c®e SUSE

SUSE Linux Enterprise Real Time 15 SP3

Shielding Linux Resources

Shielding Linux Resources
SUSE Linux Enterprise Real Time 15 SP3

by Alex Tsariounov

Publication Date: July 09, 2024
https://documentation.suse.com 4

Copyright © 20062024 SUSE LLC and contributors. All rights reserved.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A

copy of thelicense version 1.2 isincluded in the section entitled “GNU Free Documentation License”.

https://documentation.suse.com

For SUSE trademarks, see http://www.suse.com/company/legal/ 2. All other third-party trademarks are the property of their
respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks (*) denote third-
party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee
complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable for possible errors

or the conseguences thereof.

http://www.suse.com/company/legal/

2.1

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

4.3

Contents

Introduction 1

The basic shielding model 2

A simple shielding example 2
Setup and teardown of the shield 3

Moving interesting tasks into and out of the shield 5
Executing a process into the shield 5 ¢ Moving a running task into and out of
the shield 7

Full-featured cpuset manipulation commands 10

The set subcommand 10

Creating and destroying cpusets with set 10 ¢ Listing cpusets with set 12

The proc subcommand 13
Listing tasks with proc 13 ¢ Execing tasks with proc 15 « Moving tasks

with proc 16 ¢ Destroying tasks 21
Implementing shielding with set and proc 22
Implementing hierarchy with set and proc 23
Using shortcuts 27

shield subcommand shortcuts 27

set subcommand shortcuts 28

proc subcommand shortcuts 29
What to do if there are problems 31

GNU Licenses 32

Shielding Linux Resources

1 Introduction

In the Linux kernel, the cpuset facility provides a mechanism for creating logical entities called “cpusets’
that encompass definitions of CPUsand NUMA Memory Nodes (if NUMA isavailable). Cpusetsconstrain
the CPU and Memory placement of atask to only the resources defined within that cpuset. These cpusets
can then be arranged into anested hierarchy visiblein the “cpuset” virtua file system. Sets of tasks can be
assigned to these cpusets to constrain the resources that they use. The tasks can be moved from one cpuset
to another to use other resources defined in those other cpusets.

The cset command isa Python application that providesacommand line front-end for the Linux cpusets
functionality. Working with cpusets directly can be confusing and slightly complex. The cset tool hides
that complexity behind an easy-to-use command line interface.

There are two distinct use casesfor cset: the basic shielding use case and the “ advanced” case of using raw
set and proc subcommands. The basic shielding function is accessed with the shield subcommand
and described in the next section. Using the raw set and proc subcommands allows one to set up
arbitrarily complex cpusets and is described in Chapter 3, Full-featured cpuset manipulation commands.

Note that in general, one either uses the shield subcommand or a combination of the set and proc
subcommands. Onerarely, if ever, usesall of these subcommandstogether. Doing sowill likely becometoo
confusing. Additionally, the shield subcommand sets up its required cpusets with exclusively marked
CPUs. This can interfere with your cpuset strategy. If you find that you need more functionality for
your strategy than shield provides, go ahead and transition to using set and proc exclusively. Itis
straightforward to implement what shield doeswith afew extra set and proc subcommands.

OBTAINING ONLINE HELP

For a full list of cset subcommands
tux > cset help

For in-depth help on individual subcommands
tux > cset help <subcommand>

For options on individual subcommands

tux > cset <subcommand> (-h | --help)

1 SLE RT 15 SP3

2 The basic shielding model

Although any setup of cpuset s can really be described as shielding, there is one prevalent shielding
model in usethat is so common that cset has a subcommand that is dedicated to its use. This subcommand
iscaled shield.

The concept behind this model isthe use of three cpusets:

® Root cpuset. isawayspresent in all configurations and contains all CPUs.

® System cpuset. contains CPUs which are used for system tasks. These are the normal tasks that
are not important, but which need to run on the system.

® User cpuset. “the shield”, contains CPUs which are used for important tasks. Only those tasks
that are somehow important, usually tasks whose performance determines the overall rating for the
machine, areruninthe user cpuset.

The shield subcommand manages all of these cpuset s and lets you define the CPUs and memory
nodes that are in the shielded and unshielded sets. The subcommand automatically moves all
movable tasks on the system into the unshielded cpuset on shield activation, and back into the
root cpuset on shield tear down. The subcommand lets you move tasks into and out of the shield.
Additionally, you can move special tasks (kernel threads) which normally runinthe root cpuset into
the unshielded set. This makes your shield have even less disturbance.

The shield subcommand abstracts the management of these cpuset s away from you. It provides
optionsthat drive how the shield is set up, which tasks are to be shielded or not, and the status of the shield.
In fact, you need not be bothered with the naming of the required cpuset sor even wherethe cpuset

file system ismounted. cset and the shield subcommand takes care of all that.

If you need to define more cpuset sfor your application, it islikely that this simple shielding is not rich
enough for you. In this case, you should transition to using the set and proc subcommands described

in Chapter 3, Full-featured cpuset manipulation commands.

2.1 A simple shielding example

Assume a four-core machine that has uniform memory access. This means there are four CPUs at your
disposal and there is only one memory node available. On such machines, there is no need to specify any
memory node parameters to cset, it sets up the only available memory node by default.

2 A simple shielding example SLE RT 15 SP3

Usually, one wants to dedicate as many CPUs to the shield as possible and leave a minimal set of CPUs
for normal system processing. The reasoning for thisis, the performance of the important tasks will rule
the performance of the installation as awhole. These important tasks need as many resources available to
them as possible, exclusive of other, unimportant tasks that are running on the system.

@ Note: Definition of task

In this document task is used to represent either aprocess or athread that is running on the system.

2.2 Setup and teardown of the shield

To set up ashield of three CPUswith one CPU left for low priority system processing, issue the following
command.

tux > cset shield -c 1-3

cset: --> activating shielding:

cset: moving 176 tasks from root into system cpuset...
[]
cset: "system" cpuset of CPUSPEC(0) with 176 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with 0@ tasks running

o°

Thiscommand does several things. First, it createsa user cpuset withwhatiscaledaCPUSPEC (CPU
specification) from the -c/- - cpu option. This CPUSPEC specifiesto use CPUs 1 through 3 inclusively.
Next, the command creates a system cpuset with a CPUSPEC that is the inverse of the -c option
for the current machine. On this machine that cpuset will only contain the first CPU, CPUO. Next, all
user space processes running inthe root cpuset aretransferredtothe system cpuset. This makes
al those processes run only on CPUOQ. The effect of thisis that the shield consists of CPUs 1 through 3
and they are now idling.

