EWE SUSE SUSE Best Practices

Tuning & Performance

Optimizing Linux for AMD EPYC with SUSE
Linux Enterprise 12 SP3

SUSE Linux Enterprise 12 SP3
AMD EPYC™ Series Processors

Mel Gorman, Senior Kernel Engineer (SUSE)

Matt Fleming, Senior Performance Engineer (SUSE)

Dario Faggioli, Software Engineer Virtualization Specialist (SUSE)
Martin Jambor, Tool Chain Developer (SUSE)

Brent Hollingsworth, Engineering Manager (AMD)

c®E SUSE

1 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3

The document at hand provides an overview of the AMD* EPYC* architecture and
how computational-intensive workloads can be tuned on SUSE Linux Enterprise
Server 12 SP3.

Disclaimer: Documents published as part of the SUSE Best Practices series have
been contributed voluntarily by SUSE employees and third parties. They are meant
to serve as examples of how particular actions can be performed. They have been
compiled with utmost attention to detail. However, this does not guarantee com-
plete accuracy. SUSE cannot verify that actions described in these documents do
what is claimed or whether actions described have unintended consequences. SUSE
LLG, its affiliates, the authors, and the translators may not be held liable for possi-

ble errors or the consequences thereof.

2 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



10

11

12

13

14

15

16

17

18

Contents

Overview 4

EPYC Architecture 4

EPYC Topology 5

Memory and CPU Binding 8
High-performance Storage Devices and Interrupt Affinity 11
Evaluating Workloads 12

Power Management 18

Security Mitigations 19
Hardware-based Profiling 20
Candidate Workloads 20

Using AMD EPYC for Virtualization 26
Conclusion 48

Resources 49

Glossary 49

Appendix A 50

Legal Notice 54

Legal notice 55

GNU Free Documentation License 56

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



1 Overview

EPYC is the latest generation of the AMD64 System-on-Chip (SoC) processor family. It is based
on the Zen microarchitecture, introduced in 2017, and supports up to 32 cores (64 threads)
and 8 memory channels per socket. At the time of writing, 1-socket and 2-socket models are
available from Original Equipment Manufacturers (OEMs). This document provides an overview
of the EPYC architecture and how computational-intensive workloads can be tuned on SUSE

Linux Enterprise Server 12 SP3.

2 EPYC Architecture

Symmetric multiprocessing (SMP) systems are those that contain two or more physical processing
cores. Each core may have two threads if hyper-threading is enabled, with some resources being
shared between hyper-thread siblings. To minimize access latencies, multiple layers of caches
are used, with each level being larger but with higher access costs. Cores may share different

levels of cache which should be considered when tuning for a workload.

Historically, a single socket contained several cores sharing a hierarchy of caches and memory
channels and multiple sockets were connected via a memory interconnect. Modern configura-
tions may have multiple dies as a Multi-Chip Module (MCM) with one set of interconnects within
the socket and a separate interconnect for each socket. This means that some CPUs and memory
are faster to access than others depending on the “distance”. This should be considered when
tuning for Non-Uniform Memory Architecture (NUMA) as all memory accesses are not necessarily

to local memory incurring a variable access penalty.

EPYC is an MCM design with four dies on each package regardless of thread count. The number
of cores on each die is always symmetric so they are balanced. Each socket has eight memory
channels (two channels per die) with two Dual Inline Memory Modules (DIMMs) allowed per
channel for up to 16 DIMMs per socket. Total capacity is expected to be 2 TB per socket with a
maximum bandwidth of 21.3 GB/sec per channel for a total of 171 GB/sec per socket depending
on the DIMMs selected.

Within the package, the four dies are interconnected with a fully-connected Infinity Fabric. Fully
connected means that one core accessing memory connected to another die will always be one
hop away. The bandwidth of the fabric is 42 GB/sec per link. The link is optimized for low-
power and low-latency. Thus the bandwidth available means that a die accessing memory local
to the socket incurs a smaller access penalty than is normally expected when accessing remote

memory.

4 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Sockets are also connected via Infinity Fabric with four links between each socket connecting
each die on one socket to the peer die on the second socket. Consequently, access distance to
remote memory from a thread will be at most two hops away. The data bandwidth on each of
these links is 38 GB/sec for a total of 152 GB/sec between sockets. At the time of writing, only

two sockets are possible within a single machine.

Power management on the links is careful to minimize the amount of power required. If the
links are idle then the power may be used to boost the frequency of individual cores. Hence,
minimizing access is not only important from a memory access latency point of view, but it also

has an impact on the speed of individual cores.

There are two 10 x16 links per die giving a total of 8 links where links can be used as Infinity
links, PCI EXPRESS* links or a limited number of SATA* links. This allows very large IO con-
figurations and a high degree of flexibility because of having a total of 128 lanes available on
single socket machines. It is important to note that the number of links available is equal in one
socket and two socket configurations. In one socket configurations, all lanes are available for
IO. In two socket configurations, some lanes are used to connect the two sockets together with

the upshot that a one socket configuration does not compromise on the available IO channels.

3 EPYCTopology

Figure 1 below shows the topology of an example machine generated by the 1stopo tool.

5 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



PaciageP#1

Package P20

[ momarosero 16y || [1] [ mowasaserss sron ]
[sesem [ | [se2e [ |
[voee |[uene |[vemw |[uewe |[veme |[esw |[veme || | [ewoe |[vone |[vom |[vome |[vew |[wewe |[eee |[esm |

[voeem |[weome |[vosae [[vepmm | [vasae |[wseae |[ueose |[vecem | [woom | [vssre |[vocew |[weone |[vosem |[ueome | [vocae |[weeam |

[wiowe | [wee | [wew |[wese  |[ v | [vew |[wewe ][ wee ] [wiswe | [vieww | [wewn | [wiowe | [vieww | [wewe | [wowe ][ wiew ]

coerro | [ coreprt coer | [coers | [corrs | [corss | [corepss | [ cowrrr coerro | [ coreprt coerz | [ corerrs coerrt | [coerrs | [coerrs | [corepr

e ||| e | [ e | [ wees ([ eoes Jf] e | [ e [ rorss ] e | [ e |
||| 2 | [ | [ | 5 | | [ | |2

[ ] [ |
[soi2e | [ oo reii2002 [sewe [ |
[ovmm | [aowm |[semm | [womm ][ avwn (2w |[wemm | [aemn ] (oo |[omm |[wemm | [aomm |[aomm | [memm | [mewn ] [aem ]
[eorm | [woomm | [coomm | [ceomm | [soomm | [swowm ] [ceomm ] [oomm ] (oo | [ceemn | [ceer | [ceeom | [seeom ][ wecom | [cevmm ] [cemm ]
[ | [ | [rem | [er | [somm ] [eom ] [ereom ] [crewm ] [rom | [rewm | [mem |[em | [wenm ] [memm ] [creom ] [rem ]
= oo o= o= o= o= oo lex e e ) | [ e [
| e || e e e = el el e ealie)| ealiea
| || el e e e || E=xijiem

[(oserrzgicn ] [owersswram |
[woi2e | [wesm | D | [[ses2 |
[vone |[uone |[veme |[wewe |[veme |[eom |[veme |[wew | [2ooe |[vone |[vom |[vene |[vew |[wome |[vee |[wem |
[weoe | [vesze | [voeee |[veoom |[veoze |[vesem |[veooe |[veee | [vasae | [vesem | [veoom | [weome | [ussom | [veeoe | [veome | [uecan |
[wes |[wese |[vewm |[wese | [viese  |[wewn ][ |[wews | [wese | [viese |[wewn |[wesn |[wesm |[wese | [viee |[ e |
coerrtc | [cowrrir | [corrms | [coprrs | [[conprzo | [cowrrar | [comprz | [‘corerren coerrte | [cowrrtr | [campms | [coprs | [coeprmo | [cowprar | [comrrzz | [‘corerren
= [ oo || [ eures | o ] o | SN | T S I I
oo ]| oo | oo 1] [ (e | oo 1] o || 0 || | (5| | || [
[ romavoserss 1o [ marosepsr w100 |
[woi2e | [wesam | D | [ |
[onm |[uone |[vew [[weme |[esme |[eom |[vene |[wewm | [2oo |[vone |[vom |[wome |[vew |[wem |[wewe |[eem |
[wepe | [vosze | [voeew |[veoom |[veze | [veoem |[veoem |[veea | [vaooe | [veoew | [veoem | [vaome | [vsoom | [veeze | [vaome | [ vecae |
[wew |[wese |[weswm |[wese |[viese  |[wess ][ v |[wews | [wesm | [viese |[weww |[wesn |[wesm |[wesn | [viess |[uese |
cowpras | [cowprzs | [corres | [coprr | [[cowprzs | [cowrras | [comprro | [‘careprar coerrzs | [cowrrzs | [compras | [coeprer | [[coroprn | [cowprzs | [comprso | [‘corepran
[ oo | [ e | ] o N[ eworr N[ evee [ [ euers [ [ eueo ] rure | [ o | e [ woss [ ewes | uoesr I e QY e |
2 ||| B | e [ | ||| 2 | | | [ | |

FIGURE 1: EPYC TOPOLOGY

This tool is part of the hwloc package which is not supported in SUSE Linux Enterprise Server
12 SP3 but can be installed for illustration. The two “packages” correspond to each socket.
The four dies on each socket are clearly visible and each die has a split L3 cache. Optimizing
for computation should focus on co-operating tasks being bound to a die. In this example, the
IO channels are not heavily used but the focus will be CPU and memory-intensive loads. If
optimizing for IO, it is recommended, where possible, that the workload is located on the nodes

local to the IO channel.

The computer output below shows a conventional view of the topology using the numactl tool.
The CPU IDs that map to each node are reported on the “node X cpus:” lines and note the NUMA
distances on the table at the bottom of the computer output. Node 0 and node 1 are a distance
of 16 apart which is the distance between two dies on one socket. The distance between node 0
and node 4 is 32 as they are on separate sockets. The distance is a not a guarantee of the access
latency. However, it is a rule of thumb that accesses between sockets are roughly twice the cost

of accessing another die on the same socket.

epyc:~ # numactl --hardware

6 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



available:

node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node
node

0:

N o o AW NP

0

0
0
1
1
1
2
2
2
B
3
3
4
4
4
5
5
5
6
6
6
7
7
7

8

cpus:
size:
free:
cpus:
size:
free:
cpus:
size:
free:
cpus:
size:
free:
cpus:
size:
free:
cpus:
size:
free:
cpus:
size:
free:
cpus:
size:
free:
distances:

0
10
16
16
16
32
32
32
32

1
16
10
16
16
32
32
32
32

nodes (0-7)
01234567 64 6566 67 6869 70 71

32056
31446

MB
MB

8 910 11 12 13 14 15 72 73 74 75 76 77 78 79

32253
31545
16 17
32253
31776
24 25
32253
29039
32 33
32253
31823
40 41
32253
31565
48 49
32253
32098
56 57
32124
31984

2
16
16
10
16
32
32
32
32

MB
MB
18
MB
MB
26
MB
MB
34
MB
MB
42
MB
MB
50
MB
MB
58
MB
MB

3
16
16
16
10
32
32
32
32

19

27

35

43

51

59

4
32
32
32
32
10
16
16
16

20

28

36

44

52

60

5
32
32
32
32
16
10
16
16

21

29

37

45

53

61

22

30

38

46

54

62

6
32
32
32
32
16
16
10
16

23 80 81 82 83 84 85 86 87

31 88 89 90 91 92 93 94 95

39 96 97 98 99 100 101 102 163

47 104 105 106 107 108 169 110 111

55 112 113 114 115 116 117 118 119

63 120 121 122 123 124 125 126 127

7
32
32
32
32
16
16
16
10

Finally, the cache topology can be discovered in a variety of fashions. While 1stopo can provide

the information, it is not always available. Fortunately, the level, size and ID of CPUs that share

cache can be identified from the files under /sys/devices/system/cpu/cpuN/cache.

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



4 Memory and CPU Binding

NUMA is a scalable memory architecture for multiprocessor systems that can reduce contention
on a memory channel. A full discussion on tuning for NUMA is beyond the scope for this pa-
per. But the document “A NUMA API for Linux” at http://developer.amd.com/wordpress/me-
dia’2012/10/LibNUMA-WP-fv1.pdf # provides a valuable introduction.

