Contents

About This Guide xvi

I SUPPORT AND COMMON TASKS 1

1 YaST Online Update 2
1.1 The Online Update Dialog 3
 KDE Interface (Qt) 3 • GNOME Interface (GTK) 4
1.2 Installing Patches 6
1.3 Automatic Online Update 7

2 Gathering System Information for Support 9
2.1 Collecting System Information with Supportconfig 9
 Creating a Service Request Number 9 • Upload Targets 10 • Creating a Supportconfig Archive with YaST 10 • Creating a Supportconfig Archive from Command Line 12 • Common Supportconfig Options 13
2.2 Submitting Information to Global Technical Support 14
2.3 Support of Kernel Modules 16
 Technical Background 17 • Working with Unsupported Modules 17
2.4 For More Information 18

3 YaST in Text Mode 19
3.1 Navigation in Modules 20
3.2 Restriction of Key Combinations 22
3.3 YaST Command Line Options 22
 Starting the Individual Modules 22 • Installing Packages from the Command Line 23 • Command Line Parameters of the YaST Modules 23
8.7 Working with Common Flow Constructs 96
 The if Control Command 96 • Creating Loops With the For Command 97

8.8 For More Information 97

9 Using Third-Party Software 98

II SYSTEM 99

10 32-Bit and 64-Bit Applications in a 64-Bit System Environment 100
 10.1 Runtime Support 100
 10.2 Software Development 101
 10.3 Software Compilation on Biarch Platforms 101
 10.4 Kernel Specifications 102

11 Booting and Configuring a Linux System 104
 11.1 The Linux Boot Process 104
 initramfs 105 • init on initramfs 106
 11.2 The init Process 107
 Runlevels 108 • Init Scripts 110 • Configuring System Services (Runlevel)
 with YaST 114
 11.3 System Configuration via /etc/sysconfig 116
 Changing the System Configuration Using the YaST sysconfig
 Editor 116 • Changing the System Configuration Manually 117

12 The Boot Loader GRUB 119
 12.1 Booting with GRUB 120
 The File /boot/grub/menu.lst 121 • The File device.map 126 • The File /
 etc/grub.conf 127 • The File /etc/sysconfig/bootloader 127 • Setting
 a Boot Password 129
12.2 Configuring the Boot Loader with YaST 130
 Adjusting the Default Boot Entry 131 • Modifying the Boot Loader Location 131 • Changing the Boot Loader Time-Out 132 • Setting a Boot Password 133 • Adjusting the Disk Order 133 • Configuring Advanced Options 133 • Changing Boot Loader Type 135

12.3 Uninstalling the Linux Boot Loader 136

12.4 Creating Boot CDs 136

12.5 The Graphical SUSE Screen 137

12.6 Troubleshooting 138

12.7 For More Information 139

13 UEFI (Unified Extensible Firmware Interface) 140

13.1 Secure Boot 140
 Implementation on SUSE Linux Enterprise 141 • MOK (Machine Owner Key) 144 • Booting a Custom Kernel 144 • Using Non-Inbox Drivers 146 • Limitations 147

13.2 For More Information 147

14 Special System Features 148

14.1 Information about Special Software Packages 148
 The bash Package and /etc/profile 148 • The cron Package 149 • Log Files: Package logrotate 150 • The locate Command 151 • The ulimit Command 151 • The free Command 152 • Man Pages and Info Pages 153 • Selecting Man Pages Using the man Command 153 • Settings for GNU Emacs 153

14.2 Virtual Consoles 154

14.3 Keyboard Mapping 155

14.4 Language and Country-Specific Settings 155
 Some Examples 156 • Locale Settings in ~/.i18n 158 • Settings for Language Support 158 • For More Information 159
15 Printer Operation 160

15.1 The Workflow of the Printing System 161

15.2 Methods and Protocols for Connecting Printers 162

15.3 Installing the Software 162

15.4 Network Printers 163

Configuring CUPS with Command Line Tools 164

15.5 Printing from the Command Line 165

15.6 Special Features in SUSE Linux Enterprise Desktop 166

CUPS and Firewall 166 • PPD Files in Various Packages 166

15.7 Troubleshooting 168

Printers without Standard Printer Language Support 168 • No Suitable PPD File Available for a PostScript Printer 169 • Parallel Ports 169 • Network Printer Connections 170 • Defective Printouts without Error Message 172 • Disabled Queues 173 • CUPS Browsing: Deleting Print Jobs 173 • Defective Print Jobs and Data Transfer Errors 173 • Debugging the CUPS Print System 174 • For More Information 174

16 Dynamic Kernel Device Management with udev 175

16.1 The /dev Directory 175

16.2 Kernel uevents and udev 175

16.3 Drivers, Kernel Modules and Devices 176

16.4 Booting and Initial Device Setup 176

16.5 Monitoring the Running udev Daemon 177

16.6 Influencing Kernel Device Event Handling with udev Rules 178

Using Operators in udev Rules 180 • Using Substitutions in udev Rules 181 • Using udev Match Keys 182 • Using udev Assign Keys 183

16.7 Persistent Device Naming 184

16.8 Files used by udev 185
17 The X Window System 187
17.1 Manually Configuring the X Window System 187
 Screen Section 190 • Device Section 192 • Monitor and Modes Section 193
17.2 Installing and Configuring Fonts 194
 X11 Core Fonts 195 • Xft 196
17.3 For More Information 199

18 Accessing File Systems with FUSE 200
18.1 Configuring FUSE 200
18.2 Available FUSE Plug-ins 200
18.3 For More Information 201

III MOBILE COMPUTERS 202
19 Mobile Computing with Linux 203
19.1 Laptops 203
 Power Conservation 203 • Integration in Changing Operating Environments 204 • Software Options 207 • Data Security 210
19.2 Mobile Hardware 211
19.3 Cellular Phones and PDAs 212
19.4 For More Information 212

20 Wireless LAN 213
20.1 WLAN Standards 213
20.2 Operating Modes 214
20.3 Authentication 215
20.4 Encryption 216
20.5 Configuration with YaST 217
 Deactivating NetworkManager 218 • Configuration for Access Points 218 • Establishing an Ad-Hoc Network 222 • Setting Additional Configuration Parameters 223

20.6 Tips and Tricks for Setting Up a WLAN 224
 Utilities 224 • Stability and Speed 224 • Security 225

20.7 Troubleshooting 226
 Check the Network Status 226 • Multiple Network Devices 227 • Problems with Prism2 Cards 227

20.8 For More Information 227

21 Power Management 228

21.1 Power Saving Functions 228

21.2 Advanced Configuration and Power Interface (ACPI) 229
 Controlling the CPU Performance 229 • Troubleshooting 230

21.3 Rest for the Hard Disk 231

21.4 Troubleshooting 233
 ACPI Activated with Hardware Support but Functions Do Not Work 233 • CPU Frequency Does Not Work 234 • Suspend and Standby Do Not Work 234

21.5 For More Information 234

22 Using Tablet PCs 235

22.1 Installing Tablet PC Packages 236

22.2 Configuring Your Tablet Device 236

22.3 Using the Virtual Keyboard 236

22.4 Rotating Your Display 237

22.5 Using Gesture Recognition 238
 Using CellWriter 238 • Using Xstroke 239

22.6 Taking Notes and Sketching with the Pen 240

x Administration Guide
24.3 SLP Front-Ends in SUSE Linux Enterprise Desktop 305
24.4 Providing Services via SLP 305
24.5 For More Information 306

25 Time Synchronization with NTP 307

25.1 Configuring an NTP Client with YaST 307
 Basic Configuration 307 • Changing Basic Configuration 308

25.2 Manually Configuring NTP in the Network 311

25.3 Dynamic Time Synchronization at Runtime 311

25.4 Setting Up a Local Reference Clock 312

25.5 Clock Synchronization to an External Time Reference (ETR) 313

26 Using NetworkManager 314

26.1 Use Cases for NetworkManager 314

26.2 Enabling or Disabling NetworkManager 314

26.3 Configuring Network Connections 315

26.4 Using KNetworkManager 318
 Managing Wired Network Connections 318 • Managing Wireless Network Connections 319 • Configuring Your Wireless Card as an Access Point 320 • Customizing KNetworkManager 321

26.5 Using the GNOME NetworkManager Applet 322
 Managing Wired Network Connections 322 • Managing Wireless Network Connections 323 • Configuring Your Wireless Card as an Access Point 324

26.6 NetworkManager and VPN 325

26.7 NetworkManager and Security 326
 User and System Connections 326 • Storing Passwords and Credentials 326

26.8 Frequently Asked Questions 327

26.9 Troubleshooting 329
26.10 For More Information 330

27 **Samba** 331

27.1 Terminology 331

27.2 Configuring a Samba Server 332

27.3 Configuring Clients 333

27.4 Samba as Login Server 333

27.5 For More Information 334

28 **Sharing File Systems with NFS** 335

28.1 Terminology 335

28.2 Installing NFS Server 336

28.3 Configuring NFS Server 336

28.4 Configuring Clients 336

28.5 For More Information 340

29 **File Synchronization** 341

29.1 Available Data Synchronization Software 341

29.2 Determining Factors for Selecting a Program 342

29.3 Introduction to CVS 345

xiii Administration Guide
29.4 Introduction to rsync 348
Configuration and Operation 348

29.5 For More Information 349

V TROUBLESHOOTING 350

30 Help and Documentation 351
30.1 Documentation Directory 351
 Novell/SUSE Manuals 352 • HOWTOs 352 • Package
 Documentation 352

30.2 Man Pages 353

30.3 Info Pages 355

30.4 Online Resources 355

31 Common Problems and Their Solutions 357
31.1 Finding and Gathering Information 357

31.2 Installation Problems 360
 Checking Media 360 • Hardware Information 361 • No Bootable DVD
 Drive Available 362 • Booting from Installation Media Fails 364 • Fails to
 Boot 365 • Fails to Launch Graphical Installer 367 • Only Minimalistic Boot
 Screen Started 369

31.3 Boot Problems 370
 Fails to Load the GRUB Boot Loader 370 • No Login or Prompt
 Appears 371 • No Graphical Login 371

31.4 Login Problems 372
 Valid Username and Password Combinations Fail 373 • Valid Username
 and Password Not Accepted 374 • Login to Encrypted Home Partition
 Fails 377 • Login Successful but GNOME Desktop Fails 377 • Login
 Successful but KDE Desktop Fails 378

31.5 Network Problems 379
 NetworkManager Problems 383
31.6 Data Problems 384
 Managing Partition Images 384 • Backing Up Critical Data 385 • Restoring a System Backup 386 • Recovering a Corrupted System 387

A An Example Network 399

B GNU Licenses 400

B.1 GNU Free Documentation License 400
About This Guide

This guide is intended for use by professional network and system administrators during the operation of SUSE® Linux Enterprise. As such, it is solely concerned with ensuring that SUSE Linux Enterprise is properly configured and that the required services on the network are available to allow it to function properly as initially installed. This guide does not cover the process of ensuring that SUSE Linux Enterprise offers proper compatibility with your enterprise's application software or that its core functionality meets those requirements. It assumes that a full requirements audit has been done and the installation has been requested or that a test installation, for the purpose of such an audit, has been requested.

This guide contains the following:

Support and Common Tasks

SUSE Linux Enterprise offers a wide range of tools to customize various aspects of the system. This part introduces a few of them.

System

Learn more about the underlying operating system by studying this part. SUSE Linux Enterprise supports a number of hardware architectures and you can use this to adapt your own applications to run on SUSE Linux Enterprise. The boot loader and boot procedure information assists you in understanding how your Linux system works and how your own custom scripts and applications may blend in with it.

Mobile Computers

Laptops, and the communication between mobile devices like PDAs, or cellular phones and SUSE Linux Enterprise need some special attention. Take care for power conservation and for the integration of different devices into a changing network environment. Also get in touch with the background technologies that provide the needed functionality.

Services

SUSE Linux Enterprise is designed to be a network operating system. SUSE® Linux Enterprise Desktop includes client support for many network services. It integrates well into heterogeneous environments including MS Windows clients and servers.

Troubleshooting

Provides an overview of where to find help and additional documentation in case you need more information or want to perform specific tasks with your system. Also find a compilation of the most frequent problems and annoyances and learn how to solve these issues on your own.
Many chapters in this manual contain links to additional documentation resources. This includes additional documentation that is available on the system as well as documentation available on the Internet.

For an overview of the documentation available for your product and the latest documentation updates, refer to http://www.suse.com/doc.

1 Available Documentation

We provide HTML and PDF versions of our books in different languages. The following manuals for users and administrators are available for this product:

Book “KDE User Guide”
Introduces the KDE desktop of SUSE Linux Enterprise Desktop. It guides you through using and configuring the desktop and helps you perform key tasks. It is intended mainly for users who want to make efficient use of KDE as their default desktop.

Book “GNOME User Guide”
Introduces the GNOME desktop of SUSE Linux Enterprise Desktop. It guides you through using and configuring the desktop and helps you perform key tasks. It is intended mainly for end users who want to make efficient use of GNOME desktop as their default desktop.

Book “Application Guide”
Learn how to use and configure key desktop applications on SUSE Linux Enterprise Desktop. This guide introduces browsers and e-mail clients as well as office applications and collaboration tools. It also covers graphics and multimedia applications.

Book “Deployment Guide”
Shows how to install single or multiple systems and how to exploit the product inherent capabilities for a deployment infrastructure. Choose from various approaches, ranging from a local installation or a network installation server to a mass deployment using a remote-controlled, highly-customized, and automated installation technique.

Administration Guide
Covers system administration tasks like maintaining, monitoring, and customizing an initially installed system.
Book “Security Guide”
Introduces basic concepts of system security, covering both local and network security aspects. Shows how to make use of the product inherent security software like AppArmor (which lets you specify per program which files the program may read, write, and execute), and the auditing system that reliably collects information about any security-relevant events.

Book “System Analysis and Tuning Guide”
An administrator’s guide for problem detection, resolution and optimization. Find how to inspect and optimize your system by means of monitoring tools and how to efficiently manage resources. Also contains an overview of common problems and solutions, and of additional help and documentation resources.

Book “Virtualization with Xen”
Offers an introduction to virtualization technology of your product. It features an overview of the various fields of application and installation types of each of the platforms supported by SUSE Linux Enterprise Server as well as a short description of the installation procedure.

In addition to the comprehensive manuals, several quick start guides are available:

Article “KDE Quick Start”
Gives a short introduction to the KDE desktop and some key applications running on it.

Article “GNOME Quick Start”
Gives a short introduction to the GNOME desktop and some key applications running on it.

Article “LibreOffice.org Quick Start”
Gives a short introduction into the LibreOffice suite and its modules for writing texts, working with spreadsheets, or creating graphics and presentations.

Article “Installation Quick Start”
Lists the system requirements and guides you step-by-step through the installation of SUSE Linux Enterprise Desktop from DVD, or from an ISO image.

Linux Audit Quick Start
Gives a short overview how to enable and configure the auditing system and how to execute key tasks such as setting up audit rules, generating reports, and analyzing the log files.

AppArmor Quick Start
Helps you understand the main concepts behind AppArmor®.
Find HTML versions of most product manuals in your installed system under `/usr/share/doc/manual` or in the help centers of your desktop. Find the latest documentation updates at http://www.suse.com/doc where you can download PDF or HTML versions of the manuals for your product.

2 Feedback

Several feedback channels are available:

Bugs and Enhancement Requests

For services and support options available for your product, refer to http://www.suse.com/support/.

To report bugs for a product component, log in to the Novell Customer Center from http://www.suse.com/support/ and select *My Support > Service Request*.

User Comments

We want to hear your comments about and suggestions for this manual and the other documentation included with this product. Use the User Comments feature at the bottom of each page in the online documentation or go to http://www.suse.com/doc/feedback.html and enter your comments there.

Mail

For feedback on the documentation of this product, you can also send a mail to doc-team@suse.de. Make sure to include the document title, the product version, and the publication date of the documentation. To report errors or suggest enhancements, provide a concise description of the problem and refer to the respective section number and page (or URL).

3 Documentation Conventions

The following typographical conventions are used in this manual:

- `/etc/passwd`: directory names and filenames
- `placeholder`: replace `placeholder` with the actual value
- `PATH`: the environment variable PATH
• `ls`, `--help`: commands, options, and parameters

• `user`: users or groups

• `Alt`, `Alt-F1`: a key to press or a key combination; keys are shown in uppercase as on a keyboard

• `File`, `File › Save As`: menu items, buttons

• *Dancing Penguins* (Chapter *Penguins*, †Another Manual): This is a reference to a chapter in another manual.
I Support and Common Tasks

1 YaST Online Update 2
2 Gathering System Information for Support 9
3 YaST in Text Mode 19
4 Snapshots/Rollback with Snapper 24
5 Remote Access with VNC 44
6 GNOME Configuration for Administrators 49
7 Managing Software with Command Line Tools 58
8 Bash and Bash Scripts 84
9 Using Third-Party Software 98
1 YaST Online Update

Novell offers a continuous stream of software security updates for your product. By default, the update applet is used to keep your system up-to-date. Refer to Book “Deployment Guide”, Chapter 6 “Installing or Removing Software”, Section 6.5 “Keeping the System Up-to-date” for further information on the update applet. This chapter covers the alternative tool for updating software packages: YaST Online Update.

The current patches for SUSE® Linux Enterprise Desktop are available from an update software repository. If you have registered your product during the installation, an update repository is already configured. If you have not registered SUSE Linux Enterprise Desktop, you can do so by running Software › Online Update Configuration in YaST and start Advanced › Register for Support and Get Update Repository. Alternatively, you can manually add an update repository from a source you trust. To add or remove repositories, start the Repository Manager with Software › Software Repositories in YaST. Learn more about the Repository Manager in Book “Deployment Guide”, Chapter 6 “Installing or Removing Software”, Section 6.4 “Managing Software Repositories and Services”.

Note: Error on Accessing the Update Catalog
If you are not able to access the update catalog, this might be due to an expired subscription. Normally, SUSE Linux Enterprise Desktop comes with a one-year or three-year subscription, during which you have access to the update catalog. This access will be denied once the subscription ends.

In case of an access denial to the update catalog you will see a warning message with a recommendation to visit the Novell Customer Center and check your subscription. The Novell Customer Center is available at http://www.novell.com/center/.

provides updates with different relevance levels:

Security Updates
Fix severe security hazards and should definitely be installed.

Recommended Updates
Fix issues that could compromise your computer.

Optional Updates
Fix non-security relevant issues or provide enhancements.
1.1 The Online Update Dialog

The YaST Online Update dialog is available in two toolkit flavors: GTK (for GNOME) and Qt (for KDE). Both interfaces differ in look and feel but basically provide the same functions. The following sections provide a brief description of each. To open the dialog, start YaST and select Software → Online Update. Alternatively, start it from the command line with `yast2 online_update`.

1.1.1 KDE Interface (Qt)

The Online Update window consists of four sections.

![FIGURE 1.1: YAST ONLINE UPDATE—QT INTERFACE](image)

The Summary section on the left lists the available patches for SUSE Linux Enterprise Desktop. The patches are sorted by security relevance: security, recommended, and optional. You can change the view of the Summary section by selecting one of the following options from Show Patch Category:

- **Needed Patches** (default view)
 Non-installed patches that apply to packages installed on your system.

- **Unneeded Patches**
 Patches that either apply to packages not installed on your system, or patches that have requirements which have already been fulfilled (because the relevant packages have already been updated from another source).
All Patches

All patches available for SUSE Linux Enterprise Desktop.

Each list entry in the Summary section consists of a symbol and the patch name. For an overview of the possible symbols and their meaning, press \(\text{Shift} - \text{F1} \). Actions required by Security and Recommended patches are automatically preset. These actions are Autoinstall, Autoupdate and Autodelete.

If you install an up-to-date package from a repository other than the update repository, the requirements of a patch for this package may be fulfilled with this installation. In this case a check mark is displayed in front of the patch summary. The patch will be visible in the list until you mark it for installation. This will in fact not install the patch (because the package already is up-to-date), but mark the patch as having been installed.

Select an entry in the Summary section to view a short Patch Description at the bottom left corner of the dialog. The upper right section lists the packages included in the selected patch (a patch can consist of several packages). Click an entry in the upper right section to view details about the respective package that is included in the patch.

1.1.2 GNOME Interface (GTK)

The Online Update window consists of four main sections.
FIGURE 1.2: YAST ONLINE UPDATE—GTK INTERFACE

The upper right section lists the available (or already installed) patches for SUSE Linux Enterprise Desktop. To filter patches according to their security relevance, click the corresponding *Priority* entry in the upper right section of the window: *Security*, *Recommended*, *Optional* or *All patches*.

If all available patches are already installed, the *Package listing* in the upper right section will show no entries. The box in the bottom left-hand section shows the number of both available and already installed patches and lets you toggle the view to either *Available* or *Installed* patches.

Select an entry in the *Package listing* section to view a patch description and further details at the bottom right corner of the dialog. As a patch can consist of several packages, click the *Applies to* entry in the lower right section to see which packages are included in the respective patch.

Click on a patch entry to open a row with detailed information about the patch in the bottom of the window. Here you can see a detailed patch description as well as the versions available. You can also choose to *Install* optional patches—security and recommended patches are already preselected for installation.
1.2 Installing Patches

The YaST Online Update dialog allows you to either install all available patches at once or to manually select the patches that you want to apply to your system. You may also revert patches that have been applied to the system.

By default, all new patches (except optional ones) that are currently available for your system are already marked for installation. They will be applied automatically once you click Accept or Apply.

PROCEDURE 1.1: APPLYING PATCHES WITH YAST ONLINE UPDATE

1. Start YaST and select Software → Online Update.

2. To automatically apply all new patches (except optional ones) that are currently available for your system, proceed with Apply or Accept to start the installation of the preselected patches.

3. To first modify the selection of patches that you want to apply:

a. Use the respective filters and views the GTK and Qt interfaces provide. For details, refer to Section 1.1.1, “KDE Interface (Qt)” and Section 1.1.2, “GNOME Interface (GTK”).

 b. Select or deselect patches according to your needs and wishes by activating or deactivating the respective check box (GNOME) or by right-clicking the patch and choosing the respective action from the context menu (KDE).

 🚨 Important: Always Apply Security Updates

 Do not deselect any security-related patches without a very good reason. These patches fix severe security hazards and prevent your system from being exploited.

 c. Most patches include updates for several packages. If you want to change actions for single packages, right-click a package in the package view and choose an action (KDE).

 d. To confirm your selection and apply the selected patches, proceed with Apply or Accept.

4. After the installation is complete, click Finish to leave the YaST Online Update. Your system is now up-to-date.
Tip: Disabling deltarpms

By default, updates are downloaded as deltarpms. Since rebuilding rpm packages from deltarpms is a memory and processor consuming task, certain setups or hardware configurations might require you to disable the usage of deltarpms for the sake of performance. To disable the use of deltarpms, edit the file `/etc/zypp/zypp.conf` and set `download.use_deltarpm` to `false`.

1.3 Automatic Online Update

YaST also offers the possibility to set up an automatic update with daily, weekly or monthly schedule. To use the respective module, you need to install the `yast2-online-update-configuration` package first.

PROCEDURE 1.2: CONFIGURING THE AUTOMATIC ONLINE UPDATE

1. After installation, start YaST and select *Software > Online Update Configuration*. Alternatively, start the module with `yast2 online_update_configuration` from the command line.

2. Activate *Automatic Online Update*.

3. Choose whether to update *Daily*, *Weekly*, or *Monthly*.

 Some patches, such as kernel updates or packages requiring license agreements, require user interaction, which would cause the automatic update procedure to stop.

4. Select if you want to *Skip Interactive Patches* in case you want the update procedure to proceed fully automatically.

 Important: Skipping Patches

 If you select to skip any packages that require interaction, run a manual *Online Update* from time to time in order to install those patches, too. Otherwise you might miss important patches.

5. To automatically accept any license agreements, activate *Agree with Licenses*.

6. To automatically install all packages recommended by updated packages, activate *Include Recommended Packages*.
7. To filter the patches by category (such as security or recommended), activate *Filter by Category* and add the appropriate patch categories from the list. Only patches of the selected categories will be installed. Others will be skipped.

8. Confirm your configuration with *OK*.
2 Gathering System Information for Support

In case of problems, a detailed system report may be created with either the `supportconfig` command line tool or the YaST Support module. Both will collect information about the system such as: current kernel version, hardware, installed packages, partition setup and much more. The result is a TAR archive of files. After opening a Service Request (SR), you can upload the TAR archive to Global Technical Support. It will help to locate the issue you reported and to assist you in solving the problem.

The command line tool is provided by the package `supportutils` which is installed by default. The YaST Support module is based on the command line tool.

2.1 Collecting System Information with Supportconfig

To create a TAR archive with detailed system information that you can hand over to Global Technical Support, use either the `supportconfig` command line tool directly or the YaST Support module. The command line tool is provided by the package `supportutils` which is installed by default. The YaST Support module is also based on the command line tool.

2.1.1 Creating a Service Request Number

Supportconfig archives can be generated at any time. However, for handing-over the supportconfig data to Global Technical Support, you need to generate a service request number first. You will need it to upload the archive to support.

To create a service request, go to http://www.novell.com/center/eservice and follow the instructions on the screen. Write down your 11-digit service request number.

Note: Privacy Statement

SUSE and Novell treat system reports as confidential data. For details about our privacy commitment, see http://www.novell.com/company/legal/privacy/.
2.1.2 Upload Targets

After having created a service request number, you can upload your supportconfig archives to Global Technical Support as described in Procedure 2.1, “Submitting Information to Support with YaST” or Procedure 2.2, “Submitting Information to Support from Command Line”. Use one of the following upload targets:

- **US customers:** `ftp://ftp.novell.com/incoming`
- **EMEA, Europe, the Middle East, and Africa:** `ftp://support-ftp.suse.com/in`

Alternatively, you can manually attach the TAR archive to your service request using the service request URL: `http://www.novell.com/center/eservice`.

2.1.3 Creating a Supportconfig Archive with YaST

To use YaST to gather your system information, proceed as follows:

1. Start YaST and open the **Support** module.

2. Click **Create report tarball**.
3. In the next window, select one of the supportconfig options from the radio button list. Use Custom (Expert) Settings is pre-selected by default. If you want to test the report function first, use Only gather a minimum amount of info. For some background information on the other options, refer to the supportconfig man page. Proceed with Next.

4. Enter your contact information. It will be written to a file called basic-environment.txt and included in the archive to be created.

5. If you want to submit the archive to Global Technical Support at the end of the information collection process, Upload Information is required. YaST automatically proposes an upload server. If you want to modify it, refer to Section 2.1.2, “Upload Targets” for details of which upload servers are available. If you want to submit the archive later on, you can leave the Upload Information empty for now.

6. Proceed with Next.

7. The information gathering begins.
After the process is finished, continue with Next.

8. Review the data collection: Select the File Name of a log file to view its contents in YaST. To remove any files you want excluded from the TAR archive before submitting it to support, use Remove from Data. Continue with Next.

9. Save the TAR archive. If you started the YaST module as root user, by default YaST proposes to save the archive to /var/log (otherwise, to your home directory). The file name format is nts_HOST_DATE_TIME\.tbz.

10. If you want to upload the archive to support directly, make sure Upload log files tarball to URL is activated. The Upload Target shown here is the one that YaST proposes in Step 5. If you want to modify the upload target, find detailed information of which upload servers are available in Section 2.1.2, “Upload Targets”.

11. If you want to skip the upload, deactivate Upload log files tarball to URL.

12. Confirm your changes to close the YaST module.

2.1.4 Creating a Supportconfig Archive from Command Line

The following procedure shows how to create a supportconfig archive, but without submitting it to support directly. For uploading it, you need to run the command with certain options as described in Procedure 2.2, “Submitting Information to Support from Command Line”.

1. Open a shell and become root.

2. Run supportconfig without any options. This gathers the default system information.

3. Wait for the tool to complete the operation.

4. The default archive location is /var/log, with the file name format being nts_HOST_DATE_TIME\.tbz.
2.1.5 Common Supportconfig Options

The **supportconfig** utility is usually called without any options. Display a list of all options with **supportconfig** -h or refer to the man page. The following list gives a brief overview of some common use cases:

Reducing the Size of the Information Being Gathered

Use the minimal option (`-m`):

```
supportconfig -m
```

Limiting the Information to a Specific Topic

If you have already localized a problem with the default **supportconfig** output and have found that it relates to a specific area or feature set only, you may want to limit the collected information to the specific area for the next **supportconfig** run. For example, if you detected problems with LVM and want to test a recent change that you did to the LVM configuration, it makes sense to gather the minimum supportconfig information around LVM only:

```
supportconfig -i LVM
```

For a complete list of feature keywords that you can use for limiting the collected information to a specific area, run

```
supportconfig -F
```

Including Additional Contact Information in the Output:

```
supportconfig -E tux@example.org -N "Tux Penguin" -O "Penguin Inc." ... 
```

(all in one line)

Collecting Already Rotated Log Files

```
supportconfig -l
```

This is especially useful in high logging environments or after a Kernel crash when syslog rotates the log files after a reboot.
2.2 Submitting Information to Global Technical Support

Use the YaST Support module or the `supportconfig` command line utility to submit system information to the Global Technical Support. When you experience a server issue and want the support’s assistance, you will need to open a service request first. For details, see Section 2.1.1, “Creating a Service Request Number”.

The following examples use 12345678901 as a placeholder for your service request number. Replace 12345678901 with the service request number you created in Section 2.1.1, “Creating a Service Request Number”.

PROCEDURE 2.1: SUBMITTING INFORMATION TO SUPPORT WITH YAST

The following procedure assumes that you have already created a supportconfig archive, but have not uploaded it yet. Make sure to have included your contact information in the archive as described in Section 2.1.3, “Creating a Supportconfig Archive with YaST”, Step 4. For instructions on how to generate and submit a supportconfig archive in one go, see Section 2.1.3, “Creating a Supportconfig Archive with YaST”.

1. Start YaST and open the Support module.

2. Click Upload.

3. In Package with log files specify the path to the existing supportconfig archive or Browse for it.

4. YaST automatically proposes an upload server. If you want to modify it, refer to Section 2.1.2, “Upload Targets” for details of which upload servers are available.
5. Click **Finish**.

PROCEDURE 2.2: SUBMITTING INFORMATION TO SUPPORT FROM COMMAND LINE

The following procedure assumes that you have already created a supportconfig archive, but have not uploaded it yet. For instructions on how to generate and submit a supportconfig archive in one go, see Section 2.1.3, “Creating a Supportconfig Archive with YaST”.

1. Servers with Internet connectivity:

 a. To use the default upload target, run:

   ```bash
   supportconfig -ur 12345678901
   ```

 b. For the secure upload target, use the following:

   ```bash
   supportconfig -ar 12345678901
   ```

2. Servers **without** Internet connectivity

 a. Run the following:

   ```bash
   supportconfig -r 12345678901
   ```
b. Manually upload the `/var/log/nts_SR12345678901*tbz` archive to one of our FTP servers. Which one to use depends on your location in the world. For an overview, see Section 2.1.2, “Upload Targets”.

3. After the TAR archive is in the incoming directory of our FTP server, it becomes automatically attached to your service request.

2.3 Support of Kernel Modules

An important requirement for every enterprise operating system is the level of support you receive for your environment. Kernel modules are the most relevant connector between hardware (“controllers”) and the operating system. Every Kernel module in SUSE Linux Enterprise has a supported flag that can take three possible values:

- “yes”, thus supported
- “external”, thus supported
- “” (empty, not set), thus unsupported

The following rules apply:

- All modules of a self-recompiled Kernel are by default marked as unsupported.

- Kernel modules supported by SUSE partners and delivered using SUSE SolidDriver Program are marked “external”.

- If the supported flag is not set, loading this module will taint the Kernel. Tainted Kernels are not supported. Unsupported Kernel modules are included in an extra RPM package (`kernel-FLAVOR-extra`) and will not be loaded by default (`FLAVOR = default | xen | ...`). In addition, these unsupported modules are not available in the installer, and the `kernel-FLAVOR-extra` package is not part of the SUSE Linux Enterprise media.

- Kernel modules not provided under a license compatible to the license of the Linux Kernel will also taint the Kernel. For details, see `/usr/src/linux/Documentation/sysctl/kernel.txt` and the state of `/proc/sys/kernel/tainted`.
2.3.1 Technical Background

- **Linux Kernel**: The value of `/proc/sys/kernel/unsupported` defaults to 2 on SUSE Linux Enterprise 11 SP4 (do not warn in syslog when loading unsupported modules). This default is used in the installer as well as in the installed system. See `/usr/src/linux/Documentation/sysctl/kernel.txt` for more information.

- **modprobe**: The `modprobe` utility for checking module dependencies and loading modules appropriately checks for the value of the `supported` flag. If the value is “yes” or “external” the module will be loaded, otherwise it will not. For information on how to override this behavior, see Section 2.3.2, “Working with Unsupported Modules”.

 Note

 SUSE does not generally support the removal of storage modules via `modprobe -r`.

2.3.2 Working with Unsupported Modules

While general supportability is important, situations can occur where loading an unsupported module is required (for example, for testing or debugging purposes, or if your hardware vendor provides a hotfix).

- To override the default, edit `/etc/modprobe.d/unsupported-modules.conf` and change the value of the variable `allow_unsupported_modules` to 1. If an unsupported module is needed in the initrd, do not forget to run `mkinitrd` to update the initrd.
 If you only want to try loading a module once, you can use the `--allow-unsupported-modules` option with `modprobe`. For more information, see the `modprobe` man page.

- During installation, unsupported modules may be added through driver update disks, and they will be loaded. To enforce loading of unsupported modules during boot and afterward, use the Kernel command line option `oem-modules`. While installing and initializing the `module-init-tools` package, the Kernel flag `TAINT_NO_SUPPORT` (`/proc/sys/kernel/tainted`) will be evaluated. If the Kernel is already tainted, `allow_unsupported_modules` will be enabled. This will prevent unsupported modules from failing in the system being installed. If no unsupported modules are present during installation and the other special Kernel command line option `oem-modules=1` is not used, the default still is to disallow unsupported modules.
Remember that loading and running unsupported modules will make the Kernel and the whole system unsupported by SUSE.

2.4 For More Information

Find more information about gathering system information in the following documents:

- **man supportconfig**—The `supportconfig` man page.
- **man supportconfig.conf**—The man page of the supportconfig configuration file.
3 YaST in Text Mode

This section is intended for system administrators and experts who do not run an X server on their systems and depend on the text-based installation tool. It provides basic information about starting and operating YaST in text mode.

YaST in text mode uses the ncurses library to provide an easy pseudo-graphical user interface. The ncurses library is installed by default. The minimum supported size of the terminal emulator in which to run YaST is 80x25 characters.

When you start YaST in text mode, the YaST Control Center appears (see Figure 3.1). The main window consists of three areas. The left frame features the categories to which the various modules belong. This frame is active when YaST is started and therefore it is marked by a bold white border. The active category is highlighted. The right frame provides an overview of the modules available in the active category. The bottom frame contains the buttons for Help and Quit.
When you start the YaST Control Center, the category *Software* is selected automatically. Use ↓ and ↑ to change the category. To select a module from the category, activate the right frame with → and then use ↓ and ↑ to select the module. Keep the arrow keys pressed to scroll through the list of available modules. The selected module is highlighted. Press Enter to start the active module.

Various buttons or selection fields in the module contain a highlighted letter (yellow by default). Use Alt–highlighted_letter to select a button directly instead of navigating there with Tab. Exit the YaST Control Center by pressing Alt–Q or by selecting Quit and pressing Enter.

Tip: Refreshing YaST Dialog Window

If a YaST dialog window gets corrupted or distorted (e.g., while resizing the window), press Ctrl–L to refresh and restore its contents.

3.1 Navigation in Modules

The following description of the control elements in the YaST modules assumes that all function keys and Alt key combinations work and are not assigned to different global functions. Read Section 3.2, “Restriction of Key Combinations” for information about possible exceptions.

Navigation among Buttons and Selection Lists

Use Tab to navigate among the buttons and frames containing selection lists. To navigate in reverse order, use Alt–Tab or Shift–Tab combinations.

Navigation in Selection Lists

Use the arrow keys (↓ and ↑) to navigate among the individual elements in an active frame containing a selection list. If individual entries within a frame exceed its width, use Shift← or Shift→ to scroll horizontally to the right and left. Alternatively, use Ctrl–E or Ctrl–A. This combination can also be used if using ← or → results in changing the active frame or the current selection list, as in the Control Center.
Buttons, Radio Buttons, and Check Boxes

To select buttons with empty square brackets (check boxes) or empty parentheses (radio buttons), press \[Space\] or \[Enter\]. Alternatively, radio buttons and check boxes can be selected directly with \[Alt\]-highlighted_letter. In this case, you do not need to confirm with \[Enter\]. If you navigate to an item with \[Tab\], press \[Enter\] to execute the selected action or activate the respective menu item.

Function Keys

The F keys (\[F1\] through \[F12\]) enable quick access to the various buttons. Available F key shortcuts are shown in the bottom line of the YaST screen. Which function keys are actually mapped to which buttons depend on the active YaST module, because the different modules offer different buttons (Details, Info, Add, Delete, etc.). Use \[F10\] for Accept, OK, Next, and Finish. Press \[F1\] to access the YaST help.

Using Navigation Tree in ncurses Mode

Some YaST modules use a navigation tree in the left part of the window to select configuration dialogs. Use the arrow keys (\[↑\] and \[↓\]) to navigate in the tree. Use \[Space\] to open or close tree items. In ncurses mode, \[Enter\] must be pressed after a selection in the navigation tree in order to show the selected dialog. This is an intentional behavior to save time consuming redraws when browsing through the navigation tree.

FIGURE 3.2: THE SOFTWARE INSTALLATION MODULE
3.2 Restriction of Key Combinations

If your window manager uses global \texttt{Alt} combinations, the \texttt{Alt} combinations in YaST might not work. Keys like \texttt{Alt} or \texttt{Shift} can also be occupied by the settings of the terminal.

Replacing \texttt{Alt} with \texttt{Esc}

\texttt{Alt} shortcuts can be executed with \texttt{Esc} instead of \texttt{Alt}. For example, \texttt{Esc-H} replaces \texttt{Alt-H}. (First press \texttt{Esc}, then press \texttt{H}.)

Backward and Forward Navigation with \texttt{Ctrl-F} and \texttt{Ctrl-B}

If the \texttt{Alt} and \texttt{Shift} combinations are occupied by the window manager or the terminal, use the combinations \texttt{Ctrl-F} (forward) and \texttt{Ctrl-B} (backward) instead.

Restriction of Function Keys

The F keys are also used for functions. Certain function keys might be occupied by the terminal and may not be available for YaST. However, the \texttt{Alt} key combinations and function keys should always be fully available on a pure text console.

3.3 YaST Command Line Options

Besides the text mode interface, YaST provides a pure command line interface. To get a list of YaST command line options, enter:

\texttt{yast -h}

3.3.1 Starting the Individual Modules

To save time, the individual YaST modules can be started directly. To start a module, enter:

\texttt{yast <module_name>}

View a list of all module names available on your system with \texttt{yast -l} or \texttt{yast --list}. Start the network module, for example, with \texttt{yast lan}.
3.3.2 Installing Packages from the Command Line

If you know a package name and the package is provided by any of your active installation repositories, you can use the command line option `-i` to install the package:

```
yast -i <package_name>
```

or

```
yast --install <package_name>
```

`package_name` can be a single short package name, for example `vim`, which is installed with dependency checking, or the full path to an rpm package, which is installed without dependency checking.

If you need a command-line based software management utility with functionality beyond what YaST provides, consider using zypper. This new utility uses the same software management library that is also the foundation for the YaST package manager. The basic usage of Zypper is covered in Section 7.1, "Using Zypper".

3.3.3 Command Line Parameters of the YaST Modules

To use YaST functionality in scripts, YaST provides command line support for individual modules. Not all modules have command line support. To display the available options of a module, enter:

```
yast <module_name> help
```

If a module does not provide command line support, the module is started in text mode and the following message appears:

```
This YaST module does not support the command line interface.
```
4 Snapshots/Rollback with Snapper

Being able to do file system snapshots providing the ability to do rollbacks on Linux is a feature that was often requested in the past. Snapper, in conjunction with the Btrfs file system or thin-provisioned LVM volumes now fills that gap. Btrfs, a new copy-on-write file system for Linux, supports file system snapshots (a copy of the state of a subvolume at a certain point of time) of subvolumes (one or more separately mountable file systems within each physical partition). Snapper lets you manage these snapshots. Snapper comes with a command line and a YaST interface.

By default Snapper and Btrfs on SUSE Linux Enterprise Desktop are set up to serve as an “undo tool” for system changes made with YaST and zypper. Before and after running a YaST module or zypper, a snapshot is created. Snapper lets you compare the two snapshots and provides means to revert the differences between the two snapshots. The tools also provide system backups by creating hourly snapshots of the system subvolumes.

4.1 Requirements

Since Btrfs is the only file system on SUSE Linux Enterprise Desktop supporting snapshots, it is required on all partitions or subvolumes you want to “snapshot”.

4.1.1 Snapshots and Disk Space

When a snapshot is created, both the snapshot and the original point to the same blocks in the file system. So, initially a snapshot does not occupy additional disk space. If data in the original file system is modified, changed data blocks are copied while the old data blocks are kept for the snapshot. Therefore, a snapshot occupies the same amount of space as the data modified. So, over time, the amount of space a snapshot allocates, constantly grows. As a consequence, deleting files from a Btrfs file system containing snapshots may not free disk space!
Note: Snapshot Location

Snapshots always reside on the same partition or subvolume that has been “snapshotted”. It is not possible to store snapshots on a different partition or subvolume.

As a result, partitions containing snapshots need to be larger than “normal” partitions. The exact amount strongly depends on the number of snapshots you keep and the amount of data modifications. As a rule of thumb you should consider using twice the size than you normally would.

Tip: Freeing space / Disk Usage

In order to free space on a Btrfs partition containing snapshots you need to delete unneeded snapshots rather than files. Older snapshots occupy more space than recent ones.

Since the df does not show the correct disk usage on Btrfs file systems, you need to use the command `btrfs filesystem df MOUNT_POINT`. Displaying the amount of disk space a snapshot allocates is currently not supported by the Btrfs tools.

Doing an upgrade from one service pack to another results in snapshots occupying a lot of disk space on the system subvolumes, because a lot of data gets changed (package updates). Manually deleting these snapshots once they are no longer needed is recommended.

Snapper can also be used to create and manage snapshots on thin-provisioned LVM volumes formatted with ext3 or XFS (see Section 4.6, “Using Snapper on Thin-Provisioned LVM Volumes”).

4.2 Using Snapper to Undo System Changes

Snapper on SUSE Linux Enterprise Desktop is pre-configured to serve as a tool that lets you undo changes made by zypper and YaST. For this purpose, Snapper is configured to create a pair of snapshots before and after each run of zypper and YaST. Snapper also lets you restore system files that have been accidentally deleted or modified. Hourly backups are created for this purpose.
By default, automatic snapshots as described above are configured for the root partition and its subvolumes. In order to make snapshots available for other partitions such as `/home` for example, you can create custom configurations.

4.2.1 Undoing YaST and Zypper Changes

If you set up the root partition with `Btrfs` during the installation, Snapper—pre-configured for doing rollbacks of YaST or Zypper changes—will automatically be installed. Every time you start a YaST module or a Zypper transaction, two snapshots are created: a “pre-snapshot” capturing the state of the file system before the start of the module and a “post-snapshot” after the module has been finished.

Using the YaST Snapper module or the `snapper` command line tool, you can undo the changes made by YaST/zypper by restoring files from the “pre-snapshot”. Comparing two snapshots the tools also allow you to see which files have been changed. You can also display the differences between two versions of a file (diff).

Since Linux is a multitasking system, processes other than YaST or Zypper may modify data in the time frame between the pre- and the post-snapshot. If this is the case, completely reverting to the pre-snapshot will also undo these changes by other processes. In most cases this would be unwanted—therefore it is strongly recommended to closely review the changes between two snapshots before starting the rollback. If there are changes from other processes you want to keep, select which files to roll back.

Important: Limitations

Make sure you know about Snapper's limitations before attempting to use its rollback mechanism. See Section 4.4, “Limitations” for details.

Note: Storage Time of Snapshots

By default, the last 100 YaST and Zypper snapshots are kept. If this number is exceeded, the oldest snapshot(s) will be deleted.

PROCEDURE 4.1: UNDOING CHANGES USING THE YAST SNAPPER MODULE

1. Start the Snapper module from the Miscellaneous section in YaST or by entering `yast2 snapper`.
2. Make sure *Current Configuration* is set to *root*. This is always the case unless you have manually added own Snapper configurations.

3. Choose a pair of pre- and post-snapshots from the list. Both, YaST and Zypper snapshot pairs are of the type *Pre & Post*. YaST snapshots are labeled as *yast module name* in the *Description column*; Zypper snapshots are labeled *zypp (zypper)*.

4. Click *Show Changes* to open the list of files that differ between the two snapshots. The following image shows a list of files that have changed after having added the user *tester*.
5. Review the list of files. To display a “diff” between the pre- and post-version of a file, select it from the list. The following images shows the changes to `/etc/passwd` after having added the user `tester`.

6. To restore a set of files, select the relevant files or directories by ticking the respective check box. Click `Restore Selected` and confirm the action by clicking `Yes`.
To restore a single file, activate its diff view by clicking on its name. Click Restore From First and confirm your choice with Yes.

PROCEDURE 4.2: UNDOING CHANGES USING THE snapper COMMAND

1. Get a list of YaST and Zypper snapshots by running `snapper list -t pre-post`. YaST snapshots are labeled as `yast module_name` in the Description column; Zypper snapshots are labeled `zypp (zypper)`.

```
~ # snapper list -t pre-post
Pre # | Post # | Pre Date             | Post Date             | Description                   
-------|-------|----------------------|----------------------|---------------------------------+
   4    |   5   | Tue Jan 10 14:39:14 2012 | Tue Jan 10 14:39:33 2012 | yast system_settings            
  65    |  66   | Thu Jan 12 17:18:10 2012 | Thu Jan 12 17:18:23 2012 | zypp (zypper)                   
  73    |  74   | Thu Jan 12 17:32:55 2012 | Thu Jan 12 17:33:13 2012 | yast system_settings            
  75    |  76   | Thu Jan 12 17:33:56 2012 | Thu Jan 12 17:34:42 2012 | yast users                      
  88    |  89   | Thu Jan 12 23:10:42 2012 | Thu Jan 12 23:10:46 2012 | zypp (zypper)                   
  90    |  91   | Thu Jan 12 23:11:40 2012 | Thu Jan 12 23:11:42 2012 | zypp (zypper)                   
 108    | 109   | Fri Jan 13 13:01:06 2012 | Fri Jan 13 13:01:10 2012 | zypp (zypper)                   
```

2. Get a list of changed files for a snapshot pair with `snapper status PRE..POST`. Files with content changes are marked with `c`, files that have been added are marked with `+` and deleted files are marked with `-`. The following example shows a snapshot pair for the installation of the package `ncftp`.

```
Restoring Files...
Deleted /usr/share/man/man1/ncftpget1.gz
Deleted /usr/share/man/man1/ncftps1.gz
Deleted /usr/share/man/man1/ncftpput1.gz
Deleted /usr/share/man/man1/ncftpools1.gz
 nv-cache/zypp/software/System/cookie
 nv-cache/zypp/software/System/solv
 nv/lib/cnm/Names
 nv/lib/cnm/Pathnames
 nv/lib/cnm/Group
 nv/lib/cnm/InstallId
 nv/lib/cnm/Name
 nv/lib/cnm/Package
 nv/lib/cnm/Providename
 nv/lib/cnm/Providedversion
 nv/lib/cnm/Requires
 nv/lib/cnm/Requiredversion
 nv/lib/cnm/Sha1header
 nv/lib/cnm/Signature
 nv/lib/zypp/Softlock
```
3. To display the diff for a certain file, run `snapper diff PRE..POST FILENAME`. If you do not specify `FILENAME`, a diff for all files will be displayed.

```bash
~ # snapper diff 108..109 /var/lib/zypp/SoftLocks
--- /snapshots/108/snapshot/var/lib/zypp/SoftLocks 2012-01-12
 23:15:22.408009164 +0100
13:01:08.724009131 +0100
@@ -1,4 +1,2 @@
-# zypp::SoftLocksFile generated Thu Jan 12 23:10:46 2012
-ncftp
+## zypp::SoftLocksFile generated Fri Jan 13 13:01:08 2012
 +#
```

4. To restore one or more files run `snapper -v undochange PRE..POST FILENAMES`. If you do not specify a `FILENAMES`, all changed files will be restored.

```bash
~ # snapper -v undochange 108..109
create:0 modify:16 delete:21
```
4.2.2 Using Snapper to Restore Files from Hourly Backups

Apart from the YaST and Zypper snapshots, Snapper creates hourly snapshots of the system partition (/). You can use these backup snapshots to restore files that have accidentally been deleted or modified beyond recovery. By making use of Snapper's diff feature you can also find out which modifications have been made at a certain point of time.

Hourly backup snapshots are of the type Single and are marked with the description time-line. To restore files from these snapshots proceed as described in Procedure 4.1, “Undoing changes using the YaST Snapper module” or Procedure 4.2, “Undoing changes using the snapper command”.

Note: Storage Time of Snapshots

By default, the first snapshot of the last ten days, months, and years are kept. For details see Example 4.1, “Example time line configuration”.
4.2.3 Creating and Modifying Snapper Configurations

The way Snapper behaves is defined in a config file that is specific for each partition or Btrfs subvolume. These config files reside under `/etc/snapper/configs/`. The default config installed with Snapper for the `/` directory is named `root`. It creates and manages the YaST and Zypper snapshots as well as the hourly backup snapshot for `/`.

You may create your own configurations for other partitions formatted with Btrfs or existing subvolumes on a Btrfs partition. In the following example we will set up a Snapper configuration for backing up the Web server data residing on a separate, Btrfs-formatted partition mounted at `/srv/www`.

You can use either `snapper` itself or the YaST Snapper module to restore files from these snapshots. In YaST you need to select your Current Configuration, while you need to specify your config for `snapper` with the global switch `-c` (e.g. `snapper -c myconfig list`).

To create a new Snapper configuration, run `snapper create-config`:

```
snapper -c www-data create-config /srv/www
```

1. Name of config file.
2. Mount point of the partition or Btrfs subvolume to snapshot.

This command will create a new config file `/etc/snapper/config-templates/www-data` with reasonable default values (taken from `/etc/snapper/config-templates/default`).

Tip: Config Defaults

Default values for a new config are taken from `/etc/snapper/config-templates/default`. To use your own set of defaults, create a copy of this file in the same directory and adjust it to your needs. To use it, specify the `-t` option with the create-config command:

```
snapper -c www-data create-config -t my_defaults /srv/www
```

4.2.3.1 Adjusting the Config File

To adjust the config file, you need to modify it with an editor. It contains key/value pairs in the form of `key=value`. You may only change the `value`.
SUBVOLUME

Mount point of the partition or subvolume to snapshot. Do not change.

FSTYPE

File system type of the partition. Do not change.

NUMBER_CLEANUP

Defines whether to automatically delete old snapshots when the total snapshot count exceeds a number specified with **NUMBER_LIMIT** and an age specified with **NUMBER_MIN_AGE**. Valid values: yes, no

Note: Limit and Age

NUMBER_LIMIT and **NUMBER_MIN_AGE** are always evaluated both. Snapshots are only deleted when both conditions are met. If you always want to keep a certain number of snapshots regardless of their age, set **NUMBER_MIN_AGE** to 0. On the other hand, if you do not want to keep snapshots beyond a certain age, set **NUMBER_LIMIT** to 0.

NUMBER_LIMIT

Defines how many snapshots to keep if **NUMBER_CLEANUP** is set to yes.

NUMBER_MIN_AGE

Defines the minimum age in seconds a snapshot must have before it can automatically be deleted.

TIMELINE_CREATE

If set to yes, hourly snapshots are created. This is currently the only way to automatically create snapshots, therefore setting it to yes is strongly recommended. Valid values: yes, no

TIMELINE_CLEANUP

Defines whether to automatically delete old snapshots when the snapshot count exceeds a number specified with the **TIMELINE_LIMIT_** options and an age specified with **TIMELINE_MIN_AGE**. Valid values: yes, no

TIMELINE_MIN_AGE

Defines the minimum age in seconds a snapshot must have before it can automatically be deleted.
Number of snapshots to keep for hour, day, month, year.

EXAMPLE 4.1: EXAMPLE TIME LINE CONFIGURATION

```plaintext
TIMELINE_CREATE="yes"
TIMELINE_CLEANUP="yes"
TIMELINE_MIN_AGE="1800"
TIMELINE_LIMIT_HOURLY="10"
TIMELINE_LIMIT_DAILY="10"
TIMELINE_LIMIT_MONTHLY="10"
TIMELINE_LIMIT_YEARLY="10"
```

This example configuration enables hourly snapshots which are automatically cleaned up. `TIMELINE_MIN_AGE` and `TIMELINE_LIMIT_*` are always evaluated both. In this example, the minimum age of a snapshot, before it can be deleted is set to 30 minutes (1800 seconds). Since we create hourly snapshots, this ensures that only the latest snapshots are kept. If `TIMELINE_LIMIT_DAILY` is set to not zero, this means that the first snapshot of the day is kept, too.

SNAPSHOTS TO BE KEPT

- Hourly: The last ten snapshots that have been made.
- Daily: The first daily snapshot that has been made is kept for the last ten days.
- Monthly: The first snapshot made on the last day of the month is kept for the last ten months.
- Yearly: The first snapshot made on the last day of the year is kept for the last ten years.

4.2.3.2 Using Snapper as Regular User

By default Snapper can only be used by `root`. However, there are cases in which certain groups or users need to be able to create snapshots or undo changes by reverting to a snapshot:

- a website administrator wants to snapshot `/srv/www`.
- a database administrator wants to snapshot the databases.
- a user wants to snapshot her home directory.
For these purposes Snapper configurations that grant permissions to users or/and groups can be created. In addition to this configuration change, the corresponding `.snapshots` directory needs to be readable and accessible by the specified users.

PROCEDURE 4.3: ENABLING REGULAR USERS TO USE SNAPPER

Note that all steps in this procedure need to be run by `root`.

1. If not existing, create a Snapper configuration for the partition or subvolume on which the user should be able to use Snapper. Refer to Section 4.2.3, “Creating and Modifying Snapper Configurations” for instructions. Example:

   ```bash
   snapper --config web_data create /srv/www
   ```

2. The configuration file is created under `/etc/snapper/configs/NAME`, where NAME is the value you specified with `-c/--config` in the previous step (for example `/etc/snapper/configs/web_data`). Adjust it according to your needs; see Section 4.2.3.1, “Adjusting the Config File” for details.

3. Set values for `ALLOW_USERS` and/or `ALLOW_GROUPS` to grant permissions to users and/or groups, respectively. Multiple entries need to be separated by `Space`. To grant permissions to the user `www_admin` for example, enter:

   ```bash
   ALLOW_USERS="www_admin"
   ```

4. Grant read and access permissions on the snapshot directory `PATH/.snapshots`. `PATH` is to be replaced by the subvolume you specified in the first step of this procedure. Example:

   ```bash
   chmod a+rx /srv/www/.snapshots
   ```

The given Snapper configuration can now be used by the specified user(s) and/or group(s). You can test it with the `list` command, for example:

   ```bash
   www_admin:~ > snapper -c web_data list
   ```
4.2.4 Disabling Automatic Snapshots

If you have set up the root partition with Btrfs during the installation, Snapper automatically creates hourly snapshots of the system, as well as pre- and post-snapshots for YaST and zypper transactions. Each of these tasks can be disabled as follows:

Disabling hourly snapshots
Edit /etc/snapper/configs/root and set TIMELINE_CREATE to no:

```
TIMELINE_CREATE="no"
```

Disabling Zypper snapshots
Uninstall the package snapper-zypp-plugin

Disabling YaST snapshots
Edit /etc/sysconfig/yast2 and set USE_SNAPPER to no:

```
USE_SNAPPER="no"
```

4.3 Manually Creating and Managing Snapshots

Snapper is not restricted to creating and managing snapshots automatically by configuration; you can also create snapshot pairs (“before and after”) or single snapshots manually using either the command line tool or the YaST module.

All Snapper operations are carried out for an existing configuration (see Section 4.2.3, “Creating and Modifying Snapper Configurations” for details). You can only snapshot partitions or volumes for which a configuration exists. By default the system configuration (root) is used. If you want to create or manage snapshots for your own configuration you need to explicitly choose it. Use the Current Configuration drop-down menu in YaST or specify the -c on the command line (snapper -c MYCONFIG COMMAND).
4.3.1 Snapshot Metadata

Each snapshot consists of the snapshot itself and some metadata. When creating a snapshot you also need to specify the metadata. Modifying a snapshot means changing its metadata—you cannot modify its content. The following metadata is available for each snapshot:

- **Type:** Snapshot type, see Section 4.3.1.1, “Snapshot Types” for details. This data cannot be changed.
- **Number:** Unique number of the snapshot. This data cannot be changed.
- **Pre Number:** Specifies the number of the corresponding pre snapshot. For snapshots of type post only. This data cannot be changed.
- **Description:** A description of the snapshot.
- **Userdata:** An extended description where you can specify custom data in the form of a comma-separated key=value list: `reason=testing_stuff, user=tux`
- **Cleanup-Algorithm:** Cleanup-algorithm for the snapshot, see Section 4.3.1.2, “Cleanup-algorithms” for details.

4.3.1.1 Snapshot Types

Snapper knows three different types of snapshots: pre, post, and single. Physically they do not differ, but Snapper handles them differently.

pre
Snapshot of a file system *before* a modification. Each _pre_ snapshot has got a corresponding _post_ snapshot. Used e.g. for the automatic YaST/zypper snapshots.

post
Snapshot of a file system *after* a modification. Each _post_ snapshot has got a corresponding _pre_ snapshot. Used e.g. for the automatic YaST/zypper snapshots.

single
Stand-alone snapshot. Used e.g. for the automatic hourly snapshots. This is the default type when creating snapshots.
4.3.1.2 Cleanup-algorithms

Snapper provides three algorithms to clean up old snapshots. The algorithms are executed in a daily cron-job. The cleanup-frequency itself is defined in the Snapper configuration for the partition or subvolume (see Section 4.2.3.1, “Adjusting the Config File” for details).

number
Deletes old snapshots when a certain snapshot count is reached.

time line
Deletes old snapshots having passed a certain age, but keeps a number of hourly, daily, monthly, and yearly snapshots.

empty-pre-post
Deletes pre/post snapshot pairs with empty diffs.

4.3.2 Creating Snapshots

Creating a snapshot is done by running `snapper create` or by clicking `Create` in the YaST module `Snapper`. The following examples explain how to create snapshots from the command line. It should be easy to adopt them when using the YaST interface.

Tip: Snapshot Description

You should always specify a meaningful description in order to later be able to identify its purpose. Even more information can be specified via the user data option.

```
snapper create --description "Snapshot for week 2 2013"
```

Creates a stand-alone snapshot (type single) for the default (root) configuration with a description. Because no cleanup-algorithm is specified, the snapshot will never be deleted automatically.

```
snapper --config home create --description "Cleanup in ~tux"
```

Creates a stand-alone snapshot (type single) for a custom configuration named home with a description. Because no cleanup-algorithm is specified, the snapshot will never be deleted automatically.
snapper --config home create --description "Daily data backup" --cleanup-algorithm timeline

Creates a stand-alone snapshot (type single) for a custom configuration named home with a description. The file will automatically be deleted when it meets the criteria specified for the time line cleanup-algorithm in the configuration.

snapper create --type pre --print-number --description "Before the Apache config cleanup"

Creates a snapshot of the type pre and prints the snapshot number. First command needed to create a pair of snapshots used to save a “before” and “after” state.

snapper create --type post --pre-number 30 --description "After the Apache config cleanup"

Creates a snapshot of the type post paired with the pre snapshot number 30. Second command needed to create a pair of snapshots used to save a “before” and “after” state.

snapper create --command COMMAND --description "Before and after COMMAND"

Automatically creates a snapshot pair before and after running COMMAND. This option is only available when using snapper on the command line.

4.3.3 Modifying Snapshot Metadata

Snapper allows you to modify the description, the cleanup algorithm, and the userdata of a snapshot. All other metadata cannot be changed. The following examples explain how to modify snapshots from the command line. It should be easy to adopt them when using the YaST interface.

To modify a snapshot on the command line, you need to know its number. Use snapper list to display all snapshots and their numbers.

The YaST Snapper module already lists all snapshots. Choose one from the list and click Modify.

snapper modify --cleanup-algorithm "timeline" 10

Modifies the metadata of snapshot 10 for the default (root) configuration. The cleanup algorithm is set to timeline.

snapper --config home modify --description "daily backup" --cleanup-algorithm "timeline" 120

Modifies the metadata of snapshot 120 for a custom configuration named home. A new description is set and the cleanup algorithm is unset.
4.3.4 Deleting Snapshots

To delete a snapshot with the YaST Snapper module, choose a snapshot from the list and click Delete.

To delete a snapshot with the command line tool, you need to know its number. Get it by running `snapper list`. To delete a snapshot, run `snapper delete NUMBER`.

Tip: Deleting Snapshot Pairs

When deleting a pre snapshot, you should always delete its corresponding post snapshot (and vice versa).

```
snapper delete 65
```

Deletes snapshot 65 for the default (root) configuration.

```
snapper -c home delete 89 90
```

Deletes snapshots 89 and 90 for a custom configuration named home.

Tip: Old Snapshots Occupy More Disk Space

If you delete snapshots in order to free space on your hard disk (see Section 4.1.1, “Snapshots and Disk Space” for details), make sure to delete old snapshots first. The older a snapshot is, the more disk space it occupies.

Snapshots are also automatically deleted by a daily cron-job. Refer to Section 4.3.1.2, “Cleanup-algorithms” for details.

4.4 Limitations

Although being ready for production, Btrfs as well as Snapper are constantly developed further. The following limitations exist at the moment. It is planned to solve these issues in future releases.
4.4.1 Data Consistency

There is no mechanism to ensure data consistency when creating snapshot. Whenever a file is written (e.g. a database) at the same time the snapshot is created, it will result in a broken or partly written file. Restoring such a file will cause problems. Therefore it is strongly recommended to always closely review the list of changed files and their diffs. Only restore files that really need to belonging to the action you want to roll back.

4.4.2 Reverting User Additions

Usually /home resides on a separate partition. Such a separate partition is not part of the default configuration for doing YaST rollbacks. Therefore the user's home partition will not be deleted when reverting a user addition using Snapper. It is strongly recommended to use the YaST User and Group Management tool to remove users.

4.4.3 No Rollback on /boot and Boot Loader Changes

Currently SUSE Linux Enterprise Desktop cannot boot from Btrfs partitions. Therefore a separate partition for /boot is created upon the installation when using Btrfs for the system partition. Since /boot does not support snapshots, the following restrictions apply for YaST/zypper rollbacks:

no rollback for any configuration changes on the boot loader

The only file that can be rolled back is the boot loader configuration file in /etc. The main configuration files reside under /boot and cannot be rolled back.

no complete rollback for Kernel installations

The Kernel itself and its initrd are installed in the /boot partition, whereas Kernel modules or sources are installed in /var/lib and /usr/src, respectively. Furthermore, each Kernel installation also changes the boot loader configuration files in /boot. So whenever you do a rollback that involves undoing a Kernel installation, you need to manually remove the Kernel and its initrd from /boot and adjust the boot loader configuration by removing the boot entry for the Kernel.
4.5 Frequently Asked Questions

Why does Snapper Never Show Changes in /var/log, /tmp and Other Directories?

For some directories we decided to disable “snapshotting”, e.g. /var/log since reverting logs makes searching for problems difficult. To exclude a path from “snapshotting” we create a subvolume for that path. The following mount points are excluded from “snapshotting” on SUSE Linux Enterprise Desktop:

- /opt
- /srv
- /tmp
- /var/crash
- /var/log
- /var/run
- /var/spool
- /var/tmp

Can I Boot a Snapshot from the Boot Loader?

This is currently not possible. The boot loader on SUSE Linux Enterprise Desktop currently does not support booting from a Btrfs partition.

4.6 Using Snapper on Thin-Provisioned LVM Volumes

Apart from snapshots on Btrfs file systems, snapper also supports “snapshotting” on thin-provisioned LVM volumes (snapshots on regular LVM volumes are not supported) formatted with ext3 or XFS. For more information and setup instructions, refer to Book “Deployment Guide”, Chapter 12 “Advanced Disk Setup”, Section 12.2 “LVM Configuration”.

In order to use Snapper on a thin-provisioned LVM volume you need to create a Snapper configuration for it. On LVM it is required to specify the file system with --fstype=lvm(FILESYSTEM). To date ext3 and XFS are supported, so ext3 or xfs are valid values for FILESYSTEM. Example:

```
snapper -c lvm create-config --fstype="lvm(xfs)" /thin_lvm
```
You can adjust this configuration according to your needs as described in Section 4.2.3.1, “Adjusting the Config File”. Now you can use Snapper to create and manage snapshots, to restore files, and undo changes as described above.
5 Remote Access with VNC

Virtual Network Computing (VNC) enables you to control a remote computer via a graphical desktop (as opposed to a remote shell access). VNC is platform-independent and lets you access the remote machine from any operating system.

SUSE Linux Enterprise Desktop supports two different kinds of VNC sessions: One-time sessions that “live” as long as the VNC connection from the client is kept up, and persistent sessions that “live” until they are explicitly terminated.

Note: Session Types

A machine can offer both kinds of sessions simultaneously on different ports, but an open session cannot be converted from one type to the other.

5.1 One-time VNC Sessions

A one-time session is initiated by the remote client. It starts a graphical login screen on the server. This way you can choose the user which starts the session and, if supported by the login manager, the desktop environment. Once you terminate the client connection to such a VNC session, all applications started within that session will be terminated, too. One-time VNC sessions cannot be shared, but it is possible to have multiple sessions on a single host at the same time.

PROCEDURE 5.1: ENABLING ONE-TIME VNC SESSIONS

1. Start YaST > Network Services > Remote Administration (VNC).

2. Check Allow Remote Administration.

3. If necessary, also check Open Port in Firewall (for example, when your network interface is configured to be in the External Zone). If you have more than one network interface, restrict opening the firewall ports to a specific interface via Firewall Details.

4. Confirm your settings with Finish.

5. In case not all needed packages are available yet, you need to approve the installation of missing packages.
Note: Available Configurations

The default configuration on SUSE Linux Enterprise Desktop serves sessions with a resolution of 1024x768 pixels at a color depth of 16-bit. The sessions are available on ports 5901 for “regular” VNC viewers (equivalent to VNC display 1) and on port 5801 for Web browsers.

Other configurations can be made available on different ports. Ask your system administrator.

VNC display numbers and X display numbers are independent in one-time sessions. A VNC display number is manually assigned to every configuration that the server supports (:1 in the example above). Whenever a VNC session is initiated with one of the configurations, it automatically gets a free X display number.

5.1.1 Initiating a One-time VNC Session

To initiate a one-time VNC session, a VNC viewer must be installed on the client machine. The standard viewer on SUSE Linux products is `vncviewer`, provided by the package `tightvnc`. You may also view a VNC session using your Web browser and a Java applet.

To start your VNC viewer and initiate a session with the server's default configuration, use the command:

```
$vncviewer jupiter.example.com:1
```

Instead of the VNC display number you can also specify the port number with two colons:

```
$vncviewer jupiter.example.com::5901
```

Alternatively use a Java-capable Web browser to view the VNC session by entering the following URL: `http://jupiter.example.com:5801`

5.1.2 Configuring One-time VNC Sessions

You can skip this section, if you do not need or want to modify the default configuration.

One-time VNC sessions are started via the `xinetd` daemon. A configuration file is located at `/etc/xinetd.d/vnc`. By default it offers six configuration blocks: three for VNC viewers (`vnc1` to `vnc3`), and three serving a Java applet (`vnchttpd1` to `vnchttpd3`). By default only `vnc1` and `vnchttpd1` are active.
To activate a configuration, comment the line `disable = yes` with a `#` character in the first column, or remove that line completely. To deactivate a configuration uncomment or add that line.

The `Xvnc` server can be configured via the `server_args` option—see `xvnc --help` for a list of options.

When adding custom configurations, make sure they are not using ports that are already in use by other configurations, other services, or existing persistent VNC sessions on the same host. Activate configuration changes by entering the following command:

```
rcxinetd reload
```

Important: Firewall and VNC Ports

When activating Remote Administration as described in Procedure 5.1, “Enabling One-time VNC Sessions”, the ports 5801 and 5901 are opened in the firewall. If the network interface serving the VNC sessions is protected by a firewall, you need to manually open the respective ports when activating additional ports for VNC sessions. See Book “Security Guide”, Chapter 15 “Masquerading and Firewalls” for instructions.

5.2 Persistent VNC Sessions

A persistent VNC session is initiated on the server. The session and all applications started in this session run regardless of client connections until the session is terminated.

A persistent session can be accessed from multiple clients simultaneously. This is ideal for demonstration purposes where one client has full access and all other clients have view-only access. Another usecase are trainings where the trainer might need access to the trainee’s desktop. However, most of the times you probably do not want to share your VNC session.

In contrast to one-time sessions that start a display manager, a persistent session starts a ready-to-operate desktop that runs as the user that started the VNC session.