Note that the command did not move the kernel threads that are running in the root cpuset to the
system cpuset. Thisisbecause you may want these kernel threads to use all available CPUs. If you
do not, then you can usethe -k/ --kthread option as described below.

The shield setup command above outputs the information of which cpuset swere created and how many
tasks are running on each. To see the current status of the shield again, issue this command:

tux > cset shield

cset: --> shielding system active with

cset: "system" cpuset of CPUSPEC(0) with 176 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with @ tasks running

3 Setup and teardown of the shield SLE RT 15 SP3

Which shows us that the shield is set up and that 176 tasks are running in the system cpuset—the
unshielded cpuset.

It isimportant to move all possible tasks from the root cpuset to the unshielded system cpuset
because atask’s cpuset property isinherited by its children. As all running tasks (including init) have
been moved to the unshielded system cpuset, that means that any new tasks that are spawned will
alsorunintheunshielded system cpuset.

Note. Thereisaminor chance that atask forks during move and its child remainsin theroot cpuset.

Some kernel threads can be moved into the unshielded system cpuset aswell. These are the threads

that are not bound to specific CPUs. If akernel thread is bound to a specific CPU, then it is generally not

agood ideato move that thread to the system set because at worst it may hang the system and at best it

will slow the system down significantly. These threads are usually the IRQ threads on areal time Linux
kernel, for example, and you should not move these kernel threadsinto system. If you leave them in the
root cpuset, thenthey will have accessto all CPUs.

However, if your application demands an even “quieter” shield, then you can move all movable kernel
threads into the unshielded system set with the following command.

tux > cset shield -k on

cset: --> activating kthread shielding

cset: kthread shield activated, moving 70 tasks into system cpuset...
[1%

cset: done

Y ou can see that this moved an additional 70 tasks to the unshielded system cpuset. Note that the -

k/--kthread on parameter can be given at the shield's creation time. Y ou do not need to perform these
two steps separately if you know you will want kernel thread shielding aswell. Executing cset shield

again shows us the current state of the shield.

tux > cset shield

cset: --> shielding system active with

cset: "system" cpuset of CPUSPEC(0) with 246 tasks running

cset: "user" cpuset of CPUSPEC(1-3) with 0@ tasks running

You can get a detailed listing of what is running in the shield by adding either -s/--shield or -u/--
unshield to the shield subcommand and using the verbose flag. You will get output similar to the

following.

tux > cset shield --unshield -v
cset: "system" cpuset of CPUSPEC(0) with 251 tasks running
USER PID PPID SPPr TASK NAME

root 1 0 Soth init [5]

4 Setup and teardown of the shield SLE RT 15 SP3

root 2 0 Soth [kthreadd]

root 84 2 Sf50 [IRQ-9

1...

tux 31796 31789 Soth less

root 32653 25222 Roth python ./cset shield --unshield -v

The previous listing is abbreviated—there are 251 tasks running in the system set. However, the SPPr
field may need a little explanation. SPPr stands for State, Policy and Priority. You can see
that theinitial two tasks are Stopped and running in timeshare priority, marked as oth (for other). The
[IRQ-9] task is also stopped, but marked at real time FIFO policy with a priority of 50. The last task in
thelisting isthe cset command itself and is marked as running. Also note that adding a second -v/ - -
verbose option will not restrict the output to fit into an 80 character screen.

Tear down of the shield, stopping the shield in other words, isdone withthe -r/--reset option to the
shield subcommand. When this command is issued, both the system and user cpuset sare deleted
and any tasksthat arerunning in both of those cpuset saremovedtothe root cpuset.Oncesomoved,
all tasks will have access to all resources on the system. For example:

tux > cset shield --reset

cset: --> deactivating/reseting shielding

cset: moving 0 tasks from "/user" user set to root set...

cset: moving 250 tasks from "/system" system set to root set...
[1%

cset: deleting "/user" and "/system" sets

cset: done

2.3 Moving interesting tasks into and out of the shield

Now that a shield is running, the objective is to run processes that you have categorized as important in
that shield. These processes can be anything, but usually they are directly related to the purpose of the
machine. There are two ways to run tasks in the shield:

® Execute aprocessinto the shield

® Move an aready running task into the shield

2.3.1 Executing a process into the shield

Running a new process in the shield can be done with the -e/--exec option to the shield
subcommand. Thisis the simplest way to get atask to run in the shield. For this example, execute a new
Bash shell into the shield with the following commands.

5 Moving interesting tasks into and out of the shield SLE RT 15 SP3

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with @ tasks running
cset: done

tux > cset shield -e bash
cset: --> last message, executed args into cpuset "/user", new pid is: 13300

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running

USER PID PPID SPPr TASK NAME
root 13300 8583 Soth bash
root 13329 13300 Roth python ./cset shield -s -v

tux > exit

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0@ tasks running
cset: done

Thefirst command above liststhe status of the shield. Y ou see that the shield is defined as CPUs 1 through
3inclusive and currently there are no tasks running in it.

The second command executes the Bash shell into the shield with the -e option. The last message of
cset liststhe PID of the new process.

@ Note: Separating the tool options from the cset command

cset followsthetradition of separating thetool optionsfrom the command to be executed options
with a double hyphen (- -). Thisis not shown in this simple example, but if the command you
want to execute also takes options, separate them with the double hyphen as follows:

tux > cset shield -e mycommand -- -v

The -v will be passed to mycommand, and not to cset.

The next command lists the status of the shield again. There are two tasks running shielded: our new
shell and the cset status command itself. Remember that the cpuset property of atask is inherited by
its children. Since running the new shell in the shield, its child, which is the status command, also ran
in the shield.

6 Executing a process into the shield SLE RT 15 SP3

@ Tip: Executing a shell into a shield

Executing ashell into ashield is a useful way to experiment with running tasks in the shield since
al children of the shell will aso run in the shield.

The last command exits the shell. After this, shield status is requested again but again, it does not contain
any tasks.

Y ou may have noticed in the output above that both the new shell and the status command are running as
the root user. Thisisbecause cset needsto run as root and so al it ischildren will also run as root .
If you need to run a process under a different user and or group, you may usethe --user and --group
options for execution as follows.

tux > cset shield --user=tux --group=users -e bash
cset: --> last message, executed args into cpuset "/user", new pid is: 14212

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running

USER PID PPID SPPr TASK NAME
tux 14212 8583 Soth bash
tux 14241 14212 Roth python ./cset shield -s -v

2.3.2 Moving a running task into and out of the shield

While executing a process into the shield is undoubtedly useful, most of the time, you will want to
move aready running tasks into and out of the shield. The cset shield subcommand includes two
optionsfor doing this: -s/--shield and -u/--unshield. Theseoptionsrequire a PIDSPEC (process
specification) to also be specified with the -p/--pid option. The PIDSPEC defines which tasks get
operated on. The PIDSPEC can be a single process ID, alist of process | Ds separated by commas, and a
list of process ID ranges separated by dashes, groups of which are separated by commas. For example:

--shield --pid 1234
This PIDSPEC argument specifiesthat PID 1234 be shielded.

