
SUSE Linux Enterprise Server 12 SP5

Virtualization Best Practices
SUSE Linux Enterprise Server 12 SP5
Publication Date: November 07, 2024

Contents

1 Virtualization Scenarios 2

2 Before You Apply Modifications 2

3 Recommendations 3

4 VM Host Server Configuration and Resource Allocation 3

5 VM Guest Images 26

6 VM Guest Configuration 37

7 VM Guest-Specific Configurations and Settings 43

8 Hypervisors Compared to Containers 46

9 Xen: Converting a Paravirtual (PV) Guest to a Fully Virtual (FV/HVM) Guest 50

10 External References 53

1 SLES 12 SP5

1 Virtualization Scenarios

Virtualization offers a lot of capabilities to your environment. It can be used in multiple sce-
narios. For more details refer to Book “Virtualization Guide”, Chapter 1 “Virtualization Technology”,

Section 1.2 “Virtualization Capabilities” and Book “Virtualization Guide”, Chapter 1 “Virtualization Tech-

nology”, Section 1.3 “Virtualization Benefits”.

This best practice guide will provide advice for making the right choice in your environment.
It will recommend or discourage the usage of options depending on your workload. Fixing con-
figuration issues and performing tuning tasks will increase the performance of VM Guest's near
to bare metal.

2 Before You Apply Modifications

2.1 Back Up First

Changing the configuration of the VM Guest or the VM Host Server can lead to data loss or
an unstable state. It is really important that you do backups of les, data, images, etc. before
making any changes. Without backups you cannot restore the original state after a data loss or
a misconfiguration. Do not perform tests or experiments on production systems.

2.2 Test Your Workloads

The efficiency of a virtualization environment depends on many factors. This guide provides
a reference for helping to make good choices when configuring virtualization in a production
environment. Nothing is carved in stone. Hardware, workloads, resource capacity, etc. should all
be considered when planning, testing, and deploying your virtualization infra-structure. Testing
your virtualized workloads is vital to a successful virtualization implementation.

2 Virtualization Scenarios SLES 12 SP5

3 Recommendations

3.1 Prefer the libvirt Framework

SUSE strongly recommends using the libvirt framework to configure, manage, and operate
VM Host Servers, containers and VM Guest. It offers a single interface (GUI and shell) for all
supported virtualization technologies and therefore is easier to use than the hypervisor-specific
tools.

We do not recommend using libvirt and hypervisor-specific tools at the same time, because
changes done with the hypervisor-specific tools may not be recognized by the libvirt tool set.
See Book “Virtualization Guide”, Chapter 8 “Starting and Stopping libvirtd” for more information
on libvirt.

3.2 qemu-system-i386 Compared to qemu-system-x86_64

Similar to real 64-bit PC hardware, qemu-system-x86_64 supports VM Guests running a 32-
bit or a 64-bit operating system. Because qemu-system-x86_64 usually also provides better
performance for 32-bit guests, SUSE generally recommends using qemu-system-x86_64 for
both 32-bit and 64-bit VM Guests on KVM. Scenarios where qemu-system-i386 is known to
perform better are not supported by SUSE.

Xen also uses binaries from the qemu package but prefers qemu-system-i386 , which can be
used for both 32-bit and 64-bit Xen VM Guests. To maintain compatibility with the upstream
Xen Community, SUSE encourages using qemu-system-i386 for Xen VM Guests.

4 VM Host Server Configuration and Resource
Allocation
Allocation of resources for VM Guests is a crucial point when administrating virtual machines.
When assigning resources to VM Guests, be aware that overcommitting resources may affect
the performance of the VM Host Server and the VM Guests. If all VM Guests request all their
resources simultaneously, the host needs to be able to provide all of them. If not, the host's
performance will be negatively affected and this will in turn also have negative effects on the
VM Guest's performance.

3 Recommendations SLES 12 SP5

4.1 Memory

Linux manages memory in units called pages. On most systems the default page size is 4 KB.
Linux and the CPU need to know which pages belong to which process. That information is stored
in a page table. If a lot of processes are running, it takes more time to nd where the memory is
mapped, because of the time required to search the page table. To speed up the search, the TLB
(Translation Lookaside Buer) was invented. But on a system with a lot of memory, the TLB
is not enough. To avoid any fallback to normal page table (resulting in a cache miss, which is
time consuming), huge pages can be used. Using huge pages will reduce TLB overhead and TLB
misses (pagewalk). A host with 32 GB (32*1014*1024 = 33,554,432 KB) of memory and a 4
KB page size has a TLB with 33,554,432/4 = 8,388,608 entries. Using a 2 MB (2048 KB) page
size, the TLB only has 33554432/2048 = 16384 entries, considerably reducing TLB misses.