Access to persistent sessions is protected by two possible types of passwords:

- a regular password that grants full access or
- an optional view-only password that grants a non-interactive (view-only) access.

A session can have multiple client connections of both kinds at once.
PROCEDURE 5.2: STARTING A PERSISTENT VNC SESSION

1. Open a shell and make sure you are logged in as the user that should own the VNC session.

2. If the network interface serving the VNC sessions is protected by a firewall, you need to manually open the port used by your session in the firewall. If starting multiple sessions you may alternatively open a range of ports. See Book “Security Guide”, Chapter 15 “Masquerading and Firewalls” for details on how to configure the firewall.

 The `vncserver` command uses the ports 5901 for display :1, 5902 for display :2, and so on. For persistent sessions, the VNC display and the X display usually have the same number.

3. To start a session with a resolution of 1024x768 pixel and with a color depth of 16-bit, enter the following command:

   ```bash
   vncserver -geometry 1024x768 -depth 16
   ```

 The `vncserver` command picks an unused display number when none is given and prints out its choice. See `man 1 vncserver` for more options.

When running `vncviewer` for the first time, it asks for a password for full access to the session. If needed, you can also provide a password for view-only access to the session.

The password(s) you are providing here are also used for future sessions started by the same user. They can be changed with the `vncpasswd` command.

⚠️ Important: Security Considerations

Make sure to use strong passwords of significant length (eight or more characters). Do not share these passwords.

VNC connections are unencrypted, so people who can sniff the network(s) between the two machines can read the password when it gets transferred at the beginning of a session.

To terminate the session shut down the desktop environment that runs inside the VNC session from the VNC viewer as you would shut it down if it was a regular local X session.
If you prefer to manually terminate a session, open a shell on the VNC server and make sure you are logged in as the user that owns the VNC session you want to terminate. Run the following command to terminate the session that runs on display :1: vncserver -kill :1

5.2.1 Connecting to a Persistent VNC Session

To connect to a persistent VNC session, a VNC viewer must be installed. The standard viewer on SUSE Linux products is vncviewer, provided by the package tightvnc. You may also view a VNC session using your Web browser and a Java applet.

To start your VNC viewer and connect to display :1 of the VNC server, use the command

```
vncviewer jupiter.example.com:1
```

Instead of the VNC display number you can also specify the port number with two colons:

```
vncviewer jupiter.example.com::5901
```

Alternatively use a Java-capable Web browser to view the VNC session by entering the following URL: http://jupiter.example.com:5801

5.2.2 Configuring Persistent VNC Sessions

Persistent VNC sessions can be configured by editing $HOME/.vnc/xstartup. By default this shell script starts an xterm and the twm Window Manager. To start either GNOME or KDE instead, replace the line starting twm with one of the following:

```
/usr/bin/gnome     # GNOME
/usr/bin/startkde  # KDE
```

Note: One Configuration for Each User

Persistent VNC sessions are configured in a single per-user configuration. Multiple sessions started by a user will all use the same start-up and password files.
6 GNOME Configuration for Administrators

This chapter introduces GNOME configuration options which administrators can use to adjust system-wide settings, such as customizing menus, installing themes, configuring fonts, changing preferred applications, and locking down capabilities.

These configuration options are stored in the GConf system. Access the GConf system with tools such as the `gconftool-2` command line interface or the `gconf-editor` GUI tool.

6.1 The GConf System

The GNOME desktop manages its configuration with GConf. It is a hierarchically structured database or registry where the user can change their own settings, and the system administrator can set default or mandatory values for all users. You reach GConf settings by specifying access paths, such as `/desktop/gnome/background/picture_filename`—this, for example, is the key holding the filename of the desktop background picture.

Use the graphical `gconf-editor` if you want to browse through all options conveniently. For a short usage description of `gconf-editor`, see Section 6.1.1, “The Graphical gconf-editor”. If you need a scriptable solution, see Section 6.1.2, “The gconftool-2 Command Line Interface”.

Warning: GNOME Control Center Dialogs

Accessing the Gconf System directly can result in an unusable system, if done without care.

Inexperienced users who want to adjust some common desktop features only, are recommended to use the GNOME Control Center configuration dialogs. To start the GNOME Control Center, click **Computer > Control Center**. For more information, see Book “GNOME User Guide”, Chapter 3 “Customizing Your Settings”, Section 3.1 “The Control Center”.

6.1.1 The Graphical gconf-editor

gconf-editor lets you browse through GConf settings and change them interactively. To start gconf-editor in the default **Settings Window** view, click **Computer > More Applications** and then in the **System** group click **GNOME Configuration Editor**.
By default, users can change settings for their own desktop, and the administrator can prepare settings for specifying default or mandatory values. For example, if you want to enable the *typing break* feature as mandatory for all users, proceed as follows:

1. Start **gconf-editor** as **root** in the command line.
2. In the tree pane on the left, expand `/desktop/gnome/typing_break`.
3. Right-click **enabled** and select **Set as Mandatory**. Once this is done, you can manage this feature.
4. Open the **Mandatory settings** window by clicking **File > New Mandatory Window**.
5. In the tree pane of the **Mandatory settings** window expand `/desktop/gnome/typing_break`, click **enabled**.
6. Close the window to save the setting by clicking **File > Close Window**.

6.1.2 The gconftool-2 Command Line Interface

To change settings from the command line or within scripts, use **gconftool-2**. A few examples follow:

As **root**, use the following command to list the values of all keys:

```
gconftool-2 --recursive-list /
```

If you are interested in a subset only, specify an access path such as `/desktop/gnome/typing_break`:

```
gconftool-2 --recursive-list /desktop/gnome/typing_break
```

To list mandatory settings:

```
gconftool-2 --recursive-list \ 
    --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory /
```

To set a mandatory setting such as **typing_break**:

```
gconftool-2 \ 
    --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
    50
```
To unset a mandatory setting:

```bash
--type bool \
--set /desktop/gnome/typing_break/enabled true
```

For default settings, use `gconftool-2 --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory`.

6.2 Customizing Main Menu, Panel, and Application Browser

Control the default items shown in various sections of the main menu (`Computer`) by customizing the following files:

- `/usr/share/gnome-main-menu/applications.xbel`: List of default favorite applications.
- `/usr/share/gnome-main-menu/system-items.xbel`: Items shown in the system section.

With `gconf-editor`, you can customize the number of displayed items:

- `/desktop/gnome/applications/main-menu/file-area/min_recent_items`: Minimal number of recent items.
- `/desktop/gnome/applications/main-menu/file-area/max_total_items`: Maximal number of total items.

You can customize the application browser in various ways, for example its behavior when users launch items or the number of items displayed in the `New Applications` category. Look up the keys `/desktop/gnome/applications/main-menu/ab_*` with `gconf-editor`.

For more information, see the Section Customizing Menus in the GNOME Desktop System Administration Guide at https://help.gnome.org/admin/system-admin-guide/2.32/menustructure-0.html.en.
6.3 Starting Applications Automatically

To automatically start applications in GNOME, use one of the following methods:

- **To run applications for each user:** Put `.desktop` files in `/usr/share/gnome/autostart`.
- **To run applications for an individual user:** Put `.desktop` files in `~/.config/autostart`.

To disable an application that starts automatically, add `X-Autostart-enabled=false` to the `.desktop` file.

6.4 Automounting and Managing Media Devices

Nautilus (nautilus) monitors volume-related events and responds with a user-specified policy. You can use Nautilus to automatically mount hot-plugged drives and inserted removable media, automatically run programs, and play audio CDs or video DVDs. Nautilus can also automatically import photos from a digital camera.

System administrators can set system-wide defaults. For more information, see Section 6.5, “Changing Preferred Applications”.

6.5 Changing Preferred Applications

To change users' preferred applications, edit `/etc/gnome_defaults.conf`. Find further hints within this file.

After editing the file, run `SuSEconfig --module glib2`.

For more information about MIME types, see http://www.freedesktop.org/Standards/shared-mime-info-spec.

6.6 Managing Profiles Using Sabayon

Sabayon is a system administration tool to create and apply desktop environment profiles. Desktop profile is a collection of default settings and restrictions that can be applied to either individual users or groups of users. Sabayon lets you edit GConf defaults and mandatory keys using a graphical tool.
Profile definition is done through a graphical session similar to the one a user would be running, only inside a desktop window. You can change properties (such as the desktop background, toolbars, and available applets) in the usual way. Sabayon also detects changes to the default settings in most desktop applications.

Files or documents that are left in the simulated home directory or on the desktop are included in the finished profile. This includes many application-specific databases, such as Tomboy notes. Using this mechanism, it is easy to supply introductory notes or templates in a manner easily accessible to new users.

A user profile can inherit its settings from a parent profile, overriding or adding specific values. This enables hierarchical sets of settings. For example, you can define an Employee profile and derive Artist and Quality Assurance profiles from that.

In addition to providing defaults, Sabayon can also lock down settings. This makes the setting resistant to change by users. For instance, you can specify that the desktop background cannot be changed to something other than the default you provide. It prevents casual tampering with settings, potentially reducing the number of helpdesk calls, and enabling kiosk-like environments. However, it does not provide absolute security and should not be relied on for such.

Sabayon also provides a list of settings for applications and generic user interface elements that have built-in lock down support, including OpenOffice.org, and the GNOME panel. For example, the panel can be set up to allow only specific applets to be added to it and prevent changing its location or size on the screen. Likewise, the Save menu items can be disabled across all applications that use it, preventing users from saving documents.

The profiles are transferable to other computers. They reside in
`/etc/desktop-profiles/`, and each profile is saved in a separate ZIP file.

6.6.1 Creating a Profile

Profiles are saved in ZIP files located in `/etc/desktop-profiles`. Each profile you save is stored in a separate ZIP file as `name-of-the-profile.zip`. You can copy or move profiles to other computers.

1. Click `Computer > More Applications > System > User Profile Editor`.
2. If you are not logged in as `root`, type the `root` password, then click `Continue`.

```
3. Click Add.

4. Specify a name for the profile, then click Add.

5. Select the profile, then click Edit.
   A new desktop session opens in an Xnest window.
6. In the Xnest window, make the changes to the settings that you want.
Each setting you change appears in the Xnest window.
You can choose to make each setting mandatory (click *Edit > Enforce Mandatory*), to ignore a setting (click *Edit > Changes > Ignore*), or make a setting default (do not selecting either *Ignore* or *Mandatory*).

7. To lock settings for users, click *Edit > Lockdown* in the Xnest window.
You can choose from the following options:

   **General:** Lets you disable the command line, printing, print setup, and the save-to-disk feature.

   **Panel:** Lets you lock down the panels, disable force quit, disable lock screen, disable log out, and disable any of the applets in the *Disabled Applets* list.

   **OpenOffice.org:** Lets you define the macro security level for OpenOffice.org documents, load and save options, and user interface options.

8. To save the profile, click *Profile > Save*.
The profile is saved in `/etc/desktop-profiles`. 
9. Click Profile > Quit to close the Xnest window, then click Close to exit Sabayon.

6.6.2 Applying a Profile

You can apply a profile to individual users or to all users on a workstation.

1. Click Computer > More Applications > System > User Profile Editor.

2. If you are not logged in as root, type the root password, then click Continue.

3. Select the profile you want to apply, then click Users.

4. Select the users you want to use this profile.

   To apply this profile to all users on this workstation, click Use this profile for all users.

5. Click Close.

6.7 Adding Document Templates

To add document templates for users, fill in the Templates directory in a user’s home directory.

You can do this manually for each user by copying the files into ~/Templates, or system-wide by adding a Templates directory with documents to /etc/skel before the user is created.

A user creates a new document from a template by right-clicking the desktop and selecting Create Document.
6.8 Desktop Lock Down Features

Sometimes it is desired to remove or disable desktop features or user access to the underlying operating system. GNOME offers so-called lock down features to change the desktop accordingly. Technically, you set GConf keys to implement those changes.

For example, if you open gconf-editor, you can see lock down keys for the main menu in `/desktop/gnome/applications/main-menu/lock-down/application_browser_link_visible`. There are also descriptions for all the keys. Other lock down keys are:

- `/desktop/gnome/lockdown/disable_command_line`
  If set, then terminals are not shown in the main menu and the AppBrowser.

- `/apps/panel/global/disable_log_out`

- `/apps/panel/global/disable_lock_screen`
  If set, main menu does not show these items.

Find Firefox lock down keys in `/apps/firefox/lockdown`.

For more information, see the “Desktop Administrators’ Guide to GNOME Lockdown and Pre-configuration” by Sayamindu Dasgupta: [http://library.gnome.org/admin/deployment-guide/](http://library.gnome.org/admin/deployment-guide/).

6.9 For More Information

For more information, see [http://library.gnome.org/admin/](http://library.gnome.org/admin/).
7 Managing Software with Command Line Tools

This chapter describes Zypper and RPM, two command line tools for managing software. For a definition of the terminology used in this context (for example, repository, patch, or update) refer to Book “Deployment Guide”, Chapter 6 “Installing or Removing Software”, Section 6.1 “Definition of Terms”.

7.1 Using Zypper

Zypper is a command line package manager for installing, updating and removing packages as well as for managing repositories. Zypper's syntax is similar to that of rug. In contrast to rug, Zypper does not require the zmd daemon to run behind the scenes. For more information about rug compatibility, see man zypper, section “COMPATIBILITY WITH RUG”. It is especially useful for accomplishing remote software management tasks or managing software from shell scripts.

7.1.1 General Usage

The general syntax of Zypper is:

```
zypper [global-options]command[command-options][arguments] ...
```

The components enclosed in brackets are not required. The simplest way to execute Zypper is to type its name, followed by a command. For example, to apply all needed patches to the system type:

```
zypper patch
```

Additionally, you can choose from one or more global options by typing them just before the command. For example, --non-interactive means running the command without asking anything (automatically applying the default answers):

```
zypper --non-interactive patch
```

To use the options specific to a particular command, type them right after the command. For example, --auto-agree-with-licenses means applying all needed patches to the system without asking to confirm any licenses (they will automatically be accepted):

```
zypper patch --auto-agree-with-licenses
```
Some commands require one or more arguments. When using the install command, for example, you need to specify which package(s) to install:

```
zypper install mplayer
```

Some options also require an argument. The following command will list all known patterns:

```
zypper search -t pattern
```

You can combine all of the above. For example, the following command will install the `mplayer` and `amarok` packages from the `factory` repository while being verbose:

```
zypper -v install --from factory mplayer amarok
```

The `--from` option makes sure to keep all repositories enabled (for solving any dependencies) while requesting the package from the specified repository.

Most Zypper commands have a `dry-run` option that does a simulation of the given command. It can be used for test purposes.

```
zypper remove --dry-run MozillaFirefox
```

Zypper supports the global `--userdata string` option for transaction identification purposes. The user-defined string is passed to Zypper history logs in `/var/log/zypp/history` and Snapper.

```
zypper --userdata string patch
```

### 7.1.2 Installing and Removing Software with Zypper

To install or remove packages use the following commands:

```
zypper install package_name
zypper remove package_name
```

Zypper knows various ways to address packages for the install and remove commands:

**by the exact package name (and version number)**

```
zypper install MozillaFirefox
```

or
zypper install MozillaFirefox-3.5.3

by repository alias and package name

zypper install mozilla:MozillaFirefox

Where mozilla is the alias of the repository from which to install.

by package name using wild cards

The following command will install all packages that have names starting with “Moz”. Use with care, especially when removing packages.

zypper install 'Moz*'

by capability

For example, if you would like to install a perl module without knowing the name of the package, capabilities come in handy:

zypper install 'perl(Time::ParseDate)'

by capability and/or architecture and/or version

Together with a capability you can specify an architecture (such as i586 or x86_64) and/or a version. The version must be preceded by an operator: < (lesser than), <= (lesser than or equal), = (equal), >= (greater than or equal), > (greater than).

zypper install 'firefox.x86_64'
zypper install 'firefox>=3.5.3'
zypper install 'firefox.x86_64>=3.5.3'

by path to the RPM file

You can also specify a local or remote path to a package:

zypper install /tmp/install/MozillaFirefox.rpm
zypper install http://download.opensuse.org/repositories/mozilla/SUSE_Factory/x86_64/MozillaFirefox-3.5.3-1.3.x86_64.rpm

To install and remove packages simultaneously use the +/- modifiers. To install emacs and remove vim simultaneously, use:

zypper install emacs -vim

To remove emacs and install vim simultaneously, use:

zypper remove emacs +vim
To prevent the package name starting with the `-` being interpreted as a command option, always use it as the second argument. If this is not possible, precede it with `--`:

- `zypper install -emacs +vim`       # Wrong
- `zypper install vim -emacs`        # Correct
- `zypper install -- -emacs +vim`    # same as above
- `zypper remove emacs +vim`         # same as above

If (together with a certain package) you automatically want to remove any packages that become unneeded after removing the specified package, use the `--clean-deps` option:

- `rm package_name --clean-deps`

By default, Zypper asks for a confirmation before installing or removing a selected package, or when a problem occurs. You can override this behavior using the `--non-interactive` option. This option must be given before the actual command (`install`, `remove`, and `patch`) as in the following:

- `zypper --non-interactive install package_name`

This option allows the use of Zypper in scripts and cron jobs.

**Warning: Do not Remove Mandatory System Packages**

Do not remove packages such as `glibc`, `zypper`, `kernel`, or similar packages. These packages are mandatory for the system and, if removed, may cause the system to become unstable or stop working altogether.

### 7.1.2.1 Installing or Downloading Source Packages

If you want to install the corresponding source package of a package, use:

- `zypper source-install package_name`

That command will also install the build dependencies of the specified package. If you do not want this, add the switch `-D`. To install only the build dependencies use `-d`.

- `zypper source-install -D package_name` # source package only
- `zypper source-install -d package_name` # build dependencies only
Of course, this will only work if you have the repository with the source packages enabled in your repository list (it is added by default, but not enabled). See Section 7.1.5, “Managing Repositories with zypper” for details on repository management.

A list of all source packages available in your repositories can be obtained with:

```
zypper search -t srcpackage
```

You can also download source packages for all installed packages to a local directory. To download source packages, use:

```
zypper source-download
```

The default download directory is `/var/cache/zypper/source-download`. You can change it using the `--directory` option. To only show missing or extraneous packages without downloading or deleting anything, use the `--status` option. To delete extraneous source packages, use the `--delete` option. To disable deleting, use the `--no-delete` option.

### 7.1.2.2 Utilities

To verify whether all dependencies are still fulfilled and to repair missing dependencies, use:

```
zypper verify
```

In addition to dependencies that must be fulfilled, some packages “recommend” other packages. These recommended packages are only installed if actually available and installable. In case recommended packages were made available after the recommending package has been installed (by adding additional packages or hardware), use the following command:

```
zypper install-new-recommends
```

This command is very useful after plugging in a webcam or WLAN device. It will install drivers for the device and related software, if available. Drivers and related software are only installable if certain hardware dependencies are fulfilled.

### 7.1.3 Updating Software with Zygger

There are three different ways to update software using Zygger: by installing patches, by installing a new version of a package or by updating the entire distribution. The latter is achieved with the `zypper dist-upgrade` command which is discussed in Section 7.1.4, “Distribution Upgrade with zypper”.

62
7.1.3.1 Installing Patches

To install all officially released patches applying to your system, just run:

```
zypper patch
```

In this case, all patches available in your repositories are checked for relevance and installed, if necessary. After registering your SUSE Linux Enterprise Desktop installation, an official update repository containing such patches will be added to your system. The above command is all you must enter in order to apply them when needed.

Zypper knows three different commands to query for the availability of patches:

**zypper patch-check**

Lists the number of needed patches (patches that apply to your system but are not yet installed)

```
~ # zypper patch-check
Loading repository data...
Reading installed packages...
5 patches needed (1 security patch)
```

**zypper list-patches**

Lists all needed patches (patches that apply to your system but are not yet installed)

```
~ # zypper list-patches
Loading repository data...
Reading installed packages...

Repository | Name | Version | Category | Status
------------------------------------+-----------+---------+----------+-------
Updates for openSUSE 11.3 11.3-1.82 | lxsession | 2776 | security | needed
```

**zypper patches**

Lists all patches available for SUSE Linux Enterprise Desktop, regardless of whether they are already installed or apply to your installation.

It is also possible to list and install patches relevant to specific issues. To list specific patches, use the **zypper list-patches** command with the following options:

**--bugzilla[number]**

Lists all needed patches for Bugzilla issues. Optionally, you can specify a bug number if you only want to list patches for this specific bug.
**--cve[=number]**

Lists all needed patches for CVE (Common Vulnerabilities and Exposures) issues, or only patches matching a certain CVE number, if specified. By default, only unapplied patches are listed. Use `-a` to list all.

To install a patch for a specific Bugzilla or CVE issue, use the following commands:

```
zypper patch --bugzilla=number
```

or

```
zypper patch --cve=number
```

For example, to install a security patch with the CVE number `CVE-2010-2713`, execute:

```
zypper patch --cve=CVE-2010-2713
```

### 7.1.3.2 Installing Updates

If a repository contains only new packages, but does not provide patches, `zypper patch` does not show any effect. To update all installed packages with newer available versions, use:

```
zypper update
```

To update individual packages, specify the package with either the update or install command:

```
zypper update package_name
zypper install package_name
```

A list of all new installable packages can be obtained with the command:

```
zypper list-updates
```

Note that this command only packages lists packages that match the following criteria:

- has the same vendor like the already installed package,
- is provided by repositories with at least the same priority than the already installed package,
- is installable (all dependencies are satisfied).

A list of all new available packages (regardless whether installable or not) can be obtained with:

```
zypper list-updates --all
```
To find out why a new package cannot be installed, just use the `zypper install` or `zypper update` command as described above.

### 7.1.3.3 Upgrading to a New Product Version

To easily upgrade your installation to a new product version (for example, from SUSE Linux Enterprise Server 11 to SUSE Linux Enterprise Server 11 SP1, first adjust your repositories to match the current SUSE Linux Enterprise Desktop repositories. For details, refer to Section 7.1.5, “Managing Repositories with zypper”. Then use the `zypper dist-upgrade` command with the required repositories. This command ensures that all packages will be installed from the repositories currently enabled. For detailed instructions, refer to Section 7.1.4, “Distribution Upgrade with zypper”.

To restrict the distribution upgrade to packages from a certain repository while considering also the other repositories for satisfying dependencies, use the `--from` option and specify the repository by either its alias, its number or URI.

**Note: Differences between `zypper update` and `zypper dist-upgrade`**

Choose `zypper update` to update packages to newer versions available for your product version while maintaining system integrity. `zypper update` will honor the following rules:

- no vendor changes
- no architecture changes
- no downgrades
- keep installed packages

When executing `zypper dist-upgrade`, all packages will be installed from the repositories currently enabled. This rule is enforced, so packages might change vendor or architecture or even might get downgraded. All packages that have unfulfilled dependencies after the upgrade will be uninstalled.

### 7.1.4 Distribution Upgrade with zypper

With the `zypper` command line utility you can upgrade to the next version of the distribution. Most importantly, you can initiate the system upgrade process from within the running system.
This feature is attractive for advanced users who want to run remote upgrades or upgrades on many similarly configured systems.

7.1.4.1 Before Starting the Upgrade with zypper

To avoid unexpected errors during the upgrade process using zypper, minimize risky constellations.

- Close as many applications and unneeded services as possible and log out all regular users.
- Disable third party repositories before starting the upgrade, or lower the priority of these repositories to make sure packages from the default system repositories will get preference. Enable them again after the upgrade and edit their version string to match the version number of the distribution of the upgraded now running system.
- Make sure to have the system registered. If this is not done already, it can either be registered by using the Novell Customer Center Configuration module in YaST or by using the suse_register commandline tool. This will add update sources to the system.

⚠️ Warning: Perform Upgrades from Reboot

The upgrade process has to be done completely from beginning to reboot. There is only a limited chance to revert changes. Furthermore, the server has to be connected online during the whole process.

7.1.4.2 The Upgrade Procedure

⚠️ Warning: Check Your System Backup

Before actually starting the upgrade procedure, check that your system backup is up-to-date and restorable. This is especially important because you must enter many of the following steps manually.

The program zypper supports long and short command names. For example, you can abbreviate zypper install as zypper in. In the following text, the short variants are used.
Log in as `root` and perform the following steps:

1. Refresh all services and repositories:

   ```
 zypper ref -s
   ```

2. Install any package management updates:

   ```
 zypper up -t patch
   ```

   For more information, see *Chapter 1, YaST Online Update*.

3. Repeat *Step 2* to install all available updates for your system.

   Sidenote: If you want to use the above command in a script for an unattended upgrade, use the command:

   ```
 zypper --non-interactive patch --auto-agree-with-licenses --with-interactive
   ```

4. Read the migration product informations from `/etc/products.d/*.prod`. The installed products contain information about distribution upgrades and which migration products should be installed to perform the migration. Install them with the following commands:

   a. Extract the product information:

   ```
 zypper se -t product | grep -h "-migration" | cut -d\| -f2
   ```

   A sample output could be as follows:

   ```
 SUSE_SLES-SP3-migration
 sle-sdk-SP3-migration
   ```

   b. Install these migration products (example):

   ```
 zypper in -t product sle-sdk-SP3-migration SUSE_SLES-SP3-migration
   ```

   c. Register the products in order to get the corresponding update repositories:

   ```
 suse_register -d 2 -L /root/.suse_register.log
   ```
**Warning: Enable Additional Repository for SLED Users**

Some devel packages have been moved from the `SLED11-SP2` installation media to the `SLED11-Extras` repository. In order to avoid dependency conflicts during upgrade, enable this repository before performing the actual upgrade. Execute **`yast2 repositories`** and enable `SLED11-Extras` there. On SLES this extra step is not needed.

5. Refresh services and repositories:

   `zypper ref -s`

6. Check the repositories using **`zypper lr`**. If needed, disable the SP1/SP2 Pool/Core/Updates repositories manually and enable the new SP3 (SP3-Pool, SP3-Updates) repositories:

   `zypper mr --disable REPOALIAS`
   `zypper mr --enable REPOALIAS`

7. Perform a dist upgrade by using the following command (example for SLES, adjust catalog names in case SLED is updated):

   `zypper dup --from SLES11-SP3-Pool --from SLES11-SP3-Updates`

   You can add more catalogs here if needed, for example, in case addon products are installed. Zypper will report that it will delete the migration product and update the main products. Confirm the message to continue updating the rpm packages.

8. After the upgrade is finished, register the new products again:

   `suse_register -d 2 -L /root/.suse_register.log`

9. Reboot the system:

   `shutdown -r`
7.1.5 Managing Repositories with zypper

All installation or patch commands of Zypper rely on a list of known repositories. To list all repositories known to the system, use the command:

```
zypper repos
```

The result will look similar to the following output:

<table>
<thead>
<tr>
<th>#</th>
<th>Alias</th>
<th>Name</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SUSE-Linux-Enterprise-Server 11-0</td>
<td>SUSE-Linux-Enterprise-Server 11-0</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>refresh</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>SLES-11-Updates</td>
<td>SLES 11 Online Updates</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>refresh</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>broadcomdrv</td>
<td>Broadcom Drivers</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>refresh</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

When specifying repositories in various commands, an alias, URI or repository number from the `zypper repos` command output can be used. A repository alias is a short version of the repository name for use in repository handling commands. Note that the repository numbers can change after modifying the list of repositories. The alias will never change by itself.

By default, details such as the URI or the priority of the repository are not displayed. Use the following command to list all details:

```
zypper repos -d
```

Sometimes, the list contains a large number of repositories that are not enabled, which might be confusing. To only show enabled repositories, use the following command:

```
zypper repos -E
```
7.1.5.1 Adding Repositories

**Warning: Possible System Compromise When Adding Repositories with Zypper**

By default, digests and signatures of packages from repositories provided by SUSE are checked to ensure their integrity and origin. This “GPG check” is enabled in the repository configuration file on the server that provides the repository.

When adding a repository with the `zypper ar` command, this configuration file is downloaded to `/etc/zypp/repos.d`. Zypper also informs the user about GPG Check option:

| GPG check: Yes |

Always make sure that the GPG check output is set to “Yes”. If set to “No” your system can possibly be compromised by, for example, package downgrades that re-introduce previously fixed vulnerabilities. It is recommended not to trust repositories where this option is set to “No”. In case you are sure that the GPG check was disabled by mistake, re-enable the option by adding the following line to the respective repository configuration file in `/etc/zypp/repos.d`:

| gpgcheck=1 |

To add a repository, run

```
zypper addrepo URIalias
```

URI can either be an Internet repository, a network resource, a directory or a CD or DVD (see http://en.opensuse.org/openSUSE:Libzypp_URIs for details). The alias is a shorthand and unique identifier of the repository. You can freely choose it, with the only exception that it has to be unique. Zypper will issue a warning if you specify an alias that is already in use.
7.1.5.2 Removing Repositories

If you want to remove a repository from the list, use the command `zypper removerepo` together with the alias or number of the repository you want to delete. For example, to remove the repository listed as third entry in Example 7.1, “Zypper—List of Known Repositories”, use the following command:

```
zypper removerepo 3
```

7.1.5.3 Modifying Repositories

Enable or disable repositories with `zypper modifyrepo`. You can also alter the repository’s properties (such as refreshing behavior, name or priority) with this command. The following command will enable the repository named `updates`, turn on auto-refresh and set its priority to 20:

```
zypper modifyrepo -er -p 20 'updates'
```

Modifying repositories is not limited to a single repository—you can also operate on groups:

- `-a`: all repositories
- `-l`: local repositories
- `-t`: remote repositories

- `-m TYPE`: repositories of a certain type (where `TYPE` can be one of the following: http, https, ftp, cd, dvd, dir, file, cifs, smb, nfs, hd, iso)

To rename a repository alias, use the `renamerepo` command. The following example changes the alias from `Mozilla Firefox` to just `firefox`:

```
zypper renamerepo 'Mozilla Firefox' firefox
```

7.1.6 Querying Repositories and Packages with Zypper

Zypper offers various methods to query repositories or packages. To get lists of all products, patterns, packages or patches available, use the following commands:

```
zypper products
zypper patterns
```
To query all repositories for certain packages, use `search`. It works on package names, or, optionally, on package summaries and descriptions. Using the wild cards `*` and `?` with the search term is allowed. By default, the search is not case-sensitive.

```
zypper search firefox # simple search for "firefox"
zypper search "*fire*" # using wild cards
zypper search -d fire # also search in package descriptions and summaries
zypper search -u firefox # only display packages not already installed
```

To search for packages which provide a special capability, use the command `what-provides`. For example, if you would like to know which package provides the perl module `SVN::Core`, use the following command:

```
zypper what-provides 'perl(SVN::Core)'
```

To query single packages, use `info` with an exact package name as an argument. It displays detailed information about a package. To also show what is required/recommended by the package, use the options `--requires` and `--recommends`:

```
zypper info --requires MozillaFirefox
```

The `what-provides` package is similar to `rpm -q --whatprovides package`, but RPM is only able to query the RPM database (that is the database of all installed packages). Zypper, on the other hand, will tell you about providers of the capability from any repository, not only those that are installed.

### 7.1.7 Configuring Zypper

Zypper now comes with a configuration file, allowing you to permanently change Zypper's behavior (either system-wide or user-specific). For system-wide changes, edit `/etc/zypp/zypper.conf`. For user-specific changes, edit `~/.zypper.conf`. If `~/.zypper.conf` does not yet exist, you can use `/etc/zypp/zypper.conf` as template: copy it to `~/.zypper.conf` and adjust it to your liking. Refer to the comments in the file for help about the available options.
7.1.8 Troubleshooting

In case you have problems to access packages from configured repositories (for example, Zypper cannot find a certain package though you know that it exists in one the repositories), it can help to refresh the repositories with:

```
zypper refresh
```

If that does not help, try

```
zypper refresh -fdb
```

This forces a complete refresh and rebuild of the database, including a forced download of raw metadata.

7.1.9 Zypper Rollback Feature on btrfs File System

If the btrfs file system is used on the root partition and `snapper` is installed, Zypper automatically calls `snapper` (via script installed by `snapper`) when committing changes to the file system to create appropriate file system snapshots. These snapshots can be used for reverting any changes made by zypper. For more information about `snapper`, see `man snapper`.

Zypper (and YaST) currently only make snapshots of the root file system. Other subvolumes cannot be configured. This feature is not supported on the default file system.

7.2 RPM—the Package Manager

RPM (RPM Package Manager) is used for managing software packages. Its main commands are `rpm` and `rpmbuild`. The powerful RPM database can be queried by the users, system administrators and package builders for detailed information about the installed software.

Essentially, `rpm` has five modes: installing, uninstalling (or updating) software packages, rebuilding the RPM database, querying RPM bases or individual RPM archives, integrity checking of packages and signing packages. `rpmbuild` can be used to build installable packages from pristine sources.
Installable RPM archives are packed in a special binary format. These archives consist of the program files to install and certain meta information used during the installation by `rpm` to configure the software package or stored in the RPM database for documentation purposes. RPM archives normally have the extension `.rpm`.

**Tip: Software Development Packages**

For a number of packages, the components needed for software development (libraries, headers, include files, etc.) have been put into separate packages. These development packages are only needed if you want to compile software yourself (for example, the most recent GNOME packages). They can be identified by the name extension `-devel`, such as the packages `alsa-devel`, `gimp-devel`, and `libkde4-devel`.

### 7.2.1 Verifying Package Authenticity

RPM packages have a GPG signature. To verify the signature of an RPM package, use the command `rpm --checksig package-1.2.3.rpm` to determine whether the package originates from Novell/SUSE or from another trustworthy facility. This is especially recommended for update packages from the Internet.

### 7.2.2 Managing Packages: Install, Update, and Uninstall

Normally, the installation of an RPM archive is quite simple: `rpm -i package.rpm`. With this command the package is installed, but only if its dependencies are fulfilled and if there are no conflicts with other packages. With an error message, `rpm` requests those packages that need to be installed to meet dependency requirements. In the background, the RPM database ensures that no conflicts arise—a specific file can only belong to one package. By choosing different
options, you can force \texttt{rpm} to ignore these defaults, but this is only for experts. Otherwise, you risk compromising the integrity of the system and possibly jeopardize the ability to update the system.

The options \texttt{-U} or \texttt{--upgrade} and \texttt{-F} or \texttt{--freshen} can be used to update a package (for example, \texttt{rpm -F package.rpm}). This command removes the files of the old version and immediately installs the new files. The difference between the two versions is that \texttt{-U} installs packages that previously did not exist in the system, but \texttt{-F} merely updates previously installed packages. When updating, \texttt{rpm} updates configuration files carefully using the following strategy:

- If a configuration file was not changed by the system administrator, \texttt{rpm} installs the new version of the appropriate file. No action by the system administrator is required.

- If a configuration file was changed by the system administrator before the update, \texttt{rpm} saves the changed file with the extension \texttt{.rpmorig} or \texttt{.rpmsave} (backup file) and installs the version from the new package (but only if the originally installed file and the newer version are different). If this is the case, compare the backup file (\texttt{.rpmorig} or \texttt{.rpmsave}) with the newly installed file and make your changes again in the new file. Afterwards, be sure to delete all \texttt{.rpmorig} and \texttt{.rpmsave} files to avoid problems with future updates.

- \texttt{.rpmnew} files appear if the configuration file already exists and if the \texttt{noreplace} label was specified in the \texttt{.spec} file.

Following an update, \texttt{.rpmsave} and \texttt{.rpmnew} files should be removed after comparing them, so they do not obstruct future updates. The \texttt{.rpmorig} extension is assigned if the file has not previously been recognized by the RPM database.

Otherwise, \texttt{.rpmsave} is used. In other words, \texttt{.rpmorig} results from updating from a foreign format to RPM. \texttt{.rpmsave} results from updating from an older RPM to a newer RPM. \texttt{.rpmnew} does not disclose any information as to whether the system administrator has made any changes to the configuration file. A list of these files is available in \texttt{/var/adm/rpmconfigcheck}. Some configuration files (like \texttt{/etc/httpd/httpd.conf}) are not overwritten to allow continued operation.

The \texttt{-U} switch is not just an equivalent to uninstalling with the \texttt{-e} option and installing with the \texttt{-i} option. Use \texttt{-U} whenever possible.
To remove a package, enter `rpm -e package`. `rpm`, which only deletes the package if there are no unresolved dependencies. It is theoretically impossible to delete Tcl/Tk, for example, as long as another application requires it. Even in this case, RPM calls for assistance from the database. If such a deletion is, for whatever reason, impossible (even if no additional dependencies exist), it may be helpful to rebuild the RPM database using the option `--rebuilddb`.

### 7.2.3 RPM and Patches

To guarantee the operational security of a system, update packages must be installed in the system from time to time. Previously, a bug in a package could only be eliminated by replacing the entire package. Large packages with bugs in small files could easily result in this scenario. However, the SUSE RPM offers a feature enabling the installation of patches in packages.

The most important considerations are demonstrated using `pine` as an example:

**Is the patch RPM suitable for my system?**

To check this, first query the installed version of the package. For `pine`, this can be done with

```
rpm -q pine
pine-4.44-188
```

Then check if the patch RPM is suitable for this version of `pine`:

```
rpm -qp --basedon pine-4.44-224.i586.patch.rpm
pine = 4.44-188
pine = 4.44-195
pine = 4.44-207
```

This patch is suitable for three different versions of `pine`. The installed version in the example is also listed, so the patch can be installed.

**Which files are replaced by the patch?**

The files affected by a patch can easily be seen in the patch RPM. The `rpm` parameter `-P` allows selection of special patch features. Display the list of files with the following command:

```
rpm -qPl pine-4.44-224.i586.patch.rpm
/etc/pine.conf
/etc/pine.conf.fixed
/usr/bin/pine
```
or, if the patch is already installed, with the following command:

```
rpm -qP1 pine
/etc/pine.conf
/etc/pine.conf.fixed
/usr/bin/pine
```

### How can a patch RPM be installed in the system?

Patch RPMs are used just like normal RPMs. The only difference is that a suitable RPM must already be installed.

### Which patches are already installed in the system and for which package versions?

A list of all patches installed in the system can be displayed with the command `rpm -qPa`. If only one patch is installed in a new system (as in this example), the list appears as follows:

```
rpm -qPa
pine-4.44-224
```

If, at a later date, you want to know which package version was originally installed, this information is also available in the RPM database. For `pine`, this information can be displayed with the following command:

```
rpm -q --basedon pine
pine = 4.44-188
```

More information, including information about the patch feature of RPM, is available in the man pages of `rpm` and `rpmbuild`.

---

**Note: Official Updates for SUSE Linux Enterprise Desktop**

In order to make the download size of updates as small as possible, official updates for SUSE Linux Enterprise Desktop are not provided as Patch RPMs, but as Delta RPM packages. For details, see Section 7.2.4, “Delta RPM Packages”.

---

### 7.2.4 Delta RPM Packages

Delta RPM packages contain the difference between an old and a new version of an RPM package. Applying a delta RPM onto an old RPM results in a completely new RPM. It is not necessary to have a copy of the old RPM because a delta RPM can also work with an installed RPM. The
delta RPM packages are even smaller in size than patch RPMs, which is an advantage when transferring update packages over the Internet. The drawback is that update operations with delta RPMs involved consume considerably more CPU cycles than plain or patch RPMs.

The `makedeltarpm` and `applydelta` binaries are part of the delta RPM suite (package `deltarpm`) and help you create and apply delta RPM packages. With the following commands, you can create a delta RPM called `new.delta.rpm`. The following command assumes that `old.rpm` and `new.rpm` are present:

```
makedeltarpm old.rpm new.rpm new.delta.rpm
```

Using `applydeltarpm`, you can reconstruct the new RPM from the file system if the old package is already installed:

```
applydeltarpm new.delta.rpm new.rpm
```

To derive it from the old RPM without accessing the file system, use the `-r` option:

```
applydeltarpm -r old.rpm new.delta.rpm new.rpm
```

See `/usr/share/doc/packages/deltarpm/README` for technical details.

### 7.2.5 RPM Queries

With the `-q` option `rpm` initiates queries, making it possible to inspect an RPM archive (by adding the option `-p`) and also to query the RPM database of installed packages. Several switches are available to specify the type of information required. See Table 7.1, “The Most Important RPM Query Options”.

#### TABLE 7.1: THE MOST IMPORTANT RPM QUERY OPTIONS

<table>
<thead>
<tr>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i</code></td>
<td>Package information</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>File list</td>
</tr>
<tr>
<td><code>-f FILE</code></td>
<td>Query the package that contains the file <code>FILE</code> (the full path must be specified with <code>FILE</code>)</td>
</tr>
<tr>
<td><code>-s</code></td>
<td>File list with status information (implies <code>-l</code>)</td>
</tr>
</tbody>
</table>
**-d**
List only documentation files (implies -l)

**-c**
List only configuration files (implies -l)

**--dump**
File list with complete details (to be used with -l, -c, or -d)

**--provides**
List features of the package that another package can request with --requires

**--requires, -R**
Capabilities the package requires

**--scripts**
Installation scripts (preinstall, postinstall, uninstall)

For example, the command **rpm -q -i wget** displays the information shown in Example 7.2, "rpm -q -i wget".

**EXAMPLE 7.2: RPM -Q -I WGET**

<table>
<thead>
<tr>
<th>Name</th>
<th>wget</th>
<th>Relocations: (not relocatable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1.11.4</td>
<td>Vendor: openSUSE</td>
</tr>
<tr>
<td>Release</td>
<td>1.70</td>
<td>Build Date: Sat 01 Aug 2009 09:49:48 CEST</td>
</tr>
<tr>
<td>Install Date</td>
<td>Thu 06 Aug 2009 14:53:24 CEST</td>
<td>Build Host: build18</td>
</tr>
<tr>
<td>Group</td>
<td>Productivity/Networking/Web/Utilities</td>
<td>Source RPM: wget-1.11.4-1.70.src.rpm</td>
</tr>
<tr>
<td>Size</td>
<td>1525431</td>
<td>License: GPL v3 or later</td>
</tr>
<tr>
<td>Signature</td>
<td>RSA/8, Sat 01 Aug 2009 09:50:04 CEST, Key ID b88b2fd43dbdc284</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://bugs.opensuse.org">http://bugs.opensuse.org</a></td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>A Tool for Mirroring FTP and HTTP Servers</td>
<td></td>
</tr>
</tbody>
</table>
| Description: Wget enables you to retrieve WWW documents or FTP files from a server. This can be done in script files or via the command line. [...]

The option **-f** only works if you specify the complete filename with its full path. Provide as many filenames as desired. For example, the following command

```bash
rpm -q -f /bin/rpm /usr/bin/wget
```

results in:

```
rpm-4.8.0-4.3.x86_64
```
If only part of the filename is known, use a shell script as shown in Example 7.3, “Script to Search for Packages”. Pass the partial filename to the script shown as a parameter when running it.

**EXAMPLE 7.3: SCRIPT TO SEARCH FOR PACKAGES**

```bash
#!/bin/sh
for i in $(rpm -q -a -l | grep $1); do
 echo ""$i" is in package:"
 rpm -q -f $i
 echo ""
done
```

The command `rpm -q --changelog rpm` displays a detailed list of change information about a specific package (in this case, the `rpm` package), sorted by date.

With the help of the installed RPM database, verification checks can be made. Initiate these with `-V`, `-y` or `--verify`. With this option, `rpm` shows all files in a package that have been changed since installation. `rpm` uses eight character symbols to give some hints about the following changes:

**TABLE 7.2: RPM VERIFY OPTIONS**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>MD5 checksum</td>
</tr>
<tr>
<td>S</td>
<td>File size</td>
</tr>
<tr>
<td>L</td>
<td>Symbolic link</td>
</tr>
<tr>
<td>T</td>
<td>Modification time</td>
</tr>
<tr>
<td>D</td>
<td>Major and minor device numbers</td>
</tr>
<tr>
<td>U</td>
<td>Owner</td>
</tr>
<tr>
<td>G</td>
<td>Group</td>
</tr>
<tr>
<td>M</td>
<td>Mode (permissions and file type)</td>
</tr>
</tbody>
</table>

In the case of configuration files, the letter _c_ is printed. For example, for changes to `/etc/wgetrc` (wget package):

```
rpm -V wget
S.S....T c /etc/wgetrc
```
The files of the RPM database are placed in `/var/lib/rpm`. If the partition `/usr` has a size of 1 GB, this database can occupy nearly 30 MB, especially after a complete update. If the database is much larger than expected, it is useful to rebuild the database with the option `--rebuild`. Before doing this, make a backup of the old database. The `cron` script `cron.daily` makes daily copies of the database (packed with gzip) and stores them in `/var/adm/backup/rpmdb`. The number of copies is controlled by the variable `MAX_RPMDB_BACKUPS` (default: 5) in `/etc/sysconfig/backup`. The size of a single backup is approximately 1 MB for 1 GB in `/usr`.

### 7.2.6 Installing and Compiling Source Packages

All source packages carry a `.src.rpm` extension (source RPM).

**Note: Installed Source Packages**

Source packages can be copied from the installation medium to the hard disk and unpacked with YaST. They are not, however, marked as installed ([i]) in the package manager. This is because the source packages are not entered in the RPM database. Only installed operating system software is listed in the RPM database. When you “install” a source package, only the source code is added to the system.

The following directories must be available for `rpm` and `rpmbuild` in `/usr/src/packages` (unless you specified custom settings in a file like `/etc/rpmrc`):

**SOURCES**

for the original sources (.tar.bz2 or .tar.gz files, etc.) and for distribution-specific adjustments (mostly .diff or .patch files)

**SPECS**

for the .spec files, similar to a meta Makefile, which control the build process

**BUILD**

all the sources are unpacked, patched and compiled in this directory

**RPMS**

where the completed binary packages are stored

**SRPMS**

here are the source RPMs
When you install a source package with YaST, all the necessary components are installed in `/usr/src/packages`: the sources and the adjustments in `SOURCES` and the relevant `.spec` file in `SPECS`.

**Warning**

Do not experiment with system components (`glibc`, `rpm`, `sysvinit`, etc.), because this endangers the stability of your system.

The following example uses the `wget.src.rpm` package. After installing the source package, you should have files similar to those in the following list:

```
/usr/src/packages/SOURCES/wget-1.11.4.tar.bz2
/usr/src/packages/SOURCES/wgetrc.patch
/usr/src/packages/SPECS/wget.spec
```

`rpmbuild -bX /usr/src/packages/SPECS/wget.spec` starts the compilation. `X` is a wild card for various stages of the build process (see the output of `--help` or the RPM documentation for details). The following is merely a brief explanation:

- **-bp**
  Prepare sources in `/usr/src/packages/BUILD`: unpack and patch.

- **-bc**
  Do the same as `-bp`, but with additional compilation.

- **-bi**
  Do the same as `-bp`, but with additional installation of the built software. Caution: if the package does not support the BuildRoot feature, you might overwrite configuration files.

- **-bb**
  Do the same as `-bi`, but with the additional creation of the binary package. If the compile was successful, the binary should be in `/usr/src/packages/RPMS`.

- **-ba**
  Do the same as `-bb`, but with the additional creation of the source RPM. If the compilation was successful, the binary should be in `/usr/src/packages/SRPMS`.

- **--short-circuit**
  Skip some steps.
The binary RPM created can now be installed with **rpm** -i or, preferably, with **rpm** -U. Installation with **rpm** makes it appear in the RPM database.

### 7.2.7 Compiling RPM Packages with build

The danger with many packages is that unwanted files are added to the running system during the build process. To prevent this use **build**, which creates a defined environment in which the package is built. To establish this chroot environment, the **build** script must be provided with a complete package tree. This tree can be made available on the hard disk, via NFS, or from DVD. Set the position with **build --rpms directory**. Unlike **rpm**, the **build** command looks for the `.spec` file in the source directory. To build **wget** (like in the above example) with the DVD mounted in the system under `/media/dvd`, use the following commands as **root**:

```bash
cd /usr/src/packages/SOURCES/
mv ../SPECS/wget.spec .
built --rpms /media/dvd/suse/ wget.spec
```

Subsequently, a minimum environment is established at `/var/tmp/build-root`. The package is built in this environment. Upon completion, the resulting packages are located in `/var/tmp/build-root/usr/src/packages/RPMS`.

The **build** script offers a number of additional options. For example, cause the script to prefer your own RPMs, omit the initialization of the build environment or limit the **rpm** command to one of the above-mentioned stages. Access additional information with **build --help** and by reading the **build** man page.

### 7.2.8 Tools for RPM Archives and the RPM Database

Midnight Commander (**mc**) can display the contents of RPM archives and copy parts of them. It represents archives as virtual file systems, offering all usual menu options of Midnight Commander. Display the **HEADER** with **F3**. View the archive structure with the cursor keys and **Enter**. Copy archive components with **F5**.

A full-featured package manager is available as a YaST module. For details, see Book “Deployment Guide”, Chapter 6 “Installing or Removing Software”.
These days many people use computers with a graphical user interface (GUI) like KDE or GNOME. Although they offer lots of features, their use is limited when it comes to the execution of automated tasks. Shells are a good addition to GUIs and this chapter gives you an overview of some aspects of shells, in this case Bash.

8.1 What is “The Shell”?

Traditionally, the shell is Bash (Bourne again Shell). When this chapter speaks about “the shell” it means Bash. There are actually more available shells than Bash (ash, csh, ksh, zsh, …), each employing different features and characteristics. If you need further information about other shells, search for shell in YaST.

8.1.1 Knowing The Bash Configuration Files

A shell can be invoked as an:

1. Interactive login shell. This is used when logging in to a machine, invoking Bash with the --login option or when logging in to a remote machine with SSH.

2. “Ordinary” interactive shell. This is normally the case when starting xterm, konsole, gnome-terminal or similar tools.

3. Non-interactive shell. This is used when invoking a shell script at the command line.

Depending on which type of shell you use, different configuration files are being read. The following tables show the login and non-login shell configuration files.

<table>
<thead>
<tr>
<th>TABLE 8.1: BASH CONFIGURATION FILES FOR LOGIN SHELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>File</strong></td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>/etc/profile</td>
</tr>
<tr>
<td>File</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>/etc/profile.local</td>
</tr>
<tr>
<td>/etc/profile.d/</td>
</tr>
<tr>
<td>~/.profile</td>
</tr>
</tbody>
</table>

TABLE 8.2: BASH CONFIGURATION FILES FOR NON-LOGIN SHELLS

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/etc/bash.bashrc</td>
<td>Do not modify this file, otherwise your modifications can be destroyed during your next update!</td>
</tr>
<tr>
<td>/etc/bash.bashrc.local</td>
<td>Use this file to insert your system-wide modifications for Bash only</td>
</tr>
<tr>
<td>~/.bashrc</td>
<td>Insert user specific configuration here</td>
</tr>
</tbody>
</table>

Additionally, Bash uses some more files:

TABLE 8.3: SPECIAL FILES FOR BASH

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~/.bash_history</td>
<td>Contains a list of all commands you have been typing</td>
</tr>
<tr>
<td>~/.bash_logout</td>
<td>Executed when logging out</td>
</tr>
</tbody>
</table>

8.1.2 The Directory Structure

The following table provides a short overview of the most important higher-level directories that you find on a Linux system. Find more detailed information about the directories and important subdirectories in the following list.
<table>
<thead>
<tr>
<th>Directory</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Root directory—the starting point of the directory tree.</td>
</tr>
<tr>
<td>/bin</td>
<td>Essential binary files, such as commands that are needed by both the system administrator and normal users. Usually also contains the shells, such as Bash.</td>
</tr>
<tr>
<td>/boot</td>
<td>Static files of the boot loader.</td>
</tr>
<tr>
<td>/dev</td>
<td>Files needed to access host-specific devices.</td>
</tr>
<tr>
<td>/etc</td>
<td>Host-specific system configuration files.</td>
</tr>
<tr>
<td>/home</td>
<td>Holds the home directories of all users who have accounts on the system. However, root’s home directory is not located in /home but in /root.</td>
</tr>
<tr>
<td>/lib</td>
<td>Essential shared libraries and kernel modules.</td>
</tr>
<tr>
<td>/media</td>
<td>Mount points for removable media.</td>
</tr>
<tr>
<td>/mnt</td>
<td>Mount point for temporarily mounting a file system.</td>
</tr>
<tr>
<td>/opt</td>
<td>Add-on application software packages.</td>
</tr>
<tr>
<td>/root</td>
<td>Home directory for the superuser root.</td>
</tr>
<tr>
<td>/sbin</td>
<td>Essential system binaries.</td>
</tr>
<tr>
<td>/srv</td>
<td>Data for services provided by the system.</td>
</tr>
<tr>
<td>/tmp</td>
<td>Temporary files.</td>
</tr>
<tr>
<td>/windows</td>
<td>Only available if you have both Microsoft Windows* and Linux installed on your system. Contains the Windows data.</td>
</tr>
</tbody>
</table>

The following list provides more detailed information and gives some examples of which files and subdirectories can be found in the directories:

- Contains the basic shell commands that may be used by root and by other users. These commands include ls, mkdir, cp, mv, rm and rmdir. /bin also contains Bash, the default shell in SUSE Linux Enterprise Desktop.
/boot
Contains data required for booting, such as the boot loader, the kernel, and other data that is used before the kernel begins executing user-mode programs.

/dev
Holds device files that represent hardware components.

/etc
Contains local configuration files that control the operation of programs like the X Window System. The /etc/init.d subdirectory contains scripts that are executed during the boot process.

/home/username
Holds the private data of every user who has an account on the system. The files located here can only be modified by their owner or by the system administrator. By default, your e-mail directory and personal desktop configuration are located here in the form of hidden files and directories. KDE users find the personal configuration data for their desktop in .kde4, GNOME users find it in .gconf.

Note: Home Directory in a Network Environment
If you are working in a network environment, your home directory may be mapped to a directory in the file system other than /home.

/lib
Contains the essential shared libraries needed to boot the system and to run the commands in the root file system. The Windows equivalent for shared libraries are DLL files.

/media
Contains mount points for removable media, such as CD-ROMs, USB sticks and digital cameras (if they use USB). /media generally holds any type of drive except the hard drive of your system. As soon as your removable medium has been inserted or connected to the system and has been mounted, you can access it from here.

/mnt
This directory provides a mount point for a temporarily mounted file system. root may mount file systems here.
/opt
Reserved for the installation of third-party software. Optional software and larger add-on program packages can be found here.

/root
Home directory for the root user. The personal data of root is located here.

/sbin
As the _s_ indicates, this directory holds utilities for the superuser. /sbin contains the binaries essential for booting, restoring and recovering the system in addition to the binaries in /bin.

/srv
Holds data for services provided by the system, such as FTP and HTTP.

/tmp
This directory is used by programs that require temporary storage of files.

⚠️ Important: Cleaning up /tmp at Boot Time

Data stored in /tmp are not guaranteed to survive a system reboot. It depends, for example, on settings in /etc/sysconfig/cron.

/usr
/usr has nothing to do with users, but is the acronym for UNIX system resources. The data in /usr is static, read-only data that can be shared among various hosts compliant with the Filesystem Hierarchy Standard (FHS). This directory contains all application programs and establishes a secondary hierarchy in the file system. KDE4 and GNOME are also located here. /usr holds a number of subdirectories, such as /usr/bin, /usr/sbin, /usr/local, and /usr/share/doc.

/usr/bin
Contains generally accessible programs.

/usr/sbin
Contains programs reserved for the system administrator, such as repair functions.

/usr/local
In this directory the system administrator can install local, distribution-independent extensions.
/usr/share/doc

Holds various documentation files and the release notes for your system. In the manual subdirectory find an online version of this manual. If more than one language is installed, this directory may contain versions of the manuals for different languages. Under packages find the documentation included in the software packages installed on your system. For every package, a subdirectory /usr/share/doc/packages/package-name is created that often holds README files for the package and sometimes examples, configuration files or additional scripts.

If HOWTOs are installed on your system /usr/share/doc also holds the howto subdirectory in which to find additional documentation on many tasks related to the setup and operation of Linux software.

/var

Whereas /usr holds static, read-only data, /var is for data which is written during system operation and thus is variable data, such as log files or spooling data. For an overview of the most important log files you can find under /var/log/, refer to Table 31.1, “Log Files”.

/windows

Only available if you have both Microsoft Windows and Linux installed on your system. Contains the Windows data available on the Windows partition of your system. Whether you can edit the data in this directory depends on the file system your Windows partition uses. If it is FAT32, you can open and edit the files in this directory. For NTFS, SUSE Linux Enterprise Desktop also includes write access support. However, the driver for the NTFS-3g file system has limited functionality.

8.2 Writing Shell Scripts

Shell scripts are a convenient way of doing all sorts of tasks: collecting data, searching for a word or phrase in a text and many other useful things. The following example shows a small shell script that prints a text:

EXAMPLE 8.1: A SHELL SCRIPT PRINTING A TEXT

```
#!/bin/sh

Output the following line:

echo "Hello World"
```
The first line begins with the Shebang characters (`#!`) which is an indicator that this file is a script. The script is executed with the specified interpreter after the Shebang, in this case `/bin/sh`.

The second line is a comment beginning with the hash sign. It is recommended to comment difficult lines to remember what they do.

The third line uses the built-in command `echo` to print the corresponding text.

Before you can run this script you need some prerequisites:

1. Every script should contain a Shebang line (this is already the case with our example above.) If a script does not have this line, you have to call the interpreter manually.

2. You can save the script wherever you want. However, it is a good idea to save it in a directory where the shell can find it. The search path in a shell is determined by the environment variable `PATH`. Usually a normal user does not have write access to `/usr/bin`. Therefore it is recommended to save your scripts in the users' directory `~/bin/`. The above example gets the name `hello.sh`.

3. The script needs executable permissions. Set the permissions with the following command:

   ```
 chmod +x ~/bin/hello.sh
   ```

If you have fulfilled all of the above prerequisites, you can execute the script in the following ways:

1. **As Absolute Path.** The script can be executed with an absolute path. In our case, it is `~/bin/hello.sh`.

2. **Everywhere.** If the `PATH` environment variable contains the directory where the script is located, you can execute the script just with `hello.sh`. 


8.3 Redirecting Command Events

Each command can use three channels, either for input or output:

- **Standard Output.** This is the default output channel. Whenever a command prints something, it uses the standard output channel.

- **Standard Input.** If a command needs input from users or other commands, it uses this channel.

- **Standard Error.** Commands use this channel for error reporting.

To redirect these channels, there are the following possibilities:

**Command > File**

Saves the output of the command into a file, an existing file will be deleted. For example, the `ls` command writes its output into the file `listing.txt`:

```
ls > listing.txt
```

**Command >> File**

Appends the output of the command to a file. For example, the `ls` command appends its output to the file `listing.txt`:

```
ls >> listing.txt
```

**Command < File**

Reads the file as input for the given command. For example, the `read` command reads in the content of the file into the variable:

```
read a < foo
```

**Command1 | Command2**

Redirects the output of the left command as input for the right command. For example, the `cat` command outputs the content of the `/proc/cpuinfo` file. This output is used by `grep` to filter only those lines which contain `cpu`:

```
cat /proc/cpuinfo | grep cpu
```
Every channel has a file descriptor: 0 (zero) for standard input, 1 for standard output and 2 for standard error. It is allowed to insert this file descriptor before a < or > character. For example, the following line searches for a file starting with foo, but suppresses its errors by redirecting it to /dev/null:

```
find / -name "foo*" 2>/dev/null
```

### 8.4 Using Aliases

An alias is a shortcut definition of one or more commands. The syntax for an alias is:

```
alias NAME=DEFINITION
```

For example, the following line defines an alias `lt` which outputs a long listing (option `-l`), sorts it by modification time (`-t`) and prints it in reverse order while sorting (`-r`):

```
alias lt='ls -ltr'
```

To view all alias definitions, use `alias`. Remove your alias with `unalias` and the corresponding alias name.

### 8.5 Using Variables in Bash

A shell variable can be global or local. Global variables, or environment variables, can be accessed in all shells. In contrast, local variables are visible in the current shell only.

To view all environment variables, use the `printenv` command. If you need to know the value of a variable, insert the name of your variable as an argument:

```
printenv PATH
```

A variable, be it global or local, can also be viewed with `echo`:

```
echo $PATH
```

To set a local variable, use a variable name followed by the equal sign, followed by the value:

```
PROJECT="SLED"
```
Do not insert spaces around the equal sign, otherwise you get an error. To set an environment variable, use `export`:

```bash
export NAME="tux"
```

To remove a variable, use `unset`:

```bash
unset NAME
```

The following table contains some common environment variables which can be used in your shell scripts:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>HOME</code></td>
<td>the home directory of the current user</td>
</tr>
<tr>
<td><code>HOST</code></td>
<td>the current hostname</td>
</tr>
<tr>
<td><code>LANG</code></td>
<td>when a tool is localized, it uses the language from this environment variable. English can also be set to <code>C</code></td>
</tr>
<tr>
<td><code>PATH</code></td>
<td>the search path of the shell, a list of directories separated by colon</td>
</tr>
<tr>
<td><code>PS1</code></td>
<td>specifies the normal prompt printed before each command</td>
</tr>
<tr>
<td><code>PS2</code></td>
<td>specifies the secondary prompt printed when you execute a multi-line command</td>
</tr>
<tr>
<td><code>PWD</code></td>
<td>current working directory</td>
</tr>
<tr>
<td><code>USER</code></td>
<td>the current user</td>
</tr>
</tbody>
</table>

### 8.5.1 Using Argument Variables

For example, if you have the script `foo.sh` you can execute it like this:

```bash
foo.sh "Tux Penguin" 2000
```
To access all the arguments which are passed to your script, you need positional parameters. These are $1 for the first argument, $2 for the second, and so on. You can have up to nine parameters. To get the script name, use $0.

The following script `foo.sh` prints all arguments from 1 to 4:

```
#!/bin/sh
echo "$1" "$2" "$3" "$4"
```

If you execute this script with the above arguments, you get:

"Tux Penguin" "2000" "" ""

### 8.5.2 Using Variable Substitution

Variable substitutions apply a pattern to the content of a variable either from the left or right side. The following list contains the possible syntax forms:

- **${VAR#pattern}**
  - removes the shortest possible match from the left:

```
file=/home/tux/book/book.tar.bz2
echo ${file#/*/}
home/tux/book/book.tar.bz2
```

- **${VAR##pattern}**
  - removes the longest possible match from the left:

```
file=/home/tux/book/book.tar.bz2
echo ${file##*/}
book.tar.bz2
```

- **${VAR%pattern}**
  - removes the shortest possible match from the right:

```
file=/home/tux/book/book.tar.bz2
echo ${file%.*}
/home/tux/book/book.tar
```

- **${VAR%%pattern}**
  - removes the longest possible match from the right:

```
file=/home/tux/book/book.tar.bz2
echo ${file%%.*}
/home/tux/book/book
```
substitutes the content of \texttt{VAR} from the \texttt{pattern\_1} with \texttt{pattern\_2}:

\begin{verbatim}
file=/home/tux/book/book.tar.bz2
echo ${file/tux/wilber}
/home/wilber/book/book.tar.bz2
\end{verbatim}

8.6 Grouping And Combining Commands

Shells allow you to concatenate and group commands for conditional execution. Each command returns an exit code which determines the success or failure of its operation. If it is 0 (zero) the command was successful, everything else marks an error which is specific to the command.

The following list shows, how commands can be grouped:

\begin{verbatim}
Command1 ; Command2
\end{verbatim}

executes the commands in sequential order. The exit code is not checked. The following line displays the content of the file with \texttt{cat} and then prints its file properties with \texttt{ls} regardless of their exit codes:

\begin{verbatim}
cat filelist.txt ; ls -l filelist.txt
\end{verbatim}

\begin{verbatim}
Command1 && Command2
\end{verbatim}

runs the right command, if the left command was successful (logical AND). The following line displays the content of the file and prints its file properties only, when the previous command was successful (compare it with the previous entry in this list):

\begin{verbatim}
cat filelist.txt && ls -l filelist.txt
\end{verbatim}

\begin{verbatim}
Command1 || Command2
\end{verbatim}

runs the right command, when the left command has failed (logical OR). The following line creates only a directory in /home/wilber/bar when the creation of the directory in /home/tux/foo has failed:

\begin{verbatim}
mkdir /home/tux/foo || mkdir /home/wilber/bar
\end{verbatim}

\begin{verbatim}
funcname() { ... }
\end{verbatim}

creates a shell function. You can use the positional parameters to access its arguments. The following line defines the function \texttt{hello} to print a short message:

\begin{verbatim}
hello() { echo "Hello $1"; }
\end{verbatim}
You can call this function like this:

```
hello Tux
```

which prints:

```
Hello Tux
```

### 8.7 Working with Common Flow Constructs

To control the flow of your script, a shell has **while**, **if**, **for** and **case** constructs.

#### 8.7.1 The if Control Command

The **if** command is used to check expressions. For example, the following code tests whether the current user is Tux:

```
if test $USER = "tux"; then
echo "Hello Tux."
else
echo "You are not Tux."
fi
```

The test expression can be as complex or simple as possible. The following expression checks if the file `foo.txt` exists:

```
if test -e /tmp/foo.txt ; then
echo "Found foo.txt"
fi
```

The test expression can also be abbreviated in angled brackets:

```
if [-e /tmp/foo.txt] ; then
echo "Found foo.txt"
fi
```

Find more useful expressions at [http://www.cyberciti.biz/nixcraft/linux/docs/uniqlinuxfeatures/lsst/ch03sec02.html](http://www.cyberciti.biz/nixcraft/linux/docs/uniqlinuxfeatures/lsst/ch03sec02.html).
8.7.2 Creating Loops With the For Command

The `for` loop allows you to execute commands to a list of entries. For example, the following code prints some information about PNG files in the current directory:

```
for i in *.png; do
 ls -l $i
done
```

8.8 For More Information

Important information about Bash is provided in the man pages `man bash`. More about this topic can be found in the following list:

- [http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html](http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html) — BASH Programming - Introduction HOW-TO
- [http://www.grymoire.com/Unix/Sh.html](http://www.grymoire.com/Unix/Sh.html) — Sh - the Bourne Shell
9  Using Third-Party Software

For information about using third-party software installed on SUSE Linux Enterprise and support of SUSE products used with third-party software, see the following links:

Partner Software Catalog
https://www.suse.com/susePSC/home

YES Certified Eligible Operating Systems
https://www.suse.com/partners/ihv/yes/yes-certified-eligible-operating-systems.html

SUSE SolidDriver Program
http://drivers.suse.com/doc/SolidDriver/

Independent Software Vendors
https://www.suse.com/partners/isv/

SUSE Technical Support Handbook
https://www.suse.com/support/handbook/

FAQ Support
https://www.suse.com/support/faq.html
10 32-Bit and 64-Bit Applications in a 64-Bit System Environment 100
11 Booting and Configuring a Linux System 104
12 The Boot Loader GRUB 119
13 UEFI (Unified Extensible Firmware Interface) 140
14 Special System Features 148
15 Printer Operation 160
16 Dynamic Kernel Device Management with udev 175
17 The X Window System 187
18 Accessing File Systems with FUSE 200
SUSE® Linux Enterprise Desktop is available for 64-bit platforms. This does not necessarily mean that all the applications included have already been ported to 64-bit platforms. SUSE Linux Enterprise Desktop supports the use of 32-bit applications in a 64-bit system environment. This chapter offers a brief overview of how this support is implemented on 64-bit SUSE Linux Enterprise Desktop platforms. It explains how 32-bit applications are executed (runtime support) and how 32-bit applications should be compiled to enable them to run both in 32-bit and 64-bit system environments. Additionally, find information about the kernel API and an explanation of how 32-bit applications can run under a 64-bit kernel.

SUSE Linux Enterprise Desktop for the 64-bit platforms amd64 and Intel 64 is designed so that existing 32-bit applications run in the 64-bit environment “out-of-the-box.” This support means that you can continue to use your preferred 32-bit applications without waiting for a corresponding 64-bit port to become available.

### 10.1 Runtime Support

**Important: Conflicts between Application Versions**

If an application is available both for 32-bit and 64-bit environments, parallel installation of both versions is bound to lead to problems. In such cases, decide on one of the two versions and install and use this.

An exception to this rule is PAM (pluggable authentication modules). SUSE Linux Enterprise Desktop uses PAM in the authentication process as a layer that mediates between user and application. On a 64-bit operating system that also runs 32-bit applications it is necessary to always install both versions of a PAM module.

To be executed correctly, every application requires a range of libraries. Unfortunately, the names for the 32-bit and 64-bit versions of these libraries are identical. They must be differentiated from each other in another way.
To retain compatibility with the 32-bit version, the libraries are stored at the same place in the system as in the 32-bit environment. The 32-bit version of \texttt{libc.so.6} is located under \texttt{/lib/}
\texttt{libc.so.6} in both the 32-bit and 64-bit environments.

All 64-bit libraries and object files are located in directories called \texttt{lib64}. The 64-bit object files that you would normally expect to find under \texttt{/lib} and \texttt{/usr/lib} are now found under \texttt{/lib64} and \texttt{/usr/lib64}. This means that there is space for the 32-bit libraries under \texttt{/lib} and \texttt{/usr/lib}, so the filename for both versions can remain unchanged.

Subdirectories of 32-bit \texttt{/lib} directories which contain data content that does not depend on the word size are not moved. This scheme conforms to LSB (Linux Standards Base) and FHS (File System Hierarchy Standard).

### 10.2 Software Development

A biarch development tool chain allows generation of 32-bit and 64-bit objects. The default is to compile 64-bit objects. It is possible to generate 32-bit objects by using special flags. For GCC, this special flag is \texttt{-m32}.

All header files must be written in an architecture-independent form. The installed 32-bit and 64-bit libraries must have an API (application programming interface) that matches the installed header files. The normal SUSE Linux Enterprise Desktop environment is designed according to this principle. In the case of manually updated libraries, resolve these issues yourself.

### 10.3 Software Compilation on Biarch Platforms

To develop binaries for the other architecture on a biarch architecture, the respective libraries for the second architecture must additionally be installed. These packages are called \texttt{rpm-name-32bit}. You also need the respective headers and libraries from the \texttt{rpmname-devel} packages and the development libraries for the second architecture from \texttt{rpmname-devel-32bit}.

Most open source programs use an \texttt{autoconf}-based program configuration. To use \texttt{autoconf} for configuring a program for the second architecture, overwrite the normal compiler and linker settings of \texttt{autoconf} by running the \texttt{configure} script with additional environment variables.

The following example refers to an x86\_64 system with x86 as the second architecture.
1. Use the 32-bit compiler:

```
CC="gcc -m32"
```

2. Instruct the linker to process 32-bit objects (always use `gcc` as the linker front-end):

```
LD="gcc -m32"
```

3. Set the assembler to generate 32-bit objects:

```
AS="gcc -c -m32"
```

4. Specify linker flags, such as the location of 32-bit libraries, for example:

```
LDFLAGS="-L/usr/lib"
```

5. Specify the location for the 32-bit object code libraries:

```
--libdir=/usr/lib
```

6. Specify the location for the 32-bit X libraries:

```
--x-libraries=/usr/lib
```

Not all of these variables are needed for every program. Adapt them to the respective program.