The default policy for programs is the “local policy”. A program which calls malloc () or mmap()
reserves virtual address space but does not immediately allocate physical memory. The physical
memory is allocated the first time the address is accessed by any thread and, if possible, the
memory will be local to the accessing CPU. If the mapping is of a file, the first access may have

occurred at any time in the past so there are no guarantees about locality.

Memory allocated to a node is less likely to move if a thread changes to a CPU on another
node or if multiple programs are remote accessing the data, unless Automatic NUMA Balancing
(NUMAB) is enabled. When NUMAB is enabled, unbound process accesses are sampled. If there
are enough remote accesses then the data will be migrated to local memory. This mechanism
is not perfect and incurs overhead of its own. This means it can be important for performance
for thread and process migrations between nodes to be minimized and for memory placement

to be carefully considered and tuned.

The taskset tool is used to set or get the CPU affinity for new or existing processes. An example
use is to confine a new process to CPUs local to one node. Where possible, local memory will
be used. But if the total required memory is larger than the node then remote memory can still
be used. In such configurations, it is recommended to size the workload such that it fits in the
node. This avoids that any of the data is being paged out when kswapd wakes to reclaim memory
from the local node.

numactl controls both memory and CPU policies for processes that it launches and can modify
existing processes. In many respects, the parameters are easier to specify than taskset. For
example, it can bind a task to all CPUs on a specified node instead of having to specify individual
CPUs with taskset. Most importantly, it can set the memory allocation policy without requiring

application awareness.

Using policies, a preferred node can be specified where the task will use that node if memory is
available. This is typically used in combination with binding the task to CPUs on that node. If a
workload's memory requirements are larger than a single node and predictable performance is
required then the “interleave” policy will round-robin allocations from allowed nodes. This gives
sub-optimal but predictable access latencies to main memory. More importantly, interleaving

reduces the probability that the OS will need to reclaim any data belonging to a large task.

8 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf
http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf

Further improvements can be made to access latencies by binding a workload to a single CPU
Complex (CCX) within a node. Since L3 caches are not shared between CCXs, binding a workload

to a CCX avoids L3 cache misses caused by workload migration.

Find examples below on how taskset and numactl can be used to start commands bound to

different CPUs depending on the topology.

# Run a command bound to CPU 1
epyc:~ # taskset -c 1 [command]

# Run a command bound to CPUs belonging to node 0
epyc:~ # taskset -c ‘cat /sys/devices/system/node/noded/cpulist’ [command]

# Run a command bound to CPUs belonging to nodes 0 and 1
epyc:~ # numactl —cpunodebind=0,1 [command]

# Run a command bound to CPUs that share L3 cache with cpu 1
epyc:~ # taskset -c “cat /sys/devices/system/cpu/cpul/cache/index3/shared cpu list"
[command]

4.1 Tuning for Local Access Without Binding

The ability to use local memory where possible and remote memory if necessary is valuable but
there are cases where it is imperative that local memory always be used. If this is the case, the
first priority is to bind the task to that node. If that is not possible then the command sysctl
vm.zone_reclaim_mode=1 can be used to aggressively reclaim memory if local memory is not

available.

@ Note: High Costs

While this option is good from a locality perspective, it can incur high costs because of
stalls related to reclaim and the possibility that data from the task will be reclaimed. Treat

this option with a high degree of caution and testing.

4.2 Hazards with CPU Binding

There are three major hazards to consider with CPU binding.

9 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



The first is to watch for remote memory nodes being used where the process is not allowed to
run on CPUs local to that node. While going more in detail here is outside the scope of this paper,
the most common scenario is an I0-bound thread communicating with a kernel IO thread on a
remote node bound to the IO controller whose accesses are never local. Similarly, the version
of irgbalance shipped with SUSE Linux Enterprise Server 12 SP3 is not necessarily optimal
for EPYC. Thus it is worth considering disabling irgbalance and manually binding IRQs from
storage or network devices to CPUs that are local to the IO channel. Depending on the kernel
version and drivers in use, it may not be possible to manually bind IRQs. For example, some

devices multi-queue support may not permit IRQs affinities to be changed.

The second is that guides about CPU binding tend to focus on binding to a single CPU. This
is not always optimal when the task communicates with other threads as fixed bindings poten-
tially miss an opportunity for the processes to use idle cores sharing an L1 or L2 cache. This
is particularly true when dispatching IO, be it to disk or a network interface where a task may
benefit from being able to migrate close to the related threads. But it also applies to pipeline-
based communicating threads for a computational workload. Hence, focus initially on binding
to CPUs sharing L3 cache and then consider whether to bind based on a L1/L2 cache or a single

CPU using the primary metric of the workload to establish whether the tuning is appropriate.

The final hazard is similar in that if many tasks are bound to a smaller set of CPUs then the

subset of CPUs could be over-saturated even though the machine overall has spare capacity.

4.3 cpusets and Memory Control Groups

cpusets are ideal when multiple workloads must be isolated on a machine in a predictable fashion.
cpusets allow a machine to be partitioned into subsets. These sets may overlap, and in that case
they suffer from similar problems as CPU affinities. If there is no overlap, they can be switched
to “exclusive” mode which treats them completely in isolation with relatively little overhead.
The caveat in doing so is that one overloaded cpuset can be saturated leaving another cpuset
completely idle. Similarly, they are well suited when a primary workload must be protected
from interference because of low-priority tasks in which case the low priority tasks can be placed
in a cpuset. The caveat with cpusets is that the overhead is higher than using scheduler and
memory policies. Ordinarily, the accounting code for cpusets is completely disabled. But when
a single cpuset is created there are additional essential checks that are made when checking

scheduler and memory policies.

10 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Similarly memcg can be used to limit the amount of memory that can be used by a set of processes.
When the limits are exceeded then the memory will be reclaimed by tasks within memcg directly
without interfering with any other tasks. This is ideal for ensuring there is no inference between
two or more sets of tasks. Similar to cpusets, there is some management overhead incurred so
if tasks can simply be isolated on a NUMA boundary then it is preferred from a performance
perspective. The major hazard is that if the limits are exceeded then the processes directly stall

to reclaim the memory which can incur significant latencies.

@ Note

Without memcg, when memory gets low, the global reclaim daemon does work in the
background and if it reclaims quickly enough, no stalls are incurred. When using memcg,
observe the allocstall counter in /proc/vmstat as this can detect early if stalling is

a problem.

5 High-performance Storage Devices and Interrupt
Affinity

High-performance storage devices like Non-Volatile Memory Express (NVMe) or Serial Attached
SCSI (SAS) controller are designed to take advantage of parallel I/O submission. These devices
typically support a large number of submit and receive queues, which are tied to MSI-X inter-
rupts. Ideally these devices should provide as many MSI-X vectors as CPUs are present in the
system. To achieve the best performance each MSI-X vector should be assigned to an individual
CPU.

5.1 Automatic NUMA Balancing

Automatic NUMA Balancing will ignore any task that uses memory policies. If the workloads
can be manually optimized with policies then do so and disable automatic NUMA balancing
by specifying numa_balancing=disable on the kernel command line or via sysctl. There are
many cases where it is impractical or impossible to specify policies in which case the balancing
should be sufficient for throughput-sensitive workloads. For latency sensitive workloads, the
sampling for NUMA balancing may be too high in which case it may be necessary to disable
balancing. The final corner case where NUMA balancing is a hazard is a case where the number

1" Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



of runnable tasks always exceeds the number of CPUs in a single node. In this case, the load
balancer (and potentially affine wakes) will constantly pull tasks away from the preferred node
as identified by automatic NUMA balancing resulting in excessive sampling and CPU migrations.

6 Evaluating Workloads

The first and foremost step when evaluating how a workload should be tuned is to establish
a primary metric such as latency, throughput or elapsed time. When each tuning step is con-
sidered or applied, it is critical that the primary metric be examined before conducting any
further analysis to avoid intensive focus on the wrong bottleneck. Make sure that the metric
is measured multiple times to ensure that the result is reproducible and reliable within reason-
able boundaries. When that is established, analyze how the workload is using different system
resources to determine what area should be the focus. The focus in this paper is on how CPU and
memory is used. But other evaluations may need to consider the IO subsystem, network subsys-
tem, system call interfaces, external libraries etc. The methodologies that can be employed to
conduct this are outside the scope of the paper but the book “Systems Performance: Enterprise
and the Cloud” by Brendan Gregg (see http://www.brendangregg.com/sysperfbook.html2) is a

recommended primer on the subject.

6.1 CPU Utilization and Saturation

Decisions on whether to bind a workload to a subset of CPUs require that the CPU utilization
and any saturation risk is known. Both the ps and pidstat commands can be used to sample
the number of threads in a system. Typically pidstat yields more useful information with the
important exception of the run state. A system may have many threads but if they are idle then
they are not contributing to utilization. The mpstat command can report the utilization of each
CPU in the system.

High utilization of a small subset of CPUs may be indicative of a single-threaded workload that
is pushing the CPU to the limits and may indicate a bottleneck. Conversely, low utilization may
indicate a task that is not CPU-bound, is idling frequently or is migrating excessively. While each
workload is different, load utilization of CPUs may show a workload that can run on a subset
of CPUs to reduce latencies because of either migrations or remote accesses. When utilization is
high, it is important to determine if the system could be saturated. The vmstat tool reports the

number of runnable tasks waiting for CPU in the “r” column where any value over 1 indicates

12 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


http://www.brendangregg.com/sysperfbook.html

that wakeup latencies may be incurred. While the exact wakeup latency can be calculated using
trace points, knowing that there are tasks queued is an important step. If a system is saturated,
it may be possible to tune the workload to use fewer threads.

Overall, the initial intent should be to use CPUs from as few NUMA nodes as possible to reduce
access latency but there are exceptions. EPYC has an exceptional number of high-speed memory
channels to main memory, thus consider the workload thread activity. If they are co-operating
threads or sharing data then isolate them on as few nodes as possible to minimize cross-node
memory accesses. If the threads are completely independent with no shared data, it may be
best to isolate them on a subset of CPUs from each node to maximize the number of available
memory channels and throughput to main memory. For some computational workloads, it may
be possible to use hybrid models such as MPI for parallelization across nodes and using OpenMP
for threads within nodes.

6.2 Transparent Huge Pages

Huge pages are a mechanism by which performance can be improved. This happens by reducing
the number of page faults, the cost of translating virtual addresses to physical addresses because
of fewer layers in the page table and by being able to cache translations for a larger portion
of memory. Transparent Huge Pages (THP) is supported for private anonymous memory that
automatically backs mappings with huge pages where anonymous memory could be allocated
as heap, malloc(), mmap (MAP_ANONYMOUS), etc. While the feature has existed for a long time,
it has evolved significantly.

Many tuning guides recommend disabling THP because of problems with early implementations.
Specifically, when the machine was running for long enough, the use of THP could incur severe
latencies and could aggressively reclaim memory in certain circumstances. These problems have
been resolved by the time SUSE Linux Enterprise Server 12 SP3 was released. This means there
are no good grounds for automatically disabling THP because of severe latency issues without
measuring the impact. However, there are exceptions that may be considered for specific work-
loads.

Some high-end in-memory databases and other applications aggressively use mprotect() to
ensure that unprivileged data is never leaked. If these protections are at the base page granularity
then there may be many THP splits and rebuilds that incur overhead. It can be identified if this
is a potential problem by using strace to detect the frequency and granularity of the system
call. If they are high frequency then consider disabling THP. It can also be sometimes inferred

from observing the thp_split and thp_collapse_alloc counters in /proc/vmstat.

13 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Workloads that sparsely address large mappings may have a higher memory footprint when
using THP. This could result in premature reclaim or fallback to remote nodes. An example
would be HPC workloads operating on large sparse matrices. If memory usage is much higher
than expected then compare memory usage with and without THP to decide if the trade-off is
not worthwhile. This may be critical on EPYC given that any spillover will congest the Infinity
links and potentially cause cores to run at a lower frequency.

@ Note: Sparsely Addressed Memory

This is specific to sparsely addressed memory. A secondary hint for this case may be that
the application primarily uses large mappings with a much higher Virtual Size (VSZ, see
Section 6.1, “CPU Utilization and Saturation”) than Resident Set Size (RSS). Applications which
densely address memory benefit from the use of THP by achieving greater bandwidth

to memory.