--shield --pid 1234,42,1934,15000,15001,15002
This PIDSPEC argument specifies that thislist of PIDs only be moved into the shield.

7 Moving a running task into and out of the shield SLE RT 15 SP3

--unshield -p 5000,5100,6010-7000,9232

This PIDSPEC argument specifiesthat PIDs 5000, 5100 and 9232 be unshielded (moved out of
the shield) along with any existing PID that isin therange 6010 through 7000 inclusive.

@ Note: Information about the range in a PIDSPEC

A rangein a PIDSPEC does not need to have tasks running for every number in that range. In fact,
it isnot even an error if there are no tasks running in that range: none will be moved in that case.
The range only specifiesto act on any tasks that have a PID or TID that iswithin that range.

Use of the appropriate PIDSPEC can thus be handy to move tasks and groups of tasks into and out of
the shield. Additionally, there is one more option that can help with multi-threaded processes, and that
isthe --threads flag. If this flag is used together with a shield or unshield command with a
PIDSPEC and if any of thetask IDsin the PIDSPEC belong to athread in a process container, then all the
sibling threadsin that process container will get shielded or unshielded aswell. Thisflag provides an easy
mechanism to shield/unshield all threads of a process by simply specifying one thread in that process.

The following example moves the current shell into the shield with arange PIDSPEC and back out with
the Bash variable for the current PID.

tux > echo $%
22018

tux > cset shield -s -p 22010-22020
cset: --> shielding following pidspec: 22010-22020
cset: done

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running

USER PID PPID SPPr TASK NAME

root 3770 22018 Roth python ./cset shield -s -v
root 22018 5034 Soth bash

cset: done

tux > cset shield -u -p $$
cset: --> unshielding following pidspec: 22018
cset: done

8 Moving a running task into and out of the shield SLE RT 15 SP3

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with @ tasks running
cset: done

Moving a running task into and out of the shield SLE RT 15 SP3

3 Full-featured cpuset manipulation commands

While basic shielding as described above is useful and a common use model for cset, there comes
a time when more functionality will be desired to implement your strategy. To implement this, cset
provides two subcommands: set , which allows you to manipulate cpusets; and proc , which allowsyou
to manipulate processes within those cpusets.

3.1 The set subcommand

To do anything with cpusets, you must be able to create, adjust, rename, move, and destroy them. The
set subcommand allows the management of cpusetsin such a manner.

3.1.1 Creating and destroying cpusets with set

The basic syntax of set for cpuset creation is:

tux > cset set -c 1-3 -s my cpusetl
cset: --> created cpuset "my cpusetl"

This creates acpuset named my cpusetl witha CPUSPEC of CPU1, CPU2 and CPU3. The CPUSPEC
is the same concept as described in the Section 2.2, “Setup and teardown of the shield”. The set
subcommand alsotakesa -m/ - -mem option that lets you specify the memory nodesthe set will useand
flags to make the CPUs and MEMs exclusive to the cpuset. If you are on a non-NUMA machine, leave
the -m option out and the default memory node 0 will be used.

Like with shield, you can adjust the CPUs and MEMs with subsequent calls to set. If, for example,
you want to adjust the my cpusetl cpuset to only use CPUs 1 and 3 (and omit CPU2), then issue the
following command.

tux > cset set -c 1,3 -s my cpusetl
cset: --> modified cpuset "my cpuset

cset will then adjust the CPUs that are assigned to the my cpusetl set to only use CPU1 and CPUS.

To rename a cpuset, use the -n/ - -newname option. For example:

tux > cset set -s my cpusetl -n super set
cset: --> renaming "/cpusets/my cpusetl" to "super set"

Renames the cpuset called my cpusetl to super set.

10 The set subcommand SLE RT 15 SP3

To destroy acpuset, usethe -d/--destroy option asfollows.

tux > cset set -d super set

cset: --> processing cpuset "super set", moving 0 tasks to parent "/"...
cset: --> deleting cpuset "/super set"
cset: done

This command destroys the newly created cpuset called super set.When acpuset is destroyed, all the
tasksrunning init are moved to the parent cpuset. Theroot cpuset, which alwaysexistsand always contains
al CPUs, cannot be destroyed. Y ou may aso givethe - -destroy option alist of cpusets to destroy.

@ Note: Information about the mounted cpuset file system

The cset subcommand creates the cpusets based on a mounted cpuset file system. Y ou do not
need to know where that file system is mounted, although it is easy to figure out (by default it
ison /cpusets). When you give the set subcommand a name for a new cpuset, it is created
wherever the cpuset file system is mounted.

To create a cpuset hierarchy, then you must give a path to the cset set subcommand. This path will
always begin with the root cpuset, for which the pathis / . For example:

tux > cset set -c 1,3 -s top set
cset: --> created cpuset "top set"

tux > cset set -c 3 -s /top set/sub set
cset: --> created cpuset "/top set/sub set"

These commands created two cpusets. top set and sub set. The top set uses CPU1 and CPU3.
It has asubset of sub set which only uses CPU3. Once you have created a subset with a path, then if
the name is unique, you do not need to specify the path to affect it. If the name is not unique, then cset
will complain and ask you to use the path. For example:

tux > cset set -c 1,3 -s sub set
cset: --> modified cpuset "sub set

This command adds CPUL1 to the sub_set cpuset for its use. Note that using the path in this case is
optional.

If you attempt to destroy a cpuset which has sub-cpusets, cset will complain and not do it unless you
usethe -r/--recurse andthe --force options. If youdouse - -force, then all thetasksrunningin
all subsets of the deletion target cpuset will be moved to the target’ s parent cpuset and all cpusets.

11 Creating and destroying cpusets with set SLE RT 15 SP3

Moving a cpuset from under a certain cpuset to adifferent location is not implemented.

