO of the VMs. It may, therefore, be necessary to make sure that the host OS has some

resources (namely, CPUs and memory) exclusively assigned to itself.
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@ Note: Host OS on KVM and on Xen

On KVM, the host OS is the SUSE Linux Enterprise distribution installed on the server,
which then loads the hypervisor kernel modules. On Xen, the host OS still is a SUSE Linux
Enterprise distribution, but it runs inside what is to all the effect an (although special)
Virtual Machine (called Domain 0, or DomO).

In the absence of any specific requirements involving host resources, a good rule of thumb sug-
gests that 5 to 10 percent of the physical RAM should be reserved to the host OS. On KVM,
increase that quota in case the plan is to run many (for example hundreds) of VMs. On Xen,
it is okay to always give domO not more than a few gigabytes of memory. This is especially
the case when planning to take advantage of disaggregation (see https://wiki.xenproject.org/wi-

ki/DomO_Disaggregation #).

In terms of CPUs, depending on the workload, it may be fine to use all the physical CPUs for
the VMs (and this is in fact how the benchmarks in the experimental section of this guide have
been conducted). On the other hand, if it is necessary to keep some CPUs for the host OS /
domO, we advise to reserve at least one physical core on each NUMA node. This is especially
true for a system like the one show in Figure 1, “AMD EPYC 9005 Series Processors based on Zen5
cores Topology”. In fact, host OS activities are mostly related to performing IO for VMs and it
is beneficial for performance if the kernel threads that handle devices can run on the nodes to

which the devices themselves are attached, which is both NUMA nodes, in our case.

System administrators need to be able to reach out and login to the system, to monitor, manage
and troubleshoot it. Therefore, it is possible that even more resources needs to be assigned to the
host OS. This would be for making sure that management tools (for example, the SSH daemon)
can be reached, and that the hypervisor's toolstack (for example, 1ibvirt) can run without too

much contention.

17.1.1  Reserving CPUs and memory for the host on KVM

When using KVM, sparing, for example, 32 cores (that is one full core for each CCX on both
NUMA nodes) and 64 GB of RAM for the host OS is done by stopping creating VMs when the
total number of vCPUs of all VMs has reached 448 (as each core has 2 threads) and when the
total cumulative amount of allocated RAM has reached 690 GB.
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To make sure that these CPUs are not used by the virtual machines and are available to the host,
virtual CPU pinning (discussed later in this document) can be used. There are also other ways
to enforce this, for example with cgroups, or by means of the isolcpus boot parameter, but

these are not covered in details within this guide.

17.1.2 Reserving CPUs and memory for the host on Xen

When using Xen, domO resource allocation needs to be done explicitly at system boot time. For
example, assigning 32 physical cores and 64 GB of RAM to it is done by specifying the following
additional parameters on the hypervisor boot command line (for example, by editing /etc/
defaults/grub, and then updating the boot loader):

dom@ mem=65536M,max:65536M dom@ max_ vcpus=64

The number of vCPUs is 64 because we want DomO to have 32 physical cores, and the AMD
EPYC 9005 Series Processor has Symmetric multithreading (SMT). 65536M memory (that is 64
GB) is specified both as current and as maximum value, to prevent DomO from using ballooning

(see https://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance#Memory 2 ).

Making sure that DomO vCPUs run on specific pCPUs is not strictly necessary. However, if want-
ed, it can be enforced acting on the Xen scheduler, when DomO is booted (as there is current-
ly no mechanism to set up this via Xen boot time parameters). If using the x1 toolstack, the

command is:

xl vcpu-pin 0 <vcpu-ID> <pcpu-list>

Or, with virsh:

virsh vcpupin 0@ -\-vcpu <vcpu-ID> -\-cpulist <pcpu-list>

Note that virsh vcpupin —config ... is not effective for DomO.

If wanting to limit DomO to only a specific (set of) NUMA node(s), the dom@_nodes=<nodeid>
boot command line option can be used. This will affect both memory and vCPUs. In fact, it
means that memory for DomO will be allocated on the specified node(s), and the vCPUs of DomO
will be restricted to run on those same node(s). When the DomO has booted, it is still possible
to use xL vcpu-pin or virsh vcpupin to change where its vCPUs will be scheduled. But the
memory will never be moved from where it has been allocated during boot. On AMD EPYC 9005

Series Processors, using this option is not recommended.
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17.1.3 Reserving CPUs for the host under IO intensive VM workloads

Tuning the host and the VMs for running I0-intensive workloads is out of the scope of this guide.
Just as general advice, if IO done in VM is important, it may be appropriate to leave to the host
OS either one core or one thread for each IO device used by each VM. If this is not possible, for
example because it reduces to much the CPUs that remain available for running VMs (especially
in case the goal is to run many of them), then exploring alternative solutions for handling 10

devices (such as SR-IOV) is recommended.

17.2 (Transparent) Huge Pages

For virtualization workloads, rather than using Transparent Huge Pages (THP) on the host, it is
recommended that 1 GB huge pages are used for the memory of the VMs. This sensibly reduces
both the page table management overhead and the level of resource contention that the system
faces when VMs update their page tables. Moreover, if the host is entirely devoted to running
VMs, Huge Pages are likely not required for host OS processes. Actually, in this case, having
them active on the host may even negatively affect performance, as the THP service daemon
(which is there for merging “regular” pages and form Huge Pages) can interfere with VMs’ vCPUs
execution. For disabling Huge Pages for the host OS, in a KVM setup, add the following host

kernel command-line option:

transparent hugepage=never

Or execute this command, at runtime:

echo never > /sys/kernel/mm/transparent hugepage/enabled

To use 1 GB Huge Pages as backing memory of KVM guests, such pages need to be allocated at
the host OS level. It is best to make that happen by adding the following boot time parameter:

default hugepagesz=1GB hugepagesz=1GB hugepages=<number of hugepages>

The value <number of hugepages> can be computed by taking the amount of memory we want
to devoted to VMs, and dividing it by the page size (1 GB). For example on our host with 754
GB of RAM, creating 672 Huge Pages means we can accommodate up to GB of VMs’ RAM, and
leave plenty (~80GB) to the host OS.

On Xen, none of the above is necessary. In fact, DomO is a paravirtualized guest, for which Huge
Pages support is not present. On the other hand, for the memory used for the hypervisor and
for the memory allocated by the hypervisor for HVM VMs, Huge Pages are always used as much
as possible. So no explicit tuning is needed.
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17.3 Automatic NUMA balancing

On KVM, NUMAB can be useful in dynamic virtualization scenarios, where VMs are created,
destroyed and re-created relatively quickly. Or, in general, it can be useful in cases where it is
not possible or desirable to statically partition the host resources and assign them explicitly to
VMs. This, however, comes at the price of some latency being introduced. Plus, NUMAB’s own
operation can interfere with VMs’ execution and cause further performance degradation. In any
case, this document focuses on achieving the best possible performance for VMs, through specific
tuning and static resource allocation, therefore it is recommended to leave NUMAB turned off.

This can be done by adding the following parameter to the host kernel command line:
numa_balancing=disable

If anything changes and the system is repurposed to achieve different goals, NUMAB can be

enabled on-line with the command:
echo 0 > /proc/sys/kernel/numa_balancing

On Xen, Automatic NUMA Balancing (NUMAB) in the host OS should be disabled. DomO is,
currently, a paravirtualized guest without a (virtual) NUMA topology and, thus, NUMAB would

be totally useless.

17.4 Services, daemons and power management

Service daemons have been discussed already, in the first part of the document. Most of the

consideration done there, applies here as well.

For example, tuned should either not be used, or the profile should be set to one that does not
implicitly put the CPUs in polling mode. Both throughput-performance and virtual-host
profiles from SUSE Linux Enterprise Server 15 SP6 are okay, as neither of them touches /dev/
cpu_dma_latency.

irgbalance can be a source of latency, for no significant performance improvement. The sug-
gestion is again to disable it for latency sensitive workloads. This means, though, that IRQs may

need to be manually bound to the appropriate CPUs, considering the IO topology.

As far as power management is concerned, the cpufreq governor can either be kept as it is by

default, or switched to performance, depending on the nature of the workloads of interest.
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@ Note: Power management

For anything that concerns power management on KVM, changing the tuned profile or
using cpupower, from the host OS will have the effects one can expect, and described
already in the first half of the document. On Xen, CPU frequency scaling is enacted by
the hypervisor. It can be controlled from within DomO, but the tool that needs to be used

is different. For example, for setting governor to performance, we need the following:

xenpm set-scaling-governor performance

17.5 Confidential Computing Technologies (SEV and SEV-ES)

Secure Encrypted Virtualization (SEV) and SEV with Encrypted State (SEV-ES) technologies, are
available on the 5th Generation AMD EPYC Processors and supported on SUSE Linux Enterprise
Server 15 SP6. They allow the memory of the VMs to be encrypted, enabling a high level of
confidentiality. SEV-ES is considered superior to plain SEV, as also CPU registers are encrypted
when they are saved into the host memory. For using SEV-ES for a VM, we need to enable it
in the VM’s own configuration file, but there are preparation steps that needs to occur at the

host level.