4.1.1 Configuring the VM Host Server and the VM Guest to use Huge Pages

Current CPU architectures support larger pages than 4 KB: huge pages. To determine the size
of huge pages available on your system (could be 2 MB or 1 GB), check the flags line in the
output of /proc/cpuinfo for occurrences of pse and/or pdpe1gb .

TABLE 1: DETERMINE THE AVAILABLE HUGE PAGES SIZE

CPU ag Huge pages size available

Empty string No huge pages available

pse 2 MB

pdpe1gb 1 GB

Using huge pages improves performance of VM Guests and reduces host memory consumption.

By default the system uses THP. To make huge pages available on your system, activate it at
boot time with hugepages=1 , and—optionally—add the huge pages size with, for example,
hugepagesz=2MB .

Note: 1 GB huge pages
1 GB pages can only be allocated at boot time and cannot be freed afterward.

4 Memory SLES 12 SP5

To allocate and use the huge page table (HugeTlbPage) you need to mount hugetlbfs with
correct permissions.

Note: Restrictions of Huge Pages
Even if huge pages provide the best performance, they do come with some drawbacks.
You lose features such as Memory ballooning (see Section 6.1.3, “virtio balloon”), KSM (see
Section 4.1.4, “KSM and Page Sharing”), and huge pages cannot be swapped.

PROCEDURE 2: CONFIGURING THE USE OF HUGE PAGES

1. Mount hugetlbfs to /dev/hugepages :

tux > sudo mount -t hugetlbfs hugetlbfs /dev/hugepages

2. To reserve memory for huge pages use the sysctl command. If your system has a huge
page size of 2 MB (2048 KB), and you want to reserve 1 GB (1,048,576 KB) for your VM
Guest, you need 1,048,576/2048=512 pages in the pool:

tux > sudo sysctl vm.nr_hugepages=512

The value is written to /proc/sys/vm/nr_hugepages and represents the current num-
ber of persistent huge pages in the kernel's huge page pool. Persistent huge pages will be
returned to the huge page pool when freed by a task.

3. Add the memoryBacking element in the VM Guest configuration le (by running virsh
edit CONFIGURATION).

<memoryBacking>
 <hugepages/>
</memoryBacking>

4. Start your VM Guest and check on the host whether it uses hugepages:

tux > cat /proc/meminfo | grep HugePages_
HugePages_Total: 1 512
HugePages_Free: 2 92
HugePages_Rsvd: 3 0
HugePages_Surp: 4 0

1 Size of the pool of huge pages

2 Number of huge pages in the pool that are not yet allocated

5 Memory SLES 12 SP5

3 Number of huge pages for which a commitment to allocate from the pool has been
made, but no allocation has yet been made

4 Number of huge pages in the pool above the value in /proc/sys/vm/nr_hugepages .
The maximum number of surplus huge pages is controlled by /proc/sys/vm/
nr_overcommit_hugepages

4.1.2 Transparent Huge Pages

Transparent huge pages (THP) provide a way to dynamically allocate huge pages with the
khugepaged kernel thread, rather than manually managing their allocation and use. Workloads
with contiguous memory access patterns can benefit greatly from THP. A 1000 fold decrease
in page faults can be observed when running synthetic workloads with contiguous memory ac-
cess patterns. Conversely, workloads with sparse memory access patterns (like databases) may
perform poorly with THP. In such cases it may be preferable to disable THP by adding the ker-
nel parameter transparent_hugepage=never , rebuild your grub2 configuration, and reboot.
Verify if THP is disabled with:

tux > cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

If disabled, the value never is shown in square brackets like in the example above.

Note: Xen
THP is not available under Xen.

4.1.3 Xen-specific Memory Notes

4.1.3.1 Managing Domain-0 Memory

When using the Xen hypervisor, by default a small percentage of system memory is reserved
for the hypervisor. All remaining memory is automatically allocated to Domain-0. When virtual
machines are created, memory is ballooned out of Domain-0 to provide memory for the virtual
machine. This process is called "autoballooning".

6 Memory SLES 12 SP5

Autoballooning has several limitations:

Reduced performance while dom0 is ballooning down to free memory for the new domain.