```
CC="gcc -m32"
LDFLAGS="-L/usr/lib;"
./configure --prefix=/usr --libdir=/usr/lib --x-libraries=/usr/lib
make
make install
```

### 10.4 Kernel Specifications

The 64-bit kernels for x86_64 offer both a 64-bit and a 32-bit kernel ABI (application binary interface). The latter is identical with the ABI for the corresponding 32-bit kernel. This means that the 32-bit application can communicate with the 64-bit kernel in the same way as with the 32-bit kernel.

The 32-bit emulation of system calls for a 64-bit kernel does not support all the APIs used by system programs. This depends on the platform. For this reason, a small number of applications, like `lspci`, must be compiled.
A 64-bit kernel can only load 64-bit kernel modules that have been specially compiled for this kernel. It is not possible to use 32-bit kernel modules.

Tip: Kernel-loadable Modules

Some applications require separate kernel-loadable modules. If you intend to use such a 32-bit application in a 64-bit system environment, contact the provider of this application and SUSE to make sure that the 64-bit version of the kernel-loadable module and the 32-bit compiled version of the kernel API are available for this module.
11 Booting and Configuring a Linux System

Booting a Linux system involves different components. The hardware itself is initialized by the BIOS, which starts the Kernel by means of a boot loader. After this point, the boot process with `init` and the runlevels is completely controlled by the operating system. The runlevel concept enables you to maintain setups for everyday usage as well as to perform maintenance tasks on the system.

11.1 The Linux Boot Process

The Linux boot process consists of several stages, each represented by a different component. The following list briefly summarizes the boot process and features all the major components involved.

1. **BIOS.** After turning on the computer, the BIOS initializes the screen and keyboard and tests the main memory. Up to this stage, the machine does not access any mass storage media. Subsequently, the information about the current date, time, and the most important peripherals are loaded from the CMOS values. When the first hard disk and its geometry are recognized, the system control passes from the BIOS to the boot loader.

2. **Boot Loader.** The first physical 512-byte data sector of the first hard disk is loaded into the main memory and the **boot loader** that resides at the beginning of this sector takes over. The commands executed by the boot loader determine the remaining part of the boot process. Therefore, the first 512 bytes on the first hard disk are referred to as the *Master Boot Record* (MBR). The boot loader then passes control to the actual operating system, in this case, the Linux Kernel. More information about GRUB, the Linux boot loader, can be found in Chapter 12, The Boot Loader GRUB.

3. **Kernel and initramfs.** To pass system control, the boot loader loads both the Kernel and an initial RAM-based file system (initramfs) into memory. The contents of the initramfs can be used by the Kernel directly. initramfs contains a small executable called **init** that handles the mounting of the real root file system. If special hardware drivers are needed before the mass storage can be accessed, they must be in initramfs. For more information about initramfs, refer to Section 11.1.1, “initramfs”.
4. *init on initramfs*. This program performs all actions needed to mount the proper root file system, like providing Kernel functionality for the needed file system and device drivers for mass storage controllers with *udev*. After the root file system has been found, it is checked for errors and mounted. If this is successful, the *initramfs* is cleaned and the *init* program on the root file system is executed. For more information about *init*, refer to Section 11.1.2, “init on initramfs”. Find more information about *udev* in Chapter 16, Dynamic Kernel Device Management with *udev*.

5. *init*. *init* handles the actual booting of the system through several different levels providing different functionality. *init* is described in Section 11.2, “The *init* Process”.

11.1.1 *initramfs*

*initramfs* is a small cpio archive that the Kernel can load to a RAM disk. It provides a minimal Linux environment that enables the execution of programs before the actual root file system is mounted. This minimal Linux environment is loaded into memory by BIOS routines and does not have specific hardware requirements other than sufficient memory. *initramfs* must always provide an executable named *init* that should execute the actual *init* program on the root file system for the boot process to proceed.

Before the root file system can be mounted and the operating system can be started, the Kernel needs the corresponding drivers to access the device on which the root file system is located. These drivers may include special drivers for certain kinds of hard drives or even network drivers to access a network file system. The needed modules for the root file system may be loaded by *init on initramfs*. After the modules are loaded, *udev* provides the *initramfs* with the needed devices. Later in the boot process, after changing the root file system, it is necessary to regenerate the devices. This is done by *boot.udev* with the command *udevtrigger*.

If you need to change hardware (for example hard disks) in an installed system and this hardware requires different drivers to be present in the Kernel at boot time, you must update *initramfs*. This is done in the same way as with its predecessor, *init*—by calling *mkinitrd*. Calling *mkinitrd* without any argument creates an *initramfs*. Calling *mkinitrd* -R creates an *init*. In SUSE® Linux Enterprise Desktop, the modules to load are specified by the variable *INITRD_MODULES* in */etc/sysconfig/kernel*. After installation, this variable is automatically set to the correct value. The modules are loaded in exactly the order in which they appear in *INITRD_MODULES*. This is only important if you rely on the correct setting of the device files */dev/sd?*. However, in current systems you also may
use the device files below /dev/disk/ that are sorted in several subdirectories, named by-id, by-path and by-uuid, and always represent the same disk. This is also possible at install time by specifying the respective mount option.

⚠️ Important: Updating initramfs or init

The boot loader loads initramfs or init in the same way as the Kernel. It is not necessary to reinstall GRUB after updating initramfs or init, because GRUB searches the directory for the right file when booting.

11.1.2 init on initramfs

The main purpose of init on initramfs is to prepare the mounting of and access to the real root file system. Depending on your system configuration, init is responsible for the following tasks.

Loading Kernel Modules

Depending on your hardware configuration, special drivers may be needed to access the hardware components of your computer (the most important component being your hard drive). To access the final root file system, the Kernel needs to load the proper file system drivers.

Providing Block Special Files

For each loaded module, the Kernel generates device events. udev handles these events and generates the required special block files on a RAM file system in /dev. Without those special files, the file system and other devices would not be accessible.

Managing RAID and LVM Setups

If you configured your system to hold the root file system under RAID or LVM, init sets up LVM or RAID to enable access to the root file system later. Find information about RAID and LVM in Book “Deployment Guide”, Chapter 12 “Advanced Disk Setup”.

Managing Network Configuration

If you configured your system to use a network-mounted root file system (mounted via NFS), init must make sure that the proper network drivers are loaded and that they are set up to allow access to the root file system.
When `init` is called during the initial boot as part of the installation process, its tasks differ from those mentioned above:

**Finding the Installation Medium**

As you start the installation process, your machine loads an installation Kernel and a special `init` with the YaST installer on the installation medium. The YaST installer, which is run in a RAM file system, needs to have information about the location of the installation medium to access it and install the operating system.

**Initiating Hardware Recognition and Loading Appropriate Kernel Modules**

As mentioned in Section 11.1.1, "initramfs", the boot process starts with a minimum set of drivers that can be used with most hardware configurations. `init` starts an initial hardware scanning process that determines the set of drivers suitable for your hardware configuration. The names of the modules needed for the boot process are written to `INITRD_MODULES` in `/etc/sysconfig/kernel`. These names are used to generate a custom `initramfs` that is needed to boot the system. If the modules are not needed for boot but for coldplug, the modules are written to `/etc/sysconfig/hardware/hwconfig-*.` All devices that are described with configuration files in this directory are initialized in the boot process.

**Loading the Installation System or Rescue System**

As soon as the hardware is properly recognized, the appropriate drivers are loaded, and `udev` creates the special device files, `init` starts the installation system with the actual YaST installer, or the rescue system.

**Starting YaST**

Finally, `init` starts YaST, which starts package installation and system configuration.

### 11.2 The `init` Process

The program `init` is the process with process ID 1. It is responsible for initializing the system in the required way. `init` is started directly by the Kernel and resists signal 9, which normally kills processes. All other programs are either started directly by `init` or by one of its child processes.

`init` is centrally configured in the `/etc/inittab` file where the runlevels are defined (see Section 11.2.1, “Runlevels”). The file also specifies which services and daemons are available in each of the runlevels. Depending on the entries in `/etc/inittab`, several scripts are run by `init`. By default, the first script that is started after booting is `/etc/init.d/boot`. Once the
system initialization phase is finished, the system changes the runlevel to its default runlevel with the `/etc/init.d/rc` script. For reasons of clarity, these scripts, called `init scripts`, all reside in the directory `/etc/init.d` (see Section 11.2.2, “Init Scripts”).

The entire process of starting the system and shutting it down is maintained by `init`. From this point of view, the Kernel can be considered a background process to maintain all other processes and adjust CPU time and hardware access according to requests from other programs.

### 11.2.1 Runlevels

In Linux, runlevels define how the system is started and what services are available in the running system. After booting, the system starts as defined in `/etc/inittab` in the line `initdefault`. Usually this is 3 or 5. See Table 11.1, “Available Runlevels”. As an alternative, the runlevel can be specified at boot time (by adding the runlevel number at the boot prompt, for instance). Any parameters that are not directly evaluated by the Kernel itself are passed to `init`. To boot into runlevel 3, just add the single number 3 to the boot prompt.

**TABLE 11.1: AVAILABLE RUNLEVELS**

<table>
<thead>
<tr>
<th>Runlevel</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>System halt</td>
</tr>
<tr>
<td>S or 1</td>
<td>Single user mode</td>
</tr>
<tr>
<td>2</td>
<td>Local multiuser mode without remote network (NFS, etc.)</td>
</tr>
<tr>
<td>3</td>
<td>Full multiuser mode with network</td>
</tr>
<tr>
<td>4</td>
<td>User Defined, this is not used unless the administrator configures this runlevel.</td>
</tr>
<tr>
<td>5</td>
<td>Full multiuser mode with network and X display manager—KDM, GDM, or XDM</td>
</tr>
<tr>
<td>6</td>
<td>System reboot</td>
</tr>
</tbody>
</table>
Important: Avoid Runlevel 2 with a Partition Mounted via NFS

You should not use runlevel 2 if your system mounts a partition like /usr via NFS. The system might behave unexpectedly if program files or libraries are missing because the NFS service is not available in runlevel 2 (local multiuser mode without remote network).

To change runlevels while the system is running, enter `telinit` and the corresponding number as an argument. Only the system administrator is allowed to do this. The following list summarizes the most important commands in the runlevel area.

**telinit 1** or **shutdown now**

The system changes to *single user mode*. This mode is used for system maintenance and administration tasks.

**telinit 3**

All essential programs and services (including network) are started and regular users are allowed to log in and work with the system without a graphical environment.

**telinit 5**

The graphical environment is enabled. Usually a display manager like XDM, GDM or KDM is started. If autologin is enabled, the local user is logged in to the preselected window manager (GNOME or KDE or any other window manager).

**telinit 0** or **shutdown -h now**

The system halts.

**telinit 6** or **shutdown -r now**

The system halts then reboots.

Runlevel 5 is the default runlevel in all SUSE Linux Enterprise Desktop standard installations. Users are prompted for login with a graphical interface or the default user is logged in automatically.
Warning: Errors in /etc/inittab May Result in a Faulty System Boot

If /etc/inittab is damaged, the system may not boot properly. Therefore, be extremely careful while editing /etc/inittab. Always let init reread /etc/inittab with the command telinit q before rebooting the machine.

Generally, two things happen when you change runlevels. First, stop scripts of the current runlevel are launched, closing down some programs essential for the current runlevel. Then start scripts of the new runlevel are started. Here, in most cases, a number of programs are started. For example, the following occurs when changing from runlevel 3 to 5:

1. The administrator (root) requests init to change to a different runlevel by entering telinit 5.
2. init checks the current runlevel (runlevel) and determines it should start /etc/init.d/rc with the new runlevel as a parameter.
3. Now rc calls the stop scripts of the current runlevel for which there is no start script in the new runlevel. In this example, these are all the scripts that reside in /etc/init.d/rc3.d (the old runlevel was 3) and start with a K. The number following K specifies the order to run the scripts with the stop parameter, because there are some dependencies to consider.
4. The last things to start are the start scripts of the new runlevel. In this example, these are in /etc/init.d/rc5.d and begin with an S. Again, the number that follows the S determines the sequence in which the scripts are started.

When changing into the same runlevel as the current runlevel, init only checks /etc/inittab for changes and starts the appropriate steps, for example, for starting a getty on another interface. The same functionality may be achieved with the command telinit q.

11.2.2 Init Scripts

There are two types of scripts in /etc/init.d:

Scripts Executed Directly by init

This is the case only during the boot process or if an immediate system shutdown is initiated (power failure or a user pressing [Ctrl]-[Alt]-[Del]). The execution of these scripts is defined in /etc/inittab.
Scripts Executed Indirectly by \texttt{init}

These are run when changing the runlevel and always call the master script \texttt{/etc/init.d/rc}, which guarantees the correct order of the relevant scripts.

All scripts are located in \texttt{/etc/init.d}. Scripts that are run at boot time are called through symbolic links from \texttt{/etc/init.d/boot.d}. Scripts for changing the runlevel are called through symbolic links from one of the subdirectories (\texttt{/etc/init.d/rc0.d} to \texttt{/etc/init.d/rc6.d}). This is just for reasons of clarity and avoids duplicate scripts if they are used in several runlevels. Because every script can be executed as both a start and a stop script, these scripts must understand the parameters \texttt{start} and \texttt{stop}. The scripts also understand the \texttt{restart}, \texttt{reload}, \texttt{force-reload}, and \texttt{status} options. These different options are explained in Table 11.2, “Possible init Script Options”. Scripts that are run directly by \texttt{init} do not have these links. They are run independently from the runlevel when needed.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Start service.</td>
</tr>
<tr>
<td>stop</td>
<td>Stop service.</td>
</tr>
<tr>
<td>restart</td>
<td>If the service is running, stop it then restart it. If it is not running, start it.</td>
</tr>
<tr>
<td>reload</td>
<td>Reload the configuration without stopping and restarting the service.</td>
</tr>
<tr>
<td>force-reload</td>
<td>Reload the configuration if the service supports this. Otherwise, do the same as if \texttt{restart} had been given.</td>
</tr>
<tr>
<td>status</td>
<td>Show the current status of service.</td>
</tr>
</tbody>
</table>

Links in each runlevel-specific subdirectory make it possible to associate scripts with different runlevels. When installing or uninstalling packages, these links are added and removed with the help of the program insserv (or using \texttt{/usr/lib/lsb/install_initd}, which is a script calling this program). See \texttt{man 8 insserv} for more details.
All of these settings may also be changed with the help of the YaST module. If you need to check the status on the command line, use the tool `chkconfig`, described in the `man 8 chkconfig` man page.

A short introduction to the boot and stop scripts launched first or last, respectively, follows as well as an explanation of the maintaining script.

**boot**

Executed while starting the system directly using `init`. It is independent of the chosen runlevel and is only executed once. Here, the `/proc` and `/dev/pts` file systems are mounted and `blogd` (boot logging daemon) is activated. If the system is booted for the first time after an update or an installation, the initial system configuration is started.

The `blogd` daemon is a service started by `boot` and `rc` before any other one. It is stopped after the actions triggered by these scripts (running a number of subscripts, for example, making special block files available) are completed. `blogd` writes any screen output to the log file `/var/log/boot.msg`, but only if and when `/var` is mounted read-write. Otherwise, `blogd` buffers all screen data until `/var` becomes available. Get further information about `blogd` with `man 8 blogd`.

The `boot` script is also responsible for starting all the scripts in `/etc/init.d/boot.d` with names that start with `S`. There, the file systems are checked and loop devices are configured if needed. The system time is also set. If an error occurs while automatically checking and repairing the file system, the system administrator can intervene after first entering the root password. The last executed script is `boot.local`.

**boot.local**

Here enter additional commands to execute at boot before changing into a runlevel. It can be compared to `AUTOEXEC.BAT` on DOS systems.

**halt**

This script is only executed while changing into runlevel 0 or 6. Here, it is executed either as `init` or as `init`. Whether the system shuts down or reboots depends on how `halt` is called. If special commands are needed during the shutdown, add these to the `init` script.
This script calls the appropriate stop scripts of the current runlevel and the start scripts of the newly selected runlevel. Like the /etc/init.d/boot script, this script is called from /etc/inittab with the desired runlevel as parameter.

You can create your own scripts and easily integrate them into the scheme described above. For instructions about formatting, naming and organizing custom scripts, refer to the specifications of the LSB and to the man pages of init, init.d, chkconfig, and insserv. Additionally consult the man pages of startproc and killproc.

Warning: Faulty Init Scripts May Halt Your System

Faulty init scripts may hang your machine up. Edit such scripts with great care and, if possible, subject them to heavy testing in the multiuser environment. Find useful information about init scripts in Section 11.2.1, “Runlevels”.

To create a custom init script for a given program or service, use the file /etc/init.d/skeleton as a template. Save a copy of this file under the new name and edit the relevant program and filenames, paths and other details as needed. You may also need to enhance the script with your own parts, so the correct actions are triggered by the init procedure.

The INIT INFO block at the top is a required part of the script and must be edited. See Example 11.1, “A Minimal INIT INFO Block”.

### Example 11.1: A Minimal INIT INFO Block

```ini
BEGIN INIT INFO
Provides: FOO
Required-Start: $syslog $remote_fs
Required-Stop: $syslog $remote_fs
Default-Start: 3 5
Default-Stop: 0 1 2 6
Description: Start FOO to allow XY and provide YZ
END INIT INFO
```

In the first line of the INFO block, after Provides:, specify the name of the program or service controlled by this init script. In the Required-Start: and Required-Stop: lines, specify all services that need to be still running when the service itself is stopped. This information is used later to generate the numbering of script names, as found in the runlevel directories.
After Default-Start: and Default-Stop:, specify the runlevels in which the service should automatically be started or stopped. Finally, for Description:, provide a short description of the service in question.

To create the links from the runlevel directories (/etc/init.d/rc?.d/) to the corresponding scripts in /etc/init.d/, enter the command `insserv new-script-name`. `insserv` evaluates the INIT INFO header to create the necessary links for start and stop scripts in the runlevel directories (/etc/init.d/rc?.d/). The program also takes care of the correct start and stop order for each runlevel by including the necessary numbers in the names of these links. If you prefer a graphical tool to create such links, use the runlevel editor provided by YaST, as described in Section 11.2.3, “Configuring System Services (Runlevel) with YaST”.

If a script already present in /etc/init.d/ should be integrated into the existing runlevel scheme, create the links in the runlevel directories right away with `insserv` or by enabling the corresponding service in the runlevel editor of YaST. Your changes are applied during the next reboot—the new service is started automatically.

Do not set these links manually. If something is wrong in the INFO block, problems will arise when `insserv` is run later for some other service. The manually added service will be removed with the next run of `insserv` for this script.

### 11.2.3 Configuring System Services (Runlevel) with YaST

After starting this YaST module with `YaST › System › System Services (Runlevel)`, it displays an overview listing all the available services and the current status of each service (disabled or enabled). Decide whether to use the module in Simple Mode or in Expert Mode. The default Simple Mode should be sufficient for most purposes. The left column shows the name of the service, the center column indicates its current status and the right column gives a short description. For the selected service, a more detailed description is provided in the lower part of the window. To enable a service, select it in the table then select Enable. The same steps apply to disable a service.

For detailed control over the runlevels in which a service is started or stopped or to change the default runlevel, first select Expert Mode. The current default runlevel or “initdefault” (the runlevel into which the system boots by default) is displayed at the top. Normally, the default runlevel of a SUSE Linux Enterprise Desktop system is runlevel 5 (full multiuser mode with network and X). A suitable alternative might be runlevel 3 (full multiuser mode with network).
This YaST dialog allows the selection of one of the runlevels (as listed in Table 11.1, “Available Runlevels”) as the new default. Additionally, use the table in this window to enable or disable individual services and daemons. The table lists the services and daemons available, shows whether they are currently enabled on your system and, if so, for which runlevels. After selecting one of the rows with the mouse, click the check boxes representing the runlevels (B, 0, 1, 2, 3, 5, 6, and S) to define the runlevels in which the selected service or daemon should be running. Runlevel 4 is undefined to allow creation of a custom runlevel. A brief description of the currently selected service or daemon is provided below the table overview.

Warning: Faulty Runlevel Settings May Damage Your System

Faulty runlevel settings may make your system unusable. Before applying your changes, make absolutely sure that you know their consequences.

FIGURE 11.1: SYSTEM SERVICES (RUNLEVEL)
With **Start**, **Stop**, or **Refresh**, decide whether a service should be activated. **Refresh status** checks the current status. **Set or Reset** lets you select whether to apply your changes to the system or to restore the settings that existed before starting the runlevel editor. Selecting OK saves the changed settings to disk.

11.3 **System Configuration via /etc/sysconfig**

The main configuration of SUSE Linux Enterprise Desktop is controlled by the configuration files in `/etc/sysconfig`. The individual files in `/etc/sysconfig` are only read by the scripts to which they are relevant. This ensures that network settings, for example, only need to be parsed by network-related scripts.

There are two ways to edit the system configuration. Either use the YaST sysconfig Editor or edit the configuration files manually.

11.3.1 **Changing the System Configuration Using the YaST sysconfig Editor**

The YaST sysconfig editor provides an easy-to-use front-end for system configuration. Without any knowledge of the actual location of the configuration variable you need to change, you can just use the built-in search function of this module, change the value of the configuration variable as needed and let YaST take care of applying these changes, updating configurations that depend on the values set in `sysconfig` and restarting services.

⚠️ **Warning: Modifying /etc/sysconfig/* Files Can Damage Your Installation**

Do not modify the `/etc/sysconfig` files if you lack previous experience and knowledge. It can do considerable damage to your system. The files in `/etc/sysconfig` include a short comment for each variable to explain what effect they actually have.
The YaST sysconfig dialog is split into three parts. The left part of the dialog shows a tree view of all configurable variables. When you select a variable, the right part displays both the current selection and the current setting of this variable. Below, a third window displays a short description of the variable's purpose, possible values, the default value and the actual configuration file from which this variable originates. The dialog also provides information about which configuration script is executed after changing the variable and which new service is started as a result of the change. YaST prompts you to confirm your changes and informs you which scripts will be executed after you leave the dialog by selecting Finish. Also select the services and scripts to skip for now, so they are started later. YaST applies all changes automatically and restarts any services involved for your changes to take an effect.

11.3.2 Changing the System Configuration Manually

To manually change the system configuration, proceed as follows

1. Become root.

2. Bring the system into single user mode (runlevel 1) with telinit 1.

3. Change the configuration files as needed with an editor of your choice.
If you do not use YaST to change the configuration files in `/etc/sysconfig`, make sure that empty variable values are represented by two quotation marks (`""`) and that values with blanks in them are enclosed in quotation marks. Values consisting of one word only do not need to be quoted.

4. Execute **SuSEconfig** to make sure that the changes take effect.

5. Bring your system back to the previous runlevel with a command like `telinit default_runlevel`. Replace `default_runlevel` with the default runlevel of the system. Choose 5 if you want to return to full multiuser with network and X or choose 3 if you prefer to work in full multiuser with network.

This procedure is mainly relevant when changing systemwide settings, such as the network configuration. Small changes should not require going into single user mode, but you may still do so to make absolutely sure that all the programs concerned are correctly restarted.

**Tip: Configuring Automated System Configuration**

To disable the automated system configuration by SuSEconfig, set the variable `ENABLE_SUSECONFIG` in `/etc/sysconfig/suseconfig` to `no`. Do not disable SuSEconfig if you want to use the SUSE installation support. It is also possible to disable the auto-configuration partially.
This chapter describes how to configure GRUB (Grand Unified Bootloader), the boot loader used in SUSE® Linux Enterprise Desktop. A special YaST module is available for configuring all settings. If you are not familiar with the subject of booting in Linux, read the following sections to acquire some background information. This chapter also describes some of the problems frequently encountered when booting with GRUB and their solutions.

Note: No GRUB on machines using UEFI

GRUB will routinely be installed on machines equipped with a traditional BIOS and on UEFI (Unified Extensible Firmware Interface) machines using a Compatiblity Support Module (CSM). On UEFI machines without enabled CSM, _eL ILO_ will automatically be installed (provided DVD1 booted successfully). Refer to the eLIL0 documentation at `/usr/share/doc/packages/elilo/` on your system for details.

This chapter focuses on boot management and the configuration of the boot loader GRUB. The boot procedure as a whole is outlined in Chapter 11, Booting and Configuring a Linux System. A boot loader represents the interface between the machine (BIOS) and the operating system (SUSE Linux Enterprise Desktop). The configuration of the boot loader directly impacts the start of the operating system.

The following terms appear frequently in this chapter and might need some explanation:

**MBR (Master Boot Record)**

The structure of the MBR is defined by an operating system–independent convention. The first 446 bytes are reserved for the program code. They typically hold part of a boot loader program or an operating system selector. The next 64 bytes provide space for a partition table of up to four entries. The partition table contains information about the partitioning of the hard disk and the file system types. The operating system needs this table for handling the hard disk. With conventional generic code in the MBR, exactly one partition must be marked _active_. The last two bytes of the MBR must contain a static “magic number” (AA55). An MBR containing a different value is regarded as invalid by some BIOSes, so is not considered for booting.
Boot Sectors

Boot sectors are the first sectors of hard disk partitions with the exception of the extended partition, which merely serves as a “container” for other partitions. These boot sectors have 512 bytes of space for code used to boot an operating system installed in the respective partition. This applies to boot sectors of formatted DOS, Windows, and OS/2 partitions, which also contain some basic important data of the file system. In contrast, the boot sectors of Linux partitions are initially empty after setting up a file system other than XFS. Therefore, a Linux partition is not bootable by itself, even if it contains a kernel and a valid root file system. A boot sector with valid code for booting the system has the same magic number as the MBR in its last two bytes (AA55).

12.1 Booting with GRUB

GRUB comprises two stages. Stage 1 consists of 512 bytes and its only task is to load the second stage of the boot loader. Subsequently, stage 2 is loaded. This stage contains the main part of the boot loader.

In some configurations, an intermediate stage 1.5 can be used, which locates and loads stage 2 from an appropriate file system. If possible, this method is chosen by default on installation or when initially setting up GRUB with YaST.

Stage 2 is able to access many file systems. Currently, ext2, ext3, ReiserFS, Minix, and the DOS FAT file system used by Windows are supported. To a certain extent, XFS, and UFS and FFS used by BSD systems are also supported. Since version 0.95 GRUB is also able to boot from a CD or DVD containing an ISO 9660 standard file system pursuant to the “El Torito” specification. Even before the system is booted, GRUB can access file systems of supported BIOS disk devices (floppy disks or hard disks, CD drives and DVD drives detected by the BIOS). Therefore, changes to the GRUB configuration file (menu.lst) do not require a new installation of the boot manager. When the system is booted, GRUB reloads the menu file with the valid paths and partition data of the kernel or the initial RAM disk (initrd) and locates these files.

The actual configuration of GRUB is based on four files that are described below:

/boot/grub/menu.lst

This file contains all information about partitions or operating systems that can be booted with GRUB. Without this information, the GRUB command line prompts the user for how to proceed (see Section 12.1.1.3, “Editing Menu Entries during the Boot Procedure” for details).
/boot/grub/device.map

This file translates device names from the GRUB and BIOS notation to Linux device names.

/etc/grub.conf

This file contains the commands, parameters and options the GRUB shell needs for installing the boot loader correctly.

/etc/sysconfig/bootloader

This file contains configuration options (such as Kernel parameters) that will be used as fallback in specific situations, see Section 12.1.4, “The File /etc/sysconfig/bootloader”. /etc/sysconfig/bootloader is not a GRUB-specific configuration file—the values are applied to any boot loader installed on SUSE Linux Enterprise Desktop.

GRUB can be controlled in various ways. Boot entries from an existing configuration can be selected from the graphical menu (splash screen). The configuration is loaded from the file menu.lst.

In GRUB, all boot parameters can be changed prior to booting. For example, errors made when editing the menu file can be corrected in this way. Boot commands can also be entered interactively at a kind of input prompt. For details, see Section 12.1.1.3, “Editing Menu Entries during the Boot Procedure”. GRUB offers the possibility of determining the location of the kernel and the initrd prior to booting. In this way, you can even boot an installed operating system for which no entry exists in the boot loader configuration.

GRUB actually exists in two versions: as a boot loader and as a normal Linux program in /usr/sbin/grub. The latter is referred to as the GRUB shell. It provides an emulation of GRUB in the installed system and can be used to install GRUB or test new settings before applying them. The functionality to install GRUB as the boot loader on a hard disk or floppy disk is integrated in GRUB in the form of the command setup. This is available in the GRUB shell when Linux is loaded.

12.1.1 The File /boot/grub/menu.lst

The graphical splash screen with the boot menu is based on the GRUB configuration file /boot/grub/menu.lst, which contains all information about all partitions or operating systems that can be booted by the menu.

Every time the system is booted, GRUB loads the menu file from the file system. For this reason, GRUB does not need to be reinstalled after every change to the file. Use the YaST boot loader to modify the GRUB configuration as described in Section 12.2, “Configuring the Boot Loader with YaST”.

121

The File /boot/grub/menu.lst

SUSE Linux Enterp... 11 SP4
The menu file contains commands. The syntax is very simple. Every line contains a command followed by optional parameters separated by spaces like in the shell. For historical reasons, some commands permit an `=` in front of the first parameter. Comments are introduced by a hash (`#`).

To identify the menu items in the menu overview, set a `title` for every entry. The text (including any spaces) following the keyword `title` is displayed as a selectable option in the menu. All commands up to the next `title` are executed when this menu item is selected.

The simplest case is the redirection to boot loaders of other operating systems. The command is `chainloader` and the argument is usually the boot block of another partition, in GRUB block notation. For example:

```
chainloader (hd0,3)+1
```

The device names in GRUB are explained in Section 12.1.1.1, “Naming Conventions for Hard Disks and Partitions”. This example specifies the first block of the fourth partition of the first hard disk.

Use the command `kernel` to specify a kernel image. The first argument is the path to the kernel image in a partition. The other arguments are passed to the kernel on its command line.

If the kernel does not have built-in drivers for access to the root partition or a recent Linux system with advanced hotplug features is used, `initrd` must be specified with a separate GRUB command whose only argument is the path to the `initrd` file. Because the loading address of the `initrd` is written into the loaded kernel image, the command `initrd` must follow after the `kernel` command.

The command `root` simplifies the specification of kernel and initrd files. The only argument of `root` is a device or a partition. This device is used for all kernel, `initrd`, or other file paths for which no device is explicitly specified until the next `root` command.

The `boot` command is implied at the end of every menu entry, so it does not need to be written into the menu file. However, if you use GRUB interactively for booting, you must enter the `boot` command at the end. The command itself has no arguments. It merely boots the loaded kernel image or the specified chain loader.

After writing all menu entries, define one of them as the `default` entry. Otherwise, the first one (entry 0) is used. You can also specify a time-out in seconds after which the default entry should boot. `timeout` and `default` usually precede the menu entries. An example file is described in Section 12.1.1.2, “An Example Menu File”.
12.1.1.1 Naming Conventions for Hard Disks and Partitions

The naming convention GRUB uses for hard disks and partitions differ from that used for normal Linux devices. It more closely resembles the simple disk enumeration the BIOS does and the syntax is similar to that used in some BSD derivatives. In GRUB, the numbering of the partitions start with zero. This means that (hd0,0) is the first partition of the first hard disk. On a common desktop machine with a hard disk connected as primary master, the corresponding Linux device name is /dev/sda1.

The four possible primary partitions are assigned the partition numbers 0 to 3. The logical partitions are numbered from 4:

- (hd0,0) first primary partition of the first hard disk
- (hd0,1) second primary partition
- (hd0,2) third primary partition
- (hd0,3) fourth primary partition (usually an extended partition)
- (hd0,4) first logical partition
- (hd0,5) second logical partition

Being dependent on BIOS devices, GRUB does not distinguish between PATA (IDE), SATA, SCSI, and hardware RAID devices. All hard disks recognized by the BIOS or other controllers are numbered according to the boot sequence preset in the BIOS.

Unfortunately, it is often not possible to map the Linux device names to BIOS device names exactly. It generates this mapping with the help of an algorithm and saves it to the file device.map, which can be edited if necessary. Information about the file device.map is available in Section 12.1.2, “The File device.map”.

A complete GRUB path consists of a device name written in parentheses and the path to the file in the file system in the specified partition. The path begins with a slash. For example, the bootable kernel could be specified as follows on a system with a single PATA (IDE) hard disk containing Linux in its first partition:

```
(hd0,0)/boot/vmlinuz
```

12.1.1.2 An Example Menu File

The following example shows the structure of a GRUB menu file. The example installation has a Linux boot partition under /dev/sda5, a root partition under /dev/sda7 and a Windows installation under /dev/sda1.

```
gfxmenu (hd0,4)/boot/message
```
Color scheme: white (foreground), blue (background), black (selection) and light gray (background of the selection). The color scheme has no effect on the splash screen, only on the customizable GRUB menu that you can access by exiting the splash screen with Esc.

The first (0) menu entry title linux is booted by default.

After eight seconds without any user input, GRUB automatically boots the default entry. To deactivate automatic boot, delete the timeout line. If you set timeout 0, GRUB boots the default entry immediately.

The second and largest block lists the various bootable operating systems. The sections for the individual operating systems are introduced by title.

The first entry (title linux) is responsible for booting SUSE Linux Enterprise Desktop. The kernel (vmlinuz) is located in the first logical partition (the boot partition) of the first hard disk. Kernel parameters, such as the root partition and VGA mode, are appended
here. The root partition is specified according to the Linux naming convention (/dev/sda7/) because this information is read by the kernel and has nothing to do with GRUB. The initrd is also located in the first logical partition of the first hard disk.

The second entry is responsible for loading Windows. Windows is booted from the first partition of the first hard disk (hd0,0). The command chainloader +1 causes GRUB to read and execute the first sector of the specified partition.

The next entry enables booting from floppy disk without modifying the BIOS settings.

The boot option failsafe starts Linux with a selection of kernel parameters that enables Linux to boot even on problematic systems.

The menu file can be changed whenever necessary. GRUB then uses the modified settings during the next boot. Edit the file permanently using YaST or an editor of your choice. Alternatively, make temporary changes interactively using the edit function of GRUB. See Section 12.1.1.3, “Editing Menu Entries during the Boot Procedure”.

12.1.1.3 Editing Menu Entries during the Boot Procedure

In the graphical boot menu, select the operating system to boot with the arrow keys. If you select a Linux system, you can enter additional boot parameters at the boot prompt. To edit individual menu entries directly, press Esc to exit the splash screen and get to the GRUB text-based menu then press E. Changes made in this way only apply to the current boot and are not adopted permanently.

⚠️ Important: Keyboard Layout during the Boot Procedure

The US keyboard layout is the only one available when booting. See Figure 31.3, “US Keyboard Layout”.

Editing menu entries facilitates the repair of a defective system that can no longer be booted, because the faulty configuration file of the boot loader can be circumvented by manually entering parameters. Manually entering parameters during the boot procedure is also useful for testing new settings without impairing the native system.
After activating the editing mode, use the arrow keys to select the menu entry of the configuration to edit. To make the configuration editable, press E again. In this way, edit incorrect partitions or path specifications before they have a negative effect on the boot process. Press Enter to exit the editing mode and return to the menu. Then press B to boot this entry. Further possible actions are displayed in the help text at the bottom.

To enter changed boot options permanently and pass them to the kernel, open the file menu.lst as the user root and append the respective kernel parameters to the existing line, separated by spaces:

```
title linux
root(hd0,0)
 kernel /vmlinuz root=/dev/sda3 additional parameter
initrd /initrd
```

GRUB automatically adopts the new parameters the next time the system is booted. Alternatively, this change can also be made with the YaST boot loader module. Append the new parameters to the existing line, separated by spaces.

# 12.1.2 The File device.map

The file `device.map` maps GRUB and BIOS device names to Linux device names. In a mixed system containing PATA (IDE) and SCSI hard disks, GRUB must try to determine the boot sequence by a special procedure, because GRUB may not have access to the BIOS information on the boot sequence. GRUB saves the result of this analysis in the file `/boot/grub/device.map`.

Example `device.map` files for a system on which the boot sequence in the BIOS is set to PATA before SCSI could look as follows:

```
(fd0) /dev/fd0
(hd0) /dev/sda
(hd1) /dev/sdb
```

or

```
(fd0) /dev/fd0
(hd0) /dev/disk-by-id/DISK1 ID
(hd1) /dev/disk-by-id/DISK2 ID
```

Because the order of PATA (IDE), SCSI and other hard disks depends on various factors and Linux is not able to identify the mapping, the sequence in the file `device.map` can be set manually. If you encounter problems when booting, check if the sequence in this file corresponds to the
sequence in the BIOS and use the GRUB prompt to modify it temporarily, if necessary. After the Linux system has booted, the file `device.map` can be edited permanently with the YaST boot loader module or an editor of your choice.

After manually changing `device.map`, execute the following command to reinstall GRUB. This command causes the file `device.map` to be reloaded and the commands listed in `grub.conf` to be executed:

```
grub --batch < /etc/grub.conf
```

### 12.1.3 The File `/etc/grub.conf`

The third important GRUB configuration file after `menu.lst` and `device.map` is `/etc/grub.conf`. This file contains the commands, parameters and options the GRUB shell needs for installing the boot loader correctly:

```
setup --stage2=/boot/grub/stage2 --force-lba (hd0,1) (hd0,1)
quit
```

This command tells GRUB to automatically install the boot loader to the second partition on the first hard disk (hd0,1) using the boot images located on the same partition. The `--stage2=/boot/grub/stage2` parameter is needed to install the `stage2` image from a mounted file system. Some BIOSes have a faulty LBA support implementation, `--force-lba` provides a solution to ignore them.

### 12.1.4 The File `/etc/sysconfig/bootloader`

This file is read by the perl-bootloader library which is used when configuring the boot loader with YaST. It contains configuration options (such as Kernel parameters) that will be used as fallback.

Whenever a new kernel is installed, a heuristic tries to find matching parameters from the previous kernel. Only if that does not work, for example when the Kernel flavor has changed, the settings from `/etc/sysconfig/bootloader` will take effect.

So, changing settings in `/etc/` (either manually or with the YaST sysconfig editor) will not affect the actual boot loader configuration. On the other hand, changing the actual bootloader configuration file in rare cases may not survive a change of the kernel flavor.
Note: Boot Loader Configuration after a Kernel Update

Every time a new kernel is installed, the perl-bootloader writes a new boot loader configuration file (for example, `/boot/grub/menu.lst` for GRUB). If there is no matching entry in `/boot/grub/menu.lst`, the defaults specified in `/etc/sysconfig/bootloader` are used for the boot loader configuration file. Therefore we advise to adjust the relevant defaults in `/etc/sysconfig/bootloader`, too—especially if you use a custom kernel.

**LOADER_TYPE**

Specifies the boot loader installed on the system (e.g. GRUB or LILO). Do not modify—use YaST to change the boot loader as described in Procedure 12.6, “Changing the Boot Loader Type”.

**DEFAULT_VGA / FAILSAFE_VGA / XEN_VGA**

Screen resolution and color depth of the framebuffer used during booting are configured with the kernel parameter `vga`. These values define which resolution and color depth to use for the default boot entry, the failsafe and the XEN entry. The following values are valid:

<table>
<thead>
<tr>
<th>Resolution</th>
<th>640x480</th>
<th>800x600</th>
<th>1024x768</th>
<th>1280x1024</th>
<th>1600x1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>8bit</td>
<td>0x301</td>
<td>0x303</td>
<td>0x305</td>
<td>0x307</td>
<td>0x31C</td>
</tr>
<tr>
<td>15bit</td>
<td>0x310</td>
<td>0x313</td>
<td>0x316</td>
<td>0x319</td>
<td>0x31D</td>
</tr>
<tr>
<td>16bit</td>
<td>0x311</td>
<td>0x314</td>
<td>0x317</td>
<td>0x31A</td>
<td>0x31E</td>
</tr>
<tr>
<td>24bit</td>
<td>0x312</td>
<td>0x315</td>
<td>0x318</td>
<td>0x31B</td>
<td>0x31F</td>
</tr>
</tbody>
</table>

**DEFAULT_APPEND / FAILSAFE_APPEND / XEN_KERNEL_APPEND**

Kernel parameters (other than `vga`) that are automatically appended to the default, failsafe and XEN boot entries in the boot loader configuration file.

**CYCLE_DETECTION / CYCLE_NEXT_ENTRY**

Configure whether to use boot cycle detection and if so, which alternative entry from `/boot/grub/menu.lst` to boot in case of a reboot cycle (e.g. Failsafe). See `/usr/share/doc/packages/bootcycle/README` for detailed information.
12.1.5 Setting a Boot Password

Even before the operating system is booted, GRUB enables access to file systems. Users without root permissions can access files in your Linux system to which they have no access once the system is booted. To block this kind of access or to prevent users from booting certain operating systems, set a boot password.

⚠️ Important: Boot Password and Splash Screen

If you use a boot password for GRUB, the usual splash screen is not displayed.

As the user root, proceed as follows to set a boot password:

1. At the root prompt, encrypt the password using grub-md5-crypt:

```
grub-md5-crypt
Password: ****
Retype password: ****
Encrypted: 1s2dv/$JOYcdxIn7CJk9xShzzJWv/
```

2. Paste the encrypted string into the global section of the file menu.lst:

```
gfxmenu (hd0,4)/message
color white/blue black/light-gray
default 0
timeout 8
password --md5 1s2dv/$JOYcdxIn7CJk9xShzzJWv/
```

Now GRUB commands can only be executed at the boot prompt after pressing P and entering the password. However, users can still boot all operating systems from the boot menu.

3. To prevent one or several operating systems from being booted from the boot menu, add the entry lock to every section in menu.lst that should not be bootable without entering a password. For example:

```
title linux
 kernel (hd0,4)/vmlinuz root=/dev/sda7 vga=791
 initrd (hd0,4)/initrd
 lock
```
After rebooting the system and selecting the Linux entry from the boot menu, the following error message is displayed:

Error 32: Must be authenticated

Press Enter to enter the menu. Then press P to get a password prompt. After entering the password and pressing Enter, the selected operating system (Linux in this case) should boot.

12.2 Configuring the Boot Loader with YaST

The easiest way to configure the boot loader in your SUSE Linux Enterprise Desktop system is to use the YaST module. In the YaST Control Center, select System > Boot Loader. As in Figure 12.1, “Boot Loader Settings”, this shows the current boot loader configuration of your system and allows you to make changes.

![Boot Loader Settings](image)

**FIGURE 12.1: BOOT LOADER SETTINGS**
Use the *Section Management* tab to edit, change and delete boot loader sections for the individual operating systems. To add an option, click *Add*. To change the value of an existing option, select it with the mouse and click *Edit*. To remove an existing entry, select it and click *Delete*. If you are not familiar with boot loader options, read Section 12.1, “Booting with GRUB” first.

Use the *Boot Loader Installation* tab to view and change settings related to type, location and advanced loader settings.

Click *Other* to access advanced configuration options. The build-in editor lets you change the GRUB configuration files. For details, see Section 12.1, “Booting with GRUB”. You can also delete the existing configuration and *Start from Scratch* or let YaST *Propose a New Configuration*. It is also possible to write the configuration to disk or reread the configuration from the disk. To restore the original Master Boot Record (MBR) that was saved during the installation, choose *Restore MBR of Hard Disk*.

### 12.2.1 Adjusting the Default Boot Entry

To change the system that is booted by default, proceed as follows:

**PROCEDURE 12.1: SETTING THE DEFAULT SYSTEM**

1. Open the *Section Management* tab.
2. Select the desired entry from the list.
3. Click *Set as Default*.
4. Click *OK* to activate these changes.

### 12.2.2 Modifying the Boot Loader Location

To modify the location of the boot loader, follow these steps:

**PROCEDURE 12.2: CHANGING THE BOOT LOADER LOCATION**

1. Select the *Boot Loader Installation* tab and then choose one of the following options for *Boot Loader Location*:

   - **Boot from Master Boot Record**
     
     This installs the boot loader in the MBR of the first disk (according to the boot sequence preset in the BIOS).
**Boot from Root Partition**

This installs the boot loader in the boot sector of the `/` partition (this is the default).

**Boot from Boot Partition**

This installs the boot loader in the boot sector of the `/boot` partition.

**Boot from Extended Partition**

This installs the boot loader in the extended partition container.

**Custom Boot Partition**

Use this option to specify the location of the boot loader manually.

2. Click OK to apply your changes.

### 12.2.3 Changing the Boot Loader Time-Out

The boot loader does not boot the default system immediately. During the time-out, you can select the system to boot or write some kernel parameters. To set the boot loader time-out, proceed as follows:

**PROCEDURE 12.3: CHANGING THE BOOT LOADER TIME-OUT**

1. Open the *Boot Loader Installation* tab.

2. Click *Boot Loader Options*.

3. Change the value of *Time-Out in Seconds* by typing in a new value and clicking the appropriate arrow key with your mouse, or by using the arrow keys on the keyboard.

4. Click OK twice to save the changes.

**Warning: Timeout of 0 Seconds**

When setting the timeout to 0 seconds, you will not be able to access GRUB during boot time. When having set the default boot option to a non-Linux operating system at the same time, this effectively disables access to the Linux system.
12.2.4 Setting a Boot Password

Using this YaST module, you can also set a password to protect booting. This gives you an additional level of security.

PROCEDURE 12.4: SETTING A BOOT LOADER PASSWORD

1. Open the Boot Loader Installation tab.
2. Click Boot Loader Options.
3. Activate the Protect Boot Loader with Password option with a click and type in your Password twice.
4. Click OK twice to save the changes.

12.2.5 Adjusting the Disk Order

If your computer has more than one hard disk, you can specify the boot sequence of the disks to match the BIOS setup of the machine (see Section 12.1.2, “The File device.map”). To do so, proceed as follows:

PROCEDURE 12.5: SETTING THE DISK ORDER

1. Open the Boot Loader Installation tab.
2. Click Boot Loader Installation Details.
3. If more than one disk is listed, select a disk and click Up or Down to reorder the displayed disks.
4. Click OK two times to save the changes.

12.2.6 Configuring Advanced Options

Advanced boot options can be configured via Boot Loader Installation > Boot Loader Options. Normally, it should not be necessary to change the default settings.

Set Active Flag in Partition Table for Boot Partition

Activates the partition that contains the boot loader. Some legacy operating systems (such as Windows 98) can only boot from an active partition.
**Write Generic Boot Code to MBR**
Replaces the current MBR with generic, operating system independent code.

**Debugging Flag**
Sets GRUB in debug mode where it displays messages to show disk activity.

**Hide Boot Menu**
Hides the boot menu and boots the default entry.

**Warning**
When hiding the boot menu, you will not be able to access GRUB during boot time. When having set the default boot option to a non-Linux operation system at the same time, this effectively disables access to the Linux system.

**Use Trusted GRUB**
Starts the Trusted GRUB which supports trusted computing functionality.

**Graphical Menu File**
Path to the graphics file used when displaying the boot screen.

**Serial Connection Parameters**
If your machine is controlled via a serial console, you can specify which COM port to use at which speed. Also set **Terminal Definition** to “serial”. See [info grub](http://www.gnu.org/software/grub/manual/grub.html) for details.

**Use Serial Console**
If your machine is controlled via a serial console, activate this option and specify which COM port to use at which speed. See [info grub](http://www.gnu.org/software/grub/manual/grub.html#Serial-terminal) for details.
12.2.7 Changing Boot Loader Type

Set the boot loader type in *Boot Loader Installation*. The default boot loader in SUSE Linux Enterprise Desktop is GRUB. To use LILO or ELILO, proceed as follows:

**Warning: LILO is unsupported**

Using LILO is not recommended—it is unsupported on SUSE Linux Enterprise Desktop. Only use it in special cases.

**PROCEDURE 12.6: CHANGING THE BOOT LOADER TYPE**

1. Select the *Boot Loader Installation* tab.

2. For *Boot Loader*, select LILO.

3. In the dialog box that opens, select one of the following actions:

   * **Propose New Configuration**
     Have YaST propose a new configuration.

   * **Convert Current Configuration**
     Have YaST convert the current configuration. When converting the configuration, some settings may be lost.

   * **Start New Configuration from Scratch**
     Write a custom configuration. This action is not available during the installation of SUSE Linux Enterprise Desktop.

   * **Read Configuration Saved on Disk**
     Load your own `/etc/lilo.conf`. This action is not available during the installation of SUSE Linux Enterprise Desktop.

4. Click OK two times to save the changes.

During the conversion, the old GRUB configuration is saved to the disk. To use it, simply change the boot loader type back to GRUB and choose *Restore Configuration Saved before Conversion*. This action is available only on an installed system.
Note: Custom Boot Loader

To use a boot loader other than GRUB or LILO, select Do Not Install Any Boot Loader. Read the documentation of your boot loader carefully before choosing this option.

12.3 Uninstalling the Linux Boot Loader

YaST can be used to uninstall the Linux boot loader and restore the MBR to the state it had prior to the installation of Linux. During the installation, YaST automatically creates a backup copy of the original MBR and restores it upon request.

To uninstall GRUB, start YaST and click System > Boot Loader to start the boot loader module. Select Other > Restore MBR of Hard Disk and confirm with Yes, Rewrite.

12.4 Creating Boot CDs

If problems occur while booting your system using a boot manager or if the boot manager cannot be installed on your hard disk disk, it is also possible to create a bootable CD with all the necessary start-up files for Linux. This requires a CD writer be installed in your system.

Creating a bootable CD-ROM with GRUB merely requires a special form of stage2 called stage2_eltorito and, optionally, a customized menu.lst. The classic files stage1 and stage2 are not required.

PROCEDURE 12.7: CREATING BOOT CDS

1. Change into a directory in which to create the ISO image, for example: cd /tmp
2. Create a subdirectory for GRUB and change into the newly created iso directory:

   mkdir -p iso/boot/grub && cd iso

3. Copy the kernel, the files stage2_eltorito, initrd, menu.lst and message to iso/boot/

   cp /boot/vmlinuz boot/
   cp /boot/initrd boot/
   cp /boot/message boot/
   cp /usr/lib/grub/stage2_eltorito boot/grub
   cp /boot/grub/menu.lst boot/grub
In some cases (when booting multiple operating systems, for example) it may be useful to also copy `/boot/grub/device.map` to `/boot/grub`.

4. Replace the `root (hdx, y)` entries with `root (cd)` to point to the CD-ROM device. You may also need to adjust the paths to the message file, the kernel and the initrd—they need to point to `/boot/message`, `/boot/vmlinux` and `/boot/initrd`, respectively. After having made the adjustments, `menu.lst` should look similar to the following example:

```
timeout 8
default 0
gfxmenu (cd)/boot/message

title Linux
 root (cd)
 kernel /boot/vmlinux root=/dev/sda5 vga=794 resume=/dev/sda1 \
 splash=verbose showopts
 initrd /boot/initrd
```

Use `splash=silent` instead of `splash=verbose` to prevent the boot messages from appearing during the boot procedure.

5. Create the ISO image with the following command:

```
genisoimage -R -b boot/grub/stage2_eltorito -no-emul-boot \
 -boot-load-size 4 -boot-info-table -iso-level 2 -input-charset utf-8 \
 -o grub.iso /tmp/iso
```

6. Write the resulting file `grub.iso` to a CD using your preferred utility. Do not burn the ISO image as a data file, but use the option for burning a CD image in your burning utility.

### 12.5 The Graphical SUSE Screen

The graphical SUSE screen is displayed on the first console if the option `vga=value` is used as a kernel parameter. If you install using YaST, this option is automatically activated in accordance with the selected resolution and the graphics card. There are three ways to disable the SUSE screen, if desired:

**Disabling the SUSE Screen When Necessary**

Enter the command `echo 0 >/proc/splash` on the command line to disable the graphical screen. To activate it again, enter `echo 1 >/proc/splash`.
Disabling the SUSE screen by default.

Add the kernel parameter \texttt{splash=0} to your boot loader configuration. Chapter 12, The Boot Loader GRUB provides more information about this. However, if you prefer the text mode (the default in earlier versions) set \texttt{vga=normal}.

Completely Disabling the SUSE Screen

Compile a new kernel and disable the option \textit{Use splash screen instead of boot logo in framebuffer support}. Disabling framebuffer support in the kernel automatically disables the splash screen, as well.

\textbf{Warning: No Support}

SUSE cannot provide any support for your system if you run it with a custom kernel.

12.6 Troubleshooting

This section lists some of the problems frequently encountered when booting with GRUB and a short description of possible solutions. Some of the problems are covered in articles in the Knowledge base at \url{http://www.suse.com/support}. Use the search dialog to search for keywords like GRUB, boot and boot loader.

\textbf{GRUB and XFS}

XFS leaves no room for \texttt{stage1} in the partition boot block. Therefore, do not specify an XFS partition as the location of the boot loader. This problem can be solved by creating a separate boot partition that is not formatted with XFS.

\textbf{GRUB Reports GRUB Geom Error}

GRUB checks the geometry of connected hard disks when the system is booted. Sometimes, the BIOS returns inconsistent information and GRUB reports a GRUB Geom Error. In this case, update the BIOS.

GRUB also returns this error message if Linux was installed on an additional hard disk that is not registered in the BIOS. \texttt{stage1} of the boot loader is found and loaded correctly, but \texttt{stage2} is not found. This problem can be remedied by registering the new hard disk in the BIOS.
System Containing Several Hard Disks Does Not Boot

During the installation, YaST may have incorrectly determined the boot sequence of the hard disks. For example, GRUB may regard the PATA (IDE) disk as \texttt{hd0} and the SCSI disk as \texttt{hd1}, although the boot sequence in the BIOS is reversed (SCSI before PATA).

In this case, correct the hard disks during the boot process with the help of the GRUB command line. After the system has booted, edit \texttt{device.map} to apply the new mapping permanently. Then check the GRUB device names in the files \texttt{/boot/grub/menu.lst} and \texttt{/boot/grub/device.map} and reinstall the boot loader with the following command:

\begin{verbatim}
grub --batch < /etc/grub.conf
\end{verbatim}

Booting Windows from the Second Hard Disk

Some operating systems, such as Windows, can only boot from the first hard disk. If such an operating system is installed on a hard disk other than the first hard disk, you can effect a logical change for the respective menu entry.

\begin{verbatim}
...  
  title windows  
    map (hd0) (hd1)  
    map (hd1) (hd0)  
    chainloader(hd1,0)+1  
...  
\end{verbatim}

In this example, Windows is started from the second hard disk. For this purpose, the logical order of the hard disks is changed with \texttt{map}. This change does not affect the logic within the GRUB menu file. Therefore, the second hard disk must be specified for \texttt{chainloader}.

12.7 For More Information

Extensive information about GRUB is available at \url{http://www.gnu.org/software/grub/}. Also refer to the \texttt{grub} info page. You can also search for the keyword “GRUB” in the Technical Information Search at \url{http://www.novell.com/support} to get information about special issues.
13 UEFI (Unified Extensible Firmware Interface)

UEFI (Unified Extensible Firmware Interface) is the interface between the firmware that comes with the system hardware, all the hardware components of the system, and the operating system. UEFI is becoming more and more available on PC systems and thus is replacing the traditional PC-BIOS. UEFI, for example, properly supports 64-bit systems and offers secure booting (“Secure Boot”, firmware version 2.3.1c or better required), which is one of its most important features. Last but not least, with UEFI a standard firmware will become available on all x86 platforms.

UEFI additionally offers the following advantages:

- Booting from large disks (over 2 TiB) with a GUID Partition Table (GPT).
- CPU-independent architecture and drivers.
- Flexible pre-OS environment with network capabilities.
- CSM (Compatibility Support Module) to support booting legacy operating systems via a PC-BIOS-like emulation.

For more information, see http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface. The following sections are not meant as a general UEFI overview; these are just hints about how some features are implemented in SUSE Linux Enterprise.

13.1 Secure Boot

In the world of UEFI, securing the bootstrapping process means establishing a chain of trust. The “platform” is the root of this chain of trust; in the context of SUSE Linux Enterprise, the motherboard and the on-board firmware could be considered the “platform”. Or, put slightly differently, it is the hardware vendor, and the chain of trust flows from that hardware vendor to the component manufacturers, the OS vendors, etc.

The trust is expressed via public key cryptography. The hardware vendor puts a so-called Platform Key (PK) into the firmware, representing the root of trust. The trust relationship with operating system vendors and others is documented by signing their keys with the Platform Key. Finally, security is established by requiring that no code will be executed by the firmware unless it has been signed by one of these “trusted” keys—be it an OS boot loader, some driver located in the flash memory of some PCI Express card or on disk, or be it an update of the firmware itself.
Essentially, if you want to use Secure Boot, you need to have your OS loader signed with a key trusted by the firmware, and you need the OS loader to verify that the kernel it loads can be trusted.

Key Exchange Keys (KEK) can be added to the UEFI key database. This way, you can use other certificates, as long as they are signed with the private part of the PK.

13.1.1 Implementation on SUSE Linux Enterprise

Microsoft’s Key Exchange Key (KEK) is installed by default.

Note: GUID Partitioning Table (GPT) Required

The Secure Boot feature requires that a GUID Partitioning Table (GPT) replaces the old partitioning with a Master Boot Record (MBR).

If YaST detects EFI mode during the installation, it will try to create a GPT partition. UEFI expects to find the EFI programs on a FAT-formatted EFI System Partition (ESP).

Supporting UEFI Secure Boot essentially requires having a boot loader with a digital signature that the firmware recognizes as a trusted key. In order to be useful to SUSE Linux Enterprise customers, that key is trusted by the firmware a priori, without requiring any manual intervention. There are two ways of getting there. One is to work with hardware vendors to have them endorse a SUSE key, which SUSE then signs the boot loader with. The other way is to go through Microsoft’s Windows Logo Certification program to have the boot loader certified and have Microsoft recognize the SUSE signing key (i.e., have it signed with their KEK). By now, SUSE got the loader signed by UEFI Signing Service (that’s Microsoft in this case).
At the implementation layer, SUSE uses the _shim_ loader—it is a smart solution that avoids legal issues, and simplifies the certification and signing step considerably. The _shim_ loader’s job is to load a boot loader such as eLILO or GRUB2 and verify it; this boot loader in turn will load kernels signed by a SUSE key only. SUSE provides this functionality with SLE11 SP3 on fresh installations with UEFI Secure Boot enabled.
There are two types of trusted users:

- First, those who hold the keys. The Platform Key (PK) allows almost everything. The Key Exchange Key (KEK) allows all a PK can except changing the PK.
- Second, anyone with physical access to the machine. A user with physical access can reboot the machine, and configure UEFI.

UEFI offers two types of variables to fulfill the needs of those users:

- The first is the so-called “Authenticated Variables”, which can be updated from both within the boot process (the so-called Boot Services Environment) and the running OS, but only when the new value of the variable is signed with the same key that the old value of the variable was signed with. And they can only be appended to or changed to a value with a higher serial number.
- The second is the so-called “Boot Services Only Variables”. These variables are accessible to any code that runs during the boot process. After the boot process ends and before the OS starts, the boot loader must call the ExitBootServices call. After that, these variables are no longer accessible, and the OS cannot touch them.

The various UEFI key lists are of the first type, as this allows online updating, adding, and blacklisting of keys, drivers, and firmware fingerprints. It is the second type of variable, the “Boot Services Only Variable”, that helps to implement Secure Boot, in a matter that is both secure and open source friendly, and thus compatible with GPLv3.

SUSE starts with shim—a small and simple EFI boot loader—which was originally developed by Fedora. It is signed by a certificate signed by the SUSE KEK and a Microsoft-issued certificate, based on which KEKs are available in the UEFI key database on the system. This allows shim to load and execute.

shim then goes on to verify that the boot loader it wants to load is trusted. In a default situation shim will use an independent SUSE certificate embedded in its body. In addition, shim will allow to “enroll” additional keys, overriding the default SUSE key. In the following, we call them “Machine Owner Keys” or MOKs for short.

Next the boot loader will verify and then boot the kernel, and the kernel will do the same on the modules.
13.1.2 MOK (Machine Owner Key)

If the user (“machine owner”) wants to replace any components of the boot process, Machine Owner Keys (MOKs) are to be used. The `mokutils` tool will help with signing components and managing MOKs.

The enrollment process begins with rebooting the machine and interrupting the boot process (e.g., pressing a key) when `shim` loads. `shim` will then go into enrollment mode, allowing the user to replace the default SUSE key with keys from a file on the boot partition. If the user chooses to do so, `shim` will then calculate a hash of that file and put the result in a “Boot Services Only” variable. This allows `shim` to detect any change of the file made outside of Boot Services and thus avoid tampering with the list of user-approved MOKs.

All of this happens during boot time—only verified code is executing now. Therefore, only a user present at the console can use the machine owner's set of keys. It cannot be malware or a hacker with remote access to the OS because hackers or malware can only change the file, but not the hash stored in the “Boot Services Only” variable.

The boot loader, once loaded and verified by `shim`, will call back to `shim` when it wants to verify the kernel—to avoid duplication of the verification code. `Shim` will use the same list of MOKs for this and tell the boot loader whether it can load the kernel.

This way, you can install your own kernel or boot loader. It is only necessary to install a new set of keys and authorize them by being physically present during the first reboot. Because MOKs are a list and not just a single MOK, you can make `shim` trust keys from several different vendors, allowing dual- and multi-boot from the boot loader.

13.1.3 Booting a Custom Kernel

The following is based on [http://en.opensuse.org/openSUSE:UEFI#Booting_a_custom_kernel](http://en.opensuse.org/openSUSE:UEFI#Booting_a_custom_kernel).

Secure Boot does not prevent you from using a self-compiled kernel. You just must sign it with your own certificate and make that certificate known to the firmware or MOK.

1. Create a custom X.509 key and certificate used for signing:

   ```sh
 openssl req -new -x509 -newkey rsa:2048 -keyout key.asc -out cert.pem -nodes -days 666 -subj "/CN=$USER/"
   ```

2. Package the key and the certificate as a PKCS#12 structure:

```bash
openssl pkcs12 -export -inkey key.asc -in cert.pem -name kernel_cert -out cert.p12
```

3. Generate an NSS database for use with `pesign`:

```bash
certutil -d . -N
```

4. Import the key and the certificate contained in PKCS#12 into the NSS database:

```bash
pk12util -d . -i cert.p12
```

5. “Bless” the kernel with the new signature using `pesign`:

```bash
pesign -n . -c kernel_cert -i arch/x86/boot/bzImage -o vmlinuz.signed -s
```

6. List the signatures on the kernel image:

```bash
pesign -n . -S -i vmlinuz.signed
```

At that point, you can install the kernel in `/boot` as usual. Because the kernel now has a custom signature the certificate used for signing needs to be imported into the UEFI firmware or MOK.

7. Convert the certificate to the DER format for import into the firmware or MOK:

```bash
openssl x509 -in cert.pem -outform der -out cert.der
```

8. Copy the certificate to the ESP for easier access:

```bash
sudo cp cert.der /boot/efi/
```

9. Use `mokutil` to launch the MOK list automatically. Alternatively, this is the procedure if you want to launch MOK manually:

   a. Reboot

   b. In the GRUB menu press the 'c' key.

   c. Type:

```
chainloader $efibootdir/MokManager.efi
```

```bash
Booting a Custom Kernel SUSE Linux Enterp... 11 SP4
```
d. Select *Enroll key from disk*.

e. Navigate to the _cert.der_ file and press _Enter_.

f. Follow the instructions to enroll the key. Normally this should be pressing '0' and then 'y' to confirm.

Alternatively, the firmware menu may provide ways to add a new key to the Signature Database.

### 13.1.4 Using Non-Inbox Drivers

There is no support for adding non-inbox drivers (that is, drivers that do not come with SLE) after having booted into the installation with Secure Boot enabled. The signing key used for SolidDriver/PLDP is not trusted by default.

However, it is possible to use third party drivers during installation with Secure Boot enabled in two different ways:

- Add the needed keys to the firmware database via firmware/system management tools before the installation. This option depends on the specific hardware you are using. Consult your hardware vendor for more information.

- Use a bootable driver ISO from [https://drivers.suse.com/](https://drivers.suse.com/) or your hardware vendor to enroll the needed keys in the MOK list at first boot.

To use the bootable driver ISO to enroll the driver keys to the MOK list, follow these steps:

1. Burn the ISO image to an empty CD/DVD media.

2. Start the installation by booting from the new CD/DVD media, having the standard SUSE Linux Enterprise media at hand or a URL to a network installation server.

   If doing a network installation, enter the URL of the network installation source on the boot command line using the `install=` option.

   If doing installation from optical media, the installer will first boot from the driver kit and then ask to insert the first disk of the SUSE Linux Enterprise product.

3. An initrd containing updated drivers will be used for installation.

13.1.5 Limitations

When booting in Secure Boot mode, the following restrictions apply:

- Hybridized ISO images are not recognized as bootable on UEFI systems. Thus, UEFI booting from USB devices is not supported with SP3.

- To ensure that Secure Boot cannot be easily circumvented, some kernel features are disabled when running under Secure Boot.

- Bootloader, kernel, and kernel modules must be signed.

- kexec and kdump are disabled.

- Hibernation (suspend on disk) is disabled.

- Access to /dev/kmem and /dev/mem is not possible, not even as root user.

- Access to the I/O port is not possible, not even as root user. All X11 graphical drivers must use a kernel driver.

- PCI BAR access through sysfs is not possible.

- custom_method in ACPI is not available.

- debugfs for asus-wmi module is not available.

- acpi_rsdp parameter does not have any effect on the kernel.

13.2 For More Information

- http://www.uefi.org —UEFI home page where you can find the current UEFI specifications.

- Blog posts by Olaf Kirch and Vojtěch Pavlík (the chapter above is heavily based on these posts):
  - http://en.opensuse.org/openSUSE:UEFI —UEFI with openSUSE.
14 Special System Features

This chapter starts with information about various software packages, the virtual consoles and the keyboard layout. We talk about software components like `bash`, `cron` and `logrotate`, because they were changed or enhanced during the last release cycles. Even if they are small or considered of minor importance, users may want to change their default behavior, because these components are often closely coupled with the system. The chapter concludes with a section about language and country-specific settings (I18N and L10N).

14.1 Information about Special Software Packages

The programs `bash`, `cron`, `logrotate`, `locate`, `ulimit` and `free` are very important for system administrators and many users. Man pages and info pages are two useful sources of information about commands, but both are not always available. GNU Emacs is a popular and very configurable text editor.

14.1.1 The bash Package and `/etc/profile`

Bash is the default system shell. When used as a login shell, it reads several initialization files. Bash processes them in the order they appear in this list:

1. `/etc/profile`
2. `~/.profile`
3. `/etc/bash.bashrc`
4. `~/.bashrc`

Make custom settings in `~/.profile` or `~/.bashrc`. To ensure the correct processing of these files, it is necessary to copy the basic settings from `/etc/skel/.profile` or `/etc/skel/.bashrc` into the home directory of the user. It is recommended to copy the settings from `/etc/skel` after an update. Execute the following shell commands to prevent the loss of personal adjustments:

```
mv ~/.bashrc ~/.bashrc.old
```
Then copy personal adjustments back from the *.old files.

14.1.2 The cron Package

If you want to run commands regularly and automatically in the background at predefined times, cron is the tool to use. cron is driven by specially formatted time tables. Some of them come with the system and users can write their own tables if needed.

The cron tables are located in /var/spool/cron/tabs. /etc/crontab serves as a systemwide cron table. Enter the username to run the command directly after the time table and before the command. In Example 14.1, “Entry in /etc/crontab”, root is entered. Package-specific tables, located in /etc/cron.d, have the same format. See the cron man page (man cron).

**EXAMPLE 14.1: ENTRY IN /ETC/CRONTAB**

```
1-59/5 * * * * root test -x /usr/sbin/atrun && /usr/sbin/atrun
```

You cannot edit /etc/crontab by calling the command crontab -e. This file must be loaded directly into an editor, then modified and saved.

A number of packages install shell scripts to the directories /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly and /etc/cron.monthly, whose execution is controlled by /usr/lib/cron/run-crons. /usr/lib/cron/run-crons is run every 15 minutes from the main table (/etc/crontab). This guarantees that processes that may have been neglected can be run at the proper time.

To run the hourly, daily or other periodic maintenance scripts at custom times, remove the time stamp files regularly using /etc/crontab entries (see Example 14.2, “/etc/crontab: Remove Time Stamp Files”, which removes the hourly one before every full hour, the daily one once a day at 2:14 a.m., etc.).

**EXAMPLE 14.2: /ETC/CRONTAB: REMOVE TIME STAMP FILES**