Parallelized workloads that operate on shared buffers with threads using more CPUs that are on a
single node may experience a slowdown with THP if the granularity of partitioning is not aligned
to the huge page. The problem is that if a large shared buffer is partitioned on a 4K boundary
then false sharing may occur whereby one thread accesses a huge page locally and other threads
access it remotely. If this situation is encountered, it is preferable that the granularity of sharing

is increased to the THP size. But if that is not possible then disabling THP is an option.

Applications that are extremely latency sensitive or must always perform in a deterministic
fashion can be hindered by THP. While there are fewer faults, the time for each fault is higher as
memory must be allocated and cleared before being visible. The increase in fault times may be
in the microsecond granularity. Ensure this is a relevant problem as it typically only applies to
hard real-time applications. The secondary problem is that a kernel daemon periodically scans
a process looking for contiguous regions that can be backed by huge pages. When creating a
huge page, there is a window during which that memory cannot be accessed by the application
and new mappings cannot be created until the operation is complete. This can be identified
as a problem with thread-intensive applications that frequently allocate memory. In this case
consider effectively disabling khugepaged by setting a large value in /sys/kernel/mm/trans-
parent _hugepage/khugepaged/alloc_sleep millisecs. This will still allow THP to be used
opportunistically while avoiding stalls when calling malloc() or mmap().

14 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



THP can be disabled. To do so, specify transparent_hugepage=disable on the kernel com-
mand line, at runtime via /sys/kernel/mm/transparent hugepage/enabled or on a per
process basis by using a wrapper to execute the workload that calls prctl(PR_SET_TH-
P_DISABLE).

6.3 User/Kernel Footprint

Assuming an application is mostly CPU or memory bound, it is useful to determine if the footprint
is primarily in user space or kernel space. The reason for this is that it gives a hint where tuning
should be focused. The percentage of CPU time can be measured on a coarse-grained fashion
using vmstat or a fine-grained fashion using mpstat. If an application is mostly spending time in
user space then the focus should be on tuning the application itself. If the application is spending
time in the kernel then it should be determined which subsystem dominates. The strace or
perf trace commands can measure the type, frequency and duration of system calls as they are
the primary reasons an application spends time within the kernel. In some cases, an application
may be tuned or modified to reduce the frequency and duration of system calls. In other cases,
a profile is required to identify which portions of the kernel are most relevant as a target for

tuning.

6.4 Memory Utilization and Saturation

The traditional means of measuring memory utilization of a workload is to examine the Virtual
Size (VSZ) and Resident Set Size (RSS) using either the ps or pidstat tool. This is a reasonable
first step but is potentially misleading when shared memory is used and multiple processes are
examined. VSZ is simply a measure of memory space reservation and is not necessarily used. RSS
may be double accounted if it is a shared segment between multiple processes. The file /proc/
pid/maps can be used to identify all segments used and whether they are private or shared.
The file /proc/pid/smaps yields more detailed information including the Proportional Set Size
(PSS). PSS is an estimate of RSS except it is divided between the number of processes mapping
that segment which can give a more accurate estimate of utilization. Note that the smaps file is
very expensive to read and should not be monitored at a high frequency. Finally, the Working
Set Size (WSS) is the amount of memory active required to complete computations during an
arbitrary phase of a programs execution. It is not a value that can be trivially measured. But
conceptually it is useful as the interaction between WSS relative to available memory affects
memory residency and page fault rates.

15 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



On NUMA systems, the first saturation point is a node overflow when the “local” policy is in
effect. Given no binding of memory, when a node is filled, a remote node’s memory will be
used transparently and background reclaim will take place on the local node. Two consequences
of this are that remote access penalties will be used and old memory from the local node will
be reclaimed. If the WSS of the application exceeds the size of a local node then paging and

refaults may be incurred.

The first thing to identify is that a remote node overflow occurred which is accounted for in /
proc/vmstat as the numa_hit, numa_miss, numa_foreign, numa_interleave, numa_local and

numa_other counters:

® numa_hit is incremented when an allocation uses the preferred node where preferred may

be either a local node or one specified by a memory policy.
® numa_miss is incremented when an alternative node is used to satisfy an allocation.

* numa_foreign is rarely useful but is accounted against a node that was preferred. It is a

subtle distinction from numa_miss that is rarely useful.

® numa_interleave is incremented when an interleave policy was used to select allowed

nodes in a round-robin fashion.

* numa_local increments when a local node is used for an allocation regardless of policy.

numa_other is used when a remote node is used for an allocation regardless of policy.

For the local memory policy, the numa_hit and numa_miss counters are the most important
to pay attention to. An application that is allocating memory that starts incrementing the nu-
ma_miss implies that the first level of saturation has been reached. If this is observed on EPYC,
it may be valuable to bind the application to nodes that represent dies on a single socket. If
the ratio of hits to misses is close to 1, consider an evaluation of the interleave policy to avoid

unnecessary reclaim.

@ Note: NUMA Statistics

These NUMA statistics only apply at the time a physical page was allocated and it is not
related to the reference behavior of the workload. For example, if a task running on node
0 allocates memory local to node O then it will be accounted for as a node_hit in the

statistics. However, if the memory is shared with a task running on node 1, all the accesses

16 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



may be remote, which is a miss from the perspective of the hardware but not accounted
for in /proc/vmstat. Detecting remote and local accesses at a hardware level requires
using the hardware's Performance Management Unit.

When the first saturation point is reached then reclaim will be active. This can be observed
by monitoring the pgscan_kswapd and pgsteal_kswapd /proc/vmstat counters. If this is
matched with an increase in major faults or minor faults then it may be indicative of severe
thrashing. In this case the interleave policy should be considered. An ideal tuning option is to
identify if shared memory is the source of the usage. If this is the case, then interleave the shared
memory segments. This can be done in some circumstances using numactl or by modifying the

application directly.

More severe saturation is observed if the pgscan_direct and pgsteal_direct counters are also
increasing as these indicate that the application is stalling while memory is being reclaimed. If
the application was bound to individual nodes, increasing the number of available nodes will
alleviate the pressure. If the application is unbound, it indicates that the WSS of the workload
exceeds all available memory. It can only be alleviated by tuning the application to use less

memory or increasing the amount of RAM available.

As before, whether to use memory nodes from one socket or two sockets depends on the appli-
cation. If the individual processes are independent then either socket can be used. But where
possible, keep communicating processes on the same socket to maximize memory throughput

while minimizing the socket interconnect traffic.

6.5 Other Resources

The analysis of other resources is outside the scope of this paper. However, a common scenario
is that an application is I0-bound. A superficial check can be made using the vmstat tool and
checking what percentage of CPU time is spent idle combined with the number of processes that
are blocked and the values in the bi and bo columns. Further analysis is required to determine if

an application is IO rather than CPU or memory bound. But this is a sufficient check to start with.

17 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



/ Power Management

Modern CPUs balance power consumption and performance through Performance States (P-
States). Low utilization workloads may use lower P-States to conserve power while still achieving
acceptable performance. When a CPU is idle, lower power idle states (C-States) can be selected
to further conserve power. However this comes with higher exit latencies when lower power
states are selected. It is further complicated by the fact that if individual cores are idle and
running at low power then the additional power can be used to boost the performance of active
cores. This means this scenario is not a straight-forward balance between power consumption
and performance. More complexity is added on EPYC whereby spare power may be used to

boost either cores or the Infinity links.

EPYC provides SenseMI which, among other capabilities, enables CPUs to make adjustments to
voltage and frequency depending on the historical state of the CPU. There is a latency penalty
when switching P-States but EPYC is capable of fine-grained in the adjustments that can be
made to reduce likelihood that the latency is a bottleneck. On SUSE Linux Enterprise Server,
EPYC uses the acpi_cpufreq driver which allows P-states to be configured to match requested
performance. However, this is limited in terms of the full capabilities of the hardware. It cannot
boost the frequency beyond the maximum stated frequencies and if a target is specified then
the highest frequency below the target will be used. A special case is if the governor is set to
performance. In this situation the hardware will quickly use the highest available frequency in
an attempt to work quickly and then return to idle.

What should be determined is whether power management is likely to be a factor for a workload.
One that is limited to a subset of active CPUs and nodes will have high enough utilization so
that power management will not be active on those cores and no action is required. Hence, with

CPU binding, the issue of power management may be side-stepped.

Secondly, a workload that does not communicate heavily with other processes and is mostly

CPU-bound will also not experience any side effects because of power management.

The workloads that are most likely to be affected are those that synchronously communicate
between multiple threads or those that idle frequently and have low CPU utilization overall.
It will be further compounded if the threads are sensitive to wakeup latency but there are sec-

ondary effects if a workload must complete quickly but the CPU is running at a low frequency.

The P-State and C-State of each CPU can be examined using the turbostat utility. The computer
output below shows an example where one workload is busy on CPU 0 and other workloads
are idle. A useful exercise is to start a workload and monitor the output of turbostat paying

18 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



close attention to CPUs that have moderate utilization and running at a lower frequency. If
the workload is latency-sensitive then it is grounds for either minimizing the number of CPUs
available to the workload or configuring power management.

Package Core CPU Avg MHz Busy%s Bzy MHz TSC MHz IRQ C1 C2 C1% C2%

- - - 26 0.85 3029 2196 5623 1251 3439 0.64 98.53
0 0 0 3192 100.00 3192 2196 1268 0 0 0.00 0.00

0 0 64 1 0.02 2936 2196 10 0 9 0.00 99.99
0 1 1 1 0.08 1337 2196 20 0 14 0.00 99.94
0 1 65 1 0.04 1263 2196 13 0 12 0.00 99.97
0 2 2 1 0.04 1236 2196 14 0 12 0.00 99.98
0 2 66 1 0.04 1226 2196 14 0 13 0.00 9. 97
0 3 3 1 0.05 1237 2196 16 0 14 0.00 99.97
0 3 67 1 0.05 1238 2196 16 0 15 0.00 99.97

In the event it is determined that tuning CPU frequency management is appropriate. Then the
following actions can be taken to set the management policy to performance using the cpupower

utility:

epyc:~# cpupower frequency-set -g performance
Setting cpu: 0
Setting cpu: 1
Setting cpu: 2

Persisting it across reboots can be done via a local init script, via udev or via one-shot systemd
service file if it is deemed to be necessary. Note that turbostat will still show that idling CPUs
use a low frequency. The impact of the policy is that the highest P-State will be used as soon as
possible when the CPU is active. In some cases, a latency bottleneck will occur because of a CPU
exiting idle. If this is identified on EPYC, restrict the C-state by specifying processor.max_c-
state=2 on the kernel command line which will prevent CPUs from entering lower C-states. It
is expected on EPYC that the exit latency from C1 is very low. But by allowing C2, it reduces
interference from the idle loop injecting micro-operations into the pipeline and should be the
best state overall. It is also possible to set the max idle state on individual cores using cpupower
idle-set. If SMT is enabled, the idle state should be set on both siblings.

8 Security Mitigations

On occasion, a security fix is applied to a distribution that has a performance impact. The most
recent notable examples are Meltdown and two variants of Spectre. AMD EPYC is immune to

the Meltdown variant and page table isolation is never active. However, it is vulnerable to the

19 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Spectre variant. In the event it can be guaranteed that the server is in a trusted environment
running only known code that is not malicious, the nospectre v2 parameter can be specified on
the kernel command line. This is only relevant to workloads that enter/exit the kernel frequently.

9 Hardware-based Profiling

Ordinarily advanced monitoring of a workload is conducted via oprofile or perf. At the time
of writing, it is known that EPYC has extensive Performance Monitoring Unit (PMU) capabilities
but the OS support is limited. oprofile is not implemented and falls back to using the timer
interrupt which is not recommended for general use. perf support is limited to a subset of events:
cycles, L1 cache access/misses, TLB access/misses, retired branch instructions and mispredicted
branches. In terms of identifying what subsystem may be worth tuning in the OS, the most useful
invocation is perf record -a -e cycles sleep 30 to capture 30 seconds of data for the
entire system. You can also call perf record -e cycles command to gather a profile of a given
workload. Specific information on the OS can be gathered through tracepoints or creating probe
points with perf or trace-cmd. But the details on how to conduct such analysis are beyond

the scope of this paper.

10 Candidate Workloads

The workloads that will benefit most from the EPYC architecture are those that can be paral-
lelized and are either memory or IO-bound. This is particularly true for workloads that are “NU-
MA friendly”: they can be trivially parallelized and each thread can operate independently for
the majority of the workloads lifetime. For memory-bound workloads, the primary benefit will
be taking advantage of the high bandwidth available on each channel. For I0-bound workloads,
the primary benefit will be realized when there are multiple storage devices, each of which is

connected to the node local to a task issuing IO.