Memory freed by ballooning is not confined to a specific NUMA node. This can result in
performance problems in the new domain because of using a non-optimal NUMA config-
uration.

Failure to start large domains because of delays while ballooning large amounts of memory
from dom0.

For these reasons, we strongly recommend to disable autoballooning and give Domain-0 the
memory needed for its workload. Determining Domain-0 memory and vCPU sizing should follow
a similar process as any other virtual machine.

Autoballooning is controlled by the tool stack used to manage your Xen installation. For the
xl/libxl tool stack, autoballooning is controlled by the autoballoon setting in /etc/xen/
xl.conf . For the libvirt+libxl tool stack, autoballooning is controlled by the autoballoon
setting in /etc/libvirt/libxl.conf .

The amount of memory initially allocated to Domain-0 is controlled by the Xen hypervi-
sor dom0_mem parameter. For example, to set the initial memory allocation of Domain-0 to
8GB, add dom0_mem=8G to the Xen hypervisor parameters. The dom0_mem parameter can
also be used to specify the minimum and maximum memory allocations for Domain-0. For
example, to set the initial memory of Domain-0 to 8GB, but allow it to be changed (bal-
looned) anywhere between 4GB and 16GB, add the following to the Xen hypervisor parameters:
dom0_mem=8G,min:4G,max:8G .

To set dom0_mem on SLE 11 products, modify /boot/grub/menu.lst , adding
dom0_mem=XX to the Xen hypervisor (xen.gz) parameters. The change will be applied at
next reboot.

To set dom0_mem on SLE 12 products, modify /etc/default/grub , adding
dom0_mem=XX to GRUB_CMDLINE_XEN_DEFAULT . See Section 7.5, “Change Kernel Parameters

at Boot Time” for more information.

Autoballooning is enabled by default since it is extremely difficult to determine a predefined
amount of memory required by Domain-0. Memory needed by Domain-0 is heavily dependent
on the number of hosted virtual machines and their configuration. Users must ensure Domain-0
has sufficient memory resources to accommodate virtual machine workloads.

7 Memory SLES 12 SP5

4.1.3.2 xenstore in tmpfs

When using Xen, we recommend to place the xenstore database on tmpfs . xenstore is used as
a control plane by the xm/xend and xl/libxl tool stacks and the front-end and back-end drivers
servicing domain I/O devices. The load on xenstore increases linearly as the number of running
domains increase. If you anticipate hosting many VM Guest on a Xen host, move the xenstore
database onto tmpfs to improve overall performance of the control plane. Mount the /var/lib/
xenstored directory on tmpfs:

tux > sudo mount -t tmpfs tmpfs /var/lib/xenstored/

4.1.4 KSM and Page Sharing

Kernel Samepage Merging is a kernel feature that allows for lesser memory consumption on the
VM Host Server by sharing data VM Guests have in common. The KSM daemon ksmd periodi-
cally scans user memory looking for pages of identical content which can be replaced by a single
write-protected page. To enable KSM, run:

tux > sudo echo 1 > /sys/kernel/mm/ksm/run

One advantage of using KSM from a VM Guest's perspective is that all guest memory is backed
by host anonymous memory. You can share pagecache, tmpfs or any kind of memory allocated
in the guest.

KSM is controlled by sysfs . You can check KSM's values in /sys/kernel/mm/ksm/ :

pages_shared : The number of shared pages that are being used (read-only).

pages_sharing : The number of sites sharing the pages (read-only).

pages_unshared : The number of pages that are unique and repeatedly checked for merg-
ing (read-only).

pages_volatile : The number of pages that are changing too fast to be considered for
merging (read-only).

full_scans : The number of times all mergeable areas have been scanned (read-only).

sleep_millisecs : The number of milliseconds ksmd should sleep before the next scan.
A low value will overuse the CPU, consuming CPU time that could be used for other tasks.
We recommend a value greater than 1000 .

8 Memory SLES 12 SP5

pages_to_scan : The number of present pages to scan before ksmd goes to sleep. A high
value will overuse the CPU. We recommend to start with a value of 1000 , and then adjust
as necessary based on the KSM results observed while testing your deployment.

merge_across_nodes : By default the system merges pages across NUMA nodes. Set this
option to 0 to disable this behavior.

