
SUSE Linux Enterprise Real Time 15 SP3

Shielding Linux Resources

Shielding Linux Resources
SUSE Linux Enterprise Real Time 15 SP3

by Alex Tsariounov

Publication Date: July 09, 2024

https://documentation.suse.com

Copyright © 2006–2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A

copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”.

https://documentation.suse.com

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the property of their

respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks (*) denote third-

party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee

complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable for possible errors

or the consequences thereof.

http://www.suse.com/company/legal/

Contents

1 Introduction 1

2 The basic shielding model 2

2.1 A simple shielding example 2

2.2 Setup and teardown of the shield 3

2.3 Moving interesting tasks into and out of the shield 5

Executing a process into the shield 5 • Moving a running task into and out of

the shield 7

3 Full-featured cpuset manipulation commands 10

3.1 The set subcommand 10

Creating and destroying cpusets with set 10 • Listing cpusets with set 12

3.2 The proc subcommand 13

Listing tasks with proc 13 • Execing tasks with proc 15 • Moving tasks

with proc 16 • Destroying tasks 21

3.3 Implementing shielding with set and proc 22

3.4 Implementing hierarchy with set and proc 23

4 Using shortcuts 27

4.1 shield subcommand shortcuts 27

4.2 set subcommand shortcuts 28

4.3 proc subcommand shortcuts 29

5 What to do if there are problems 31

A GNU Licenses 32

iv Shielding Linux Resources

1 Introduction

In the Linux kernel, the cpuset facility provides a mechanism for creating logical entities called “cpusets”

that encompass definitions of CPUs and NUMA Memory Nodes (if NUMA is available). Cpusets constrain

the CPU and Memory placement of a task to only the resources defined within that cpuset. These cpusets

can then be arranged into a nested hierarchy visible in the “cpuset” virtual file system. Sets of tasks can be

assigned to these cpusets to constrain the resources that they use. The tasks can be moved from one cpuset

to another to use other resources defined in those other cpusets.

The cset command is a Python application that provides a command line front-end for the Linux cpusets

functionality. Working with cpusets directly can be confusing and slightly complex. The cset tool hides

that complexity behind an easy-to-use command line interface.

There are two distinct use cases for cset: the basic shielding use case and the “advanced” case of using raw

set and proc subcommands. The basic shielding function is accessed with the shield subcommand

and described in the next section. Using the raw set and proc subcommands allows one to set up

arbitrarily complex cpusets and is described in Chapter 3, Full-featured cpuset manipulation commands.

Note that in general, one either uses the shield subcommand or a combination of the set and proc
subcommands. One rarely, if ever, uses all of these subcommands together. Doing so will likely become too

confusing. Additionally, the shield subcommand sets up its required cpusets with exclusively marked

CPUs. This can interfere with your cpuset strategy. If you find that you need more functionality for

your strategy than shield provides, go ahead and transition to using set and proc exclusively. It is

straightforward to implement what shield does with a few extra set and proc subcommands.

OBTAINING ONLINE HELP

For a full list of cset subcommands

tux > cset help

For in-depth help on individual subcommands

tux > cset help <subcommand>

For options on individual subcommands

tux > cset <subcommand> (-h | --help)

1 SLE RT 15 SP3

2 The basic shielding model

Although any setup of cpuset s can really be described as shielding, there is one prevalent shielding

model in use that is so common that cset has a subcommand that is dedicated to its use. This subcommand

is called shield .

The concept behind this model is the use of three cpuset s:

Root cpuset . is always present in all configurations and contains all CPUs.

System cpuset . contains CPUs which are used for system tasks. These are the normal tasks that

are not important, but which need to run on the system.

User cpuset . “the shield”, contains CPUs which are used for important tasks. Only those tasks

that are somehow important, usually tasks whose performance determines the overall rating for the

machine, are run in the user cpuset .

The shield subcommand manages all of these cpuset s and lets you define the CPUs and memory

nodes that are in the shielded and unshielded sets. The subcommand automatically moves all

movable tasks on the system into the unshielded cpuset on shield activation, and back into the

root cpuset on shield tear down. The subcommand lets you move tasks into and out of the shield.

Additionally, you can move special tasks (kernel threads) which normally run in the root cpuset into

the unshielded set. This makes your shield have even less disturbance.

The shield subcommand abstracts the management of these cpuset s away from you. It provides

options that drive how the shield is set up, which tasks are to be shielded or not, and the status of the shield.

In fact, you need not be bothered with the naming of the required cpuset s or even where the cpuset

file system is mounted. cset and the shield subcommand takes care of all that.

If you need to define more cpuset s for your application, it is likely that this simple shielding is not rich

enough for you. In this case, you should transition to using the set and proc subcommands described

in Chapter 3, Full-featured cpuset manipulation commands.

2.1 A simple shielding example

Assume a four-core machine that has uniform memory access. This means there are four CPUs at your

disposal and there is only one memory node available. On such machines, there is no need to specify any

memory node parameters to cset, it sets up the only available memory node by default.

2 A simple shielding example SLE RT 15 SP3

Usually, one wants to dedicate as many CPUs to the shield as possible and leave a minimal set of CPUs

for normal system processing. The reasoning for this is, the performance of the important tasks will rule

the performance of the installation as a whole. These important tasks need as many resources available to

them as possible, exclusive of other, unimportant tasks that are running on the system.

Note: Definition of task
In this document task is used to represent either a process or a thread that is running on the system.

2.2 Setup and teardown of the shield

To set up a shield of three CPUs with one CPU left for low priority system processing, issue the following

command.

tux > cset shield -c 1-3
cset: --> activating shielding:
cset: moving 176 tasks from root into system cpuset...
[==]%
cset: "system" cpuset of CPUSPEC(0) with 176 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running

This command does several things. First, it creates a user cpuset with what is called a CPUSPEC (CPU

specification) from the -c/--cpu option. This CPUSPEC specifies to use CPUs 1 through 3 inclusively.