```
59 * * * * root rm -f /var/spool/cron/lastrun/cron.hourly
14 2 * * * root rm -f /var/spool/cron/lastrun/cron.daily
29 2 * * 6 root rm -f /var/spool/cron/lastrun/cron.weekly
44 2 1 * * root rm -f /var/spool/cron/lastrun/cron.monthly
```
Or you can set \texttt{DAILY\_TIME} in \texttt{/etc/sysconfig/cron} to the time at which \texttt{cron\_daily} should start. The setting of \texttt{MAX\_NOT\_RUN} ensures that the daily tasks get triggered to run, even if the user did not turn on the computer at the specified \texttt{DAILY\_TIME} for a longer period of time. The maximum value of \texttt{MAX\_NOT\_RUN} is 14 days.

The daily system maintenance jobs are distributed to various scripts for reasons of clarity. They are contained in the package \texttt{aaa\_base}. \texttt{/etc/cron\_daily} contains, for example, the components \texttt{suse\_de\_backup\_rpmdb}, \texttt{suse\_de\_clean\_tmp} or \texttt{suse\_de\_cron\_local}.

14.1.3 Log Files: Package logrotate

There are a number of system services (daemons) that, along with the kernel itself, regularly record the system status and specific events onto log files. This way, the administrator can regularly check the status of the system at a certain point in time, recognize errors or faulty functions and troubleshoot them with pinpoint precision. These log files are normally stored in \texttt{/var/log} as specified by FHS and grow on a daily basis. The \texttt{logrotate} package helps control the growth of these files.

Configure logrotate with the file \texttt{/etc/logrotate.conf}. In particular, the \texttt{include} specification primarily configures the additional files to read. Programs that produce log files install individual configuration files in \texttt{/etc/logrotate.d}. For example, such files ship with the packages \texttt{apache2} (\texttt{/etc/logrotate.d/apache2}) and \texttt{syslogd} (\texttt{/etc/logrotate.d/syslog}).

\textbf{EXAMPLE 14.3: EXAMPLE FOR /ETC/LOGROTATE.CONF}

```
see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

RPM packages drop log rotation information into this directory
include /etc/logrotate.d
```
# no packages own lastlog or wtmp - we'll rotate them here
#/var/log/wtmp {
#  monthly
#  create 0664 root utmp
#  rotate 1
#}

# system-specific logs may be also be configured here.

logrotate is controlled through cron and is called daily by `/etc/cron.daily/logrotate`.

❗️ Important

The `create` option reads all settings made by the administrator in `/etc/permissions*`. Ensure that no conflicts arise from any personal modifications.

14.1.4 The locate Command

`locate`, a command for quickly finding files, is not included in the standard scope of installed software. If desired, install the package `findutils-locate`. The updatedb process is started automatically every night or about 15 minutes after booting the system.

14.1.5 The ulimit Command

With the `ulimit` (user limits) command, it is possible to set limits for the use of system resources and to have these displayed. `ulimit` is especially useful for limiting available memory for applications. With this, an application can be prevented from co-opting too much of the system resources and slowing or even hanging up the operating system.

`ulimit` can be used with various options. To limit memory usage, use the options listed in Table 14.1, "ulimit: Setting Resources for the User".

**TABLE 14.1: ulimit: SETTING RESOURCES FOR THE USER**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m</td>
<td>The maximum resident set size</td>
</tr>
<tr>
<td>-v</td>
<td>The maximum amount of virtual memory available to the shell</td>
</tr>
<tr>
<td>-s</td>
<td>The maximum size of the stack</td>
</tr>
</tbody>
</table>
### 14.1.6 The free Command

The `free` command displays the total amount of free and used physical memory and swap space in the system, as well as the buffers and cache consumed by the kernel. The concept of available RAM dates back to before the days of unified memory management. The slogan *free memory is bad memory* applies well to Linux. As a result, Linux has always made the effort to balance out caches without actually allowing free or unused memory.

Basically, the kernel does not have direct knowledge of any applications or user data. Instead, it manages applications and user data in a page cache. If memory runs short, parts of it are written to the swap partition or to files, from which they can initially be read with the help of the `mmap` command (see *man mmap*).

The kernel also contains other caches, such as the slab cache, where the caches used for network access are stored. This may explain the differences between the counters in `/proc/meminfo`. Most, but not all, of them can be accessed via `/proc/slabinfo`.

---

### EXAMPLE 14.4: ULIMIT: SETTINGS IN ~/.BASHRC

```bash
Limits maximum resident set size (physical memory):
ulimit -m 98304

Limits of virtual memory:
ulimit -v 98304
```

Memory allocations must be specified in KB. For more detailed information, see *man bash*.

---

### Important

Not all shells support `ulimit` directives. PAM (for instance, `pam_limits`) offers comprehensive adjustment possibilities if you depend on encompassing settings for these restrictions.
However, if your goal is to find out how much RAM is currently being used, find this information in /proc/meminfo.

14.1.7 Man Pages and Info Pages

For some GNU applications (such as tar), the man pages are no longer maintained. For these commands, use the --help option to get a quick overview of the info pages, which provide more in-depth instructions. Info is GNU’s hypertext system. Read an introduction to this system by entering info info. Info pages can be viewed with Emacs by entering emacs -f info or directly in a console with info. You can also use tkinfo, xinfo or the help system to view info pages.

14.1.8 Selecting Man Pages Using the man Command

To read a man page enter man man_page. If a man page with the same name exists in different sections, they will all be listed with the corresponding section numbers. Select the one to display. If you don’t enter a section number within a few seconds, the first man page will be displayed. If you want to change this to the default system behavior, set MAN_POSIXLY_CORRECT=1 in a shell initialization file such as ~/.bashrc.

14.1.9 Settings for GNU Emacs

GNU Emacs is a complex work environment. The following sections cover the configuration files processed when GNU Emacs is started. More information is available at http://www.gnu.org/software/emacs/.

On start-up, Emacs reads several files containing the settings of the user, system administrator and distributor for customization or preconfiguration. The initialization file ~/.emcs is installed to the home directories of the individual users from /etc/skel/.emacs. In turn, reads the file /etc/skel/.gnu-emacs. To customize the program, copy .gnu-emacs to the home directory (with cp /etc/skel/.gnu-emacs ~/.gnu-emacs) and make the desired settings there. .gnu-emacs defines the file ~/.gnu-emacs-custom as custom-file. If users make settings with the customize options in Emacs, the settings are saved to ~/.gnu-emacs-custom.
With SUSE Linux Enterprise Desktop, the emacs package installs the file site-start.el in the directory /usr/share/emacs/site-lisp. The file site-start.el is loaded before the initialization file ~/.emacs. Among other things, site-start.el ensures that special configuration files distributed with Emacs add-on packages, such as psgml, are loaded automatically. Configuration files of this type are located in /usr/share/emacs/site-lisp, too, and always begin with suse-start-.. The local system administrator can specify systemwide settings in default.el.

More information about these files is available in the Emacs info file under Init File: info:/emacs/InitFile. Information about how to disable the loading of these files (if necessary) is also provided at this location.

The components of Emacs are divided into several packages:

- The base package emacs.
- emacs-x11 (usually installed): the program with X11 support.
- emacs-nox: the program without X11 support.
- emacs-info: online documentation in info format.
- emacs-el: the uncompiled library files in Emacs Lisp. These are not required at runtime.
- Numerous add-on packages can be installed if needed: emacs-auctex (LaTeX), psgml (SGML and XML), gnuserv (client and server operation) and others.

14.2 Virtual Consoles

Linux is a multiuser and multitasking system. The advantages of these features can be appreciated even on a stand-alone PC system. In text mode, there are six virtual consoles available. Switch between them using Alt–F1 through Alt–F6. The seventh console is reserved for X and the tenth console shows kernel messages. More or fewer consoles can be assigned by modifying the file /etc/inittab.

To switch to a console from X without shutting it down, use Ctrl–Alt–F1 to Ctrl–Alt–F6. To return to X, press Alt–F7.
14.3 Keyboard Mapping

To standardize the keyboard mapping of programs, changes were made to the following files:

```
/etc/inputrc
/etc/X11/Xmodmap
/etc/skel/.emacs
/etc/skel/.gnu-emacs
/etc/skel/.vimrc
/etc/csh.cshrc
/etc/termcap
/usr/share/terminfo/x/xterm
/usr/share/X11/app-defaults/XTerm
/usr/share/emacs/VERSION/site-lisp/term/*.el
```

These changes only affect applications that use `terminfo` entries or whose configuration files are changed directly (`vi`, `emacs`, etc.). Applications not shipped with the system should be adapted to these defaults.

Under X, the compose key (multikey) can be enabled as explained in `/etc/X11/Xmodmap`.

Further settings are possible using the X Keyboard Extension (XKB). This extension is also used by the desktop environments GNOME (gswitchit) and KDE (kxkb).

**Tip: For More Information**

Information about XKB is available in the documents listed in `/usr/share/doc/packages/xkeyboard-config` (part of the `xkeyboard-config` package).

14.4 Language and Country-Specific Settings

The system is, to a very large extent, internationalized and can be modified for local needs. Internationalization (I18N) allows specific localizations (L10N). The abbreviations I18N and L10N are derived from the first and last letters of the words and, in between, the number of letters omitted.
Settings are made with `LC_` variables defined in the file `/etc/sysconfig/language`. This refers not only to native language support, but also to the categories Messages (Language), Character Set, Sort Order, Time and Date, Numbers and Money. Each of these categories can be defined directly with its own variable or indirectly with a master variable in the file `language` (see the `locale` man page).

`RC_LC_MESSAGES`, `RC_LC_CTYPE`, `RC_LC_COLLATE`, `RC_LC_TIME`, `RC_LC_NUMERIC`, `RC_LC_MONETARY`

These variables are passed to the shell without the `RC_` prefix and represent the listed categories. The shell profiles concerned are listed below. The current setting can be shown with the command `locale`.

`RC_LC_ALL`

This variable, if set, overwrites the values of the variables already mentioned.

`RC_LANG`

If none of the previous variables are set, this is the fallback. By default, only `RC_LANG` is set. This makes it easier for users to enter their own values.

`ROOT_USES_LANG`

A yes or no variable. If set to no, root always works in the POSIX environment.

The variables can be set with the YaST sysconfig editor (see Section 11.3.1, “Changing the System Configuration Using the YaST sysconfig Editor”). The value of such a variable contains the language code, country code, encoding and modifier. The individual components are connected by special characters:

```
LANG=<language>[_<COUNTRY>].<Encoding>@<Modifier>
```

14.4.1 Some Examples

It only makes sense to set values for which usable description files can be found in `/usr/lib/locale`. Additional description files can be created from the files in `/usr/share/i18n` using the command `localedef`. The description files are part of the `glibc-i18ndata` package. A description file for `en_US.UTF-8` (for English and United States) can be created with:

```
localedef -i en_US -f UTF-8 en_US.UTF-8
```

**LANG=en_US.UTF-8**

This is the default setting if American English is selected during installation. If you selected another language, that language is enabled but still with UTF-8 as the character encoding.

**LANG=en_US.ISO-8859-1**

This sets the language to English, country to United States and the character set to ISO-8859-1. This character set does not support the Euro sign, but it can be useful sometimes for programs that have not been updated to support UTF-8. The string defining the charset (ISO-8859-1 in this case) is then evaluated by programs like Emacs.

**LANG=en_IE@euro**

The above example explicitly includes the Euro sign in a language setting. This setting is basically obsolete now, as UTF-8 also covers the Euro symbol. It is only useful if an application supports ISO-8859-15 and not UTF-8.

In former releases, it was necessary to run `SuSEconfig` after doing any changes to `/etc/sysconfig/language`. `SuSEconfig` then wrote the changes to `/etc/SuSEconfig/profile` and `/etc/SuSEconfig/csh.login`. Upon login, these files were read by `/etc/profile` (for the Bash) or by `/etc/csh.login` (for the tcsh).

In recent releases, `/etc/SuSEconfig/profile` has been replaced with `/etc/profile.d/lang.sh`, and `/etc/SuSEconfig/csh.login` with `/etc/profile.de/lang.csh`. But if they exist, both legacy file are still read upon login.

The process chain is now as follows:

- For the Bash: `/etc/profile` reads `/etc/profile.d/lang.sh` which, in turn, analyzes `/etc/sysconfig/language`.
- For tcsh: At login, `/etc/csh.login` reads `/etc/profile.d/lang.csh` which, in turn, analyzes `/etc/sysconfig/language`.
This ensures that any changes to `/etc/sysconfig/language` are available at the next login to the respective shell, without having to run SuSEconfig first.

Users can override the system defaults by editing their `~/.bashrc` accordingly. For instance, if you do not want to use the systemwide `en_US` for program messages, include `LC_MESSAGES=es_ES` so that messages are displayed in Spanish instead.

### 14.4.2 Locale Settings in `~/.i18n`

If you are not satisfied with locale system defaults, change the settings in `~/.i18n` according to the Bash scripting syntax. Entries in `~/.i18n` override system defaults from `/etc/sysconfig/language`. Use the same variable names but without the `RC_` namespace prefixes. For example, use `LANG` instead of `RC_LANG`:

```
LANG=cs_CZ.UTF-8
LC_COLLATE=C
```

### 14.4.3 Settings for Language Support

Files in the category `Messages` are, as a rule, only stored in the corresponding language directory (like `en`) to have a fallback. If you set `LANG` to `en_US` and the message file in `/usr/share/locale/en_US/LC_MESSAGES` does not exist, it falls back to `/usr/share/locale/en/LC_MESSAGES`.

A fallback chain can also be defined, for example, for Breton to French or for Galician to Spanish to Portuguese:

```
LANGUAGE="br_FR:fr_FR"
LANGUAGE="gl_ES:es_ES:pt_PT"
```

If desired, use the Norwegian variants Nynorsk and Bokmål instead (with additional fallback to `no`):

```
LANG="nn_NO"
LANGUAGE="nn_NO:nb_NO:no"
```

or

```
LANG="nb_NO"
LANGUAGE="nb_NO:nn_NO:no"
```

Note that in Norwegian, `LC_TIME` is also treated differently.
One problem that can arise is a separator used to delimit groups of digits not being recognized properly. This occurs if LANG is set to only a two-letter language code like de, but the definition file glibc uses is located in /usr/share/lib/de_De/LC_NUMERIC. Thus LC_NUMERIC must be set to de_De to make the separator definition visible to the system.

14.4.4 For More Information

- *The GNU C Library Reference Manual*, Chapter “Locales and Internationalization”. It is included in glibc-info. The package is available from the SUSE Linux Enterprise Software Development Kit (SDK). The SDK is an add-on product for SUSE Linux Enterprise and is available for download from http://download.suse.com/.


15 Printer Operation

SUSE® Linux Enterprise Desktop supports printing with many types of printers, including remote network printers. Printers can be configured manually or with YaST. For configuration instructions, refer to Book “Deployment Guide”, Chapter 5 “Setting Up Hardware Components with YaST”, Section 5.5 “Setting Up a Printer”. Both graphical and command line utilities are available for starting and managing print jobs. If your printer does not work as expected, refer to Section 15.7, “Troubleshooting”.

CUPS (Common Unix Printing System) is the standard print system in SUSE Linux Enterprise Desktop.

Printers can be distinguished by interface, such as USB or network, and printer language. When buying a printer, make sure that the printer has an interface (like USB or parallel port) that is available on your hardware and a suitable printer language. Printers can be categorized on the basis of the following three classes of printer languages:

PostScript Printers

PostScript is the printer language in which most print jobs in Linux and Unix are generated and processed by the internal print system. If PostScript documents can be processed directly by the printer and do not need to be converted in additional stages in the print system, the number of potential error sources is reduced.

Standard Printers (Languages Like PCL and ESC/P)

Although these printer languages are quite old, they are still undergoing expansion to address new features in printers. In the case of known printer languages, the print system can convert PostScript jobs to the respective printer language with the help of Ghostscript. This processing stage is referred to as interpreting. The best-known languages are PCL (which is mostly used by HP printers and their clones) and ESC/P (which is used by Epson printers). These printer languages are usually supported by Linux and produce an adequate print result. Linux may not be able to address some special printer functions. Except for HP developing HPLIP (HP Linux Imaging and Printing), there are currently no printer manufacturers who develop Linux drivers and make them available to Linux distributors under an open source license.
Proprietary Printers (Also Called GDI Printers)

These printers do not support any of the common printer languages. They use their own undocumented printer languages, which are subject to change when a new edition of a model is released. Usually only Windows drivers are available for these printers. See Section 15.7.1, “Printers without Standard Printer Language Support” for more information.

Before you buy a new printer, refer to the following sources to check how well the printer you intend to buy is supported:

http://www.openprinting.org/printers/

The OpenPrinting home page with the printer database. The database shows the latest Linux support status. However, a Linux distribution can only integrate the drivers available at production time. Accordingly, a printer currently rated as “perfectly supported” may not have had this status when the latest SUSE Linux Enterprise Desktop version was released. Thus, the databases may not necessarily indicate the correct status, but only provide an approximation.

http://pages.cs.wisc.edu/~ghost/

The Ghostscript Web page.

/usr/share/doc/packages/ghostscript-library/catalog.devices

List of included drivers.

15.1 The Workflow of the Printing System

The user creates a print job. The print job consists of the data to print plus information for the spooler, such as the name of the printer or the name of the print queue, and optionally, information for the filter, such as printer-specific options.

At least one dedicated print queue exists for every printer. The spooler holds the print job in the queue until the desired printer is ready to receive data. When the printer is ready, the spooler sends the data through the filter and back-end to the printer.

The filter converts the data generated by the application that is printing (usually PostScript or PDF, but also ASCII, JPEG, etc.) into printer-specific data (PostScript, PCL, ESC/P, etc.). The features of the printer are described in the PPD files. A PPD file contains printer-specific options with the parameters needed to enable them on the printer. The filter system makes sure that options selected by the user are enabled.
If you use a PostScript printer, the filter system converts the data into printer-specific PostScript. This does not require a printer driver. If you use a non-PostScript printer, the filter system converts the data into printer-specific data. This requires a printer driver suitable for your printer. The back-end receives the printer-specific data from the filter then passes it to the printer.

15.2 Methods and Protocols for Connecting Printers

There are various possibilities for connecting a printer to the system. The configuration of the CUPS print system does not distinguish between a local printer and a printer connected to the system over the network.

⚠️ Warning: Changing Cable Connections in a Running System

When connecting the printer to the machine, do not forget that only USB devices can be plugged in or unplugged during operation. To avoid damaging your system or printer, shut down the system before changing any connections that are not USB.

15.3 Installing the Software

PPD (PostScript printer description) is the computer language that describes the properties, like resolution, and options, such as the availability of a duplex unit. These descriptions are required for using various printer options in CUPS. Without a PPD file, the print data would be forwarded to the printer in a “raw” state, which is usually not desired. During the installation of SUSE Linux Enterprise Desktop, many PPD files are pre-installed.

To configure a PostScript printer, the best approach is to get a suitable PPD file. Many PPD files are available in the package manufacturer-PPDs, which is automatically installed within the scope of the standard installation. See Section 15.6.2, “PPD Files in Various Packages” and Section 15.7.2, “No Suitable PPD File Available for a PostScript Printer”.

New PPD files can be stored in the directory /usr/share/cups/model/ or added to the print system with YaST as described in Book “Deployment Guide”, Chapter 5 “Setting Up Hardware Components with YaST”, Section 5.5.1.1 “Adding Drivers with YaST”. Subsequently, the PPD file can be selected during the printer setup.
Be careful if a printer manufacturer wants you to install entire software packages. First, this kind of installation may result in the loss of the support provided by SUSE Linux Enterprise Desktop and second, print commands may work differently and the system may no longer be able to address devices of other manufacturers. For this reason, the installation of manufacturer software is not recommended.

15.4 Network Printers

A network printer can support various protocols, some of them even concurrently. Although most of the supported protocols are standardized, some manufacturers modify the standard. Manufacturers then provide drivers for only a few operating systems. Unfortunately, Linux drivers are rarely provided. The current situation is such that you cannot act on the assumption that every protocol works smoothly in Linux. Therefore, you may have to experiment with various options to achieve a functional configuration.

CUPS supports the socket, LPD, IPP and smb protocols.

socket

*Socket* refers to a connection in which the plain print data is sent directly to a TCP socket. Some of the socket port numbers that are commonly used are 9100 or 35. The device URI (uniform resource identifier) syntax is: socket://IP.of.the.printer:port, for example: socket://192.168.2.202:9100/.

LPD (Line Printer Daemon)

The LPD protocol is described in RFC 1179. Under this protocol, some job-related data, such as the ID of the print queue, is sent before the actual print data is sent. Therefore, a print queue must be specified when configuring the LPD protocol. The implementations of diverse printer manufacturers are flexible enough to accept any name as the print queue. If necessary, the printer manual should indicate what name to use. LPT, LPT1, LP1 or similar names are often used. The port number for an LPD service is 515. An example device URI is lpd://192.168.2.202/LPT1.

IPP (Internet Printing Protocol)

IPP is a relatively new protocol (1999) based on the HTTP protocol. With IPP, more job-related data is transmitted than with the other protocols. CUPS uses IPP for internal data transmission. The name of the print queue is necessary to configure IPP correctly. The port number for IPP is 631. Example device URIs are ipp://192.168.2.202/ps and ipp://192.168.2.202/printers/ps.
SMB (Windows Share)

CUPS also supports printing on printers connected to Windows shares. The protocol used for this purpose is SMB. SMB uses the port numbers 137, 138 and 139. Example device URIs are `smb://user:password@workgroup/smb.example.com/printer`, `smb://user:password@smb.example.com/printer`, and `smb://smb.example.com/printer`.

The protocol supported by the printer must be determined before configuration. If the manufacturer does not provide the needed information, the command `nmap` (which comes with the `nmap` package) can be used to ascertain the protocol. `nmap` checks a host for open ports. For example:

```
nmap -p 35,137-139,515,631,9100-10000 printerIP
```

15.4.1 Configuring CUPS with Command Line Tools

CUPS can be configured with command line tools like `lpinfo`, `lpadmin` and `lpoptions`. You need a device URI consisting of a back-end, such as parallel, and parameters. To determine valid device URIs on your system use the command `lpinfo -v | grep ":/"`

```
lpinfo -v | grep ":/
 direct usb://ACME/FunPrinter%20XL
 direct parallel:/dev/lp0
```

With `lpadmin` the CUPS server administrator can add, remove or manage print queues. To add a print queue, use the following syntax:

```
lpadmin -p queue -v device-URI -P PPD-file -E
```

Then the device (-v) is available as `queue` (-p), using the specified PPD file (-P). This means that you must know the PPD file and the device URI to configure the printer manually.

Do not use `-E` as the first option. For all CUPS commands, `-E` as the first argument sets use of an encrypted connection. To enable the printer, `-E` must be used as shown in the following example:

```
lpadmin -p ps -v parallel:/dev/lp0 -P /usr/share/cups/model/Postscript.ppd.gz -E
```
The following example configures a network printer:

```
```

For more options of `lpadmin`, see the man page of `lpadmin(8)`.

During printer setup, certain options are set as default. These options can be modified for every print job (depending on the print tool used). Changing these default options with YaST is also possible. Using command line tools, set default options as follows:

1. First, list all options:

   ```
 lpoptions -p queue -l
   ```

   Example:

   ```
 Resolution/Output Resolution: 150dpi *300dpi 600dpi
   ```

   The activated default option is identified by a preceding asterisk (`*`).

2. Change the option with `lpadmin`:

   ```
 lpadmin -p queue -o Resolution=600dpi
   ```

3. Check the new setting:

   ```
 lpoptions -p queue -l
   ```

   ```
 Resolution/Output Resolution: 150dpi 300dpi *600dpi
   ```

When a normal user runs `lpoptions`, the settings are written to `~/.cups/lpoptions`. However, `root` settings are written to `/etc/cups/lpoptions`.

### 15.5 Printing from the Command Line

To print from the command line, enter `lp -d queue name filename`, substituting the corresponding names for `queue name` and `filename`.

Some applications rely on the `lp` command for printing. In this case, enter the correct command in the application's print dialog, usually without specifying `filename`, for example, `lp -d queue name`. 
15.6 Special Features in SUSE Linux Enterprise Desktop

A number of CUPS features have been adapted for SUSE Linux Enterprise Desktop. Some of the most important changes are covered here.

15.6.1 CUPS and Firewall

After having performed a default installation of SUSE Linux Enterprise Desktop, SuSEFirewall2 is active and the network interfaces are configured to be in the External Zone which blocks incoming traffic. More information about the SuSEFirewall2 configuration is available in Book “Security Guide”, Chapter 15 “Masquerading and Firewalls”, Section 15.4 “SuSEfirewall2” and at http://en.opensuse.org/SDB:CUPS_and_SANE_Firewall_settings.

15.6.1.1 CUPS Client

Normally, a CUPS client runs on a regular workstation located in a trusted network environment behind a firewall. In this case it is recommended to configure the network interface to be in the Internal Zone, so the workstation is reachable from within the network.

15.6.1.2 CUPS Server

If the CUPS server is part of a trusted network environment protected by a firewall, the network interface should be configured to be in the Internal Zone of the firewall. It is not recommended to set up a CUPS server in an untrusted network environment unless you take care that it is protected by special firewall rules and secure settings in the CUPS configuration.

15.6.2 PPD Files in Various Packages

The YaST printer configuration sets up the queues for CUPS using the PPD files installed in /usr/share/cups/model. To find the suitable PPD files for the printer model, YaST compares the vendor and model determined during hardware detection with the vendors and models in all PPD files. For this purpose, the YaST printer configuration generates a database from the vendor and model information extracted from the PPD files.
The configuration using only PPD files and no other information sources has the advantage that the PPD files in `/usr/share/cups/model` can be modified freely. For example, if you only have PostScript printers, normally you do not need the Foomatic PPD files in the `cups-drivers` package or the Gutenprint PPD files in the `gutenprint` package. Instead, the PPD files for your PostScript printers can be copied directly to `/usr/share/cups/model` (if they do not already exist in the `manufacturer-PPDs` package) to achieve an optimum configuration for your printers.

15.6.2.1 CUPS PPD Files in the `cups` Package

The generic PPD files in the `cups` package have been complemented with adapted Foomatic PPD files for PostScript level 1 and level 2 printers:

- `/usr/share/cups/model/Postscript-level1.ppd.gz`
- `/usr/share/cups/model/Postscript-level2.ppd.gz`

15.6.2.2 PPD Files in the `cups-drivers` Package

Normally, the Foomatic printer filter `foomatic-rip` is used together with Ghostscript for non-PostScript printers. Suitable Foomatic PPD files have the entries `*NickName: ... Foomatic/Ghostscript driver` and `*cupsFilter: ... foomatic-rip`. These PPD files are located in the `cups-drivers` package.

YaST generally prefers a `manufacturer-PPD` file. However, when no suitable `manufacturer-PPD` file exists, a Foomatic PPD file with the entry `*NickName: ... Foomatic ... (recommended)` is selected.

15.6.2.3 Gutenprint PPD Files in the `gutenprint` Package

Instead of `foomatic-rip`, the CUPS filter `rastertogutenprint` from Gutenprint (formerly known as GIMP-Print) can be used for many non-PostScript printers. This filter and suitable Gutenprint PPD files are available in the `gutenprint` package. The Gutenprint PPD files are located in `/usr/share/cups/model/gutenprint/` and have the entries `*NickName: ... CUPS +Gutenprint` and `*cupsFilter: ... rastertogutenprint`.  

167 PPD Files in Various Packages SUSE Linux Ent...
15.6.2.4  PPD Files from Printer Manufacturers in the manufacturer-PPDs Package

The \texttt{manufacturer-PPDs} package contains PPD files from printer manufacturers that are released under a sufficiently liberal license. PostScript printers should be configured with the suitable PPD file of the printer manufacturer, because this file enables the use of all functions of the PostScript printer. YaST prefers a PPD file from the \texttt{manufacturer-PPDs}. YaST cannot use a PPD file from the \texttt{manufacturer-PPDs} package if the model name does not match. This may happen if the \texttt{manufacturer-PPDs} package contains only one PPD file for similar models, like Funprinter 12xx series. In this case, select the respective PPD file manually in YaST.

15.7  Troubleshooting

The following sections cover some of the most frequently encountered printer hardware and software problems and ways to solve or circumvent these problems. Among the topics covered are GDI printers, PPD files and port configuration. Common network printer problems, defective printouts, and queue handling are also addressed.

15.7.1  Printers without Standard Printer Language Support

These printers do not support any common printer language and can only be addressed with special proprietary control sequences. Therefore they can only work with the operating system versions for which the manufacturer delivers a driver. GDI is a programming interface developed by Microsoft* for graphics devices. Usually the manufacturer delivers drivers only for Windows, and since the Windows driver uses the GDI interface these printers are also called \textit{GDI printers}. The actual problem is not the programming interface, but the fact that these printers can only be addressed with the proprietary printer language of the respective printer model.

Some GDI printers can be switched to operate either in GDI mode or in one of the standard printer languages. See the manual of the printer whether this is possible. Some models require special Windows software to do the switch (note that the Windows printer driver may always switch the printer back into GDI mode when printing from Windows). For other GDI printers there are extension modules for a standard printer language available.
Some manufacturers provide proprietary drivers for their printers. The disadvantage of proprietary printer drivers is that there is no guarantee that these work with the installed print system or that they are suitable for the various hardware platforms. In contrast, printers that support a standard printer language do not depend on a special print system version or a special hardware platform.

Instead of spending time trying to make a proprietary Linux driver work, it may be more cost-effective to purchase a printer which supports a standard printer language (preferably PostScript). This would solve the driver problem once and for all, eliminating the need to install and configure special driver software and obtain driver updates that may be required due to new developments in the print system.

15.7.2 No Suitable PPD File Available for a PostScript Printer

If the manufacturer-PPDs package does not contain a suitable PPD file for a PostScript printer, it should be possible to use the PPD file from the driver CD of the printer manufacturer or download a suitable PPD file from the Web page of the printer manufacturer.

If the PPD file is provided as a zip archive (.zip) or a self-extracting zip archive (.exe), unpack it with `unzip`. First, review the license terms of the PPD file. Then use the `cupstestppd` utility to check if the PPD file complies with “Adobe PostScript Printer Description File Format Specification, version 4.3.” If the utility returns “FAIL,” the errors in the PPD files are serious and are likely to cause major problems. The problem spots reported by `cupstestppd` should be eliminated. If necessary, ask the printer manufacturer for a suitable PPD file.

15.7.3 Parallel Ports

The safest approach is to connect the printer directly to the first parallel port and to select the following parallel port settings in the BIOS:

- I/O address: 378 (hexadecimal)
- Interrupt: irrelevant
- Mode: Normal, SPP, or Output Only
- DMA: disabled
If the printer cannot be addressed on the parallel port despite these settings, enter the I/O address explicitly in accordance with the setting in the BIOS in the form \texttt{0x378} in \texttt{/etc/modprobe.conf}. If there are two parallel ports that are set to the I/O addresses \texttt{378} and \texttt{278} (hexadecimal), enter these in the form \texttt{0x378,0x278}.

If interrupt \texttt{7} is free, it can be activated with the entry shown in Example 15.1, \texttt{"/etc/modprobe.conf: Interrupt Mode for the First Parallel Port"}. Before activating the interrupt mode, check the file \texttt{/proc/interrupts} to see which interrupts are already in use. Only the interrupts currently being used are displayed. This may change depending on which hardware components are active. The interrupt for the parallel port must not be used by any other device. If you are not sure, use the polling mode with \texttt{irq=none}.

\textbf{EXAMPLE 15.1:} \texttt{/etc/modprobe.conf: INTERRUPT MODE FOR THE FIRST PARALLEL PORT}

\begin{verbatim}
alias parport_lowlevel parport_pc
options parport_pc io=0x378 irq=7
\end{verbatim}

15.7.4 Network Printer Connections

\textbf{Identifying Network Problems}

Connect the printer directly to the computer. For test purposes, configure the printer as a local printer. If this works, the problems are related to the network.

\textbf{Checking the TCP/IP Network}

The TCP/IP network and name resolution must be functional.

\textbf{Checking a Remote \texttt{lpd}}

Use the following command to test if a TCP connection can be established to \texttt{lpd} (port \texttt{515}) on \texttt{host}:

\begin{verbatim}
netcat -z host 515 && echo ok || echo failed
\end{verbatim}

If the connection to \texttt{lpd} cannot be established, \texttt{lpd} may not be active or there may be basic network problems.

As the user \texttt{root}, use the following command to query a (possibly very long) status report for \texttt{queue} on remote \texttt{host}, provided the respective \texttt{lpd} is active and the host accepts queries:

\begin{verbatim}
echo -e "\004queue" \ 
| netcat -w 2 -p 722 host 515
\end{verbatim}
If `lpd` does not respond, it may not be active or there may be basic network problems. If `lpd` responds, the response should show why printing is not possible on the `queue` on `host`. If you receive a response like that shown in Example 15.2, “Error Message from `lpd`”, the problem is caused by the remote `lpd`.

**EXAMPLE 15.2: ERROR MESSAGE FROM `lpd`**

```
lpd: your host does not have line printer access
lpd: queue does not exist
printer: spooling disabled
printer: printing disabled
```

**Checking a Remote `cupsd`**

A CUPS network server can broadcast its queues by default every 30 seconds on UDP port 631. Accordingly, the following command can be used to test whether there is a broadcasting CUPS network server in the network. Make sure to stop your local CUPS daemon before executing the command.

```
netcat -u -l -p 631 & PID=$! ; sleep 40 ; kill $PID
```

If a broadcasting CUPS network server exists, the output appears as shown in Example 15.3, “Broadcast from the CUPS Network Server”.

**EXAMPLE 15.3: BROADCAST FROM THE CUPS NETWORK SERVER**

```
```

The following command can be used to test if a TCP connection can be established to `cupsd` (port 631) on `host`:

```
netcat -z host 631 && echo ok || echo failed
```

If the connection to `cupsd` cannot be established, `cupsd` may not be active or there may be basic network problems. `lpstat -h host -l -t` returns a (possibly very long) status report for all queues on `host`, provided the respective `cupsd` is active and the host accepts queries.

The next command can be used to test if the `queue` on `host` accepts a print job consisting of a single carriage-return character. Nothing should be printed. Possibly, a blank page may be ejected.

```
echo -en "\r\n" | lp -d queue -h host
```
Troubleshooting a Network Printer or Print Server Box

Spoolers running in a print server box sometimes cause problems when they have to deal with multiple print jobs. Since this is caused by the spooler in the print server box, there no way to resolve this issue. As a work-around, circumvent the spooler in the print server box by addressing the printer connected to the print server box directly with the TCP socket. See Section 15.4, “Network Printers”.

In this way, the print server box is reduced to a converter between the various forms of data transfer (TCP/IP network and local printer connection). To use this method, you need to know the TCP port on the print server box. If the printer is connected to the print server box and turned on, this TCP port can usually be determined with the nmap utility from the nmap package some time after the print server box is powered up. For example, nmap IP-address may deliver the following output for a print server box:

<table>
<thead>
<tr>
<th>Port</th>
<th>State</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>23/tcp</td>
<td>open</td>
<td>telnet</td>
</tr>
<tr>
<td>80/tcp</td>
<td>open</td>
<td>http</td>
</tr>
<tr>
<td>515/tcp</td>
<td>open</td>
<td>printer</td>
</tr>
<tr>
<td>631/tcp</td>
<td>open</td>
<td>cups</td>
</tr>
<tr>
<td>9100/tcp</td>
<td>open</td>
<td>jetdirect</td>
</tr>
</tbody>
</table>

This output indicates that the printer connected to the print server box can be addressed via TCP socket on port 9100. By default, nmap only checks a number of commonly known ports listed in /usr/share/nmap/nmap-services. To check all possible ports, use the command nmap -p from_port-to_port IP-address. This may take some time. For further information, refer to the man page of nmap.

Enter a command like

```
echo -en "\rHello\r\f" | netcat -w 1 IP-address port
cat file | netcat -w 1 IP-address port
```

to send character strings or files directly to the respective port to test if the printer can be addressed on this port.

15.7.5 Defective Printouts without Error Message

For the print system, the print job is completed when the CUPS back-end completes the data transfer to the recipient (printer). If further processing on the recipient fails (for example, if the printer is not able to print the printer-specific data) the print system does not notice this. If the printer is not able to print the printer-specific data, select a PPD file that is more suitable for the printer.
15.7.6 Disabled Queues

If the data transfer to the recipient fails entirely after several attempts, the CUPS back-end, such as USB or socket, reports an error to the print system (to cupsd). The back-end determines how many unsuccessful attempts are appropriate until the data transfer is reported as impossible. As further attempts would be in vain, cupsd disables printing for the respective queue. After eliminating the cause of the problem, the system administrator must re-enable printing with the command cupsenable.

15.7.7 CUPS Browsing: Deleting Print Jobs

If a CUPS network server broadcasts its queues to the client hosts via browsing and a suitable local cupsd is active on the client hosts, the client cupsd accepts print jobs from applications and forwards them to the cupsd on the server. When cupsd on the server accepts a print job, it is assigned a new job number. Therefore, the job number on the client host is different from the job number on the server. As a print job is usually forwarded immediately, it cannot be deleted with the job number on the client host. This is because the client cupsd regards the print job as completed as soon as it has been forwarded to the server cupsd.

When it becomes desirable to delete the print job on the server, use a command such as lpstat -h cups.example.com -o to determine the job number on the server, provided the server has not already completed the print job (that is, sent it completely to the printer). Using this job number, the print job on the server can be deleted:

cancel -h cups.example.com queue-jobnumber

15.7.8 Defective Print Jobs and Data Transfer Errors

If you switch the printer off or shut down the computer during the printing process, print jobs remain in the queue. Printing resumes when the computer (or the printer) is switched back on. Defective print jobs must be removed from the queue with cancel.

If a print job is defective or an error occurs in the communication between the host and the printer, the printer prints numerous sheets of paper with unintelligible characters, because it is unable to process the data correctly. To rectify this situation, follow these steps:

1. To stop printing, remove all paper from ink jet printers or open the paper trays of laser printers. High-quality printers have a button for canceling the current printout.
2. The print job may still be in the queue, because jobs are only removed after they are sent completely to the printer. Use `lpstat -o` or `lpstat -h cups.example.com -o` to check which queue is currently printing. Delete the print job with `cancel queue-jobnumber` or `cancel -h cups.example.com queue-jobnumber`.

3. Some data may still be transferred to the printer even though the print job has been deleted from the queue. Check if a CUPS back-end process is still running for the respective queue and terminate it. For example, for a printer connected to the parallel port, the command `fuser -k /dev/lp0` can be used to terminate all processes that are still accessing the printer (more precisely: the parallel port).

4. Reset the printer completely by switching it off for some time. Then insert the paper and turn on the printer.

### 15.7.9 Debugging the CUPS Print System

Use the following generic procedure to locate problems in the CUPS print system:

1. Set `LogLevel debug` in `/etc/cups/cupsd.conf`.

2. Stop `cupsd`.

3. Remove `/var/log/cups/error_log*` to avoid having to search through very large log files.

4. Start `cupsd`.

5. Repeat the action that led to the problem.

6. Check the messages in `/var/log/cups/error_log*` to identify the cause of the problem.

### 15.7.10 For More Information

Solutions to many specific problems are presented in the SUSE Knowledgebase ([http://www.suse.com/support/](http://www.suse.com/support/)). Locate the relevant articles with a text search for `CUPS`.
Dynamic Kernel Device Management with udev

The kernel can add or remove almost any device in a running system. Changes in the device state (whether a device is plugged in or removed) need to be propagated to userspace. Devices need to be configured as soon as they are plugged in and recognized. Users of a certain device need to be informed about any changes in this device’s recognized state. udev provides the needed infrastructure to dynamically maintain the device node files and symbolic links in the /dev directory. udev rules provide a way to plug external tools into the kernel device event processing. This enables you to customize udev device handling by, for example, adding certain scripts to execute as part of kernel device handling, or request and import additional data to evaluate during device handling.

16.1 The /dev Directory

The device nodes in the /dev directory provide access to the corresponding kernel devices. With udev, the /dev directory reflects the current state of the kernel. Every kernel device has one corresponding device file. If a device is disconnected from the system, the device node is removed.

The content of the /dev directory is kept on a temporary file system and all files are rendered at every system start-up. Manually created or modified files do not, by design, survive a reboot. Static files and directories that should always be present in the /dev directory regardless of the state of the corresponding kernel device can be placed in the /lib/udev/devices directory. At system start-up, the contents of that directory is copied to the /dev directory with the same ownership and permissions as the files in /lib/udev/devices.

16.2 Kernel uevents and udev

The required device information is exported by the sysfs file system. For every device the kernel has detected and initialized, a directory with the device name is created. It contains attribute files with device-specific properties.

Every time a device is added or removed, the kernel sends a uevent to notify udev of the change. The udev daemon reads and parses all provided rules from the /etc/udev/rules.d/*.rules files once at start-up and keeps them in memory. If rules files are changed, added or removed, the daemon can reload the in-memory representation of all rules with the command udevadm
control reload_rules. This is also done when running /etc/init.d/boot.udev reload.

For more details on udev rules and their syntax, refer to Section 16.6, “Influencing Kernel Device Event Handling with udev Rules”.

Every received event is matched against the set of provides rules. The rules can add or change event environment keys, request a specific name for the device node to create, add symlinks pointing to the node or add programs to run after the device node is created. The driver core uevents are received from a kernel netlink socket.

16.3 Drivers, Kernel Modules and Devices

The kernel bus drivers probe for devices. For every detected device, the kernel creates an internal device structure while the driver core sends a uevent to the udev daemon. Bus devices identify themselves by a specially-formatted ID, which tells what kind of device it is. Usually these IDs consist of vendor and product ID and other subsystem-specific values. Every bus has its own scheme for these IDs, called MODALIAS. The kernel takes the device information, composes a MODALIAS ID string from it and sends that string along with the event. For a USB mouse, it looks like this:

MODALIAS=usb:v046DpC03Ed2000dc00dsc00dp00ic03isc01ip02

Every device driver carries a list of known aliases for devices it can handle. The list is contained in the kernel module file itself. The program depmod reads the ID lists and creates the file modules.alias in the kernel’s /lib/modules directory for all currently available modules.

With this infrastructure, module loading is as easy as calling modprobe for every event that carries a MODALIAS key. If modprobe $MODALIAS is called, it matches the device alias composed for the device with the aliases provided by the modules. If a matching entry is found, that module is loaded. All this is automatically triggered by udev.

16.4 Booting and Initial Device Setup

All device events happening during the boot process before the udev daemon is running are lost, because the infrastructure to handle these events resides on the root file system and is not available at that time. To cover that loss, the kernel provides a uevent file located in the device directory of every device in the sysfs file system. By writing add to that file, the kernel resends the same event as the one lost during boot. A simple loop over all uevent files in /sys triggers all events again to create the device nodes and perform device setup.
As an example, a USB mouse present during boot may not be initialized by the early boot logic, because the driver is not available at that time. The event for the device discovery was lost and failed to find a kernel module for the device. Instead of manually searching for possibly connected devices, udev just requests all device events from the kernel after the root file system is available, so the event for the USB mouse device just runs again. Now it finds the kernel module on the mounted root file system and the USB mouse can be initialized.

From userspace, there is no visible difference between a device coldplug sequence and a device discovery during runtime. In both cases, the same rules are used to match and the same configured programs are run.

### 16.5 Monitoring the Running udev Daemon

The program `udevdadm monitor` can be used to visualize the driver core events and the timing of the `udev` event processes.

```
UEVENT[1185238505.276660] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1 (usb)
UDEV [1185238505.279198] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1 (usb)
UEVENT[1185238505.279527] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0 (usb)
UDEV [1185238505.285573] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0 (usb)
UEVENT[1185238505.298878] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10 (input)
 UDEV [1185238505.305026] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10 (input)
 UDEV [1185238505.305442] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/mouse2 (input)
 UDEV [1185238505.306440] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/event4 (input)
 UEVENT[1185238505.325384] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/event4 (input)
 UEVENT[1185238505.342257] add /devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/mouse2 (input)
```

The `UEVENT` lines show the events the kernel has sent over netlink. The `UDEV` lines show the finished `udev` event handlers. The timing is printed in microseconds. The time between `UEVENT` and `UDEV` is the time `udev` took to process this event or the `udev` daemon has delayed its execution to synchronize this event with related and already running events. For example, events for hard disk partitions always wait for the main disk device event to finish, because the partition events may rely on the data that the main disk event has queried from the hardware.
udevadm monitor --env shows the complete event environment:

```
ACTION=add
DEVPATH=/devices/pci0000:00/0000:00:1d.2/usb3/3-1/3-1:1.0/input/input10
SUBSYSTEM=input
SEQNUM=1181
NAME="Logitech USB-PS/2 Optical Mouse"
PHYS="usb-0000:00:1d.2-1/input0"
UNIQ=""
EV=7
KEY=70000 0 0 0 0
REL=103
MODALIAS=input:b0003v046DpC03Ee0110-e0,1,2,k110,111,112,r0,1,8,amlsfw
```

udev also sends messages to syslog. The default syslog priority that controls which messages are sent to syslog is specified in the udev configuration file /etc/udev/udev.conf. The log priority of the running daemon can be changed with udevadm control log_priority=level/number.

### 16.6 Influencing Kernel Device Event Handling with udev Rules

A udev rule can match any property the kernel adds to the event itself or any information that the kernel exports to sysfs. The rule can also request additional information from external programs. Every event is matched against all provided rules. All rules are located in the /etc/udev/rules.d directory.

Every line in the rules file contains at least one key value pair. There are two kinds of keys, match and assignment keys. If all match keys match their values, the rule is applied and the assignment keys are assigned the specified value. A matching rule may specify the name of the device node, add symlinks pointing to the node or run a specified program as part of the event handling. If no matching rule is found, the default device node name is used to create the device node. Detailed information about the rule syntax and the provided keys to match or import data are described in the udev man page. The following example rules provide a basic introduction to udev rule syntax. The example rules are all taken from the udev default rule set that is located under /etc/udev/rules.d/50-udev-default.rules.

**EXAMPLE 16.1: EXAMPLE udev RULES**

```
console
```
The _console_ rule consists of three keys: one match key (KERNEL) and two assign keys (MODE, OPTIONS). The KERNEL match rule searches the device list for any items of the type console. Only exact matches are valid and trigger this rule to be executed. The MODE key assigns special permissions to the device node, in this case, read and write permissions to the owner of this device only. The OPTIONS key makes this rule the last rule to be applied to any device of this type. Any later rule matching this particular device type does not have any effect.

The _serial devices_ rule is not available in 50-udev-default.rules anymore, but it is still worth considering. It consists of two match keys (KERNEL and ATTRS) and one assign key (SYMLINK). The KERNEL key searches for all devices of the ttyUSB type. Using the * wild card, this key matches several of these devices. The second match key, ATTRS, checks whether the product attribute file in sysfs for any ttyUSB device contains a certain string. The assign key (SYMLINK) triggers the addition of a symbolic link to this device under /dev/pilot. The operator used in this key (+=) tells udev to additionally perform this action, even if previous or later rules add other symbolic links. As this rule contains two match keys, it is only applied if both conditions are met.

The _printer_ rule deals with USB printers and contains two match keys which must both apply to get the entire rule applied (SUBSYSTEM and KERNEL). Three assign keys deal with the naming for this device type (NAME), the creation of symbolic device links (SYMLINK) and the group membership for this device type (GROUP). Using the * wild card in the KERNEL key makes it match several lp printer devices. Substitutions are used in both, the NAME and the SYMLINK keys to extend these strings by the internal device name. For example, the symlink to the first lp USB printer would read /dev/usblp0.

The _kernel firmware loader_ rule makes udev load additional firmware by an external helper script during runtime. The SUBSYSTEM match key searches for the firmware subsystem. The ACTION key checks whether any device belonging to the firmware subsystem has been added. The RUN+= key triggers the execution of the firmware.sh script to locate the firmware that is to be loaded.
Some general characteristics are common to all rules:

- Each rule consists of one or more key value pairs separated by a comma.
- A key's operation is determined by the operator. *udev* rules support several different operators.
- Each given value must be enclosed by quotation marks.
- Each line of the rules file represents one rule. If a rule is longer than just one line, use `\` to join the different lines just as you would do in shell syntax.
- *udev* rules support a shell-style pattern that matches the `*`, `?`, and `[[]` patterns.
- *udev* rules support substitutions.

### 16.6.1 Using Operators in *udev* Rules

Creating keys you can choose from several different operators, depending on the type of key you want to create. Match keys will normally just be used to find a value that either matches or explicitly mismatches the search value. Match keys contain either of the following operators:

- `==`
  Compare for equality. If the key contains a search pattern, all results matching this pattern are valid.

- `!=`
  Compare for non-equality. If the key contains a search pattern, all results matching this pattern are valid.

Any of the following operators can be used with assign keys:

- `=`
  Assign a value to a key. If the key previously consisted of a list of values, the key resets and only the single value is assigned.

- `+=`
  Add a value to a key that contains a list of entries.

- `:=`
  Assign a final value. Disallow any later change by later rules.
16.6.2 Using Substitutions in udev Rules

udev rules support the use of placeholders and substitutions. Use them in a similar fashion as you would do in any other scripts. The following substitutions can be used with udev rules:

\%r, \$root
The device directory, /dev by default.

\%p, \$devpath
The value of DEVPATH.

\%k, \$kernel
The value of KERNEL or the internal device name.

\%n, \$number
The device number.

\%N, \$tempnode
The temporary name of the device file.

\%M, \$major
The major number of the device.

\%m, \$minor
The minor number of the device.

\%s{attribute}, \$attr{attribute}
The value of a sysfs attribute (specified by attribute).

\%E{variable}, \$attr{variable}
The value of an environment variable (specified by variable).

\%c, \$result
The output of PROGRAM.

\%
The % character.

$$
The $ character.
16.6.3 Using udev Match Keys

Match keys describe conditions that must be met before a udev rule can be applied. The following match keys are available:

**ACTION**

The name of the event action, for example, `add` or `remove` when adding or removing a device.

**DEVPATH**

The device path of the event device, for example, `DEVPATH=/bus/pci/drivers/ipw3945` to search for all events related to the ipw3945 driver.

**KERNEL**

The internal (kernel) name of the event device.

**SUBSYSTEM**

The subsystem of the event device, for example, `SUBSYSTEM=usb` for all events related to USB devices.

**ATTR{filename}**

`sysfs` attributes of the event device. To match a string contained in the `vendor` attribute file name, you could use `ATTR{vendor}=="On[ss]tream"`, for example.

**KERNELS**

Let udev search the device path upwards for a matching device name.

**SUBSYSTEMS**

Let udev search the device path upwards for a matching device subsystem name.

**DRIVERS**

Let udev search the device path upwards for a matching device driver name.

**ATTRS{filename}**

Let udev search the device path upwards for a device with matching `sysfs` attribute values.

**ENV{key}**

The value of an environment variable, for example, `ENV{ID_BUS}="ieee1394` to search for all events related to the FireWire bus ID.
Let udev execute an external program. To be successful, the program must return with exit code zero. The program's output, printed to stdout, is available to the RESULT key.

RESULT
Match the output string of the last PROGRAM call. Either include this key in the same rule as the PROGRAM key or in a later one.

16.6.4 Using udev Assign Keys
In contrast to the match keys described above, assign keys do not describe conditions that must be met. They assign values, names and actions to the device nodes maintained by udev.

NAME
The name of the device node to be created. Once a rule has set a node name, all other rules with a NAME key for this node are ignored.

SYMLINK
The name of a symlink related to the node to be created. Multiple matching rules can add symlinks to be created with the device node. You can also specify multiple symlinks for one node in one rule using the space character to separate the symlink names.

OWNER, GROUP, MODE
The permissions for the new device node. Values specified here overwrite anything that has been compiled in.

ATTR{key}
Specify a value to be written to a sysfs attribute of the event device. If the == operator is used, this key is also used to match against the value of a sysfs attribute.

ENV{key}
Tell udev to export a variable to the environment. If the == operator is used, this key is also used to match against an environment variable.

RUN
Tell udev to add a program to the list of programs to be executed for this device. Keep in mind to restrict this to very short tasks to avoid blocking further events for this device.

LABEL
Add a label where a GOTO can jump to.
GOTO
Tell udev to skip a number of rules and continue with the one that carries the label referenced by the GOTO key.

IMPORT{type}
Load variables into the event environment such as the output of an external program. udev imports variables of several different types. If no type is specified, udev tries to determine the type itself based on the executable bit of the file permissions.

- program tells udev to execute an external program and import its output.
- file tells udev to import a text file.
- parent tells udev to import the stored keys from the parent device.

WAIT_FOR_SYSFS
Tells udev to wait for the specified sysfs file to be created for a certain device. For example, WAIT_FOR_SYSFS="ioerr_cnt" informs udev to wait until the ioerr_cnt file has been created.

OPTIONS
The OPTION key may have several possible values:

- last_rule tells udev to ignore all later rules.
- ignore_device tells udev to ignore this event completely.
- ignore_remove tells udev to ignore all later remove events for the device.
- all_partitions tells udev to create device nodes for all available partitions on a block device.

16.7 Persistent Device Naming
The dynamic device directory and the udev rules infrastructure make it possible to provide stable names for all disk devices—regardless of their order of recognition or the connection used for the device. Every appropriate block device the kernel creates is examined by tools with special knowledge about certain buses, drive types or file systems. Along with the dynamic kernel-provided device node name, udev maintains classes of persistent symbolic links pointing to the device:

```
/dev/disk
```
16.8 Files used by udev

/sys/*

Virtual file system provided by the Linux kernel, exporting all currently known devices. This information is used by udev to create device nodes in /dev

/dev/*

Dynamically created device nodes and static content copied at boot time from /lib/udev/devices/*

The following files and directories contain the crucial elements of the udev infrastructure:

/etc/udev/udev.conf

Main udev configuration file.

/etc/udev/rules.d/*

udev event matching rules.
16.9 For More Information

For more information about the udev infrastructure, refer to the following man pages:

udev
General information about udev, keys, rules and other important configuration issues.

udevadm
udevadm can be used to control the runtime behavior of udev, request kernel events, manage the event queue and provide simple debugging mechanisms.

udevd
Information about the udev event managing daemon.
The X Window System (X11) is the de facto standard for graphical user interfaces in UNIX. X is network-based, enabling applications started on one host to be displayed on another host connected over any kind of network (LAN or Internet). This chapter describes the setup and optimization of the X Window System environment, and provides background information about the use of fonts in SUSE® Linux Enterprise Desktop.

17.1 Manually Configuring the X Window System

By default, the X Window System is configured with the SaX2 interface, described in Book “Deployment Guide”, Chapter 5 “Setting Up Hardware Components with YaST”, Section 5.2 “Setting Up Graphics Card and Monitor”. Alternatively it can be configured manually by editing its configuration files.

**Warning: Faulty X Configurations can Damage Your Hardware**

Be very careful when configuring your X Window System. Never start the X Window System until the configuration is finished. A misconfigured system can cause irreparable damage to your hardware (this applies especially to fixed-frequency monitors). The creators of this book and SUSE Linux Enterprise Desktop cannot be held responsible for any resulting damage. This information has been carefully researched, but this does not guarantee that all methods presented here are correct and cannot damage your hardware.

The command `sax2` creates the `/etc/X11/xorg.conf` file. This is the primary configuration file of the X Window System. Find all the settings here concerning your graphics card, mouse and monitor.

**Important: Using X -configure**

Use `X -configure` to configure your X setup if previous tries with SUSE Linux Enterprise Desktop’s SaX2 have failed. If your setup involves proprietary binary-only drivers, `X -configure` does not work.
The following sections describe the structure of the configuration file `/etc/X11/xorg.conf`. It consists of several sections, each one dealing with a certain aspect of the configuration. Each section starts with the keyword `Section <designation>` and ends with `EndSection`. The following convention applies to all sections:

```
Section "designation"
 entry 1
 entry 2
 entry n
EndSection
```

The section types available are listed in Table 17.1, “Sections in `/etc/X11/xorg.conf`”.

**TABLE 17.1: SECTIONS IN `/ETC/X11/XORG.CONF`**

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Files</td>
<td>The paths used for fonts and the RGB color table.</td>
</tr>
<tr>
<td>ServerFlags</td>
<td>General switches for the server behavior.</td>
</tr>
<tr>
<td>Module</td>
<td>A list of modules the server should load</td>
</tr>
<tr>
<td>InputDevice</td>
<td>Input devices like keyboards and special input devices (touchpads, joysticks, etc.) are configured in this section. Important parameters in this section are Driver and the options defining the Protocol and Device. You normally have one InputDevice section per device attached to the computer.</td>
</tr>
<tr>
<td>Monitor</td>
<td>The monitor used. Important elements of this section are the Identifier, which is referred to later in the Screen definition, the refresh rate VertRefresh and the synchronization frequency limits (HorizSync and VertRefresh). Settings are given in MHz, kHz and Hz. Normally, the server refuses any modeline that does not correspond with the</td>
</tr>
<tr>
<td>Type</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>specification of the monitor. This prevents too high frequencies from being sent to the monitor by accident.</td>
</tr>
<tr>
<td>Modes</td>
<td>The modeline parameters for the specific screen resolutions. These parameters can be calculated by SaX2 on the basis of the values given by the user and normally do not need to be changed. Intervene manually at this point if, for example, you want to connect a fixed frequency monitor. Find details of the meaning of individual number values in the HOWTO files in <code>/usr/share/doc/howto/en/html/XFree86-Video-Timings-HOWTO</code> (available in the howtoenh package). To calculate VESA modes manually, you can use the tool <code>cvt</code>. For example, to calculate a modeline for a 1680x1050@60Hz monitor, use the command <code>cvt 1680 1050 60</code>.</td>
</tr>
<tr>
<td>Device</td>
<td>A specific graphics card. It is referenced by its descriptive name. The options available in this section strongly depend on the driver used. For example, if you use the <code>i810</code> driver, find more information about the available options in the manual page <code>man 4 i810</code>.</td>
</tr>
<tr>
<td>Screen</td>
<td>Combines a Monitor and a Device to form all the necessary settings for X.Org. In the Display subsection, specify the size of the virtual screen (<code>Virtual</code>), the <code>ViewPort</code> and the Modes used with this screen.</td>
</tr>
<tr>
<td>Type</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>ServerLayout</strong></td>
<td>The layout of a single or multihead configuration. This section binds the input devices <strong>InputDevice</strong> and the display devices <strong>Screen</strong>.</td>
</tr>
<tr>
<td><strong>DRI</strong></td>
<td>Provides information for the Direct Rendering Infrastructure (DRI).</td>
</tr>
</tbody>
</table>

Monitor, **Device** and **Screen** are explained in more detail. Further information about the other sections can be found in the manual pages of **X.Org** and **xorg.conf**.

There can be several different **Monitor** and **Device** sections in **xorg.conf**. Even multiple **Screen** sections are possible. The **ServerLayout** section determines which of these sections is used.

### 17.1.1 Screen Section

The screen section combines a monitor with a device section and determines the resolution and color depth to use. A screen section might resemble Example 17.1, “Screen Section of the File /etc/X11/xorg.conf”.

**EXAMPLE 17.1: SCREEN SECTION OF THE FILE /ETC/X11/XORG.CONF**

```
Section "Screen"
 DefaultDepth 16
 SubSection "Display"
 Depth 16
```
Section determines the section type, in this case Screen.

DefaultDepth determines the color depth to use by default unless another color depth is explicitly specified.

For each color depth, different Display subsections are specified.

Depth determines the color depth to be used with this set of Display settings. Possible values are 8, 15, 16, 24 and 32, though not all of these might be supported by all X server modules or resolutions.

The Modes section comprises a list of possible screen resolutions. The list is checked by the X server from left to right. For each resolution, the X server searches for a suitable Modeline in the Modes section. The Modeline depends on the capability of both the monitor and the graphics card. The Monitor settings determine the resulting Modeline. The first resolution found is the Default mode. With Ctrl-Alt-+ (on the number pad) switch to the next resolution in the list to the right. With Ctrl-Alt-- (on the number pad) switch to the previous. This enables you to vary the resolution while X is running.

The last line of the Display subsection with Depth 16 refers to the size of the virtual screen. The maximum possible size of a virtual screen depends on the amount of memory installed on the graphics card and the desired color depth, not on the maximum resolution of the monitor. If you omit this line, the virtual resolution is just the physical resolution. Because modern graphics cards have a large amount of video memory, you can create very large virtual desktops. However, you may no longer be able to use 3D functionality if you
fill most of the video memory with a virtual desktop. If, for example, the card has 16 MB of video RAM, the virtual screen can take up to 4096x4096 pixels in size at 8-bit color depth. Especially for accelerated cards, however, it is not recommended to use all your memory for the virtual screen, because the card's memory is also used for several font and graphics caches.

7 The Identifier line (here Screen[0]) gives this section a defined name with which it can be uniquely referenced in the following ServerLayout section. The lines Device and Monitor specify the graphics card and the monitor that belong to this definition. These are just links to the Device and Monitor sections with their corresponding names or identifiers. These sections are discussed in detail below.

17.1.2 Device Section

A device section describes a specific graphics card. You can have as many device entries in xorg.conf as you like, provided their names are differentiated using the keyword Identifier. If you have more than one graphics card installed, the sections are simply numbered in order. The first one is called Device[0], the second one Device[1], and so on. The following file shows an excerpt from the Device section of a computer with a Matrox Millennium PCI graphics card (as configured by SaX2):

```
Section "Device"
 BoardName "MGA2064W"
 BusID "0:19:0"
 Driver "mga"
 Identifier "Device[0]"
 VendorName "Matrox"
 Option "sw_cursor"
EndSection
```

1 The BusID refers to the PCI or AGP slot in which the graphics card is installed. This matches the ID displayed by the command lspci. The X server needs details in decimal form, but lspci displays these in hexadecimal form. The value of BusID is automatically detected by SaX2.

2 The value of Driver is automatically set by SaX2 and specifies which driver to use for your graphics card. If the card is a Matrox Millennium, the driver module is called mga. The X server then searches through the ModulePath defined in the Files section in the drivers subdirectory. In a standard installation, this is the /usr/lib/xorg/modules/dri-
The behavior of the X server or of the driver can also be influenced through additional options. An example of this is the option `sw_cursor`, which is set in the device section. This deactivates the hardware mouse cursor and depicts the mouse cursor using software. Depending on the driver module, there are various options available (which can be found in the description files of the driver modules in the directory `/usr/share/doc/packages/package_name`). Generally valid options can also be found in the manual pages (`man xorg.conf`, `man 4 <driver module>`, and `man 4 chips`).

If the graphics card has multiple video connectors, it is possible to configure the different devices of this single card as one single view. Use SaX2 to set up your graphics interface this way.

### 17.1.3 Monitor and Modes Section

Like the `Device` sections, the `Monitor` and `Modes` sections describe one monitor each. The configuration file `/etc/X11/xorg.conf` can contain as many `Monitor` sections as desired. Each `Monitor` section references a `Modes` section with the line `UseModes` if available. If no `Modes` section is available for the `Monitor` section, the X server calculates appropriate values from the general synchronization values. The server layout section specifies which `Monitor` section is relevant.

Monitor definitions should only be set by experienced users. The modelines are an important part of the `Monitor` sections. Modelines set horizontal and vertical timings for the respective resolution. The monitor properties, especially the allowed frequencies, are stored in the `Monitor` section. Standard VESA modes can be generated with the utility `cvt`. For more information read the manual page of `cvt` `man cvt`.

**Warning**

Unless you have in-depth knowledge of monitor and graphics card functions, do not change the modelines, because this could severely damage your monitor.

Those who try to develop their own monitor descriptions should be very familiar with the documentation in `/usr/share/X11/doc`. Install the package `xorg-x11-doc` to find PDFs and HTML pages.
Manual specification of modelines is rarely required today. If you are using a modern multisync monitor, the allowed frequencies and optimal resolutions can, as a rule, be read directly from the monitor by the X server via DDC, as described in the SaX2 configuration section. If this is not possible for some reason, use one of the VESA modes included in the X server. This will work with most graphics card and monitor combinations.

17.2 Installing and Configuring Fonts

The installation of additional fonts in SUSE Linux Enterprise Desktop is very easy. Simply copy the fonts to any directory located in the X11 font path (see Section 17.2.1, “X11 Core Fonts”). To enable the use of the fonts, the installation directory should be a subdirectory of the directories configured in /etc/fonts/fonts.conf (see Section 17.2.2, “Xft”) or included into this file with /etc/fonts/suse-font-dirs.conf.

The following is an excerpt from /etc/fonts/fonts.conf. This file is the standard configuration file that should be appropriate for most configurations. It also defines the included directory /etc/fonts/conf.d. In this directory, all files or symbolic links starting with a two digit number are loaded by fontconfig. For a more detailed explanation of this functionality, have a look at /etc/fonts/conf.d/README.