Note: Use Cases
KSM is a good technique to over-commit host memory when running multiple instances
of the same application or VM Guest. When applications and VM Guest are heterogeneous
and do not share any common data, it is preferable to disable KSM. In a mixed heteroge-
neous and homogeneous environment, KSM can be enabled on the host but disabled on
a per VM Guest basis. Use virsh edit to disable page sharing of a VM Guest by adding
the following to the guest's XML configuration:

<memoryBacking>
 <nosharepages/>
</memoryBacking>

Warning: Avoid Out-of-Memory Conditions
KSM can free up some memory on the host system, but the administrator should reserve
enough swap to avoid out-of-memory conditions if that shareable memory decreases. If
the amount of shareable memory decreases, the use of physical memory is increased.

Warning: KSM as a Side Channel
Because of its nature, KSM can form a side channel between otherwise isolated guests.
It is discouraged to enable KSM in environments where guests from different security
domains are executed.

9 Memory SLES 12 SP5

Warning: Memory Access Latencies
By default, KSM will merge common pages across NUMA nodes. If the merged, common
page is now located on a distant NUMA node (relative to the node running the VM Guest
vCPUs), this may degrade VM Guest performance. If increased memory access latencies
are noticed in the VM Guest, disable cross-node merging with the merge_across_nodes
sysfs control:

tux > sudo echo 0 > /sys/kernel/mm/ksm/merge_across_nodes

4.1.5 VM Guest: Memory Hotplug

To optimize the usage of your host memory, it may be useful to hotplug more memory for a
running VM Guest when required. To support memory hotplugging, you must rst configure the
<maxMemory> tag in the VM Guest's configuration le:

<maxMemory 1 slots='16' 2 unit='KiB'>20971520 3 </maxMemory>
 <memory 4 unit='KiB'>1048576</memory>
<currentMemory 5 unit='KiB'>1048576</currentMemory>

1 Runtime maximum memory allocation of the guest.

2 Number of slots available for adding memory to the guest

3 Valid units are:

"KB" for kilobytes (1,000 bytes)

"k" or "KiB" for kibibytes (1,024 bytes)

"MB" for megabytes (1,000,000 bytes)

"M" or "MiB" for mebibytes (1,048,576 bytes)

"GB" for gigabytes (1,000,000,000 bytes)

"G" or "GiB" for gibibytes (1,073,741,824 bytes)

"TB" for terabytes (1,000,000,000,000 bytes)

"T" or "TiB" for tebibytes (1,099,511,627,776 bytes)

4 Maximum allocation of memory for the guest at boot time

10 Memory SLES 12 SP5

5 Actual allocation of memory for the guest

To hotplug memory devices into the slots, create a le mem-dev.xml like the following:

<memory model='dimm'>
 <target>
 <size unit='KiB'>524287</size>
 <node>0</node>
 </target>
</memory>

And attach it with the following command:

tux > virsh attach-device vm-name mem-dev.xml

For memory device hotplug, the guest must have at least 1 NUMA cell defined (see Section 4.6.3.1,

“VM Guest Virtual NUMA Topology”).

4.2 Swap

Swap is usually used by the system to store underused physical memory (low usage, or not
accessed for a long time). To prevent the system running out of memory, setting up a minimum
swap is highly recommended.

4.2.1 swappiness

The swappiness setting controls your system's swap behavior. It defines how memory pages are
swapped to disk. A high value of swappiness results in a system that swaps more often. Available
values range from 0 to 100 . A value of 100 tells the system to nd inactive pages and put
them in swap. A value of 0 disables swapping.

To do some testing on a live system, change the value of /proc/sys/vm/swappiness on the
y and check the memory usage afterward:

tux > sudo echo 35 > /proc/sys/vm/swappiness

tux > free -h
total used free shared buffers cached
Mem: 24616680 4991492 19625188 167056 144340 2152408
-/+ buffers/cache: 2694744 21921936
Swap: 6171644 0 6171644

11 Swap SLES 12 SP5

To permanently set a swappiness value, add a line in /etc/systcl.conf , for example:

vm.swappiness = 35

You can also control the swap by using the swap_hard_limit element in the XML configuration
of your VM Guest. Before setting this parameter and using it in a production environment, do
some testing because the host can terminate the domain if the value is too low.

<memtune> 1

 <hard_limit unit='G'>1</hard_limit> 2

 <soft_limit unit='M'>128</soft_limit> 3

 <swap_hard_limit unit='G'>2</swap_hard_limit> 4

</memtune>

1 This element provides memory tunable parameters for the domain. If this is omitted, it
defaults to the defaults provided b the operating system.

2 Maximum memory the guest can use. To avoid any problems on the VM Guest it is strongly
recommended not to use this parameter.