The libvirt documentation contains all the necessary steps required for enabling SEV-ES on a
host that supports it. It has been enough to add the following boot parameters to the host kernel

command line, in the boot loader:
mem_encrypt=on kvm amd.sev=1

For further details, refer to libvirt documentation: Enabling SEV on the host (https:/lib-

virt.org/kbase/launch_security_sev.html#Host) #.

It should be noted that, at least as far as the workload analyzed in this document, enabling SEV-
ES on the host has not caused any noticeable performance degradation. In fact, running CPU
and memory intensive workloads, both on the host and in VMs, with or without the parameters
above, resulted in indistinguishable results. Therefore, enabling SEV-ES at the host level can be
considered safe, from the point of view of not hurting performance of VMs and of workloads

that will not take advantage of VM memory encryption.

On the other hand, what happens when SEV and SEV-ES are used for encrypting VMs' memory
is described later in the guide.
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@ Note: SEV-SNP

5th Generation AMD EPYC Processors come with an even more advanced confidential
computing feature, known as SNP, that is also able to guarantee (among other things) the
integrity of the VM. Such feature, however, is not officially available and supported on
SUSE Linux Enterprise Server 15 SP6, and is therefore not discussed any further in this

document (although it is, actually, already usable via an experimental module).

@ Note: Encryption on Xen
In SUSE Linux Enterprise Server 15 SP6, neither SEV nor SEV-ES (not to mention SNP)

are available on Xen.

18 Resources allocation and tuning of VMs

For instructions on how to create an initial VM configuration, start the VM, and install a guest OS,
refer to the SUSE documentation at SUSE Linux Enterprise Server 15 SP6 Virtualization Guide: Guest

Installation (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-kvm-inst.html) <.

From a VM configuration perspective, the two most important factors for achieving top perfor-

mance on CPU and memory bound workloads are:

1. Partitioning of host resources and placement of the VMs

2. Enlightenment of the VMs about their virtual topology

For example, if there are two VMs, each one should be run on one socket, to minimize CPU
contention and maximize and memory access parallelism. Also, and especially if the VMs are
big enough, they should be made aware of their own virtual topology. That way, all the tuning
actions described in the first part of this document become applicable to the workloads running
inside the VMs too.

18.1 Placement of VMs

When a VM is created, memory is allocated on the host to act as its virtual RAM. Moving this
memory, for example on a different NUMA node from the one where it is first allocated, incurs
(when possible) in a significant performance impact. Therefore, it is of paramount importance
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that the initial placement of the VMs is as optimal as possible. Both Xen and KVM can make
“educated guesses” on what a good placement might be. For the purpose of this document,
however, we are interested in what is the absolute best possible initial placement of the VMs,
taking into account the specific characteristics of AMD EPYC 9005 Series Processor systems.
And this can only be achieved by manually doing the initial placement. Of course, this comes

at the price of reduced flexibility, and is only possible when there is no oversubscription.

Deciding on what pCPUs the vCPUs of a VM run, can be done at creation time, but also easily
changed along the VM lifecycle. It is, however, still recommended to start the VMs with good
vCPUs placement. This is particularly important on Xen, where vCPU placement is what actually

drives and controls memory placement.

Placement of VM memory on host NUMA nodes happens by means of the <numatune> XML
element:

<numatune>
<memory mode='strict' nodeset='0-1'/>
<memnode cellid='0"' mode='strict' nodeset='0'/>
<memnode cellid='1l' mode='strict' nodeset='1l'/>

</numatune>

The 'strict' guarantees that the all memory for the VM will come only from the (set of) NUMA
node(s) specified in nodeset. A cell is, in fact, a virtual NUMA node, with cellid being its ID
and nodeset telling exactly from what host physical NUMA node(s) the memory for this virtual

node should be allocated.

The correctness of this kind of tuning can be verified checking on which NUMA node(s) the
memory of the QEMU processes representing the VMs have been allocated on, by using the
numastat tool (on the host) like this:

host:~ # numastat -p gemu-system-x86 64
Per-node process memory usage (in MBs) for PID 53153 (gemu-system-x86)

Node 0 Node 1 Total
Huge 344064 .00 344064 .00 688128.00
Heap 0.00 150.57 150.57
Stack 0.00 0.13 0.13
Private 149.59 4522 .84 4672.43
Total 344213.59 348737 .54 692951.12

In fact, we see that there is only 1 QEMU process (as there is only 1 VM running) and its memory
footprint has been equally split between the two NUMA nodes.
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A NUMA-unaware VM can still include this element in its configuration file. It will have only

one <memnode> element, and the output of numastat will look like this:

host:~ # numastat -p gemu-system-x86 64
Per-node process memory usage (in MBs)

PID Node 0 Node 1 Total
184717 (gemu-system-x86) 346040.98 19.30 346060.28
184980 (gemu-system-x86) 19.50 346227.04 346246.54
Total 346060.48 346246.34 692306.82

In this case there are 2 VMs running and their memory have been pretty much entirely allocated
on a single NUMA node: Node 0 for the VM associated to the QEMU process with PID 184717,
and Node 1 for the other one.

A similar, but more complex example is also shown below. There are sixteen VMs, and they
have been evenly distributed between the two nodes:

host:~ # numastat -p gemu-system

Per-node process memory usage (in MBs)

PID Node 0 Node 1 Total
200907 (gemu-system-x86) 43635.53 55.60 43691.13
201027 (gemu-system-x86) 43691.16 55.60 43746.76
201145 (gemu-system-x86) 43712.86 55.60 43768.46
201263 (gemu-system-x86) 43712.64 55.60 43768.24
201380 (gemu-system-x86) 43736.95 55.60 43792.55
201501 (gemu-system-x86) 43754.32 55.60 43809.93
201620 (gemu-system-x86) 43690.27 55.60 43745.87
201737 (gemu-system-x86) 43776.14 55.60 43831.75
201856 (gemu-system-x86) 0.00 43800.09 43800.09
201973 (gemu-system-x86) 0.00 43733.63 43733.63
202090 (gemu-system-x86) 0.00 43765.54 43765.54
202205 (gemu-system-x86) 0.00 43798.21 43798.21
202325 (gemu-system-x86) 0.00 43752.20 43752.20
202450 (gemu-system-x86) 0.00 43759.35 43759.35
202570 (gemu-system-x86) 0.00 43775.38 43775.38
202692 (gemu-system-x86) 0.00 43800.96 43800.96
Total 349709.87 350630.17 700340.04

Placement of vCPUs happens via the <cputune> element, as in the example below:

<vcpu placement='static'>512</vcpu>
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<cputune>
<vcpupin vcpu="0" cpuset="0"/>
<vcpupin vcpu="1" cpuset="256"/>
<vcpupin vcpu="2" cpuset="1"/>
<vcpupin vcpu="3" cpuset="257"/>

<vcpupin vcpu="256" cpuset="128"/>
<vcpupin vcpu="257" cpuset="384"/>
<vcpupin vcpu="258" cpuset="129"/>
<vcpupin vcpu="259" cpuset="385"/>

</cputune>
The value 512 means that the VM has 512 vCPUs. static guarantees that each vCPU will stay on
the pCPU(s) on which it is “pinned” to. The various <vcpupin> elements are where the mapping

between vCPUs and pCPUs is established (vcpu being the vCPU ID and cpuset being either one
or a list of pCPU IDs).

To be able to create VMs with more than 255 vCPUs, the following element should be added

in the <device> section:
<features>

<ioapic driver="gemu"/>
</features>

<devices>
<iommu model='intel'>
<driver intremap='on'/>
</iommu>
</devices>
When pinning vCPUs to pCPUs, adjacent vCPU IDs (like vCPU ID 0 and vCPU ID 1) must be

assigned to host SMT siblings (like, for example, pCPU 4 and pCPU 260, on our test server):

host:~ # cat /sys/devices/system/cpu/cpud/topology/thread siblings list
4,260

In fact, QEMU uses a static SMT sibling CPU ID assignment. This is how we guarantee that

virtual SMT siblings will always execute on actual physical SMT siblings:

vml:~ # cat /sys/devices/system/cpu/cpu8/topology/thread siblings list
8,9
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The following sections give more specific and precise details about placement of vCPUs and
memory for VM of varying sizes, on the reference system for this guide (see Figure 7, "AMD EPYC
9005 Series Processors based on Zen5 cores Topology”. Note that in SUSE Linux Enterprise 15 SP6,
as an enhancement, as compared to previous OS versions, we can actually create VMs as large

as our test host is, that means a VM with 512 virtual CPUs.

18.1.1 Placement of a single large VM

An interesting use case is when “only one” VM is used. Reasons for doing something like that
include security/isolation, flexibility, high availability, and others. In this cases, typically, the

VM is almost as large as the host itself.

Let us, therefore, consider a VM with 512 vCPUs and 672 GB of RAM. Such VM spans multiple
host NUMA nodes and therefore it is recommended to create a virtual NUMA topology for it.