3.1.2 Listing cpusets with set
To list cpusets, use the set subcommand withthe -1/--1ist option. For example:

tux > cset set -1

cset:

Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 320 1 /
one 3n 0 n 0 1 /one

This shows that there is currently one cpuset present called one . (Of course there is also the root set,
whichisaways present.) The output showsthat the one cpuset has no tasksrunninginit. The root cpuset
has 320 tasks running. The -X for CPUs and MEMs fields denotes whether the CPUs and MEMs in the
cpusets are marked exclusive to those cpusets. Note that the one cpuset has subsets asindicated by a 1

inthe Subs field. You can specify acpuset to list with the set subcommand as follows:

tux > cset set -1 -s one

cset:

Name CPUs-X MEMs - X Tasks Subs Path
one 3n 0 n 0 1 /one

two 3n 0 n 0 1 /one/two

This output shows that there is a cpuset called two in cpuset one and it also has subset. You can aso
ask for arecursive listing as follows:

tux > cset set -1 -r

cset:

Name CPUs-X MEMs - X Tasks Subs Path

root 0-3 y 0y 320 1 /

one 3 0n 0 1 /one

two 3n 0n 0 1 /one/two

three 3n 0 n 0 0 /one/two/three

This command lists al cpusets existing on the system since it asks for arecursive listing beginning at the
root cpuset. Incidentally, should you need to specify the root cpuset you can useeither root or / to
specify it explicitly—just remember that the root cpuset cannot be deleted or modified.

12 Listing cpusets with set SLE RT 15 SP3

3.2 The proc subcommand

Now that you know how to create, rename and destroy cpusetswiththe set subcommand, the next stepis
to manage threads and processesin those cpusets. The subcommand to do thisiscalled proc andit allows
you to execute processes into a cpuset, move existing tasks around existing cpusets, and list tasks running
in specified cpusets. For the following examples, let us assume a cpuset setup of two sets as follows:

tux > cset set -1

cset:

Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 309 2 /

two 2n 0 n 3 0 /two
three 3n 0 n 10 0 /three

3.2.1 Listing tasks with proc

Operation of the proc subcommand follows the same model asthe set subcommand. For example, to
list tasks in a cpuset, you need to use the -1/--1ist option and specify the cpuset by name or, if the
name exists multiple timesin the cpuset hierarchy, by path. For example:

tux > cset proc -1 -s two
cset: "two" cpuset of CPUSPEC(2) with 3 tasks running

USER PID PPID SPPr TASK NAME

root 16141 4300 Soth bash

root 16171 16141 Soth bash

root 16703 16171 Roth python ./cset proc -1 two

This output shows usthat the cpuset called two has CPU2 only attached to it and isrunning three tasks. two
shellsand the python command to list it. Note that cpusets are inherited so that if a processis contained
in acpuset, then any children it spawns also run within that set. In this case, the python command to list
set two was run from a shell aready running in set two . This can be seen by the PPID (parent process
ID) of the python command matching the PID of the shell.

Additionally, the SPPr field needs explanation. SPPr stands for State, Policy and Priority.
Y ou can see that the initial two tasks are stopped and running in timeshare priority, marked as oth (for
other). Thelast task ismarked asrunning, R and at timeshare priority, oth . If any of thesetaskswould
have been at real time priority, the policy would beshown as f for FIFO or r for round robin. The priority
would be anumber from 1 to 99. See below for an example.

13 The proc subcommand SLE RT 15 SP3

tux > cset proc -1 -s root | head -7
cset: "root" cpuset of CPUSPEC(0-3) with 309 tasks running
USER PID PPID SPPr TASK NAME

1 0 Soth init [5]
2 0 Soth [kthreadd]
root 3 2 Sf99 [migration/0]
4 2 Sf99 [posix cpu_timer]

This output shows the first few tasks in the root cpuset. Note that both init and [kthread]
are running at timeshare; however, the [migration/0] and [posix cpu timer] kernel threadsare
running at real-time policy of FIFO and priority of 99 . Incidentally, this output is from a system running
the real-time Linux kernel which runs some kernel threads at real-time priorities. And finally, note that
you can use cset asany other Linux tool and includeit in pipelines asin the example above.

Taking a peek into the third cpuset called three, you can see output such as:

tux > cset proc -1 -s three
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running

USER PID PPID SPPr TASK NAME

tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17265 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...

This output showsthat alot of beagled tasksare running in this cpuset and it also showsan ellipsis(...)
at the end of their listings. If you see thisellipsis, that means that the command was too long to fit onto an
80 character screen. To see the entire command line, usethe -v/--verbose flag:

tux > cset proc -1 -s three -v | head -4

cset: "three" cpuset of CPUSPEC(3) with 10 tasks running

USER PID PPID SPPr TASK NAME

tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg --autostarted
--indexing-delay 300

14 Listing tasks with proc SLE RT 15 SP3

3.2.2 Execing tasks with proc

To executeatask into acpuset, the proc subcommand needsto beemployed withthe -e/ - -exec option.
Let us execute a shell into the cpuset named two in our set. First, check to see what is running that set:

tux > cset proc -1 -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

tux > cset proc -s two -e bash
cset: --> last message, executed args into cpuset "/two", new pid is: 20955

tux > cset proc -1 -s two
cset: "two" cpuset of CPUSPEC(2) with 2 tasks running

USER PID PPID SPPr TASK NAME
root 20955 19253 Soth bash
root 20981 20955 Roth python ./cset proc -1 two

You can see that initially, two had nothing running in it. After the completion of the second command,
list two again and see that there are two tasks running: the shell which you executed and the python
cset command that is listing the cpuset. The reason for the second task is that the cpuset property of a
running task isinherited by al its children. Because you executed the listing command from the new shell
which was bound to cpuset two, the resulting process for the listing is also bound to cpuset two . Let us
test that by running a new shell with no prefixed cset command.

tux > bash

tux > cset proc -1 -s two
cset: "two" cpuset of CPUSPEC(2) with 3 tasks running

USER PID PPID SPPr TASK NAME

root 20955 19253 Soth bash

root 21118 20955 Soth bash

root 21147 21118 Roth python ./cset proc -1 two

Here again, you can see that the second shell, PID 21118, has aparent PID of 20955 which isthe first
shell. Both shells, and the listing command, are running in the two cpuset.

15 Execing tasks with proc SLE RT 15 SP3

@ Note: Separating the Tool Options From the cset Command

cset followsthetradition of separating the tool optionsfrom the command to be executed options
with a double hyphen (- -). Thisis not shown in this simple example, but if the command you
want to execute also takes options, separate them with the double hyphen as follows:

tux > cset proc -s myset -e mycommand -- -v

The -v will be passed to mycommand , and notto cset.

@ Tip: Executing a shell into a cpuset

Executing ashell into acpuset isauseful way to experiment with running tasksin that cpuset since
all children of the shell will aso runin the same cpuset.