Next, the command creates a system cpuset with a CPUSPEC that is the inverse of the -c option

for the current machine. On this machine that cpuset will only contain the first CPU, CPU0. Next, all

user space processes running in the root cpuset are transferred to the system cpuset . This makes

all those processes run only on CPU0. The effect of this is that the shield consists of CPUs 1 through 3

and they are now idling.

Note that the command did not move the kernel threads that are running in the root cpuset to the

system cpuset . This is because you may want these kernel threads to use all available CPUs. If you

do not, then you can use the -k / --kthread option as described below.

The shield setup command above outputs the information of which cpuset s were created and how many

tasks are running on each. To see the current status of the shield again, issue this command:

tux > cset shield
cset: --> shielding system active with
cset: "system" cpuset of CPUSPEC(0) with 176 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running

3 Setup and teardown of the shield SLE RT 15 SP3

Which shows us that the shield is set up and that 176 tasks are running in the system cpuset—the

unshielded cpuset .

It is important to move all possible tasks from the root cpuset to the unshielded system cpuset

because a task’s cpuset property is inherited by its children. As all running tasks (including init) have

been moved to the unshielded system cpuset , that means that any new tasks that are spawned will

also run in the unshielded system cpuset .

Note. There is a minor chance that a task forks during move and its child remains in the root cpuset .

Some kernel threads can be moved into the unshielded system cpuset as well. These are the threads

that are not bound to specific CPUs. If a kernel thread is bound to a specific CPU, then it is generally not

a good idea to move that thread to the system set because at worst it may hang the system and at best it

will slow the system down significantly. These threads are usually the IRQ threads on a real time Linux

kernel, for example, and you should not move these kernel threads into system . If you leave them in the

root cpuset , then they will have access to all CPUs.

However, if your application demands an even “quieter” shield, then you can move all movable kernel

threads into the unshielded system set with the following command.

tux > cset shield -k on
cset: --> activating kthread shielding
cset: kthread shield activated, moving 70 tasks into system cpuset...
[==]%
cset: done

You can see that this moved an additional 70 tasks to the unshielded system cpuset . Note that the -

k / --kthread on parameter can be given at the shield's creation time. You do not need to perform these

two steps separately if you know you will want kernel thread shielding as well. Executing cset shield
again shows us the current state of the shield.

tux > cset shield
cset: --> shielding system active with
cset: "system" cpuset of CPUSPEC(0) with 246 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running

You can get a detailed listing of what is running in the shield by adding either -s/--shield or -u/--

unshield to the shield subcommand and using the verbose flag. You will get output similar to the

following.

tux > cset shield --unshield -v
cset: "system" cpuset of CPUSPEC(0) with 251 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 1 0 Soth init [5]

4 Setup and teardown of the shield SLE RT 15 SP3

root 2 0 Soth [kthreadd]
root 84 2 Sf50 [IRQ-9
]...
tux 31796 31789 Soth less
root 32653 25222 Roth python ./cset shield --unshield -v

The previous listing is abbreviated—there are 251 tasks running in the system set. However, the SPPr

field may need a little explanation. SPPr stands for State, Policy and Priority . You can see

that the initial two tasks are Stopped and running in timeshare priority, marked as oth (for other). The

[IRQ-9] task is also stopped, but marked at real time FIFO policy with a priority of 50. The last task in

the listing is the cset command itself and is marked as running. Also note that adding a second -v/--

verbose option will not restrict the output to fit into an 80 character screen.

Tear down of the shield, stopping the shield in other words, is done with the -r/--reset option to the

shield subcommand. When this command is issued, both the system and user cpuset s are deleted

and any tasks that are running in both of those cpuset s are moved to the root cpuset . Once so moved,

all tasks will have access to all resources on the system. For example:

tux > cset shield --reset
cset: --> deactivating/reseting shielding
cset: moving 0 tasks from "/user" user set to root set...
cset: moving 250 tasks from "/system" system set to root set...
[==]%
cset: deleting "/user" and "/system" sets
cset: done

2.3 Moving interesting tasks into and out of the shield
Now that a shield is running, the objective is to run processes that you have categorized as important in

that shield. These processes can be anything, but usually they are directly related to the purpose of the

machine. There are two ways to run tasks in the shield:

Execute a process into the shield

Move an already running task into the shield

2.3.1 Executing a process into the shield

Running a new process in the shield can be done with the -e / --exec option to the shield
subcommand. This is the simplest way to get a task to run in the shield. For this example, execute a new

Bash shell into the shield with the following commands.

5 Moving interesting tasks into and out of the shield SLE RT 15 SP3

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running
cset: done

tux > cset shield -e bash
cset: --> last message, executed args into cpuset "/user", new pid is: 13300

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 13300 8583 Soth bash
root 13329 13300 Roth python ./cset shield -s -v

tux > exit

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running
cset: done

The first command above lists the status of the shield. You see that the shield is defined as CPUs 1 through

3 inclusive and currently there are no tasks running in it.

The second command executes the Bash shell into the shield with the -e option. The last message of

cset lists the PID of the new process.

Note: Separating the tool options from the cset command
cset follows the tradition of separating the tool options from the command to be executed options

with a double hyphen (--). This is not shown in this simple example, but if the command you

want to execute also takes options, separate them with the double hyphen as follows:

tux > cset shield -e mycommand -- -v

The -v will be passed to mycommand, and not to cset.

The next command lists the status of the shield again. There are two tasks running shielded: our new

shell and the cset status command itself. Remember that the cpuset property of a task is inherited by

its children. Since running the new shell in the shield, its child, which is the status command, also ran

in the shield.

6 Executing a process into the shield SLE RT 15 SP3

Tip: Executing a shell into a shield
Executing a shell into a shield is a useful way to experiment with running tasks in the shield since

all children of the shell will also run in the shield.

The last command exits the shell. After this, shield status is requested again but again, it does not contain

any tasks.

You may have noticed in the output above that both the new shell and the status command are running as

the root user. This is because cset needs to run as root and so all it is children will also run as root .