We should create a virtual topology with 2 virtual NUMA nodes (that is, as many as there are
physical NUMA nodes), and split the VM’s memory equally among them. The 672 vCPUs are
assigned to the 2 nodes, 336 on each. This way, if a suitable virtual topology is also provided
to the VM, each of the VM’s vCPUs will access its own memory directly, and use Infinity Fabric
inter-socket links only to reach foreign memory, as it happens on the host. Workloads running
inside the VM can be tuned exactly like they were running on a bare metal 5th Generation AMD

EPYC Processor server.

The following example numactl output comes from a VM configured as explained:

vml:~ # numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 06123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88
89 90 91 92 93 94 95 96 97 98 99 1660 101 102 163 164 105 106 167 168 109 110 111 112 113
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
202 203 204 205 206 207 208 209 216 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
246 247 248 249 250 251 252 253 254 255
node 0 size: 338489 MB
node 0 free: 337385 MB
node 1 cpus: 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
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275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
297 298 299 300 301 302 303 304 305 306 307 3068 309 310 311 312 313 314 315 316 317 318
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

node 1 size: 338432 MB

node 1 free: 337252 MB

node distances:

node 0 1
0: 10 32
1: 32 10

This is analogous to the host topology, also from the point of view of NUMA node distances
(as the libvirt version present in SUSE Linux Enterprise Server 15 SP6 allows us to define
the virtual nodes distance table). The only differences are the APIC IDs of the CPUs and the

amount of memory.
See Section 23, “Appendix A” for a complete VM configuration file.

As said already, full cores must always be used. If possible always fully use CCXes/dies too.
Since each die has 16 CPUs, that means that a VM with 512 vCPUs will use all the 16 CCXes,
on each of the 2 nodes (as 16 x 16 x 2 is indeed 512). So, for example, vCPUs 0 to 15 can be
assigned to Cores L#0 to L#7 (and hence to CPUs P#0 to P#7 and P#256 to P#263), on node
P#0; vCPUs 16 to 31 to Cores L#$8 to L#15, and so on (and the same on node P#1). In fact,

this is what we call coherent 1-to-1 mapping between virtual and physical topologies.

18.1.2 Placement of two large VMs

If wanting to run two VMs, they both can have 256 vCPUs and 336 GB memory each. Therefore,
each one can fit in one of the host's NUMA nodes. This also means that there is no need to define

virtual NUMA nodes in their configuration.

Placing each VM on one node means that workloads running inside each of them will never

need to use inter-socket interconnect.

In this example scenario, numactl output of both VMs looks as follows:

vml:~ # numactl --hardware
available: 1 nodes (0)
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node 0 cpus: 0 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88
89 90 91 92 93 94 95 96 97 98 99 160 101 102 163 164 105 106 167 168 109 110 111 112 113
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
202 203 204 205 206 207 208 209 2160 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
246 247 248 249 250 251 252 253 254 255

node 0 size: 338246 MB

node 0 free: 337317 MB

node distances:

node 0

0: 10

18.1.3 Placement of four to thirty-two medium-size VMs

Following the same principles, we can “split” each node in 2, and have 4 VMs with 128 vCPUs
and up to 168 GB of RAM each. It is also feasible to have 8 VMs with 64 vCPUs and up to 84
GB of RAM each, 16 VMs with 32 vCPUs and 42 GB RAM, or even 32 VMs, all with 16 vCPUs
and 21 GB RAM.

In the first case, each VM will span 8 host dies. In the second and in the third cases, 4 and 2

dies. And in the fourth one, each VM will be pinned to 1 die.

In all these situations, VMs do not need to (and, therefore, should not) be placed across the host
NUMA nodes boundary, and hence they do not need to be NUMA-aware. They still benefit from
having a virtual topology, in terms of cores, threads and dies which matches the resource they

are using (discussed in more details about in the following section).

18.1.4 Placement of many small VMs

If small VMs are the target, VMs with either 8, 4 or 2 vCPUs each can be created and efficiently
allocated on AMD EPYC 9005 Series Processors servers.

VMs with 8 vCPUs “occupies” half a die, and we can have 64 of them. VMs with either 4 or 2
vCPUs will be given 2 and 1 host cores and we can have 128 and 256 of them, respectively. And
this is all possible without the need for any of the VMs to span more than one host NUMA node.
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Of course, in all these cases, VMs are sharing dies, which means VMs will interfere with each
other via the L3 caches. This may or may not be a problem, but there is no way around it, as
soon as more VMs than the number of available dies are necessary. The performance impact of
such sharing should be tolerable, in most cases, for these configurations, but this needs to be
assessed with tests and benchmarks. If that is not the case, then the recommendation is to not go
above 32 VMs. More clever (but also more complex) tuning strategies can be designed, but they
would require further a-priori knowledge of the workload and/or the load profile of the various

VMs, which may not be always available (or can change during the lifecycle of the VMs).

@ Note: Hundreds of VMs with limited RAM size and disk space

When the number of VM increases so much, the limiting factor will become the memory
or the disk. With ~700 GB of RAM available for VMs on our server, we can give only 2
GB of RAM to each of the 256 VMs of the last example above. Of course, this limitation
is only an issue of the system used as reference for this guide. The AMD EPIC 9005 Series

Processor architecture itself can accommodate much more RAM.

In cases when it is enough or desirable to have VMs with only 1 vCPUs, it is recommended to
still not go beyond 256, and assign no less than one full core to each VM. In fact, it should be
avoided to have vCPUs from different VMs running on two siblings threads of the same core.
Such a solution, although functional, is not ideal for all the cases where good and consistent
performance within VMs is a goal (as well as for security concerns, but that is out of the scope
of this guide). What can be done for each VM and for each core is to use one of the two threads
for the actual vCPU, and the other for its IO thread(s), on the host. This solution allows to take
advantage of the full 5th Generation AMD EPYC processing power. However, we advise to check
and verify whether this is a good setup and if it brings performance benefits for the specific

workloads of interest, before committing to it.

18.2 Emulator |0 threads & disaggregation

IO for the VMs is carried out by device emulators running on the host, or by the so-called back-
ends of paravirtualized drivers (also running on the host). Both the IO threads of the emulators
and the back-ends are seen as (either user or kernel) threads by the host OS. As such, they can be
configured to run on specific subsets of the CPUs assigned to the host OS (Dom0’s virtual CPUs,
in the case of Xen). And their placement on such CPUs may have an impact on performance of

VMs, especially on 10 bound workloads.
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For example, a 1 vCPU VM can have its vCPU bound to the one SMT thread of a core, while the
other thread can be assigned to the host, and the IO thread(s) of the VM pinned to it. The idea
behind this is that a common execution pattern for the vCPU is to be idle when the 10 threads

are busy. Hence this setup potentially maximizes the exploitation of hardware resources.

On Xen, there is also the possibility of setting up driver domains. These are special VMs which
act as back-ends of a particular IO device, for one or more VMs. In case they are used, make
sure that they run “close” enough to both the hardware they are providing their abstraction for,

and the VMs that they are servicing.

18.3 Oversubscription of host resources

Oversubscription happens when the demand for some resource is higher than the resource is

physically available. In virtualization, this can happen for CPU and memory.

@ Note: Not covering oversubscribed scenarios

This guide does not cover in great details oversubscribed scenarios. However, given the
large number of CPUs available on an AMD EPYC 9005 Series Processor system and the

huge amount of memory the architecture supports, this is not considered a limitation.

CPU Oversubscription

CPU oversubscription happens when the total cumulative number of vCPUs from all VMs be-
comes higher than 512. Such a situation inevitably introduces latencies, resulting in lower per-
formance compared to when host resources are sufficient. It is, however, impossible to tell a
priori by what extent this happens, at least not without a detailed knowledge of the actual

workload.

If we knew in advance that the load on each vCPU will always stay below 50%, we could assume
that even oversubscribing the host by a factor of 2 (like with ~1024 vCPUs in total, in our case!)
will work well. On the other hand, if we knew that the load that each vCPU tries to impose
on the system is always 100%, creating even 1 vCPUs more than the host has pCPUs can be

considered a misconfiguration.

When oversubscription is necessary, exclusive 1-to-1 vCPU to pCPU assignment may not the
best approach and we need to trust the hypervisor scheduler to handle the situation well. What

can be done, though, is providing such scheduler at least with some “suggestions”, if we have
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enough knowledge about the workload. For example, we can try to help the scheduler avoiding
that all the VMs running CPU intensive workloads end on the same nodes, or avoiding cross-
node VM migrations happening too frequently.

This grouping of VMs on (a set of) nodes can be done with some less strict forms of vCPU pinning
(often called “affinity”), or with other mechanisms. For example, cgroups can be leveraged on a
KVM host, or cpupools on a Xen host. Xen also contains a feature, called soft vCPU affinity, which
can be used together with “traditional” vCPU affinity (also called hard vCPU affinity) as a finer

grained and more powerful way of controlling resource allocation in oversubscribed scenario.