10.1 Test Setup

The following sections will demonstrate how an OpenMP and MPI workload can be configured

and tuned on an EPYC reference platform.

TABLE 1: TEST SETUP

CPU 2x AMD EPYC 7601

20 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Platform AMD Speedway Reference Platform

Drive Samsung SSD 850

(O] SUSE Linux Enterprise Server 12 SP3
Memory Interleaving Channel

Memory Speed 2400MHz (single rank)

Kernel command line nospectre_v2

10.2 Test workload: STREAM

STREAM is a memory bandwidth benchmark created by Dr. John D. McCalpin from the Univer-
sity of Virginia (for more information, see https://www.cs.virginia.edu/stream/ 7). It can be used
to measure bandwidth of each cache level and bandwidth to main memory assuming adequate
care is taken. It is not perfect as some portions of the data will be stored in cache instead of

being fetched from main memory.

The benchmark was configured to run both single-threaded and parallelized with OpenMP to
take advantage of each memory channel. The array elements for the benchmark was set at
100007936 elements at compile time so each that array was 763MB in size for a total memory
footprint of 2289 MB. The size was selected to minimize the possibility that cache usage would

dominate the measurements.

TABLE 2: TEST WORKLOAD: STREAM

Compiler gcce (SUSE Linux Enterprise) 4.8.5
Compiler flags -m64 -1m -03

OpenMP compiler flag -fopenmp

OpenMP environment variables OMP_PROC BIND=SPREAD

OMP_NUM THREADS=16

21 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


https://www.cs.virginia.edu/stream/

The number of OpenMP threads was selected to have at least one thread running for every

memory channel. The OMP_PROC_BIND parameter was to have one thread running on a core with

a dedicated L3 cache to maximize available bandwidth. This can be verified using trace-cmd,

as illustrated below with slight editing for formatting and clarity.

epyc:~ # trace-cmd record -e sched:sched migrate task ./stream

epyc:~ # trace-cmd

stream-18798 [000]
dest cpu=4
stream-18798
dest cpu=5
stream-18798
dest cpu=8
stream-18798
dest cpu=12
stream-18798
dest cpu=16
stream-18798
dest cpu=20
stream-18798
dest cpu=24
stream-18798
dest cpu=28
stream-18798
dest cpu=32
stream-18798
dest cpu=36
stream-18798
dest cpu=40
stream-18798
dest cpu=44
stream-18798
dest cpu=48
stream-18798
dest cpu=52
stream-18798
dest cpu=56
stream-18798
dest cpu=60

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

[000]

report

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate_ task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

: sched migrate task:

comm=stream pid=18799 prio=120 orig cpu=0

comm=trace-cmd pid=18670 prio=120 orig cpu=4

comm=stream pid=18800 prio=120 orig cpu=0

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

comm=stream

pid=18801

pid=18802

pid=18803

pid=18804

pid=18805

pid=18806

pid=18807

pid=18808

pid=18809

pid=18810

pid=18811

pid=18812

pid=18813

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

prio=120

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

orig cpu=0

Figure 2 below shows the reported bandwidth for the single and parallelized case. The sin-

gle-threaded bandwidth for a single core was roughly 20 GB/sec which is a high percentage of

the theoretical max of 38.4 GB/sec (each core has access to two memory channels). The chan-

nels are interleaved in this configuration as it has been recommended as the best balance for a

22

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



variety of workloads but limits the absolute maximum of a specialized benchmark like STREAM.
The total throughput for each parallel operation ranged from 174 GB/sec to 240 GB/sec which
is comparable to the theoretical maximum of 307 GB/sec.

@ Note: STREAM Scores

Higher STREAM scores can be reported by reducing the array sizes so that cache is par-
tially used with the maximum score requiring that each threads memory footprint fits
inside the L1 cache. Additionally, it is possible to achieve results closer to the theoretical
maximum by manual optimization of the STREAM benchmark using vectored instructions
and explicit scheduling of loads and stores. The purpose of this configuration was to il-
lustrate the impact of properly binding a workload that can be fully parallelized with

data-independent threads.

250000 . . .

sinlgle [
omp-nodes-spread

200000 .

150000 f 1

MBytes/sec

100000 r 1

50000 t .

q}sﬁ %@& %’ J;“%)’

FIGURE 2: STREAM BANDWIDTH, SINGLE THREADED AND PARALLELIZED

23 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



10.3 Test Workload: NASA Parallel Benchmark

NASA Parallel Benchmark (NPB) is a small set of programs designed to evaluate the performance
of supercomputers. They are small kernels derived from Computational Fluid Dynamics (CFD) ap-
plications. The problem size can be adjusted for different memory sizes. Reference implementa-

tions exist for both MPI and OpenMP. This setup will focus on the MPI reference implementation.

While each application behaves differently, one common characteristic is that the workload is
very context-switch intensive, barriers frequently yield the CPU to other tasks and the lifetime of
individual processes can be very short-lived. The following paragraphs detail the tuning selected

for this workload.

The most important step is setting the CPU governor to “performance”. This needs to be done
because of the short-lived nature of some tasks but also because not all of them run long enough
for a higher P-State to be selected even though the workload is very throughput sensitive. The
migration cost parameter is set to reduce the frequency the load balancer will move an individual
task. The minimum granularity is adjusted to reduce over-scheduling effects.

@ Note: Number of MPI Processes

Only 64 MPI processes were used for this test workload even though more CPUs are

available.

This particular workload requires a power-of-two number of processes to be used but using all
available CPUs means that the application can contend with itself for CPU time. Furthermore,
as IO is being issued to shared memory backed by disk, there are system threads that also need
CPU time. Finally, binding to the L3 cache means that there were more MPI worker processes
than there are CPUs available that share a cache. If more threads were to be used, it would
be necessary to bind on a per-node basis. As NPB uses shared files, an XFS partition was used
for the temporary files albeit it is only used for mapping shared files and is not a critical path
for the benchmark and no IO tuning is necessary. In some cases with MPI applications, it will
be possible to use a tmpfs partition for OpenMPI. This avoids unnecessary IO assuming the

increased physical memory usage does not cause the application to be paged out.
TABLE 3: TEST WORKLOAD: NASA PARALLEL BENCHMARK
Compiler gce (SUSE Linux Enterprise) 4.8.5, mpif77, mpicc

OpenMPI openmpi 1.10.6-3.3.55DYC14159b

24 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Compiler flags -m64 -02 -mcmodel=large
CPU governor performance cpupower frequency-set -g performance

Scheduler parameters sysctl -w kernel.sched migration cost ns=5000000

sysctl -w kernel.sched min _granularity ns=10000000
mpirun parameters -mca btl "~openib,udapl -np 64 --bind-to 13cache

mpirun environment TMPDIR=/xfs-data-partition

Figure 3 shows the time, as reported by the benchmark, for each of the kernels to complete.

BDD T T T T ~ T
numab-disabled

default oo

700 | tuned =

600 + .
200
400 |

300 ¢

Time (seconds)

200 r

100 +

&

© % ! %

FIGURE 3: NAS MPI RESULTS
The baseline is “numab-disabled” which means it has disabled Automatic NUMA Balancing. The
second test was a default SUSE Linux Enterprise Server 12 SP3 installation with no tuning. It

illustrates that even with the overhead of Automatic NUMA Balancing there are savings overall

as most of the workloads complete faster. The final test run has the tuning applied and shows

25 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



that the workload completes 44% to 68% faster than the baseline. When the workload is tuned
with the bindings then Automatic NUMA Balancing can be optionally disabled but the difference

in performance is marginal.

11 Using AMD EPYC for Virtualization

On first approximation, Virtual Machines (VMs) can be considered as large (in terms of memory
footprint) and long running applications. Thus the tuning described so far in the paper can be

applied.

However, when taking into account more specific aspects and characteristics of VMs, and making
specific considerations about virtualization, a better tailored and more effective set of tuning

advice can be derived. This is especially relevant for NUMA systems, such as AMD EPYC:

® VMs are long running activities, and typically use much more memory than “regular” OS

processes.

® VMs can be configured to be, and act, both like NUMA-aware and non NUMA-aware work-
loads.

Calling VMs “long running activities” means that they often run for hours, days, or even months,
without being terminated or restarted. Therefore, it is almost never acceptable to pay the price of
suboptimal resource partitioning and allocation, even when there is the expectation that things
will be better next time. Poor mapping of virtual machine resources (virtual CPUs and memory,
but also I/0) on the host topology may cause issues to everything that runs inside the virtual

machine — and potentially even to other components of the system — for a long time.

With reference to NUMA-awareness, a VM is called out to be NUMA aware, if a (virtual) NUMA
topology is defined and exposed to the VM itself, and if the OS that the VM runs (guest OS)
is NUMA-aware. On the contrary, a VM is called NUMA-unaware, if either no (virtual) NUMA
topology is exposed, or the guest OS is not NUMA-aware.

In general, VMs that are large enough (in terms of amount of memory and number of virtual
CPUs) to span multiple host NUMA nodes, benefit from being configured as NUMA-aware VMs.
However, even for small and NUMA-unaware VMs, intelligent placement of their memory on
the host nodes, and effective mapping of their virtual CPUs (vCPUs) on the host physical CPUs

(pCPUs) is key for achieving good and consistent performance.

26 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



The following sections of this paper focuses on tuning for CPU and memory intensive VMs,
and leave IO aside. More specifically, it focuses on how to configure and tune one or more
VMs, so that CPU and memory intensive workloads running inside them can achieve the best

performance.

It is highly desirable that vCPUs run close to the memory that they are accessing (for example
on the same node). For reasonably big NUMA-aware VMs that requires properly mapping the
virtual NUMA nodes of the guest to physical NUMA nodes on the host. For smaller NUMA-
unaware VMs that means allocating all their memory on the smallest possible number of host
NUMA nodes (better if just one), and making their vCPUs run on the pCPUs of those nodes

respectively that node.

Both the Kernel-based Virtual Machine (KVM) and the Xen-Project hypervisors, as they are
available in SUSE Linux Enterprise Server 12 SP3, provide (slightly different) mechanisms to

enact this kind of resource partitioning and allocation.

11.1  Preparing the Host for Virtualization

Giving details on how to install and configure a system, so that it becomes a suitable virtualiza-
tion host, is outside of the scope of this paper. For instructions and details refer to the SUSE docu-

mentation at https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-vt-installation.html 2

The same applies to configuring both the system’s and the VMs’ networking and storage. For
specific details refer to the operating system, libvirt or hypervisor documentation and manu-
als. For example, to know how to assign network interfaces (or ports) to one or more VMs
for improved network performance, refer to the SUSE documentation at https://documenta-

tion.suse.com/sles/12-SP5/html/SLES-all/cha-libvirt-config.html#sec-libvirt-config-pci @ .

11.2  Virtual Machine Types

KVM only supports one type of VM - a fully hardware-based virtual machine (HVM). Under Xen,
VMs can be paravirtualized (PV) or hardware virtualized machines (HVM). Xen also supports

mixed modes. For example, hardware virtualized VMs can use some paravirtualized interfaces.

27 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-vt-installation.html
https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-libvirt-config.html#sec-libvirt-config-pci
https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-libvirt-config.html#sec-libvirt-config-pci

Xen HVM guests with paravirtualized interfaces enabled (often called PVHVM, or for brevity,
HVM) are very similar to KVM VMs (which also use both hardware virtualization and paravir-
tualized IO, namely virtlO). This paper is always referring to PVHVM VMs when talking about

VMs running on Xen.

11.3 Oversubscription of Host Resources

Oversubscription happens when the demand for some resource is higher than is physically avail-

able. In virtualization, this is typical for vCPUs, and can also happen for memory.

@ Note: Not Covering Oversubscribed Scenarios
Given the large number of CPUs that can be available on an EPYC system (128 in the

example in Figure 1, “EPYC Topology”), and the huge amount of memory the architecture
supports, not covering oversubscribed scenarios is not considered a limitation, at least as

far as this paper is concerned.

In any case, most of the tuning that will be illustrated here is valid for oversubscribed systems

as well. VM configuration advises can easily be adapted to be effective in such a scenario.