If you need to run a process under a different user and or group, you may use the --user and --group

options for execution as follows.

tux > cset shield --user=tux --group=users -e bash
cset: --> last message, executed args into cpuset "/user", new pid is: 14212

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 14212 8583 Soth bash
tux 14241 14212 Roth python ./cset shield -s -v

2.3.2 Moving a running task into and out of the shield

While executing a process into the shield is undoubtedly useful, most of the time, you will want to

move already running tasks into and out of the shield. The cset shield subcommand includes two

options for doing this: -s/--shield and -u/--unshield . These options require a PIDSPEC (process

specification) to also be specified with the -p/--pid option. The PIDSPEC defines which tasks get

operated on. The PIDSPEC can be a single process ID, a list of process IDs separated by commas, and a

list of process ID ranges separated by dashes, groups of which are separated by commas. For example:

--shield --pid 1234

This PIDSPEC argument specifies that PID 1234 be shielded.

--shield --pid 1234,42,1934,15000,15001,15002

This PIDSPEC argument specifies that this list of PIDs only be moved into the shield.

7 Moving a running task into and out of the shield SLE RT 15 SP3

--unshield -p 5000,5100,6010-7000,9232

This PIDSPEC argument specifies that PIDs 5000 , 5100 and 9232 be unshielded (moved out of

the shield) along with any existing PID that is in the range 6010 through 7000 inclusive.

Note: Information about the range in a PIDSPEC
A range in a PIDSPEC does not need to have tasks running for every number in that range. In fact,

it is not even an error if there are no tasks running in that range: none will be moved in that case.

The range only specifies to act on any tasks that have a PID or TID that is within that range.

Use of the appropriate PIDSPEC can thus be handy to move tasks and groups of tasks into and out of

the shield. Additionally, there is one more option that can help with multi-threaded processes, and that

is the --threads flag. If this flag is used together with a shield or unshield command with a

PIDSPEC and if any of the task IDs in the PIDSPEC belong to a thread in a process container, then all the

sibling threads in that process container will get shielded or unshielded as well. This flag provides an easy

mechanism to shield/unshield all threads of a process by simply specifying one thread in that process.

The following example moves the current shell into the shield with a range PIDSPEC and back out with

the Bash variable for the current PID.

tux > echo $$
22018

tux > cset shield -s -p 22010-22020
cset: --> shielding following pidspec: 22010-22020
cset: done

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 3770 22018 Roth python ./cset shield -s -v
root 22018 5034 Soth bash
cset: done

tux > cset shield -u -p $$
cset: --> unshielding following pidspec: 22018
cset: done

8 Moving a running task into and out of the shield SLE RT 15 SP3

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running
cset: done

9 Moving a running task into and out of the shield SLE RT 15 SP3

3 Full-featured cpuset manipulation commands

While basic shielding as described above is useful and a common use model for cset , there comes

a time when more functionality will be desired to implement your strategy. To implement this, cset
provides two subcommands: set , which allows you to manipulate cpusets; and proc , which allows you

to manipulate processes within those cpusets.

3.1 The set subcommand

To do anything with cpusets, you must be able to create, adjust, rename, move, and destroy them. The

set subcommand allows the management of cpusets in such a manner.

3.1.1 Creating and destroying cpusets with set

The basic syntax of set for cpuset creation is:

tux > cset set -c 1-3 -s my_cpuset1
cset: --> created cpuset "my_cpuset1"

This creates a cpuset named my_cpuset1 with a CPUSPEC of CPU1, CPU2 and CPU3. The CPUSPEC

is the same concept as described in the Section 2.2, “Setup and teardown of the shield”. The set
subcommand also takes a -m / --mem option that lets you specify the memory nodes the set will use and

flags to make the CPUs and MEMs exclusive to the cpuset. If you are on a non-NUMA machine, leave

the -m option out and the default memory node 0 will be used.

Like with shield , you can adjust the CPUs and MEMs with subsequent calls to set. If, for example,

you want to adjust the my_cpuset1 cpuset to only use CPUs 1 and 3 (and omit CPU2), then issue the

following command.

tux > cset set -c 1,3 -s my_cpuset1
cset: --> modified cpuset "my_cpuset

cset will then adjust the CPUs that are assigned to the my_cpuset1 set to only use CPU1 and CPU3.

To rename a cpuset, use the -n/--newname option. For example:

tux > cset set -s my_cpuset1 -n super_set
cset: --> renaming "/cpusets/my_cpuset1" to "super_set"

Renames the cpuset called my_cpuset1 to super_set .

10 The set subcommand SLE RT 15 SP3

To destroy a cpuset, use the -d/--destroy option as follows.

tux > cset set -d super_set
cset: --> processing cpuset "super_set", moving 0 tasks to parent "/"...
cset: --> deleting cpuset "/super_set"
cset: done

This command destroys the newly created cpuset called super_set . When a cpuset is destroyed, all the

tasks running in it are moved to the parent cpuset. The root cpuset, which always exists and always contains

all CPUs, cannot be destroyed. You may also give the --destroy option a list of cpusets to destroy.

Note: Information about the mounted cpuset file system
The cset subcommand creates the cpusets based on a mounted cpuset file system. You do not

need to know where that file system is mounted, although it is easy to figure out (by default it

is on /cpusets). When you give the set subcommand a name for a new cpuset, it is created

wherever the cpuset file system is mounted.

To create a cpuset hierarchy, then you must give a path to the cset set subcommand. This path will

always begin with the root cpuset, for which the path is / . For example:

tux > cset set -c 1,3 -s top_set
cset: --> created cpuset "top_set"

tux > cset set -c 3 -s /top_set/sub_set
cset: --> created cpuset "/top_set/sub_set"

These commands created two cpusets: top_set and sub_set . The top_set uses CPU1 and CPU3.

It has a subset of sub_set which only uses CPU3. Once you have created a subset with a path, then if

the name is unique, you do not need to specify the path to affect it. If the name is not unique, then cset
will complain and ask you to use the path. For example:

tux > cset set -c 1,3 -s sub_set
cset: --> modified cpuset "sub_set

This command adds CPU1 to the sub_set cpuset for its use. Note that using the path in this case is

optional.

If you attempt to destroy a cpuset which has sub-cpusets, cset will complain and not do it unless you

use the -r/--recurse and the --force options. If you do use --force , then all the tasks running in

all subsets of the deletion target cpuset will be moved to the target’s parent cpuset and all cpusets.