Memory Oversubscription

Memory oversubscription happens when the total cumulative amount of memory used by all
VMs is more than the RAM available on the host. In this case, some of such memory is kept
outside of the RAM (swapped out) when the VMs using it are not running. It is put back in
RAM (swapped in) when these VMs run again. This also has (potentially severe) performance
implications, and is not analyzed in details in here.

On KVM, swapping is handled by Linux virtual memory management and paging code and
mechanism, exactly as it happens for host/bare metal processes. On Xen, this is not supported
unless special technologies (xenpaging or transcendent memory) are employed.

Then there are page sharing and memory ballooning.

Page sharing relies on the principle that, when VMs use memory pages which are identical,
only one copy of them needs to be kept in physical RAM, at least for most of the time. This
is supported on KVM, via a mechanism called Kernel Samepage Merging (KSM). On Xen, this

again require special tools and actions.

Ballooning relies on the idea that VMs do not always use all the memory they are configured
to be able to use. This is supported in both Xen and KVM. However, using it is not ideal for

performance, thus it is not analyzed in any further details in this document.

Oversubscription with a Single VM

This is always considered a misconfiguration. In fact:

® A single VM should never have more vCPUs than the host has pCPUs.

¢ A single VM should never have more memory than the host has physical RAM.
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18.4 Enlightenment of VMs

The term “enlightenment” refers to letting the guest OS know as many details as possible about
the virtual topology of the VM. This is only useful and brings actual performance improvements
only if such topology is properly and effectively mapped on host resources, and if such mapping

is stable and does not change during the life of the VM.

18.4.1  Virtual CPUs model and topology

To ensure the VM has a vCPU topology, use the following:

<cpu mode="host-model" check="none">
<topology sockets="2" dies="16" cores="8" threads="2"/>
<numa>
<cell id="0" cpus="0-255" memory="352321536" unit="KiB">
<distances>
<sibling id="0" value="10"/>
<sibling id="1" value="32"/>
</distances>
</cell>
<cell id="1" cpus="256-511" memory="352321536" unit="KiB">
<distances>
<sibling id="0" value="32"/>
<sibling id="1" value="10"/>
</distances>
</cell>
</numa>
</cpu>

The <topology> element specifies the CPU characteristics. In this case, we are creating vCPUs
which will be seen by the guest OS as being arranged in 2 sockets, each of which has 16 dies,

each of which has 8 cores with 2 threads (that is 16 CPUs). And this is how we match, for the
one big VM, the topology of the host.

Each <cell> element defines one virtual NUMA node, specifying how much memory and which
vCPUs are part of it. The <distances> elements allow us to define a custom virtual NUMA
distance table. Values should be - as it is on actual hardware - an indication of the latency of
accessing the memory of every node from any other. And again we are defining a virtual distance
table which exactly matches the host one, for the one big VM.

CPU model is how the VM is told what type of vCPUs should be “emulated”, for example, what
features and special instructions and extensions will be available. To achieve best performance,
using model="host-passthrough' is often the right choice. However, at least on SUSE Linux
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Enterprise Server 15 SP6, this produces wrong results. In fact, such setting prevents the topol-
ogy - despite it being described correctly in the <topology> element - from being interpreted
correctly, inside the VM. This is visible in the output of the command lscpu:

vml:~ # lscpu

CPU(s): 512

On-line CPU(s) list: 0-511
Vendor ID: AuthenticAMD

Model name: AMD EPYC 9755 128-Core Processor
CPU family: 26
Model: 2
Thread(s) per core: 1
Core(s) per socket: 512
Socket(s): 1

Caches (sum of all):

L1ld: 32 MiB (512 instances)
L1i: 32 MiB (512 instances)
L2 256 MiB (512 instances)
L3: 8 GiB (512 instances)

Both the CPU topology and the cache layout, as seen from inside of the VM, are completely
wrong, and can affect performance of applications running inside the VM. In fact, not only the
sizes of the various cache levels are wrong. It is also the information about which CPUs share

what caches that is completely misconfigured, as shown also here:

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index0/shared cpu list
0

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index1l/shared cpu list
0

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index2/shared cpu list
0

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index3/shared cpu list
0-255

The VM thinks that L1d, L1i and L2 are private of each vCPU, while that is not the case, as they
are shared by the two threads of each core. Even worse, it thinks that L3 is shared across all
the vCPUs of a socket (and that there is only one socket!), which is not true, as it is shared only
among 8 cores (that is 16 vCPUs).

For this reason, the recommendation is to use EPYC-Genoa as the CPU model (as an appropriate
model for 5th Generation AMD EPYC Processors is not yet available) either manually or by using
model="host-model'. This enables a virtual topology inside the VM what is more consistent
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(although not perfectly identical) with the one of the host, and benchmarks show a beneficial
effect on performance coming from that. The output of lscpu with EPYC-Genoa as a model is

shown below:

vml:~ # lscpu

CPU(s): 512

On-line CPU(s) list: 0-511
Vendor ID: AuthenticAMD

Model name: AMD EPYC-Genoa Processor
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 128
Socket(s): 2

Caches (sum of all):

L1ld: 8 MiB (256 instances)
L1i: 8 MiB (256 instances)
L2: 256 MiB (256 instances)
L3: 1 GiB (32 instances)

Of course, now it is the Model name: that is not completely correct. But both the CPU and caches

layout is much more in line with what we wanted to achieve by tuning the VM configuration.

In fact, even if the cache sizes that are slightly off, with regard to the host value. And this is
because they are the values taken from previous generation AMD EPYC Processors architecture
characteristics. But the cache topology and cache level sharing among vCPUs are now correct

(as shown below). And this is far more important for achieving good performance inside the VM.

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index0/shared cpu list
0-1
vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index1l/shared cpu list
0-1
vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index2/shared cpu list
0-1

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index3/shared cpu list
0-15

Note that, to achieve the outcome shown above, it is very important to use the following CPU
topology description string, in the VM configuration:

<topology sockets="2" dies="16" cores="8" threads="2"/>
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In particular, do not omit the dies="16" element, as that is what enables the VM to see its
vCPUs grouped in dies (the CCXes of the host). In fact, using something like this <topology
sockets="2" cores="128" threads="2"/> would result in a correct CPU topology, but the

representation of the cache layout would still be inaccurate, such as:
vml:~ # lscpu

CPU(s): 512

On-line CPU(s) list: 0-511
Vendor ID: AuthenticAMD

Model name: AMD EPYC-Genoa Processor
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 128
Socket(s): 2

Caches (sum of all):

L1ld: 8 MiB (256 instances)
L1i: 8 MiB (256 instances)
L2: 256 MiB (256 instances)
L3: 64 MiB (2 instances)

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index0/shared cpu list
0-1

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index1l/shared cpu list
0-1

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index2/shared cpu list
0-1

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index3/shared cpu list
0-255

As a further example, in case we have two VMs, one for each NUMA node and with 256 vCPUs
each, both are also configured to have 16 dies (but, of course, just 1 socket), like this:

<topology sockets="1" dies="16" cores="8" threads="2"/>
And the topology, from inside each VM, will look as follows:
vml:~ # lscpu

CPU(s): 256

On-line CPU(s) list: 0-255
Vendor ID: AuthenticAMD
Model name: AMD EPYC-Genoa Processor
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CPU family: 25

Model: 17
Thread(s) per core: 2
Core(s) per socket: 128
Socket(s): 1

Caches (sum of all):

L1ld: 4 MiB (128 instances)

L1i: 4 MiB (128 instances)

L2: 128 MiB (128 instances)

L3: 512 MiB (16 instances)
vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index0/shared cpu list
0-1
vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index1l/shared cpu list
0-1

vml:~ # cat /sys/devices/system/cpu/cpu@/cache/index2/shared cpu list
0-1
vml:
0-15

1

# cat /sys/devices/system/cpu/cpu@/cache/index3/shared cpu list

Finally, on SUSE Linux Enterprise Server 15 SP6 it is possible to select the haltpoll CPU-Idle
governor, inside the VM, even if we are using model="host-model' (although, itis only partially
effective, as model="host-passthourgh' would be necessary in order for the VM to be able to

exploit this feature at its full potential).

This is an optimization meant at reducing the number of context switches between the VM and
the host (also known as VMExits), when doing static resource partitioning of the host itself.
For that reason, it is something that we recommend using, although the actual benefit provides

highly depends on the workload running inside of the VM.

For enabling it, just load the kernel module (inside of the VM, of course):

vml:~ # modprobe cpuidle-haltpoll

18.4.2 Memory backing

Memory wise, the VMs must be told to use the Huge Pages that were reserved for them. To
effectively use 1 GB huge pages, the amount of memory each VM is given must be a multiple of
1 GB. Also, KSM should be disabled and we also must ensure that VMs' memory is never going

to be swapped out. This is all achieved as follows:

<memory unit='KiB'>704643072</memory>
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<memoryBacking>
<hugepages>
<page size='l' unit='GiB'/>
</hugepages>
<nosharepages/>
</memoryBacking>

To verify that the appropriate type of memory is being used by the VMs, one can check the
content of /proc/meminfo, with the VMs running, and observe that all the pre-allocated Huge

Pages are actually occupied.

host:~ # cat /proc/meminfo | grep Huge

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages Total: 672
HugePages Free: 0
HugePages Rsvd: 0
HugePages Surp: 0
Hugepagesize: 1048576 kB
Hugetlb: 704643072 kB

@ Note: Huge Pages, shared pages and locked pages on Xen
On Xen, for HVM guests, huge pages are used by default and there is neither any page
sharing nor swapping (at least not in SUSE Linux Enterprise Server 15 SP6). Therefore,

the entire <memoryBacking> element is technically not necessary.