If you misspell the command to be executed, the result may be puzzling. For example:

tux > cset proc -s two -e blah-blah
cset: --> last message, executed args into cpuset "/two", new pid is: 21655
cset: **> [Errno 2] No such file or directory

The result is no new process even though a new PID is output. The reason for the message is of course
that the cset process forked in preparation of the execution, but the command blah-blah was not
found to execute it.

3.2.3 Moving tasks with proc

Although the ability to execute a task into a cpuset is fundamental, you will most likely be moving
tasks between cpusets more often. Moving tasks is accomplished with the -m/--move and -p/--pid
options to the proc subcommand of cset. The move option tellsthe proc subcommand that a task
move isrequested. The -p/--pid option takes an argument called a PIDSPEC (PID Specification). The
PIDSPEC defines which tasks get operated on.

The PIDSPEC can beasingle process ID, alist of process | Ds separated by commas, and alist of process
ID ranges also separated by commas. For example:

--pid 1234
This PIDSPEC argument specifiesthat PID 1234 will be moved.

16 Moving tasks with proc SLE RT 15 SP3

--pid 1234,42,1934,15000,15001,15002
This PIDSPEC argument specifies that only listed tasks will be moved.

-p 5000,5100,6010-7000,9232
This PIDSPEC argument specifiesthat tasks 5000, 5100 and 9232 will be moved along with any
existing task with PID in therange 6010 through 7000 inclusive.

@ Note: Information about the range in a PIDSPEC

A range in a PIDSPEC does not need to have running tasks for every number in that range. In fact,
it is not even an error if there are no tasks running in that range; none will be moved in that case.
The range simply specifies to act on any tasks that have a PID or TID that is within that range.

The following example moves the current shell into the cpuset named two with arange PIDSPEC and
back out to the root cpuset with the Bash variable for the current PID.

tux > cset proc -1 -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

tux > echo $%
19253

tux > cset proc -m -p 19250-19260 -t two
cset: moving following pidspec: 19253
cset: moving 1 userspace tasks to /two
cset: done

tux > cset proc -1 -s two
cset: "two" cpuset of CPUSPEC(2) with 2 tasks running

USER PID PPID SPPr TASK NAME
root 19253 16447 Roth bash
root 29456 19253 Roth python ./cset proc -1 -s two

tux > cset proc -m -p $$ -t root
cset: moving following pidspec: 19253
cset: moving 1 userspace tasks to /
cset: done

17 Moving tasks with proc SLE RT 15 SP3

tux > cset proc -1 -s two

cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

Use of the appropriate PIDSPEC can thus be handy to move tasks and groups of tasks. Additionally, there

is one more option that can help with multi-threaded processes, and that isthe - -threads flag. If this

flag is used together with the proc move command with a PIDSPEC and if any of the task IDs in the

PIDSPEC belongs to athread in a process container, then all the sibling threads in that process container

will also get moved. This flag provides an easy mechanism to move all threads of a process by simply

specifying one thread in that process. The following example moves all threads running in cpuset three

to cpuset two by usingthe - -threads flag.

tux > cset set two three

cset:

Name CPUs-X MEMs - X
two 0 n
three

tux > cset proc -1 -s three

Tasks Subs Path

0 0 /two
10 0 /three

cset: "three" cpuset of CPUSPEC(3) with 10 tasks running

USER PID PPID SPPr TASK NAME

tux 16165 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon
tux 16169 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon
tux 16170 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon
tux 16237 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon
tux 16491 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon
tux 16492 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon
tux 16493 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon
tux 17243 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon
tux 17244 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon
tux 27133 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon

tux > cset proc -m -p 16165 --threads -t two

cset: moving following pidspec:

16491,16493,16492,16170,16165,16169,27133,17244,17243,16237
cset: moving 10 userspace tasks to /two

[

cset: done

tux > cset set two three
cset:

18

._.
o°

Moving tasks with proc

.exe
. exe
.exe
.exe
. exe
.exe
.exe
. exe
. exe
.exe

SLE RT 15 SP3

Name CPUs-X MEMs - X Tasks Subs Path

two 2n O n 10 0 /two
three 3n 0 n 0 0 /three

3.2.3.1 Moving all tasks from one cpuset to another

There is a specia case for moving al tasks currently running in one cpuset to another. This can be a
common use case, and when you need to do it, specifying a PIDSPEC with -p is not necessary so long
asyou usethe -f/--fromset andthe -t/--toset options.

The following example moves all 10 beagled threads back to cpuset three with this method.

tux > cset proc -1 two three
cset: "two" cpuset of CPUSPEC(2) with 10 tasks running

USER PID PPID SPPr TASK NAME

tux 16165 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -..
tux 16169 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/1ib64/beagle/BeagleDaemon.exe --bg -...
tux 27133 1 Soth beagled /usr/1lib64/beagle/BeagleDaemon.exe --bg -...

cset: "three" cpuset of CPUSPEC(3) with 0 tasks running

tux > cset proc -m -f two -t three
cset: moving all tasks from two to /three
cset: moving 10 userspace tasks to /three

—
—
o°

cset: done

tux > cset set two three

cset

Name CPUs-X MEMs - X Tasks Subs Path
two 0 n 0 0 /two
three n 10 0 /three

19 Moving tasks with proc SLE RT 15 SP3

3.2.3.2 Moving kernel threads with proc

Kernel threads are special and cset detects tasks that are kernel threads and will refuse to move them
unless you also add a -k/--kthread option to your proc move command. Even if you include -k,
cset will till refuse to move the kernel thread if they are bound to specific CPUs. The reason for this
is system protection.

Several kernel threads, especialy on the real-time Linux kernel, are bound to specific CPUs and depend
on per-CPU kernel variables. If you move these threads to a different CPU than what they are bound to,
you risk at best that the system will become horribly slow, and at worst a system hang. If you must move
those threads (after all, cset needs to give the knowledgeable user access to the keys), then you also
need to usethe --force option.

Warning: Use - - force with care

Overriding atask move command with - -force can have dire consequences for the system. Be
sure of the command before you forceit.

The following example moves al unbound kernel threads running in the root cpuset to the cpuset named
two by using the -k option.

tux > cset proc -k -f root -t two

cset: moving all kernel threads from / to /two

cset: moving 70 kernel threads to: /two

cset: --> not moving 76 threads (not unbound, use --force)
[1%

cset: done

This example uses the fromset—toset facility of the proc subcommand. However, it only specifiesthe -
k option (not the -m option). This has the effect of moving all kernel threads only.