```xml
<!-- Font directory list -->
<dir>/usr/share/fonts</dir>
<dir>/usr/X11R6/lib/X11/fonts</dir>
<dir>/opt/kde3/share/fonts</dir>
<dir>/usr/local/share/fonts</dir>
<dir>~/.fonts</dir>
```

/etc/fonts/suse-font-dirs.conf is automatically generated to pull in fonts that ship with (mostly third party) applications like LibreOffice, Java or Adobe Reader. A typical entry would look like the following:

```xml
<dir>/usr/lib/Adobe/Reader9/Resource/Font</dir>
<dir>/usr/lib/Adobe/Reader9/Resource/Font/PFM</dir>
```

To install additional fonts system-wide, manually copy the font files to a suitable directory (as root), such as /usr/share/fonts/truetype. Alternatively, the task can be performed with the KDE font installer in the KDE Control Center. The result is the same.

Instead of copying the actual fonts, you can also create symbolic links. For example, you may want to do this if you have licensed fonts on a mounted Windows partition and want to use them. Subsequently, run **SuSEconfig --module fonts**.
SuSEconfig --module fonts executes the script /usr/sbin/fonts-config, which handles the font configuration. For more information on this script, refer to its manual page (man fonts-config).

The procedure is the same for bitmap fonts, TrueType and OpenType fonts, and Type1 (PostScript) fonts. All these font types can be installed into any directory.

X.Org contains two completely different font systems: the old X11 core font system and the newly designed Xft and fontconfig system. The following sections briefly describe these two systems.

17.2.1 X11 Core Fonts

Today, the X11 core font system supports not only bitmap fonts but also scalable fonts, like Type1 fonts, TrueType, and OpenType fonts. Scalable fonts are only supported without anti-aliasing and subpixel rendering and the loading of large scalable fonts with glyphs for many languages may take a long time. Unicode fonts are also supported, but their use may be slow and require more memory.

The X11 core font system has a few inherent weaknesses. It is outdated and can no longer be extended in any meaningful way. Although it must be retained for reasons of backward compatibility, the more modern Xft and fontconfig system should be used if at all possible.

For its operation, the X server needs to know which fonts are available and where in the system it can find them. This is handled by a FontPath variable, which contains the path to all valid system font directories. In each of these directories, a file named fonts.dir lists the available fonts in this directory. The FontPath is generated by the X server at start-up. It searches for a valid fonts.dir file in each of the FontPath entries in the configuration file /etc/X11/xorg.conf. These entries are found in the Files section. Display the actual FontPath with xset q. This path may also be changed at runtime with xset. To add an additional path, use xset +fp <path>. To remove an unwanted path, use xset -fp <path>.

If the X server is already active, newly installed fonts in mounted directories can be made available with the command xset fp rehash. This command is executed by SuSEconfig --module fonts. Because the command xset needs access to the running X server, this only works if SuSEconfig --module fonts is started from a shell that has access to the running X server. The easiest way to achieve this is to acquire root permissions by entering su and the root password. su transfers the access permissions of the user who started the X server to the root shell. To check if the fonts were installed correctly and are available by way of the X11 core font system, use the command xlsfonts to list all available fonts.
By default, SUSE Linux Enterprise Desktop uses UTF-8 locales. Therefore, Unicode fonts should be preferred (font names ending with `iso10646-1` in `xlsfonts` output). All available Unicode fonts can be listed with `xlsfonts | grep iso10646-1`. Nearly all Unicode fonts available in SUSE Linux Enterprise Desktop contain at least the glyphs needed for European languages (formerly encoded as `iso-8859-*`).

### 17.2.2 Xft

From the outset, the programmers of Xft made sure that scalable fonts including anti-aliasing are well supported. If Xft is used, the fonts are rendered by the application using the fonts, not by the X server as in the X11 core font system. In this way, the respective application has access to the actual font files and full control of how the glyphs are rendered. This constitutes the basis for the correct display of text in a number of languages. Direct access to the font files is very useful for embedding fonts for printing to make sure that the printout looks the same as the screen output.

In SUSE Linux Enterprise Desktop, the two desktop environments (KDE and GNOME), Mozilla and many other applications already use Xft by default. Xft is already used by more applications than the old X11 core font system.

Xft uses the fontconfig library for finding fonts and influencing how they are rendered. The properties of fontconfig are controlled by the global configuration file `/etc/fonts/fonts.conf`. Special configurations should be added to `/etc/fonts/local.conf` and the user-specific configuration file `~/.fonts.conf`. Each of these fontconfig configuration files must begin with

```xml
<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd">
<fontconfig>
```

and end with

```xml
</fontconfig>
```

To add directories to search for fonts, append lines such as the following:

```xml
<dir>/usr/local/share/fonts/</dir>
```

However, this is usually not necessary. By default, the user-specific directory `~/.fonts` is already entered in `/etc/fonts/fonts.conf`. Accordingly, all you need to do to install additional fonts is to copy them to `~/.fonts`. 

196 Xft SUSE Linux Enterp... 11 SP4
You can also insert rules that influence the appearance of the fonts. For example, enter

```xml
<match target="font">
 <edit name="antialias" mode="assign">
 <bool>false</bool>
 </edit>
</match>
```

to disable anti-aliasing for all fonts or

```xml
<match target="font">
 <test name="family">
 <string>Luxi Mono</string>
 <string>Luxi Sans</string>
 </test>
 <edit name="antialias" mode="assign">
 <bool>false</bool>
 </edit>
</match>
```

to disable anti-aliasing for specific fonts.

By default, most applications use the font names `sans-serif` (or the equivalent `sans`), `serif`, or `monospace`. These are not real fonts but only aliases that are resolved to a suitable font, depending on the language setting.

Users can easily add rules to `~/.fonts.conf` to resolve these aliases to their favorite fonts:

```xml
<alias>
 <family>sans-serif</family>
 <prefer>
 <family>FreeSans</family>
 </prefer>
</alias>
<alias>
 <family>serif</family>
 <prefer>
 <family>FreeSerif</family>
 </prefer>
</alias>
<alias>
 <family>monospace</family>
 <prefer>
 <family>FreeMono</family>
 </prefer>
</alias>
```
Because nearly all applications use these aliases by default, this affects almost the entire system. Thus, you can easily use your favorite fonts almost everywhere without having to modify the font settings in the individual applications.

Use the command **fc-list** to find out which fonts are installed and available for use. For instance, the command **fc-list** returns a list of all fonts. To find out which of the available scalable fonts (:scalable=true) contain all glyphs required for Hebrew (:lang=he), their font names (family), their style (style), their weight (weight) and the name of the files containing the fonts, enter the following command:

```
fc-list ":lang=he:scalable=true" family style weight
```

The output of this command could look like the following:

```
Lucida Sans:style=Demibold:weight=200
DejaVu Sans:style=Bold Oblique:weight=200
Lucida Sans Typewriter:style=Bold:weight=200
DejaVu Sans:style=Oblique:weight=80
Lucida Sans Typewriter:style=Regular:weight=80
DejaVu Sans:style=Book:weight=80
DejaVu Sans:style=Bold:weight=200
Lucida Sans:style=Regular:weight=80
```

Important parameters that can be queried with **fc-list**:

**TABLE 17.2: PARAMETERS OF fc-list**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning and Possible Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>family</td>
<td>Name of the font family, for example, FreeSans.</td>
</tr>
<tr>
<td>foundry</td>
<td>The manufacturer of the font, for example, urw.</td>
</tr>
<tr>
<td>style</td>
<td>The font style, such as Medium, Regular, Bold, Italic or Heavy.</td>
</tr>
<tr>
<td>lang</td>
<td>The language that the font supports, for example, de for German, ja for Japanese, zh-Tw for traditional Chinese or zh-CN for simplified Chinese.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Meaning and Possible Values</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td><strong>weight</strong></td>
<td>The font weight, such as 80 for regular or 200 for bold.</td>
</tr>
<tr>
<td><strong>slant</strong></td>
<td>The slant, usually 0 for none and 100 for italic.</td>
</tr>
<tr>
<td><strong>file</strong></td>
<td>The name of the file containing the font.</td>
</tr>
<tr>
<td><strong>outline</strong></td>
<td>true for outline fonts or false for other fonts.</td>
</tr>
<tr>
<td><strong>scalable</strong></td>
<td>true for scalable fonts or false for other fonts.</td>
</tr>
<tr>
<td><strong>bitmap</strong></td>
<td>true for bitmap fonts or false for other fonts.</td>
</tr>
<tr>
<td><strong>pixelsize</strong></td>
<td>Font size in pixels. In connection with fc-list, this option only makes sense for bitmap fonts.</td>
</tr>
</tbody>
</table>

17.3 For More Information

Install the packages `xorg-x11-doc` and `howtoenh` to get more in-depth information about X11. More information on the X11 development can be found on the project's home page at [http://www.x.org](http://www.x.org).

Many of the drivers delivered with the package `xorg-x11-driver-video` are described in detail in a manual page. For example, if you use the `nv` driver, find more information about this driver in `man 4 nv`.

Information about third-party drivers should be available in `/usr/share/doc/packages/<package_name>`. For example, the documentation of `x11-video-nvidiaG01` is available in `/usr/share/doc/packages/x11-video-nvidiaG01` after the package was installed.
18  Accessing File Systems with FUSE

FUSE is the acronym for file system in userspace. This means you can configure and mount a file system as an unprivileged user. Normally, you have to be root for this task. FUSE alone is a kernel module. Combined with plug-ins, it allows you to extend FUSE to access almost all file systems like remote SSH connections, ISO images, and more.

18.1 Configuring FUSE

Before you can use FUSE, you have to install the package fuse. Depending which file system you want to use, you need additional plug-ins available as separate packages.

Generally you do not have to configure FUSE, you just use it. However, it is a good idea to create a directory where all your mount points are combined. For example, you can create a directory ~/mounts and insert your subdirectories for your different file systems there.

18.2 Available FUSE Plug-ins

FUSE is dependent on plug-ins. The following table lists common plug-ins.

<table>
<thead>
<tr>
<th>fuseiso</th>
<th>mounts CD-ROM images with ISO9660 file systems in them</th>
</tr>
</thead>
<tbody>
<tr>
<td>ntfs-3g</td>
<td>mount NTFS volumes (with read and write support)</td>
</tr>
<tr>
<td>sshfs</td>
<td>file system client based on SSH file transfer protocol</td>
</tr>
<tr>
<td>wdfs</td>
<td>mount WebDAV file systems</td>
</tr>
</tbody>
</table>
18.3 For More Information

See the home page http://fuse.sourceforge.net of FUSE for more information.
III  Mobile Computers

19  Mobile Computing with Linux  203
20  Wireless LAN  213
21  Power Management  228
22  Using Tablet PCs  235
Mobile computing is mostly associated with laptops, PDAs and cellular phones (and the data exchange between them). Mobile hardware components, such as external hard disks, flash drives, or digital cameras, can be connected to laptops or desktop systems. A number of software components are involved in mobile computing scenarios and some applications are tailor-made for mobile use.

19.1 Laptops

The hardware of laptops differs from that of a normal desktop system. This is because criteria like exchangeability, space requirements and power consumption must be taken into account. The manufacturers of mobile hardware have developed standard interfaces like PCMCIA (Personal Computer Memory Card International Association), Mini PCI and Mini PCIe that can be used to extend the hardware of laptops. The standards cover memory cards, network interface cards, ISDN (and modem cards) and external hard disks.

Tip: SUSE Linux Enterprise Desktop and Tablet PCs

SUSE Linux Enterprise Desktop also supports Tablet PCs. Tablet PCs come with a touchpad/digitizer that allows you to use a digital pen or even fingertips to edit data right on the screen instead of using mouse and keyboard. They are installed and configured much like any other system. For a detailed introduction to the installation and configuration of Tablet PCs, refer to Chapter 22, Using Tablet PCs.

19.1.1 Power Conservation

The inclusion of energy-optimized system components during laptop manufacturing contributes to their suitability for use without access to the electrical power grid. Their contribution towards conservation of power is at least as important as that of the operating system. SUSE® Linux
Enterprise Desktop supports various methods that influence the power consumption of a laptop and have varying effects on the operating time under battery power. The following list is in descending order of contribution towards power conservation:

- Throttling the CPU speed.
- Switching off the display illumination during pauses.
- Manually adjusting the display illumination.
- Disconnecting unused, hotplug-enabled accessories (USB CD-ROM, external mouse, unused PCMCIA cards, WLAN, etc.).
- Spinning down the hard disk when idling.

Detailed background information about power management in SUSE Linux Enterprise Desktop is provided in Chapter 21, Power Management. For more information desktop specific power management, see the Book “GNOME User Guide”, Chapter 2 “Working with Your Desktop”, Section 2.10 “Controlling Your Desktop’s Power Management” on how to use the GNOME Power Manager. More information about the KDE power management applet is available at Book “KDE User Guide”, Chapter 9 “Controlling Your Desktop’s Power Management”.

19.1.2 Integration in Changing Operating Environments

Your system needs to adapt to changing operating environments when used for mobile computing. Many services depend on the environment and the underlying clients must be reconfigured. SUSE Linux Enterprise Desktop handles this task for you.
The services affected in the case of a laptop commuting back and forth between a small home network and an office network are:

Network
This includes IP address assignment, name resolution, Internet connectivity and connectivity to other networks.

Printing
A current database of available printers and an available print server must be present, depending on the network.

E-Mail and Proxies
As with printing, the list of the corresponding servers must be current.

X (Graphical Environment)
If your laptop is temporarily connected to a projector or an external monitor, different display configurations must be available.
SUSE Linux Enterprise Desktop offers several ways of integrating laptops into existing operating environments:

**NetworkManager**

NetworkManager is especially tailored for mobile networking on laptops. It provides a means to easily and automatically switch between network environments or different types of networks such as mobile broadband (such as GPRS, EDGE, or 3G), wireless LAN, and Ethernet. NetworkManager supports WEP and WPA-PSK encryption in wireless LANs. It also supports dial-up connections (with smpppd). Both desktop environments (GNOME and KDE) include a front-end for NetworkManager. For more information about the desktop applets, see Section 26.4, “Using KNetworkManager” and Section 26.5, “Using the GNOME NetworkManager Applet”.

**TABLE 19.1: USE CASES FOR NETWORKMANAGER**

<table>
<thead>
<tr>
<th>My computer…</th>
<th>Use NetworkManager</th>
</tr>
</thead>
<tbody>
<tr>
<td>is a laptop</td>
<td>Yes</td>
</tr>
<tr>
<td>is sometimes attached to different networks</td>
<td>Yes</td>
</tr>
<tr>
<td>provides network services (such as DNS or DHCP)</td>
<td>No</td>
</tr>
<tr>
<td>only uses a static IP address</td>
<td>No</td>
</tr>
</tbody>
</table>

Use the YaST tools to configure networking whenever NetworkManager should not handle network configuration.

**Tip: DNS configuration and various types of network connections**

If you travel frequently with your laptop and change different types of network connections, NetworkManager works fine when all DNS addresses are assigned correctly assigned with DHCP. If some of your connections use static DNS address(es), add it to the `NETCONFIG_DNS_STATIC_SERVERS` option in `/etc/sysconfig/network/config`. 
SLP

The service location protocol (SLP) simplifies the connection of a laptop to an existing network. Without SLP, the administrator of a laptop usually requires detailed knowledge of the services available in a network. SLP broadcasts the availability of a certain type of service to all clients in a local network. Applications that support SLP can process the information dispatched by SLP and be configured automatically. SLP can also be used to install a system, minimizing the effort of searching for a suitable installation source. Find detailed information about SLP in Chapter 24, SLP Services in the Network.

19.1.3 Software Options

There are various special task areas in mobile use that are covered by dedicated software: system monitoring (especially the battery charge), data synchronization, and wireless communication with peripherals and the Internet. The following sections cover the most important applications that SUSE Linux Enterprise Desktop provides for each task.

19.1.3.1 System Monitoring

Two KDE system monitoring tools are provided by SUSE Linux Enterprise Desktop:

Power Management

*Power Management* is an application which lets you adjust energy saving related behavior of the KDE desktop. You can typically access it via the *Battery Monitor* tray icon, which changes according to the type of the current power supply. Other way to open its configuration dialog is through the *Kickoff Application Launcher: Applications > Configure Desktop > Advanced > Power Management*.

Click the *Battery Monitor* tray icon to access options to configure its behavior. You can choose one of five displayed power profiles which best fits your needs. For example, the *Presentation* scheme disables the screen saver and the power management in general, so that your presentation is not interrupted by system events. Click *More...* to open a more complex configuration screen. Here you can edit individual profiles and set advanced power management options and notifications, such as what to do when the laptop lid has been closed, or when the battery charge is low.
System Monitor

System Monitor (also called KSysguard) gathers measurable system parameters into one monitoring environment. It presents the output information in 2 tabs by default. Process Table gives detailed information about currently running processes, such as CPU load, memory usage, or process ID number and nice value. The presentation and filtering of the collected data can be customized — to add a new type of process information, left-click the process table header and choose which column to hide or add to the view. It is also possible to monitor different system parameters in various data pages or collect the data of various machines in parallel over the network. KSysguard can also run as a daemon on machines without a KDE environment. Find more information about this program in its integrated help function or in the SUSE help pages.

In the GNOME environment use Power Management Preferences and System Monitor.

19.1.3.2 Synchronizing Data

When switching between working on a mobile machine disconnected from the network and working at a networked workstation in an office, it is necessary to keep processed data synchronized across all instances. This could include e-mail folders, directories and individual files that need to be present for work on the road as well as at the office. The solution in both cases is as follows:

Synchronizing E-Mail

Use an IMAP account for storing your e-mails in the office network. Then access the e-mails from the workstation using any disconnected IMAP–enabled e-mail client, like Mozilla Thunderbird Mail, Evolution, or KMail as described in Book “GNOME User Guide” and Book “KDE User Guide”. The e-mail client must be configured so that the same folder is always accessed for Sent messages. This ensures that all messages are available along with their status information after the synchronization process has completed. Use an SMTP server implemented in the mail client for sending messages instead of the system-wide MTA postfix or sendmail to receive reliable feedback about unsent mail.

Synchronizing Files and Directories

There are several utilities suitable for synchronizing data between a laptop and a workstation. One of the most widely used is a command-line tool called rsync. For more information, see its manual page (man 1 rsync)
19.1.3.3 Wireless Communication

As well as connecting to a home or office network with a cable, a laptop can also use wireless connection to access other computers, peripherals, cellular phones or PDAs. Linux supports three types of wireless communication:

**WLAN**

With the largest range of these wireless technologies, WLAN is the only one suitable for the operation of large and sometimes even spatially separate networks. Single machines can connect with each other to form an independent wireless network or access the Internet. Devices called *access points* act as base stations for WLAN-enabled devices and act as intermediaries for access to the Internet. A mobile user can switch among access points depending on location and which access point is offering the best connection. Like in cellular telephony, a large network is available to WLAN users without binding them to a specific location for accessing it. Find details about WLAN in *Chapter 20, Wireless LAN*.

**Bluetooth**

Bluetooth has the broadest application spectrum of all wireless technologies. It can be used for communication between computers (laptops) and PDAs or cellular phones, as can IrDA. It can also be used to connect various computers within range. Bluetooth is also used to connect wireless system components, like a keyboard or a mouse. The range of this technology is, however, not sufficient to connect remote systems to a network. WLAN is the technology of choice for communicating through physical obstacles like walls.

**IrDA**

IrDA is the wireless technology with the shortest range. Both communication parties must be within viewing distance of each other. Obstacles like walls cannot be overcome. One possible application of IrDA is the transmission of a file from a laptop to a cellular phone. The short path from the laptop to the cellular phone is then covered using IrDA. The long range transport of the file to the recipient of the file is handled by the mobile network. Another application of IrDA is the wireless transmission of printing jobs in the office.
19.1.4 Data Security

Ideally, you protect data on your laptop against unauthorized access in multiple ways. Possible security measures can be taken in the following areas:

Protection against Theft
Always physically secure your system against theft whenever possible. Various securing tools (like chains) are available in retail stores.

Strong Authentication
Use biometric authentication in addition to standard authentication via login and password. SUSE Linux Enterprise Desktop supports fingerprint authentication. For more details, see Book “Security Guide”, Chapter 7 “Using the Fingerprint Reader”.

Securing Data on the System
Important data should not only be encrypted during transmission, but also on the hard disk. This ensures its safety in case of theft. The creation of an encrypted partition with SUSE Linux Enterprise Desktop is described in Book “Security Guide”, Chapter 11 “Encrypting Partitions and Files”. Another possibility is to create encrypted home directories when adding the user with YaST.

⚠️ Important: Data Security and Suspend to Disk
Encrypted partitions are not unmounted during a suspend to disk event. Thus, all data on these partitions is available to any party who manages to steal the hardware and issue a resume of the hard disk.
Network Security

Any transfer of data should be secured, no matter how the transfer is done. Find general security issues regarding Linux and networks in Book “Security Guide”, Chapter 1 “Security and Confidentiality”. Security measures related to wireless networking are provided in Chapter 20, Wireless LAN.

19.2 Mobile Hardware

SUSE Linux Enterprise Desktop supports the automatic detection of mobile storage devices over FireWire (IEEE 1394) or USB. The term mobile storage device applies to any kind of FireWire or USB hard disk, USB flash drive, or digital camera. These devices are automatically detected and configured as soon as they are connected with the system over the corresponding interface. The file managers of both GNOME and KDE offer flexible handling of mobile hardware items. To unmount any of these media safely, use the Safely Remove (KDE) or Unmount Volume (GNOME) feature of either file manager. The handling of removable media by your desktop is described in more detail in Book “GNOME User Guide” and Book “KDE User Guide”.

External Hard Disks (USB and FireWire)

As soon as an external hard disk is correctly recognized by the system, its icon appears in the file manager. Clicking the icon displays the contents of the drive. It is possible to create folders and files here and edit or delete them. To rename a hard disk from the name it had been given by the system, select the corresponding menu item from the menu that opens when the icon is right-clicked. This name change is limited to display in the file manager. The descriptor by which the device is mounted in /media remains unaffected by this.

USB Flash Drives

These devices are handled by the system just like external hard disks. It is similarly possible to rename the entries in the file manager.

Digital Cameras (USB and FireWire)

Digital cameras recognized by the system also appear as external drives in the overview of the file manager. KDE allows reading and accessing the pictures at the URL camera:/ . The images can then be processed using digiKam or f-spot. For advanced photo processing use The GIMP. For a short introduction to digiKam, f-spot and The GIMP, see Book “Application
19.3 Cellular Phones and PDAs

A desktop system or a laptop can communicate with a cellular phone via Bluetooth or IrDA. Some models support both protocols and some only one of the two. The usage areas for the two protocols and the corresponding extended documentation has already been mentioned in Section 19.1.3.3, “Wireless Communication”. The configuration of these protocols on the cellular phones themselves is described in their manuals.

The support for synchronizing with handheld devices manufactured by Palm, Inc., is already built into Evolution and Kontact. Initial connection with the device is easily performed with the assistance of a wizard. Once the support for Palm Pilots is configured, it is necessary to determine which type of data should be synchronized (addresses, appointments, etc.). For more information, see Book “GNOME User Guide” and Book “KDE User Guide”.

A more sophisticated synchronization solution is available with the program opensync (see the package libopensync and the respective plug-ins for the various devices).

19.4 For More Information

The central point of reference for all questions regarding mobile devices and Linux is http://tuxmobil.org/. Various sections of that Web site deal with the hardware and software aspects of laptops, PDAs, cellular phones and other mobile hardware.

A similar approach to that of http://tuxmobil.org/ is made by http://www.linux-on-laptops.com/. Information about laptops and handhelds can be found here.

SUSE maintains a mailing list in German dedicated to the subject of laptops. See http://lists.opensuse.org/opensuse-mobile-de/. On this list, users and developers discuss all aspects of mobile computing with SUSE Linux Enterprise Desktop. Postings in English are answered, but the majority of the archived information is only available in German. Use http://lists.opensuse.org/opensuse-mobile/ for English postings.

Information about OpenSync is available on http://opensync.org/.
20 Wireless LAN

Wireless LANs, or Wireless Local Area Network (WLANs), have become an indispensible aspect of mobile computing. Today, most laptops have built-in WLAN cards. This chapter describes how to set up a WLAN card with YaST, encrypt transmissions, and use tips and tricks. Alternatively, you can configure and manage WLAN access with NetworkManager. For details, refer to Chapter 26, Using NetworkManager.

20.1 WLAN Standards

WLAN cards communicate using the 802.11 standard, prepared by the IEEE organization. Originally, this standard provided for a maximum transmission rate of 2 Mbit/s. Meanwhile, several supplements have been added to increase the data rate. These supplements define details such as the modulation, transmission output, and transmission rates (see Table 20.1, “Overview of Various WLAN Standards”). Additionally, many companies implement hardware with proprietary or draft features.

<table>
<thead>
<tr>
<th>Name</th>
<th>Band (GHz)</th>
<th>Maximum Transmission Rate (Mbit/s)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11 Legacy</td>
<td>2.4</td>
<td>2</td>
<td>Outdated; virtually no end devices available</td>
</tr>
<tr>
<td>802.11a</td>
<td>5</td>
<td>54</td>
<td>Less interference-prone</td>
</tr>
<tr>
<td>802.11b</td>
<td>2.4</td>
<td>11</td>
<td>Less common</td>
</tr>
<tr>
<td>802.11g</td>
<td>2.4</td>
<td>54</td>
<td>Widespread, backwards-compatible with 11b</td>
</tr>
<tr>
<td>Name</td>
<td>Band (GHz)</td>
<td>Maximum Transmission Rate (Mbit/s)</td>
<td>Note</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>802.11n</td>
<td>2.4 and/or 5</td>
<td>300</td>
<td>Common</td>
</tr>
<tr>
<td>802.11 ad</td>
<td>2.4/5/60</td>
<td>up to 7000</td>
<td>Released 2012, currently less common</td>
</tr>
</tbody>
</table>

802.11 Legacy cards are not supported by SUSE® Linux Enterprise Desktop. Most cards using 802.11a, 802.11b, 802.11g and 802.11n are supported. New cards usually comply with the 802.11n standard, but cards using 802.11g are still available.

## 20.2 Operating Modes

In wireless networking, various techniques and configurations are used to ensure fast, high-quality, and secure connections. Different operating types suit different setups. It can be difficult to choose the right authentication method. The available encryption methods have different advantages and pitfalls.

Basically, wireless networks can be classified into three network modes:

**Managed Mode (Infrastructure Mode), via Access Point**

Managed networks have a managing element: the access point. In this mode (also referred to as infrastructure mode), all connections of the WLAN stations in the network run through the access point, which may also serve as a connection to an ethernet. To make sure only authorized stations can connect, various authentication mechanisms (WPA, etc) are used.

**Ad-hoc Mode (Peer-to-Peer Network)**

Ad-hoc networks do not have an access point. The stations communicate directly with each other, therefore an ad-hoc network is usually faster than a managed network. However, the transmission range and number of participating stations are greatly limited in ad-hoc networks. They also do not support WPA authentication. If you intend to use WPA security, you should not use Ad-Hoc Mode.

**Master Mode**

In master mode your network card is used as the access point. It works only if your WLAN card supports this mode. Find out the details of your WLAN card on [http://linux-wless.passys.nl](http://linux-wless.passys.nl).
20.3 Authentication

Because a wireless network is much easier to intercept and compromise than a wired network, the various standards include authentication and encryption methods. In the original version of the IEEE 802.11 standard, these are described under the term WEP (Wired Equivalent Privacy). However, because WEP has proven to be insecure (see Section 20.6.3, “Security”), the WLAN industry (joined under the name Wi-Fi Alliance) has defined an extension called WPA, which is supposed to eliminate the weaknesses of WEP. The later IEEE 802.11i standard includes WPA and some other authentication and encryption methods. IEEE 802.11i is also referred to as WPA2, because WPA is based on a draft version of 802.11i.

To make sure that only authorized stations can connect, various authentication mechanisms are used in managed networks:

None (Open)

An open system is a system that does not require authentication. Any station can join the network. Nevertheless, WEP encryption can be used, see Section 20.4, “Encryption”.

Shared Key (according to IEEE 802.11)

In this procedure, the WEP key is used for the authentication. However, this procedure is not recommended, because it makes the WEP key more susceptible to attacks. All an attacker needs to do is to listen long enough to the communication between the station and the access point. During the authentication process, both sides exchange the same information, once in encrypted form and once in unencrypted form. This makes it possible for the key to be reconstructed with suitable tools. Because this method makes use of the WEP key for the authentication and for the encryption, it does not enhance the security of the network. A station that has the correct WEP key can authenticate, encrypt, and decrypt. A station that does not have the key cannot decrypt received packets. Accordingly, it cannot communicate, regardless of whether it had to authenticate itself.

WPA-PSK (or WPA-Personal, according to IEEE 802.1x)

WPA-PSK (PSK stands for preshared key) works similarly to the Shared Key procedure. All participating stations as well as the access point need the same key. The key is 256 bits in length and is usually entered as a passphrase. This system does not need a complex key management like WPA-EAP and is more suitable for private use. Therefore, WPA-PSK is sometimes referred to as WPA “Home”.

Authentication SUSE Linux Enterp... 11 SP4
WPA-EAP (or WPA-Enterprise, according to IEEE 802.1x)

Actually, WPA-EAP (Extensible Authentication Protocol) is not an authentication system but a protocol for transporting authentication information. WPA-EAP is used to protect wireless networks in enterprises. In private networks, it is scarcely used. For this reason, WPA-EAP is sometimes referred to as WPA “Enterprise”.

WPA-EAP needs a Radius server to authenticate users. EAP offers three different methods for connecting and authenticating to the server:

- **Transport Layer Security (EAP-TLS):** TLS authentication relies on the mutual exchange of certificates for both server and client. First, the server presents its certificate to the client where it is evaluated. If the certificate is considered valid, the client in turn presents its certificate to the server. While TLS is secure, it requires a working certification management infrastructure in your network. This infrastructure is rarely found in private networks.

- **Tunneled Transport Layer Security (EAP-TTLS)**

- **Protected Extensible Authentication Protocol (EAP-PEAP):** Both TTLS and PEAP are two-stage protocols. In the first stage, a secure connection is established and in the second the client authentication data is exchanged. They require far less certification management overhead than TLS, if any.

### 20.4 Encryption

There are various encryption methods to ensure that no unauthorized person can read the data packets that are exchanged in a wireless network or gain access to the network:

**WEP (defined in IEEE 802.11)**

This standard makes use of the RC4 encryption algorithm, originally with a key length of 40 bits, later also with 104 bits. Often, the length is declared as 64 bits or 128 bits, depending on whether the 24 bits of the initialization vector are included. However, this standard has some weaknesses. Attacks against the keys generated by this system may be successful. Nevertheless, it is better to use WEP than to not encrypt the network at all. Some vendors have implemented the non-standard “Dynamic WEP”. It works exactly as WEP and shares the same weaknesses, except that the key is periodically changed by a key management service.
TKIP (defined in WPA/IEEE 802.11i)
This key management protocol defined in the WPA standard uses the same encryption algorithm as WEP, but eliminates its weakness. Because a new key is generated for every data packet, attacks against these keys are fruitless. TKIP is used together with WPA-PSK.

CCMP (defined in IEEE 802.11i)
CCMP describes the key management. Usually, it is used in connection with WPA-EAP, but it can also be used with WPA-PSK. The encryption takes place according to AES and is stronger than the RC4 encryption of the WEP standard.

20.5  Configuration with YaST

Important: Security Risks in Wireless Networks
Unencrypted WLAN connections allow third parties to intercept all network data. Be sure to protect your network traffic by using one of the supported authentication and encryption methods.
Use the best possible encryption method your hardware allows. However, to use a certain encryption method, all devices in the network must support this method, otherwise they cannot communicate with each other. For example, if your router supports both WEP and WPA but the driver for your WLAN card only supports WEP, WEP is the least common denominator you can use. But even a weak encryption with WEP is better than none at all. Refer to Section 20.4, “Encryption” and Section 20.6.3, “Security” for information.

To configure a wireless LAN with YaST, you need to define the following parameters:

IP Address
Use either a static IP address or let a DHCP server dynamically assign an IP address to the interface.

Operating Mode
Defines how to integrate your machine into a WLAN, depending on the network topology. For background information, refer to Section 20.2, “Operating Modes”.

Network Name (ESSID)
Unique string identifying a network.
Authentication and Encryption Details

Depending on the authentication and encryption method your network uses, you need to enter one or more keys and/or certificates. Several input options are available for entering the respective keys: *Passphrase*, *ASCII* (only available for WEP authentication methods), and *Hexadecimal*.

20.5.1 Deactivating NetworkManager

A WLAN card is usually detected during installation. If your machine is a mobile computer, NetworkManager is usually activated by default. If instead you want to configure your WLAN card with YaST, you need to deactivate NetworkManager first:

1. Start YaST as user `root`.
2. In the YaST Control Center, select `Network Devices > Network Settings` to open the `Network Settings` dialog.
   If your network is currently controlled by NetworkManager, you see a warning message that the network settings cannot be edited by YaST.
3. To enable editing with YaST, leave the message with `OK` and on the `Global Options` tab, activate `Traditional Method with ifup`.
4. For further configuration, proceed with Section 20.5.2, “Configuration for Access Points” or Section 20.5.3, “Establishing an Ad-Hoc Network”.
   Otherwise confirm your changes with `OK` to write the network configuration.

20.5.2 Configuration for Access Points

In this section, learn how to configure your WLAN card to connect to an (external) access point or how to use your WLAN card as access point if your WLAN card supports this. For configuration of networks without an access point, refer to Section 20.5.3, “Establishing an Ad-Hoc Network”.

PROCEDURE 20.1: CONFIGURING YOUR WLAN CARD FOR USING AN ACCESS POINT

1. Start YaST and open the `Network Settings` dialog.
2. Switch to the `Overview` tab where all network cards are listed that have been detected by the system. If you need more information about general network configuration, refer to Section 23.4, “Configuring a Network Connection with YaST”.

218  Deactivating NetworkManager   SUSE Linux Ente... 11 SP4
3. Choose your wireless card from the list and click *Edit* to open the *Network Card Setup* dialog.

4. On the *Address* tab, configure whether to use a dynamic or a static IP address for the machine. Usually *Dynamic Address with DHCP* is fine.

5. Click *Next* to proceed to the *Wireless Network Card Configuration* dialog.

6. To use your WLAN card to connect to an access point, set the *Operating Mode* to *Managed*. If however you want to use your WLAN card as access point, set the *Operating Mode* to *Master*. Note that not all WLAN cards support this mode.

   **Note: Using WPA-PSK or WPA-EAP**
   
   If you want to use WPA-PSK or WPA-EAP authentication modes, the operating mode must be set to *Managed*.

7. To connect to a certain network, enter the *Network Name (ESSID)*. Alternatively, click *Scan Network* and select a network from the list of available wireless networks. All stations in a wireless network need the same ESSID for communicating with each other. If no ESSID is specified, your WLAN card automatically associates with the access point that has the best signal strength.

   **Note: WPA Authentication Requires an ESSID**
   
   If you select WPA authentication, a network name (ESSID) must be set.

8. Select an *Authentication Mode* for your network. Which mode is suitable, depends on your WLAN card’s driver and the ability of the other devices in the network.

9. If you have chosen to set the *Authentication Mode* to *No Encryption*, finish the configuration by clicking *Next*. Confirm the message about this potential security risk and leave the *Overview* tab (showing the newly configured WLAN card) with *OK*.

   If you haven chosen any of the other authentication modes, proceed with *Procedure 20.2, “Entering the Encryption Details”*. 
The following authentication methods require an encryption key: **WEP - Open**, **WEP - Shared Key**, and **WPA-PSK**.

For WEP, usually only key is needed—however, up to 4 different WEP keys can be defined for your station. One of them needs to be set as the default key and is used for encryption. The others are used for decryption. Per default, a key length of 128-bit is used, but you can also choose to set the length to 64-bit.

For higher security, WPA-EAP uses a RADIUS server to authenticate users. For authentication at the server, three different methods are available: TLS, TTLS and PEAP. The credentials and certificates you need for WPA-EAP depend on the authentication method used for the RADIUS server. Ask your system administrator to provide the needed information and credentials. YaST searches for any certificate under `/etc/cert`. Therefore, save the certificates given to you to this location and restrict access to these files to **0600** (owner read and write).

1. To enter the key for **WEP - Open** or **WEP - Shared Key**:

   a. Set the **Key Input Type** either to **Passphrase**, **ASCII** or **Hexadecimal**.
b. Enter the respective **Encryption Key** (usually only one key is used):

   If you have selected *Passphrase*, enter a word or a character string from which a key is generated according to the specified key length (per default, 128-bit). *ASCII* requests an input of 5 characters for a 64-bit key and 13 characters for a 128-bit key.

   For *Hexadecimal*, enter 10 characters for a 64-bit key or 26 characters for a 128-bit key in hexadecimal notation.

c. To adjust the key length to a lower bit rate (which might be necessary for older hardware), click *WEP Keys* and set the **Key Length** to 64 bit. The *WEP Keys* dialog also shows the WEP keys that have been entered so far. Unless another key is explicitly set as default, *YaST* always uses the first key as default key.

d. To enter more keys for WEP or to modify one of the keys, select the respective entry and click *Edit*. Select the **Key Input Type** and enter the key.

e. Confirm your changes with *OK*.

2. To enter a key for **WPA-PSK**:

   a. Select the input method *Passphrase* or *Hexadecimal*.

   b. Enter the respective **Encryption Key**.

      In the *Passphrase* mode, the input must be 8 to 63 characters. In the *Hexadecimal* mode, enter 64 characters.

3. If you have chosen **WPA-EAP** authentication, click *Next* to switch to the *WPA-EAP* dialog, where you enter the credentials and certificates you have been given by your network administrator.

   a. Select the *EAP Mode* the RADIUS server uses for authentication. The details you need to enter in the following depend on the selected *EAP Mode*.

   b. For TLS, provide *Identity*, *Client Certificate*, *Client Key*, and *Client Key Password*. To increase security, you can also configure a *Server Certificate* used to validate the server’s authenticity.

      *TTLS* and *PEAP* require *Identity* and *Password*, whereas *Server Certificate* and *Anonymous Identity* are optional.

   c. To enter the advanced authentication dialog for your WPA-EAP setup, click *Details*. 
d. Select the Authentication Method for the second stage of EAP-TTLS or EAP-PEAP communication (inner authentication). The choice of methods depends on the authentication method for the RADIUS server you selected in the previous dialog.

e. If the automatically-determined setting does not work for you, choose a specific PEAP Version to force the use of a certain PEAP implementation.

4. Confirm your changes with OK. The Overview tab shows the details of your newly configured WLAN card.

5. Click OK to finalize the configuration and to leave the dialog.

20.5.3 Establishing an Ad-Hoc Network

In some cases it is useful to connect two computers equipped with a WLAN card. To establish an ad-hoc network with YaST, do the following:

1. Start YaST and open the Network Settings dialog.

2. Switch to the Overview tab, choose your wireless card from the list and click Edit to open the Network Card Setup dialog.

3. Choose Statically assigned IP Address and enter the following data:

   - **IP Address**: 192.168.1.1. Change this address on the second computer to 192.168.1.2, for example.
   - **Subnet Mask**: /24
   - **Hostname**: Choose any name you like.

4. Proceed with Next.

5. Set the Operating Mode to Ad-hoc.

6. Choose a Network Name (ESSID). This can be any name, but it has to be used on every computer in the ad-hoc network.

7. Select an Authentication Mode for your network. Which mode is suitable, depends on your WLAN card's driver and the ability of the other devices in the network.
8. If you have chosen to set the Authentication Mode to No Encryption, finish the configuration by clicking Next. Confirm the message about this potential security risk and leave the Overview tab showing the newly configured WLAN card with OK.
If you haven chosen any of the other authentication modes, proceed with Procedure 20.2, “Entering the Encryption Details”.

9. If you do not have `smppp` installed, YaST asks you to do so.

10. Configure the other WLAN cards in the network accordingly, using the same Network Name (ESSID), the same Authentication Mode but different IP addresses.

### 20.5.4 Setting Additional Configuration Parameters

Usually there is no need to change the pre-configured settings when configuring your WLAN card. However, if you need detailed configuration of your WLAN connection, YaST allows you to tweak the following settings:

**Channel**

The specification of a channel on which the WLAN station should work. This is only needed in Ad-hoc and Master modes. In Managed mode, the card automatically searches the available channels for access points.

**Bit Rate**

Depending on the performance of your network, you may want to set a certain bit rate for the transmission from one point to another. In the default setting Auto, the system tries to use the highest possible data transmission rate. Some WLAN cards do not support the setting of bit rates.

**Access Point**

In an environment with several access points, one of them can be preselected by specifying the MAC address.

**Power Management**

When you are on the road, power saving technologies can help to maximize the operating time of your battery. More information about power management is available in Chapter 21, Power Management. Using power management may affect the connection quality and increase the network latency.
To access the advanced options:

1. Start YaST and open the **Network Settings** dialog.

2. Switch to the **Overview** tab, choose your wireless card from the list and click **Edit** to open the **Network Card Setup** dialog.

3. Click **Next** to proceed to the **Wireless Network Card Configuration** dialog.

4. Click **Expert Settings**.

5. In Ad-hoc mode, select one of the offered channels (11 to 14, depending on your country) for the communication of your station with the other stations. In **Master** mode, determine on which **Channel** your card should offer access point functionality. The default setting for this option is **Auto**.

6. Select the **Bit Rate** to use.

7. Enter the MAC address of the **Access Point** you want to connect to.

8. Choose if to **Use Power Management** or not.

9. Confirm your changes with **OK** and click **Next** and **OK** to finish the configuration.

### 20.6  Tips and Tricks for Setting Up a WLAN

The following tools and tips can help to monitor and improve speed and stability as well as security aspects of your WLAN.

#### 20.6.1 Utilities


#### 20.6.2 Stability and Speed

The performance and reliability of a wireless network mainly depend on whether the participating stations receive a clear signal from the other stations. Obstructions like walls greatly weaken the signal. The more the signal strength sinks, the more the transmission slows down.
During operation, check the signal strength with the **iwconfig** utility on the command line (**Link Quality** field) or with the NetworkManager applets provided by KDE or GNOME. If you have problems with the signal quality, try to set up the devices somewhere else or adjust the position of the antennas of your access points. Auxiliary antennas that substantially improve the reception are available for a number of PCMCIA WLAN cards. The rate specified by the manufacturer, such as 54 Mbit/s, is a nominal value that represents the theoretical maximum. In practice, the maximum data throughout is no more than half this value.

The **iwspy** command can displays WLAN statistics:

```
 iwspy wlan0
 wlan0 Statistics collected:
 00:AA:BB:CC:DD:EE : Quality:0 Signal level:0 Noise level:0
 Link/Cell/AP : Quality:60/94 Signal level:-50 dBm Noise level:-140 dBm
(updated)
 Typical/Reference : Quality:26/94 Signal level:-60 dBm Noise level:-90 dBm
```

### 20.6.3 Security

If you want to set up a wireless network, remember that anybody within the transmission range can easily access it if no security measures are implemented. Therefore, be sure to activate an encryption method. All WLAN cards and access points support WEP encryption. Although this is not entirely safe, it does present an obstacle for a potential attacker.

For private use, use WPA-PSK if available. Although Linux supports WPA on most hardware components, some drivers do not offer WPA support. It may also not be available on older access points and routers with WLAN functionality. For such devices, check if WPA can be implemented by means of a firmware update. If WPA is not available, WEP is better than no encryption. In enterprises with advanced security requirements, wireless networks should only be operated with WPA.

Use strong passwords for your authentication method. For example, the Web page [https://www.grc.com/passwords.htm](https://www.grc.com/passwords.htm) generates random 64 character passwords.
20.7 Troubleshooting

If your WLAN card fails to respond, check the following prerequisites:

1. Do you know the device name of the WLAN card? Usually it is wlan0. Check with the tool **ifconfig**.

2. Have you checked your needed firmware? Refer to /usr/share/doc/packages/wireless-tools/README.firmware for more information.

3. Is the ESSID of your router broadcasted and visible (not hidden)?

20.7.1 Check the Network Status

The command **iwconfig** can give you important information about your wireless connection. For example, the following line displays the ESSID, the wireless mode, frequency, if you signal is encrypted, the link quality, and much more:

```
iwconfig wlan0
wlan0 IEEE 802.11abg ESSID:"guest"
 Mode:Managed Frequency:5.22GHz Access Point: 00:11:22:33:44:55
 Bit Rate:54 Mb/s Tx-Power=13 dBm
 Retry min limit:7 RTS thr:off Fragment thr:off
 Encryption key:oFF
 Power Management:oFF
 Link Quality:62/92 Signal level:-48 dBm Noise level:-127 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:10 Invalid misc:0 Missed beacon:0
```

You can also get the previous information with the **iwlist** command. For example, the following line displays the current bit rate:

```
iwlist wlan0 rate
wlan0 unknown bit-rate information.
 Current Bit Rate=54 Mb/s
```

If you want an overview how many access points are available, it can also be done with the **iwlist** command. It gives you a list of “cells” which looks like this:

```
iwlist wlan0 scanning
wlan0 Scan completed:
 Cell 01 - Address: 00:11:22:33:44:55
 Channel:40
 Frequency:5.2 GHz (Channel 40)
```
20.7.2 Multiple Network Devices

Modern laptops usually have a network card and a WLAN card. If you configured both devices with DHCP (automatic address assignment), you may encounter problems with the name resolution and the default gateway. This is evident from the fact that you can ping the router but cannot surf the Internet. The Support Database features an article on this subject at [http://old-en.opensuse.org/SDB:Name_Resolution_Does_Not_Work_with_Several_Concurrent_DHCP_Clients](http://old-en.opensuse.org/SDB:Name_Resolution_Does_Not_Work_with_Several_Concurrent_DHCP_Clients).

20.7.3 Problems with Prism2 Cards

Several drivers are available for devices with Prism2 chips. The various cards work more or less smoothly with the various drivers. With these cards, WPA is only possible with the hostap driver. If such a card does not work properly or not at all or you want to use WPA, read `/usr/share/doc/packages/wireless-tools/README.prism2`.

20.8 For More Information

More information can be found on the following pages:


The Internet pages of Jean Tourrilhes, who developed the Wireless Tools for Linux, present a wealth of useful information about wireless networks.

[http://tuxmobil.org](http://tuxmobil.org)

Useful hands-on information about mobile computers under Linux.

[http://www.linux-on-laptops.com](http://www.linux-on-laptops.com)

More information about Linux on laptops.
21 Power Management

Power management is especially important on laptop computers, but is also useful on other systems. ACPI (Advanced Configuration and Power Interface) is available on all modern computers (laptops, desktops, and servers). Power management technologies require suitable hardware and BIOS routines. Most laptops and many modern desktops and servers meet these requirements. It is also possible to control CPU frequency scaling to save power or decrease noise.

21.1 Power Saving Functions

Power saving functions are not only significant for the mobile use of laptops, but also for desktop systems. The main functions and their use in ACPI are:

Standby
not supported.

Suspend (to memory)
This mode writes the entire system state to the RAM. Subsequently, the entire system except the RAM is put to sleep. In this state, the computer consumes very little power. The advantage of this state is the possibility of resuming work at the same point within a few seconds without having to boot and restart applications. This function corresponds to the ACPI state \textit{S3}.

Hibernation (suspend to disk)
In this operating mode, the entire system state is written to the hard disk and the system is powered off. There must be a swap partition at least as big as the RAM to write all the active data. Reactivation from this state takes about 30 to 90 seconds. The state prior to the suspend is restored. Some manufacturers offer useful hybrid variants of this mode, such as RediSafe in IBM Thinkpads. The corresponding ACPI state is \textit{S4}. In Linux, suspend to disk is performed by kernel routines that are independent from ACPI.

Battery Monitor
ACPI checks the battery charge status and provides information about it. Additionally, it coordinates actions to perform when a critical charge status is reached.

Automatic Power-Off
Following a shutdown, the computer is powered off. This is especially important when an automatic shutdown is performed shortly before the battery is empty.
Processor Speed Control

In connection with the CPU, energy can be saved in three different ways: frequency and voltage scaling (also known as PowerNow! or Speedstep), throttling and putting the processor to sleep (C-states). Depending on the operating mode of the computer, these methods can also be combined.

21.2 Advanced Configuration and Power Interface (ACPI)

ACPI was designed to enable the operating system to set up and control the individual hardware components. ACPI supersedes both Power Management Plug and Play (PnP) and Advanced Power Management (APM). It delivers information about the battery, AC adapter, temperature, fan and system events, like “close lid” or “battery low.”

The BIOS provides tables containing information about the individual components and hardware access methods. The operating system uses this information for tasks like assigning interrupts or activating and deactivating components. Because the operating system executes commands stored in the BIOS, the functionality depends on the BIOS implementation. The tables ACPI can detect and load are reported in /var/log/boot.msg. See Section 21.2.2, “Troubleshooting” for more information about troubleshooting ACPI problems.

21.2.1 Controlling the CPU Performance

The CPU can save energy in three ways:

- Frequency and Voltage Scaling
- Throttling the Clock Frequency (T-states)
- Putting the Processor to Sleep (C-states)

Depending on the operating mode of the computer, these methods can be combined. Saving energy also means that the system heats up less and the fans are activated less frequently.
Frequency scaling and throttling are only relevant if the processor is busy, because the most economic C-state is applied anyway when the processor is idle. If the CPU is busy, frequency scaling is the recommended power saving method. Often the processor only works with a partial load. In this case, it can be run with a lower frequency. Usually, dynamic frequency scaling controlled by the kernel on-demand governor is the best approach.

Throttling should be used as the last resort, for example, to extend the battery operation time despite a high system load. However, some systems do not run smoothly when they are throttled too much. Moreover, CPU throttling does not make sense if the CPU has little to do.

For in-depth information, refer to Book “System Analysis and Tuning Guide”, Chapter 11 “Power Management”.

21.2.2 Troubleshooting

There are two different types of problems. On one hand, the ACPI code of the kernel may contain bugs that were not detected in time. In this case, a solution will be made available for download. More often, the problems are caused by the BIOS. Sometimes, deviations from the ACPI specification are purposely integrated in the BIOS to circumvent errors in the ACPI implementation of other widespread operating systems. Hardware components that have serious errors in the ACPI implementation are recorded in a blacklist that prevents the Linux kernel from using ACPI for these components.

The first thing to do when problems are encountered is to update the BIOS. If the computer does not boot at all, one of the following boot parameters may be helpful:

\begin{verbatim}
pci=noacpi
\end{verbatim}

Do not use ACPI for configuring the PCI devices.

\begin{verbatim}
acpi=ht
\end{verbatim}

Only perform a simple resource configuration. Do not use ACPI for other purposes.

\begin{verbatim}
acpi=off
\end{verbatim}

Disable ACPI.

\begin{itemize}
\item \textbf{Warning: Problems Booting without ACPI}
\end{itemize}

Some newer machines (especially SMP systems and AMD64 systems) need ACPI for configuring the hardware correctly. On these machines, disabling ACPI can cause problems.
Sometimes, the machine is confused by hardware that is attached over USB or FireWire. If a machine refuses to boot, unplug all unneeded hardware and try again.

Monitor the boot messages of the system with the command `dmesg | grep -2i acpi` (or all messages, because the problem may not be caused by ACPI) after booting. If an error occurs while parsing an ACPI table, the most important table—the DSDT (Differentiated System Description Table)—can be replaced with an improved version. In this case, the faulty DSDT of the BIOS is ignored. The procedure is described in Section 21.4, “Troubleshooting”.

In the kernel configuration, there is a switch for activating ACPI debug messages. If a kernel with ACPI debugging is compiled and installed, detailed information is issued.

If you experience BIOS or hardware problems, it is always advisable to contact the manufacturers. Especially if they do not always provide assistance for Linux, they should be confronted with the problems. Manufacturers will only take the issue seriously if they realize that an adequate number of their customers use Linux.

21.2.2.1 For More Information

- [http://tldp.org/HOWTO/ACPI-HOWTO/] (detailed ACPI HOWTO, contains DSDT patches)
- [http://www.lesswatts.org/projects/acpi/] (the ACPI4Linux project at Sourceforge)

21.3 Rest for the Hard Disk

In Linux, the hard disk can be put to sleep entirely if it is not needed or it can be run in a more economic or quieter mode. On modern laptops, you do not need to switch off the hard disks manually, because they automatically enter an economic operating mode whenever they are not needed. However, if you want to maximize power savings, test some of the following methods, using the `hdparm` command.
It can be used to modify various hard disk settings. The option `-y` instantly switches the hard disk to the standby mode. `-Y` puts it to sleep. `hdparm -S x` causes the hard disk to be spun down after a certain period of inactivity. Replace `x` as follows: `0` disables this mechanism, causing the hard disk to run continuously. Values from `1` to `240` are multiplied by 5 seconds. Values from `241` to `251` correspond to 1 to 11 times 30 minutes.

Internal power saving options of the hard disk can be controlled with the option `-B`. Select a value from `0` to `255` for maximum saving to maximum throughput. The result depends on the hard disk used and is difficult to assess. To make a hard disk quieter, use the option `-M`. Select a value from `128` to `254` for quiet to fast.

Often, it is not so easy to put the hard disk to sleep. In Linux, numerous processes write to the hard disk, waking it up repeatedly. Therefore, it is important to understand how Linux handles data that needs to be written to the hard disk. First, all data is buffered in the RAM. This buffer is monitored by the `pdflush` daemon. When the data reaches a certain age limit or when the buffer is filled to a certain degree, the buffer content is flushed to the hard disk. The buffer size is dynamic and depends on the size of the memory and the system load. By default, `pdflush` is set to short intervals to achieve maximum data integrity. It checks the buffer every 5 seconds and writes the data to the hard disk. The following variables are interesting:

`/proc/sys/vm/dirty_writeback_centisecs`
Contains the delay until a `pdflush` thread wakes up (in hundredths of a second).

`/proc/sys/vm/dirty_expire_centisecs`
Defines after which timeframe a dirty page should be written out latest. Default is 3000, which means 30 seconds.

`/proc/sys/vm/dirty_background_ratio`
Maximum percentage of dirty pages until `pdflush` begins to write them. Default is 5%.

`/proc/sys/vm/dirty_ratio`
When the dirty page exceeds this percentage of the total memory, processes are forced to write dirty buffers during their time slice instead of continuing to write.

⚠️ Warning: Impairment of the Data Integrity
Changes to the `pdflush` daemon settings endanger the data integrity.
Apart from these processes, journaling file systems, like Btrfs, Ext3, Ext4 and others write their metadata independently from pdflush, which also prevents the hard disk from spinning down. To avoid this, a special kernel extension has been developed for mobile devices. To make use of the extension, install the laptop-mode-tools package and see /usr/src/linux/Documentation/laptops/laptop-mode.txt for details.

Another important factor is the way active programs behave. For example, good editors regularly write hidden backups of the currently modified file to the hard disk, causing the disk to wake up. Features like this can be disabled at the expense of data integrity.

In this connection, the mail daemon postfix makes use of the variable POSTFIX_LAPTOP. If this variable is set to yes, postfix accesses the hard disk far less frequently.

In SUSE Linux Enterprise Desktop these technologies are controlled by laptop-mode-tools.

21.4 Troubleshooting

All error messages and alerts are logged in the file /var/log/messages. The following sections cover the most common problems.

21.4.1 ACPI Activated with Hardware Support but Functions Do Not Work

If you experience problems with ACPI, search the output of dmesg for ACPI-specific messages by using the command dmesg|grep -i acpi.

A BIOS update may be required to resolve the problem. Go to the home page of your laptop manufacturer, look for an updated BIOS version, and install it. Ask the manufacturer to comply with the latest ACPI specification. If the errors persist after the BIOS update, proceed as follows to replace the faulty DSDT table in your BIOS with an updated DSDT:

PROCEDURE 21.1: UPDATING THE DSDT TABLE IN THE BIOS

For the procedure below, make sure the following packages are installed: kernel-source, pmtools, and mkinitrd.

1. Download the DSDT for your system from http://acpi.sourceforge.net/dsdt/index.php. Check if the file is decompressed and compiled as shown by the file extension .aml (ACPI machine language). If this is the case, continue with step 3.
2. If the file extension of the downloaded table is `.asl` (ACPI source language) instead, compile it by executing the following command:

```bash
iasl -sa file.asl
```

3. Copy the (resulting) file `DSDT.aml` to any location (`/etc/DSDT.aml` is recommended).

4. Edit `/etc/sysconfig/kernel` and adapt the path to the DSDT file accordingly.

5. Start `mkinitrd`. Whenever you install the kernel and use `mkinitrd` to create an `initrd` file, the modified DSDT is integrated and loaded when the system is booted.

### 21.4.2 CPU Frequency Does Not Work

Refer to the kernel sources to see if your processor is supported. You may need a special kernel module or module option to activate CPU frequency control. If the `kernel-source` package is installed, this information is available in `/usr/src/linux/Documentation/cpu-freq/*`.

### 21.4.3 Suspend and Standby Do Not Work

ACPI systems may have problems with suspend and standby due to a faulty DSDT implementation (BIOS). If this is the case, update the BIOS.

When the system tries to unload faulty modules, the system is arrested or the suspend event is not triggered. The same can also happen if you do not unload modules or stop services that prevent a successful suspend. In both cases, try to identify the faulty module that prevented the sleep mode. The log file `/var/log/pm-suspend.log` contains detailed information about what is going on and where possible errors are. Modify the `SUSPEND_MODULES` variable in `/usr/lib/pm-utils/defaults` to unload problematic modules prior to a suspend or standby.

### 21.5 For More Information

- [http://en.opensuse.org/SDB:Suspend_to_RAM](http://en.opensuse.org/SDB:Suspend_to_RAM) — How to get Suspend to RAM working
- [http://old-en.opensuse.org/Pm-utils](http://old-en.opensuse.org/Pm-utils) — How to modify the general suspend framework
SUSE® Linux Enterprise Desktop comes with support for Tablet PCs. In the following, learn how to install and configure your Tablet PC and discover some useful Linux® applications which accept input from digital pens.

The following Tablet PCs are supported:

- Tablet PCs with serial and USB Wacom tablet (pen based), touch-screen or multi-touch devices.
- Tablet PCs with FinePoint devices, such as Gateway C210X/M280E/CX2724 or HP Compaq TC1000.
- Tablet PCs with touch screen devices, such as Asus R2H, Clevo TN120R, Fujitsu Siemens Computers P-Series, LG C1, Samsung Q1/Q1-Ultra.

After you have installed the Tablet PC packages and configured your digitizer correctly, input with the pen (also called a stylus) can be used for the following actions and applications:

- Logging in to KDM or GDM
- Unlocking your screen on the KDE and GNOME desktops
- Actions that can also be triggered by other pointing devices (such as mouse or touch pad), for example, moving the cursor on the screen, starting applications, closing, resizing and moving windows, shifting window focus and dragging and dropping objects
- Using gesture recognition in applications of the X Window System
- Drawing with GIMP
- Taking notes or sketching with applications like Jarnal or Xournal or editing larger amounts of text with Dasher
22.1 Installing Tablet PC Packages

The packages needed for Tablet PCs are included in the TabletPC installation pattern—if this is selected during installation, the following packages should already be installed on your system:

- **cellwriter**: a character-based hardwriting input panel
- **jarnal**: a Java-based note taking application
- **xournal**: an application for note taking and sketching
- **xstroke**: a gesture recognition program for the X Window System
- **xvkbd**: a virtual keyboard for the X Window System
- **x11-input-fujitsu**: the X input module for Fujitsu P-Series tablets
- **x11-input-evtouch**: the X input module for some Tablet PCs with touch screens
- **xorg-x11-driver-input**: the X input module for input devices, including the module for Wacom devices.

If these packages are not installed, manually install the packages you need from command line or select the TabletPC pattern for installation in YaST.

22.2 Configuring Your Tablet Device

During installation, your tablet or touch device is configured by default. If you have trouble with the configuration of your Wacom device, you use **xsetwacom** on the command line to change the settings.

22.3 Using the Virtual Keyboard

To log in to the KDE or GNOME desktop or to unlock the screen, you can either enter your username and password as usual or via the virtual keyboard (xvkbd) displayed below the login field. To configure the keyboard or to access the integrated help, click the xvkbd field at the left lower corner and open the xvkbd main menu.

If your input is not visible (or is not transferred to the window where you need it), redirect the focus by clicking the Focus key in xvkbd and then clicking into the window that should get the keyboard events.
If you want to use xvkbd after login, start it from the main menu or with `xvkbd` from a shell.

### 22.4 Rotating Your Display

Use KRandRTray (KDE) or gnome-display-properties (GNOME) to rotate or resize your display manually on the fly. Both KRandRTray and gnome-display-properties are applets for the RANDR extension of the X server.

Start KRandRTray or gnome-display-properties from the main menu, or enter `krandrtray` or `gnome-display-properties` to start the applet from a shell. After you have started the applet, the applet icon is usually added to your system tray. If the gnome-display-properties icon does not automatically appear in the system tray, make sure `Show Displays in Panel` is activated in the `Monitor Resolution Settings` dialog.

To rotate your display with KRandRTray, right-click the icon and select `Configure Display`. Select the desired orientation from the configuration dialog.

To rotate your display with gnome-display-properties, right-click the icon and select the desired orientation. Your display is immediately tilted to the new direction. The orientation of the graphics tablet changes also, so it can still interpret the movement of the pen correctly.

If you have problems changing the orientation of your desktop, refer to Section 22.7, “Troubleshooting” for more information.

For more information about the desktop-specific applets for the RANDR extension refer to Book “KDE User Guide”, Chapter 3 “Customizing Your Settings”, Section 3.3.2 “Monitor Settings” and Book “GNOME User Guide”, Chapter 3 “Customizing Your Settings”, Section 3.2.5 “Configuring Screens”.

![FIGURE 22.1: XVKBD VIRTUAL KEYBOARD](image)
22.5 Using Gesture Recognition

SUSE Linux Enterprise Desktop includes both CellWriter and xstroke for gesture recognition. Both applications accept gestures executed with the pen or other pointing devices as input for applications on the X Window System.

22.5.1 Using CellWriter

With CellWriter, you can write characters into a grid of cells—the writing is instantly recognized on a character basis. After you have finished writing, you can send the input to the currently focused application. Before you can use CellWriter for gesture recognition, the application needs to be trained to recognize your handwriting: You need to train each character of a certain map of keys (untrained characters are not activated and thus cannot be used).

**PROCEDURE 22.1: TRAINING CELLWRITER**

1. Start CellWriter from the main menu or with `cellwriter` from the command line. On the first start, CellWriter automatically starts in the training mode. In training mode it shows a set of characters of the currently chosen key map.

2. Enter the gesture you would like to use for a character into the respective character's cell. With the first input, the background changes its color to white, whereas the character itself is shown in light gray. Repeat the gesture multiple times until the character changes its color to black. Untrained characters are shown on a light gray or brown background (depending on the desktop's color scheme).

3. Repeat this step until you have trained CellWriter for all characters you need.

4. If you want to train CellWriter for another language, click the **Setup** button and select a language from the **Languages** tab. Close the configuration dialog. Click the **Train** button and select the key map from the drop-down box at the bottom right corner of the **CellWriter** window. Now repeat your training for the new map of keys.

5. After having finished the training for the map of keys, click the **Train** button to switch to the normal mode.

In the normal mode, the CellWriter windows shows a couple of empty cells in which to enter the gestures. The characters are not sent to another application until you click the **Enter** button, so you can correct or delete characters before you use them as input. Characters that have been recognized with a low degree of confidence will appear highlighted. To correct your input, use
the context menu that appears on right-clicking a cell. To delete a character, either use your pen’s eraser, or middle-click with the mouse to clear the cell. After finishing your input in CellWriter, define which application should receive the input by clicking into the application’s window. Then send the input to the application by clicking Enter.

If you click the Keys button in CellWriter, you get a virtual keyboard that can be used instead of the handwriting recognition.

To hide CellWriter, close the CellWriter window. The application now appears as icon in your system tray. To show the input window again, click the icon in the system tray.

22.5.2 Using Xstroke

With xstroke, you can use gestures with your pen or other pointing devices as input for applications on the X Window System. The xstroke alphabet is a unistroke alphabet that resembles the Graffiti® alphabet. When activated, xstroke sends the input to the currently focused window.

1. Start xstroke from the main menu or with xstroke from a shell. This adds a pencil icon to your system tray.

2. Start the application for which you want to create text input with the pen (for example, a terminal window, a text editor or an LibreOffice Writer).

3. To activate the gesture recognition mode, click the pencil icon once.

4. Perform some gestures on the graphics tablet with the pen or another pointing device. xstroke captures the gestures and transfers them to text that appears in the application window that has the focus.

5. To switch focus to a different window, click the desired window with the pen and hold for a moment (or use the keyboard shortcut defined in your desktop’s control center).

6. To deactivate the gesture recognition mode, click the pencil icon again.
22.6 Taking Notes and Sketching with the Pen

To create drawings with the pen, you can use a professional graphics editor like GIMP or try one of the note-taking applications, Xournal or Jarnal. With both Xournal and Jarnal, you can take notes, create drawings or comment PDF files with the pen. As a Java-based application available for several platforms, Jarnal also offers basic collaboration features. For more information, refer to [http://www.dklevine.com/general/software/tc1000/jarnal-net.htm](http://www.dklevine.com/general/software/tc1000/jarnal-net.htm). When saving your contents, Jarnal stores the data in an archive format (*.jaj) that also contains a file in SVG format.

Start Jarnal or Xournal from the main menu or by entering `jarnal` or `xournal` in a shell. To comment a PDF file in Xournal, for example, select `File > Annotate PDF` and open the PDF file from your file system. Use the pen or another pointing device to annotate the PDF and save your changes with `File > Export to PDF`.

Dasher is another useful application. It was designed for situations where keyboard input is impractical or unavailable. With a bit of training, you can rapidly enter larger amounts of text using only the pen (or other input devices—it can even be driven with an eye tracker).
Start Dasher from the main menu or with `dasher` from a shell. Move your pen in one direction and the application starts to zoom into the letters on the right side. From the letters passing the cross hairs in the middle, the text is created or predicted and is printed to the upper part of the window. To stop or start writing, click the display once with the pen. Modify the zooming speed at the bottom of the window.

![Image of Dasher interface with text 'Hello World']

**FIGURE 22.4: EDITING TEXTS WITH DASHER**

The Dasher concept works for many languages. For more information, refer to the Dasher Web site, which offers comprehensive documentation, demonstrations and training texts. Find it at [http://www.inference.phy.cam.ac.uk/dasher/](http://www.inference.phy.cam.ac.uk/dasher/)
22.7 Troubleshooting

Virtual Keyboard Does Not Appear on Login Screen

Occasionally, the virtual keyboard is not displayed on the login screen. To solve this, restart the X server by pressing \texttt{Ctrl-Alt-<—} or press the appropriate key on your Tablet PC (if you use a slate model without integrated keyboard). If the virtual keyboard still does not show, connect an external keyboard to your slate model and log in using the hardware keyboard.

Orientation of the Wacom Graphics Tablets Does Not Change

With the \texttt{xrandr} command, you can change the orientation of your display from within a shell. Enter \texttt{xrandr --help} to view the options available. To simultaneously change the orientation of your graphics tablet, the command needs to be modified as described below:

- For normal orientation (0° rotation):

  \texttt{xrandr -o normal && xsetwacom --set "Serial Wacom Tablet" Rotate NONE}

- For 90° rotation (clockwise, portrait):

  \texttt{xrandr -o right && xsetwacom --set "Serial Wacom Tablet" Rotate CW}

- For 180° rotation (landscape):

  \texttt{xrandr -o inverted && xsetwacom --set "Serial Wacom Tablet" Rotate HALF}

- For 270° rotation (counterclockwise, portrait):

  \texttt{xrandr -o left && xsetwacom --set "Serial Wacom Tablet" Rotate CCW}

Note that the commands above depend on the output of the \texttt{xsetwacom list} command. Replace \texttt{"Serial Wacom Tablet"} with the output for the stylus or the touch device. If you have a Wacom device with touch support (you can use your fingers on the tablet to move the cursor), you need to rotate also the touch device.
22.8 For More Information

Some of the applications mentioned here do not offer integrated online help, but you can find some useful information about usage and configuration in your installed system in /usr/share/doc/package/packagename or on the Web:

- For the Xournal manual, refer to http://xjournal.sourceforge.net/manual.html
- The Jarnal documentation is located at http://jarnal.wikispaces.com/
- Find the xstroke man page at http://davesource.com/Projects/xstroke/xstroke.txt
- Find more information about the Linux Wacom project at: https://linuxwacom.github.io/
- Find a very informative Web site about the Dasher project at http://www.inference.phy.cam.ac.uk/dasher/
- Information on gnome-display-properties can be found at http://old-en.opensuse.org/GNOME/Multiscreen
IV Services

23 Basic Networking 245
24 SLP Services in the Network 304
25 Time Synchronization with NTP 307
26 Using NetworkManager 314
27 Samba 331
28 Sharing File Systems with NFS 335
29 File Synchronization 341
Linux offers the necessary networking tools and features for integration into all types of network structures. Network access using a network card, modem or other device can be configured with YaST. Manual configuration is also possible. In this chapter only the fundamental mechanisms and the relevant network configuration files are covered.

Linux and other Unix operating systems use the TCP/IP protocol. It is not a single network protocol, but a family of network protocols that offer various services. The protocols listed in Table 23.1, “Several Protocols in the TCP/IP Protocol Family”, are provided for the purpose of exchanging data between two machines via TCP/IP. Networks combined by TCP/IP, comprising a worldwide network, are also referred to as “the Internet.”

RFC stands for Request for Comments. RFCs are documents that describe various Internet protocols and implementation procedures for the operating system and its applications. The RFC documents describe the setup of Internet protocols. To expand your knowledge of any of the protocols, refer to the appropriate RFC documents. These are available at http://www.ietf.org/rfc.html.
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol: a connection-oriented secure protocol. The data to transmit is first sent by the application as a stream of data and converted into the appropriate format by the operating system. The data arrives at the respective application on the destination host in the original data stream format it was initially sent. TCP determines whether any data has been lost or jumbled during the transmission. TCP is implemented wherever the data sequence matters.</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol: a connectionless, insecure protocol. The data to transmit is sent in the form of packets generated by the application. The order in which the data arrives at the recipient is not guaranteed and data loss is possible. UDP is suitable for record-oriented applications. It features a smaller latency period than TCP.</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol: Essentially, this is not a protocol for the end user, but a special control protocol that issues error reports and can control the behavior of machines participating in TCP/IP data transfer. In addition, it provides a special echo mode that can be viewed using the program ping.</td>
</tr>
</tbody>
</table>

As shown in Figure 23.1, “Simplified Layer Model for TCP/IP”, data exchange takes place in different layers. The actual network layer is the insecure data transfer via IP (Internet protocol). On top of IP, TCP (transmission control protocol) guarantees, to a certain extent, security of the data transfer. The IP layer is supported by the underlying hardware-dependent protocol, such as ethernet.
The diagram provides one or two examples for each layer. The layers are ordered according to abstraction levels. The lowest layer is very close to the hardware. The uppermost layer, however, is almost a complete abstraction from the hardware. Every layer has its own special function. The special functions of each layer are mostly implicit in their description. The data link and physical layers represent the physical network used, such as ethernet.

Almost all hardware protocols work on a packet-oriented basis. The data to transmit is collected into packets (it cannot be sent all at once). The maximum size of a TCP/IP packet is approximately 64 KB. Packets are normally quite smaller, as the network hardware can be a limiting factor. The maximum size of a data packet on an ethernet is about fifteen hundred bytes. The size of a TCP/IP packet is limited to this amount when the data is sent over an ethernet. If more data is transferred, more data packets need to be sent by the operating system.

For the layers to serve their designated functions, additional information regarding each layer must be saved in the data packet. This takes place in the header of the packet. Every layer attaches a small block of data, called the protocol header, to the front of each emerging packet.
A sample TCP/IP data packet traveling over an ethernet cable is illustrated in Figure 23.2, “TCP/IP Ethernet Packet”. The proof sum is located at the end of the packet, not at the beginning. This simplifies things for the network hardware.

![Figure 23.2: TCP/IP Ethernet Packet](image)

When an application sends data over the network, the data passes through each layer, all implemented in the Linux kernel except the physical layer. Each layer is responsible for preparing the data so it can be passed to the next layer. The lowest layer is ultimately responsible for sending the data. The entire procedure is reversed when data is received. Like the layers of an onion, in each layer the protocol headers are removed from the transported data. Finally, the transport layer is responsible for making the data available for use by the applications at the destination. In this manner, one layer only communicates with the layer directly above or below it. For applications, it is irrelevant whether data is transmitted via a 100 Mbit/s FDDI network or via a 56-Kbit/s modem line. Likewise, it is irrelevant for the data line which kind of data is transmitted, as long as packets are in the correct format.

### 23.1 IP Addresses and Routing

The discussion in this section is limited to IPv4 networks. For information about IPv6 protocol, the successor to IPv4, refer to Section 23.2, “IPv6—The Next Generation Internet”. 

23.1.1 IP Addresses

Every computer on the Internet has a unique 32-bit address. These 32 bits (or 4 bytes) are normally written as illustrated in the second row in Example 23.1, “Writing IP Addresses”.

**EXAMPLE 23.1: WRITING IP ADDRESSES**

<table>
<thead>
<tr>
<th>IP Address (binary):</th>
<th>11000000 10101000 00000000 00010100</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address (decimal):</td>
<td>192. 168. 0. 20</td>
</tr>
</tbody>
</table>

In decimal form, the four bytes are written in the decimal number system, separated by periods. The IP address is assigned to a host or a network interface. It can be used only once throughout the world. There are exceptions to this rule, but these are not relevant to the following passages. The points in IP addresses indicate the hierarchical system. Until the 1990s, IP addresses were strictly categorized in classes. However, this system proved too inflexible and was discontinued. Now, **classless routing** (CIDR, classless interdomain routing) is used.

23.1.2 Netmasks and Routing

Netmasks are used to define the address range of a subnetwork. If two hosts are in the same subnetwork, they can reach each other directly. If they are not in the same subnetwork, they need the address of a gateway that handles all the traffic for the subnetwork. To check if two IP addresses are in the same subnet, simply “AND” both addresses with the netmask. If the result is identical, both IP addresses are in the same local network. If there are differences, the remote IP address, and thus the remote interface, can only be reached over a gateway.

To understand how the netmask works, look at Example 23.2, “Linking IP Addresses to the Netmask”. The netmask consists of 32 bits that identify how much of an IP address belongs to the network. All those bits that are 1 mark the corresponding bit in the IP address as belonging to the network. All bits that are 0 mark bits inside the subnetwork. This means that the more bits are 1, the smaller the subnetwork is. Because the netmask always consists of several successive 1 bits, it is also possible to just count the number of bits in the netmask. In Example 23.2, “Linking IP Addresses to the Netmask” the first net with 24 bits could also be written as 192.168.0.0/24.

**EXAMPLE 23.2: LINKING IP ADDRESSES TO THE NETMASK**

| IP address (192.168.0.20): | 11000000 10101000 00000000 00010100 |
To give another example: all machines connected with the same ethernet cable are usually located in the same subnetwork and are directly accessible. Even when the subnet is physically divided by switches or bridges, these hosts can still be reached directly.

IP addresses outside the local subnet can only be reached if a gateway is configured for the target network. In the most common case, there is only one gateway that handles all traffic that is external. However, it is also possible to configure several gateways for different subnets.

If a gateway has been configured, all external IP packets are sent to the appropriate gateway. This gateway then attempts to forward the packets in the same manner—from host to host—until it reaches the destination host or the packet's TTL (time to live) expires.
### TABLE 23.2: SPECIFIC ADDRESSES

<table>
<thead>
<tr>
<th>Address Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Network Address</td>
<td>This is the netmask AND any address in the network, as shown in Example 23.2, “Linking IP Addresses to the Netmask” under Result. This address cannot be assigned to any hosts.</td>
</tr>
<tr>
<td>Broadcast Address</td>
<td>This basically says, “Access all hosts in this subnetwork.” To generate this, the netmask is inverted in binary form and linked to the base network address with a logical OR. The above example therefore results in 192.168.0.255. This address cannot be assigned to any hosts.</td>
</tr>
<tr>
<td>Local Host</td>
<td>The address 127.0.0.1 is assigned to the “loopback device” on each host. A connection can be set up to your own machine with this address and with all addresses from the complete 127.0.0.0/8 loopback network as defined with IPv4. With IPv6 there is just one loopback address (::1).</td>
</tr>
</tbody>
</table>

Because IP addresses must be unique all over the world, you cannot just select random addresses. There are three address domains to use if you want to set up a private IP-based network. These cannot get any connection from the rest of the Internet, because they cannot be transmitted over the Internet. These address domains are specified in RFC 1597 and listed in Table 23.3, “Private IP Address Domains”.

### TABLE 23.3: PRIVATE IP ADDRESS DOMAINS

<table>
<thead>
<tr>
<th>Network/Netmask</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/255.0.0.0</td>
<td>10.x.x.x</td>
</tr>
<tr>
<td>172.16.0.0/255.240.0.0</td>
<td>172.16.x.x – 172.31.x.x</td>
</tr>
<tr>
<td>192.168.0.0/255.255.0.0</td>
<td>192.168.x.x</td>
</tr>
</tbody>
</table>
23.2 IPv6—The Next Generation Internet

Due to the emergence of the WWW (World Wide Web), the Internet has experienced explosive growth, with an increasing number of computers communicating via TCP/IP in the past fifteen years. Since Tim Berners-Lee at CERN (http://public.web.cern.ch) invented the WWW in 1990, the number of Internet hosts has grown from a few thousand to about a hundred million.

As mentioned, an IPv4 address consists of only 32 bits. Also, quite a few IP addresses are lost—they cannot be used due to the way in which networks are organized. The number of addresses available in your subnet is two to the power of the number of bits, minus two. A subnetwork has, for example, 2, 6, or 14 addresses available. To connect 128 hosts to the Internet, for example, you need a subnetwork with 256 IP addresses, from which only 254 are usable, because two IP addresses are needed for the structure of the subnetwork itself: the broadcast and the base network address.

Under the current IPv4 protocol, DHCP or NAT (network address translation) are the typical mechanisms used to circumvent the potential address shortage. Combined with the convention to keep private and public address spaces separate, these methods can certainly mitigate the shortage. The problem with them lies in their configuration, which is a chore to set up and a burden to maintain. To set up a host in an IPv4 network, you need a number of address items, such as the host's own IP address, the subnetmask, the gateway address and maybe a name server address. All these items need to be known and cannot be derived from somewhere else.

With IPv6, both the address shortage and the complicated configuration should be a thing of the past. The following sections tell more about the improvements and benefits brought by IPv6 and about the transition from the old protocol to the new one.

23.2.1 Advantages

The most important and most visible improvement brought by the new protocol is the enormous expansion of the available address space. An IPv6 address is made up of 128 bit values instead of the traditional 32 bits. This provides for as many as several quadrillion IP addresses.

However, IPv6 addresses are not only different from their predecessors with regard to their length. They also have a different internal structure that may contain more specific information about the systems and the networks to which they belong. More details about this are found in Section 23.2.2, “Address Types and Structure”.

Section 23.2.2, “Address Types and Structure”.
The following is a list of some other advantages of the new protocol:

**Autoconfiguration**
IPv6 makes the network “plug and play” capable, which means that a newly set up system integrates into the (local) network without any manual configuration. The new host uses its automatic configuration mechanism to derive its own address from the information made available by the neighboring routers, relying on a protocol called the *neighbor discovery* (ND) protocol. This method does not require any intervention on the administrator's part and there is no need to maintain a central server for address allocation—an additional advantage over IPv4, where automatic address allocation requires a DHCP server. Nevertheless if a router is connected to a switch, the router should send periodic advertisements with flags telling the hosts of a network how they should interact with each other. For more information, see RFC 2462 and the *radvd.conf* man page, and RFC 3315.

**Mobility**
IPv6 makes it possible to assign several addresses to one network interface at the same time. This allows users to access several networks easily, something that could be compared with the international roaming services offered by mobile phone companies: when you take your mobile phone abroad, the phone automatically logs in to a foreign service as soon as it enters the corresponding area, so you can be reached under the same number everywhere and are able to place an outgoing call just like in your home area.

**Secure Communication**
With IPv4, network security is an add-on function. IPv6 includes IPsec as one of its core features, allowing systems to communicate over a secure tunnel to avoid eavesdropping by outsiders on the Internet.

**Backward Compatibility**
Realistically, it would be impossible to switch the entire Internet from IPv4 to IPv6 at one time. Therefore, it is crucial that both protocols are able to coexist not only on the Internet, but also on one system. This is ensured by compatible addresses (IPv4 addresses can easily be translated into IPv6 addresses) and through the use of a number of tunnels. See Section 23.2.3, “Coexistence of IPv4 and IPv6”. Also, systems can rely on a *dual stack IP* technique to support both protocols at the same time, meaning that they have two network stacks that are completely separate, such that there is no interference between the two protocol versions.
Custom Tailored Services through Multicasting

With IPv4, some services, such as SMB, need to broadcast their packets to all hosts in the local network. IPv6 allows a much more fine-grained approach by enabling servers to address hosts through **multicasting**—by addressing a number of hosts as parts of a group (which is different from addressing all hosts through **broadcasting** or each host individually through **unicasting**). Which hosts are addressed as a group may depend on the concrete application. There are some predefined groups to address all name servers (the **all name servers multicast group**), for example, or all routers (the **all routers multicast group**).

23.2.2 Address Types and Structure

As mentioned, the current IP protocol is lacking in two important aspects: there is an increasing shortage of IP addresses and configuring the network and maintaining the routing tables is becoming a more complex and burdensome task. IPv6 solves the first problem by expanding the address space to 128 bits. The second one is countered by introducing a hierarchical address structure, combined with sophisticated techniques to allocate network addresses, as well as **multihoming** (the ability to assign several addresses to one device, giving access to several networks).

When dealing with IPv6, it is useful to know about three different types of addresses:

**Unicast**

Addresses of this type are associated with exactly one network interface. Packets with such an address are delivered to only one destination. Accordingly, unicast addresses are used to transfer packets to individual hosts on the local network or the Internet.

**Multicast**

Addresses of this type relate to a group of network interfaces. Packets with such an address are delivered to all destinations that belong to the group. Multicast addresses are mainly used by certain network services to communicate with certain groups of hosts in a well-directed manner.

**Anycast**

Addresses of this type are related to a group of interfaces. Packets with such an address are delivered to the member of the group that is closest to the sender, according to the principles of the underlying routing protocol. Anycast addresses are used to make it easier for hosts to find out about servers offering certain services in the given network area. All servers of the same type have the same anycast address. Whenever a host requests a service,
it receives a reply from the server with the closest location, as determined by the routing protocol. If this server should fail for some reason, the protocol automatically selects the second closest server, then the third one, and so forth.

An IPv6 address is made up of eight four-digit fields, each representing 16 bits, written in hexadecimal notation. They are separated by colons ( : ). Any leading zero bytes within a given field may be dropped, but zeros within the field or at its end may not. Another convention is that more than four consecutive zero bytes may be collapsed into a double colon. However, only one such :: is allowed per address. This kind of shorthand notation is shown in Example 23.3, “Sample IPv6 Address”, where all three lines represent the same address.

EXAMPLE 23.3: SAMPLE IPv6 ADDRESS

| fe80 : 0000 : 0000 : 0000 : 0000 : 10 : 1000 : 1a4 |
| fe80 : 0 : 0 : 0 : 10 : 1000 : 1a4 |
| fe80 : 0 : 0 : 10 : 1000 : 1a4 |

Each part of an IPv6 address has a defined function. The first bytes form the prefix and specify the type of address. The center part is the network portion of the address, but it may be unused. The end of the address forms the host part. With IPv6, the netmask is defined by indicating the length of the prefix after a slash at the end of the address. An address, as shown in Example 23.4, “IPv6 Address Specifying the Prefix Length”, contains the information that the first 64 bits form the network part of the address and the last 64 form its host part. In other words, the 64 means that the netmask is filled with 64 1-bit values from the left. Just like with IPv4, the IP address is combined with AND with the values from the netmask to determine whether the host is located in the same subnetwork or in another one.

EXAMPLE 23.4: IPV6 ADDRESS SPECIFYING THE PREFIX LENGTH

| fe80 : 10 : 1000 : 1a4/64 |

IPv6 knows about several predefined types of prefixes. Some of these are shown in Table 23.4, “Various IPv6 Prefixes”.

<table>
<thead>
<tr>
<th>TABLE 23.4: VARIOUS IPv6 PREFIXES</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Prefix (hex)</strong></td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>Prefix (hex)</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>2 or 3 as the first digit</td>
</tr>
<tr>
<td>fe80::/10</td>
</tr>
<tr>
<td>fec0::/10</td>
</tr>
<tr>
<td>ff</td>
</tr>
</tbody>
</table>

A unicast address consists of three basic components:

**Public Topology**

The first part (which also contains one of the prefixes mentioned above) is used to route packets through the public Internet. It includes information about the company or institution that provides the Internet access.

**Site Topology**

The second part contains routing information about the subnetwork to which to deliver the packet.
Interface ID

The third part identifies the interface to which to deliver the packet. This also allows for the MAC to form part of the address. Given that the MAC is a globally unique, fixed identifier coded into the device by the hardware maker, the configuration procedure is substantially simplified. In fact, the first 64 address bits are consolidated to form the EUI-64 token, with the last 48 bits taken from the MAC, and the remaining 24 bits containing special information about the token type. This also makes it possible to assign an EUI-64 token to interfaces that do not have a MAC, such as those based on PPP or ISDN.

On top of this basic structure, IPv6 distinguishes between five different types of unicast addresses:

:: (unspecified)
This address is used by the host as its source address when the interface is initialized for the first time—when the address cannot yet be determined by other means.

::1 (loopback)
The address of the loopback device.

IPv4 Compatible Addresses
The IPv6 address is formed by the IPv4 address and a prefix consisting of 96 zero bits. This type of compatibility address is used for tunneling (see Section 23.2.3, “Coexistence of IPv4 and IPv6”) to allow IPv4 and IPv6 hosts to communicate with others operating in a pure IPv4 environment.

IPv4 Addresses Mapped to IPv6
This type of address specifies a pure IPv4 address in IPv6 notation.

Local Addresses
There are two address types for local use:

link-local
This type of address can only be used in the local subnetwork. Packets with a source or target address of this type should not be routed to the Internet or other subnetworks. These addresses contain a special prefix (fe80::/10) and the interface ID of the network card, with the middle part consisting of zero bytes. Addresses of this type are used during automatic configuration to communicate with other hosts belonging to the same subnetwork.
Packets with this type of address may be routed to other subnetworks, but not to the wider Internet—they must remain inside the organization's own network. Such addresses are used for intranets and are an equivalent of the private address space defined by IPv4. They contain a special prefix (fec0::/10), the interface ID, and a 16 bit field specifying the subnetwork ID. Again, the rest is filled with zero bytes.

As a completely new feature introduced with IPv6, each network interface normally gets several IP addresses, with the advantage that several networks can be accessed through the same interface. One of these networks can be configured completely automatically using the MAC and a known prefix with the result that all hosts on the local network can be reached as soon as IPv6 is enabled (using the link-local address). With the MAC forming part of it, any IP address used in the world is unique. The only variable parts of the address are those specifying the site topology and the public topology, depending on the actual network in which the host is currently operating.

For a host to go back and forth between different networks, it needs at least two addresses. One of them, the home address, not only contains the interface ID but also an identifier of the home network to which it normally belongs (and the corresponding prefix). The home address is a static address and, as such, it does not normally change. Still, all packets destined to the mobile host can be delivered to it, regardless of whether it operates in the home network or somewhere outside. This is made possible by the completely new features introduced with IPv6, such as stateless autoconfiguration and neighbor discovery. In addition to its home address, a mobile host gets one or more additional addresses that belong to the foreign networks where it is roaming. These are called care-of addresses. The home network has a facility that forwards any packets destined to the host when it is roaming outside. In an IPv6 environment, this task is performed by the home agent, which takes all packets destined to the home address and relays them through a tunnel. On the other hand, those packets destined to the care-of address are directly transferred to the mobile host without any special detours.

23.2.3 Coexistence of IPv4 and IPv6

The migration of all hosts connected to the Internet from IPv4 to IPv6 is a gradual process. Both protocols will coexist for some time to come. The coexistence on one system is guaranteed where there is a dual stack implementation of both protocols. That still leaves the question of how an IPv6 enabled host should communicate with an IPv4 host and how IPv6 packets should be transported by the current networks, which are predominantly IPv4 based. The best solutions offer tunneling and compatibility addresses (see Section 23.2.2, “Address Types and Structure”).
IPv6 hosts that are more or less isolated in the (worldwide) IPv4 network can communicate through tunnels: IPv6 packets are encapsulated as IPv4 packets to move them across an IPv4 network. Such a connection between two IPv4 hosts is called a tunnel. To achieve this, packets must include the IPv6 destination address (or the corresponding prefix) as well as the IPv4 address of the remote host at the receiving end of the tunnel. A basic tunnel can be configured manually according to an agreement between the hosts' administrators. This is also called static tunneling.

However, the configuration and maintenance of static tunnels is often too labor-intensive to use them for daily communication needs. Therefore, IPv6 provides for three different methods of dynamic tunneling:

6over4
IPv6 packets are automatically encapsulated as IPv4 packets and sent over an IPv4 network capable of multicasting. IPv6 is tricked into seeing the whole network (Internet) as a huge local area network (LAN). This makes it possible to determine the receiving end of the IPv4 tunnel automatically. However, this method does not scale very well and is also hampered by the fact that IP multicasting is far from widespread on the Internet. Therefore, it only provides a solution for smaller corporate or institutional networks where multicasting can be enabled. The specifications for this method are laid down in RFC 2529.

6to4
With this method, IPv4 addresses are automatically generated from IPv6 addresses, enabling isolated IPv6 hosts to communicate over an IPv4 network. However, a number of problems have been reported regarding the communication between those isolated IPv6 hosts and the Internet. The method is described in RFC 3056.

IPv6 Tunnel Broker
This method relies on special servers that provide dedicated tunnels for IPv6 hosts. It is described in RFC 3053.

23.2.4 Configuring IPv6

To configure IPv6, you normally do not need to make any changes on the individual workstations. IPv6 is enabled by default. You can disable it during installation in the network configuration step described in Book "Deployment Guide", Chapter 3 “Installation with YaST”, Section 3.13.2.2 “Network Configuration”. To disable or enable IPv6 on an installed system, use the YaST Network
Settings module. On the Global Options tab, check or uncheck the Enable IPv6 option as necessary. If you want to enable it temporarily until the next reboot, enter `modprobe -i ipv6` as `root`. It is basically impossible to unload the ipv6 module once loaded.

Because of the autoconfiguration concept of IPv6, the network card is assigned an address in the link-local network. Normally, no routing table management takes place on a workstation. The network routers can be queried by the workstation, using the router advertisement protocol, for what prefix and gateways should be implemented. The radvd program can be used to set up an IPv6 router. This program informs the workstations which prefix to use for the IPv6 addresses and which routers. Alternatively, use zebra/quagga for automatic configuration of both addresses and routing.

Consult the ifcfg-tunnel (5) man page to get information about how to set up various types of tunnels using the `/etc/sysconfig/network` files.

### 23.2.5 For More Information

The above overview does not cover the topic of IPv6 comprehensively. For a more in-depth look at the new protocol, refer to the following online documentation and books:

  The starting point for everything about IPv6.

- [http://www.ipv6day.org/](http://www.ipv6day.org/)  
  All information needed to start your own IPv6 network.

  The list of IPv6-enabled products.

- [http://www.bieringer.de/linux/IPv6/](http://www.bieringer.de/linux/IPv6/)  
  Here, find the Linux IPv6-HOWTO and many links related to the topic.

- **RFC 2640**  
  The fundamental RFC about IPv6.

- **IPv6 Essentials**  
  A book describing all the important aspects of the topic is *IPv6 Essentials* by Silvia Hagen (ISBN 0-596-00125-8).
23.3 Name Resolution

DNS assists in assigning an IP address to one or more names and assigning a name to an IP address. In Linux, this conversion is usually carried out by a special type of software known as bind. The machine that takes care of this conversion is called a name server. The names make up a hierarchical system in which each name component is separated by a period. The name hierarchy is, however, independent of the IP address hierarchy described above.

Consider a complete name, such as jupiter.example.com, written in the format hostname.domain. A full name, referred to as a fully qualified domain name (FQDN), consists of a hostname and a domain name (example.com). The latter also includes the top level domain or TLD (.com).

TLD assignment has become quite confusing for historical reasons. Traditionally, three-letter domain names are used in the USA. In the rest of the world, the two-letter ISO national codes are the standard. In addition to that, longer TLDs were introduced in 2000 that represent certain spheres of activity (for example, .info, .name, .museum).

In the early days of the Internet (before 1990), the file /etc/hosts was used to store the names of all the machines represented over the Internet. This quickly proved to be impractical in the face of the rapidly growing number of computers connected to the Internet. For this reason, a decentralized database was developed to store the hostnames in a widely distributed manner. This database, similar to the name server, does not have the data pertaining to all hosts in the Internet readily available, but can dispatch requests to other name servers.

The top of the hierarchy is occupied by root name servers. These root name servers manage the top level domains and are run by the Network Information Center (NIC). Each root name server knows about the name servers responsible for a given top level domain. Information about top level domain NICs is available at http://www.internic.net.

DNS can do more than just resolve hostnames. The name server also knows which host is receiving e-mails for an entire domain—the mail exchanger (MX).

For your machine to resolve an IP address, it must know about at least one name server and its IP address. Easily specify such a name server with the help of YaST. If you have a modem dial-up connection, you may not need to configure a name server manually at all. The dial-up protocol provides the name server address as the connection is made.

The protocol whois is closely related to DNS. With this program, quickly find out who is responsible for any given domain.
Note: MDNS and .local Domain Names

The .local top level domain is treated as link-local domain by the resolver. DNS requests are send as multicast DNS requests instead of normal DNS requests. If you already use the .local domain in your name server configuration, you must switch this option off in /etc/host.conf. For more information, see the host.conf manual page.

If you want to switch off MDNS during installation, use nomdns=1 as a boot parameter.

For more information on multicast DNS, see http://www.multicastdns.org.

23.4 Configuring a Network Connection with YaST

There are many supported networking types on Linux. Most of them use different device names and the configuration files are spread over several locations in the file system. For a detailed overview of the aspects of manual network configuration, see Section 23.6, “Configuring a Network Connection Manually”.

On SUSE Linux Enterprise Desktop, where NetworkManager is active by default, all network cards are configured. If NetworkManager is not active, only the first interface with link up (with a network cable connected) is automatically configured. Additional hardware can be configured any time on the installed system. The following sections describe the network configuration for all types of network connections supported by SUSE Linux Enterprise Desktop.

23.4.1 Configuring the Network Card with YaST

To configure your wired or wireless network card in YaST, select Network Devices → Network Settings. After starting the module, YaST displays the Network Settings dialog with four tabs: Global Options, Overview, Hostname/DNS and Routing.

The Global Options tab allows you to set general networking options such as the use of Network-Manager, IPv6 and general DHCP options. For more information, see Section 23.4.1.1, “Configuring Global Networking Options”.

The Overview tab contains information about installed network interfaces and configurations. Any properly detected network card is listed with its name. You can manually configure new cards, remove or change their configuration in this dialog. If you want to manually configure a
card that was not automatically detected, see Section 23.4.1.3, "Configuring an Undetected Network Card". If you want to change the configuration of an already configured card, see Section 23.4.1.2, "Changing the Configuration of a Network Card".

The Hostname/DNS tab allows to set the hostname of the machine and name the servers to be used. For more information, see Section 23.4.1.4, "Configuring Hostname and DNS".

The Routing tab is used for the configuration of routing. See Section 23.4.1.5, "Configuring Routing" for more information.

![Network Settings](image)

**FIGURE 23.3: CONFIGURING NETWORK SETTINGS**

### 23.4.1.1 Configuring Global Networking Options

The Global Options tab of the YaST Network Settings module allows you to set important global networking options, such as the use of NetworkManager, IPv6 and DHCP client options. These settings are applicable for all network interfaces.

In the Network Setup Method choose the way network connections are managed. If you want a NetworkManager desktop applet to manage connections for all interfaces, choose User Controlled with NetworkManager. This option is well suited for switching between multiple wired and wireless networks. If you do not run a desktop environment (GNOME or KDE), or if your
computer is a Xen server, virtual system, or provides network services such as DHCP or DNS in your network, use the Traditional Method with ifup. If NetworkManager is used, nm-applet should be used to configure network options and the Overview, Hostname/DNS and Routing tabs of the Network Settings module are disabled. For more information on NetworkManager, see Chapter 26, Using NetworkManager.

In the IPv6 Protocol Settings choose whether you want to use the IPv6 protocol. It is possible to use IPv6 together with IPv4. By default, IPv6 is activated. However, in networks not using IPv6 protocol, response times can be faster with IPv6 protocol disabled. If you want to disable IPv6, uncheck the Enable IPv6 option. This disables autoload of the kernel module for IPv6. This will be applied after reboot.

In the DHCP Client Options configure options for the DHCP client. If you want the DHCP client to ask the server to always broadcast its responses, check Request Broadcast Response. It may be needed if your machine is moving between different networks. The DHCP Client Identifier must be different for each DHCP client on a single network. If left empty, it defaults to the hardware address of the network interface. However, if you are running several virtual machines using the same network interface and, therefore, the same hardware address, specify a unique free-form identifier here.

The Hostname to Send specifies a string used for the hostname option field when dhcpcd sends messages to DHCP server. Some DHCP servers update name server zones (forward and reverse records) according to this hostname (Dynamic DNS). Also, some DHCP servers require the Hostname to Send option field to contain a specific string in the DHCP messages from clients. Leave AUTO to send the current hostname (that is the one defined in /etc/HOSTNAME). Leave the option field empty for not sending any hostname. If you do not want to change the default route according to the information from DHCP, uncheck Change Default Route via DHCP.

23.4.1.2   Changing the Configuration of a Network Card

To change the configuration of a network card, select a card from the list of the detected cards in Network Settings › Overview in YaST and click Edit. The Network Card Setup dialog appears in which to adjust the card configuration using the General, Address and Hardware tabs. For information about wireless card configuration, see Section 20.5, “Configuration with YaST”.
23.4.1.2.1 Configuring IP Addresses

You can set the IP address of the network card or the way its IP address is determined in the Address tab of the Network Card Setup dialog. Both IPv4 and IPv6 addresses are supported. The network card can have No IP Address (which is useful for bonding devices), a Static IP Address (IPv4 or IPv6) or a Dynamic Address assigned via DHCP or Zeroconf or both.

If using Dynamic Address, select whether to use DHCP Version 4 Only (for IPv4), DHCP Version 6 Only (for IPv6) or DHCP Both Version 4 and 6.

If possible, the first network card with link that is available during the installation is automatically configured to use automatic address setup via DHCP. On SUSE Linux Enterprise Desktop, where NetworkManager is active by default, all network cards are configured.

DHCP should also be used if you are using a DSL line but with no static IP assigned by the ISP (Internet Service Provider). If you decide to use DHCP, configure the details in DHCP Client Options in the Global Options tab of the Network Settings dialog of the YaST network card configuration module. Specify whether the DHCP client should ask the server to always broadcast its responses in Request Broadcast Response. This option may be needed if your machine is a mobile client moving between networks. If you have a virtual host setup where different hosts communicate through the same interface, an DHCP Client Identifier is necessary to distinguish them.

DHCP is a good choice for client configuration but it is not ideal for server configuration. To set a static IP address, proceed as follows:

1. Select a card from the list of detected cards in the Overview tab of the YaST network card configuration module and click Edit.

2. In the Address tab, choose Static IP Address.

3. Enter the IP Address. Both IPv4 and IPv6 addresses can be used. Enter the network mask in Subnet Mask. If the IPv6 address is used, use Subnet Mask for prefix length in format /64. Optionally, you can enter a fully qualified Hostname for this address, which will be written to the /etc/hosts configuration file.

4. Click Next.

5. To activate the configuration, click OK.

If you use the static address, the name servers and default gateway are not configured automatically. To configure name servers, proceed as described in Section 23.4.1.4, “Configuring Hostname and DNS”. To configure a gateway, proceed as described in Section 23.4.1.5, “Configuring Routing.”
23.4.1.2.2  Configuring Aliases

One network device can have multiple IP addresses, called aliases.

Note: Aliases Are a Compatibility Feature

These so-called aliases resp. labels work with IPv4 only. With IPv6 they will be ignored. Using `iproute2` network interfaces can have one or more addresses.

Using YaST to set an alias for your network card, proceed as follows:

1. Select a card from the list of detected cards in the Overview tab of the YaST network card configuration module and click Edit.
2. In the Address > Additional Addresses tab, click Add.
3. Enter Alias Name, IP Address, and Netmask. Do not include the interface name in the alias name.
4. Click OK.
5. Click Next.
6. To activate the configuration, click OK.

23.4.1.2.3  Changing the Device Name and Udev Rules

It is possible to change the device name of the network card when it is used. It is also possible to determine whether the network card should be identified by udev via its hardware (MAC) address or via the bus ID. The later option is preferable in large servers to ease hot swapping of cards. To set these options with YaST, proceed as follows:

1. Select a card from the list of detected cards in the Overview tab of the YaST Network Settings module and click Edit.
2. Go to the Hardware tab. The current device name is shown in Udev Rules. Click Change.
3. Select whether udev should identify the card by its MAC Address or Bus ID. The current MAC address and bus ID of the card are shown in the dialog.
4. To change the device name, check the Change Device Name option and edit the name.
5. Click OK and Next.
6. To activate the configuration, click OK.

23.4.1.2.4 Changing Network Card Kernel Driver

For some network cards, several kernel drivers may be available. If the card is already configured, YaST allows you to select a kernel driver to be used from a list of available suitable drivers. It is also possible to specify options for the kernel driver. To set these options with YaST, proceed as follows:

1. Select a card from the list of detected cards in the Overview tab of the YaST Network Settings module and click Edit.

2. Go to the Hardware tab.

3. Select the kernel driver to be used in Module Name. Enter any options for the selected driver in Options in the form \texttt{option=value}. If more options are used, they should be space-separated.

4. Click OK and Next.

5. To activate the configuration, click OK.

23.4.1.2.5 Activating the Network Device

If you use the traditional method with ifup, you can configure your device to either start during boot, on cable connection, on card detection, manually or never. To change device start-up, proceed as follows:

1. In YaST select a card from the list of detected cards in Network Devices \& Network Settings and click Edit.

2. In the General tab, select the desired entry from Device Activation. Choose \textit{At Boot Time} to start the device during the system boot. With \textit{On Cable Connection}, the interface is watched for any existing physical connection. With \textit{On Hotplug}, the interface is set as soon as available. It is similar to the \textit{At Boot Time} option, and only differs in the fact that no error occurs if the interface is not present at boot time. Choose \textit{Manually} to control the interface manually with \texttt{ifup}. Choose \textit{Never} to not start the device at all. The \textit{On NFSroot} is similar to \textit{At Boot Time}, but the interface does not shut down with the \texttt{rcnetwork stop} command. Use this if you use an nfs or iscsi root file system.
3. Click Next.

4. To activate the configuration, click OK.

Usually, only the system administrator can activate and deactivate network interfaces. If you want any user to be able to activate this interface via KInternet, select *Enable Device Control for Non-root User via KInternet*.

### 23.4.1.2.6 Setting Up Maximum Transfer Unit Size

You can set a maximum transmission unit (MTU) for the interface. MTU refers to the largest allowed packet size in bytes. A higher MTU brings higher bandwidth efficiency. However, large packets can block up a slow interface for some time, increasing the lag for further packets.

1. In YaST select a card from the list of detected cards in *Network Devices > Network Settings* and click *Edit*.

2. In the *General* tab, select the desired entry from the *Set MTU* list.

3. Click *Next*.

4. To activate the configuration, click *OK*.

### 23.4.1.2.7 Configuring the Firewall

Without having to enter the detailed firewall setup as described in *Book “Security Guide”, Chapter 15 “Masquerading and Firewalls”, Section 15.4.1 “Configuring the Firewall with YaST*”, you can determine the basic firewall setup for your device as part of the device setup. Proceed as follows:

1. Open the YaST *Network Devices > Network Settings* module. In the *Overview* tab, select a card from the list of detected cards and click *Edit*.

2. Enter the *General* tab of the *Network Settings* dialog.

3. Determine the firewall zone to which your interface should be assigned. The following options are available:

   **Firewall Disabled**

   This option is available only if the firewall is disabled and the firewall does not run at all. Only use this option if your machine is part of a greater network that is protected by an outer firewall.
Automatically Assign Zone

This option is available only if the firewall is enabled. The firewall is running and the interface is automatically assigned to a firewall zone. The zone which contains the keyword `any` or the external zone will be used for such an interface.

Internal Zone (Unprotected)

The firewall is running, but does not enforce any rules to protect this interface. Use this option if your machine is part of a greater network that is protected by an outer firewall. It is also useful for the interfaces connected to the internal network, when the machine has more network interfaces.

Demilitarized Zone

A demilitarized zone is an additional line of defense in front of an internal network and the (hostile) Internet. Hosts assigned to this zone can be reached from the internal network and from the Internet, but cannot access the internal network.

External Zone

The firewall is running on this interface and fully protects it against other—presumably hostile—network traffic. This is the default option.

4. Click Next.

5. Activate the configuration by clicking OK.

23.4.1.3 Configuring an Undetected Network Card

Your card may not be detected correctly. In this case, the card is not included in the list of detected cards. If you are sure that your system includes a driver for your card, you can configure it manually. You can also configure special network device types, such as bridge, bond, TUN or TAP. To configure an undetected network card (or a special device) proceed as follows:

1. In the Network Devices > Network Settings > Overview dialog in YaST click Add.

2. In the Hardware dialog, set the Device Type of the interface from the available options and Configuration Name. If the network card is a PCMCIA or USB device, activate the respective check box and exit this dialog with Next. Otherwise, you can define the kernel Module Name to be used for the card and its Options, if necessary.
In `ethtool Options`, you can set `ethtool` options used by `ifup` for the interface. See the `ethtool` manual page for available options. If the option string starts with a `-` (for example `-K interface_name rx on`), the second word in the string is replaced with the current interface name. Otherwise (for example `autoneg off speed 10`) `ifup` prepends `-s interface_name`.

3. Click Next.

4. Configure any needed options, such as the IP address, device activation or firewall zone for the interface in the `General`, `Address`, and `Hardware` tabs. For more information about the configuration options, see Section 23.4.1.2, “Changing the Configuration of a Network Card”.

5. If you selected `Wireless` as the device type of the interface, configure the wireless connection in the next dialog. Detailed information about wireless device configuration is available in Chapter 20, Wireless LAN.

6. Click Next.

7. To activate the new network configuration, click OK.

23.4.1.4 Configuring Hostname and DNS

If you did not change the network configuration during installation and the wired card was already available, a hostname was automatically generated for your computer and DHCP was activated. The same applies to the name service information your host needs to integrate into a network environment. If DHCP is used for network address setup, the list of domain name servers is automatically filled with the appropriate data. If a static setup is preferred, set these values manually.

To change the name of your computer and adjust the name server search list, proceed as follows:

1. Go to the Network Settings > Hostname/DNS tab in the Network Devices module in YaST.

2. Enter the Hostname and, if needed, the Domain Name. The domain is especially important if the machine is a mail server. Note that the hostname is global and applies to all set network interfaces.
If you are using DHCP to get an IP address, the hostname of your computer will be automatically set by the DHCP. You may want to disable this behavior if you connect to different networks, because they may assign different hostnames and changing the hostname at runtime may confuse the graphical desktop. To disable using DHCP to get an IP address uncheck Change Hostname via DHCP.

Assign Hostname to Loopback IP associates your hostname with 127.0.0.2 (loopback) IP address in /etc/hosts. This is an useful option if you want to have the hostname resolvable at all times, even without active network.

3. In Modify DNS Configuration, select the way the DNS configuration (name servers, search list, the content of the /etc/resolv.conf file) is modified.

If the Use Default Policy option is selected, the configuration is handled by the netconfig script which merges the data defined statically (with YaST or in the configuration files) with data obtained dynamically (from the DHCP client or NetworkManager). This default policy is sufficient in most cases.

If the Only Manually option is selected, netconfig is not allowed to modify the /etc/resolv.conf file. However, this file can be edited manually.

If the Custom Policy option is selected, a Custom Policy Rule string defining the merge policy should be specified. The string consists of a comma-separated list of interface names to be considered a valid source of settings. Except for complete interface names, basic wild cards to match multiple interfaces are allowed, as well. For example, eth* ppp? will first target all eth and then all ppp0-ppp9 interfaces. There are two special policy values that indicate how to apply the static settings defined in the /etc/sysconfig/network/config file:

- **STATIC**
  The static settings have to be merged together with the dynamic settings.

- **STATIC_FALLBACK**
  The static settings are used only when no dynamic configuration is available.

For more information, see the man 8 netconfig.

4. Enter the Name Servers and fill in the Domain Search list. Name servers must be specified by IP addresses, such as 192.168.1.116, not by hostnames. Names specified in the Domain Search tab are domain names used for resolving hostnames without a specified domain. If more than one Domain Search is used, separate domains with commas or white space.

5. To activate the configuration, click OK.
It is also possible to edit the hostname using YaST from the command line. The changes made by YaST take effect immediately (which is not the case when editing the `/etc/HOSTNAME` file manually). To change the hostname, use the following command:

```bash
yast dns edit hostname=hostname
```

To change the name servers, use the following commands:

```bash
yast dns edit nameserver1=192.168.1.116
yast dns edit nameserver2=192.168.1.116
yast dns edit nameserver3=192.168.1.116
```

### 23.4.1.5 Configuring Routing

To make your machine communicate with other machines and other networks, routing information must be given to make network traffic take the correct path. If DHCP is used, this information is automatically provided. If a static setup is used, this data must be added manually.

1. In YaST go to **Network Settings → Routing**.
2. Enter the IP address of the **Default Gateway** (IPv4 and IPv6 if necessary). The default gateway matches every possible destination, but if any other entry exists that matches the required address, use this instead of the default route.
3. More entries can be entered in the **Routing Table**. Enter the **Destination** network IP address, **Gateway** IP address and the **Netmask**. Select the **Device** through which the traffic to the defined network will be routed (the minus sign stands for any device). To omit any of these values, use the minus sign `-`. To enter a default gateway into the table, use `default` in the **Destination** field.

**Note**

If more default routes are used, it is possible to specify the metric option to determine which route has a higher priority. To specify the metric option, enter `-metric number` in **Options**. The route with the highest metric is used as default.
If the network device is disconnected, its route will be removed and the next one will be used. However, the current kernel does not use metric in static routing, only routing daemons like multipathd do.

4. If the system is a router, enable the *IP Forwarding* option in the *Network Settings*.

5. To activate the configuration, click *OK*.

### 23.4.2 Modem

In the YaST Control Center, access the modem configuration under *Network Devices > Modem*. If your modem was not automatically detected, go to the *Modem Devices* tab and open the dialog for manual configuration by clicking *Add*. Enter the interface to which the modem is connected under *Modem Device*.

**Tip: CDMA and GPRS Modems**

Configure supported CDMA and GPRS modems with the YaST *Modem* module just as you would configure regular modems.

#### Modem Parameters

Enter all modem configuration values. *more*

<table>
<thead>
<tr>
<th>Modern Device:</th>
<th>/dev/modem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial Prefix (if needed):</td>
<td></td>
</tr>
</tbody>
</table>

**Dial Mode**

- [x] Tone Dialing
- [ ] Pulse Dialing

**Special Settings**

- [x] Speaker On
- [x] Detect Dial Tone

*FIGURE 23.4: MODEM CONFIGURATION*
If you are behind a private branch exchange (PBX), you may need to enter a dial prefix. This is often a zero. Consult the instructions that came with the PBX to find out. Also select whether to use tone or pulse dialing, whether the speaker should be on and whether the modem should wait until it detects a dial tone. The last option should not be enabled if the modem is connected to an exchange.

Under Details, set the baud rate and the modem initialization strings. Only change these settings if your modem was not detected automatically or if it requires special settings for data transmission to work. This is mainly the case with ISDN terminal adapters. Leave this dialog by clicking OK. To delegate control over the modem to the normal user without root permissions, activate Enable Device Control for Non-root User via KInternet. In this way, a user without administrator permissions can activate or deactivate an interface. Under Dial Prefix Regular Expression, specify a regular expression. The Dial Prefix in KInternet, which can be modified by the normal user, must match this regular expression. If this field is left empty, the user cannot set a different Dial Prefix without administrator permissions.

In the next dialog, select the ISP. To choose from a predefined list of ISPs operating in your country, select Country. Alternatively, click New to open a dialog in which to provide the data for your ISP. This includes a name for the dial-up connection and ISP as well as the login and password provided by your ISP. Enable Always Ask for Password to be prompted for the password each time you connect.

In the last dialog, specify additional connection options:

**Dial on Demand**
If you enable Dial on Demand, set at least one name server. Use this feature only if your Internet connection is inexpensive, because there are programs that periodically request data from the Internet.

**Modify DNS when Connected**
This option is enabled by default, with the effect that the name server address is updated each time you connect to the Internet.

**Automatically Retrieve DNS**
If the provider does not transmit its domain name server after connecting, disable this option and enter the DNS data manually.

**Automatically Reconnect**
If this options is enabled, the connection is automatically reestablished after failure.
**Ignore Prompts**

This option disables the detection of any prompts from the dial-up server. If the connection build-up is slow or does not work at all, try this option.

**External Firewall Interface**

Selecting this option activates the firewall and sets the interface as external. This way, you are protected from outside attacks for the duration of your Internet connection.

**Idle Time-Out (seconds)**

With this option, specify a period of network inactivity after which the modem disconnects automatically.

**IP Details**

This opens the address configuration dialog. If your ISP does not assign a dynamic IP address to your host, disable *Dynamic IP Address* then enter your host's local IP address and the remote IP address. Ask your ISP for this information. Leave *Default Route* enabled and close the dialog by selecting *OK*.

Selecting *Next* returns to the original dialog, which displays a summary of the modem configuration. Close this dialog with *OK*.

---

**23.4.3 ISDN**

Use this module to configure one or several ISDN cards for your system. If YaST did not detect your ISDN card, click on *Add* in the *ISDN Devices* tab and manually select your card. Multiple interfaces are possible, but several ISPs can be configured for one interface. In the subsequent dialogs, set the ISDN options necessary for the proper functioning of the card.
In the next dialog, shown in Figure 23.5, “ISDN Configuration”, select the protocol to use. The default is Euro-ISDN (EDSS1), but for older or larger exchanges, select 1TR6. If you are in the US, select N1. Select your country in the relevant field. The corresponding country code then appears in the field next to it. Finally, provide your Area Code and the Dial Prefix if necessary. If you do not want to log all your ISDN traffic, uncheck the Start ISDN Log option.

Activate Device defines how the ISDN interface should be started: At Boot Time causes the ISDN driver to be initialized each time the system boots. Manually requires you to load the ISDN driver as root with the command `rcisdn start`. On Hotplug, used for PCMCIA or USB devices, loads the driver after the device is plugged in. When finished with these settings, select OK.

In the next dialog, specify the interface type for your ISDN card and add ISPs to an existing interface. Interfaces may be either the SyncPPP or the RawIP type, but most ISPs operate in the SyncPPP mode, which is described below.
The number to enter for My Phone Number depends on your particular setup:

**ISDN Card Directly Connected to Phone Outlet**

A standard ISDN line provides three phone numbers (called multiple subscriber numbers, or MSNs). If the subscriber asked for more, there may be up to 10. One of these MSNs must be entered here, but without your area code. If you enter the wrong number, your phone operator automatically falls back to the first MSN assigned to your ISDN line.

**ISDN Card Connected to a Private Branch Exchange**

Again, the configuration may vary depending on the equipment installed:

1. Smaller private branch exchanges (PBX) built for home purposes mostly use the Euro-ISDN (EDSS1) protocol for internal calls. These exchanges have an internal S0 bus and use internal numbers for the equipment connected to them.

   Use one of the internal numbers as your MSN. You should be able to use at least one of the exchange's MSNs that have been enabled for direct outward dialing. If this does not work, try a single zero. For further information, consult the documentation delivered with your phone exchange.

2. Larger phone exchanges designed for businesses normally use the 1TR6 protocol for internal calls. Their MSN is called EAZ and usually corresponds to the direct-dial number. For the configuration under Linux, it should be sufficient to enter the last digit of the EAZ. As a last resort, try each of the digits from 1 to 9.
For the connection to be terminated just before the next charge unit is due, enable ChargeHUP. However, remember that may not work with every ISP. You can also enable channel bundling (multilink PPP) by selecting the corresponding option. Finally, you can enable the firewall for your link by selecting External Firewall Interface and Restart Firewall. To enable the normal user without administrator permissions to activate or deactivate the interface, select the Enable Device Control for Non-root User via KInternet.

Details opens a dialog in which to implement more complex connection schemes which are not relevant for normal home users. Leave the Details dialog by selecting OK.

In the next dialog, configure IP address settings. If you have not been given a static IP by your provider, select Dynamic IP Address. Otherwise, use the fields provided to enter your host's local IP address and the remote IP address according to the specifications of your ISP. If the interface should be the default route to the Internet, select Default Route. Each host can only have one interface configured as the default route. Leave this dialog by selecting Next.

The following dialog allows you to set your country and select an ISP. The ISPs included in the list are call-by-call providers only. If your ISP is not in the list, select New. This opens the Provider Parameters dialog in which to enter all the details for your ISP. When entering the phone number, do not include any blanks or commas among the digits. Finally, enter your login and the password as provided by the ISP. When finished, select Next.

To use Dial on Demand on a stand-alone workstation, specify the name server (DNS server) as well. Most ISPs support dynamic DNS, which means the IP address of a name server is sent by the ISP each time you connect. For a single workstation, however, you still need to provide a placeholder address like 192.168.22.99. If your ISP does not support dynamic DNS, specify the name server IP addresses of the ISP. If desired, specify a time-out for the connection—the period of network inactivity (in seconds) after which the connection should be automatically terminated. Confirm your settings with Next. YaST displays a summary of the configured interfaces. To activate these settings, select OK.

### 23.4.4 Cable Modem

In some countries it is quite common to access the Internet through the TV cable network. The TV cable subscriber usually gets a modem that is connected to the TV cable outlet on one side and to a computer network card on the other (using a 10Base-TG twisted pair cable). The cable modem then provides a dedicated Internet connection with a fixed IP address.
Depending on the instructions provided by your ISP, when configuring the network card either select *Dynamic Address* or *Statically Assigned IP Address*. Most providers today use DHCP. A static IP address often comes as part of a special business account.

### 23.4.5 DSL

To configure your DSL device, select the *DSL* module from the YaST *Network Devices* section. This YaST module consists of several dialogs in which to set the parameters of DSL links based on one of the following protocols:

- PPP over Ethernet (PPPoE)
- PPP over ATM (PPPoATM)
- CAPI for ADSL (Fritz Cards)
- Point-to-Point Tunneling Protocol (PPTP)—Austria

In the *DSL Devices* tab of the *DSL Configuration Overview* dialog, you will find a list of installed DSL devices. To change the configuration of a DSL device, select it in the list and click *Edit*. If you click *Add*, you can manually configure a new DSL device.

The configuration of a DSL connection based on PPPoE or PPTP requires that the corresponding network card be set up in the correct way. If you have not done so yet, first configure the card by selecting *Configure Network Cards* (see Section 23.4.1, “Configuring the Network Card with YaST”). In the case of a DSL link, addresses may be assigned automatically but not via DHCP, which is why you should not enable the option *Dynamic Address*. Instead, enter a static dummy address for the interface, such as `192.168.22.1`. In *Subnet Mask*, enter `255.255.255.0`. If you are configuring a stand-alone workstation, leave *Default Gateway* empty.

**Tip**

Values in *IP Address* and *Subnet Mask* are only placeholders. They are only needed to initialize the network card and do not represent the DSL link as such.
In the first DSL configuration dialog (see Figure 23.7, “DSL Configuration”), select the **PPP Mode** and the **Ethernet Card** to which the DSL modem is connected (in most cases, this is `eth0`). Then use **Activate Device** to specify whether the DSL link should be established during the boot process. Click **Enable Device Control for Non-root User via KInternet** to authorize the normal user without root permissions to activate or deactivate the interface with KInternet.

In the next dialog select your country and choose from a number of ISPs operating in it. The details of any subsequent dialogs of the DSL configuration depend on the options set so far, which is why they are only briefly mentioned in the following paragraphs. For details on the available options, read the detailed help available from the dialogs.

**DSL Configuration**
Here, set the most important settings for the DSL connection.

**DSL Connection Settings**

**PPP Mode:**

- PPP over Ethernet

**PPP Mode-Dependent Settings**

**VLAN:**

**Ethernet Card**

- [2566DC Gigabit Network Connection](#)
- [Network Card - DHCP address](#)

**Server Name or IP Address:**

- [10.0.0.13](#)

**Activate device:**

- Manually

- **Enable Device Control for Non-root User Via KInternet**

**FIGURE 23.7: DSL CONFIGURATION**

To use **Dial on Demand** on a stand-alone workstation, also specify the name server (DNS server). Most ISPs support dynamic DNS—the IP address of a name server is sent by the ISP each time you connect. For a single workstation, however, provide a placeholder address like `192.168.22.99`. If your ISP does not support dynamic DNS, enter the name server IP address provided by your ISP.
Idle Time-Out (seconds) defines a period of network inactivity after which to terminate the connection automatically. A reasonable time-out value is between 60 and 300 seconds. If Dial on Demand is disabled, it may be useful to set the time-out to zero to prevent automatic hang-up.

The configuration of T-DSL is very similar to the DSL setup. Just select T-Online as your provider and YaST opens the T-DSL configuration dialog. In this dialog, provide some additional information required for T-DSL—the line ID, the T-Online number, the user code and your password. All of these should be included in the information you received after subscribing to T-DSL.

### 23.5 NetworkManager

NetworkManager is the ideal solution for laptops and other portable computers. With NetworkManager, you do not need to worry about configuring network interfaces and switching between networks when you are moving.

#### 23.5.1 NetworkManager and ifup

However, NetworkManager is not a suitable solution for all cases, so you can still choose between the traditional method for managing network connections (ifup) and NetworkManager. If you want to manage your network connection with NetworkManager, enable NetworkManager in the YaST Network Settings module as described in Section 26.2, “Enabling or Disabling NetworkManager” and configure your network connections with NetworkManager. For a list of use cases and a detailed description of how to configure and use NetworkManager, refer to Chapter 26, Using NetworkManager.

Some differences between ifup and NetworkManager include:

**root Privileges**

If you use NetworkManager for network setup, you can easily switch, stop or start your network connection at any time from within your desktop environment using an applet. NetworkManager also makes it possible to change and configure wireless card connections without requiring root privileges. For this reason, NetworkManager is the ideal solution for a mobile workstation.
Traditional configuration with ifup also provides some ways to switch, stop or start the connection with or without user intervention, like user-managed devices. However, this always requires \texttt{root} privileges to change or configure a network device. This is often a problem for mobile computing, where it is not possible to preconfigure all the connection possibilities.

Types of Network Connections
Both traditional configuration and NetworkManager can handle network connections with a wireless network (with WEP, WPA-PSK, and WPA-Enterprise access) and wired networks using DHCP and static configuration. They also support connection through dial-up, DSL and VPN. With NetworkManager you can also connect a mobile broadband (3G) modem, which is not possible with the traditional configuration.

NetworkManager tries to keep your computer connected at all times using the best connection available. If the network cable is accidentally disconnected, it tries to reconnect. It can find the network with the best signal strength from the list of your wireless connections and automatically use it to connect. To get the same functionality with ifup, a great deal of configuration effort is required.

23.5.2 NetworkManager Functionality and Configuration Files

The individual network connection settings created with NetworkManager are stored in configuration profiles. The system connections configured with either NetworkManager or YaST are saved in \texttt{/etc/networkmanager/system-connections/*} or in \texttt{/etc/sysconfig/network/ifcfg-*}. Any user-defined connections are stored in GConf for GNOME or \texttt{$HOME/.kde4/share/apps/networkmanagement/*} for KDE.

In case no profile is configured, NetworkManager automatically creates one and names it \texttt{Auto $INTERFACE-NAME}. That is made in an attempt to work without any configuration for as many cases as (securely) possible. If the automatically created profiles do not suit your needs, use the network connection configuration dialogs provided by KDE or GNOME to modify them as desired. For more information, refer to Section 26.3, “Configuring Network Connections”.

23.5.3 Controlling and Locking Down NetworkManager Features

On centrally administered machines, certain NetworkManager features can be controlled or disabled with PolicyKit, for example if a user is allowed to modify administrator defined connections or if a user is allowed to define his own network configurations. To view or change the
respective NetworkManager policies, start the graphical Authorizations tool for PolicyKit. In the tree on the left side, find them below the network-manager-settings entry. For an introduction to PolicyKit and details on how to use it, refer to Book “Security Guide”, Chapter 9 “PolicyKit”.

23.6 Configuring a Network Connection Manually

Manual configuration of the network software should always be the last alternative. Using YaST is recommended. However, this background information about the network configuration can also assist your work with YaST.

When the Kernel detects a network card and creates a corresponding network interface, it assigns the device a name depending on the order of device discovery, or order of the loading of the Kernel modules. The default Kernel device names are only predictable in very simple or tightly controlled hardware environments. Systems which allow adding or removing hardware during runtime or support automatic configuration of devices cannot expect stable network device names assigned by the Kernel across reboots.

However, all system configuration tools rely on persistent interface names. This problem is solved by udev. The udev persistent net generator (/lib/udev/rules.d/75-persistent-net-generator.rules) generates a rule matching the hardware (using its hardware address by default) and assigns a persistently unique interface for the hardware. The udev database of network interfaces is stored in the file /etc/udev/rules.d/70-persistent-net.rules. Every line in the file describes one network interface and specifies its persistent name. System administrators can change the assigned names by editing the NAME="" entries. The persistent rules can also be modified using YaST.

*Table 23.5, “Manual Network Configuration Scripts”* summarizes the most important scripts involved in the network configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>ifup</em>, <em>ifdown</em>, <em>ifstatus</em></td>
<td>The <em>if</em> scripts start or stop network interfaces, or return the status of the specified interface. For more information, see the <em>ifup</em> manual page.</td>
</tr>
</tbody>
</table>
The `rcnetwork` script can be used to start, stop or restart all network interfaces (or just a specified one). Use `rcnetwork stop` to stop, `rcnetwork start` to start and `rcnetwork restart` to restart network interfaces. If you want to stop, start or restart just one interface, use the command followed by the interface name, for example `rcnetwork restart eth0`. The `rcnetwork status` command displays the state of the interfaces, their IP addresses and whether a DHCP client is running. With `rcnetwork stop-all-dhcp-clients` and `rcnetwork restart-all-dhcp-clients` you can stop or restart DHCP clients running on network interfaces.

For more information about udev and persistent device names, see Chapter 16, Dynamic Kernel Device Management with udev.

23.6.1 Configuration Files

This section provides an overview of the network configuration files and explains their purpose and the format used.

23.6.1.1 `/etc/sysconfig/network/ifcfg-*`

These files contain the configurations for network interfaces. They include information such as the start mode and the IP address. Possible parameters are described in the manual page of `ifup`. Additionally, most variables from the `dhcp` file can be used in the `ifcfg-*` files if a general setting should be used for only one interface. However, most of the `/etc/sysconfig/network/config` variables are global and cannot be overridden in ifcfg-files. For example `NETWORKMANAGER` or `NETCONFIG_*` variables are global.
For _ifcfg.template_, see Section 23.6.1.2, “/etc/sysconfig/network/config and /etc/sysconfig/network/dhcp”.

23.6.1.2 /etc/sysconfig/network/config and /etc/sysconfig/network/dhcp

The file _config_ contains general settings for the behavior of _ifup_, _ifdown_ and _ifstatus_. _dhcp_ contains settings for DHCP. The variables in both configuration files are commented. Some of the variables from /etc/sysconfig/network/config can also be used in ifcfg-* files, where they are given a higher priority. The /etc/sysconfig/network/ifcfg.template file lists variables that can be specified in a per interface scope. However, most of the /etc/sysconfig/network/config variables are global and cannot be overridden in ifcfg-files. For example, NETWORKMANAGER or NETCONFIG_* variables are global.

23.6.1.3 /etc/sysconfig/network/routes and /etc/sysconfig/network/ifroute-*

The static routing of TCP/IP packets is determined here. All the static routes required by the various system tasks can be entered in the /etc/sysconfig/network/routes file: routes to a host, routes to a host via a gateway and routes to a network. For each interface that needs individual routing, define an additional configuration file: /etc/sysconfig/network/ifroute-*. Replace * with the name of the interface. The entries in the routing configuration files look like this:

```
Destination Dummy/Gateway Netmask Device
127.0.0.0 0.0.0.0 255.255.255.0 lo
204.127.235.0 0.0.0.0 255.255.255.0 eth0
default 204.127.235.41 0.0.0.0 eth0
207.68.156.51 207.68.145.45 255.255.255.255 eth1
192.168.0.0 207.68.156.51 255.255.0.0 eth1
```

The route’s destination is in the first column. This column may contain the IP address of a network or host or, in the case of _reachable_ name servers, the fully qualified network or hostname. The second column contains the default gateway or a gateway through which a host or network can be accessed. The third column contains the netmask for networks or hosts behind a gateway. For example, the mask is _255.255.255.255_ for a host behind a gateway.
The fourth column is only relevant for networks connected to the local host such as loopback, Ethernet, ISDN, PPP and dummy device. The device name must be entered here.

An (optional) fifth column can be used to specify the type of a route. Columns that are not needed should contain a minus sign - to ensure that the parser correctly interprets the command. For details, refer to the routes(5) man page.

The unified format for IPv4 and IPv6 now looks as follows:

```
prefix/length/gateway - [interface]
```

And the so-called compatibility format looks accordingly:

```
prefix/gateway/length [interface]
```

For IPv4 you still can use the old format with netmask:

```
ipv4-network/gateway/ipv4-netmask [interface]
```

The following examples are equivalent:

```
2001:db8:abba:cafe::/64 2001:db8:abba:cafe::dead - eth0
208.77.188.0/24 208.77.188.166 - - eth0
2001:db8:abba:cafe:: 2001:db8:abba:cafe::dead 64 eth0
208.77.188.0 208.77.188.166 24 eth0
208.77.188.0 208.77.188.166 255.255.255.0 eth0
```

23.6.1.4 /etc/resolv.conf

The domain to which the host belongs is specified in this file (keyword search). Also listed is the status of the name server address to access (keyword nameserver). Multiple domain names can be specified in the file. When resolving a name that is not fully qualified, an attempt is made to generate one by attaching the individual search entries. Multiple name servers can be specified in multiple lines, each beginning with nameserver. Comments are preceded by # signs. Example 23.5, “/etc/resolv.conf” shows what /etc/resolv.conf could look like.

However, the /etc/resolv.conf should not be edited by hand. Instead, it is generated by the netconfig script. To define static DNS configuration without using YaST, edit the appropriate variables manually in the /etc/sysconfig/network/config file:

```
NETCONFIG_DNS_STATIC_SEARCHLIST
 list of DNS domain names used for hostname lookup
```
NETCONFIG_DNS_STATIC_SERVERS
list of name server IP addresses to use for hostname lookup

NETCONFIG_DNS_FORWARDER
defines the name of the DNS forwarder that has to be configured

To disable DNS configuration using netconfig, set NETCONFIG_DNS_POLICY=''. For more information about netconfig, see man 8 netconfig.

EXAMPLE 23.5: /etc/resolv.conf

# Our domain
search example.com
#
# We use dns.example.com (192.168.1.116) as name server
nameserver 192.168.1.116

23.6.1.5 /sbin/netconfig

netconfig is a modular tool to manage additional network configuration settings. It merges statically defined settings with settings provided by autoconfiguration mechanisms as DHCP or PPP according to a predefined policy. The required changes are applied to the system by calling the netconfig modules that are responsible for modifying a configuration file and restarting a service or a similar action.

netconfig recognizes three main actions. The netconfig modify and netconfig remove commands are used by daemons such as DHCP or PPP to provide or remove settings to netconfig. Only the netconfig update command is available for the user:

modify

The netconfig modify command modifies the current interface and service specific dynamic settings and updates the network configuration. Netconfig reads settings from standard input or from a file specified with the --lease-file filename option and internally stores them until a system reboot (or the next modify or remove action). Already existing settings for the same interface and service combination are overwritten. The interface is specified by the -i interface_name parameter. The service is specified by the -s service_name parameter.
**remove**

The netconfig remove command removes the dynamic settings provided by a mandatory action for the specified interface and service combination and updates the network configuration. The interface is specified by the `-i interface_name` parameter. The service is specified by the `-s service_name` parameter.

**update**

The netconfig update command updates the network configuration using current settings. This is useful when the policy or the static configuration has changed. Use the `-m module_type` parameter, if you want to update a specified service only (dns, nis, or ntp).

The netconfig policy and the static configuration settings are defined either manually or using YaST in the `/etc/sysconfig/network/config` file. The dynamic configuration settings provided by autoconfiguration tools as DHCP or PPP are delivered directly by these tools with the netconfig modify and netconfig remove actions. NetworkManager also uses netconfig modify and netconfig remove actions. When NetworkManager is enabled, netconfig (in policy mode auto) uses only NetworkManager settings, ignoring settings from any other interfaces configured using the traditional ifup method. If NetworkManager does not provide any setting, static settings are used as a fallback. A mixed usage of NetworkManager and the traditional ifup method is not supported.

For more information about netconfig, see `man 8 netconfig`.

### 23.6.1.6 /etc/hosts

In this file, shown in Example 23.6, `/etc/hosts`, IP addresses are assigned to hostnames. If no name server is implemented, all hosts to which an IP connection will be set up must be listed here. For each host, enter a line consisting of the IP address, the fully qualified hostname, and the hostname into the file. The IP address must be at the beginning of the line and the entries separated by blanks and tabs. Comments are always preceded by the `#` sign.

**EXAMPLE 23.6: /etc/hosts**

```
127.0.0.1 localhost
192.168.2.100 jupiter.example.com jupiter
192.168.2.101 venus.example.com venus
```
23.6.1.7 /etc/networks

Here, network names are converted to network addresses. The format is similar to that of the hosts file, except the network names precede the addresses. See Example 23.7, “/etc/networks”.

**EXAMPLE 23.7: /etc/networks**

<table>
<thead>
<tr>
<th>Network</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>loopback</td>
<td>127.0.0.0</td>
</tr>
<tr>
<td>localnet</td>
<td>192.168.0.0</td>
</tr>
</tbody>
</table>

23.6.1.8 /etc/host.conf

Name resolution—the translation of host and network names via the resolver library—is controlled by this file. This file is only used for programs linked to libc4 or libc5. For current glibc programs, refer to the settings in /etc/nsswitch.conf. A parameter must always stand alone in its own line. Comments are preceded by a # sign. Table 23.6, “Parameters for /etc/host.conf” shows the parameters available. A sample /etc/host.conf is shown in Example 23.8, “/etc/host.conf”.

**TABLE 23.6: PARAMETERS FOR /ETC/HOST.CONF**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| order hosts, bind | Specifies in which order the services are accessed for the name resolution. Available arguments are (separated by blank spaces or commas):  
|                 | hosts: searches the /etc/hosts file                                          |
|                 | bind: accesses a name server                                                |
|                 | nis: uses NIS                                                               |
| multi on/off    | Defines if a host entered in /etc/hosts can have multiple IP addresses.    |
| nospoof on spoofalert on/off | These parameters influence the name server spoofing but do not exert any influence on the network configuration. |
trim domainname

The specified domain name is separated from the hostname after hostname resolution (as long as the hostname includes the domain name). This option is useful only if names from the local domain are in the /etc/hosts file, but should still be recognized with the attached domain names.

EXAMPLE 23.8: /etc/host.conf

```bash
We have named running
order hosts bind
Allow multiple address
multi on
```

23.6.1.9 /etc/nsswitch.conf

The introduction of the GNU C Library 2.0 was accompanied by the introduction of the Name Service Switch (NSS). Refer to the nsswitch.conf(5) man page and The GNU C Library Reference Manual for details.

The order for queries is defined in the file /etc/nsswitch.conf. A sample nsswitch.conf is shown in Example 23.9, “/etc/nsswitch.conf”. Comments are preceded by # signs. In this example, the entry under the hosts database means that a request is sent to /etc/hosts (files) via DNS.

EXAMPLE 23.9: /etc/nsswitch.conf

```bash
passwd: compat
group: compat
hosts: files dns
networks: files dns
services: db files
protocols: db files
rpc: files
ethers: files
netmasks: files
netgroup: files nis
publickey: files
```
The “databases” available over NSS are listed in Table 23.7, “Databases Available via /etc/nsswitch.conf”.

The configuration options for NSS databases are listed in Table 23.8, “Configuration Options for NSS “Databases””.

**TABLE 23.7: DATABASES AVAILABLE VIA /ETC/NSSWITCH.CONF**

<table>
<thead>
<tr>
<th>Database</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliases</td>
<td>Mail aliases implemented by <code>sendmail</code>; see <code>man 5 aliases</code>.</td>
</tr>
<tr>
<td>ethers</td>
<td>Ethernet addresses.</td>
</tr>
<tr>
<td>netmasks</td>
<td>List of network and their subnet masks. Only needed, if you use subnetting.</td>
</tr>
<tr>
<td>group</td>
<td>For user groups used by <code>getgrent</code>. See also the man page for <code>group</code>.</td>
</tr>
<tr>
<td>hosts</td>
<td>For hostnames and IP addresses, used by <code>gethostbyname</code> and similar functions.</td>
</tr>
<tr>
<td>netgroup</td>
<td>Valid host and user lists in the network for the purpose of controlling access permissions; see the <code>netgroup(5)</code> man page.</td>
</tr>
<tr>
<td>networks</td>
<td>Network names and addresses, used by <code>getnetent</code>.</td>
</tr>
<tr>
<td>publickey</td>
<td>Public and secret keys for Secure_RPC used by NFS and NIS+.</td>
</tr>
<tr>
<td>passwd</td>
<td>User passwords, used by <code>getpwent</code>; see the <code>passwd(5)</code> man page.</td>
</tr>
<tr>
<td>protocols</td>
<td>Network protocols, used by <code>getprotoent</code>; see the <code>protocols(5)</code> man page.</td>
</tr>
<tr>
<td><strong>rpc</strong></td>
<td>Remote procedure call names and addresses, used by <code>getrpcbyname</code> and similar functions.</td>
</tr>
<tr>
<td><strong>services</strong></td>
<td>Network services, used by <code>getservent</code>.</td>
</tr>
<tr>
<td><strong>shadow</strong></td>
<td>Shadow passwords of users, used by <code>getspnam</code>; see the <code>shadow(5)</code> man page.</td>
</tr>
</tbody>
</table>

**TABLE 23.8: CONFIGURATION OPTIONS FOR NSS “DATABASES”**

**files**	directly access files, for example, `/etc/aliases`
**db**	access via a database
**nis, nisplus**	NIS, see also Book “Security Guide”, Chapter 3 “Using NIS”
**dns**	can only be used as an extension for `hosts` and `networks`
**compat**	can only be used as an extension for `passwd`, `shadow` and `group`

### 23.6.1.10 /etc/nscd.conf

This file is used to configure nscd (name service cache daemon). See the `nscl(8)` and `nscl.conf(5)` man pages. By default, the system entries of `passwd` and `groups` are cached by nscd. This is important for the performance of directory services, like NIS and LDAP, because otherwise the network connection needs to be used for every access to names or groups. `hosts` is not cached by default, because the mechanism in nscd to cache hosts makes the local system unable to trust forward and reverse lookup checks. Instead of asking nscd to cache names, set up a caching DNS server.

If the caching for `passwd` is activated, it usually takes about fifteen seconds until a newly added local user is recognized. Reduce this waiting time by restarting nscd with the command `rcnscd restart`. 

---

*Configuration Files SUSE Linux Enterp... 11 SP4*
23.6.1.11  /etc/HOSTNAME

This contains the fully qualified hostname with the domain name attached. This file is read by several scripts while the machine is booting. It must contain only one line (in which the hostname is set).

23.6.2  Testing the Configuration

Before you write your configuration to the configuration files, you can test it. To set up a test configuration, use the `ip` command. To test the connection, use the `ping` command. Older configuration tools, `ifconfig` and `route`, are also available.

The commands `ip`, `ifconfig` and `route` change the network configuration directly without saving it in the configuration file. Unless you enter your configuration in the correct configuration files, the changed network configuration is lost on reboot.

23.6.2.1  Configuring a Network Interface with `ip`

`ip` is a tool to show and configure network devices, routing, policy routing, and tunnels. `ip` is a very complex tool. Its common syntax is `ip options object command`. You can work with the following objects:

- **link**
  This object represents a network device.

- **address**
  This object represents the IP address of device.

- **neighbor**
  This object represents a ARP or NDISC cache entry.

- **route**
  This object represents the routing table entry.

- **rule**
  This object represents a rule in the routing policy database.

- **maddress**
  This object represents a multicast address.
mroute

This object represents a multicast routing cache entry.

tunnel

This object represents a tunnel over IP.

If no command is given, the default command is used (usually list).

Change the state of a device with the command `ip link set device_name command`. For example, to deactivate device eth0, enter `ip link set eth0 down`. To activate it again, use `ip link set eth0 up`.

After activating a device, you can configure it. To set the IP address, use `ip addr add ip_address + dev device_name`. For example, to set the address of the interface eth0 to 192.168.12.154/30 with standard broadcast (option brd), enter `ip addr add 192.168.12.154/30 brd + dev eth0`.

To have a working connection, you must also configure the default gateway. To set a gateway for your system, enter `ip route add gateway_ip_address`. To translate one IP address to another, use `nat: ip route add nat ip_address via other_ip_address`.

To display all devices, use `ip link ls`. To display the running interfaces only, use `ip link ls up`. To print interface statistics for a device, enter `ip -s link ls device_name`. To view addresses of your devices, enter `ip addr`. In the output of the `ip addr`, also find information about MAC addresses of your devices. To show all routes, use `ip route show`.

For more information about using `ip`, enter `ip help` or see the `ip(8)` man page. The `help` option is also available for all `ip` subcommands. If, for example, you need help for `ip addr`, enter `ip addr help`. Find the `ip` manual in `/usr/share/doc/packages/iproute2/ip-ref.pdf`.

23.6.2.2 Testing a Connection with ping

The `ping` command is the standard tool for testing whether a TCP/IP connection works. It uses the ICMP protocol to send a small data packet, ECHO_REQUEST datagram, to the destination host, requesting an immediate reply. If this works, `ping` displays a message to that effect, which indicates that the network link is basically functioning.
**ping** does more than only test the function of the connection between two computers: it also provides some basic information about the quality of the connection. In Example 23.10, “Output of the Command ping”, you can see an example of the **ping** output. The second-to-last line contains information about the number of transmitted packets, packet loss, and total time of **ping** running.

As the destination, you can use a hostname or IP address, for example, **ping** example.com or **ping** 192.168.3.100. The program sends packets until you press **Ctrl**–**C**.

If you only need to check the functionality of the connection, you can limit the number of the packets with the **-c** option. For example to limit ping to three packets, enter **ping** -c 3 example.com.

**EXAMPLE 23.10: OUTPUT OF THE COMMAND PING**