CPU Oversubscription

CPU oversubscription is what happens when, on a 128 physical CPUs system, the administrator
creates, for example, 200 single vCPU guests. It is impossible to say whether this configuration
is good, and should be encouraged, or bad, and should be avoided or forbidden, without further
knowledge about the actual goals of the system itself, and — even more important — about the

workloads.

As an example, if the load on each vCPU will always stay below 50 percent, oversubscribing by
a factor of 2 would not only be tolerated, but would be advisable to avoid wasting resources.
In this scenario that means creating 256 single vCPU VMs on the 128 pCPUs host is a good
configuration (this, for simplicity, does not take into account the host OS, which will be discussed
later). On the contrary, if it is known that the load on each vCPU will always be 100 percent,
creating even 129 single vCPU VMs is already a misconfiguration (although it would likely be
tolerated and handled well).

28 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



After all, hypervisors have schedulers to deal correctly with situations when there are more
runnable entities (that is, vCPUs) than there is capacity to actually execute them at the same
time (that is, pCPUs). The benefit of running more workloads (that is, VMs) than the hardware
would allow comes at the price of reduced throughput and increased latency for the workloads
themselves. As the focus of this paper is mainly on CPU and memory intensive workloads, which
fully load the vCPUs on which they run than on IO bound ones, CPU oversubscription is out of

scope here and only briefly mentioned.

Memory Oversubscription

There are a few ways of achieving memory oversubscription. The first, which we can call “clas-
sical memory oversubscription”, is what happens when an administrator creates VMs with a
total cumulative memory footprint greater than the amount of physical RAM on the host. This
only works if some of such memory is kept outside of the RAM (swapped out) when the VMs using
it are not running and put back inside of the RAM (swapped in) when they are. Oversubscribing
memory on KVM only requires creating VMs whose total amount of memory exceeds the host’s
RAM. The usual Linux kernel virtual memory management and paging mechanisms will be used
to handle that. On Xen, this variant of memory oversubscription is not possible unless special

technologies (for example, the xenpaging tool and/or transcendent memory) are employed.

Another way of doing memory oversubscription is page sharing or page merging. This is based
on the principle that if two (or more) VMs happen to use two (or more) pages, the content of
which is identical, it would be enough to keep one in memory and only refer to it from the other
places. Similar to overcommitting via paging, this is available natively on KVM via a mechanism
called Kernel Samepage Merging (KSM). On Xen, it needs special actions.

Finally, there is memory ballooning. This concept is based on the fact that VMs may not need all
the memory they are given by the system administrator all the time. This means, although a VM
will appear to always have all its memory, some of that memory is not actually allocated onto
the host RAM (ballooned down) until the VM actually uses it (ballooning up). This is supported
in both Xen and KVM.

Whichever method is used, allowing memory oversubscription has both latency and throughput
implications. This makes it not ideal for the workloads considered in this paper, and it is there-

fore not further explored here.

29 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Oversubscription with a single VM

In the case where only one VM is configured on the host,

¢ a single VM should never have more vCPUs than the host has pCPUs.

¢ a single VM should never have more memory than the host has physical RAM.

11.4 Resource Allocation and Tuning of the Host

The main purpose of a system being used as a virtualization host is running VMs. To do that
effectively, there are activities which reside and run on the host Operating System (host OS).
These processes require some resources and are subject to being tuned. In fact, on both Xen and
KVM, the host OS is at least responsible for helping with the IO performed by the VMs.

11.4.1  Allocating Resources to the Host OS

It is generally recognized as a good practise to make sure that the host OS has some resources
assigned to itself. This may mean that some physical CPUs, and some memory, will be exclusively
granted to the host OS.

@ Note: Host OS on KVM and on Xen

While on KVM the host OS is the actual Linux operating system that loads the hypervisor

kernel modules, on Xen the host OS runs inside what is effectively a very special guest VM.

It is hard to give general recommendations but a rule of thumb (validated by other performance
tuning efforts) suggests that 5 percent to 10 percent of the physical RAM should be assigned to
the host OS. Even more, in case the plan is to run hundreds of VMs. However, if using Xen, that
can be reduced to a few gigabytes, even when planning to spawn many VMs. This is especially
true if disaggregation is used (see https://wiki.xenproject.org/wiki/Dom0_Disaggregation 2 ).

In terms of CPUs, on “traditional NUMA systems”, where NUMA nodes correspond to sockets,
it is usually advised to reserve one physical core (which means two logical CPUs, considering
hyperthreading) per socket for the host OS. This translates to one physical core per node on
EPYC. Usually it will be fine to assign less CPUs than that to the host OS, but it is better to always
give one core to it, for each node that has IO channels attached. Host OS activity is mostly related
to performing IO, and the kernel threads dedicated to the handling of actual devices, which are

30 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


https://wiki.xenproject.org/wiki/Dom0_Disaggregation

often bound to the nodes on which the devices are attached, are better when given good chances
to run without much contention. In the example architecture shown in Figure 7, “EPYC Topology”
this would mean reserving one physical core for the host OS on nodes 0, 1, 3, 4 and 5.

As system administrators need to be able to reach out and login to the system, to manage and
troubleshoot it, some resources should be reserved for management consoles, and the chosen

hypervisor's toolstack (for example, the SSH daemon and the libvirt daemon).

All that has been described so far is greatly workload dependent. Since each VM does some IO,
the ideal setup would be to dedicate one host physical or logical core to doing IO for each device
used by each VM (or at least for those devices important for the specific workload, for example,
network IO, for VMs doing network intensive activities). But this reduces the number of CPUs
available for running VMs, which may be a problem. Also, considering that this grants sensible
performance improvements only to IO intensive workloads (which are outside of the scope of

this paper anyway), it may not be considered worthwhile.

If the overall goal of the system is running one or two big VMs, for example on a host like the
one in Figure 1, "EPYC Topology”, with 128 (logical) CPUs — and each VM as 4 IO devices - it is

sufficient to reserve

® 4 cores (8 logical CPUs) for the host IO controllers,
e either 4 (for 1 VM) or 8 (for 2 VMs) cores or threads for the I0 of the VMs,

® and 1 core for system management

That still leaves 128-8-4-2=114 (for 1 VM) or 128-8-8-2=100 CPUs available. On the other
hand, if the goal is to run many small VMs, “losing”, for example, one CPU per VM (plus,
again, 8 for IO controllers and 2 for management) means not being able to start more than
128-8-2=118/2=59 VMs.

To summarize, considering the focus of this paper on CPU and memory intensive workloads,
the recommendation is to exclusively assign to the host OS one physical CPU per NUMA node.
Referring to the hardware shown in Figure 7, “EPYC Topology”, that means 8 physical cores (equiv-
alent to 16 logical CPUs) should be assigned.

Allocating Resources to the host OS on KVM

When using KVM, sparing 8 cores and 12 GB of RAM for the host OS is done by stopping the
creation of VMs when the total number of vCPUs for these VMs has reached 120, and when the
total cumulative amount of allocated RAM has reached 244 GB.

31 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Following all the advice and recommendations from this paper (including the ones given later
about VM configuration) will automatically make sure that the unused CPUs are available to the
host OS. There are many other ways to enforce this (for example with cgroups and cpusets).

These methods are not described in this paper.

Allocating Resources to the host OS on Xen

When using Xen, host OS (also called “Domain 0” or “Dom0”) resource allocation needs to be
done explicitly, at system boot time. Giving 8 physical cores and 12 GB of RAM to DomO is done
by specifying the following additional parameters on the hypervisor boot command line (for

example, by properly editing /etc/defaults/grub, and then updating the boot loader):

dom®@ mem=12288M,max:12288M dom® max vcpus=16

The number 16 comes from the reservation of 8 physical cores, which, because of hyperthread-
ing, are 16 logical CPUs. 12288 memory (= = 12 GB, in megabytes (MB)) is specified twice
to prevent DomO from using ballooning, which is not recommended (see https://wiki.xenprojec-

t.org/wiki/Tuning_Xen_for_Performance#Memory 2 ).

Making sure that Dom0O vCPUs run on specific pCPUs is not strictly necessary. It can be enforced,
but since DomO is a (special) VM this is only possible via the Xen scheduler. There is no mech-
anism to communicate this configuration at Xen boot time. Consequently it must be done when
the system is live, by specifying the vCPU affinity of Dom0’s vCPUs. Using the Xen’s default x1

toolstack, it looks as follows:

x1 vcpu-pin 0 0 0
xl vcpu-pin 0 1 1
x1l vcpu-pin 0 2 8
x1 vcpu-pin 0 3 9
xl vcpu-pin 0 12 48
x1 vcpu-pin 0 13 49
x1l vcpu-pin 0 14 56
xl vcpu-pin 0 15 57

Or, using libvirt’s virsh, it looks as follows:
virsh vcpupin 0 --vcpu O --cpulist 0
virsh vcpupin @ --vcpu 1 --cpulist 1
virsh vcpu-pin @ --vcpu 2 --cpulist 8

virsh vcpu-pin 0 --vcpu 3 --cpulist 9

virsh vcpupin @ --vcpu 12 --cpulist 48

32 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


https://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance#Memory
https://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance#Memory

virsh vcpupin 0 --vcpu 13 --cpulist 49

virsh vcpupin 0 --vcpu 14 --cpulist 56

virsh vcpupin @ --vcpu 15 --cpulist 57

As mentioned above, this cannot be done via boot time parameters, and must happen after the
system is booted. However, it can be automated via a custom init script (virsh vcpupin -
config .. is not effective for DomO).

If you want to limit DomO to only a specific (set of) NUMA node(s), the dom@_nodes=<nodeid>
boot command line option can be used. This will affect both memory and vCPUs. This means
that memory of DomO will be allocated on the specified node(s), and the vCPUs of DomO will be
restricted to run on those same node(s). It is possible to change on-line on what pCPUs you want
Dom0’s vCPUs to run (as shown either via xU vcpu-pin or virsh vcpupin), but its memory
will always stay where it was allocated during boot. On EPYC, at least for the purposes and the

scope of this paper, this option is not recommended.

11.4.2 (Transparent) Huge Pages

For virtualization workloads, rather than using Transparent Huge Pages on the host, it is rec-
ommended that huge pages (1 GB size, if possible) are used for the memory of the VMs. This
sensibly reduces the overhead and the resource contention occurring when a VM updates its
own page tables. It is extremely unlikely that the host OS runs a workload which requires or
benefits from using (Transparent) Huge Pages. Having them on the host may even negatively
affect performance if the THP daemon interferes with the VMs' execution, consuming CPU time
and causing latencies. Therefore, it is advised to disable THP on KVM, by adding the following

host kernel command-line option:

transparent hugepage=never

Another option is executing the following at runtime:

echo never > /sys/kernel/mm/transparent hugepage/enabled
For being able to use 1 GB Huge Pages as backing memory of KVM guests, such pages need to
be allocated on the host, by the host OS. It is best to do that at boot time, as follows:

default hugepagesz=1GB hugepagesz=1GB hugepages=<number of hugepages>

The value for <number of hugepages> can be computed by taking the amount of memory
devoted to VMs, and dividing it by the page size (1 GB). For example, the host in the example
scenario has 256 GB RAM,; take out 5 percent ~= 26 GB, and the number you get is 230 x 1
GB Huge Pages.

33 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



On Xen, none of the above actions is necessary. DomO is a paravirtualized guest, for which Huge
Pages support is not present. On the other hand, memory used by the hypervisor, and memory
allocated for HVM VMs, uses Huge Pages as much as possible by default, so no explicit tuning

is needed.

11.4.3 Automatic NUMA Balancing

On Xen, Automatic NUMA Balancing (NUMAB) for the host OS should be disabled. DomO is
a paravirtualized guest without a (virtual) NUMA topology, thus it would be totally useless.
Since the DomO OS does not detect any NUMA topology, NUMAB will stay off, without any

intervention needed.

On KVM, NUMAB can be useful and improve throughput. For example, this can be the case in
dynamic virtualization scenarios, where VMs are created, destroyed and re-created relatively
quickly, and without statically partitioning and pre-assigning resources (pCPUs and memory) to
them. However, latency is introduced, and NUMAB operation can interfere, and cause perfor-
mance degradation with VMs not needing and not using its services. Furthermore, since this pa-
per focuses on careful and tailored resource pre-allocation, it is recommended to switch NUMAB

off. This can be done by adding the following parameter to the host kernel command line:

numa_balancing=disable

If anything changes and the system is repurposed to achieve different goals, NUMAB can be

enabled on-line with the command:

echo 0 > /proc/sys/kernel/numa_balancing

11.4.4 Services, Daemons and Power Management

The service daemons that have been discussed already in the first part of the paper also run
on the host OS of a virtualization system. For them, the same considerations that were made

there apply here.