11 Creating and destroying cpusets with set SLE RT 15 SP3

Moving a cpuset from under a certain cpuset to a different location is not implemented.

3.1.2 Listing cpusets with set

To list cpusets, use the set subcommand with the -l/--list option. For example:

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 320 1 /
one 3 n 0 n 0 1 /one

This shows that there is currently one cpuset present called one . (Of course there is also the root set,

which is always present.) The output shows that the one cpuset has no tasks running in it. The root cpuset

has 320 tasks running. The -X for CPUs and MEMs fields denotes whether the CPUs and MEMs in the

cpusets are marked exclusive to those cpusets. Note that the one cpuset has subsets as indicated by a 1

in the Subs field. You can specify a cpuset to list with the set subcommand as follows:

tux > cset set -l -s one
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
one 3 n 0 n 0 1 /one
two 3 n 0 n 0 1 /one/two

This output shows that there is a cpuset called two in cpuset one and it also has subset. You can also

ask for a recursive listing as follows:

tux > cset set -l -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 320 1 /
one 3 n 0 n 0 1 /one
two 3 n 0 n 0 1 /one/two
three 3 n 0 n 0 0 /one/two/three

This command lists all cpusets existing on the system since it asks for a recursive listing beginning at the

root cpuset. Incidentally, should you need to specify the root cpuset you can use either root or / to

specify it explicitly—just remember that the root cpuset cannot be deleted or modified.

12 Listing cpusets with set SLE RT 15 SP3

3.2 The proc subcommand

Now that you know how to create, rename and destroy cpusets with the set subcommand, the next step is

to manage threads and processes in those cpusets. The subcommand to do this is called proc and it allows

you to execute processes into a cpuset, move existing tasks around existing cpusets, and list tasks running

in specified cpusets. For the following examples, let us assume a cpuset setup of two sets as follows:

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 309 2 /
two 2 n 0 n 3 0 /two
three 3 n 0 n 10 0 /three

3.2.1 Listing tasks with proc

Operation of the proc subcommand follows the same model as the set subcommand. For example, to

list tasks in a cpuset, you need to use the -l/--list option and specify the cpuset by name or, if the

name exists multiple times in the cpuset hierarchy, by path. For example:

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 3 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 16141 4300 Soth bash
root 16171 16141 Soth bash
root 16703 16171 Roth python ./cset proc -l two

This output shows us that the cpuset called two has CPU2 only attached to it and is running three tasks: two

shells and the python command to list it. Note that cpusets are inherited so that if a process is contained

in a cpuset, then any children it spawns also run within that set. In this case, the python command to list

set two was run from a shell already running in set two . This can be seen by the PPID (parent process

ID) of the python command matching the PID of the shell.

Additionally, the SPPr field needs explanation. SPPr stands for State, Policy and Priority .

You can see that the initial two tasks are stopped and running in timeshare priority, marked as oth (for

other). The last task is marked as running, R and at timeshare priority, oth . If any of these tasks would

have been at real time priority, the policy would be shown as f for FIFO or r for round robin. The priority

would be a number from 1 to 99. See below for an example.

13 The proc subcommand SLE RT 15 SP3

tux > cset proc -l -s root | head -7
cset: "root" cpuset of CPUSPEC(0-3) with 309 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 1 0 Soth init [5]
root 2 0 Soth [kthreadd]
root 3 2 Sf99 [migration/0]
root 4 2 Sf99 [posix_cpu_timer]

This output shows the first few tasks in the root cpuset. Note that both init and [kthread]

are running at timeshare; however, the [migration/0] and [posix_cpu_timer] kernel threads are

running at real-time policy of FIFO and priority of 99 . Incidentally, this output is from a system running

the real-time Linux kernel which runs some kernel threads at real-time priorities. And finally, note that

you can use cset as any other Linux tool and include it in pipelines as in the example above.

Taking a peek into the third cpuset called three , you can see output such as:

tux > cset proc -l -s three
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17265 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...

This output shows that a lot of beagled tasks are running in this cpuset and it also shows an ellipsis (…)

at the end of their listings. If you see this ellipsis, that means that the command was too long to fit onto an

80 character screen. To see the entire command line, use the -v/--verbose flag:

tux > cset proc -l -s three -v | head -4
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg --autostarted
 --indexing-delay 300

14 Listing tasks with proc SLE RT 15 SP3

3.2.2 Execing tasks with proc

To execute a task into a cpuset, the proc subcommand needs to be employed with the -e/--exec option.

Let us execute a shell into the cpuset named two in our set. First, check to see what is running that set:

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

tux > cset proc -s two -e bash
cset: --> last message, executed args into cpuset "/two", new pid is: 20955

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 20955 19253 Soth bash
root 20981 20955 Roth python ./cset proc -l two

You can see that initially, two had nothing running in it. After the completion of the second command,

list two again and see that there are two tasks running: the shell which you executed and the python
cset command that is listing the cpuset. The reason for the second task is that the cpuset property of a

running task is inherited by all its children. Because you executed the listing command from the new shell

which was bound to cpuset two, the resulting process for the listing is also bound to cpuset two . Let us

test that by running a new shell with no prefixed cset command.

tux > bash

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 3 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 20955 19253 Soth bash
root 21118 20955 Soth bash
root 21147 21118 Roth python ./cset proc -l two

Here again, you can see that the second shell, PID 21118 , has a parent PID of 20955 which is the first

shell. Both shells, and the listing command, are running in the two cpuset.

15 Execing tasks with proc SLE RT 15 SP3

Note: Separating the Tool Options From the cset Command
cset follows the tradition of separating the tool options from the command to be executed options

with a double hyphen (--). This is not shown in this simple example, but if the command you

want to execute also takes options, separate them with the double hyphen as follows:

tux > cset proc -s myset -e mycommand -- -v

The -v will be passed to mycommand , and not to cset .

Tip: Executing a shell into a cpuset
Executing a shell into a cpuset is a useful way to experiment with running tasks in that cpuset since

all children of the shell will also run in the same cpuset.