Note that only 70 actual kernel threads were moved and 76 were not. The reason that 76 kernel threads
were not moved was because they are bound to specific CPUs. Now, let us move those kernel threads
back to root.

tux > cset proc -k -f two -t root

cset: moving all kernel threads from /two to /
cset: ** no task matched move criteria

cset: **> kernel tasks are bound, use --force if ok

tux > cset set -1 -s two

20 Moving tasks with proc SLE RT 15 SP3

Name CPUs-X MEMs - X Tasks Subs Path

cset refused to move the kernel threads back to root because it says that they are “bound”. Let us
check thiswith the taskset command.

tux > cset proc -1 -s two | head -5
cset: "two" cpuset of CPUSPEC(2) with 70 tasks running

USER PID PPID SPPr TASK NAME
root 2 0 Soth [kthreadd]
root 55 2 Soth [khelper]

tux > taskset -p 2
pid 2's current affinity mask: 4

tux > cset set -1 -s two

cset:
Name CPUs-X MEMs - X Tasks Subs Path
two 2n 0 n 70 0 /two

Of course, since the cpuset named two only has CPU2 assigned to it, after it was moved the unbound
kernel threadsfrom root to two, their affinity masks got automatically changed to only use CPU2. This
is evident from the taskset output which is a hex value. To really move these threads back to root,
force the move as follows:

tux > cset proc -k -f two -t root --force

cset: moving all kernel threads from /two to /

cset: moving 70 kernel threads to: /

[]

cset: done

o°

3.2.4 Destroying tasks

There actually isno cset subcommand or option to destroy tasks—it is not really needed. Tasks exist
and are accessible on the system as normal, even if they happen to be running in one cpuset or another.
To destroy tasks, usetheusual ctrl — ¢ method or by using the kill(1) command.

21 Destroying tasks SLE RT 15 SP3

3.3 Implementing shielding with set and proc

With the preceding material on the set and proc subcommands, you now have the background to
implement the basic shielding model, like the shield subcommand.

While shield provides thisfunctionality aready, doing this manually can still be useful. For example,
to implement a shielding strategy that need more functionality than shield can provide. In such cases,
you need to first stop using shield sincethat subcommand will interfere with the further application of
set and proc. However, you will still need to implement the functionality of shield to implement
successful shielding.

Remember from the above sections describing shield, that shielding has at minimum three cpusets:
root ,whichisawayspresent and containsall CPUs; system whichisthe non-shielded set of CPUsand
runsunimportant systemtasks; and user , whichisthe shielded set of CPUsand runsyour important tasks.
Remember also that shield moves all movable tasks into system and, optionally, moves unbound
kernel threadsinto system aswell.

You start first by creating the system and user cpusets as follows. Let us assume that the machineis
afour-CPU machine without NUMA memory features. The system cpuset should hold only CPUO while
the user cpuset should hold the rest of the CPUs.

tux > cset set -c 0 -s system
cset: --> created cpuset "system"

tux > cset set -c 1-3 -s user
cset: --> created cpuset "user"

tux > cset set -1

cset:

Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 333 2 /

user 1-3 n 0 n 0 0 /user
system O n 0 n 0 0 /system

Now, move all running user processes into the system cpuset:

tux > cset proc -m -f root -t system

cset: moving all tasks from root to /system

cset: moving 188 userspace tasks to /system

[]
cset: done

o°

22 Implementing shielding with set and proc SLE RT 15 SP3

tux > cset set -1

cset:

Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 146 2 /

user 1-3 n 0 n 0 0 /user
system 0 n 0 n 187 0 /system

This completes the basic shielding setup. Since all user space tasks are running in system, anything that
is spawned from them will also runin system. The user cpuset has nothing running in it unless you
put tasks there with the proc subcommand as described above. If you also want to move movable kernel
threads from root to system (to achieve aform of “interrupt shielding” on areal time Linux kernel,
for example), you would execute the following command as well:

tux > cset proc -k -f root -t system

cset: moving all kernel threads from / to /system

cset: moving 70 kernel threads to: /system

cset: --> not moving 76 threads (not unbound, use --force)
[1%

cset: done

tux > cset set -1

cset

Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 76 2 /

user 1-3 n 0 n 0 0 /user
system 0 n 0 n 257 0 /system

At this point, you have achieved the simple shielding model that the shield subcommand provides. Y ou
can now add other cpuset definitions to expand your shielding strategy beyond that simple model.

3.4 Implementing hierarchy with set and proc

One popular extended shielding model is based on hierarchical cpusets, each with diminishing numbers
of CPUs. This model is used to create priority cpusets that allow assignment of CPU resources to tasks
based on some arbitrary priority definition. The ideais that a higher priority task will get accessto more
CPU resources than alower priority task.

23 Implementing hierarchy with set and proc SLE RT 15 SP3

The example provided here once again assumes a machine with four CPUs and no NUMA memory
features. This base servesto illustrate the point well; however, note that if your machine has (many) more
CPUs, then strategies such as this and others get more interesting.

Define a shielding setup as in the previous section where thereisa system cpuset with only CPUO that
takes care of “unimportant” system tasks. Y ou will usualy require this type of cpuset since it forms the
basis of shielding. Modify the strategy to not usea user cpuset—instead create several new cpusets each
holding one more CPU than the other. These cpusetswill becalled prio low withoneCPU, prio med
withtwo CPUs, prio high withthree CPUs, and prio all with al CPUs.

@ Note: The sense behind creating a prio_all cpuset with all CPUs
You may ask, why createa prio_all with all CPUs when that is substantially the definition of
the root cpuset? The answer isthat it is best to keep a separation between the root cpuset and
everything else, even if a particular cpuset duplicates root exactly. Usually, automation isbuild
on top of acpuset strategy. In these cases, it is best to avoid using invariant names of cpusets, such
as root for example, in this automation.

All of these prio * cpusetscan be created under root, in aflat way; however, it is advantageousto create
them asahierarchy. The reasoning for thisistwofold: first, if acpuset isdestroyed, all itstasks are moved
to its parent; second, one can use exclusive CPUs in a hierarchy.

If acpuset has CPUs that are exclusive to it, then other cpusets may not use those CPUs unless they are
children of that cpuset. Thishasmore rel evance to machineswith many CPUsand more complex strategies.