3 The memory limit to enforce during memory contention.

4 The maximum memory plus swap the VM Guest can use.

4.3 I/O

4.3.1 I/O Scheduler

The default I/O scheduler is Completely Fair Queuing (CFQ). The main aim of the CFQ scheduler
is to provide a fair allocation of the disk I/O bandwidth for all processes that request an I/O
operation. You can have different I/O schedulers for different devices.

To get better performance in host and VM Guest, use noop in the VM Guest (disable the I/O
scheduler) and the deadline scheduler for a virtualization host.

PROCEDURE 3: CHECKING AND CHANGING THE I/O SCHEDULER AT RUNTIME

1. To check your current I/O scheduler for your disk (replace sdX by the disk you want to
check), run:

tux > cat /sys/block/sdX/queue/scheduler
noop deadline [cfq]

12 I/O SLES 12 SP5

The value in square brackets is the one currently selected (cfq in the example above).

2. You can change the scheduler at runtime by running the following command as root :

root # echo mq-deadline > /sys/block/sdX/queue/scheduler

To permanently set an I/O scheduler for all disks of a system, use the kernel parameter el-
evator . The respective values are elevator=deadline for the VM Host Server and eleva-
tor=noop for VM Guests. See Section 7.5, “Change Kernel Parameters at Boot Time” for further in-
structions.

If you need to specify different I/O schedulers for each disk, create the le /usr/lib/tmp-
files.d/IO_ioscheduler.conf with content similar to the following example. It defines the
deadline scheduler for /dev/sda and the noop scheduler for /dev/sdb . This feature is avail-
able on SLE 12 only.

w /sys/block/sda/queue/scheduler - - - - deadline
w /sys/block/sdb/queue/scheduler - - - - noop

4.3.2 Asynchronous I/O

Many of the virtual disk back-ends use Linux Asynchronous I/O (aio) in their implementation.
By default, the maximum number of aio contexts is set to 65536, which can be exceeded when
running hundreds of VM Guests using virtual disks serviced by Linux Asynchronous I/O. When
running large numbers of VM Guests on a VM Host Server, consider increasing /proc/sys/fs/
aio-max-nr.

PROCEDURE 4: CHECKING AND CHANGING AIO-MAX-NR AT RUNTIME

1. To check your current aio-max-nr setting run:

tux > cat /proc/sys/fs/aio-max-nr
65536

2. You can change aio-max-nr at runtime with the following command:

tux > sudo echo 131072 > /proc/sys/fs/aio-max-nr

To permanently set aio-max-nr, add an entry to a local sysctl le. For example, append the
following to /etc/sysctl.d/99-sysctl.conf :

fs.aio-max-nr = 1048576

13 I/O SLES 12 SP5

4.3.3 I/O Virtualization

SUSE products support various I/O virtualization technologies. The following table lists advan-
tages and disadvantages of each technology. For more information about I/O in virtualization
refer to Book “Virtualization Guide”, Chapter 1 “Virtualization Technology”, Section 1.5 “I/O Virtualization”.

TABLE 2: I/O VIRTUALIZATION SOLUTIONS

Technology Advantage Disadvantage

Device accessed directly by
the guest

No sharing among multiple
guests

High performance Live migration is complex

PCI device limit is 8 per
guest

Device Assignment (pass-
through)

Limited number of slots on a
server

VM Guest compatibility Bad performanceFull virtualization (IDE, SA-
TA, SCSI, e1000)

Easy for live migration Emulated operation

Good performance Modified guest (PV drivers)

Easy for live migration

Para-virtualization (vir-
tio-blk, virtio-net, virtio-scsi)

Efficient host communication
with VM Guest

14 I/O SLES 12 SP5

4.4 Storage and File System

Storage space for VM Guests can either be a block device (for example, a partition on a physical
disk), or an image le on the le system:

TABLE 3: BLOCK DEVICES COMPARED TO DISK IMAGES

Technology Advantages Disadvantages

Block devices Better performance

Use standard tools for
administration/disk
modification

Accessible from host
(pro and con)

Device management

Image les Easier system manage-
ment

Easily move, clone, ex-
pand, back up domains

Comprehensive toolkit
(guestfs) for image ma-
nipulation

Reduce overhead
through sparse les

Fully allocate for best
performance

Lower performance
than block devices

For detailed information about image formats and maintaining images refer to Section 5, “VM

Guest Images”.

If your image is stored on an NFS share, you should check some server and client parameters
to improve access to the VM Guest image.