If you misspell the command to be executed, the result may be puzzling. For example:

tux > cset proc -s two -e blah-blah
cset: --> last message, executed args into cpuset "/two", new pid is: 21655
cset: **> [Errno 2] No such file or directory

The result is no new process even though a new PID is output. The reason for the message is of course

that the cset process forked in preparation of the execution, but the command blah-blah was not

found to execute it.

3.2.3 Moving tasks with proc

Although the ability to execute a task into a cpuset is fundamental, you will most likely be moving

tasks between cpusets more often. Moving tasks is accomplished with the -m/--move and -p/--pid

options to the proc subcommand of cset . The move option tells the proc subcommand that a task

move is requested. The -p/--pid option takes an argument called a PIDSPEC (PID Specification). The

PIDSPEC defines which tasks get operated on.

The PIDSPEC can be a single process ID, a list of process IDs separated by commas, and a list of process

ID ranges also separated by commas. For example:

--pid 1234

This PIDSPEC argument specifies that PID 1234 will be moved.

16 Moving tasks with proc SLE RT 15 SP3

--pid 1234,42,1934,15000,15001,15002

This PIDSPEC argument specifies that only listed tasks will be moved.

-p 5000,5100,6010-7000,9232

This PIDSPEC argument specifies that tasks 5000 , 5100 and 9232 will be moved along with any

existing task with PID in the range 6010 through 7000 inclusive.

Note: Information about the range in a PIDSPEC
A range in a PIDSPEC does not need to have running tasks for every number in that range. In fact,

it is not even an error if there are no tasks running in that range; none will be moved in that case.

The range simply specifies to act on any tasks that have a PID or TID that is within that range.

The following example moves the current shell into the cpuset named two with a range PIDSPEC and

back out to the root cpuset with the Bash variable for the current PID.

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

tux > echo $$
19253

tux > cset proc -m -p 19250-19260 -t two
cset: moving following pidspec: 19253
cset: moving 1 userspace tasks to /two
cset: done

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 19253 16447 Roth bash
root 29456 19253 Roth python ./cset proc -l -s two

tux > cset proc -m -p $$ -t root
cset: moving following pidspec: 19253
cset: moving 1 userspace tasks to /
cset: done

17 Moving tasks with proc SLE RT 15 SP3

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

Use of the appropriate PIDSPEC can thus be handy to move tasks and groups of tasks. Additionally, there

is one more option that can help with multi-threaded processes, and that is the --threads flag. If this

flag is used together with the proc move command with a PIDSPEC and if any of the task IDs in the

PIDSPEC belongs to a thread in a process container, then all the sibling threads in that process container

will also get moved. This flag provides an easy mechanism to move all threads of a process by simply

specifying one thread in that process. The following example moves all threads running in cpuset three

to cpuset two by using the --threads flag.

tux > cset set two three
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 0 0 /two
three 3 n 0 n 10 0 /three

tux > cset proc -l -s three
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 27133 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...

tux > cset proc -m -p 16165 --threads -t two
cset: moving following pidspec:
 16491,16493,16492,16170,16165,16169,27133,17244,17243,16237
cset: moving 10 userspace tasks to /two
[==]%
cset: done

tux > cset set two three
cset:

18 Moving tasks with proc SLE RT 15 SP3

Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 10 0 /two
three 3 n 0 n 0 0 /three

3.2.3.1 Moving all tasks from one cpuset to another

There is a special case for moving all tasks currently running in one cpuset to another. This can be a

common use case, and when you need to do it, specifying a PIDSPEC with -p is not necessary so long

as you use the -f/--fromset and the -t/--toset options.

The following example moves all 10 beagled threads back to cpuset three with this method.

tux > cset proc -l two three
cset: "two" cpuset of CPUSPEC(2) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -…
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 27133 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
cset: "three" cpuset of CPUSPEC(3) with 0 tasks running

tux > cset proc -m -f two -t three
cset: moving all tasks from two to /three
cset: moving 10 userspace tasks to /three
[==]%
cset: done

tux > cset set two three
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 0 0 /two
three 3 n 0 n 10 0 /three

19 Moving tasks with proc SLE RT 15 SP3

3.2.3.2 Moving kernel threads with proc

Kernel threads are special and cset detects tasks that are kernel threads and will refuse to move them

unless you also add a -k/--kthread option to your proc move command. Even if you include -k ,

cset will still refuse to move the kernel thread if they are bound to specific CPUs. The reason for this

is system protection.

Several kernel threads, especially on the real-time Linux kernel, are bound to specific CPUs and depend

on per-CPU kernel variables. If you move these threads to a different CPU than what they are bound to,

you risk at best that the system will become horribly slow, and at worst a system hang. If you must move

those threads (after all, cset needs to give the knowledgeable user access to the keys), then you also

need to use the --force option.

Warning: Use --force with care
Overriding a task move command with --force can have dire consequences for the system. Be

sure of the command before you force it.

The following example moves all unbound kernel threads running in the root cpuset to the cpuset named

two by using the -k option.

tux > cset proc -k -f root -t two
cset: moving all kernel threads from / to /two
cset: moving 70 kernel threads to: /two
cset: --> not moving 76 threads (not unbound, use --force)
[==]%
cset: done

This example uses the fromset→toset facility of the proc subcommand. However, it only specifies the -

k option (not the -m option). This has the effect of moving all kernel threads only.

Note that only 70 actual kernel threads were moved and 76 were not. The reason that 76 kernel threads

were not moved was because they are bound to specific CPUs. Now, let us move those kernel threads

back to root .

tux > cset proc -k -f two -t root
cset: moving all kernel threads from /two to /
cset: ** no task matched move criteria
cset: **> kernel tasks are bound, use --force if ok

tux > cset set -l -s two

20 Moving tasks with proc SLE RT 15 SP3

cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 70 0 /two

cset refused to move the kernel threads back to root because it says that they are “bound”. Let us

check this with the taskset command.

tux > cset proc -l -s two | head -5
cset: "two" cpuset of CPUSPEC(2) with 70 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 2 0 Soth [kthreadd]
root 55 2 Soth [khelper]

tux > taskset -p 2
pid 2's current affinity mask: 4

tux > cset set -l -s two
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 70 0 /two

Of course, since the cpuset named two only has CPU2 assigned to it, after it was moved the unbound

kernel threads from root to two , their affinity masks got automatically changed to only use CPU2. This

is evident from the taskset output which is a hex value. To really move these threads back to root,

force the move as follows:

tux > cset proc -k -f two -t root --force
cset: moving all kernel threads from /two to /
cset: moving 70 kernel threads to: /
[==]%
cset: done

3.2.4 Destroying tasks

There actually is no cset subcommand or option to destroy tasks—it is not really needed. Tasks exist

and are accessible on the system as normal, even if they happen to be running in one cpuset or another.