18.4.3 Ballooning

To get the full benefit of Huge Pages, memory ballooning must also be disabled. In fact, if the
ballooning driver is not Huge Pages-aware, using ballooning would end up splitting the pages
in fragments, neutering their (positive) performance impact. Disabling memory ballooning is

done as follows:

<memory unit='KiB'>704643072</memory>
<currentMemory unit='KiB'>704643072</currentMemory>

That is, by specifying in the <currentMemory> the same value already used in the <memory>

element (and never changing the memory size of the VM at runtime).
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18.4.4 (Transparent) Huge Pages

If huge pages are used for allocating the VMs’ memory on the host, they can also be used inside
the VMs, either explicitly, or via THP. Whether that helps performance is workload dependent.
The analysis and the considerations made in the first part of the document about using (T)HP

on bare metal, can also be applied here.

18.4.5 Automatic NUMA balancing

Similarly to THP, if the VM is NUMA-aware, NUMAB can be used inside of it to boost the
performance of most NUMA-unaware workloads running inside the VM itself.

18.4.6 Services and daemons

irgbalance can be a source of latency inside of the VM, because of the way it uses the /proc/
interrupts interface. For workloads that are particularly sensitive to latency, consider disabling
it within the VMs (of course by taking the appropriate alternative measures, like binding IRQs,

if necessary).

18.5 Secure Encrypted Virtualization with Encrypted State

The following documents:

® |ibvirt Documentation: Launch security with AMD SEV (https://libvirt.org/kbase/launch_secu-

rity_sev.html) @

® SUSE Linux Enterprise Server 15 SP4: AMD Secure Encrypted Virtualization (AMD-SEV) Guide

(https://documentation.suse.com/sles/15-SP4/html/SLES-amd-sev/article-amd-sev.html) <

Explain how to configure a VM to use AMD SEV-ES (on an AMD SEV-ES capable and properly

configured host) is not in the scope of this document. Refer to the linked materials for the details.

It is possible to check if the host is properly configured to run SEV-ES VMs with the following

command:
[ 0.000000] SEV-SNP: Memory for the RMP table has not been reserved by BIOS

[ 33.954913] ccp 0000:55:00.5: SEV API:1.55 build:40
[ 33.983047] ccp 0000:55:00.5: SEV API:1.55 build:40
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[ 41.100388] kvm amd: SEV enabled (ASIDs 36 - 1006)
[ 41.106817] kvm_amd: SEV-ES enabled (ASIDs 1 - 35)

Once inside of the VM, this is how one can check whether it is only the memory that is being
encrypted (with SEV):

dmesg | grep SEV
[ 0.069436] AMD Memory Encryption Features active: SEV

Or if we are also fully encrypting the VM state (with SEV-ES):

dmesg | grep SEV
[ 0.069436] AMD Memory Encryption Features active: SEV SEV-ES

SEV and The IOMMU Device

Note that it is not possible to provide a virtual IOMMU device to an encrypted VM. This means
that, for having a functional SEV or SEV-ES VM, we need to remove the iommu element, in the
<device> section of the VM configuration. And since that element is necessary for having more
than 255 vCPUs in the VM, all the experiments conducted with SEV enabled have been done
in VMs with at most 128 vCPUs.

19 Test VM workload: STREAM

The effectiveness of the proposed tuning is demonstrated using the STREAM benchmark.

19.1 Test scenario: One large VM

Figure 4, “STREAM Bandwidth - Bare metal compared with one VM” shows the bandwidth achieved
by STREAM when the benchmark is built in single thread mode ('single') or parallelized with
OpenMP (‘openmp"). For both cases, we compare the results achieved on the host ('BM') and
inside one VM ('VM").
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FIGURE 4: STREAM BANDWIDTH - BARE METAL COMPARED WITH ONE VM

Both the single thread and the parallel results are identical (within 1% difference!) between
bare metal (blue and yellow rectangles) and inside of the VM (orange and green rectangles), for
all the operations (Copy, Scale, Add and Triad) of the benchmark.

This clearly shows how proper tuning allows a single VM running on an AMD EPYC 7005 Series
Processor server to achieve a memory bandwidth that matches the one that we can reach directly
on the host.

@ Note

Inside of the VM, the STREAM benchmark was configured almost identically to what has
been shown already in Section 73.2, “Test workload: STREAM".

Figure 5, “STREAM Bandwidth - Single thread in one VM with different CPU models” and Figure 6, “STREAM
Bandwidth - OpenMP in one VM with different CPU models” show the effect of using different CPU
models for the virtual machine. We see that, as long as a single thread is used, the CPU model

chosen for the VM is completely irrelevant.

On the other hand, the OpenMP run clearly shows some problems when the host-passthrough
CPU model is selected. In fact, since using that model builds a VM with only 2 LLCs (and also
because of the other problems with the cache topology), running STREAM with twice as many
threads as there are LLCs in the system results in the benchmark spawning only 4 of them (yellow
and green rectangles). And this, of course, dramatically reduces the performance. We can also
see that, if we instead manually set the number of threads to the value that we know to be the
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best for this VM (that is 64, dark red and cyan rectangles) performance are restored to how good
we know things can be from Figure 4, “STREAM Bandwidth - Bare metal compared with one VM” (and

from the cpumodel results, see the blue and orange rectangles).

It is also interesting to note that with cpumodel+haltpoll (orange rectangles) we reach the
same performance of the configuration that should theoretically be the absolute best one (cpu-
passthrough+haltpoll (64 threads), cyan rectangle). This means that it is fine to stick with
the former, and it is not worthwhile setting cpupassthrough and coping manually with the
misconfigured cache hierarchy inside of the VM (as that could potentially be much more com-

plicated it has been here for the STREAM benchmark or, sometimes, even impossible).
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FIGURE 5: STREAM BANDWIDTH - SINGLE THREAD IN ONE VM WITH DIFFERENT CPU MODELS
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FIGURE 6: STREAM BANDWIDTH - OPENMP IN ONE VM WITH DIFFERENT CPU MODELS

This situation also confirms the need to always run benchmarks for assessing the performance
of the relevant workloads, on a given platform. In fact, because of specific characteristics of
some components of the virtualization stack available in SUSE Linux Enterprise Server 15 SP4,
the EPYC-Milan (or, equivalently, the host-model) CPU model might be preferable to what it
would have appeared to be the most obvious choice (host-passthrough).

Finally, about the CPUIdle haltpoll governor, it is recommended to enable and make use of it,
although for STREAM (and we can guess also for other, similar, memory intensive benchmarks)

it introduces no significant performance difference.

19.2 Test scenario: Multiple VMs

”

Figure 7, “STREAM Bandwidth - Single, average of the bandwidth achieved among all VMs of each group
and Figure 8, “STREAM Bandwidth - Single, sum of the bandwidth achieved within all VMs of each group”
show what happens when 1, 2, 4, 8, 16 and 32 VMs are used. The former reports the average
bandwidth achieved in each experiments, considering all the VMs involved. For example, the
yellow blue bar (4 VMS) is relative to an experiment where 4 VMs were concurrently running
the STREAM benchmark (in single thread mode) and represents the average of the 4 different
memory bandwidth values, one for each of such VMs. The latter shows something similar, but the
bars represents the cumulative STREAM bandwidth achieved in each experiments, considering
all the VMs involved. For example, the cyan bar (32 VMs) is relative to an experiment where 32
VMs were concurrently running the STREAM benchmark (in single thread mode) and represents
the sum of the 24 different memory bandwidth values, one of each of such VMs.
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FIGURE 7: STREAM BANDWIDTH - SINGLE, AVERAGE OF THE BANDWIDTH ACHIEVED AMONG ALL VMS OF EACH
GROUP
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FIGURE 8: STREAM BANDWIDTH - SINGLE, SUM OF THE BANDWIDTH ACHIEVED WITHIN ALL VMS OF EACH
GROUP

We see in Figure 7, “STREAM Bandwidth - Single, average of the bandwidth achieved among all VMs
of each group” how the single STREAM bandwidth suffers a bit of a decline as more VMs are
packed on the NUMA nodes and, hence, compete for the bandwidth of the memory controllers.
However, Figure 8, "STREAM Bandwidth - Single, sum of the bandwidth achieved within all VMs of each

group” reminds us how the total bandwidth achieved, if we consider all the VMs involved in each
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experiments, actually goes up (and it scales roughly linearly, at least for some of the STREAM
operations), until it reaches the same level that we know (for example, from Figure 4, “STREAM
Bandwidth - Bare metal compared with one VM”) it can touch.