For example, tuned should either not be used, or the profile should be set to one that does not
implicitly put the CPUs in polling mode. Both throughput-performance and virtualization-host
profiles from SUSE Linux Enterprise Server 12 SP3 are OK, from this point of view, as neither of
them touches /dev/cpu_dma_latency. irgbalance can be a source of latency, for no significant
performance improvement. Thus the suggestion is again to disable it (but then, IRQs may need
to be manually bound to the appropriate CPUs, considering the IO topology).

34 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



As far as power management is concerned, the cpufreq governor can either be kept as it is by
default, or switched to performance, following the previous advice, based on the nature of the

workloads of interest.

@ Note: Power Management

For anything that concerns power management, on KVM, changing the tuned profile, or
using cpupower, from the host OS will have the same effect described in the first part
of the paper. On Xen, however, CPU frequency scaling is enacted by the hypervisor. It
can be controlled from within DomO, by using a different tool, called xenpm, like in the

example below:

xenpm set-scaling-governor performance

11.5 Resource Allocation and Tuning of the VMs

For instructions of how to create an initial VM configuration, run the VM, and install a guest
OS, refer to the SUSE documentation at https://documentation.suse.com/sles/12-SP5/html/SLES-

all/cha-vt-installation.html#sec-vt-installation-kvm & .

From a VM configuration perspective, the two most important factors for achieving top perfor-

mance on CPU and memory bound workloads are:

1. Placement of the VM on top of the host resources

2. Enlightenment of the VM about its own topology

The former factor is critical. For example, with two VMs, one should be run on each socket to
maximize CPU and memory access parallelism. The latter also helps, in particular with big VMs,
which span more than one of the EPYC NUMA nodes. When the VM is made aware of its own
virtual NUMA topology, all the tuning actions described in the first part of this paper become
applicable to the workloads the VM is running.

@ Note: Additional Tuning Factors

Even with these two factors being the most important aspects of the VM configuration

tuning process, there are additional factors which should be considered.

35 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-vt-installation.html#sec-vt-installation-kvm
https://documentation.suse.com/sles/12-SP5/html/SLES-all/cha-vt-installation.html#sec-vt-installation-kvm

11.5.1 Placement of VMs

When a VM is created, memory is allocated on the host to act as its virtual RAM. This is generally
something that happens at VM boot time. This either cannot be changed at all, or cannot be
changed without a price. Therefore, it is of paramount importance to get this initial placement
correct. Both Xen and KVM can make “educated guesses” on what a good placement might
be. However, this paper provides advise only on how to manually achieve the best possible

placement, considering EPYC specific characteristics.

Where the vCPUs will run (this means, on what pCPUs) is also decided at VM creation time.
Contrarily to memory, it is less of a problem to change this when the VM is running, but it is
still better to start the VM directly with good vCPU placement. This is particularly true on Xen,

where vCPU placement actually drives and controls memory placement.

Since this paper does not consider oversubscribed scenarios, this form of static resource assign-
ment is particularly effective. However, similar principles apply even when oversubscription is

present.

Placement of memory happens by means of the <numatune > XML element:

<numatune>
<memory mode='strict' nodeset='0-7'/>
<memnode cellid='0"' mode='strict' nodeset='0'/>
<memnode cellid='1l' mode='strict' nodeset='1"'/>

</numatune>

The parameter 'strict' enforces the memory to be allocated where it is specified. A cell is a
virtual NUMA node, with cellid being its ID, and nodeset telling on what host physical NUMA
node its memory must be put. For NUMA-unaware VMs, this can still be used, but it will have

only one <memnode> element.

Placement of vCPUs happens via the <cputune> element, as in the example below:

<vcpu placement='static'>96</vcpu>
<cputune>
<vcpupin vcpu='0"' cpuset='1l'/>
<vcpupin vcpu='l' cpuset='65"'/>
<vcpupin vcpu='2' cpuset='2"'/>
<vcpupin vcpu='3"' cpuset='66'/>
<vcpupin vcpu='4' cpuset='3"'/>

</cputune>

In this example, in the <vcpupin> elements, vcpu is the vCPU ID, and cpuset defines on what
host physical CPU it should be bound to.

36 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



When “pinning” vCPUs to pCPUs, it is generally wise to put adjacent vCPU IDs (like vCPU 0
and vCPU 1) on actual host hyperthread siblings (like pCPU 1 and pCPU 65) on the test server.
QEMU uses a static hyperthread sibling CPU ID assignment. Thus, by doing as described, at the

end the virtual hyperthread siblings will run on real hardware hyperthread siblings.

The following paragraphs will address several scenarios with varying number and sizes of VMs.

All the examples detailed in this section refer to the topology shown in Figure 7, “EPYC Topology”.

One Very Large VM

It is possible to use “just one” VM on the EPYC server. Reasons for this scenario include securi-
ty/isolation, flexibility, high availability, and others. In these cases typically a single large VM
would be used, almost as large as the host itself. Consider a VM with 96 vCPUs and 200 GB of
RAM. That is a VM that spans multiple host NUMA nodes. It is recommended to create eight
virtual NUMA nodes, that is as many as there are physical NUMA nodes, and divide the VM’s
memory equally among them. The 96 vCPUs can be divided into 12 assigned to each node. It is
also recommended to use full cores, this means: assign vCPUs 0 and 1 to Core P#1 in Figure 7,
“EPYC Topology”, vCPUs 2 and 3 to Core P#2, vCPUs 4 and 5 to Core P#5. This configuration pins
vCPUs 0 and 1 to pCPUs 0 and 64, vCPUs 2 and 3 to pCPUs 1 and 65, etc.

Memory should be split equally among all 8 nodes, and a virtual topology will be provided to the
guest OS of the VM. Using this setup, each of the VM’s vCPUs will access its own memory directly,
and use Infinity Fabric links to reach foreign memory, as it happens on the host. Workloads
inside such a VM can be tuned exactly like they were running on a bare metal EPYC server

(however on one with slightly fewer CPUs and less RAM).

The following example numactl output comes from a VM configured as explained:

available: 8 nodes (0-7)
node 0 cpus: 0612345678910 11

node 0 size: 25118 MB
node 0 free: 25000 MB
node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23
node 1 size: 25198 MB
node 1 free: 25116 MB
node 2 cpus: 24 25 26 27 28 29 30 31 32 33 34 35
node 2 size: 25198 MB
node 2 free: 25122 MB
node 3 cpus: 36 37 38 39 40 41 42 43 44 45 46 47
node 3 size: 25198 MB
node 3 free: 25106 MB
4

node 4 cpus: 48 49 50 51 52 53 54 55 56 57 58 59

37 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



node 4 size: 25198 MB
node 4 free: 25109 MB
node 5 cpus: 60 61 62 63 64 65 66 67 68 69 70 71
node 5 size: 25198 MB
node 5 free: 25122 MB
node 6 cpus: 72 73 74 75 76 77 78 79 80 81 82 83
node 6 size: 25198 MB
node 6 free: 25116 MB
node 7 cpus: 84 85 86 87 88 89 90 91 92 93 94 95
node 7 size: 25196 MB
node 7 free: 25111 MB

node distances:
node 06 1 2 3 4 5 6 7
0: 10 20 20 20 20 20 20 20
20 10 20 20 20 20 20 20
20 20 10 20 20 20 20 20
20 20 20 10 20 20 20 20
20 20 20 20 10 20 20 20
20 20 20 20 20 10 20 20
20 20 20 20 20 20 10 20
20 20 20 20 20 20 20 10

N o o AW NP

This is analogous to the host topology already presented in the paper, with the only differences
being the number and the IDs of the CPUs, and the nodes’ distance table. Unfortunately, the
libvirt version available in SUSE Linux Enterprise Server 12 SP3 does not allow to define

virtual node distances (while later versions do).

See Section 15, “Appendix A” for an (almost) complete VM configuration file.

Two Large VMs

When running two VMs with 48 vCPUs and 100 GB memory each, nearly the same configuration
can be used, but each VM should be placed on one of the EPYC sockets. This means that each
VM will span — both vCPU- and memory-wise — 4 NUMA nodes (and hence have 4 virtual NUMA
nodes). The reason behind locating one on each socket is that workloads running within each

VM will not need to use the inter-socket interconnect, to access memory.

In this example scenario, the numactl output looks as follows:

available: 4 nodes (0-3)

node O cpus: 60 123456789 10 11

node 0 size: 25118 MB

node 0 free: 25026 MB

node 1 cpus: 12 13 14 15 16 17 18 19 20 21 22 23
1

node size: 25198 MB

38 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



node
node
node
node
node
node
node
node
node

w N =

Four to Eight Medium-size VMs

1
2
2
2
3
3
3

free:

cpus:
size:
free:
cpus:
size:
free:
distances:

0
10
20
20
20

1
20
10
20
20

25094
24 25
25198
25084
36 37
25196
25108

2
20
20
10
20

MB

26 27 28 29 30 31 32 33 34 35

MB
MB

38 39 40 41 42 43 44 45 46 47

MB
MB

3
20
20
20
10

The same principle adopted for two VMs is followed in a scenario with four VMs, with 24 vCPUs
and 50 GB memory. In this case, VM1 should be put on nodes 0 and 1, VM2 on nodes 3 and 4,

etc. Single VMs again span multiple (two, in this case) host NUMA nodes, but do not cross the

socket boundary. Since they span two nodes, they benefit from being NUMA-aware.

In a scenario with eight VMs, with 12 vCPUs and 25 GB RAM each, each VM can be put on a
single host NUMA node. In this case, therefore, there is no need for the VMs to be NUMA-aware.

It is still helpful to let the guest OS know about the guest specific characteristics of the pCPU

being used (cores, threads, etc), but it is less performance-critical (at least for memory intensive

workloads).

The example below shows the numactl output from one of these eight NUMA-unaware VMs:

available:

1

node 0 cpus:

node 0 size:
node 0 free:
node distances:

node

0:

39

0

10

nodes (0)
012345678910 11
25117 MB
24888 MB

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Many “Micro”-VMs

When there is the need to have more than one VM per host NUMA node, the VMs will also not
be NUMA-aware. If they have 4 vCPUs each, the best solution is to assign VM1 to Core P#0 and
Core P#1, and VM2 to Core P#2 and Core P#3, on NUMA node 1, and do the same on the other
nodes. That means VMs will use hyperthreading and, if possible, they should be made aware

of this bit of topology information.

If they must have two vCPUs each, but they are still not more than 128 VM, it is best to assign
VM1 to Core P#0-PU P#0 and Core P1-PU P#2, then VM2 to Core P#2-PU P#4 and Core P3-
PU P#6, on node 1 (and so on for the other nodes). This means only one of the hyperthread
siblings on each core is used. The other sibling can be left idle, or be used for the 10 of the VMs
themselves (by giving them to the host OS, and using them for running either the emulator’s IO
threads, on KVM, or the IO back-ends, on Xen).

When using 128 VMs, the recommendation is to use single cores for each VMs (although, this
time, VM1 should be assigned to Core P#0, VM2 to Core P#2, etc.).

It should be avoided to have vCPUs from different VMs running on two hyperthread siblings.
This is supported and works, but is not ideal for performance, especially from a consistency
point of view, as the “speed” of the vCPUs of one VM will depend on what the vCPUs of another
VM are doing. It is also a less secure setup, as running on hyperthread siblings may make it

easier to enact cross-VM side channel attacks.

As far as memory is concerned, it is recommended that the memory of the VMs that are assigned

to a NUMA node resides on that same node.

Oversubscription

If an oversubscription scenario is wanted, exclusive 1-to-1 vCPU to pCPU assignment may be
not ideal. In this case, it is in generally better to let the hypervisor scheduler take advantage of
any idle interval on a wide range of pCPUs, and use that to execute as many vCPUs as possible
for as long as it can. However, leaving all the vCPUs of all the VMs completely free to run on
any pCPU might be equally bad, especially on EPYC. That may quickly put the system in a state
where a lot of VMs mostly access memory from remote NUMA nodes, with regard to where

their vCPUs are running.

40 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



In this case the recommendation is to try to partition the overall workload. This can be done
by assigning groups of VMs to single nodes, or to the smallest possible set of nodes, in a way
that takes load into account. This happens for example by avoiding to put all the CPU intensive
VMs on the same node, or by avoiding to overload a node and leaving others lightly loaded

or idle, etc.