To destroy tasks, use the usual Ctrl – C method or by using the kill(1) command.

21 Destroying tasks SLE RT 15 SP3

3.3 Implementing shielding with set and proc
With the preceding material on the set and proc subcommands, you now have the background to

implement the basic shielding model, like the shield subcommand.

While shield provides this functionality already, doing this manually can still be useful. For example,

to implement a shielding strategy that need more functionality than shield can provide. In such cases,

you need to first stop using shield since that subcommand will interfere with the further application of

set and proc . However, you will still need to implement the functionality of shield to implement

successful shielding.

Remember from the above sections describing shield , that shielding has at minimum three cpusets:

root , which is always present and contains all CPUs; system which is the non-shielded set of CPUs and

runs unimportant system tasks; and user , which is the shielded set of CPUs and runs your important tasks.

Remember also that shield moves all movable tasks into system and, optionally, moves unbound

kernel threads into system as well.

You start first by creating the system and user cpusets as follows. Let us assume that the machine is

a four-CPU machine without NUMA memory features. The system cpuset should hold only CPU0 while

the user cpuset should hold the rest of the CPUs.

tux > cset set -c 0 -s system
cset: --> created cpuset "system"

tux > cset set -c 1-3 -s user
cset: --> created cpuset "user"

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 333 2 /
user 1-3 n 0 n 0 0 /user
system 0 n 0 n 0 0 /system

Now, move all running user processes into the system cpuset:

tux > cset proc -m -f root -t system
cset: moving all tasks from root to /system
cset: moving 188 userspace tasks to /system
[==]%
cset: done

22 Implementing shielding with set and proc SLE RT 15 SP3

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 146 2 /
user 1-3 n 0 n 0 0 /user
system 0 n 0 n 187 0 /system

This completes the basic shielding setup. Since all user space tasks are running in system , anything that

is spawned from them will also run in system . The user cpuset has nothing running in it unless you

put tasks there with the proc subcommand as described above. If you also want to move movable kernel

threads from root to system (to achieve a form of “interrupt shielding” on a real time Linux kernel,

for example), you would execute the following command as well:

tux > cset proc -k -f root -t system
cset: moving all kernel threads from / to /system
cset: moving 70 kernel threads to: /system
cset: --> not moving 76 threads (not unbound, use --force)
[==]%
cset: done

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 76 2 /
user 1-3 n 0 n 0 0 /user
system 0 n 0 n 257 0 /system

At this point, you have achieved the simple shielding model that the shield subcommand provides. You

can now add other cpuset definitions to expand your shielding strategy beyond that simple model.

3.4 Implementing hierarchy with set and proc

One popular extended shielding model is based on hierarchical cpusets, each with diminishing numbers

of CPUs. This model is used to create priority cpusets that allow assignment of CPU resources to tasks

based on some arbitrary priority definition. The idea is that a higher priority task will get access to more

CPU resources than a lower priority task.

23 Implementing hierarchy with set and proc SLE RT 15 SP3

The example provided here once again assumes a machine with four CPUs and no NUMA memory

features. This base serves to illustrate the point well; however, note that if your machine has (many) more

CPUs, then strategies such as this and others get more interesting.

Define a shielding setup as in the previous section where there is a system cpuset with only CPU0 that

takes care of “unimportant” system tasks. You will usually require this type of cpuset since it forms the

basis of shielding. Modify the strategy to not use a user cpuset—instead create several new cpusets each

holding one more CPU than the other. These cpusets will be called prio_low with one CPU, prio_med

with two CPUs, prio_high with three CPUs, and prio_all with all CPUs.

Note: The sense behind creating a prio_all cpuset with all CPUs
You may ask, why create a prio_all with all CPUs when that is substantially the definition of

the root cpuset? The answer is that it is best to keep a separation between the root cpuset and

everything else, even if a particular cpuset duplicates root exactly. Usually, automation is build

on top of a cpuset strategy. In these cases, it is best to avoid using invariant names of cpusets, such

as root for example, in this automation.

All of these prio_* cpusets can be created under root, in a flat way; however, it is advantageous to create

them as a hierarchy. The reasoning for this is twofold: first, if a cpuset is destroyed, all its tasks are moved

to its parent; second, one can use exclusive CPUs in a hierarchy.

If a cpuset has CPUs that are exclusive to it, then other cpusets may not use those CPUs unless they are

children of that cpuset. This has more relevance to machines with many CPUs and more complex strategies.

Start with a clean slate and build the appropriate cpusets as follows:

tux > cset set -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 344 0 /

tux > cset set -c 0-3 prio_all
cset: --> created cpuset "prio_all"

tux > cset set -c 1-3 /prio_all/prio_high
cset: --> created cpuset "/prio_all/prio_high"

tux > cset set -c 2-3 /prio_all/prio_high/prio_med

24 Implementing hierarchy with set and proc SLE RT 15 SP3

cset: --> created cpuset "/prio_all/prio_high/prio_med"

tux > cset set -c 3 /prio_all/prio_high/prio_med/prio_low
cset: --> created cpuset "/prio_all/prio_high/prio_med/prio_low"

tux > cset set -c 0 system
cset: --> created cpuset "system"

tux > cset set -l -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 344 2 /
system 0 n 0 n 0 0 /system
prio_all 0-3 n 0 n 0 1 /prio_all
prio_high 1-3 n 0 n 0 1 /prio_all/prio_high
prio_med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio_low 3 n 0 n 0 0 /prio_all/pr...rio_med/prio_low

Note: Why -r/--recurse is needed in this case
The option -r / --recurse lists all the sets in the last command above. If you execute that

command without -r/--recurse , prio_med and prio_low cpusets would not appear.