Figure 9, “STREAM Bandwidth - OpenMP, average of the bandwidth achieved among all VMs of each group”
and Figure 10, “STREAM Bandwidth - OpenMP, sum of the bandwidth achieved within all VMs of each
group” show the same, but when the parallel (via OpenMP) version of STREAM is run, inside
of each VM of each experiment.
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FIGURE 9: STREAM BANDWIDTH - OPENMP, AVERAGE OF THE BANDWIDTH ACHIEVED AMONG ALL VMS OF EACH
GROUP
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FIGURE 10: STREAM BANDWIDTH - OPENMP, SUM OF THE BANDWIDTH ACHIEVED WITHIN ALL VMS OF EACH
GROUP
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In Figure 9, “STREAM Bandwidth - OpenMP, average of the bandwidth achieved among all VMs of each
group” we see that performance scales down in a close to linear fashion with the increase of the
number of VMs involved (although, not perfectly linearly for all the type of STREAM operations).
At the same time, Figure 10, “STREAM Bandwidth - OpenMP, sum of the bandwidth achieved within all
VMs of each group” shows how the total cumulative bandwidth of each experiments stays pretty
much always at its top levels, as one would expect. Actually, it even seems that using many
small VMs may make it possible to exploit even better (as compared to what happens when few
large VMs are running) the large memory bandwidth provided by the memory controllers of the
AMD EPYC 9005 Series Processors.

19.3 Test scenario: Secure Encrypted Virtualization

The goal for this test was evaluating the impact on the performance of encrypting the VMs with
SEV and with SEV-ES, when running a memory intensive workload like STREAM.

Considering the case when 4 VMs are concurrently running on the host and are executing the
STREAM benchmark, Figure 11, “STREAM Bandwidth - Single, average bandwidth in 4 VMs when un-
encrypted, encrypted with SEV and with SEV-ES” shows the average bandwidth of the single thread
execution of the benchmark in both such VMs when memory is not encrypted (blue bars), when
memory is encrypted with SEV (orange bar) and with both memory and state are encrypted
with SEV-ES (yellow bar).
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FIGURE 11: STREAM BANDWIDTH - SINGLE, AVERAGE BANDWIDTH IN 4 VMS WHEN UNENCRYPTED, ENCRYPTED
WITH SEV AND WITH SEV-ES
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FIGURE 12: STREAM BANDWIDTH - OPENMP, AVERAGE BANDWIDTH IN 4 VMS WHEN UNENCRYPTED, ENCRYPTED
WITH SEV AND WITH SEV-ES

It is quite evident how both SEV and SEV-ES have a close to nonexistent impact on the perfor-
mance for this workload. Actually, it may even seem that, in the OpenMP case, encrypted VMs

are faster, but we should note how all the results fall within the other ones’ error bars.

20 Test VM workload: NPB

Trying to mach the experimental evaluation done on bare-metal, NPB base workloads have also

been considered.

20.1 Test scenario: One large VM

Figure 13, “NAS Completion Time - bare metal and in one V" shows the results of running the various
NPB workloads on the host and in one VMs. In both cases, the tuning introduced above was

applied (in the latter case, of course, inside of the VM itself).
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FIGURE 13: NAS COMPLETION TIME - BARE METAL AND IN ONE VM

Like for the STREAM case, a properly tuned VM can reach pretty much exactly the performance
of the host.

Figure 14, “STREAM Bandwidth - Single thread in one VM with different CPU models” show again the
impact on the performance of different CPU models.
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FIGURE 14: STREAM BANDWIDTH - SINGLE THREAD IN ONE VM WITH DIFFERENT CPU MODELS
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All the results are very similar and the only benchmark(s) where the cpupassthrough model
seems to have an edge is cg.D (and, but only slightly, sp.D). Therefore, as already said for
STREAM, considering that cpumodel runs show extremely good results, this guide recommends
using it and avoiding the potential issues coming from having an inaccurate topology and a

misleading cache hierarchy representation inside of VMs.

20.2 Test scenario: Two to twelve VMs

Figure 15, “NAS Completion Time - bare metal and 1 to 16 VMs” depicts the same as Figure 13, “NAS
Completion Time - bare metal and in one VM", but for a few more cases, in terms of number of

concurrently running VMs.
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FIGURE 15: NAS COMPLETION TIME - BARE METAL AND 1 TO 16 VMS

We can see how the slowdown is linear (and sometimes even sub-linear) with the number of
the VMs (the only exceptions being lu.D with 16 VMs). And that makes sense considering that
when we increase the number of VMs, each one of them can also have fewer CPUs. This testifies
the effectiveness of the suggested tuning measures, when it comes to guarantee a good level of

isolation among multiple concurrently running VMs on the AMD EPYC 9005 Series Processors.
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20.3 Test scenario: Two VMs with Secure Encrypted Virtualization

Similarly to what has been done with STREAM, we evaluate here the overhead introduced by
SEV and SEV-ES, this time for CPU-bound workloads, and we do that by running the NPB bench-
marks it inside two VMs concurrently that are all either unencrypted, encrypted with SEV or
encrypted with SEV-ES (Figure 16, “NAS Completion Time - Tuned configuration in 2 VM, with and with-
out SEV").
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FIGURE 16: NAS COMPLETION TIME - TUNED CONFIGURATION IN 2 VM, WITH AND WITHOUT SEV

As for the memory-intensive case the overhead introduced by either of the Confidential Com-
puting technologies is found to be really close to zero. In fact, it seems that --at least for the
workloads analyzed in this document-- AMD EPYC 9005 Series Processors can handle SEV and
SEV-ES with even lower overhead than its predecessors.

21 Conclusion

The introduction of the AMD EPYC 9005 Series Processors continues to push the boundaries
of what is possible for memory and I0-bound workloads with significantly higher bandwidth
and an increased number of channels. A properly configured and tuned workload can exceed
the performance of many contemporary off-the-shelf solutions even when fully customized. The
symmetric and balanced nature of the machine makes the task of tuning a workload considerably
easier, given that each partition can have symmetric performance. And this is a property that
can turn out particularly handy in virtualization, as each virtual machine can be assigned to
each one of the partitions.
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With SUSE Linux Enterprise 15 SP6, all the tools to monitor and tune a workload are readily
available. You can extract the maximum performance and reliability running your applications
on the 5th Generation AMD EPYC Processor platform.

22 Resources

For more information, refer to:

* AMD EPYC 9005 Series Architecture Overview (https://www.amd.com/content/dam/amd/
en/documents/epyc-technical-docs/user-guides/58462_amd-epyc-9005-tg-

architecture-overview.pdf2)

® AMD Socket SP5 Power and Performance Optimization Guide for Family 1Ah Models 00h—
OFh and 10h-1Fh (https://devhub.amd.com//wp-content/uploads/Docs/58412_0.78.pdf @)

¢ Optimizing Linux for Dual-Core AMD Opteron Processors (http://www.novell.com/train-
inglocator/partners/amd/4622016.pdf @)

¢ Advanced Optimization and New Capabilities of GCC 12 (https://documenta-
tion.suse.com/sbp/devel-tools/html/SBP-GCC-12/index.html &)

e Advanced Optimization and New Capabilities of GCC 11 (https://documenta-
tion.suse.com/sbp/devel-tools/html/SBP-GCC-11/index.html#)

® Systems Performance: Enterprise and the Cloud by Brendan Gregg 2nd Edition(http://

www.brendangregg.com/systems-performance-2nd-edition-book.html @)

® NASA Parallel Benchmark (https://www.nas.nasa.gov/publications/npb.html.2)

23 Appendix A

Example of a VM configuration file:

<domain type="kvm">
<name>vml</name>
<metadata>
<libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1.0">
<libosinfo:os id="http://suse.com/sle/15.2"/>
</libosinfo:libosinfo>
</metadata>
<memory unit="KiB">209715200</memory>
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https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/user-guides/58462_amd-epyc-9005-tg-architecture-overview.pdf
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<currentMemory unit="KiB">209715200</currentMemory>