```
ping -c 3 example.com
PING example.com (192.168.3.100) 56(84) bytes of data.
64 bytes from example.com (192.168.3.100): icmp_seq=1 ttl=49 time=188 ms
64 bytes from example.com (192.168.3.100): icmp_seq=2 ttl=49 time=184 ms
64 bytes from example.com (192.168.3.100): icmp_seq=3 ttl=49 time=183 ms
--- example.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2007ms
rtt min/avg/max/mdev = 183.417/185.447/188.259/2.052 ms
```

The default interval between two packets is one second. To change the interval, ping provides the option **-i**. For example, to increase the ping interval to ten seconds, enter **ping** -i 10 example.com.

In a system with multiple network devices, it is sometimes useful to send the ping through a specific interface address. To do so, use the **-I** option with the name of the selected device, for example, **ping** -I wlan1 example.com.

For more options and information about using ping, enter **ping** -h or see the **ping (8)** man page.

**Tip: Pinging IPv6 Addresses**

For IPv6 addresses use the **ping6** command. Note, to ping link-local addresses, you must specify the interface with **-I**. The following command works, if the address is reachable via eth1:

```
ping6 -I eth1 fe80::117:21ff:feda:a425
```
23.6.2.3 Configuring the Network with ifconfig

`ifconfig` is a network configuration tool.

⚠️ **Note:** `ifconfig` and `ip`  
The `ifconfig` tool is obsolete. Use `ip` instead. In contrast to `ip`, you can use `ifconfig` only for interface configuration. It limits interface names to 9 characters.

Without arguments, `ifconfig` displays the status of the currently active interfaces. As you can see in Example 23.11, “Output of the `ifconfig` Command”, `ifconfig` has very well-arranged and detailed output. The output also contains information about the MAC address of your device (the value of `HWaddr`) in the first line.

**EXAMPLE 23.11: OUTPUT OF THE `ifconfig` COMMAND**

```
eth0 Link encap:Ethernet HWaddr 00:08:74:98:ED:51
 inet6 addr: fe80::208:74ff:fe98:ed51/64 Scope:Link
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:634735 errors:0 dropped:0 overruns:4 frame:0
 TX packets:154779 errors:0 dropped:0 overruns:0 carrier:1
 collisions:0 txqueuelen:1000
 RX bytes:162531992 (155.0 Mb) TX bytes:49575995 (47.2 Mb)
 Interrupt:11 Base address:0xec80

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:8559 errors:0 dropped:0 overruns:0 frame:0
 TX packets:8559 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:533234 (520.7 Kb) TX bytes:533234 (520.7 Kb)

wlan1 Link encap:Ethernet HWaddr 00:0E:2E:52:3B:1D
 inet addr:192.168.2.4 Bcast:192.168.2.255 Mask:255.255.255.0
 inet6 addr: fe80::20e:2eff:fe52:3b1d/64 Scope:Link
 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:50828 errors:0 dropped:0 overruns:0 frame:0
 TX packets:43770 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:45978185 (43.8 Mb) TX bytes:7526693 (7.1 MB)
```

For more options and information about using `ifconfig`, enter `ifconfig -h` or see the `ifconfig (8)` man page.
23.6.2.4 Configuring Routing with **route**

**route** is a program for manipulating the IP routing table. You can use it to view your routing configuration and to add or remove routes.

![Note: route and ip]

The program **route** is obsolete. Use **ip** instead.

**route** is especially useful if you need quick and comprehensible information about your routing configuration to determine problems with routing. To view your current routing configuration, enter **route -n** as **root**.

**EXAMPLE 23.12: OUTPUT OF THE route -n COMMAND**

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Genmask</th>
<th>Flags</th>
<th>MSS</th>
<th>Window</th>
<th>irtt</th>
<th>Iface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.20.0.0</td>
<td>*</td>
<td>255.255.248.0</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>eth0</td>
</tr>
<tr>
<td>link-local</td>
<td>*</td>
<td>255.255.0.0</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>eth0</td>
</tr>
<tr>
<td>loopback</td>
<td>*</td>
<td>255.0.0.0</td>
<td>U</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>lo</td>
</tr>
<tr>
<td>default</td>
<td>styx.exam.com</td>
<td>0.0.0.0</td>
<td>UG</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>eth0</td>
</tr>
</tbody>
</table>

For more options and information about using route, enter **route -h** or see the **route (8)** man page.

23.6.3 Start-Up Scripts

Apart from the configuration files described above, there are also various scripts that load the network programs while the machine is booting. These are started as soon as the system is switched to one of the **multiuser runlevels**. Some of these scripts are described in **Table 23.9, “Some Start-Up Scripts for Network Programs”**.
### Table 23.9: Some Start-up Scripts for Network Programs

<table>
<thead>
<tr>
<th>Script Path</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/etc/init.d/network</code></td>
<td>This script handles the configuration of the network interfaces. If the network service was not started, no network interfaces are implemented.</td>
</tr>
<tr>
<td><code>/etc/init.d/xinetd</code></td>
<td>Starts xinetd. xinetd can be used to make server services available on the system. For example, it can start vsftpd whenever an FTP connection is initiated.</td>
</tr>
<tr>
<td><code>/etc/init.d/rpcbind</code></td>
<td>Starts the rpcbind utility that converts RPC program numbers to universal addresses. It is needed for RPC services, such as an NFS server.</td>
</tr>
<tr>
<td><code>/etc/init.d/nfsserver</code></td>
<td>Starts the NFS server.</td>
</tr>
<tr>
<td><code>/etc/init.d/postfix</code></td>
<td>Controls the postfix process.</td>
</tr>
<tr>
<td><code>/etc/init.d/ypserv</code></td>
<td>Starts the NIS server.</td>
</tr>
<tr>
<td><code>/etc/init.d/ypbind</code></td>
<td>Starts the NIS client.</td>
</tr>
</tbody>
</table>

### 23.7 Setting Up Bonding Devices

For some systems, there is a desire to implement network connections that comply to more than the standard data security or availability requirements of a typical Ethernet device. In these cases, several Ethernet devices can be aggregated to a single bonding device.

The configuration of the bonding device is done by means of bonding module options. The behavior is mainly affected by the mode of the bonding device. By default, this is `mode=active-backup` which means that a different slave device will become active if the active slave fails.
Tip: Bonding and Xen

Using bonding devices is only of interest for machines where you have multiple real network cards available. In most configurations, this means that you should use the bonding configuration only in Domain0. Only if you have multiple network cards assigned to a VM Guest system it may also be useful to set up the bond in a VM Guest.

To configure a bonding device, use the following procedure:

1. Run YaST > Network Devices > Network Settings.

2. Use Add and change the Device Type to Bond. Proceed with Next.

3. Select how to assign the IP address to the bonding device. Three methods are at your disposal:
   - No IP Address
   - Dynamic Address (with DHCP or Zeroconf)
   - Statically assigned IP Address

   Use the method that is appropriate for your environment.

4. In the Bond Slaves tab, select the Ethernet devices that should be included into the bond by activating the related check box.
5. Edit the *Bond Driver Options*. The modes that are available for configuration are the following:

- balance-rr
- active-backup
- balance-xor
- broadcast
- 802.3ad
- balance-tlb
- balance-alb

6. Make sure that the parameter *miimon=100* is added to the *Bond Driver Options*. Without this parameter, the data integrity is not checked regularly.

7. Click **Next** and leave YaST with **OK** to create the device.

All modes, and many more options are explained in detail in the *Linux Ethernet Bonding Driver HOWTO* found at `/usr/src/linux/Documentation/networking/bonding.txt` after installing the package *kernel-source*.

### 23.7.1 Hotplugging of Bonding Slaves

In specific network environments (such as High Availability), there are cases when you need to replace a bonding slave interface with another one. The reason may be a constantly failing network device. The solution is to set up hotplugging of bonding slaves.

The bond is configured as usual (according to **man 5 ifcfg-bonding**), for example:

```bash
ifcfg-bond0
 STARTMODE='auto' # or 'onboot'
 BOOTPROTO='static'
 IPADDR='192.168.0.1/24'
 BONDING_MASTER='yes'
 BONDING_SLAVE_0='eth0'
 BONDING_SLAVE_1='eth1'
 BONDING_MODULE_OPTS='mode=active-backup miimon=100'
```
but the slaves are specified with \texttt{STARTMODE=hotplug} and \texttt{BOOTPROTO=none}:

```plaintext
ifcfg-eth0
 STARTMODE='hotplug'
 BOOTPROTO='none'

ifcfg-eth1
 STARTMODE='hotplug'
 BOOTPROTO='none'
```

\texttt{BOOTPROTO=none} uses the \texttt{ethtool} options (when provided), but does not set the link up on \texttt{ifup eth0}. The reason is that the slave interface is controlled by the bond master.

\texttt{STARTMODE=hotplug} causes the slave interface to join the bond automatically as soon as it is available.

The \texttt{udev} rules in \texttt{/etc/udev/rules.d/70-persistent-net.rules} have to be changed to match the device by bus ID (\texttt{udev KERNELS} keyword equal to "SysFS BusID" as visible in \texttt{hwinfo --netcard}) instead of by MAC address to allow to replacement of defective hardware (a network card in the same slot but with a different MAC), and to avoid confusion as the bond changes the MAC address of all its slaves.

For example:

```plaintext
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",
KERNELS=="0000:00:19.0", ATTR(dev_id)=="0x0", ATTR(type)=="1",
KERNEL=="eth*", NAME="eth0"
```

At boot time, \texttt{/etc/init.d/network} does not wait for the hotplug slaves, but for the bond to become ready, which requires at least one available slave. When one of the slave interfaces gets removed (unbind from NIC driver, \texttt{rmmod} of the NIC driver or true PCI hotplug remove) from the system, the kernel removes it from the bond automatically. When a new card is added to the system (replacement of the hardware in the slot), \texttt{udev} renames it using the bus-based persistent name rule to the name of the slave, and calls \texttt{ifup} for it. The \texttt{ifup} call automatically joins it into the bond.

### 23.8 smpppd as Dial-up Assistant

Some home users do not have a dedicated line connecting them to the Internet. Instead, they use dial-up connections. Depending on the dial-up method (ISDN or DSL), the connection is controlled by \texttt{ipppd} or \texttt{pppd}. Basically, all that needs to be done to go online is to start these programs correctly.
If you have a flat-rate connection that does not generate any additional costs for the dial-up connection, simply start the respective daemon. Control the dial-up connection with a desktop applet or a command-line interface. If the Internet gateway is not the host you are using, you might want to control the dial-up connection by way of a network host.

This is where smpppd (SUSE Meta PPP Daemon) is involved. It provides a uniform interface for auxiliary programs and acts in two directions. First, it programs the required pppd or ipppd and controls its dial-up properties. Second, it makes various providers available to the user programs and transmits information about the current status of the connection. As smpppd can also be controlled by way of the network, it is suitable for controlling dial-up connections to the Internet from a workstation in a private subnetwork.

23.8.1 Configuring smpppd

The connections provided by smpppd are automatically configured by YaST. The actual dial-up programs KInternet and cinternet are also pre-configured. Manual settings are only required to configure additional features of smpppd such as remote control.

The configuration file of smpppd is `/etc/smpppd.conf`. By default, it does not enable remote control. The most important options of this configuration file are:

- **open-inet-socket = yes|no**
  
  To control smpppd via the network, set this option to `yes`. smpppd listens on port `3185`. If this parameter is set to `yes`, the parameters `bind-address`, `host-range` and `password` must be set accordingly.

- **bind-address = ip address**
  
  If a host has several IP addresses, use this parameter to determine at which IP address smpppd should accept connections. The default is to listen at all addresses.

- **host-range = min_ip max_ip**
  
  The parameter `host-range` defines a network range. Hosts whose IP addresses are within this range are granted access to smpppd. All hosts not within this range are denied access.

- **password = password**
  
  By assigning a password, limit the clients to authorized hosts. As this is a plain-text password, you should not overrate the security it provides. If no password is assigned, all clients are permitted to access smpppd.
slp-register = \texttt{yes|no}
With this parameter, the smpppd service can be announced in the network via SLP.

More information about smpppd is available in the \texttt{smpppd(8)} and \texttt{smpppd.conf(5)} man pages.

23.8.2 Configuring \texttt{cinternet} for Remote Use

cinternet can be used to control a local or remote smpppd. cinternet is the command-line counterpart to the graphical KInternet. To prepare these utilities for use with a remote smpppd, edit the configuration file \texttt{/etc/smpppd-c.conf} manually or using cinternet. This file only uses four options:

\begin{itemize}
  \item \texttt{sites = list of sites}
    \texttt{list of sites} where the front-ends search for smpppd. The front-ends test the options in the order specified here. \texttt{local} orders the establishment of a connection to the local smpppd. \texttt{gateway} points to an smpppd on the gateway. \texttt{config-file} indicates that the connection should be established to the smpppd specified in the \texttt{server} and \texttt{port} options in \texttt{/etc/smpppd-c.conf}. \texttt{slp} orders the front-ends to connect to an smpppd found via SLP.

  \item \texttt{server = server}
    The host on which smpppd runs.

  \item \texttt{port = port}
    The port on which smpppd runs.

  \item \texttt{password = password}
    The password selected for smpppd.
\end{itemize}

If smpppd is active, try to access it. For example, with \texttt{cinternet --verbose --interface-list}. In case of difficulties at this point, refer to the \texttt{smpppd-c.conf(5)} and \texttt{cinternet(8)} man pages.
24 SLP Services in the Network

The service location protocol (SLP) was developed to simplify the configuration of networked clients within a local network. To configure a network client, including all required services, the administrator traditionally needs detailed knowledge of the servers available in the network. SLP makes the availability of selected services known to all clients in the local network. Applications that support SLP can use the information distributed and be configured automatically.

SUSE® Linux Enterprise Desktop supports installation using installation sources provided with SLP and contains many system services with integrated support for SLP. YaST and Konqueror both have appropriate front-ends for SLP. You can use SLP to provide networked clients with central functions, such as an installation server, file server, or print server on your system.

Important: SLP Support in SUSE Linux Enterprise Desktop

Services that offer SLP support include cupsd, rsyncd, ypserv, openldap2, ksysguardd, saned, kdm, vnc, login, smpppd, rpasswd, postfix, and sshd (via fish).

24.1 Installation

All packages necessary are installed by default. However, if you want to provide services via SLP, check that the package `openlp-server` is installed.

24.2 Activating SLP

slpd must run on your system to offer services with SLP. If the machine should only operate as client, and does not offer services, it is not necessary to run slpd. Like most system services in SUSE Linux Enterprise Desktop, the slpd daemon is controlled by means of a separate init script. After the installation, the daemon is inactive by default. To activate it temporarily, run `rcslpd start` as root or `rcslpd stop` to stop it. Perform a restart or status check with `restart` or `status`. If slpd should be always active after booting, enable slpd in YaST System ➔ System Services (Runlevel) or run the `insserv slpd` command as root.
24.3 SLP Front-Ends in SUSE Linux Enterprise Desktop

To find services provided via SLP in your network, use an SLP front-end such as **slptool** (openslp package) or YaST:

**slptool**

slptool is a command line program that can be used to announce SLP inquiries in the network or announce proprietary services. **slptool** --help lists all available options and functions. For example, to find all time servers that announce themselves in the current network, run the command:

```
slptool findsrvs service:ntp
```

**YaST**

YaST also provides an SLP browser. However, this browser is not available from the YaST Control Center. To start it, run `yast2 slp` as root user. Click on a **Service Type** on the lefthand side to get more information about a service.

24.4 Providing Services via SLP

Many applications in SUSE Linux Enterprise Desktop have integrated SLP support through the use of the **libslp** library. If a service has not been compiled with SLP support, use one of the following methods to make it available via SLP:

**Static Registration with /etc/slp.reg.d**

Create a separate registration file for each new service. This is an example for registering a scanner service:

```
Register a saned service on this system
en means english language
65535 disables the timeout, so the service registration does not need refreshes
service:scanner.sane://$HOSTNAME:6566,en,65535
watch-port-tcp=6566
description=SANE scanner daemon
```

The most important line in this file is the **service URL**, which begins with `service:`. This contains the service type (scanner.sane) and the address under which the service is available on the server. `$HOSTNAME` is automatically replaced with the full hostname. The
name of the TCP port on which the relevant service can be found follows, separated by a colon. Then enter the language in which the service should appear and the duration of registration in seconds. These should be separated from the service URL by commas. Set the value for the duration of registration between 0 and 65535. 0 prevents registration. 65535 removes all restrictions.

The registration file also contains the two variables `watch-port-tcp` and `description`. `watch-port-tcp` links the SLP service announcement to whether the relevant service is active by having slpd check the status of the service. The second variable contains a more precise description of the service that is displayed in suitable browsers.

**Static Registration with `/etc/slp.reg`**

The only difference between this method and the procedure with `/etc/slp.reg.d` is that all services are grouped within a central file.

**Dynamic Registration with `slptool`**

If a service needs to be registered dynamically without the need of configuration files, use the slptool command line utility. The same utility can also be used to deregister an existing service offering without restarting slpd.

### 24.5 For More Information

**RFC 2608, 2609, 2610**

RFC 2608 generally deals with the definition of SLP. RFC 2609 deals with the syntax of the service URLs used in greater detail and RFC 2610 deals with DHCP via SLP.

[http://www.openslp.org](http://www.openslp.org)

The home page of the OpenSLP project.

`/usr/share/doc/packages/openslp`

This directory contains the documentation for SLP coming with the `openslp-server` package, including a `README.SuSE` containing the SUSE Linux Enterprise Desktop details, the RFCs, and two introductory HTML documents. Programmers who want to use the SLP functions find more information in the *Programmers Guide* that is included in the `openslp-devel` package.
The NTP (network time protocol) mechanism is a protocol for synchronizing the system time over the network. First, a machine can obtain the time from a server that is a reliable time source. Second, a machine can itself act as a time source for other computers in the network. The goal is twofold—maintaining the absolute time and synchronizing the system time of all machines within a network.

Maintaining an exact system time is important in many situations. The built-in hardware clock does often not meet the requirements of applications such as databases or clusters. Manual correction of the system time would lead to severe problems because, for example, a backward leap can cause malfunction of critical applications. Within a network, it is usually necessary to synchronize the system time of all machines, but manual time adjustment is a bad approach. NTP provides a mechanism to solve these problems. The NTP service continuously adjusts the system time with the help of reliable time servers in the network. It further enables the management of local reference clocks, such as radio-controlled clocks.

Note

To enable time synchronization by means of active directory, follow the instructions found at Book “Security Guide”, Chapter 5 “Active Directory Support”, Section 5.3 “Configuring a Linux Client for Active Directory”, Joining an AD Domain.

25.1 Configuring an NTP Client with YaST

The NTP daemon (ntpd) coming with the ntp package is preset to use the local computer clock as a time reference. Using the hardware clock, however, only serves as a fallback for cases where no time source of better precision is available. YaST facilitates the configuration of an NTP client.

25.1.1 Basic Configuration

The YaST NTP client configuration (Network Services > NTP Configuration) consists of tabs. Set the start mode of ntpd and the server to query on the General Settings tab.
Only Manually

Select *Only Manually*, if you want to manually start the `ntpd` daemon.

Now and On Boot

Select *Now and On Boot* to start `ntpd` automatically when the system is booted. This setting is strongly recommended. Then configure the server as described Section 25.1.2, “Changing Basic Configuration”.

25.1.2 Changing Basic Configuration

The servers and other time sources for the client to query are listed in the lower part of the General Settings tab. Modify this list as needed with *Add*, *Edit*, and *Delete*. *Display Log* provides the possibility to view the log files of your client.

Click *Add* to add a new source of time information. In the following dialog, select the type of source with which the time synchronization should be made. The following options are available:

![New Synchronization](image)

**FIGURE 25.1: YAST: NTP SERVER**

Server

In the pull-down *Select list* (see *Figure 25.1, “YaST: NTP Server”), determine whether to set up time synchronization using a time server from your local network (*Local NTP Server*) or an Internet-based time server that takes care of your time zone (*Public NTP Server*). For
a local time server, click Lookup to start an SLP query for available time servers in your network. Select the most suitable time server from the list of search results and exit the dialog with OK. For a public time server, select your country (time zone) and a suitable server from the list under Public NTP Server then exit the dialog with OK. In the main dialog, test the availability of the selected server with Test. Options allows you to specify additional options for ntpd.

Using Access Control Options, you can restrict the actions that the remote computer can perform with the daemon running on your computer. This field is enabled only after checking Restrict NTP Service to Configured Servers Only on the Security Settings tab (see Figure 25.2, “Advanced NTP Configuration: Security Settings”). The options correspond to the restrict clauses in /etc/ntp.conf. For example, nomodify notrap noquery disallows the server to modify NTP settings of your computer and to use the trap facility (a remote event logging feature) of your NTP daemon. Using these restrictions is recommended for servers out of your control (for example, on the Internet).

Refer to /usr/share/doc/packages/ntp-doc (part of the ntp-doc package) for detailed information.

Peer

A peer is a machine to which a symmetric relationship is established: it acts both as a time server and as a client. To use a peer in the same network instead of a server, enter the address of the system. The rest of the dialog is identical to the Server dialog.

Radio Clock

To use a radio clock in your system for the time synchronization, enter the clock type, unit number, device name, and other options in this dialog. Click Driver Calibration to fine-tune the driver. Detailed information about the operation of a local radio clock is available in /usr/share/doc/packages/ntp-doc/refclock.html.

Outgoing Broadcast

Time information and queries can also be transmitted by broadcast in the network. In this dialog, enter the address to which such broadcasts should be sent. Do not activate broadcasting unless you have a reliable time source like a radio controlled clock.

Incoming Broadcast

If you want your client to receive its information via broadcast, enter the address from which the respective packets should be accepted in this fields.
In the Security Settings tab (see Figure 25.2, “Advanced NTP Configuration: Security Settings”), determine whether `ntpd` should be started in a chroot jail. By default, Run NTP Daemon in Chroot Jail is activated. This increases the security in the event of an attack over `ntpd`, as it prevents the attacker from compromising the entire system.

Restrict NTP Service to Configured Servers Only increases the security of your system by disallowing remote computers to view and modify NTP settings of your computer and to use the trap facility for remote event logging. Once enabled, these restrictions apply to all remote computers, unless you override the access control options for individual computers in the list of time sources in the General Settings tab. For all other remote computers, only querying for local time is allowed.

Enable Open Port in Firewall if SuSEfirewall2 is active (which it is by default). If you leave the port closed, it is not possible to establish a connection to the time server.
25.2 Manually Configuring NTP in the Network

The easiest way to use a time server in the network is to set server parameters. For example, if a time server called ntp.example.com is reachable from the network, add its name to the file /etc/ntp.conf by adding the following line:

```
server ntp.example.com
```

To add more time servers, insert additional lines with the keyword server. After initializing ntpd with the command rcntp start, it takes about one hour until the time is stabilized and the drift file for correcting the local computer clock is created. With the drift file, the systematic error of the hardware clock can be computed as soon as the computer is powered on. The correction is used immediately, resulting in a higher stability of the system time.

There are two possible ways to use the NTP mechanism as a client: First, the client can query the time from a known server in regular intervals. With many clients, this approach can cause a high load on the server. Second, the client can wait for NTP broadcasts sent out by broadcast time servers in the network. This approach has the disadvantage that the quality of the server is unknown and a server sending out wrong information can cause severe problems.

If the time is obtained via broadcast, you do not need the server name. In this case, enter the line broadcastclient in the configuration file /etc/ntp.conf. To use one or more known time servers exclusively, enter their names in the line starting with servers.

25.3 Dynamic Time Synchronization at Runtime

If the system boots without network connection, ntpd starts up, but it cannot resolve DNS names of the time servers set in the configuration file. This can happen if you use Network Manager with an encrypted WLAN.

If you want ntpd to resolve DNS names at runtime, you must set the dynamic option. Then, when the network is establish some time after booting, ntpd looks up the names again and can reach the time servers to get the time.

Manually edit /etc/ntp.conf and add dynamic to one or more server entries:

```
server ntp.example.com dynamic
```

Or use YaST and proceed as follows:

1. In YaST click Network Services › NTP Configuration.
2. Select the server you want to configure. Then click *Edit*.

3. Activate the *Options* field and add `dynamic`. Separate it with a space, if there are already other options entered.

4. Click *Ok* to close the edit dialog. Repeat the previous step to change all servers as wanted.

5. Finally click *Ok* to save the settings.

25.4 Setting Up a Local Reference Clock

The software package `ntpd` contains drivers for connecting local reference clocks. A list of supported clocks is available in the `ntp-doc` package in the file `/usr/share/doc/packages/ntp-doc/refclock.html`. Every driver is associated with a number. In NTP, the actual configuration takes place by means of pseudo IP addresses. The clocks are entered in the file `/etc/ntp.conf` as though they existed in the network. For this purpose, they are assigned special IP addresses in the form `127.127.t.u`. Here, `t` stands for the type of the clock and determines which driver is used and `u` for the unit, which determines the interface used.

Normally, the individual drivers have special parameters that describe configuration details. The file `/usr/share/doc/packages/ntp-doc/drivers/driverNN.html` (where `NN` is the number of the driver) provides information about the particular type of clock. For example, the “type 8” clock (radio clock over serial interface) requires an additional mode that specifies the clock more precisely. The Conrad DCF77 receiver module, for example, has mode 5. To use this clock as a preferred reference, specify the keyword `prefer`. The complete `server` line for a Conrad DCF77 receiver module would be:

```
server 127.127.8.0 mode 5 prefer
```

Other clocks follow the same pattern. Following the installation of the `ntp-doc` package, the documentation for NTP is available in the directory `/usr/share/doc/packages/ntp-doc`. The file `/usr/share/doc/packages/ntp-doc/refclock.html` provides links to the driver pages describing the driver parameters.
25.5 Clock Synchronization to an External Time Reference (ETR)

Support for clock synchronization to an external time reference (ETR) is available. The external time reference sends an oscillator signal and a synchronization signal every $2^{20}$ (2 to the power of 20) microseconds to keep TOD clocks of all connected servers in sync.

For availability two ETR units can be connected to a machine. If the clock deviates for more than the sync-check tolerance all CPUs get a machine check that indicates that the clock is out of sync. If this happens, all DASD I/O to XRC enabled devices is stopped until the clock is synchronized again.

The ETR support is activated via two `sysfs` attributes; run the following commands as `root`:

```bash
echo 1 > /sys/devices/system/etr/etr0/online
echo 1 > /sys/devices/system/etr/etr1/online
```
Using NetworkManager

NetworkManager is the ideal solution for laptops and other portable computers. It supports state-of-the-art encryption types and standards for network connections, including connections to 802.1X protected networks. 802.1X is the “IEEE Standard for Local and Metropolitan Area Networks—Port-Based Network Access Control”. With NetworkManager, you need not worry about configuring network interfaces and switching between wired or wireless networks when you are moving. NetworkManager can automatically connect to known wireless networks or manage several network connections in parallel—the fastest connection is then used as default. Furthermore, you can manually switch between available networks and manage your network connection using an applet in the system tray.

Instead of only one connection being active, multiple connections may be active at once. This enables you to unplug your laptop from an Ethernet and remain connected via a wireless connection.

Use Cases for NetworkManager

NetworkManager provides a sophisticated and intuitive user interface, which enables users to easily switch their network environment. However, NetworkManager is not a suitable solution in the following cases:

- Your computer provides network services for other computers in your network, for example, it is a DHCP or DNS server.
- Your computer is a Xen server or your system is a virtual system inside Xen.

Enabling or Disabling NetworkManager

On laptop computers, NetworkManager is enabled by default. However, it can be at any time enabled or disabled in the YaST Network Settings module.

1. Run YaST and go to Network Devices > Network Settings.
2. The Network Settings dialog opens. Go to the Global Options tab.
3. To configure and manage your network connections with NetworkManager:
   
a. In the **Network Setup Method** field, select **User Controlled with NetworkManager**.
   
b. Click **OK** and close YaST.
   
c. Configure your network connections with NetworkManager as described in Section 26.3, “Configuring Network Connections”.

4. To deactivate NetworkManager and control the network in the traditional way:
   
a. In the **Network Setup Method** field, choose **Traditional Method with ifup**.
   
b. Click **OK**.
   
c. Set up your network card with YaST using automatic configuration via DHCP or a static IP address. Alternatively, configure your modem with YaST:
      
      • For dial-up connections, use **Network Devices > Modem**.
      
      • To configure an internal or USB ISDN modem, select **Network Devices > ISDN**.
      
      • To configure an internal or USB DSL modem, select **Network Devices > DSL**.
      
      Find a detailed description of the network configuration with YaST in Section 23.4, “Configuring a Network Connection with YaST” and Chapter 20, Wireless LAN.

### 26.3 Configuring Network Connections

After having enabled NetworkManager in YaST, configure your network connections with the NetworkManager front-ends available in KDE and GNOME. The network configuration dialogs for both front-ends are very similar. They show tabs for all types of network connections, such as wired, wireless, mobile broadband, DSL, and VPN connections. On each tab, you can add, edit or delete connections of that type. In the KDE configuration dialog, the appropriate tabs are only active if the connection type is available on your system (depending on hardware and software). By default, KNetworkManager also displays comprehensive tool tips for the input fields and options available on each tab.
Note: Bluetooth Connections

Currently, Bluetooth connections cannot be configured with NetworkManager.

To open the network configuration dialog in GNOME, open the main menu and click the Network entry at the right. Alternatively, press `ALT-F2` and enter `nm-connection-editor` or select System → Network Connections in the GNOME Control Center.

**FIGURE 26.1: GNOME NETWORK CONNECTIONS DIALOG**

If you use KDE, open the main menu and click Configure Desktop. In the Personal Settings, select Network Settings (on the General tab) to open the network configuration dialog.

**FIGURE 26.2: KDE NETWORK CONFIGURATION DIALOG**
Alternatively, you can also start the configuration dialogs from the NetworkManager applet in the system tray. In KDE, left-click the icon and select Manage Connections. In GNOME, right-click the icon and select Edit Connections.

**Note: Availability of Options**
Depending on your system set-up, you may not be allowed to configure connections. In a secured environment, some options might be locked or require root permission. Ask your system administrator for details.

**PROCEDURE 26.1: ADDING OR EDITING CONNECTIONS**

When configuring network connections with NetworkManager, you can also define system connections that can be shared by all users. In contrast to user connections, system connections are made available right after NetworkManager is started—before any users log in. For more details about both types of connections, refer to Section 26.7.1, “User and System Connections”.

Currently, the system connection option is not available in KDE. To set up system connections, you need to use YaST in this case.

**Note: Hidden Networks**
To connect to a “hidden” network (a network that does not broadcast its service) you have to know the Service Set Identifier (SSID) or Extended Service Set Identifier (ESSID) of the network. Hidden networks cannot be detected automatically.

1. In the network configuration dialog, click the tab for the connection type you want to use.
2. Click Add to create a new connection or select an existing connection and click Edit.
3. Enter a Connection Name and your connection details.
4. For a hidden network, enter the ESSID and the encryption parameters.
5. You can tie the connection to a certain device, if more than one physical device per connection type is available (for example, your machine is equipped with two ethernet cards or two wireless cards).
   If you use KDE, do so by using the Restrict to Interface option. If you use GNOME, enter the MAC address of the device you want to tie the connection to and confirm your settings.
6. For NetworkManager to automatically use a certain connection, activate the following option for this connection: Connect Automatically (KDE) or Stay connected when possible (GNOME).

7. To turn a connection into a system connection activate Available to all users (GNOME). To create and edit system connections, root permission is required.

After having confirmed your changes, the newly configured network connection appears in the list of available networks you get by left-clicking the NetworkManager applet.

![Figure 26.3: KNetworkManager—Configured and Available Connections](image)

26.4 Using KNetworkManager

The KDE front-end for NetworkManager is the KNetworkManager applet. If the network has been set up for NetworkManager control, the applet usually starts automatically with the desktop environment and is shown as an icon in the system tray.

If your system tray does not show any network connection icon, the applet is probably not started. Press `Alt-F2` and enter `knetworkmanager` to start it manually.

KNetworkManager only shows wireless networks that you have configured a connection for. It hides connections when you are out of range of a wireless network, or when the network cable is disconnected, thus always giving you a clear view of which connections may be used.

26.4.1 Managing Wired Network Connections

If your computer is connected to an existing network with a network cable, use KNetworkManager to choose the network connection.

1. Left-click the applet icon to show a menu with available networks. The connection currently being used is selected in the menu and marked as Active.
2. If you want to use a different configuration with the wired network, click Manage Connections and add another wired connection as described in Procedure 26.1, “Adding or Editing Connections”.

3. Click the KNetworkManager icon and select the newly configured connection to activate it.

26.4.2 Managing Wireless Network Connections

By default, KNetworkManager only shows wireless networks that you have configured a connection for—provided they are both available and visible. To connect to a wireless network for the first time, proceed as follows:

PROCEDURE 26.2: CONNECTING TO A WIRELESS NETWORK

1. Left-click the applet icon and select Create Network Connection. KNetworkManager shows a list of available visible wireless networks, including details about signal strength and security.

2. To connect to a visible network, select the network from the list and click Connect. If the network is encrypted, a dialog opens. Choose the type of Security the network uses and enter the appropriate credentials.

3. To connect to a network that does not broadcast its service set identifier (SSID or ESSID) and therefore cannot be detected automatically, select Connect to Other Network with WLAN interface.

4. In the dialog that opens, enter the SSID or ESSID and set encryption parameters, if necessary.

5. Confirm your changes and click OK. NetworkManager now activates the new connection.

6. To terminate a connection and to disable wireless networking, click the applet icon and uncheck Enable Wireless. This can be useful if you are on a plane or in any other environment where wireless networking is not allowed.

A wireless network that has been chosen explicitly will remain connected as long as possible. If a network cable is plugged in during that time, any connections that have been set to Connect Automatically will be connected, while the wireless connection remains up.
26.4.3 Configuring Your Wireless Card as an Access Point

If your wireless card supports access point mode, you can use NetworkManager for configuration.

Note: Availability of Options

Depending on your system setup, you may not be allowed to configure connections. In a secured environment, some options might be locked or require root permission. Ask your system administrator for details.

1. Click the KNetworkManager applet and select Create Network Connection → New Ad-Hoc Network.

2. In the following configuration dialog, enter a name for your network in the SSID field.

Important: Unprotected Wireless Networks Are a Security Risk

If you set Security to None, everybody can connect to your network, reuse your connectivity and intercept your network connection. To restrict access to your access point and to secure your connection, use encryption. You can choose between various WEP and WPA–based encryptions. If you are not sure which technology is best for you, read Section 20.3, “Authentication”.

4. On the IP Address tab, make sure the Configure option is set to Shared (which is the default option for ad-hoc networks).

5. Confirm your configuration with OK.

26.4.4 Customizing KNetworkManager

You can customize some aspects of KNetworkManager: the number of icons displayed in the system tray, which tool tips to show and how to store your password and credentials for network connections. For more information about the last aspect, refer to Section 26.7.2, “Storing Passwords and Credentials”.

To explore the options available, right-click the NetworkManager system tray icon, select Manage Connections and click Other on the left-hand side of the configuration dialog.

PROCEDURE 26.3: CONFIGURING MULTIPLE TRAY ICONS FOR KNETWORKMANAGER

As KNetworkManager can keep multiple connections active at once, you might wish to be informed about the connection status for several connections at one glance. You can do so by using multiple NetworkManager icons in your system tray, each representing a different group of connection types (for example, one icon for wired connections, another icon for wireless connections).

1. In the configuration dialog, switch to the Tray Icon tab.

2. Click More Icons. A new icon entry appears in the list.

3. Select the network connection types you want to be represented by this icon and group them under the respective icon.
4. Confirm your changes.

Now the system tray shows multiple NetworkManager icons from which you then can access the connection types tied to that icon.

When configuring a network connection as described in Procedure 26.1, “Adding or Editing Connections”, KNetworkManager also allows you to customize the icon displayed for this connection. To change the icon, click the icon button next to Connection Name and in the following dialog, select the icon of your choice. After confirming your changes, the new icon is displayed in the list of available connections you get by clicking the KNetworkManager icon in the system tray.

26.5 Using the GNOME NetworkManager Applet

In GNOME, NetworkManager can be controlled with the GNOME NetworkManager applet. If the network is set up for NetworkManager control, the applet usually starts automatically with the desktop environment and is shown as an icon in the system tray.

If your system tray does not show any network connection icon, the applet is probably not started. Press `Alt-F2` and enter `nm-applet` to start it manually.

26.5.1 Managing Wired Network Connections

If your computer is connected to an existing network with a network cable, use the NetworkManager applet to choose the network connection.
1. Left-click the applet icon to show a menu with available networks. The currently used connection is selected in the menu.

2. To switch to another network, choose it from the list.

3. To switch off all network connections, both wired and wireless, right-click the applet icon and uncheck *Enable Networking*.

### 26.5.2 Managing Wireless Network Connections

Available visible wireless networks are listed in the GNOME NetworkManager applet menu under *Wireless Networks*. The signal strength of each network is also shown in the menu. Encrypted wireless networks are marked with a shield icon.

#### PROCEDURE 26.4: CONNECTING TO A WIRELESS NETWORK

1. To connect to a wireless network, left-click the applet icon and choose an entry from the list of available wireless networks.

2. If the network is encrypted, a dialog opens. It shows the type of encryption the network uses (*Wireless Security*) and holds a number of input fields according to the respective encryption and authentication settings. Enter the appropriate credentials.

3. To connect to a network that does not broadcast its service set identifier (SSID or ESSID) and therefore cannot be detected automatically, left-click the NetworkManager icon and choose *Connect to Hidden Wireless Network*.

4. In the dialog that opens, enter the SSID or ESSID in *Network Name* and set encryption parameters if necessary.

5. To disable wireless networking, right-click the applet icon and uncheck *Enable Wireless*. This can be useful if you are on a plane or in any other environment where wireless networking is not allowed.

A wireless network that has been chosen explicitly will remain connected as long as possible. If a network cable is plugged in during that time, any connections that have been set to *Stay connected when possible* will be connected, while the wireless connection remains up.
26.5.3  Configuring Your Wireless Card as an Access Point

If your wireless card supports access point mode, you can use NetworkManager for configuration.

Note: Availability of Options
Depending on your system setup, you may not be allowed to configure connections. In a secured environment, some options might be locked or require root permission. Ask your system administrator for details.

1. Click the NetworkManager applet and select Create New Wireless Network.

![New wireless network]

   Enter a name for the wireless network you wish to create.

   **Network Name:** TUXnet
   **Wireless Security:** WPA & WPA2 Personal
   **Password:** ********

2. Enter a *Network Name* and set the encryption to use with the *Wireless Security* drop-down list.

   **Important: Unprotected Wireless Networks Are a Security Risk**
   
   If you set *Wireless Security* to None, everybody can connect to your network, reuse your connectivity and intercept your network connection. To restrict access to your access point and to secure your connection, use encryption. You can choose between various WEP and WPA–based encryptions. If you are not sure which technology is best for you, read *Section 20.3, “Authentication”*. 
26.6 NetworkManager and VPN

NetworkManager supports several Virtual Private Network (VPN) technologies. For each technology, SUSE Linux Enterprise Desktop comes with a base package providing the generic support for NetworkManager. In addition to that, you also need to install the respective desktop-specific package for your applet.

NovellVPN
To use this VPN technology, install

- NetworkManager-novellvpn and
- NetworkManager-novellvpn-kde4 or NetworkManager-novellvpn-gnome.

NovellVPN support for KDE is not available yet, but is currently being worked on.

OpenVPN
To use this VPN technology, install

- NetworkManager-openvpn and
- NetworkManager-openvpn-kde4 or NetworkManager-openvpn-gnome.

vpnc (Cisco)
To use this VPN technology, install

- NetworkManager-vpnc and
- NetworkManager-vpnc-kde4 or NetworkManager-vpnc-gnome.

PPTP (Point-to-Point Tunneling Protocol)
To use this VPN technology, install

- NetworkManager-pptp and
- NetworkManager-pptp-kde4 or NetworkManager-pptp-gnome.

After you have installed the packages, configure your VPN connection as described in Section 26.3, “Configuring Network Connections”.
26.7 NetworkManager and Security

NetworkManager distinguishes two types of wireless connections, trusted and untrusted. A trusted connection is any network that you explicitly selected in the past. All others are untrusted. Trusted connections are identified by the name and MAC address of the access point. Using the MAC address ensures that you cannot use a different access point with the name of your trusted connection.

NetworkManager periodically scans for available wireless networks. If multiple trusted networks are found, the most recently used is automatically selected. NetworkManager waits for your selection in case that all networks are untrusted.

If the encryption setting changes but the name and MAC address remain the same, NetworkManager attempts to connect, but first you are asked to confirm the new encryption settings and provide any updates, such as a new key.

If you switch from using a wireless connection to offline mode, NetworkManager blanks the SSID or ESSID. This ensures that the card is disconnected.

26.7.1 User and System Connections

NetworkManager knows two types of connections: user and system connections. User connections are connections that become available to NetworkManager when the first user logs in. Any required credentials are asked from the user and when the user logs out, the connections are disconnected and removed from NetworkManager. Connections that are defined as system connection can be shared by all users and are made available right after NetworkManager is started—before any users log in. In case of system connections, all credentials must be provided at the time the connection is created. Such system connections can be used to automatically connect to networks that require authorization. For information how to configure user or system connections with NetworkManager, refer to Section 26.3, “Configuring Network Connections”.

For KDE, configuring system connections with NetworkManager are currently not supported (use YaST instead).

26.7.2 Storing Passwords and Credentials

If you do not want to re-enter your credentials each time you want to connect to an encrypted network, you can use the desktop-specific tools GNOME Keyring Manager or KWalletManager to store your credentials encrypted on the disk, secured by a master password.
In KDE, you can configure if and how to store your credentials. To do so, left-click the Network-Manager icon and select *Manage Connections*. Click *Other > Connection Secrets* and select one of the following options:

**Do Not Store (Always Prompt)**
This is useful if you are working in an environment where storing credentials is considered a security risk.

**In File (Unencrypted)**
If you choose this option, your passwords are stored unencrypted in the respective connection file that is created for each connection. Find them under `$HOME/.kde4/share/apps/networkmanagement/connections`.

⚠️ **Warning: Security Risk**
Storing your network credentials unencrypted is a security risk. Everybody who has access to your computer can reuse your connectivity and intercept your network connection.

**In Secure Storage (Encrypted)**
If you choose this options, your credentials are stored in KWalletManager. For more information on KWalletManager, see Book “KDE User Guide”, Chapter 8 “Managing Passwords with KWallet Manager”.

NetworkManager can also retrieve its certificates for secure connections (for example, encrypted wired, wireless or VPN connections) from the certificate store. For more information, refer to Book “Security Guide”, Chapter 12 “Certificate Store”.

### 26.8 Frequently Asked Questions

In the following, find some frequently asked questions about configuring special network options with NetworkManager.
How to tie a connection to a specific device?

By default, connections in NetworkManager are device type-specific: they apply to all physical devices with the same type. If more than one physical device per connection type is available (for example, your machine is equipped with two ethernet cards), you can tie a connection to a certain device.

To do so in GNOME, first look up the MAC address of your device (use the Connection Information available from the applet, or use the output of command line tools like `nm-tool` or `ifconfig`). Then start the dialog for configuring network connections and choose the connection you want to modify. On the Wired or Wireless tab, enter the MAC Address of the device and confirm your changes.

If you are using KDE, start the dialog for configuring network connections and choose the connection you want to modify. On the Ethernet or Wireless tab, use the Restrict to Interface option to select the network interface to which to tie the connection.

How to specify a certain access point in case multiple access points with the same ESSID are detected?

When multiple access points with different wireless bands (a/b/g/n) are available, the access point with the strongest signal is automatically chosen by default. To override this, use the BSSID field when configuring wireless connections.

The Basic Service Set Identifier (BSSID) uniquely identifies each Basic Service Set. In an infrastructure Basic Service Set, the BSSID is the MAC address of the wireless access point. In an independent (ad-hoc) Basic Service Set, the BSSID is a locally administered MAC address generated from a 46-bit random number.

Start the dialog for configuring network connections as described in Section 26.3, “Configuring Network Connections”. Choose the wireless connection you want to modify and click Edit. On the Wireless tab, enter the BSSID.

How to share network connections to other computers?

The primary device (the device which is connected to the Internet) does not need any special configuration. However, you need to configure the device that is connected to the local hub or machine as follows:

1. Start the dialog for configuring network connections as described in Section 26.3, “Configuring Network Connections”. Choose the connection you want to modify and click Edit. If you are using GNOME, switch to the IPv4 Settings tab and from the Method drop-down list, choose Shared to other computers. If you are using KDE, switch to the
IP Address tab and from the Configure drop-down list, choose Shared. That will enable IP traffic forwarding and run a DHCP server on the device. Confirm your changes in NetworkManager.

2. As the DHCP server uses port 67, make sure that it is not blocked by the firewall: On the machine sharing the connections, start YaST and select Security and Users > Firewall. Switch to the Allowed Services category. If DHCP Server is not already shown as Allowed Service, select DHCP Server from Services to Allow and click Add. Confirm your changes in YaST.

How to provide static DNS information with automatic (DHCP, PPP, VPN) addresses?

In case a DHCP server provides invalid DNS information (and/or routes), you can override it. Start the dialog for configuring network connections as described in Section 26.3, “Configuring Network Connections”. Choose the connection you want to modify and click Edit. If you are using GNOME, switch to the IPv4 Settings tab, and from the Method drop-down list, choose Automatic (DHCP) addresses only. If you are using KDE, switch to the IP Address tab, and from the Configure drop-down list, choose Automatic (DHCP) addresses only. Enter the DNS information in the DNS Servers and Search Domains fields. To Ignore automatically obtained routes click Routes (GNOME) and activate the respective check box, or from the drop-down list at the bottom of the tab (KDE), select Routes and activate the respective check box. Confirm your changes.

How to make NetworkManager connect to password protected networks before a user logs in?

Define a system connection that can be used for such purposes. For more information, refer to Section 26.7, “NetworkManager and Security”.

26.9 Troubleshooting

Connection problems can occur. Some common problems related to NetworkManager include the applet not starting or a missing VPN option. Methods for resolving and preventing these problems depend on the tool used.

NetworkManager Desktop Applet Does Not Start

The GNOME and KDE NetworkManager applets start automatically if the network is set up for NetworkManager control. If the applet does not start, check if NetworkManager is enabled in YaST as described in Section 26.2, “Enabling or Disabling NetworkManager”. Then
make sure that the appropriate package for your desktop environment is also installed. If you are using KDE 4, the package is `NetworkManager-kde4`. For GNOME users the package is `NetworkManager-gnome`.

If the desktop applet is installed but is not running for some reason, start it manually. If the desktop applet is installed but is not running for some reason, start it manually with the command `nm-applet` (GNOME) or `knetworkmanager` (KDE).

**NetworkManager Applet Does Not Include the VPN Option**

Support for NetworkManager, applets, and VPN for NetworkManager is distributed in separate packages. If your NetworkManager applet does not include the VPN option, check if the packages with NetworkManager support for your VPN technology are installed. For more information, see Section 26.6, "NetworkManager and VPN".

**No Network Connection Available**

If you have configured your network connection correctly and all other components for the network connection (router, etc.) are also up and running, it sometimes helps to restart the network interfaces on your computer. To do so, log in to a command line as `root` and run `rcnetwork restart`.

### 26.10 For More Information

More information about NetworkManager can be found on the following Web sites and directories:

**NetworkManager Project Page**

[http://projects.gnome.org/NetworkManager/](http://projects.gnome.org/NetworkManager/)

**KDE NetworkManager Front-End**

[http://userbase.kde.org/NetworkManagement](http://userbase.kde.org/NetworkManagement)

**Package Documentation**

Also check out the information in the following directories for the latest information about NetworkManager and the GNOME and KDE NetworkManager applets:

- `/usr/share/doc/packages/NetworkManager/`
- `/usr/share/doc/packages/NetworkManager-kde4/`, and
- `/usr/share/doc/packages/NetworkManager-gnome/`. 
27 Samba

Using Samba, a Unix machine can be configured as a file and print server for Mac OS X, Windows, and OS/2 machines. Samba has developed into a fully-fledged and rather complex product. Configure Samba with YaST, SWAT (a Web interface), or by editing the configuration file manually.

27.1 Terminology

The following are some terms used in Samba documentation and in the YaST module.

**SMB protocol**
Samba uses the SMB (server message block) protocol that is based on the NetBIOS services. Microsoft released the protocol so other software manufacturers could establish connections to a Microsoft domain network. With Samba, the SMB protocol works on top of the TCP/IP protocol, so the TCP/IP protocol must be installed on all clients.

**CIFS protocol**
CIFS (common Internet file system) protocol is another protocol supported by Samba. CIFS defines a standard remote file system access protocol for use over the network, enabling groups of users to work together and share documents across the network.

**NetBIOS**
NetBIOS is a software interface (API) designed for communication between machines providing a name service. It enables machines connected to the network to reserve names for themselves. After reservation, these machines can be addressed by name. There is no central process that checks names. Any machine on the network can reserve as many names as it wants as long as the names are not already in use. The NetBIOS interface can be implemented for different network architectures. An implementation that works relatively closely with network hardware is called NetBEUI, but this is often referred to as NetBIOS. Network protocols implemented with NetBIOS are IPX from Novell (NetBIOS via TCP/IP) and TCP/IP.
The NetBIOS names sent via TCP/IP have nothing in common with the names used in `/etc/hosts` or those defined by DNS. NetBIOS uses its own, completely independent naming convention. However, it is recommended to use names that correspond to DNS hostnames to make administration easier or use DNS natively. This is the default used by Samba.

**Samba server**

Samba server provides SMB/CIFS services and NetBIOS over IP naming services to clients. For Linux, there are three daemons for Samba server: smbd for SMB/CIFS services, nmbd for naming services, and winbind for authentication.

**Samba client**

The Samba client is a system that uses Samba services from a Samba server over the SMB protocol. All common operating systems, such as Mac OS X, Windows, and OS/2, support the SMB protocol. The TCP/IP protocol must be installed on all computers. Samba provides a client for the different UNIX flavors. For Linux, there is a kernel module for SMB that allows the integration of SMB resources on the Linux system level. You do not need to run any daemon for the Samba client.

**Shares**

SMB servers provide resources to the clients by means of shares. Shares are printers and directories with their subdirectories on the server. It is exported by means of a name and can be accessed by its name. The share name can be set to any name—it does not have to be the name of the export directory. A printer is also assigned a name. Clients can access the printer by its name.

**DC**

A domain controller (DC) is a server that handles accounts in domain. For data replication, additional domain controllers are available in one domain.

### 27.2 Configuring a Samba Server

For configuring a Samba server, see the SUSE Linux Enterprise Server documentation.
27.3 Configuring Clients

Clients can only access the Samba server via TCP/IP. NetBEUI and NetBIOS via IPX cannot be used with Samba.

27.3.1 Configuring a Samba Client with YaST

Configure a Samba client to access resources (files or printers) on the Samba or Windows server. Enter the NT or Active Directory domain or workgroup in the dialog **Network Services > Windows Domain Membership**. If you activate **Also Use SMB Information for Linux Authentication**, the user authentication runs over the Samba, NT or Kerberos server.

Click **Expert Settings** for advanced configuration options. For example, use the **Mount Server Directories** table to enable mounting server home directory automatically with authentication. This way users will be able to access their home directories when hosted on CIFS. For details, see the [pam_mount man page](https://manpages.ubuntu.com/manpages/bionic/man8/pam_mount.8.html).

After completing all settings, confirm the dialog to finish the configuration.

27.4 Samba as Login Server

In networks where predominantly Windows clients are found, it is often preferable that users may only register with a valid account and password. In a Windows-based network, this task is handled by a primary domain controller (PDC). You can use a Windows NT server configured as PDC, but this task can also be done with a Samba server. The entries that must be made in the `[global]` section of `smb.conf` are shown in Example 27.1, "Global Section in smb.conf".

**EXAMPLE 27.1: GLOBAL SECTION IN SMB.CONF**

```
[global]
 workgroup = TUX-NET
 domain logons = Yes
 domain master = Yes
```

If encrypted passwords are used for verification purposes the Samba server must be able to handle these. The entry `encrypt passwords = yes` in the `[global]` section enables this (with Samba version 3, this is now the default). In addition, it is necessary to prepare user accounts
and passwords in an encryption format that conforms with Windows. Do this with the command `smbpasswd -a name`. Create the domain account for the computers, required by the Windows domain concept, with the following commands:

```bash
useradd hostname$
smbpasswd -a -m hostname
```

With the `useradd` command, a dollar sign is added. The command `smbpasswd` inserts this automatically when the parameter `-m` is used. The commented configuration example (`/usr/share/doc/packages/samba/examples/smb.conf.SUSE`) contains settings that automate this task.

```bash
add machine script = /usr/sbin/useradd -g nogroup -c "NT Machine Account" \
- s /bin/false %m$
```

To make sure that Samba can execute this script correctly, choose a Samba user with the required administrator permissions and add it to the `ntadmin` group. Then all users belonging to this Linux group can be assigned `Domain Admin` status with the command:

```bash
net groupmap add ntgroup="Domain Admins" unixgroup=ntadmin
```

For more information about this topic, see Chapter 12 of the Samba 3 HOWTO, found in `/usr/share/doc/packages/samba/Samba3-HOWTO.pdf`.

### 27.5 For More Information

Detailed Samba information is available in the digital documentation. Enter `apropos samba` at the command line to display some manual pages or just browse the `/usr/share/doc/packages/samba` directory if Samba documentation is installed for more online documentation and examples. Find a commented example configuration (`smb.conf.SUSE`) in the `examples` subdirectory.

The Samba 3 HOWTO provided by the Samba team includes a section about troubleshooting. In addition to that, Part V of the document provides a step-by-step guide to checking your configuration. You can find Samba 3 HOWTO in `/usr/share/doc/packages/samba/Samba3-HOWTO.pdf` after installing the package `samba-doc`.
Sharing File Systems with NFS

Distributing and sharing file systems over a network is a common task in corporate environments. The well-proven network file system (NFS) works together with NIS, the yellow pages protocol. For a more secure protocol that works together with LDAP and may also use Kerberos, check NFSv4. Combined with pNFS, you can eliminate performance bottlenecks.

NFS with NIS makes a network transparent to the user. With NFS, it is possible to distribute arbitrary file systems over the network. With an appropriate setup, users always find themselves in the same environment regardless of the terminal they currently use.

28.1 Terminology

The following are terms used in the YaST module.

Exports
A directory exported by an NFS server, which clients can integrate it into their system.

NFS Client
The NFS client is a system that uses NFS services from an NFS server over the Network File System protocol. The TCP/IP protocol is already integrated into the Linux kernel; there is no need to install any additional software.

NFS Server
The NFS server provides NFS services to clients. A running server depends on the following daemons: nfsd (worker), idmapd (user and group name mappings to IDs and vice versa), statd (file locking), and mountd (mount requests).

pNFS
Parallel NFS, a protocol extension of NFSv4. Any pNFS clients can directly access the data on an NFS server.
28.2 Installing NFS Server

The NFS server software is not part of the default installation. If you configure an NFS server as described in Section 28.3, “Configuring NFS Server” you will automatically be prompted to install the required packages. Alternatively, install the package `nfs-kernel-server` with YaST or zypper.

Like NIS, NFS is a client/server system. However, a machine can be both—it can supply file systems over the network (export) and mount file systems from other hosts (import).

28.3 Configuring NFS Server

Configuring an NFS server can be done either through YaST or manually. For authentication, NFS can also be combined with Kerberos.

28.3.1 NFS with Kerberos

To use Kerberos authentication for NFS, GSS security must be enabled. Select Enable GSS Security in the initial YaST NFS Server dialog. You must have a working Kerberos server to use this feature. YaST does not set up the server but just uses the provided functionality. If you want to use Kerberos authentication in addition to the YaST configuration, complete at least the following steps before running the NFS configuration:

1. Make sure that both the server and the client are in the same Kerberos domain. They must access the same KDC (Key Distribution Center) server and share their `krb5.keytab` file (the default location on any machine is `/etc/krb5.keytab`). For more information about Kerberos, see Book “Security Guide”, Chapter 6 “Network Authentication with Kerberos”.

2. Start the gssd service on the client with `rcgssd start`.

For more information about configuring kerberized NFS, refer to the links in Section 28.5, “For More Information”.

28.4 Configuring Clients

To configure your host as an NFS client, you do not need to install additional software. All needed packages are installed by default.
28.4.1 Importing File Systems with YaST

Authorized users can mount NFS directories from an NFS server into the local file tree using the YaST NFS client module. Proceed as follows:

PROCEDURE 28.1: IMPORTING NFS DIRECTORIES

1. Start the YaST NFS client module.

2. Click on Add in the NFS Shares tab. Enter the hostname of the NFS server, the directory to import, and the mount point at which to mount this directory locally.

3. Enable Open Port in Firewall in the NFS Settings tab if you use a Firewall and want to allow access to the service from remote computers. The firewall status is displayed next to the check box.

4. When using NFSv4, make sure that the check box Enable NFSv4 is selected and that the NFSv4 Domain Name contains the same value as used by the NFSv4 server. The default domain is localdomain.

5. Click OK to save your changes.

The configuration is written to /etc/fstab and the specified file systems are mounted. When you start the YaST configuration client at a later time, it also reads the existing configuration from this file.

28.4.2 Importing File Systems Manually

The prerequisite for importing file systems manually from an NFS server is a running RPC port mapper. Start it by entering rcrpcbind start as root. Then remote file systems can be mounted in the file system like local partitions using mount:

```
mount host:remote-path local-path
```

To import user directories from the nfs.example.com machine, for example, use:

```
mount nfs.example.com:/home /home
```
## 28.4.2.1 Using the Automount Service

The `autofs` daemon can be used to mount remote file systems automatically. Add the following entry in the your `/etc/auto.master` file:

```
/nfsmounts /etc/auto.nfs
```

Now the `/nfsmounts` directory acts as the root for all the NFS mounts on the client if the `auto.nfs` file is filled appropriately. The name `auto.nfs` is chosen for the sake of convenience—you can choose any name. In `auto.nfs` add entries for all the NFS mounts as follows:

```
localdata -fstype=nfs server1:/data
nfs4mount -fstype=nfs4 server2:/
```

Activate the settings with `rcautofs start` as root. In this example, `/nfsmounts/localdata`, the `/data` directory of `server1`, is mounted with NFS and `/nfsmounts/nfs4mount` from `server2` is mounted with NFSv4.

If the `/etc/auto.master` file is edited while the service `autofs` is running, the automounter must be restarted for the changes to take effect with `rcautofs restart`.

## 28.4.2.2 Manually Editing `/etc/fstab`

A typical NFSv3 mount entry in `/etc/fstab` looks like this:

```
nfs.example.com:/data /local/path nfs rw,noauto 0 0
```

NFSv4 mounts may also be added to the `/etc/fstab` file. For these mounts, use `nfs4` instead of `nfs` in the third column and make sure that the remote file system is given as `/` after the `nfs.example.com:` in the first column. A sample line for an NFSv4 mount in `/etc/fstab` looks like this:

```
nfs.example.com:/ /local/pathv4 nfs4 rw,noauto 0 0
```

The `noauto` option prevents the file system from being mounted automatically at start up. If you want to mount the respective file system manually, it is possible to shorten the mount command specifying the mount point only:

```
mount /local/path
```

Note, that if you do not enter the `noauto` option, the initialization scripts of the system will handle the mount of those file systems at start up.
28.4.3 Parallel NFS (pNFS)

NFS is one of the oldest protocols, developed in the ’80s. As such, NFS is usually sufficient if you want to share small files. However, when you want to transfer big files or large numbers of clients want to access data, an NFS server becomes a bottleneck and significantly impacts on the system performance. This is due to files quickly getting bigger, whereas the relative speed of your Ethernet just has not fully kept up.

When you request a file from a “normal” NFS server, the server looks up the file metadata, collects all the data and transfers it over the network to your client. However, the performance bottleneck becomes apparent no matter how small or big the files are:

- With small files most of the time is spent collecting the metadata
- With big files most of the time is spent on transferring the data from server to client

pNFS, or parallel NFS, overcomes this limitation as it separates the file system metadata from the location of the data. As such, pNFS requires two types of servers:

- A metadata or control server which handles all the non-data traffic
- One or more storage server(s) which hold(s) the data

The metadata and the storage servers form a single, logical NFS server. When a client wants to read or write, the metadata server tells the NFSv4 client which storage server to use to access the file chunks. The client can access the data directly on the server.

SUSE Linux Enterprise supports pNFS on the client side only.

28.4.3.1 Configuring pNFS Client With YaST

Proceed as described in Procedure 28.1, “Importing NFS Directories”, but click the pNFS (v4.1) check box and optionally NFSv4 share. YaST will do all the necessary steps and will write all the required options in the file /etc/exports.
28.4.3.2 Configuring pNFS Client Manually

Refer to Section 28.4.2, “Importing File Systems Manually” to start. Most of the configuration is done by the NFSv4 server. For pNFS, the only difference is to add the \texttt{minorversion} option and the metadata server \texttt{MDS\_SERVER} to your \texttt{mount} command:

\begin{verbatim}
mount -t nfs4 -o minorversion=1 MDS\_SERVER MOUNTPOINT
\end{verbatim}

To help with debugging, change the value in the /proc file system:

\begin{verbatim}
echo 32767 > /proc/sys/sunrpc/nfsd\_debug
echo 32767 > /proc/sys/sunrpc/nfs\_debug
\end{verbatim}

28.5 For More Information

In addition to the man pages of \texttt{exports}, \texttt{nfs}, and \texttt{mount}, information about configuring an NFS server and client is available in \texttt{/usr/share/doc/packages/nfsidmap/README}. For further documentation online refer to the following Web sites:

- Find the detailed technical documentation online at SourceForge (http://nfs.sourceforge.net/).
- For instructions for setting up kerberized NFS, refer to NFS Version 4 Open Source Reference Implementation (http://www.citi.umich.edu/projects/nfsv4/linux/krb5-setup.html).
- If you have questions on NFSv4, refer to the Linux NFSv4 FAQ (http://www.citi.umich.edu/projects/nfsv4/linux/faq/).
29  File Synchronization

These days, many people use several computers—one computer at home, one or several computers at the workplace, and possibly a laptop, tablet, or a smartphone on the road. Many files are needed on all these computers. You may want to be able to work with all computers and modify the files so that you have the latest version of the data available on all computers.

29.1  Available Data Synchronization Software

Data synchronization is no problem for computers that are permanently linked by means of a fast network. In this case, use a network file system, like NFS, and store the files on a server, enabling all hosts to access the same data via the network. This approach is impossible if the network connection is poor or not permanent. When you are on the road with a laptop, copies of all needed files must be on the local hard disk. However, it is then necessary to synchronize modified files. When you modify a file on one computer, make sure a copy of the file is updated on all other computers. For occasional copies, this can be done manually with scp or rsync. However, if many files are involved, the procedure can be complicated and requires great care to avoid errors, such as overwriting a new file with an old file.

⚠️ Warning: Risk of Data Loss

Before you start managing your data with a synchronization system, you should be well acquainted with the program used and test its functionality. A backup is indispensable for important files.

The time-consuming and error-prone task of manually synchronizing data can be avoided by using one of the programs that use various methods to automate this job. The following summaries are merely intended to convey a general understanding of how these programs work and how they can be used. If you plan to use them, read the program documentation.
29.1.1 CVS

CVS, which is mostly used for managing program source versions, offers the possibility of keeping copies of the files on multiple computers. Accordingly, it is also suitable for data synchronization. CVS maintains a central repository on the server in which the files and changes to files are saved. Changes that are performed locally are committed to the repository and can be retrieved from other computers by means of an update. Both procedures must be initiated by the user.

CVS is very resilient to errors when changes occur on several computers. The changes are merged and (if changes took place in the same lines) a conflict is reported. When a conflict occurs, the database remains in a consistent state. The conflict is only visible for resolution on the client host.

29.1.2 rsync

When no version control is needed but large directory structures need to be synchronized over slow network connections, the tool rsync offers well-developed mechanisms for transmitting only changes within files. This not only applies to text files, but also binary files. To detect the differences between files, rsync subdivides the files into blocks and computes checksums over them.

The effort put into the detection of the changes comes at a price. The systems to synchronize should be scaled generously for the usage of rsync. RAM is especially important.

29.2 Determining Factors for Selecting a Program

There are some important factors to consider when deciding which program to use.

29.2.1 Client-Server versus Peer-to-Peer

Two different models are commonly used for distributing data. In the first model, all clients synchronize their files with a central server. The server must be accessible by all clients at least occasionally. This model is used by CVS.

The other possibility is to let all networked hosts synchronize their data between each other as peers. rsync actually works in client mode, but any client can also act as a server.
29.2.2 Portability

CVS and rsync are also available for many other operating systems, including various Unix and Windows systems.

29.2.3 Interactive versus Automatic

In CVS, the data synchronization is started manually by the user. This allows fine control over the data to synchronize and easy conflict handling. However, if the synchronization intervals are too long, conflicts are more likely to occur.

29.2.4 Conflicts: Incidence and Solution

Conflicts only rarely occur in CVS, even when several people work on one large program project. This is because the documents are merged on the basis of individual lines. When a conflict occurs, only one client is affected. Usually conflicts in CVS can easily be resolved.

There is no conflict handling in rsync. The user is responsible for not accidentally overwriting files and manually resolving all possible conflicts. To be on the safe side, a versioning system like RCS can additionally be employed.

29.2.5 Selecting and Adding Files

In CVS, new directories and files must be added explicitly using the command `cvs add`. This results in greater user control over the files to synchronize. On the other hand, new files are often overlooked, especially when the question marks in the output of `cvs update` are ignored due to the large number of files.

29.2.6 History

An additional feature of CVS is that old file versions can be reconstructed. A brief editing remark can be inserted for each change and the development of the files can easily be traced later based on the content and the remarks. This is a valuable aid for theses and program texts.
29.2.7 Data Volume and Hard Disk Requirements

A sufficient amount of free space for all distributed data is required on the hard disks of all involved hosts. CVS require additional space for the repository database on the server. The file history is also stored on the server, requiring even more space. When files in text format are changed, only the modified lines need to be saved. Binary files require additional space amounting to the size of the file every time the file is changed.

29.2.8 GUI

Experienced users normally run CVS from the command line. However, graphical user interfaces are available for Linux (such as cervisia) and other operating systems (like wincvs). Many development tools (such as kdevelop) and text editors (such as Emacs) provide support for CVS. The resolution of conflicts is often much easier to perform with these front-ends.

29.2.9 User Friendliness

rsync is rather easy to use and is also suitable for newcomers. CVS is somewhat more difficult to operate. Users should understand the interaction between the repository and local data. Changes to the data should first be merged locally with the repository. This is done with the command `cvs update`. Then the data must be sent back to the repository with the command `cvs commit`. Once this procedure has been understood, newcomers are also able to use CVS with ease.

29.2.10 Security against Attacks

During transmission, the data should ideally be protected against interception and manipulation. CVS and rsync can easily be used via ssh (secure shell), providing security against attacks of this kind. Running CVS via rsh (remote shell) should be avoided. Accessing CVS with the pserver mechanism in insecure networks is likewise not advisable.

29.2.11 Protection against Data Loss

CVS has been used by developers for a long time to manage program projects and is extremely stable. Because the development history is saved, CVS even provides protection against certain user errors, such as unintentional deletion of a file.
### 29.3 Introduction to CVS

CVS is suitable for synchronization purposes if individual files are edited frequently and are stored in a file format, such as ASCII text or program source text. The use of CVS for synchronizing data in other formats (such as JPEG files) is possible, but leads to large amounts of data, because all variants of a file are stored permanently on the CVS server. In such cases, most of the capabilities of CVS cannot be used. The use of CVS for synchronizing files is only possible if all workstations can access the same server.

---

**TABLE 29.1: FEATURES OF THE FILE SYNCHRONIZATION TOOLS: -- = VERY POOR, - = POOR OR NOT AVAILABLE, O = MEDIUM, + = GOOD, ++ = EXCELLENT, X = AVAILABLE**

<table>
<thead>
<tr>
<th>Feature</th>
<th>CVS</th>
<th>rsync</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client/Server</td>
<td>C-S</td>
<td>C-S</td>
</tr>
<tr>
<td>Portability</td>
<td>Lin,Un*x,Win</td>
<td>Lin,Un*x,Win</td>
</tr>
<tr>
<td>Interactivity</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Speed</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Conflicts</td>
<td>+ +</td>
<td>o</td>
</tr>
<tr>
<td>File Sel.</td>
<td>Sel./file, dir.</td>
<td>Dir.</td>
</tr>
<tr>
<td>History</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>Hard Disk Space</td>
<td>--</td>
<td>o</td>
</tr>
<tr>
<td>GUI</td>
<td>o</td>
<td>-</td>
</tr>
<tr>
<td>Difficulty</td>
<td>o</td>
<td>+</td>
</tr>
<tr>
<td>Attacks</td>
<td>+ (ssh)</td>
<td>+ (ssh)</td>
</tr>
<tr>
<td>Data Loss</td>
<td>+ +</td>
<td>+</td>
</tr>
</tbody>
</table>
29.3.1 Configuring a CVS Server

The server is the host on which all valid files are located, including the latest versions of all files. Any stationary workstation can be used as a server. If possible, the data of the CVS repository should be included in regular backups.

When configuring a CVS server, it might be a good idea to grant users access to the server via SSH. If the user is known to the server as tux and the CVS software is installed on the server as well as on the client, the following environment variables must be set on the client side:

\[
\text{CVS\_RSH=ssh \ CVSROOT=tux@server:/serverdir}
\]

The command `cvs init` can be used to initialize the CVS server from the client side. This needs to be done only once.

Finally, the synchronization must be assigned a name. Select or create a directory on the client to contain files to manage with CVS (the directory can also be empty). The name of the directory is also the name of the synchronization. In this example, the directory is called `synchome`. Change to this directory and enter the following command to set the synchronization name to `synchome`:

\[
\text{cvs import synchome tux wilber}
\]

Many CVS commands require a comment. For this purpose, CVS starts an editor (the editor defined in the environment variable $EDITOR or vi if no editor was defined). The editor call can be circumvented by entering the comment in advance on the command line, such as in the following example:

\[
\text{cvs import -m 'this is a test' synchome tux wilber}
\]

29.3.2 Using CVS

The synchronization repository can now be checked out from all hosts with `cvs co synchome`. This creates a new subdirectory `synchome` on the client. To commit your changes to the server, change to the directory `synchome` (or one of its subdirectories) and enter `cvs commit`.

By default, all files (including subdirectories) are committed to the server. To commit only individual files or directories, specify them as in `cvs commit file1 directory1`. New files and directories must be added to the repository with a command like `cvs add file1 directory1` before they are committed to the server. Subsequently, commit the newly added files and directories with `cvs commit file1 directory1`. 
If you change to another workstation, check out the synchronization repository if this has not been done during an earlier session at the same workstation.

Start the synchronization with the server with `cvs update`. Update individual files or directories as in `cvs update file1 directory1`. To see the difference between the current files and the versions stored on the server, use the command `cvs diff` or `cvs diff file1 directory1`. Use `cvs -nq update` to see which files would be affected by an update.

Here are some of the status symbols displayed during an update:

**U**

The local version was updated. This affects all files that are provided by the server and missing on the local system.

**M**

The local version was modified. If there were changes on the server, it was possible to merge the differences in the local copy.

**P**

The local version was patched with the version on the server.

**C**

The local file conflicts with current version in the repository.

**?**

This file does not exist in CVS.

The status **M** indicates a locally modified file. Either commit the local copy to the server or remove the local file and run the update again. In this case, the missing file is retrieved from the server. If you commit a locally modified file and the file was changed in the same line and committed, you might get a conflict, indicated with **C**.
In this case, look at the conflict marks (“>>” and “<<”) in the file and decide between the two versions. As this can be a rather unpleasant job, you might decide to abandon your changes, delete the local file, and enter `cvs up` to retrieve the current version from the server.

29.4 Introduction to rsync

rsync is useful when large amounts of data need to be transmitted regularly while not changing too much. This is, for example, often the case when creating backups. Another application concerns staging servers. These are servers that store complete directory trees of Web servers that are regularly mirrored onto a Web server in a DMZ.

29.4.1 Configuration and Operation

rsync can be operated in two different modes. It can be used to archive or copy data. To accomplish this, only a remote shell, like ssh, is required on the target system. However, rsync can also be used as a daemon to provide directories to the network. The basic mode of operation of rsync does not require any special configuration. rsync directly allows mirroring complete directories onto another system. As an example, the following command creates a backup of the home directory of tux on a backup server named sun:

```bash
rsync -baz -e ssh /home/tux/ tux@sun:backup
```

The following command is used to play the directory back:

```bash
rsync -az -e ssh tux@sun:backup /home/tux/
```

Up to this point, the handling does not differ much from that of a regular copying tool, like scp. rsync should be operated in “rsync” mode to make all its features fully available. This is done by starting the rsyncd daemon on one of the systems. Configure it in the file `/etc/rsyncd.conf`. For example, to make the directory `/srv/ftp` available with rsync, use the following configuration:

```plaintext
gid = nobody
uid = nobody
read only = true
use chroot = no
transfer logging = true
```
Then start rsyncd with `rcrsyncd start`. rsyncd can also be started automatically during the boot process. Set this up by activating this service in the runlevel editor provided by YaST or by manually entering the command `insserv rsyncd`. rsyncd can alternatively be started by xinetd. This is, however, only recommended for servers that rarely use rsyncd.

The example also creates a log file listing all connections. This file is stored in `/var/log/rsyncd.log`.

It is then possible to test the transfer from a client system. Do this with the following command:

```
rsync -avz sun::FTP
```

This command lists all files present in the directory `/srv/ftp` of the server. This request is also logged in the log file `/var/log/rsyncd.log`. To start an actual transfer, provide a target directory. Use `.` for the current directory. For example:

```
rsync -avz sun::FTP .
```

By default, no files are deleted while synchronizing with rsync. If this should be forced, the additional option `--delete` must be stated. To ensure that no newer files are deleted, the option `--update` can be used instead. Any conflicts that arise must be resolved manually.

### 29.5 For More Information

**CVS**

Important information about CVS can be found in the home page [http://www.cvshome.org](http://www.cvshome.org).

**rsync**

Important information about rsync is provided in the man pages `man rsync` and `man rsyncd.conf`. A technical reference about the operating principles of rsync is featured in `/usr/share/doc/packages/rsync/tech_report.ps`. Find the latest news about rsync on the project Web site at [http://rsync.samba.org/](http://rsync.samba.org/).
V Troubleshooting

30 Help and Documentation 351
31 Common Problems and Their Solutions 357
30 Help and Documentation

SUSE® Linux Enterprise Desktop comes with various sources of information and documentation, many of which are already integrated into your installed system.

Documentation in /usr/share/doc
This traditional help directory holds various documentation files and release notes for your system. It contains also information of installed packages in the subdirectory packages. Find more detailed information in Section 30.1, “Documentation Directory”.

Man Pages and Info Pages for Shell Commands
When working with the shell, you do not need to know the options of the commands by heart. Traditionally, the shell provides integrated help by means of man pages and info pages. Read more in Section 30.2, “Man Pages” and Section 30.3, “Info Pages”.

Desktop Help Centers
The help centers of both the KDE desktop (KDE help center) and the GNOME desktop (Yelp) provide central access to the most important documentation resources on your system in searchable form. These resources include online help for installed applications, man pages, info pages, and the Novell/SUSE manuals delivered with your product.

Separate Help Packages for Some Applications
When installing new software with YaST, the software documentation is installed automatically (in most cases) and usually appears in the help center of your desktop. However, some applications, such as GIMP, may have different online help packages that can be installed separately with YaST and do not integrate into the help centers.

30.1 Documentation Directory

The traditional directory to find documentation on your installed Linux system is /usr/share/doc. Usually, the directory contains information about the packages installed on your system, plus release notes, manuals, and more.
Note: Contents Depends on Installed Packages

In the Linux world, many manuals and other kinds of documentation are available in the form of packages, just like software. How much and which information you find in /usr/share/docs also depends on the (documentation) packages installed. If you cannot find the subdirectories mentioned here, check if the respective packages are installed on your system and add them with YaST, if needed.

30.1.1 Novell/SUSE Manuals

We provide HTML and PDF versions of our books in different languages. In the manual subdirectory, find HTML versions of most of the Novell/SUSE manuals available for your product. For an overview of all documentation available for your product refer to the preface of the manuals.

If more than one language is installed, /usr/share/doc/manual may contain different language versions of the manuals. The HTML versions of the Novell/SUSE manuals are also available in the help center of both desktops. For information on where to find the PDF and HTML versions of the books on your installation media, refer to the SUSE Linux Enterprise Desktop Release Notes. They are available on your installed system under /usr/share/doc/release-notes/ or online at your product-specific Web page at http://www.suse.com/doc/.

30.1.2 HOWTOs

If the howto package is installed on your system, /usr/share/doc also holds the howto subdirectory, where you find additional documentation for many tasks relating to the setup and operation of Linux software.

30.1.3 Package Documentation

Under packages, find the documentation that is included in the software packages installed on your system. For every package, a subdirectory /usr/share/doc/packages/packagename is created. It often contains README files for the package and sometimes examples, configuration files, or additional scripts. The following list introduces typical files to be found under /usr/share/doc/packages. None of these entries are mandatory and many packages might just include a few of them.
AUTHORS
List of the main developers.

BUGS
Known bugs or malfunctions. Might also contain a link to a Bugzilla Web page where you
can search all bugs.

CHANGES,
ChangeLog
Summary of changes from version to version. Usually interesting for developers, because
it is very detailed.

COPYING,
LICENSE
Licensing information.

FAQ
Question and answers collected from mailing lists or newsgroups.

INSTALL
How to install this package on your system. As the package is already installed by the time
you get to read this file, you can safely ignore the contents of this file.

README, README.*
General information on the software. For example, for what purpose and how to use it.

TODO
Things that are not implemented yet, but probably will be in the future.

MANIFEST
List of files with a brief summary.

NEWS
Description of what is new in this version.

30.2 Man Pages
Man pages are an essential part of any Linux system. They explain the usage of a command
and all available options and parameters. Man pages can be accessed with man followed by the
name of the command, for example, man ls.
Man pages are displayed directly in the shell. To navigate them, move up and down with Page ↑ and Page ↓. Move between the beginning and the end of a document with Home and End. End this viewing mode by pressing Q. Learn more about the man command itself with man man. Man pages are sorted in categories as shown in Table 30.1, “Man Pages—Categories and Descriptions” (taken from the man page for man itself).

### TABLE 30.1: MAN PAGES—CATEGORIES AND DESCRIPTIONS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Executable programs or shell commands</td>
</tr>
<tr>
<td>2</td>
<td>System calls (functions provided by the Kernel)</td>
</tr>
<tr>
<td>3</td>
<td>Library calls (functions within program libraries)</td>
</tr>
<tr>
<td>4</td>
<td>Special files (usually found in /dev)</td>
</tr>
<tr>
<td>5</td>
<td>File formats and conventions (/etc/fstab)</td>
</tr>
<tr>
<td>6</td>
<td>Games</td>
</tr>
<tr>
<td>7</td>
<td>Miscellaneous (including macro packages and conventions), for example, man(7), groff(7)</td>
</tr>
<tr>
<td>8</td>
<td>System administration commands (usually only for root)</td>
</tr>
<tr>
<td>9</td>
<td>Kernel routines (nonstandard)</td>
</tr>
</tbody>
</table>

Each man page consists of several parts labeled NAME, SYNOPSIS, DESCRIPTION, SEE ALSO, LICENSING, and AUTHOR. There may be additional sections available depending on the type of command.
30.3 Info Pages

Info pages are another important source of information on your system. Usually, they are more detailed than man pages. To view the info page for a certain command, enter `info` followed by the name of the command, for example, `info ls`. You can browse an info page with a viewer directly in the shell and display the different sections, called “nodes”. Use `Space` to move forward and `<—` to move backwards. Within a node, you can also browse with `Page ↑` and `Page ↓`, but only `Space` and `<—` will take you also to the previous or subsequent node. Press `Q` to end the viewing mode. Not every man page comes with an info page and vice versa.

30.4 Online Resources

In addition to the online versions of the Novell manuals installed under `/usr/share/doc`, you can also access the product-specific manuals and documentation on the Web. For an overview of all documentation available for SUSE Linux Enterprise Desktop check out your product-specific documentation Web page at [http://www.suse.com/doc/](http://www.suse.com/doc/).

If you are searching for additional product-related information, you can also refer to the following Web sites:

**Novell Technical Support Knowledgebase**


**Novell Forums**

There are several forums where you can dive in on discussions about Novell products. See [http://forums.novell.com/](http://forums.novell.com/) for a list.

**Cool Solutions**

An online community, which offers articles, tips, Q and A, and free tools to download: [http://www.novell.com/communities/coolsolutions](http://www.novell.com/communities/coolsolutions)

**KDE Documentation**

Find documentation for many aspects of KDE suitable for users and administrators at [http://www.kde.org/documentation/](http://www.kde.org/documentation/).
GNOME Documentation

Documentation for GNOME users, administrators and developers is available at http://library.gnome.org.

The Linux Documentation Project

The Linux Documentation Project (TLDP) is run by a team of volunteers who write Linux-related documentation (see http://www.tldp.org). It's probably the most comprehensive documentation resource for Linux. The set of documents contains tutorials for beginners, but is mainly focused on experienced users and professional system administrators. TLDP publishes HOWTOs, FAQs, and guides (handbooks) under a free license. Parts of the documentation from TLDP is also available on SUSE Linux Enterprise Desktop.

You may also want to try general-purpose search engines. For example, use search terms Linux CD-RW help or OpenOffice file conversion problem if you have trouble with burning CDs or LibreOffice file conversion.
31 Common Problems and Their Solutions

This chapter describes a range of potential problems and their solutions. Even if your situation is not precisely listed here, there may be one similar enough to offer hints to the solution of your problem.

31.1 Finding and Gathering Information

Linux reports things in a very detailed way. There are several places to look when you encounter problems with your system, most of which are standard to Linux systems in general, and some of which are relevant to SUSE Linux Enterprise Desktop systems. Most log files can be viewed with YaST (Miscellaneous \(\geq\) Start-Up Log).

YaST offers the possibility to collect all system information needed by the support team. Use Other \(\geq\) Support and select the problem category. When all information is gathered, attach it to your support request.

A list of the most frequently checked log files follows with the description of their typical purpose. Paths containing ~ refer to the current user’s home directory.

<table>
<thead>
<tr>
<th>Log File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~/.xsession-errors</td>
<td>Messages from the desktop applications currently running.</td>
</tr>
<tr>
<td>/var/log/apparmor/</td>
<td>Log files from AppArmor, see Book “Security Guide” for detailed information.</td>
</tr>
<tr>
<td>/var/log/audit/audit.log</td>
<td>Log file from Audit to track any access to files, directories, or resources of your system, and trace system calls.</td>
</tr>
<tr>
<td>/var/log/boot.msg</td>
<td>Messages from the kernel reported during the boot process.</td>
</tr>
<tr>
<td>/var/log/mail.*</td>
<td>Messages from the mail system.</td>
</tr>
<tr>
<td>Log File</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>/var/log/messages</td>
<td>Ongoing messages from the kernel and system log daemon (when running).</td>
</tr>
<tr>
<td>/var/log/NetworkManager</td>
<td>Log file from NetworkManager to collect problems with network connectivity</td>
</tr>
<tr>
<td>/var/log/samba/</td>
<td>Directory containing Samba server and client log messages.</td>
</tr>
<tr>
<td>/var/log/SaX.log</td>
<td>Hardware messages from the SaX display and KVM system.</td>
</tr>
<tr>
<td>/var/log/warn</td>
<td>All messages from the kernel and system log daemon with the “warning” level or higher.</td>
</tr>
<tr>
<td>/var/log/wtmp</td>
<td>Binary file containing user login records for the current machine session. View it with <code>last</code>.</td>
</tr>
<tr>
<td>/var/log/Xorg.*.log</td>
<td>Various start-up and runtime logs from the X Window system. It is useful for debugging failed X start-ups.</td>
</tr>
<tr>
<td>/var/log/YaST2/</td>
<td>Directory containing YaST’s actions and their results.</td>
</tr>
<tr>
<td>/var/log/zypper.log</td>
<td>Log file of zypper.</td>
</tr>
</tbody>
</table>

Apart from log files, your machine also supplies you with information about the running system. See Table 31.2: System Information With the /proc File System

**TABLE 31.2: SYSTEM INFORMATION WITH THE /proc FILE SYSTEM**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/proc/cpuinfo</td>
<td>Contains processor information, including its type, make, model, and performance.</td>
</tr>
</tbody>
</table>
### File System Information

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/proc/dma</code></td>
<td>Shows which DMA channels are currently being used.</td>
</tr>
<tr>
<td><code>/proc/interrupts</code></td>
<td>Shows which interrupts are in use, and how many of each have been in use.</td>
</tr>
<tr>
<td><code>/proc/iomem</code></td>
<td>Displays the status of I/O (input/output) memory.</td>
</tr>
<tr>
<td><code>/proc/ioregs</code></td>
<td>Shows which I/O ports are in use at the moment.</td>
</tr>
<tr>
<td><code>/proc/meminfo</code></td>
<td>Displays memory status.</td>
</tr>
<tr>
<td><code>/proc/modules</code></td>
<td>Displays the individual modules.</td>
</tr>
<tr>
<td><code>/proc/mounts</code></td>
<td>Displays devices currently mounted.</td>
</tr>
<tr>
<td><code>/proc/partitions</code></td>
<td>Shows the partitioning of all hard disks.</td>
</tr>
<tr>
<td><code>/proc/version</code></td>
<td>Displays the current version of Linux.</td>
</tr>
</tbody>
</table>

Apart from the `/proc` file system, the Linux kernel exports information with the `sysfs` module, an in-memory file system. This module represents kernel objects, their attributes and relationships. For more information about `sysfs`, see the context of udev in *Chapter 16, Dynamic Kernel Device Management with udev*. Table 31.3 contains an overview of the most common directories under `/sys`.

**TABLE 31.3: SYSTEM INFORMATION WITH THE /sys FILE SYSTEM**

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/sys/block</code></td>
<td>Contains subdirectories for each block device discovered in the system. Generally, these are mostly disk type devices.</td>
</tr>
<tr>
<td><code>/sys/bus</code></td>
<td>Contains subdirectories for each physical bus type.</td>
</tr>
<tr>
<td>File</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>/sys/class</td>
<td>Contains subdirectories grouped together as a functional types of devices (like graphics, net, printer, etc.)</td>
</tr>
<tr>
<td>/sys/device</td>
<td>Contains the global device hierarchy.</td>
</tr>
</tbody>
</table>

Linux comes with a number of tools for system analysis and monitoring. See Book “System Analysis and Tuning Guide”, Chapter 2 “System Monitoring Utilities” for a selection of the most important ones used in system diagnostics.

Each of the following scenarios begins with a header describing the problem followed by a paragraph or two offering suggested solutions, available references for more detailed solutions, and cross-references to other scenarios that are related.

### 31.2 Installation Problems

Installation problems are situations when a machine fails to install. It may fail entirely or it may not be able to start the graphical installer. This section highlights some of the typical problems you may run into, and offers possible solutions or workarounds for these kinds of situations.

#### 31.2.1 Checking Media

If you encounter any problems using the SUSE Linux Enterprise Desktop installation media, check the integrity of your installation media with Software ➔ Media Check. Media problems are more probable with the media you burn yourself. To check the SUSE Linux Enterprise Desktop medium, insert it into the drive and click Start Check in the Media Check screen of YaST. This may take several minutes. If errors are detected, do not use this medium for installation.
31.2.2 Hardware Information

Display detected hardware and technical data using **Hardware > Hardware Information.** Click any node of the tree for more information about a device. This module is especially useful, when submitting a support request for which you need information about your hardware.

Save the displayed hardware information to a file by clicking **Save to File.** Select the desired directory and filename then click **Save** to create the file.
31.2.3 No Bootable DVD Drive Available

If your computer does not contain a bootable DVD-ROM drive or if the one you have is not supported by Linux, there are several options you can install your machine without a built-in DVD drive:

**Booting from a Floppy Disk**

Create a boot floppy and boot from floppy disk instead of DVD.

**Using an External Boot Device**

If it is supported by your BIOS and the installation kernel, boot from external DVD drives.
Network Boot via PXE


31.2.3.1 Booting from a Floppy Disk (SYSLINUX)

On some older computers, there is no bootable DVD drive available, but there is a floppy disk drive present. To install on such a system, create boot disks and boot your system with them. The boot disks include the loader called SYSLINUX and the program linuxrc. SYSLINUX enables the selection of a kernel during the boot procedure and the specification of any parameters needed for the hardware used. The program linuxrc supports the loading of kernel modules for your hardware and subsequently starts the installation.

When booting from a boot disk, the boot procedure is initiated by the boot loader SYSLINUX (package syslinux). When the system is booted, SYSLINUX runs a minimum hardware detection that mainly consists of the following steps:

1. The program checks if the BIOS provides VESA 2.0–compliant framebuffer support and boots the kernel accordingly.

2. The monitor data (DDC info) is read.

3. The first block of the first hard disk (MBR) is read to map BIOS IDs to Linux device names during the boot loader configuration. The program attempts to read the block by means of the the lba32 functions of the BIOS to determine if the BIOS supports these functions.

If you keep [Shift] pressed when SYSLINUX starts, all these steps are skipped. For troubleshooting purposes, insert the line

\[
\text{verbose 1}
\]

in \text{syslinux.cfg} for the boot loader to display which action is currently being performed.

If the machine does not boot from the floppy disk, you may need to change the boot sequence in the BIOS to \text{A,C,CDROM}.
31.2.3.2 External Boot Devices

Linux supports most existing DVD drives. If the system has neither a DVD drive nor a floppy disk, it is still possible that an external DVD drive, connected through USB, FireWire, or SCSI, can be used to boot the system. This depends mainly on the interaction of the BIOS and the hardware used. Sometimes a BIOS update may help if you encounter problems.

31.2.4 Booting from Installation Media Fails

One reason why a machine does not boot the installation media can be an incorrect boot sequence setting in BIOS. The BIOS boot sequence must have DVD drive set as the first entry for booting. Otherwise the machine would try to boot from another medium, typically the hard disk. Guidance for changing the BIOS boot sequence can be found the documentation provided with your motherboard, or in the following paragraphs.

The BIOS is the software that enables the very basic functions of a computer. Motherboard vendors provide a BIOS specifically made for their hardware. Normally, the BIOS setup can only be accessed at a specific time—when the machine is booting. During this initialization phase, the machine performs a number of diagnostic hardware tests. One of them is a memory check, indicated by a memory counter. When the counter appears, look for a line, usually below the counter or somewhere at the bottom, mentioning the key to press to access the BIOS setup. Usually the key to press is one of Del, F1, or Esc. Press this key until the BIOS setup screen appears.

PROCEDURE 31.1: CHANGING THE BIOS BOOT SEQUENCE

1. Enter the BIOS using the proper key as announced by the boot routines and wait for the BIOS screen to appear.

2. To change the boot sequence in an AWARD BIOS, look for the BIOS FEATURES SETUP entry. Other manufacturers may have a different name for this, such as ADVANCED CMOS SETUP. When you have found the entry, select it and confirm with Enter.

3. In the screen that opens, look for a subentry called BOOT SEQUENCE or BOOT ORDER. The boot sequence looks something like C,A or A,C. In the former case, the machine first searches the hard disk (C) then the floppy drive (A) to find a bootable medium. Change the settings by pressing PgUp or PgDown until the sequence is A,CDROM,C.

4. Leave the BIOS setup screen by pressing Esc. To save the changes, select SAVE & EXIT SETUP, or press F10. To confirm that your settings should be saved, press Y.
PROCEDURE 31.2: CHANGING THE BOOT SEQUENCE IN A SCSI BIOS (ADAPTEC HOST ADAPTER)

1. Open the setup by pressing \texttt{Ctrl-A}.

2. Select \textit{Disk Utilities}. The connected hardware components are now displayed. Make note of the SCSI ID of your DVD drive.

3. Exit the menu with \texttt{Esc}.

4. Open \textit{Configure Adapter Settings}. Under \textit{Additional Options}, select \textit{Boot Device Options} and press \texttt{Enter}.

5. Enter the ID of the DVD drive and press \texttt{Enter} again.

6. Press \texttt{Esc} twice to return to the start screen of the SCSI BIOS.

7. Exit this screen and confirm with \texttt{Yes} to boot the computer.

Regardless of what language and keyboard layout your final installation will be using, most BIOS configurations use the US keyboard layout as depicted in the following figure:

![US Keyboard Layout](image)

FIGURE 31.3: US KEYBOARD LAYOUT

31.2.5 Fails to Boot

Some hardware types, mainly very old or very recent ones, fail to install. In many cases, this may happen because support for this type of hardware is missing in the installation kernel, or due to certain functionality included in this kernel, such as ACPI, that can still cause problems on some hardware.
If your system fails to install using the standard *Installation* mode from the first installation boot screen, try the following:

1. With the DVD still in the drive, reboot the machine with `Ctrl–Alt–Del` or using the hardware reset button.

2. When the boot screen appears, press `F5`, use the arrow keys of your keyboard to navigate to *No ACPI* and press `Enter` to launch the boot and installation process. This option disables the support for ACPI power management techniques.

3. Proceed with the installation as described in *Book “Deployment Guide”, Chapter 3 “Installation with YaST”*.

If this fails, proceed as above, but choose *Safe Settings* instead. This option disables ACPI and DMA support. Most hardware will boot with this option.

If both of these options fail, use the boot options prompt to pass any additional parameters needed to support this type of hardware to the installation kernel. For more information about the parameters available as boot options, refer to the kernel documentation located in `/usr/src/linux/Documentation/kernel-parameters.txt`.

**Tip: Obtaining Kernel Documentation**

Install the `kernel-source` package to view the kernel documentation.

There are various other ACPI-related kernel parameters that can be entered at the boot prompt prior to booting for installation:

- **acpi=off**
  
  This parameter disables the complete ACPI subsystem on your computer. This may be useful if your computer cannot handle ACPI at all or if you think ACPI in your computer causes trouble.

- **acpi=force**
  
  Always enable ACPI even if your computer has an old BIOS dated before the year 2000. This parameter also enables ACPI if it is set in addition to `acpi=off`.

- **acpi=noirq**
  
  Do not use ACPI for IRQ routing.
acpi=ht
Run only enough ACPI to enable hyper-threading.

acpi=strict
Be less tolerant of platforms that are not strictly ACPI specification compliant.

pci=noacpi
Disable PCI IRQ routing of the new ACPI system.

pnpacpi=off
This option is for serial or parallel problems when your BIOS setup contains wrong interrupts or ports.

notsc
Disable the time stamp counter. This option can be used to work around timing problems on your systems. It is a recent feature, if you see regressions on your machine, especially time related or even total hangs, this option is worth a try.

nohz=off
Disable the nohz feature. If your machine hangs, this option may help. Otherwise it is of no use.

Once you have determined the right parameter combination, YaST automatically writes them to the boot loader configuration to make sure that the system boots properly next time.

If unexplainable errors occur when the kernel is loaded or during the installation, select Memory Test in the boot menu to check the memory. If Memory Test returns an error, it is usually a hardware error.

31.2.6 Fails to Launch Graphical Installer

After you insert the medium into your drive and reboot your machine, the installation screen comes up, but after you select Installation, the graphical installer does not start.

There are several ways to deal with this situation:

- Try to select another screen resolution for the installation dialogs.
- Select Text Mode for installation.
- Do a remote installation via VNC using the graphical installer.
PROCEDURE 31.3: CHANGE SCREEN RESOLUTION FOR INSTALLATION

1. Boot for installation.

2. Press [F3] to open a menu from which to select a lower resolution for installation purposes.

3. Select Installation and proceed with the installation as described in Book “Deployment Guide”, Chapter 3 “Installation with YaST”.

PROCEDURE 31.4: INSTALLATION IN TEXT MODE

1. Boot for installation.

2. Press [F3] and select Text Mode.

3. Select Installation and proceed with the installation as described in Book “Deployment Guide”, Chapter 3 “Installation with YaST”.

PROCEDURE 31.5: VNC INSTALLATION

1. Boot for installation.

2. Enter the following text at the boot options prompt:

   
   `vnc=1 vncpassword=some_password`

   Replace `some_password` with the password to use for VNC installation.

3. Select Installation then press [Enter] to start the installation.

   Instead of starting right into the graphical installation routine, the system continues to run in a text mode, then halts, displaying a message containing the IP address and port number at which the installer can be reached via a browser interface or a VNC viewer application.

4. If using a browser to access the installer, launch the browser and enter the address information provided by the installation routines on the future SUSE Linux Enterprise Desktop machine and hit [Enter]:

   `http://ip_address_of_machine:5801`

   A dialog opens in the browser window prompting you for the VNC password. Enter it and proceed with the installation as described in Book “Deployment Guide”, Chapter 3 “Installation with YaST”.
Important

Installation via VNC works with any browser under any operating system, provided Java support is enabled.

Provide the IP address and password to your VNC viewer when prompted. A window opens, displaying the installation dialogs. Proceed with the installation as usual.

31.2.7 Only Minimalistic Boot Screen Started

You inserted the medium into the drive, the BIOS routines are finished, but the system does not start with the graphical boot screen. Instead it launches a very minimalistic text-based interface. This may happen on any machine not providing sufficient graphics memory for rendering a graphical boot screen.

Although the text boot screen looks minimalistic, it provides nearly the same functionality as the graphical one:

Boot Options

Unlike the graphical interface, the different boot options cannot be selected using the cursor keys of your keyboard. The boot menu of the text mode boot screen offers some keywords to enter at the boot prompt. These keywords map to the options offered in the graphical version. Enter your choice and hit Enter to launch the boot process.

Custom Boot Options

After selecting a boot option, enter the appropriate keyword at the boot prompt or enter some custom boot options as described in Section 31.2.5, “Fails to Boot”. To launch the installation process, press Enter.

Screen Resolutions

Use the F keys to determine the screen resolution for installation. If you need to boot in text mode, choose F3.
31.3 Boot Problems

Boot problems are situations when your system does not boot properly (does not boot to the expected runlevel and login screen).

31.3.1 Fails to Load the GRUB Boot Loader

If the hardware is functioning properly, it is possible that the boot loader is corrupted and Linux cannot start on the machine. In this case, it is necessary to reinstall the boot loader. To reinstall the boot loader, proceed as follows:

1. Insert the installation media into the drive.
2. Reboot the machine.
3. Select Installation from the boot menu.
4. Select a language.
5. Accept the license agreement.
6. In the Installation Mode screen, select Repair Installed System.
7. Once in the YaST System Repair module, select Expert Tools then select Install New Boot Loader.
8. Restore the original settings and reinstall the boot loader.
9. Leave YaST System Repair and reboot the system.

Other reasons for the machine not booting may be BIOS-related:

**BIOS Settings**

Check your BIOS for references to your hard drive. GRUB may simply not be started if the hard drive itself cannot be found with the current BIOS settings.

**BIOS Boot Order**

Check whether your system's boot order includes the hard disk. If the hard disk option was not enabled, your system may install properly, but fails to boot when access to the hard disk is required.
31.3.2 No Login or Prompt Appears

This behavior typically occurs after a failed kernel upgrade and it is known as a *kernel panic* because of the type of error on the system console that sometimes can be seen at the final stage of the process. If, in fact, the machine has just been rebooted following a software update, the immediate goal is to reboot it using the old, proven version of the Linux kernel and associated files. This can be done in the GRUB boot loader screen during the boot process as follows:

1. Reboot the computer using the reset button, or switch it off and on again.

2. When the GRUB boot screen becomes visible, select *Linux--Failsafe* then press [Enter]. The machine will boot using the prior version of the kernel and its associated files.

3. After the boot process has completed, remove the newly installed kernel and, if necessary, manually modify `/boot/grub/menu.lst` to make the older kernel as the default option. For some detailed information about the syntax used in this configuration file, refer to *Chapter 12, The Boot Loader GRUB*. Updating this file is probably not necessary because automated update tools normally modify it for you during the rollback process.

4. Reboot.

If this does not fix the problem because the *Linux--Failsafe* option does not boot the computer properly, boot the computer using the installation media. After the machine has booted, continue with Step 3.

31.3.3 No Graphical Login

If the machine comes up, but does not boot into the graphical login manager, anticipate problems either with the choice of the default runlevel or the configuration of the X Window System. To check the runlevel configuration, log in as the *root* user and check whether the machine is configured to boot into runlevel 5 (graphical desktop). A quick way to check this is to examine the contents of `/etc/inittab`, as follows:

```
tux@mercury:~> grep "id:" /etc/inittab
id:5:initdefault:
```

The returned line indicates that the machine’s default runlevel (*initdefault*) is set to 5 and that it should boot to the graphical desktop. If the runlevel is set to any other number, use the YaST Runlevel Editor module to set it to 5.
Important

Do not edit the runlevel configuration manually. Otherwise SuSEconfig (run by YaST) will overwrite these changes on its next run. If you need to make manual changes here, disable future SuSEconfig changes by setting `CHECK_INITTAB` in `/etc/sysconfig/suseconfig` to `no`.

If the runlevel is set to `5`, your desktop or X Windows software is probably misconfigured or corrupted. Examine the log files at `/var/log/Xorg.*.log` for detailed messages from the X server as it attempted to start. If the desktop fails during start, it may log error messages to `/var/log/messages`. If these error messages hint at a configuration problem in the X server, try to fix these issues. If the graphical system still does not come up, consider reinstalling the graphical desktop.

Tip: Starting X Window System Manually

One quick test: the `startx` command should force the X Window System to start with the configured defaults if the user is currently logged in on the console. If that does not work, it should log errors to the console.

31.4 Login Problems

Login problems are those where your machine does, in fact, boot to the expected welcome screen or login prompt, but refuses to accept the username and password, or accepts them but then does not behave properly (fails to start the graphic desktop, produces errors, drops to a command line, etc.).
31.4.1 Valid Username and Password Combinations Fail

This usually occurs when the system is configured to use network authentication or directory services and, for some reason, is unable to retrieve results from its configured servers. The `root` user, as the only local user, is the only user that can still log in to these machines. The following are some common reasons why a machine appears functional but is unable to process logins correctly:

- The network is not working. For further directions on this, turn to Section 31.5, “Network Problems”.

- DNS is not working at the moment (which prevents GNOME or KDE from working and the system from making validated requests to secure servers). One indication that this is the case is that the machine takes an extremely long time to respond to any action. Find more information about this topic in Section 31.5, “Network Problems”.

- If the system is configured to use Kerberos, the system’s local time may have drifted past the accepted variance with the Kerberos server time (this is typically 300 seconds). If NTP (network time protocol) is not working properly or local NTP servers are not working, Kerberos authentication ceases to function because it depends on common clock synchronization across the network.

- The system’s authentication configuration is misconfigured. Check the PAM configuration files involved for any typographical errors or misordering of directives. For additional background information about PAM and the syntax of the configuration files involved, refer to Book “Security Guide”, Chapter 2 “Authentication with PAM”.

- The home partition is encrypted. Find more information about this topic in Section 31.4.3, “Login to Encrypted Home Partition Fails”.

In all cases that do not involve external network problems, the solution is to reboot the system into single-user mode and repair the configuration before booting again into operating mode and attempting to log in again. To boot into single-user mode:

1. Reboot the system. The boot screen appears, offering a prompt.

2. Enter 1 at the boot prompt to make the system boot into single-user mode.

3. Enter the username and password for `root`.

4. Make all the necessary changes.
5. Boot into the full multiuser and network mode by entering `telinit 5` at the command line.

### 31.4.2 Valid Username and Password Not Accepted

This is by far the most common problem users encounter, because there are many reasons this can occur. Depending on whether you use local user management and authentication or network authentication, login failures occur for different reasons.

Local user management can fail for the following reasons:

- The user may have entered the wrong password.
- The user's home directory containing the desktop configuration files is corrupted or write protected.
- There may be problems with the X Window System authenticating this particular user, especially if the user's home directory has been used with another Linux distribution prior to installing the current one.

To locate the reason for a local login failure, proceed as follows:

1. Check whether the user remembered his password correctly before you start debugging the whole authentication mechanism. If the user may not remember his password correctly, use the YaST User Management module to change the user's password. Pay attention to the Caps Lock key and unlock it, if necessary.

2. Log in as `root` and check `/var/log/messages` for error messages of the login process and of PAM.

3. Try to log in from a console (using `Ctrl`–`Alt`–`F1`). If this is successful, the blame cannot be put on PAM, because it is possible to authenticate this user on this machine. Try to locate any problems with the X Window System or the desktop (GNOME or KDE). For more information, refer to Section 31.4.4, “Login Successful but GNOME Desktop Fails” and Section 31.4.5, “Login Successful but KDE Desktop Fails”.

4. If the user's home directory has been used with another Linux distribution, remove the `Xauthority` file in the user's home. Use a console login via `Ctrl`–`Alt`–`F1` and run `rm .Xauthority` as this user. This should eliminate X authentication problems for this user. Try graphical login again.
5. If graphical login still fails, do a console login with `Ctrl-Alt-F1`. Try to start an X session on another display—the first one (:0) is already in use:

```
startx -- :1
```

This should bring up a graphical screen and your desktop. If it does not, check the log files of the X Window System (`/var/log/Xorg.displaynumber.log`) or the log file for your desktop applications (`.xsession-errors` in the user's home directory) for any irregularities.

6. If the desktop could not start because of corrupt configuration files, proceed with Section 31.4.4, “Login Successful but GNOME Desktop Fails” or Section 31.4.5, “Login Successful but KDE Desktop Fails”.

The following are some common reasons why network authentication for a particular user may fail on a specific machine:

- The user may have entered the wrong password.
- The username exists in the machine’s local authentication files and is also provided by a network authentication system, causing conflicts.
- The home directory exists but is corrupt or unavailable. Perhaps it is write protected or is on a server that is inaccessible at the moment.
- The user does not have permission to log in to that particular host in the authentication system.
- The machine has changed hostnames, for whatever reason, and the user does not have permission to log in to that host.
- The machine cannot reach the authentication server or directory server that contains that user's information.
- There may be problems with the X Window System authenticating this particular user, especially if the user's home has been used with another Linux distribution prior to installing the current one.

To locate the cause of the login failures with network authentication, proceed as follows:

1. Check whether the user remembered their password correctly before you start debugging the whole authentication mechanism.
2. Determine the directory server which the machine relies on for authentication and make sure that it is up and running and properly communicating with the other machines.

3. Determine that the user's username and password work on other machines to make sure that his authentication data exists and is properly distributed.

4. See if another user can log in to the misbehaving machine. If another user can log in without difficulty or if root can log in, log in and examine the /var/log/messages file. Locate the time stamps that correspond to the login attempts and determine if PAM has produced any error messages.

5. Try to log in from a console (using Ctrl–Alt–F1). If this is successful, the problem is not with PAM or the directory server on which the user's home is hosted, because it is possible to authenticate this user on this machine. Try to locate any problems with the X Window System or the desktop (GNOME or KDE). For more information, refer to Section 31.4.4, “Login Successful but GNOME Desktop Fails” and Section 31.4.5, “Login Successful but KDE Desktop Fails”.

6. If the user's home directory has been used with another Linux distribution, remove the Xauthority file in the user's home. Use a console login via Ctrl–Alt–F1 and run rm .Xauthority as this user. This should eliminate X authentication problems for this user. Try graphical login again.

7. If graphical login still fails, do a console login with Ctrl–Alt–F1. Try to start an X session on another display—the first one (:0) is already in use:

```
startx -- :1
```

This should bring up a graphical screen and your desktop. If it does not, check the log files of the X Window System (/var/log/Xorg.displaynumber.log) or the log file for your desktop applications (.xsession-errors in the user's home directory) for any irregularities.

8. If the desktop could not start because of corrupt configuration files, proceed with Section 31.4.4, “Login Successful but GNOME Desktop Fails” or Section 31.4.5, “Login Successful but KDE Desktop Fails”.
31.4.3 Login to Encrypted Home Partition Fails

It is recommended to use an encrypted home partition for laptops. If you cannot log in to your laptop, the reason is usually simple: your partition could not be unlocked.

During the boot time, you have to enter the passphrase to unlock your encrypted partition. If you do not enter it, the boot process continues, leaving the partition locked.

To unlock your encrypted partition, proceed as follows:

1. Switch to the text console with `Ctrl-Alt-F1`.
2. Become `root`.
3. Restart the unlocking process again with:
   ```bash
 /etc/init.d/boot.crypto restart
   ```
4. Enter your passphrase to unlock your encrypted partition.
5. Exit the text console and switch back to the login screen with `Alt-F7`.
6. Log in as usual.

31.4.4 Login Successful but GNOME Desktop Fails

If this is the case, it is likely that your GNOME configuration files have become corrupted. Some symptoms may include the keyboard failing to work, the screen geometry becoming distorted, or even the screen coming up as a bare gray field. The important distinction is that if another user logs in, the machine works normally. It is then likely that the problem can be fixed relatively quickly by simply moving the user's GNOME configuration directory to a new location, which causes GNOME to initialize a new one. Although the user is forced to reconfigure GNOME, no data is lost.

1. Switch to a text console by pressing `Ctrl-Alt-F1`.
2. Log in with your username.
3. Move the user's GNOME configuration directories to a temporary location:
   ```bash
 mv .gconf .gconf-ORIG-RECOVER
   ```
4. Log out.

5. Log in again, but do not run any applications.

6. Recover your individual application configuration data (including the Evolution e-mail client data) by copying the `~/.gconf-ORIG-RECOVER/apps/` directory back into the new `~/.gconf` directory as follows:

   \texttt{cp -a .gconf-ORIG-RECOVER/apps .gconf/}

   If this causes the login problems, attempt to recover only the critical application data and reconfigure the remainder of the applications.

### 31.4.5 Login Successful but KDE Desktop Fails

There are several reasons why a KDE desktop would not allow users to login. Corrupted cache data can cause login problems as well as corrupt KDE desktop configuration files.

Cache data is used at desktop start-up to increase performance. If this data is corrupted, start-up is slowed down or fails entirely. Removing them forces the desktop start-up routines to start from scratch. This takes more time than a normal start-up, but data is intact after this and the user can login.

To remove the cache files of the KDE desktop, issue the following command as \texttt{root}:

\texttt{rm -rf /tmp/kde-user /tmp/ksocket-user}

Replace \texttt{user} with your username. Removing these two directories just removes the corrupted cache files. No real data is harmed using this procedure.

Corrupted desktop configuration files can always be replaced with the initial configuration files. If you want to recover the user's adjustments, carefully copy them back from their temporary location after the configuration has been restored, using the default configuration values.

To replace a corrupted desktop configuration with the initial configuration values, proceed as follows:

1. Switch to a text console by pressing \texttt{Ctrl}-\texttt{Alt}-\texttt{F1}.

2. Log in with your username.
3. Move the KDE configuration directory and the .skel files to a temporary location:

- For KDE3 use these commands:
  
  ```sh
 mv .kde .kde-ORIG-RECOVER
 mv .skel .skel-ORIG-RECOVER
  ```

- For KDE4 use these commands:
  
  ```sh
 mv .kde4 .kde4-ORIG-RECOVER
 mv .skel .skel-ORIG-RECOVER
  ```

4. Log out.

5. Log in again.

6. After the desktop has started successfully, copy the user’s own configurations back into place:

  ```sh
 cp -a KDEDIR/share .kde/share
  ```

Replace KDEDIR with the directory from Step 3.

**Important**

If the user's own adjustments caused the login to fail and continue to do so, repeat the procedure as described above, but do not copy the .kde/share directory.

### 31.5 Network Problems

Many problems of your system may be network-related, even though they do not seem to be at first. For example, the reason for a system not allowing users to log in may be a network problem of some kind. This section introduces a simple checklist you can apply to identify the cause of any network problem encountered.

**PROCEDURE 31.6: HOW TO IDENTIFY NETWORK PROBLEMS**

When checking the network connection of your machine, proceed as follows:

1. If you use an ethernet connection, check the hardware first. Make sure that your network cable is properly plugged into your computer and router (or hub, etc.). The control lights next to your ethernet connector are normally both be active.
If the connection fails, check whether your network cable works with another machine. If it does, your network card causes the failure. If hubs or switches are included in your network setup, they may be faulty, as well.

2. If using a wireless connection, check whether the wireless link can be established by other machines. If not, contact the wireless network's administrator.

3. Once you have checked your basic network connectivity, try to find out which service is not responding. Gather the address information of all network servers needed in your setup. Either look them up in the appropriate YaST module or ask your system administrator. The following list gives some of the typical network servers involved in a setup together with the symptoms of an outage.

**DNS (Name Service)**

A broken or malfunctioning name service affects the network's functionality in many ways. If the local machine relies on any network servers for authentication and these servers cannot be found due to name resolution issues, users would not even be able to log in. Machines in the network managed by a broken name server would not be able to “see” each other and communicate.

**NTP (Time Service)**

A malfunctioning or completely broken NTP service could affect Kerberos authentication and X server functionality.

**NFS (File Service)**

If any application needs data stored in an NFS mounted directory, it will not be able to start or function properly if this service was down or misconfigured. In the worst case scenario, a user's personal desktop configuration would not come up if their home directory containing the `.gconf` or `.kde` subdirectories could not be found due to a faulty NFS server.

**Samba (File Service)**

If any application needs data stored in a directory on a faulty Samba server, it will not be able to start or function properly.

**NIS (User Management)**

If your SUSE Linux Enterprise Desktop system relies on a faulty NIS server to provide the user data, users will not be able to log in to this machine.
LDAP (User Management)

If your SUSE Linux Enterprise Desktop system relies on a faulty LDAP server to provide the user data, users will not be able to log in to this machine.

Kerberos (Authentication)

Authentication will not work and login to any machine fails.

CUPS (Network Printing)

Users cannot print.

4. Check whether the network servers are running and whether your network setup allows you to establish a connection:

⚠️ Important

The debugging procedure described below only applies to a simple network server/client setup that does not involve any internal routing. It assumes both server and client are members of the same subnet without the need for additional routing.

a. Use `ping IP address or hostname` (replace `hostname` with the hostname of the server) to check whether each one of them is up and responding to the network. If this command is successful, it tells you that the host you were looking for is up and running and that the name service for your network is configured correctly.

If ping fails with `destination host unreachable`, either your system or the desired server is not properly configured or down. Check whether your system is reachable by running `ping IP address or your_hostname` from another machine. If you can reach your machine from another machine, it is the server that is not running at all or not configured correctly.

If ping fails with `unknown host`, the name service is not configured correctly or the hostname used was incorrect. For further checks on this matter, refer to Step 4.b. If ping still fails, either your network card is not configured correctly or your network hardware is faulty.
b. Use `host hostname` to check whether the hostname of the server you are trying to connect to is properly translated into an IP address and vice versa. If this command returns the IP address of this host, the name service is up and running. If the `host` command fails, check all network configuration files relating to name and address resolution on your host:

`/etc/resolv.conf`

This file is used to keep track of the name server and domain you are currently using. It can be modified manually or automatically adjusted by YaST or DHCP. Automatic adjustment is preferable. However, make sure that this file has the following structure and all network addresses and domain names are correct:

```
search fully_qualified_domain_name
nameserver ipaddress_of_nameserver
```

This file can contain more than one name server address, but at least one of them must be correct to provide name resolution to your host. If needed, adjust this file using the YaST Network Setting module (Hostname/DNS tab). If your network connection is handled via DHCP, enable DHCP to change hostname and name service information by selecting `Change Hostname via DHCP` and `Update Name Servers and Search List via DHCP` in the YaST DNS and Hostname module.

`/etc/nsswitch.conf`

This file tells Linux where to look for name service information. It should look like this:

```
... hosts: files dns networks: files dns ...
```

The `dns` entry is vital. It tells Linux to use an external name server. Normally, these entries are automatically managed by YaST, but it would be prudent to check.
If all the relevant entries on the host are correct, let your system administrator check the DNS server configuration for the correct zone information. If you have made sure that the DNS configuration of your host and the DNS server are correct, proceed with checking the configuration of your network and network device.

c. If your system cannot establish a connection to a network server and you have excluded name service problems from the list of possible culprits, check the configuration of your network card.

Use the command `ifconfig network_device` (executed as `root`) to check whether this device was properly configured. Make sure that both `inet address` and `Mask` are configured correctly. An error in the IP address or a missing bit in your network mask would render your network configuration unusable. If necessary, perform this check on the server as well.

d. If the name service and network hardware are properly configured and running, but some external network connections still get long time-outs or fail entirely, use `traceroute fully_qualified_domain_name` (executed as `root`) to track the network route these requests are taking. This command lists any gateway (hop) that a request from your machine passes on its way to its destination. It lists the response time of each hop and whether this hop is reachable at all. Use a combination of traceroute and ping to track down the culprit and let the administrators know.

Once you have identified the cause of your network trouble, you can resolve it yourself (if the problem is located on your machine) or let the system administrators of your network know about your findings so they can reconfigure the services or repair the necessary systems.

### 31.5.1 NetworkManager Problems

If you have a problem with network connectivity, narrow it down as described in Procedure 31.6, “How to Identify Network Problems”. If NetworkManager seems to be the culprit, proceed as follows to get logs providing hints on why NetworkManager fails:

1. Open a shell and log in as `root`.

2. Restart the NetworkManager:

   ```
 rcnetwork restart -o nm
   ```

"NetworkManager Problems SUSE Linux Enterp... 11 SP4"
3. Open a Web page, for example, http://www.opensuse.org as normal user to see, if you can connect.

4. Collect any information about the state of NetworkManager in /var/log/NetworkManager.

For more information about NetworkManager, refer to Chapter 26, Using NetworkManager.

31.6 Data Problems

Data problems are when the machine may or may not boot properly but, in either case, it is clear that there is data corruption on the system and that the system needs to be recovered. These situations call for a backup of your critical data, enabling you to recover the system state from before your system failed. SUSE Linux Enterprise Desktop offers dedicated YaST modules for system backup and restoration as well as a rescue system that can be used to recover a corrupted system from the outside.

31.6.1 Managing Partition Images

Sometimes you need to perform a backup from an entire partition or even hard disk. Linux comes with the `dd` tool which can create an exact copy of your disc. Combined with `gzip` you save some space.

**PROCEDURE 31.7: BACKING UP AND RESTORING HARDDISKS**

1. Start a Shell as user `root`.

2. Select your source device. Typically this is something like `/dev/sda` (labeled as `SOURCE`).

3. Decide where you want to store your image (labeled as `BACKUP_PATH`). It must be different from your source device. In other words: if you make a backup from `/dev/sda`, your image file must not to be stored under `/dev/sda`.

4. Run the commands to create a compressed image file:

   ```bash
 dd if=/dev/SOURCE | gzip > /BACKUP_PATH/image.gz
   ```

5. Restore the hard disk with the following commands:

   ```bash
 gzip -dc /BACKUP_PATH/image.gz | dd of=/dev/SOURCE
   ```
If you only need a partition to backup, replace the SOURCE placeholder with your respective partition. In this case, your image file can lie on the same hard disk, but on a different partition.

31.6.2 Backing Up Critical Data

System backups can be easily managed using the YaST System Backup module:

1. As root, start YaST and select System > System Backup.

2. Create a backup profile holding all details needed for the backup, filename of the archive file, scope, and type of the backup:
   a. Select Profile Management > Add.
   b. Enter a name for the archive.
   c. Enter the path to the location of the backup if you want to keep a local backup. For your backup to be archived on a network server (via NFS), enter the IP address or name of the server and the directory that should hold your archive.
   d. Determine the archive type and click Next.
   e. Determine the backup options to use, such as whether files not belonging to any package should be backed up and whether a list of files should be displayed prior to creating the archive. Also determine whether changed files should be identified using the time-consuming MD5 mechanism. Use Expert to enter a dialog for the backup of entire hard disk areas. Currently, this option only applies to the Ext2 file system.
   f. Finally, set the search constraints to exclude certain system areas from the backup area that do not need to be backed up, such as lock files or cache files. Add, edit, or delete items until your needs are met and leave with OK.

3. Once you have finished the profile settings, you can start the backup right away with Create Backup or configure automatic backup. It is also possible to create other profiles tailored for various other purposes.

To configure automatic backup for a given profile, proceed as follows:

1. Select Automatic Backup from the Profile Management menu.
2. Select *Start Backup Automatically*.

3. Determine the backup frequency. Choose *daily*, *weekly*, or *monthly*.

4. Determine the backup start time. These settings depend on the backup frequency selected.

5. Decide whether to keep old backups and how many should be kept. To receive an automatically generated status message of the backup process, check *Send Summary Mail to User root*.

6. Click OK to apply your settings and have the first backup start at the time specified.

### 31.6.3 Restoring a System Backup

Use the YaST System Restoration module to restore the system configuration from a backup. Restore the entire backup or select specific components that were corrupted and need to be reset to their old state.

1. Start **YaST > System > System Restoration**.

2. Enter the location of the backup file. This could be a local file, a network mounted file, or a file on a removable device, such as a floppy or a DVD. Then click **Next**.
   
   The following dialog displays a summary of the archive properties, such as the filename, date of creation, type of backup, and optional comments.

3. Review the archived content by clicking *Archive Content*. Clicking **OK** returns you to the *Archive Properties* dialog.

4. **Expert Options** opens a dialog in which to fine-tune the restore process. Return to the *Archive Properties* dialog by clicking **OK**.

5. Click **Next** to open the view of packages to restore. Press **Accept** to restore all files in the archive or use the various *Select All, Deselect All, and Select Files* buttons to fine-tune your selection. Only use the *Restore RPM Database* option if the RPM database is corrupted or deleted and this file is included in the backup.

6. After you click **Accept**, the backup is restored. Click **Finish** to leave the module after the restore process is completed.
31.6.4 Recovering a Corrupted System

There are several reasons why a system could fail to come up and run properly. A corrupted file system following a system crash, corrupted configuration files, or a corrupted boot loader configuration are the most common ones.

SUSE Linux Enterprise Desktop offers two different methods to resolve these situations. You can either use the YaST System Repair functionality or boot the rescue system. The following sections cover both types of system repair methods.

31.6.4.1 Using YaST System Repair

⚠ Note: Keyboard and Language Settings

If you change the language settings after booting, your keyboard is adapted as well.

Before launching the YaST System Repair module, determine in which mode to run it to best fit your needs. Depending on the severity and cause of your system failure (and your expertise), there are three different modes to choose from:

Automatic Repair

If your system failed due to an unknown cause and you basically do not know which part of the system is to blame for the failure, use Automatic Repair. An extensive automated check will be performed on all components of your installed system. For a detailed description of this procedure, refer to Section 31.6.4.1.1, “Automatic Repair”.

Customized Repair

If your system failed and you already know which component is to blame, you can cut the lengthy system check with Automatic Repair short by limiting the scope of the system analysis to those components. For example, if the system messages prior to the failure seem to indicate an error with the package database, you can limit the analysis and repair procedure to checking and restoring this aspect of your system. For a detailed description of this procedure, refer to Section 31.6.4.1.2, “Customized Repair”.

Expert Tools

If you already have a clear idea of what component failed and how this should be fixed, you can skip the analysis runs and directly apply the tools necessary for the repair of the relevant component. For details, refer to Section 31.6.4.1.3, “Expert Tools”.
Choose one of the repair modes as described above and proceed with the system repair as outlined in the following sections.

31.6.4.1.1 Automatic Repair

To start the automatic repair mode of YaST System Repair, proceed as follows:

1. Insert the installation medium of SUSE Linux Enterprise Desktop into your DVD drive.
2. Reboot the system.
3. On the boot screen, select Repair Installed System.
4. Confirm the license agreement and click Next.
5. Select Automatic Repair.

YaST now launches an extensive analysis of the installed system. The progress of the procedure is displayed at the bottom of the screen with two progress bars. The upper bar shows the progress of the currently running test. The lower bar shows the overall progress of the analysis. The log window in the top section tracks the currently running test and its result. See Figure 31.4, “Automatic Repair Mode”.

FIGURE 31.4: AUTOMATIC REPAIR MODE
The following main test runs are performed with every run. They contain, in turn, a number of individual subtests:

Check Partition Tables
Checks the validity and coherence of the partition tables of all detected hard disks.

Check Swap Areas
The swap partitions of the installed system are detected, tested, and offered for activation, where applicable. This offer should be accepted for the sake of a higher system repair speed.

Check File Systems
All detected file systems are subjected to a file system–specific check.

Check fstab Entries
The entries in the file are checked for completeness and consistency. All valid partitions are mounted.

Check Package Database
This checks whether all packages necessary for the operation of a minimal installation are present. While it is optionally possible to also analyze the base packages, this takes a long time because of their vast number.

Check Boot Loader Configuration
The boot loader configuration of the installed system (GRUB or LILO) is checked for completeness and coherence. Boot and root devices are examined and the availability of the initrd modules is checked.

6. Whenever an error is encountered, the procedure stops and a dialog opens outlining the details and possible solutions. Read the screen messages carefully before accepting the proposed fix. If you decide to decline a proposed solution, your system remains unchanged.

7. After the repair process has been terminated successfully, click OK and Finish and remove the installation media. The system automatically reboots.
31.6.4.1.2 Customized Repair

To launch the Customized Repair mode and selectively check certain components of your installed system, proceed as follows:

1. Insert the installation medium of SUSE Linux Enterprise Desktop into your DVD drive.
2. Reboot the system.
3. At the boot screen, select Repair Installed System.
4. Confirm the license agreement and click Next.
5. Select Customized Repair.
   Choosing Customized Repair shows a list of test runs that are all marked for execution at first. The total range of tests matches that of automatic repair. If you already know where no damage is present, unmark the corresponding tests. Clicking Next starts a narrower test procedure that probably has a significantly shorter running time.
   Not all test groups can be applied individually. The analysis of the fstab entries is always bound to an examination of the file systems, including existing swap partitions. YaST automatically resolves such dependencies by selecting the smallest number of necessary test runs. YaST does not support encrypted partitions. If you have one, YaST informs you about it.
6. Whenever an error is encountered, the procedure stops and a dialog opens outlining the details and possible solutions.
   Read the screen messages carefully before accepting the proposed fix. If you decide to decline a proposed solution, your system remains unchanged.
7. After the repair process has been terminated successfully, click OK and Finish and remove the installation media. The system automatically reboots.

31.6.4.1.3 Expert Tools

If you are knowledgeable with SUSE Linux Enterprise Desktop and already have a very clear idea of what needs to be repaired in your system, directly apply the tools, skipping the system analysis.

To make use of the Expert Tools feature of the YaST System Repair module, proceed as follows:

1. Insert the installation medium of SUSE Linux Enterprise Desktop into your DVD drive.
2. Reboot the system.

3. At the boot screen, select Repair Installed System.

4. Confirm the license agreement and click Next.

5. Select Expert Tools and choose a repair option.

6. After the repair process has been terminated successfully, click OK and Finish and remove the installation media. The system automatically reboots.

The Expert Tools provides the following options to repair your faulty system:

- **Install New Boot Loader**
  This starts the YaST boot loader configuration module. Find details in Section 12.2, “Configuring the Boot Loader with YaST”.

- **Boot Installed System**
  Try to boot an already-installed Linux system.

- **Start Partitioning Tool**
  This starts the expert partitioning tool in YaST.

- **Repair File System**
  This checks the file systems of your installed system. You are first offered a selection of all detected partitions and can then choose the ones to check.

- **Recover Lost Partitions**
  It is possible to attempt to reconstruct damaged partition tables. A list of detected hard disks is presented first for selection. Clicking OK starts the examination. This can take a while depending on the speed of your computer and the size and speed of the hard disk.

- **Important: Reconstructing a Partition Table**
  The reconstruction of a partition table is tricky. YaST attempts to recognize lost partitions by analyzing the data sectors of the hard disk. The lost partitions are added to the rebuilt partition table when recognized. This is, however, not successful in all imaginable cases.

- **Save System Settings to Floppy**
  This option saves important system files to a floppy disk. If one of these files becomes damaged, it can be restored from disk.
Verify Installed Software

This checks the consistency of the package database and the availability of the most important packages. Any damaged installed packages can be reinstalled with this tool.

31.6.4.2 Using the Rescue System

SUSE Linux Enterprise Desktop contains a rescue system. The rescue system is a small Linux system that can be loaded into a RAM disk and mounted as root file system, allowing you to access your Linux partitions from the outside. Using the rescue system, you can recover or modify any important aspect of your system:

- Manipulate any type of configuration file.
- Check the file system for defects and start automatic repair processes.
- Access the installed system in a “change root” environment.
- Check, modify, and reinstall the boot loader configuration.
- Recover from a badly installed device driver or unusable kernel.
- Resize partitions using the parted command. Find more information about this tool at the GNU Parted website [http://www.gnu.org/software/parted/parted.html](http://www.gnu.org/software/parted/parted.html).

The rescue system can be loaded from various sources and locations. The simplest option is to boot the rescue system from the original installation medium:

1. Insert the installation medium into your DVD drive.
2. Reboot the system.
3. At the boot screen, press \[F4\] and choose **DVD-ROM**. Then choose **Rescue System** from the main menu.
4. Enter **root** at the **Rescue: prompt. A password is not required.

If your hardware setup does not include a DVD drive, you can boot the rescue system from a network source. The following example applies to a remote boot scenario—if using another boot medium, such as a DVD, modify the **info** file accordingly and boot as you would for a normal installation.
1. Enter the configuration of your PXE boot setup and add the lines `install=protocol://instsource` and `rescue=1`. If you need to start the repair system, use `repair=1` instead. As with a normal installation, `protocol` stands for any of the supported network protocols (NFS, HTTP, FTP, etc.) and `instsource` for the path to your network installation source.

2. Boot the system using “Wake on LAN”, as described in Book “Deployment Guide”, Chapter 11 “Remote Installation”, Section 11.3.7 “Wake on LAN”.

3. Enter `root` at the `Rescue:` prompt. A password is not required.

Once you have entered the rescue system, you can make use of the virtual consoles that can be reached with `Alt–F1` to `Alt–F6`.

A shell and many other useful utilities, such as the mount program, are available in the `/bin` directory. The `sbin` directory contains important file and network utilities for reviewing and repairing the file system. This directory also contains the most important binaries for system maintenance, such as fdisk, mkfs, mkswap, mount, mount, init, and shutdown, and ifconfig, ip, route, and netstat for maintaining the network. The directory `/usr/bin` contains the vi editor, find, less, and ssh.

To see the system messages, either use the command `dmesg` or view the file `/var/log/messages`.

### 31.6.4.2.1 Checking and Manipulating Configuration Files

As an example for a configuration that might be fixed using the rescue system, imagine you have a broken configuration file that prevents the system from booting properly. You can fix this using the rescue system.

To manipulate a configuration file, proceed as follows:

1. Start the rescue system using one of the methods described above.

2. To mount a root file system located under `/dev/sda6` to the rescue system, use the following command:

   ```bash
 mount /dev/sda6 /mnt
   ```

   All directories of the system are now located under `/mnt`
3. Change the directory to the mounted root file system:

   cd /mnt

4. Open the problematic configuration file in the vi editor. Adjust and save the configuration.

5. Unmount the root file system from the rescue system:

   umount /mnt

6. Reboot the machine.

31.6.4.2.2 Repairing and Checking File Systems

Generally, file systems cannot be repaired on a running system. If you encounter serious problems, you may not even be able to mount your root file system and the system boot may end with a “kernel panic”. In this case, the only way is to repair the system from the outside. It is strongly recommended to use the YaST System Repair for this task (see Section 31.6.4.1, “Using YaST System Repair” for details). However, if you need to do a manual file system check or repair, boot the rescue system. It contains the utilities to check and repair the btrfs, ext2, ext3, ext4, reiserfs, xfs, dosfs, and vfat file systems.

31.6.4.2.3 Accessing the Installed System

If you need to access the installed system from the rescue system, you need to do this in a change root environment. For example, to modify the boot loader configuration, or to execute a hardware configuration utility.

To set up a change root environment based on the installed system, proceed as follows:

1. First mount the root partition from the installed system and the device file system (change the device name to your current settings):

   mount /dev/sda6 /mnt
   mount --bind /dev /mnt/dev

2. Now you can “change root” into the new environment:

   chroot /mnt
3. Then mount `/proc` and `/sys`:

```
mount /proc
mount /sys
```

4. Finally, mount the remaining partitions from the installed system:

```
mount -a
```

5. Now you have access to the installed system. Before rebooting the system, unmount the partitions with `umount -a` and leave the “change root” environment with `exit`.

**Warning: Limitations**

Although you have full access to the files and applications of the installed system, there are some limitations. The kernel that is running is the one that was booted with the rescue system, not with the change root environment. It only supports essential hardware and it is not possible to add kernel modules from the installed system unless the kernel versions are exactly the same. Always check the version of the currently running (rescue) kernel with `uname -r` and then find out if a matching subdirectory exists in the `/lib/modules` directory in the change root environment. If yes, you can use the installed modules, otherwise you need to supply their correct versions on other media, such as a USB stick. Most often the rescue kernel version differs from the installed one — then you cannot simply access a sound card, for example. It is also not possible to start a graphical user interface. Also note that you leave the “change root” environment when you switch the console with `ALT-F1` to `ALT-F6`.

### 31.6.4.2.4 Modifying and Reinstalling the Boot Loader

Sometimes a system cannot boot because the boot loader configuration is corrupted. The startup routines cannot, for example, translate physical drives to the actual locations in the Linux file system without a working boot loader.

To check the boot loader configuration and reinstall the boot loader, proceed as follows:

1. Perform the necessary steps to access the installed system as described in [Section 31.6.4.2.3, “Accessing the Installed System”](#).

2. Check whether the following files are correctly configured according to the GRUB configuration principles outlined in [Chapter 12, The Boot Loader GRUB](#) and apply fixes if necessary.
3. Reinstall the boot loader using the following command sequence:

```
grub --batch < /etc/grub.conf
```

4. Unmount the partitions, log out from the “change root” environment, and reboot the system:

```
umount -a
exit
reboot
```

31.6.4.2.5 Fixing Kernel Installation

A kernel update may introduce a new bug which can impact the operation of your system. For example a driver for a piece of hardware in your system may be faulty, which prevents you from accessing and using it. In this case, revert to the last working kernel (if available on the system) or install the original kernel from the installation media.

Tip: How to Keep Last Kernels after Update

To prevent failures to boot after a faulty kernel update, use the kernel multiversion feature and tell `libzypp` which kernels you want to keep after the update.

For example to always keep the last two kernels and the currently running one, add

```
multiversion.kernels = latest,latest-1,running
```

to the `/etc/zypp/zypp.conf` file.
A similar case is when you need to reinstall or update a broken driver for a device not supported by SUSE Linux Enterprise Desktop. For example when a hardware vendor uses a specific device, such as a hardware RAID controller, which needs a binary driver to be recognized by the operating system. The vendor typically releases a Driver Update Disk with the fixed or updated version of the required driver.

In both cases you need to access the installed system in the rescue mode and fix the kernel related problem, otherwise the system may fail to boot correctly:

1. Boot from the SUSE Linux Enterprise Desktop installation media.

2. If you are recovering after a faulty kernel update, skip this step. If you need to use a driver update disk (DUD), press \texttt{F6} to load the driver update after the boot menu appears, and choose the path or URL to the driver update and confirm with \texttt{Yes}.

3. Choose Rescue System from the boot menu and press \texttt{Enter}. If you chose to use DUD, you will be asked to specify where the driver update is stored.

4. Enter \texttt{root} at the \texttt{Rescue:} prompt. A password is not required.

5. Manually mount the target system and “change root” into the new environment. For more information, see Section 31.6.4.2.3, “Accessing the Installed System”.

6. If using DUD, install/reinstall/update the faulty device driver package. Always make sure the installed kernel version exactly matches the version of the driver you are installing. If fixing faulty kernel update installation, you can install the original kernel from the installation media with the following procedure.

   a. Identify your DVD device with \texttt{hwinfo --cdrom} and mount it with \texttt{mount /dev/sr0} /mnt.

   b. Navigate to the directory where your kernel files are stored on the DVD, for example \texttt{cd /mnt/suse/x86_64/}.

   c. Install required \texttt{kernel-*}, \texttt{kernel-*-base}, and \texttt{kernel-*-extra} packages of your flavor with the \texttt{rpm -i} command.

   d. After the installation finishes, check that a new menu entry relevant for the newly installed kernel was added to the boot loader configuration file (\texttt{/boot/grub/menu.lst} for \texttt{grub}).
7. Update configuration files and reinitialize the boot loader if needed. For more information, see Section 31.6.4.2.4, “Modifying and Reinstalling the Boot Loader”.

8. Remove any bootable media from the system drive and reboot.
A  An Example Network

This example network is used across all network-related chapters of the SUSE® Linux Enterprise Desktop documentation.
B. GNU Licenses

This appendix contains the GNU Free Documentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for free software, because free software needs free documentation: a free program needs a manual that documents how to use it. However, this License is not limited to software manuals; it applies to any manual or similar work, provided it satisfies the conditions of this License. It requires the publisher to license the document under exactly the same terms, to ensure that the document is freely available for everyone under these terms. It works for writers just as well as for publishers. For authors of free documents, this License explicitly permitsDerivative Works, that is, free adaptations (translations, corrections, or other modifications) of the document. You may give away copies of this License, and you receive this License along with a copy of the document, that is the hundredth copy you buy. But you must include a copy of this License with every copy of the document you give away.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it is distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modiﬁed Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters). The fronts of printed books shall include at least one front-cover section. A "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generat- ed HTML, PostScript or PDF produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

Examples of suitable formats for Transparent copies include plain ASCII without markup, TeXinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generat- ed HTML, PostScript or PDF produced by some word processors for output purposes only.

A "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters). The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.
4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the year, name, authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title and, if there is a section Entitled "History", include the text of that section as a whole in the "History" section.

L. Preserve the network location, if any, given in the Document for public access to Transparent copies of the complete works from which the Document was derived, and likewise network locations given in the Document for previous versions it was derived from.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as Invariant. To do this, add them to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History" likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Endorsements". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Docu-
mentation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/
copyright/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.