The strategy is now implemented. This means that you can move all user space tasks and all movable

kernel threads into the system cpuset to activate the shield.

tux > cset proc -m -k -f root -t system
cset: moving all tasks from root to /system
cset: moving 198 userspace tasks to /system
cset: moving 70 kernel threads to: /system
cset: --> not moving 76 threads (not unbound, use --force)
[==]%
cset: done

tux > cset set -l -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 76 2 /
system 0 n 0 n 268 0 /system

25 Implementing hierarchy with set and proc SLE RT 15 SP3

prio_all 0-3 n 0 n 0 1 /prio_all
prio_high 1-3 n 0 n 0 1 /prio_all/prio_high
prio_med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio_low 3 n 0 n 0 0 /prio_all/pr...rio_med/prio_low

The shield is now active. Since the prio_* cpuset names are unique, you can assign tasks to them either

via their simple name, or their full path (as described in Section 3.2.2, “Execing tasks with proc”).

You may have noted that there is an ellipsis in the path of the prio_low cpuset in the listing above.

This is done to fit the output onto an 80 character screen. To see the entire line, use the -v / --verbose

flag as follows:

tux > cset set -l -r -v
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 76 2 /
system 0 n 0 n 268 0 /system
prio_all 0-3 n 0 n 0 1 /prio_all
prio_high 1-3 n 0 n 0 1 /prio_all/prio_high
prio_med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio_low 3 n 0 n 0 0 /prio_all/prio_high/prio_med/prio_low

26 Implementing hierarchy with set and proc SLE RT 15 SP3

4 Using shortcuts

The commands listed in the previous sections always used all the required options. However, cset does

have a shortcut facility that will execute certain commands without specifying all options. An effort has

been made to do this with the “principle of least surprise”. This means that if you do not specify options,

but do specify parameters, then the outcome of the command should be intuitive as possible.

Using shortcuts is not necessary. In fact, you can use either shortcuts or long options. However, using long

options instead of shortcuts does have a use case: when you write a script intended to be self-documenting,

or perhaps when you generate cset documentation.

To begin, the subcommands shield , set and proc can themselves be shortened to the fewest number

of characters that are unambiguous. For example, the following commands are identical:

Long method Short method

tux > cset shield -s -p 1234 tux > cset sh -s -p 1234

tux > cset set -c 1,3 -s newset tux > cset se -c 1,3 -s newset

tux > cset proc -s newset -e bash tux > cset p -s newset -e bash

The proc command can be shortened to p , while shield and set need two letters to disambiguate.

4.1 shield subcommand shortcuts

The shield subcommand supports two areas with shortcuts: the short method (when there are no options

given and where to shield is the common use case), and the long method (which makes -p/--pid optional

for the -s/--shield and -u/--unshield options).

For the common use case of actually shielding either a PIDSPEC or executing a command into the shield,

the following cset commands are equivalent.

Long method Short method

tux > cset shield -s -p 1234,500-649 tux > cset sh 1234,500-649

tux > cset shield -s -e bash tux > cset sh bash

27 shield subcommand shortcuts SLE RT 15 SP3

When using the -s or -u shield/unshield options, it is optional to use the -p option to specify a

PIDSPEC. For example:

Long method Short method

tux > cset shield -s -p 1234 tux > cset sh -s 1234

tux > cset shield -u -p 1234 tux > cset sh -u 1234

4.2 set subcommand shortcuts

The set subcommand has a limited number of shortcuts. The option --set is optional usually and the

--list option is also optional to list sets. For example, these commands are equivalent:

Long method Short method

tux > cset set -l -s myset tux > cset se -l myset

tux > cset se -l myset tux > cset se myset

tux > cset set -c 1,2,3 -s newset tux > cset se -c 1,2,3 newset

tux > cset set -d -s newset tux > cset se -d newset

tux > cset set -n newname -s oldname tux > cset se -n newname oldname

In fact, if you want to apply either the list or the destroy options to multiple cpuset s with one cset
command, you will not need to use the -s option. For example:

cset se -d myset yourset ourset
--> destroys cpusets: myset, yourset and ourset

cset se -l prio_high prio_med prio_low
--> lists only cpusets prio_high, prio_med and prio_low
--> the -l is optional in this case since list is default

28 set subcommand shortcuts SLE RT 15 SP3

4.3 proc subcommand shortcuts

For the proc subcommand, the -s , -t and -f options to specify the cpuset , the origination cpuset

and the destination cpuset can sometimes be optional. For example, the following commands are

equivalent. To list tasks in cpuset s:

Long method Short method

tux > cset proc -l -s myset

or

tux > cset proc -l -f myset

or

tux > cset proc -l -t myset

tux > cset p -l myset

tux > cset p -l myset tux > cset p myset

tux > cset proc -l -s one two tux > cset p -l one two

tux > cset p -l one two tux > cset p one two

To execute a process into a cpuset :

Long method Short method

tux > cset proc -s myset -e bash tux > cset p myset -e bash

Moving tasks into and out of cpuset s have the following shortcuts. To move a PIDSPEC into a cpuset :

Long method Short method

tux > cset proc -m -p 4242,4243 -s myset tux > cset p -m 4242,4243 myset

tux > cset proc -m -p 12 -t myset tux > cset p -m 12 myset

29 proc subcommand shortcuts SLE RT 15 SP3

To move all tasks from one cpuset to another:

Long method Short method

tux > cset proc -m -f set1 -t set2

or

tux > cset proc -m -s set1 -t set2

or

tux > cset proc -m -f set1 -s set2

tux > cset p -m set1 set2

30 proc subcommand shortcuts SLE RT 15 SP3

5 What to do if there are problems

If you encounter any issues with the cset application, you can file a bug report here: https://github.com/

lpechacek/cpuset/issues

If you are using cset on a supported operating system such as SUSE Linux Enterprise Server 15 SP3 or

SUSE Linux Enterprise Real Time 15 SP3, then should use the following Bugzilla product listing here:

https://bugzilla.suse.com

cset contains a logging application that is invaluable for our developers to diagnose problems and find

quick solutions. To create a log of your issue, use the --log option with a file name as an argument to

the main cset application. For example:

tux > cset -l logfile.txt set -n newname oldname

If the issue persists and is reproducible, Including this report in your bug submission greatly reduces

development time. This command saves debugging information within the file logfile.txt .