<memoryBacking>
<hugepages>

<page size="1048576" unit="KiB"/>

</hugepages>
<nosharepages/>
<locked/>

</memoryBacking>

<vcpu placement="static">256</vcpu>

<cputune>
<vcpupin vcpu="0" cpuset="0"/>
<vcpupin vcpu="1" cpuset="128"/>
<vcpupin vcpu="2" cpuset="1"/>
<vcpupin vcpu="3" cpuset="129"/>
<vcpupin vcpu="4" cpuset="2"/>
<vcpupin vcpu="5" cpuset="130"/>
<vcpupin vcpu="6" cpuset="3"/>
<vcpupin vcpu="7" cpuset="131"/>
<vcpupin vcpu="8" cpuset="4"/>
<vcpupin vcpu="9" cpuset="132"/>
<vcpupin vcpu="10" cpuset="5"/>
<vcpupin vcpu="11" cpuset="133"/>
<vcpupin vcpu="12" cpuset="6"/>
<vcpupin vcpu="13" cpuset="134"/>
<vcpupin vcpu="14" cpuset="7"/>
<vcpupin vcpu="15" cpuset="135"/>
<vcpupin vcpu="16" cpuset="8"/>
<vcpupin vcpu="17" cpuset="136"/>
<vcpupin vcpu="18" cpuset="9"/>
<vcpupin vcpu="19" cpuset="137"/>
<vcpupin vcpu="20" cpuset="10"/>
<vcpupin vcpu="21" cpuset="138"/>
<vcpupin vcpu="22" cpuset="11"/>
<vcpupin vcpu="23" cpuset="139"/>
<vcpupin vcpu="24" cpuset="12"/>
<vcpupin vcpu="25" cpuset="140"/>
<vcpupin vcpu="26" cpuset="13"/>
<vcpupin vcpu="27" cpuset="141"/>
<vcpupin vcpu="28" cpuset="14"/>
<vcpupin vcpu="29" cpuset="142"/>
<vcpupin vcpu="30" cpuset="15"/>
<vcpupin vcpu="31" cpuset="143"/>
<vcpupin vcpu="32" cpuset="16"/>
<vcpupin vcpu="33" cpuset="144"/>
<vcpupin vcpu="34" cpuset="17"/>
<vcpupin vcpu="35" cpuset="145"/>
<vcpupin vcpu="36" cpuset="18"/>
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<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin

vcpu="37"

vcpu="38"
vcpu="39"
vcpu="40"
vcpu="41"
vcpu="42"
vcpu="43"
vcpu="44"
vcpu="45"
vcpu="46"
vcpu="47"
vcpu="48"
vcpu="49"
vcpu="50"
vcpu="51"
vcpu="52"
vcpu="53"
vcpu="54"
vcpu="55"
vcpu="56"
vcpu="57"
vcpu="58"
vcpu="59"
vcpu="60"
vcpu="61"
vcpu="62"
vcpu="63"
vcpu="64"
vcpu="65"
vcpu="66"
vcpu="67"
vcpu="68"
vcpu="69"
vcpu="70"
vcpu="71"
vcpu="72"
vcpu="73"
vcpu="74"
vcpu="75"
vcpu="76"
vcpu="77"
vcpu="78"
vcpu="79"
vcpu="80"
vcpu="81"
vcpu="82"
vcpu="83"
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cpuset="146"/>
cpuset="19"/>
cpuset="147"/>
cpuset="20"/>
cpuset="148"/>
cpuset="21"/>
cpuset="149"/>
cpuset="22"/>
cpuset="150"/>
cpuset="23"/>
cpuset="151"/>
cpuset="24"/>
cpuset="152"/>
cpuset="25"/>
cpuset="153"/>
cpuset="26"/>
cpuset="154"/>
cpuset="27"/>
cpuset="155"/>
cpuset="28"/>
cpuset="156"/>
cpuset="29"/>
cpuset="157"/>
cpuset="30"/>
cpuset="158"/>
cpuset="31"/>
cpuset="159"/>
cpuset="32"/>
cpuset="160"/>
cpuset="33"/>
cpuset="161"/>
cpuset="34"/>
cpuset="162"/>
cpuset="35"/>
cpuset="163"/>
cpuset="36"/>
cpuset="164"/>
cpuset="37"/>
cpuset="165"/>
cpuset="38"/>
cpuset="166"/>
cpuset="39"/>
cpuset="167"/>
cpuset="40"/>
cpuset="168"/>
cpuset="41"/>
cpuset="169"/>
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<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin

vcpu="84"

vcpu="85"
vcpu="86"
vcpu="87"
vcpu="88"
vcpu="89"
vcpu="90"
vcpu="91"
vcpu="92"
vcpu="93"
vcpu="94"
vcpu="95"
vcpu="96"
vcpu="97"
vcpu="98"
vcpu="99"
vcpu="100"
vcpu="101"
vcpu="102"
vcpu="103"
vcpu="104"
vcpu="105"
vcpu="106"
vcpu="107"
vcpu="108"
vcpu="109"
vcpu="110"
vcpu="111"
vcpu="112"
vcpu="113"
vcpu="114"
vcpu="115"
vcpu="116"
vcpu="117"
vcpu="118"
vcpu="119"
vcpu="120"
vcpu="121"
vcpu="122"
vcpu="123"
vcpu="124"
vcpu="125"
vcpu="126"
vcpu="127"
vcpu="128"
vcpu="129"
vcpu="130"
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cpuset="42"/>
cpuset="170"/>
cpuset="43"/>
cpuset="171"/>
cpuset="44"/>
cpuset="172"/>
cpuset="45"/>
cpuset="173"/>
cpuset="46"/>
cpuset="174"/>
cpuset="47"/>
cpuset="175"/>
cpuset="48"/>
cpuset="176"/>
cpuset="49"/>
cpuset="177"/>
cpuset="50"/>
cpuset="178"/>
cpuset="51"/>
cpuset="179"/>
cpuset="52"/>
cpuset="180"/>
cpuset="53"/>
cpuset="181"/>
cpuset="54"/>
cpuset="182"/>
cpuset="55"/>
cpuset="183"/>
cpuset="56"/>
cpuset="184"/>
cpuset="57"/>
cpuset="185"/>
cpuset="58"/>
cpuset="186"/>
cpuset="59"/>
cpuset="187"/>
cpuset="60"/>
cpuset="188"/>
cpuset="61"/>
cpuset="189"/>
cpuset="62"/>
cpuset="190"/>
cpuset="63"/>
cpuset="191"/>
cpuset="64"/>
cpuset="192"/>
cpuset="65"/>
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<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin

vcpu="131"

vcpu="132"
vcpu="133"
vcpu="134"
vcpu="135"
vcpu="136"
vcpu="137"
vcpu="138"
vcpu="139"
vcpu="140"
vcpu="141"
vcpu="142"
vcpu="143"
vcpu="144"
vcpu="145"
vcpu="146"
vcpu="147"
vcpu="148"
vcpu="149"
vcpu="150"
vcpu="151"
vcpu="152"
vcpu="153"
vcpu="154"
vcpu="155"
vcpu="156"
vcpu="157"
vcpu="158"
vcpu="159"
vcpu="160"
vcpu="161"
vcpu="162"
vcpu="163"
vcpu="164"
vcpu="165"
vcpu="166"
vcpu="167"
vcpu="168"
vcpu="169"
vcpu="170"
vcpu="171"
vcpu="172"
vcpu="173"
vcpu="174"
vcpu="175"
vcpu="176"
vcpu="177"
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cpuset="193"/>
cpuset="66"/>
cpuset="194"/>
cpuset="67"/>
cpuset="195"/>
cpuset="68"/>
cpuset="196"/>
cpuset="69"/>
cpuset="197"/>
cpuset="70"/>
cpuset="198"/>
cpuset="71"/>
cpuset="199"/>
cpuset="72"/>
cpuset="200"/>
cpuset="73"/>
cpuset="201"/>
cpuset="74"/>
cpuset="202"/>
cpuset="75"/>
cpuset="203"/>
cpuset="76"/>
cpuset="204"/>
cpuset="77"/>
cpuset="205"/>
cpuset="78"/>
cpuset="206"/>
cpuset="79"/>
cpuset="207"/>
cpuset="80"/>
cpuset="208"/>
cpuset="81"/>
cpuset="209"/>
cpuset="82"/>
cpuset="210"/>
cpuset="83"/>
cpuset="211"/>
cpuset="84"/>
cpuset="212"/>
cpuset="85"/>
cpuset="213"/>
cpuset="86"/>
cpuset="214"/>
cpuset="87"/>
cpuset="215"/>
cpuset="88"/>
cpuset="216"/>
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<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin

vcpu="178"

vcpu="179"
vcpu="180"
vcpu="181"
vcpu="182"
vcpu="183"
vcpu="184"
vcpu="185"
vcpu="186"
vcpu="187"
vcpu="188"
vcpu="189"
vcpu="190"
vcpu="191"
vcpu="192"
vcpu="193"
vcpu="194"
vcpu="195"
vcpu="196"
vcpu="197"
vcpu="198"
vcpu="199"
vcpu="200"
vcpu="201"
vcpu="202"
vcpu="203"
vcpu="204"
vcpu="205"
vcpu="206"
vcpu="207"
vcpu="208"
vcpu="209"
vcpu="210"
vcpu="211"
vcpu="212"
vcpu="213"
vcpu="214"
vcpu="215"
vcpu="216"
vcpu="217"
vcpu="218"
vcpu="219"
vcpu="220"
vcpu="221"
vcpu="222"
vcpu="223"
vcpu="224"
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cpuset="89"/>

cpuset="217"/>
cpuset="90"/>

cpuset="218"/>
cpuset="91"/>

cpuset="219"/>
cpuset="92"/>

cpuset="220"/>
cpuset="93"/>

Ccpuset="221"/>
cpuset="94"/>

cpuset="222"/>
cpuset="95"/>

cpuset="223"/>
cpuset="96"/>

cpuset="224"/>
cpuset="97"/>

cpuset="225"/>
cpuset="98"/>

cpuset="226"/>
cpuset="99"/>

cpuset="227"/>
cpuset="100"/>
cpuset="228"/>
cpuset="101"/>
cpuset="229"/>
cpuset="102"/>
cpuset="230"/>
cpuset="103"/>
cpuset="231"/>
cpuset="104"/>
cpuset="232"/>
cpuset="105"/>
cpuset="233"/>
cpuset="106"/>
cpuset="234"/>
cpuset="107"/>
cpuset="235"/>
cpuset="108"/>
cpuset="236"/>
cpuset="109"/>
cpuset="237"/>
cpuset="110"/>
cpuset="238"/>
cpuset="111"/>
cpuset="239"/>
cpuset="112"/>