This grouping of VMs on (a set of) nodes can still be done with vCPUs affinity. But there are
also other mechanisms, specifically designed for doing “pooling”, such as cgroups (on KVM)
and cpupools (on Xen). On Xen, there is also a feature called soft vCPU affinity, which can be
used together with “traditional” vCPU affinity (also called hard vCPU affinity) as a finer grained

and more powerful way of controlling resource allocation in such a scenario.

11.5.2  Enlightenment of the VMs

“Enlightenment” means letting the guest OS know as many details as possible of the (virtual)
topology of the VM. Of course, this brings performance improvements only if such topology is
properly and effectively mapped on host resources, and if the mapping is stable.

To ensure the VM has a vCPU topology, use the following:

<cpu mode='host-passthrough'>
<topology sockets='2"
<numa>
<cell id='0"' cpus='0-11' memory='26214400"' unit='KiB'/>
<cell id='1l' cpus='12-23"' memory='26214400' unit='KiB'/>
<cell id='2" cpus='24-35' memory='26214400"' unit='KiB'/>

cores='24"' threads='2'/>

</numa>
</cpu>

The <topology> element specifies the CPU characteristics, while each <cell> element defines
one virtual NUMA node.

The following example (available on KVM only) is also useful, especially for VMs that span
multiple host NUMA nodes, but in general every time that vCPUs are pinned to pCPUs that
share a cache layer:

<domain type='kvm' xmlns:qgemu='http://libvirt.org/schemas/domain/qemu/1.0"'>
<gemu: commandline>

<gemu:arg value='-cpu'/>
<gemu:arg value='host,migratable=off,+invtsc,13-cache=on'/>

4 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



</gemu:commandline>
</domain>

The element 13- cache=on may significantly reduce resource contention within the VM, when
the guest OS scheduler wants to wake up a task (while migratable=off is necessary for QEMU

to preserve the other passed flags).

11.5.3 Memory Backing

The VMs need to be told to use the huge pages that were reserved for them. To effectively use
1 GB huge pages, the amount of memory each VM is given should be a multiple of 1 GB. Also,
Kernel Same Page Merging (KSM) should be disabled. This is done as follows:

<memory unit='KiB'><memory in KB></memory>
<memoryBacking>
<hugepages>
<page size='1048576' unit='KiB'/>
</hugepages>
<nosharepages/>
</memoryBacking>

@ Note: Huge Pages on Xen

On Xen, for HVM guests, huge pages are used by default, so the <memoryBacking> element

is technically not necessary.

11.5.4 No Ballooning

To get the full benefit of using huge pages, memory ballooning must be disabled. If the balloon-
ing driver is not huge-pages-aware, using it would split the pages and fragment memory. Disable

memory ballooning as follows :
<currentMemory unit='KiB'><memory in KiB></currentMemory>

Specify the same amount of memory as in the <memory>element and never change the memory

of the VM at runtime.

42 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



11.5.5 (Transparent) Huge Pages

If huge pages are used for allocating the VMs’ memory on the host, they can also be used inside
the VMs, either explicitly, or via THP. Whether that helps performance is workload dependent.
The analysis and the considerations made in the first part of the paper about using (T)HP on

bare metal can also be applied here.

11.5.6  Automatic NUMA Balancing

Similarly to THP, if the VM is NUMA-aware, NUMAB can be used inside of it to boost the

performance of NUMA-unaware workloads.

11.5.7 Services and Daemons

The irgbalance tool can be a source of latency inside of the VM, because of the way it uses
the /proc/interrupts interface. For workloads that are particularly sensitive to latency, con-
sider disabling it within the VMs (of course by taking the appropriate alternative measures, like

binding IRQs, if necessary).

11.5.8 Emulator |10 Threads / Disaggregation

IO for the VMs is carried out either by emulators, or by the so-called back-ends of paravirtualized
drivers. Both the IO threads of the emulators, and the back-ends are user or kernel threads
running in the host OS. As such, they can run on specific subsets of the host OS’ CPUs (DomO’s
virtual CPUs’, in the case of Xen). For example, a one vCPU VM can have its vCPU bound to a
hyperthread sibling, while the IO threads can be bound to the other sibling. Considering that a
common execution pattern will be for the vCPU to be idle, when the IO threads are busy, this

setup maximizes the exploitation of hardware resources.

On Xen, there is also the possibility of setting up driver domains. These are special guests which
act as back-ends of a particular IO device for one or more VMs. In case they are used, make sure
that such guests run close enough to both the hardware they are providing their abstraction for,

and the VMs that are servicing.

11.6 Test Workload: STREAM

To show the validity of some of the tuning advise given, the STREAM benchmark is used again.

43 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Test Scenario: One Large VM

Figure 4 shows the bandwidth achieved by STREAM, using a single thread, on the host and

inside one large VM, in the following configurations:

* No topology: the VM is not provided any virtual NUMA or CPU topology, nor are its mem-
ory and vCPUs assigned to host nodes and pCPUs

¢ Topology: the VM is provided the virtual NUMA and CPU topology described in the above
section, but still no mapping and pinning of memory and vCPUs

¢ Topology Tuned: the VM is provided its topology, and memory is allocated and vCPUs are

pinned as recommended in the tuning section

STREAM - single

11413

Scale Add Triad

25000

20000

15000

10000

5000

0
Copy

FIGURE 4: STREAM BANDWIDTH - SINGLE THREAD IN ONE VM

W Host

™ No topology
Topology

M Topology Tuned

MBfs

It appears evident how resource allocation is critical, for achieving good performance inside
of the VM. When mapping VM resources on host resources as recommended, almost the same

results are reached from within the VM, as obtained on the host.

Figure 5 shows the same setup, but when 16 threads are used.

44 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



MB/s

STREAM - 16 threads - spread

m Host

m No topelogy
Topology

® Topology Tuned

Scale Add Triad

250000

200000
150000
100000
50000
0

Copy

FIGURE 5: STREAM BANDWIDTH - 16 THREADS IN ONE VM

In this case, providing the VM with a meaningful topology already improves the performance.

However, the result is still far from ideal, and good results are reached only when doing both

topology enlightenment and proper placement of the VM.

@ Note: “Copy”in Figure 5

45

With full tuning applied, we expected results matching the ones on the host. That was
the case for “Scale”, “Add” and “Triad”. “Copy”, however, is implemented using glibc's
memcpy () which, when running on the host, is optimized with non-temporal store and
prefetch instructions. In the VM, this does not happen because the heuristics that enables
the use of those instructions does not trigger. This happens because the VM does not have
any information available about how many and which logical CPUs share the L3 caches
(which is what drives the heuristics). At the time of writing this paper, there is no way
to let the VM have this information. SUSE is internally tracking this issue (partners can
look up bug #1091081). When this is resolved, the performance of the “Copy” operation
in a VM should reach the level of its performance on the host.

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Test Scenario: Two Large VMs

Figure 6 shows how effective it is, when using two large VMs, to place them on separate sockets,

as recommended above:

® VM1 alone: is the throughput achieved when running only one of the two VMs
® Both, VM1: is the throughput achieved on VM1, when running both the VMs concurrently
® Both, VM2: is the throughput achieved on VM2, when running both the VMs concurrently

® Both, VM1 + VM2: is the aggregate throughput, that is, the sum of the throughput achieved

on VM1 and on VM2 (when running both of them concurrently)
In this case, the VMs have 48 vCPUs (each). Note how, based on the recommended tuning:

* performance achieved in both the VMs, when they are running concurrently, is the same

as when only one of them is running alone;

¢ the aggregate throughput is, on Triad, 194 GB/s; on the host and on only one large VM,
it was 192 GB/s.

STREAM - 16 threads

250000

150000
m VM1 alone
W Both, VM1
Both, VM2
M Both, VM1+VM2
100000
)

Scale Add Triad

MBfs

FIGURE 6: STREAM BANDWIDTH - 16 THREADS IN TWO VMS

46 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



Test Scenario: Four to Eight Medium-Size VMs

Finally, Figure 7 shows again the effectiveness of carefully tuned resource allocation, this time
on NUMA-unaware VMs. For this experiments, two VMs are used, each with 12 vCPUs and
25 GB memory. There are only two VMs used for simplicity, but the test hardware used could
accommodate eight of them (without violating the recommendation of leaving at least one core
on each node for the host OS). In this case, there is no virtual NUMA topology to construct for

the VMs, and only 8 threads are used:

¢ VM1, unpinned: is the throughput achieved on VM1 running alone, when the VM’s vCPUs

and memory are not pinned to the host resources

e VM1, pinned: is the throughput achieved on VM1 running alone, when the VM’s vCPUs

and memory are pinned to the host resources

* VM1 + VM2, unpinned: is the aggregate throughput reached together by VM1 and VM2,
both not pinned in any way to the host

® VM1 + VM2, pinned: is the aggregate throughput reached together by VM1 and VM2, when

both are pinned to the host resources

In the “pinned” cases, the VMs are assigned to one NUMA node each, from different sockets.
It is again evident how much reasonable placement of VM resources helps performance, even

in case of NUMA-unaware VMs.

47 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



STREAM - 8 threads

70000

60000

50000

40000 W VM1, unpinned

W VM1, pinned

P WVMI1+WM2, unpinned
2 W VM1+VM2, pinned

30000

20000

10000

0
Copy Scale Add Triad

FIGURE 7: STREAM BANDWIDTH - 8 THREADS IN TWO VMS

12 Conclusion

The introduction of EPYC pushes the boundaries of what is possible for memory and I0-bound
workloads with much higher bandwidth and available number of channels. A properly config-
ured and tuned workload can exceed the performance of many contemporary off-the-shelf so-
lutions even when fully customized. The symmetric and balanced nature of the machine makes
the task of tuning a workload considerably easier given that each partition can have symmetric

performance.

With SUSE Linux Enterprise, all the tools to monitor and tune a workload are readily available.
Your customers can extract the maximum performance and reliability running their applications,

either on bare metal or virtualized, on the EPYC platform.

48 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



13 Resources
For more information, refer to:

¢ AMD SenseMI Technology (https://www.amd.com/en/technologies/sense-mi )

¢ Balanced power plan optimized for AMD Ryzen processors (https://communi-

ty.amd.com/community/gaming/blog/2017/04/06/amd-ryzen-community-update-3 2
® EPYC Tech Day: Gerry Talbot (https://www.youtube.com/watch?v=W5IhEit6NgY #)

¢ Optimizing Linux for Dual-Core AMD Opteron Processors (http://www.novell.com/train-
inglocator/partners/amd/4622016.pdf #)

¢ Systems Performance: Enterprise and the Cloud by Brendan Gregg (http://www.brendan-

gregg.com/sysperfbook.html @)

® NASA Parallel Benchmark (https://www.nas.nasa.gov/publications/npb.html#)

14 Glossary

C-State
The idle state of the CPU where lower states use less power but have larger exit latencies.

CPU-bound
An application whose primary bottleneck is the computation power at maximum speed of
a CPU. The simple case is a single-thread application that keeps the CPU at 100 percent
utilization. A more complex example is a multi-threaded application where N threads keep
N CPUs at 100 percent utilization.

HPC

High Performance Computing

MCM
Multi-Chip Module

Memory-bound
An application whose performance is limited by the maximum bandwidth of memory. It
may be an application whose working set size exceeds the size of the L3 cache, in the case
of EPYC, or an application whose working set size exceeds the size of a NUMA node.

49 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


https://www.amd.com/en/technologies/sense-mi
https://community.amd.com/community/gaming/blog/2017/04/06/amd-ryzen-community-update-3
https://community.amd.com/community/gaming/blog/2017/04/06/amd-ryzen-community-update-3
https://www.youtube.com/watch?v=W5IhEit6NqY
http://www.novell.com/traininglocator/partners/amd/4622016.pdf
http://www.novell.com/traininglocator/partners/amd/4622016.pdf
http://www.brendangregg.com/sysperfbook.html
http://www.brendangregg.com/sysperfbook.html
https://www.nas.nasa.gov/publications/npb.html

NUMA
Non-Uniform Memory Architecture

NUMA node
A mapping between a set of CPUs and a range of memory where the cost of access to main

memory is a fixed value, and a direct link, that is considered “local”.

P-State

Performance State is a selected frequency and voltage a CPU is running with.