31 SLE RT 15 SP3

https://github.com/lpechacek/cpuset/issues
https://github.com/lpechacek/cpuset/issues
https://bugzilla.suse.com

A GNU Licenses
This appendix contains the GNU Free

Documentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,

MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document

"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with

or without modifying it, either commercially or noncommercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves

be free in the same sense. It complements the GNU General Public License, which is a copyleft license

designed for free software.

We have designed this License in order to use it for manuals for free software, because free software

needs free documentation: a free program should come with manuals providing the same freedoms that

the software does. But this License is not limited to software manuals; it can be used for any textual

work, regardless of subject matter or whether it is published as a printed book. We recommend this

License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice grants

a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated

herein. The "Document", below, refers to any such manual or work. Any member of the public is a

licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work

in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document's overall

subject (or to related matters) and contains nothing that could fall directly within that overall subject.

(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any

mathematics.) The relationship could be a matter of historical connection with the subject or with related

matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of

Invariant Sections, in the notice that says that the Document is released under this License. If a section

does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The

Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover

Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or

(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an

otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or

discourage subsequent modification by readers is not Transparent. An image format is not Transparent

if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input

format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming

simple HTML, PostScript or PDF designed for human modification. Examples of transparent image

formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and

edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools

are not generally available, and the machine-generated HTML, PostScript or PDF produced by some

word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed

to hold, legibly, the material this License requires to appear in the title page. For works in formats which

do not have any title page as such, "Title Page" means the text near the most prominent appearance of

the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here

XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",

"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document

means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference in

this License, but only as regards disclaiming warranties: any other implication that these Warranty

Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,

provided that this License, the copyright notices, and the license notice saying this License applies to

the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of

this License. You may not use technical measures to obstruct or control the reading or further copying

of the copies you make or distribute. However, you may accept compensation in exchange for copies.

If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,

numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose

the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the

front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present the full title with all words of the

title equally prominent and visible. You may add other material on the covers in addition. Copying

with changes limited to the covers, as long as they preserve the title of the Document and satisfy these

conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed

(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either

include a machine-readable Transparent copy along with each Opaque copy, or state in or with each

Opaque copy a computer-network location from which the general network-using public has access

to download using public-standard network protocols a complete Transparent copy of the Document,

free of added material. If you use the latter option, you must take reasonably prudent steps, when you

begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus

accessible at the stated location until at least one year after the last time you distribute an Opaque copy

(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing

any large number of copies, to give them a chance to provide you with an updated version of the

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and

3 above, provided that you release the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution and modification of the Modified

Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they

release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

32 SLE RT 15 SP3

F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown

in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled "History" in the Document, create one stating the title,

year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the "History"

section. You may omit a network location for a work that was published at least four years

before the Document itself, or if the original publisher of the version it refers to gives

permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with

any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate some

or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your

Modified Version by various parties--for example, statements of peer review or that the text has been

approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as

a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover, previously added by you

or by arrangement made by the same entity you are acting on behalf of, you may not add another; but

you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their

names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms

defined in section 4 above for modified versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections

of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections

may be replaced with a single copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else a unique number. Make

the same adjustment to the section titles in the list of Invariant Sections in the license notice of the

combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,

forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements",

and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,

and replace the individual copies of this License in the various documents with a single copy that is

included in the collection, provided that you follow the rules of this License for verbatim copying of

each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this

License, provided you insert a copy of this License into the extracted document, and follow this License

in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or

works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright

resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what

the individual works permit. When the Document is included in an aggregate, this License does not

apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the

Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on

covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the

Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special permission

from their copyright holders, but you may include translations of some or all Invariant Sections in

addition to the original versions of these Invariant Sections. You may include a translation of this

License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you

also include the original English version of this License and the original versions of those notices and

disclaimers. In case of a disagreement between the translation and the original version of this License

or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for

under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,

and will automatically terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses terminated so long as such

parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies that

a particular numbered version of this License "or any later version" applies to it, you have the option

of following the terms and conditions either of that specified version or of any later version that has

been published (not as a draft) by the Free Software Foundation. If the Document does not specify a

version number of this License, you may choose any version ever published (not as a draft) by the Free

Software Foundation.

ADDENDUM: How to use this License for your documents

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled “GNU
 Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”

line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those

two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these

examples in parallel under your choice of free software license, such as the GNU General Public License,

to permit their use in free software.

33 SLE RT 15 SP3

http://www.gnu.org/copyleft/

	Shielding Linux Resources
	Chapter 1. Introduction
	Chapter 2. The basic shielding model
	2.1. A simple shielding example
	2.2. Setup and teardown of the shield
	2.3. Moving interesting tasks into and out of the shield
	2.3.1. Executing a process into the shield
	2.3.2. Moving a running task into and out of the shield

	Chapter 3. Full-featured cpuset manipulation commands
	3.1. The set subcommand
	3.1.1. Creating and destroying cpusets with set
	3.1.2. Listing cpusets with set

	3.2. The proc subcommand
	3.2.1. Listing tasks with proc
	3.2.2. Execing tasks with proc
	3.2.3. Moving tasks with proc
	3.2.3.1. Moving all tasks from one cpuset to another
	3.2.3.2. Moving kernel threads with proc

	3.2.4. Destroying tasks

	3.3. Implementing shielding with set and proc
	3.4. Implementing hierarchy with set and proc

	Chapter 4. Using shortcuts
	4.1. shield subcommand shortcuts
	4.2. set subcommand shortcuts
	4.3. proc subcommand shortcuts

	Chapter 5. What to do if there are problems
	Appendix A. GNU Licenses
	A.1. GNU Free Documentation License