Start with a clean slate and build the appropriate cpusets as follows:

tux > cset set -r

cset:
Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 344 0 /

tux > cset set -c 0-3 prio_all
cset: --> created cpuset "prio all"

tux > cset set -c 1-3 /prio_all/prio_high
cset: --> created cpuset "/prio all/prio high"

tux > cset set -c 2-3 /prio all/prio high/prio_med

24 Implementing hierarchy with set and proc SLE RT 15 SP3

cset: --> created cpuset "/prio_all/prio_high/prio_med"

tux > cset set -c 3 /prio all/prio high/prio med/prio_low
cset: --> created cpuset "/prio all/prio_high/prio_med/prio_low"

tux > cset set -c 0 system
cset: --> created cpuset "system"

tux > cset set -1 -r

cset

Name CPUs-X MEMs - X Tasks Subs Path

root 0-3 y 0y 344 2 /

system 0 n 0 n 0 0 /system

prio all 0-3 n 0 n 0 1 /prio_all

prio high 1-3 n 0 n 0 1 /prio_all/prio_high

prio med 2-3n 0n 0 1 /prio all/prio high/prio med
prio_ low 3n 0 n 0 0 /prio_all/pr...rio _med/prio_ low

@ Note: Why -r/- - recurse is needed in this case

The option -r/--recurse lists all the sets in the last command above. If you execute that

command without -r/--recurse, prio med and prio low cpusetswould not appear.

The strategy is now implemented. This means that you can move all user space tasks and al movable

kernel threadsinto the system cpuset to activate the shield.

tux > cset proc -m -k -f root -t system

cset: moving all tasks from root to /system

cset: moving 198 userspace tasks to /system

cset: moving 70 kernel threads to: /system

cset: --> not moving 76 threads (not unbound, use --force)
[1%

cset: done

tux > cset set -1 -r

cset:

Name CPUs-X MEMs - X Tasks Subs Path
root 0-3 y 0y 76 2 /
system 0 n 0 n 268 0 /system

25 Implementing hierarchy with set and proc

SLE RT 15 SP3

prio all 0-3 n 0n 0 1 /prio_all

prio_high 1-3 n 0n 0 1 /prio_all/prio_high

prio med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio low 3n 0n 0 0 /prio all/pr...rio med/prio low

The shield isnow active. Sincethe prio * cpuset names are unique, you can assign tasks to them either
viatheir ssimple name, or their full path (as described in Section 3.2.2, “Execing tasks with proc”).

You may have noted that there is an ellipsis in the path of the prio low cpuset in the listing above.
Thisis done to fit the output onto an 80 character screen. To seethe entireline, usethe -v/ - -verbose
flag asfollows:

tux > cset set -1 -r -v

cset:

Name CPUs-X MEMs - X Tasks Subs Path

root 0-3 y 0y 76 2 /

system 0 n 0 n 268 0 /system

prio_all 0-3 n 0 n 0 1 /prio_all

prio high 1-3 n 0 n 0 1 /prio_all/prio_high

prio med 2-3 n 0n 0 1 /prio _all/prio _high/prio _med

prio_ low 3n 0 n 0 0 /prio_all/prio high/prio _med/prio low

26 Implementing hierarchy with set and proc SLE RT 15 SP3

4 Using shortcuts

The commands listed in the previous sections always used all the required options. However, cset does
have a shortcut facility that will execute certain commands without specifying al options. An effort has
been made to do this with the “principle of least surprise”. This meansthat if you do not specify options,
but do specify parameters, then the outcome of the command should be intuitive as possible.

Using shortcutsis not necessary. In fact, you can use either shortcuts or long options. However, using long
optionsinstead of shortcuts does have a use case: when you write a script intended to be self-documenting,
or perhaps when you generate cset documentation.

To begin, the subcommands shield, set and proc canthemselves be shortened to the fewest number
of charactersthat are unambiguous. For example, the following commands are identical:

Long method Short method

tux > cset shield -s -p 1234 tux > cset sh -s -p 1234

tux > cset set -c 1,3 -s newset tux > cset se -c 1,3 -s newset
tux > cset proc -s newset -e bash tux > cset p -s newset -e bash

The proc command can be shortened to p, while shield and set need two letters to disambiguate.

4.1 shield subcommand shortcuts

The shield subcommand supportstwo areaswith shortcuts: the short method (when there are no options
given and whereto shield isthe common use case), and thelong method (which makes -p/--pid optiona
forthe -s/--shield and -u/--unshield options).

For the common use case of actually shielding either a PIDSPEC or executing acommand into the shield,
thefollowing cset commands are equivalent.

L ong method Short method
tux > cset shield -s -p 1234,500-649 tux > cset sh 1234,500-649
tux > cset shield -s -e bash tux > cset sh bash

27 shield subcommand shortcuts SLE RT 15 SP3

When using the -s or -u shield/unshield options, it is optional to use the -p option to specify a
PIDSPEC. For example:

L ong method Short method
tux > cset shield -s -p 1234 tux > cset sh -s 1234
tux > cset shield -u -p 1234 tux > cset sh -u 1234

4.2 set subcommand shortcuts

The set subcommand has alimited number of shortcuts. The option - -set isoptional usually and the
--1list optionisalso optional to list sets. For example, these commands are equivalent:

Long method Short method

tux > cset set -1 -s myset tux > cset se -1 myset

tux > cset se -1 myset tux > cset se myset

tux > cset set -c 1,2,3 -s newset tux > cset se -c 1,2,3 newset
tux > cset set -d -s newset tux > cset se -d newset

tux > cset set -n newname -s oldname tux > cset se -n newname oldname

In fact, if you want to apply either the list or the destroy options to multiple cpuset swith one cset
command, you will not need to use the -s option. For example:

cset se -d myset yourset ourset
--> destroys cpusets: myset, yourset and ourset

cset se -1 prio high prio med prio low
--> lists only cpusets prio _high, prio med and prio_low
--> the -1 is optional in this case since list is default

28 set subcommand shortcuts SLE RT 15 SP3

4.3 proc subcommand shortcuts

For the proc subcommand, the -s, -t and - f optionsto specify the cpuset, theorigination cpuset
and the destination cpuset can sometimes be optional. For example, the following commands are
equivalent. Tolist tasksin cpusets:

L ong method Short method
tux > cset proc -1 -s myset tux > cset p -1 myset
or

tux > cset proc -1 -f myset

or

tux > cset proc -1 -t myset

tux > cset p -1 myset tux > cset p myset
tux > cset proc -1 -s one two tux > cset p -1 one two
tux > cset p -1 one two tux > cset p one two

To execute aprocessinto a cpuset :

L ong method Short method

tux > cset proc -s myset -e bash tux > cset p myset -e bash

Movingtasksinto and out of cpuset shavethefollowing shortcuts. TomoveaPIDSPECintoa cpuset :

L ong method Short method
tux > cset proc -m -p 4242,4243 -s myset tux > cset p -m 4242,4243 myset
tux > cset proc -m -p 12 -t myset tux > cset p -m 12 myset