PSS
Proportional Set Size is the estimated amount of physical memory used in a mapping when

sharing between processes is taken into account.

RSS

Resident Set Size is the amount of physical memory used in a mapping.

SMP

Symmetric multiprocessing

THP
Transparent Huge Pages

VSz
Virtual Size of a memory mappings

WSS
Working Set Size is the estimated amount of memory a process needs within a period to

operate without paging.

15 Appendix A

Example of a VM configuration file:

<domain type='kvm' xmlns:qgemu='http://libvirt.org/schemas/domain/qemu/1.0"'>
<name>slesl2sp3 0l</name>

<uuid>26137bb8-9e5f-48e9-a81d-63ae36400196</uuid>

<memory unit='KiB'>209715200</memory>

<currentMemory unit='KiB'>209715200</currentMemory>

<memoryBacking>

<hugepages>
<page size='1048576' unit='KiB'/>

50 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



51

</hugepages>

<vcpu placement='static'>96</vcpu>

<nosharepages/>
</memoryBacking>
<cputune>

<vcpupin vcpu='0’
<vcpupin vcpu='1l'
<vcpupin vcpu='2'
<vcpupin vcpu='3"'
<vcpupin vcpu='4'
<vcpupin vcpu='5"'
<vcpupin vcpu='6"
<vcpupin vcpu='7'
<vcpupin vcpu='8'
<vcpupin vcpu='9'’
<vcpupin vcpu='10"
<vcpupin vcpu='11"'
<vcpupin vcpu='12"'
<vcpupin vcpu='13"
<vcpupin vcpu='14"'
<vcpupin vcpu='15"'
<vcpupin vcpu='16"
<vcpupin vcpu='17"'
<vcpupin vcpu='18"'
<vcpupin vcpu='19"'
<vcpupin vcpu='20"'
<vcpupin vcpu='21"'
<vcpupin vcpu='22"'
<vcpupin vcpu='23"
<vcpupin vcpu='24'
<vcpupin vcpu='25"
<vcpupin vcpu='26"
<vcpupin vcpu='27"'
<vcpupin vcpu='28"
<vcpupin vcpu='29'
<vcpupin vcpu='30"'
<vcpupin vcpu='31"'
<vcpupin vcpu='32"'
<vcpupin vcpu='33"'
<vcpupin vcpu='34'
<vcpupin vcpu='35"'
<vcpupin vcpu='36"'
<vcpupin vcpu='37"'
<vcpupin vcpu='38"'
<vcpupin vcpu='39'
<vcpupin vcpu='40"'
<vcpupin vcpu='41"

cpuset='1"'/>
cpuset='65"/>
cpuset='2"'/>
cpuset='66"'/>
cpuset='3"'/>
cpuset='67"'/>
cpuset='4"'/>
cpuset='68"'/>
cpuset='5"'/>
cpuset='69"'/>
cpuset='6"'/>
cpuset='70"'/>
cpuset='9"'/>
cpuset='73"'/>
cpuset="'10"'/>
cpuset="'74"'/>
cpuset='11"'/>
cpuset="'75"'/>
cpuset='12"/>
cpuset='76"'/>
cpuset="'13"'/>
cpuset='77"'/>
cpuset='14"'/>
cpuset='78"/>
cpuset="'17"'/>
cpuset='81'/>
cpuset='18"/>
cpuset='82"'/>
cpuset='19'/>
cpuset='83"'/>
cpuset='20"'/>
cpuset='84"'/>
cpuset='21"'/>
cpuset='85"'/>
cpuset='22"'/>
cpuset='86"'/>
cpuset="'25"'/>
cpuset='89'/>
cpuset='26"'/>
cpuset='90"'/>
cpuset='27"'/>
cpuset='91'/>

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



52

<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin

vcpu="'42"

vcpu='43"'
vcpu='44"
vcpu='45"'
vcpu='46"
vcpu='47"
vcpu="'48"'
vcpu='49'
vcpu="'50"'
vcpu='51"
vcpu='52"'
vcpu="'53"
vcpu='54"
vcpu='55"
vcpu='56"
vcpu="'57"'
vcpu='58"'
vcpu='59'
vcpu='60"'
vcpu='61"
vcpu='62"'
vcpu='63"'
vcpu='64"
vcpu='65"'
vcpu='66"
vcpu='67"
vcpu='68"'
vcpu='69'
vcpu='70"
vcpu="'71"
vcpu='72"
vcpu='73"
vcpu='74"'
vcpu="'75"
vcpu='76"
vcpu="'77"
vcpu="'78"'
vcpu="'79'
vcpu='80"'
vcpu='81"'
vcpu="'82"'
vcpu="'83"
vcpu='84"'
vcpu='85"
vcpu='86"
vcpu="'87"'
vcpu="'88"'

cpuset="'28"'/>
cpuset='92"'/>
cpuset='29'/>
cpuset='93"'/>
cpuset='30"'/>
cpuset='94"'/>
cpuset='33"'/>
cpuset='97"'/>
cpuset='34"'/>
cpuset='98"'/>
cpuset='35"'/>
cpuset='99"'/>
cpuset='36"'/>
cpuset="'100"'/>
cpuset="'37"'/>
cpuset='101"'/>
cpuset='38"'/>
cpuset='102"/>
cpuset='41"'/>
cpuset="'105"'/>
cpuset="'42"'/>
cpuset="'106"'/>
cpuset="'43"'/>
cpuset='107"'/>
cpuset='44"'/>
cpuset='108"'/>
cpuset="'45"'/>
cpuset="'109'/>
cpuset='46"'/>
cpuset='110"/>
cpuset='49"'/>
cpuset='113"/>
cpuset='50"'/>
cpuset='114"'/>
cpuset='51"'/>
cpuset="'115"'/>
cpuset='52"'/>
cpuset='116"'/>
cpuset='53"/>
cpuset='117"'/>
cpuset='54"'/>
cpuset="'118"'/>
cpuset='57"'/>
cpuset="'121"'/>
cpuset='58"/>
cpuset='122"/>
cpuset='59"'/>

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
<vcpupin
</cputune>
<numatune>

vcpu='89"'
vcpu='90"'
vcpu='91"'
vcpu='92"
vcpu='93"'
vcpu='94"
vcpu='95"

cpuset="'123"'/>
cpuset='60"'/>
cpuset='124"'/>
cpuset='61"'/>
cpuset="'125"'/>
cpuset='62"'/>
cpuset='126"/>

<memory mode='strict' nodeset='0-7'/>

<memnode cellid='0' mode='strict' nodeset='0'/>
<memnode cellid='1l' mode='strict' nodeset='1l'/>
<memnode cellid='2"' mode='strict' nodeset='2'/>
<memnode cellid='3"' mode='strict' nodeset='3'/>
<memnode cellid='4"' mode='strict' nodeset='4'/>
<memnode cellid='5"' mode='strict' nodeset='5'/>
<memnode cellid='6' mode='strict' nodeset='6"'/>
<memnode cellid='7' mode='strict' nodeset='7'/>

</numatune>

<0S>

<type arch='x86 64"
<boot dev='hd'/>
</0S>

machine='pc-i440fx-2.9'>hvm</type>

<features>
<acpi/>
<apic/>

</features>

<cpu mode='host-passthrough' check='none'>
<topology sockets='8' cores='6"' threads='2"'/>

<numa>
<cell id='0" cpus='0-11' memory='26214400"' unit='KiB'/>
<cell id='1l' cpus='12-23"' memory='26214400"' unit='KiB'/>
<cell id='2"' cpus='24-35' memory='26214400"' unit='KiB'/>
<cell id='3"' cpus='36-47' memory='26214400' unit='KiB'/>
<cell id='4' cpus='48-59' memory='26214400"' unit='KiB'/>
<cell id='5"' cpus='60-71' memory='26214400"' unit='KiB'/>
<cell id='6"' cpus='72-83' memory='26214400' unit='KiB'/>
<cell id='7"' cpus='84-95' memory='26214400"' unit='KiB'/>
</numa>
</cpu>
<devices>

<emulator>/usr/bin/qemu-kvm</emulator>
<disk type='file' device='disk'>
<driver name='gemu' type='qcow2'/>
<source file='/home/slesl2sp3 01.img'/>
<target dev='vda' bus='virtio'/>

Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



<address type='pci' domain='0x0000' bus='0x00' slot='0x05"' function='0x0'/>
</disk>

<interface type='network'>

<mac address='52:54:00:9e:08:44"'/>

<source network='default'/>

<model type='virtio'/>

<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0"'/>
</interface>

<rng model='virtio'>
<backend model='random'>/dev/urandom</backend>
<address type='pci' domain='0x0000' bus='0x00' slot='0x07' function='0x0"'/>
</rng>
</devices>
<gemu:commandline>
<gemu:arg value='-cpu'/>
<gemu:arg value='host,migratable=off,+invtsc,13-cache=on'/>
</qemu:commandline>
</domain>

16 Legal Notice

Copyright ©2006-2020 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in

the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ 7. Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this
document may be trademarks or registered trademarks of their respective owners.

This article is part of a series of documents called "SUSE Best Practices". The individual docu-

ments in the series were contributed voluntarily by SUSE's employees and by third parties.

All information found in this article has been compiled with utmost attention to detail. However,

this does not guarantee complete accuracy.

Therefore, we need to specifically state that neither SUSE LLC, its affiliates, the authors, nor the
translators may be held liable for possible errors or the consequences thereof. Below we draw

your attention to the license under which the articles are published.

54 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


http://www.suse.com/company/legal/

17 Legal notice

Copyright ©2006-2025 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States
and other countries. For SUSE trademarks, see http://www.suse.com/company/legal/ #. Linux is
a registered trademark of Linus Torvalds. All other names or trademarks mentioned in this

document may be trademarks or registered trademarks of their respective owners.

Documents published as part of the SUSE Best Practices series have been contributed voluntar-
ily by SUSE employees and third parties. They are meant to serve as examples of how particular
actions can be performed. They have been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. SUSE cannot verify that actions described in these
documents do what is claimed or whether actions described have unintended consequences.
SUSE LLG, its affiliates, the authors, and the translators may not be held liable for possible errors

or the consequences thereof.

Below we draw your attention to the license under which the articles are published.

55 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


http://www.suse.com/company/legal/

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or non-commercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify
the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must

also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

56 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add

an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
0. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate

some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or
else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowl-

edgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the

copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate,

this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

57 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3



If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original

versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts". line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

58 Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3


http://www.gnu.org/copyleft/

	Optimizing Linux for AMD EPYC with SUSE Linux Enterprise 12 SP3
	Contents
	1. Overview
	2. EPYC Architecture
	3. EPYC Topology
	4. Memory and CPU Binding
	4.1. Tuning for Local Access Without Binding
	4.2. Hazards with CPU Binding
	4.3. cpusets and Memory Control Groups

	5. High-performance Storage Devices and Interrupt Affinity
	5.1. Automatic NUMA Balancing

	6. Evaluating Workloads
	6.1. CPU Utilization and Saturation
	6.2. Transparent Huge Pages
	6.3. User/Kernel Footprint
	6.4. Memory Utilization and Saturation
	6.5. Other Resources

	7. Power Management
	8. Security Mitigations
	9. Hardware-based Profiling
	10. Candidate Workloads
	10.1. Test Setup
	10.2. Test workload: STREAM
	10.3. Test Workload: NASA Parallel Benchmark

	11. Using AMD EPYC for Virtualization
	11.1. Preparing the Host for Virtualization
	11.2. Virtual Machine Types
	11.3. Oversubscription of Host Resources
	11.4. Resource Allocation and Tuning of the Host
	11.4.1. Allocating Resources to the Host OS
	11.4.2. (Transparent) Huge Pages
	11.4.3. Automatic NUMA Balancing
	11.4.4. Services, Daemons and Power Management

	11.5. Resource Allocation and Tuning of the VMs
	11.5.1. Placement of VMs
	11.5.2. Enlightenment of the VMs
	11.5.3. Memory Backing
	11.5.4. No Ballooning
	11.5.5. (Transparent) Huge Pages
	11.5.6. Automatic NUMA Balancing
	11.5.7. Services and Daemons
	11.5.8. Emulator IO Threads / Disaggregation

	11.6. Test Workload: STREAM

	12. Conclusion
	13. Resources
	14. Glossary
	15. Appendix A
	16. Legal Notice
	17. Legal notice
	18. GNU Free Documentation License