<vcpupin vcpu="225" cpuset="240"/>
<vcpupin vcpu="226" cpuset="113"/>
<vcpupin vcpu="227" cpuset="241"/>
<vcpupin vcpu="228" cpuset="114"/>
<vcpupin vcpu="229" cpuset="242"/>
<vcpupin vcpu="230" cpuset="115"/>
<vcpupin vcpu="231" cpuset="243"/>
<vcpupin vcpu="232" cpuset="116"/>
<vcpupin vcpu="233" cpuset="244"/>
<vcpupin vcpu="234" cpuset="117"/>
<vcpupin vcpu="235" cpuset="245"/>
<vcpupin vcpu="236" cpuset="118"/>
<vcpupin vcpu="237" cpuset="246"/>
<vcpupin vcpu="238" cpuset="119"/>
<vcpupin vcpu="239" cpuset="247"/>
<vcpupin vcpu="240" cpuset="120"/>
<vcpupin vcpu="241" cpuset="248"/>
<vcpupin vcpu="242" cpuset="121"/>
<vcpupin vcpu="243" cpuset="249"/>
<vcpupin vcpu="244" cpuset="122"/>
<vcpupin vcpu="245" cpuset="250"/>
<vcpupin vcpu="246" cpuset="123"/>
<vcpupin vcpu="247" cpuset="251"/>
<vcpupin vcpu="248" cpuset="124"/>
<vcpupin vcpu="249" cpuset="252"/>
<vcpupin vcpu="250" cpuset="125"/>
<vcpupin vcpu="251" cpuset="253"/>
<vcpupin vcpu="252" cpuset="126"/>
<vcpupin vcpu="253" cpuset="254"/>
<vcpupin vcpu="254" cpuset="127"/>
<vcpupin vcpu="255" cpuset="255"/>
</cputune>
<numatune>

<memory mode="strict" nodeset="0-1"/>
<memnode cellid="0" mode="strict" nodeset="0"/>
<memnode cellid="1" mode="strict" nodeset="1"/>
</numatune>
<0S>
<type arch="x86_64" machine="pc-q35-4.2">hvm</type>
<loader readonly="yes" type="pflash">/usr/share/qemu/ovmf-x86 64-ms-4m-code.bin</
loader>
<nvram>/var/lib/libvirt/qgemu/nvram/vml VARS.fd</nvram>
<boot dev="hd"/>
</0s>
<features>
<acpi/>
<apic/>
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<pae/>
<vmport state="off"/>
<ioapic driver="qgemu"/>
</features>
<cpu mode="custom" match="exact" check="none">
<model fallback="allow">EPYC</model>
<topology sockets="2" cores="64" threads="2"/>

<numa>
<cell id="0" cpus="0-127" memory="104857600" unit="KiB">
<distances>

<sibling id="0" value="10"/>
<sibling id="1" value="32"/>
</distances>
</cell>
<cell id="1" cpus="128-255" memory="104857600" unit="KiB">
<distances>
<sibling id="0" value="32"/>
<sibling id="1" value="10"/>
</distances>
</cell>
</numa>
</cpu>
<clock offset="utc">
<timer name="rtc" tickpolicy="catchup"/>
<timer name="pit" tickpolicy="delay"/>
<timer name="hpet" present="no"/>
</clock>
<on_poweroff>destroy</on poweroff>
<on_reboot>restart</on reboot>
<on_crash>destroy</on_crash>
<pm>
<suspend-to-mem enabled="no"/>
<suspend-to-disk enabled="no"/>
</pm>
<devices>
<emulator>/usr/bin/gemu-system-x86 64</emulator>
<disk type="file" device="disk">
<driver name="gemu" type="qcow2"/>
<source file="/var/lib/libvirt/images/vml.qcow2"/>
<target dev="vda" bus="virtio"/>
<address type="pci" domain="0x0000" bus="0x05" slot="0x00" function="0x0"/>
</disk>

<interface type="network">
<mac address="52:54:00:16:1e:01"/>
<source network="default"/>
<model type="virtio"/>
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<rom enabled="no"/>
<address type="pci" domain="0x0000" bus="0x01" slot="0x00" function="0x0"/>
</interface>
<serial type="pty">
<target type="isa-serial" port="0">
<model name="isa-serial"/>
</target>
</serial>
<console type="pty">
<target type="serial" port="0"/>
</console>

<graphics type="spice" autoport="yes">
<listen type="address"/>
</graphics>
<video>
<model type="qgx1l" ram="65536" vram="65536" vgamem="16384" heads="1" primary="yes"/>
<address type="pci" domain="0x0000" bus="0x00" slot="0x01" function="0x0"/>
</video>
<memballoon model="virtio">
<address type="pci" domain="0x0000" bus="0x06" slot="0x00" function="0x0"/>
</memballoon>
<rng model="virtio">
<backend model="random">/dev/urandom</backend>
<address type="pci" domain="0x0000" bus="0x08" slot="0x00" function="0x0"/>
</rng>
<iommu model="intel">
<driver intremap="on" eim="on"/>
</iommu>
<vsock model="virtio">
<cid auto="yes"/>
<address type="pci" domain="0x0000" bus="0x07" slot="0x00" function="0x0"/>
</vsock>
</devices>
</domain>
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GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.
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It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add

an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
0. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-

edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original

versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

84 Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6


http://www.gnu.org/copyleft/

	Optimizing Linux for AMD EPYC™ 9005 Series Processors with SUSE Linux Enterprise 15 SP6
	Contents
	1. Overview
	2. AMD EPYC 9005 Series Processor (Zen5 cores) architecture
	3. AMD EPYC 9005 Series Processor (Zen5 cores) topology
	4. AMD EPYC 9005 Series Processors (Zen5c cores)
	5. Memory and CPU binding
	5.1. Tuning for local access without binding
	5.2. Hazards with CPU binding
	5.3. cpusets and memory control groups

	6. High performance storage devices and interrupt affinity
	7. Automatic NUMA balancing
	8. Evaluating workloads
	8.1. CPU utilization and saturation
	8.2. Transparent Huge Pages
	8.3. User/kernel footprint
	8.4. Memory utilization and saturation
	8.5. Other resources

	9. Power management
	10. Security mitigation
	11. Hardware-based profiling
	12. Compiler selection
	13. Candidate workloads
	13.1. Test setup
	13.2. Test workload: STREAM
	13.3. Test workload: NASA Parallel Benchmark

	14. Tuning AMD EPYC 9005 Processors (Zen5c cores)
	15. Performance Monitoring Unit changes
	16. Using AMD EPYC 9005 Series Processors for virtualization
	17. Resources allocation and tuning of the host
	17.1. Allocating resources to the host OS
	17.1.1. Reserving CPUs and memory for the host on KVM
	17.1.2. Reserving CPUs and memory for the host on Xen
	17.1.3. Reserving CPUs for the host under IO intensive VM workloads

	17.2. (Transparent) Huge Pages
	17.3. Automatic NUMA balancing
	17.4. Services, daemons and power management
	17.5. Confidential Computing Technologies (SEV and SEV-ES)

	18. Resources allocation and tuning of VMs
	18.1. Placement of VMs
	18.1.1. Placement of a single large VM
	18.1.2. Placement of two large VMs
	18.1.3. Placement of four to thirty-two medium-size VMs
	18.1.4. Placement of many small VMs

	18.2. Emulator IO threads & disaggregation
	18.3. Oversubscription of host resources
	18.4. Enlightenment of VMs
	18.4.1. Virtual CPUs model and topology
	18.4.2. Memory backing
	18.4.3. Ballooning
	18.4.4. (Transparent) Huge Pages
	18.4.5. Automatic NUMA balancing
	18.4.6. Services and daemons

	18.5. Secure Encrypted Virtualization with Encrypted State

	19. Test VM workload: STREAM
	19.1. Test scenario: One large VM
	19.2. Test scenario: Multiple VMs
	19.3. Test scenario: Secure Encrypted Virtualization

	20. Test VM workload: NPB
	20.1. Test scenario: One large VM
	20.2. Test scenario: Two to twelve VMs
	20.3. Test scenario: Two VMs with Secure Encrypted Virtualization

	21. Conclusion
	22. Resources
	23. Appendix A
	24. Legal notice
	25. GNU Free Documentation License