29 proc subcommand shortcuts SLE RT 15 SP3

To move all tasks from one cpuset to another:

L ong method Short method
tux > cset proc -m -f setl -t set2 tux > cset p -m setl set2
or

tux > cset proc -m -s setl -t set2

or

tux > cset proc -m -f setl -s set2

30 proc subcommand shortcuts SLE RT 15 SP3

5 What to do if there are problems

If you encounter any issueswith the cset application, you can file abug report here: hitps:/github.com/

Ipechacek/cpuset/issues 7

If you areusing cset on asupported operating system such as SUSE Linux Enterprise Server 15 SP3 or
SUSE Linux Enterprise Real Time 15 SP3, then should use the following Bugzilla product listing here:

https://bugzilla.suse.com <

cset contains alogging application that isinvaluable for our developers to diagnose problems and find
guick solutions. To create alog of your issue, use the - -1log option with afile name as an argument to
the main cset application. For example:

tux > cset -1 logfile.txt set -n newname oldname

If the issue persists and is reproducible, Including this report in your bug submission greatly reduces
development time. This command saves debugging information within the file Logfile.txt.

31 SLE RT 15 SP3

https://github.com/lpechacek/cpuset/issues
https://github.com/lpechacek/cpuset/issues
https://bugzilla.suse.com

A GNU Licenses

the GNU
Documentation License version 1.2.

This appendix contains Free

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher away to get credit for their work, while not being considered responsible
for modifications made by others.

ThisLicenseisakind of "copyleft", which meansthat derivative works of the document must themselves
be freein the same sense. It complements the GNU General Public License, which is acopyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose s instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manua or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice grants
aworld-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document”, below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". Y ou accept the license if you copy, modify or distribute the work
inaway requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document isin part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be amatter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If asection
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The"Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programsor
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to avariety of formats suitable for input to text formatters. A copy madein an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readersis not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not " Transparent” is called "Opague”.
Examplesof suitableformatsfor Transparent copiesinclude plain ASCII without markup, Texinfoinput
format, LaTeX input format, SGML or XML using apublicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

32

The"Title Page" means, for aprinted book, the title pageitself, plus such following pages as are needed
to hold, legibly, the material this Licenserequiresto appear in thetitle page. For worksin formatswhich
do not have any title page as such, "Title Page" means the text near the most prominent appearance of
the work'sttitle, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XY Z stands for aspecific section name mentioned below, such as" Acknowledgements’, " Dedications”,
"Endorsements”, or "History".) To "Preservethe Title" of such asection when you modify the Document
means that it remains a section "Entitled X'YZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may haveis void and has no effect on the meaning of this License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercially or noncommercialy,
provided that this License, the copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of
this License. Y ou may not use technical measures to obstruct or control the reading or further copying
of the copies you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute alarge enough number of copies you must also follow the conditions in section 3.

Y oumay also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copiesin mediathat commonly have printed covers) of the Document,
numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both coversmust also clearly and legibly identify
you as the publisher of these copies. The front cover must present the full title with all words of the
title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, aslong as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover aretoo voluminousto fit legibly, you should put the first ones listed
(asmany asfit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access
to download using public-standard network protocols a complete Transparent copy of the Document,
free of added material. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opague copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

Itisrequested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

'Y oumay copy and distribute aModified Version of the Document under the conditions of sections2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Versiontowhoever possessesacopy of it. In addition, you must do thesethingsinthe Modified Version:

A. UseintheTitle Page (and on the covers, if any) atitle distinct from that of the Document,
and from those of previous versions (which should, if therewere any, belisted in the History
section of the Document). Y ou may use the same title as a previous version if the original
publisher of that version gives permission.

B. ListontheTitlePage, asauthors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. Stateon the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserveall the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

SLE RT 15 SP3

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

H. Include an unaltered copy of this License.

Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least thetitle, year, new authors, and publisher of the Modified Version asgiven onthe Title
Page. If thereis no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. Y ou may omit anetwork location for awork that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled "Acknowledgements” or "Dedications’, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserveadll thelnvariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with
any Invariant Section.

0. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some
or al of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other section titles.

Y ou may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties-for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
aBack-Cover Text, to the end of the list of Cover Textsin the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document aready includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of al of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of thisLicense, and multipleidentical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make
the same adjustment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled "History" in the variousoriginal documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements”,
and any sections Entitled "Dedications”. Y ou must delete all sections Entitled "Endorsements”.

6. COLLECTIONS OF DOCUMENTS

Y oumay makeacollection consisting of the Document and other documentsreleased under thisLicense,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of
each of the documentsin all other respects.

33

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert acopy of this Licenseinto the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on avolume of a storage or distribution medium, is called an "aggregate” if the copyright
resulting from the compilation is not used to limit thelegal rights of the compilation's users beyond what
the individua works permit. When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Trandation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a transation of this
License, and al the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License
or anotice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements’, "Dedications’, or "History", the
requirement (section 4) to Preserveits Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for
under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies that
aparticular numbered version of this License "or any later version” applies to it, you have the option
of following the terms and conditions either of that specified version or of any later version that has
been published (not as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as adraft) by the Free
Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts
A copy of the license is included in the section entitled “GNU

Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sectionswithout Cover Texts, or some other combination of thethree, mergethose
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examplesin parallel under your choiceof free softwarelicense, such asthe GNU General Public License,
to permit their usein free software.

SLE RT 15 SP3

http://www.gnu.org/copyleft/

	Shielding Linux Resources
	Chapter 1. Introduction
	Chapter 2. The basic shielding model
	2.1. A simple shielding example
	2.2. Setup and teardown of the shield
	2.3. Moving interesting tasks into and out of the shield
	2.3.1. Executing a process into the shield
	2.3.2. Moving a running task into and out of the shield

	Chapter 3. Full-featured cpuset manipulation commands
	3.1. The set subcommand
	3.1.1. Creating and destroying cpusets with set
	3.1.2. Listing cpusets with set

	3.2. The proc subcommand
	3.2.1. Listing tasks with proc
	3.2.2. Execing tasks with proc
	3.2.3. Moving tasks with proc
	3.2.3.1. Moving all tasks from one cpuset to another
	3.2.3.2. Moving kernel threads with proc

	3.2.4. Destroying tasks

	3.3. Implementing shielding with set and proc
	3.4. Implementing hierarchy with set and proc

	Chapter 4. Using shortcuts
	4.1. shield subcommand shortcuts
	4.2. set subcommand shortcuts
	4.3. proc subcommand shortcuts

	Chapter 5. What to do if there are problems
	Appendix A. GNU Licenses
	A.1. GNU Free Documentation License