15 Storage and File System SLES 12 SP5

4.4.1 NFS Read/Write (Client)

Options rsize and wsize specify the size of the chunks of data that the client and server pass
back and forth to each other. You should ensure NFS read/write sizes are sufficiently large,
especially for large I/O. Change the rsize and wsize parameter in your /etc/fstab by
increasing the value to 16 KB. This will ensure that all operations can be frozen if there is any
instance of hanging.

nfs_server:/exported/vm_images 1 /mnt/images 2 nfs 3 rw 4 ,hard 5 ,sync 6 ,
 rsize=8192 7 ,wsize=8192 8 0 0

1 NFS server's host name and export path name.

2 Where to mount the NFS exported share.

3 This is an nfs mount point.

4 This mount point will be accessible in read/write.

5 Determines the recovery behavior of the NFS client after an NFS request times out. hard
is the best option to avoid data corruption.

6 Any system call that writes data to les on that mount point causes that data to be ushed
to the server before the system call returns control to user space.

7 Maximum number of bytes in each network READ request that the NFS client can receive
when reading data from a le on an NFS server.

8 Maximum number of bytes per network WRITE request that the NFS client can send when
writing data to a le on an NFS server.

4.4.2 NFS Threads (Server)

Your NFS server should have enough NFS threads to handle multi-threaded workloads. Use the
nfsstat tool to get some RPC statistics on your server:

tux > sudo nfsstat -rc
Client rpc stats:
calls retrans authrefrsh
6401066 198 0 0

If the retrans is equal to 0, everything is ne. Otherwise, the client needs to retransmit, so
increase the USE_KERNEL_NFSD_NUMBER variable in /etc/sysconfig/nfs , and adjust accord-
ingly until retrans is equal to 0 .

16 Storage and File System SLES 12 SP5

4.5 CPUs

Host CPU “components” will be “translated” to virtual CPUs in a VM Guest when being assigned.
These components can either be:

CPU processor: this describes the main CPU unit, which usually has multiple cores and may
support Hyper-Threading.

CPU core: a main CPU unit can provide more than one core, and the proximity of cores
speeds up the computation process and reduces energy costs.

CPU Hyper-Threading: this implementation is used to improve parallelization of computa-
tions, but this is not as efficient as a dedicated core.

4.5.1 Assigning CPUs

CPU overcommit occurs when the cumulative number of virtual CPUs of all VM Guests becomes
higher than the number of host CPUs. Best performance is likely to be achieved when there is
no overcommit and each virtual CPU matches one hardware processor or core on the VM Host
Server. In fact, VM Guests running on an overcommitted host will experience increased latency,
and a negative effect on per-VM Guest throughput is also likely to be observed. Therefore, you
should try to avoid overcommitting CPUs.

Deciding whether to allow CPU overcommit or not requires good a-priori knowledge of the
workload as a whole. For instance, if you know that all the VM Guest's virtual CPUs will not
be loaded more than 50%, then you can assume that overcommitting the host by a factor of 2
(which means having 128 virtual CPUs in total, on a host with 64 CPUs) will work well. On
the other hand, if you know that all the virtual CPUs of the VM Guest will try to run at 100%
for most of the time then even having one virtual CPU more than the host has CPUs is already
a misconfiguration.

Overcommitting to a point where the cumulative number of virtual CPUs is higher than 8 times
the number of physical cores of the VM Host Server will most likely lead to a malfunctioning
and unstable system and should hence be avoided.

Unless you know exactly how many virtual CPUs are required for a VM Guest, you should start
with one. A good rule of thumb is to target a CPU workload of approximately 70% inside your
VM (see Book “System Analysis and Tuning Guide”, Chapter 2 “System Monitoring Utilities”, Section 2.3

“Processes” for information on monitoring tools). If you allocate more processors than needed

17 CPUs SLES 12 SP5

in the VM Guest, this will negatively affect the performance of host and guest. Cycle efficiency
will be degraded, as the unused vCPU will still cause timer interrupts. In case you primarily run
single threaded applications on a VM Guest, a single virtual CPU is the best choice.

A single VM Guest with more virtual CPUs than the VM Host Server has CPUs is always a
misconfiguration.

4.5.2 VM Guest CPU Configuration

This section describes how to choose and configure a CPU type for a VM Guest. You will also
learn how to pin virtual CPUs to physical CPUs on the host system. For more information about
virtual CPU configuration and tuning parameters refer to the libvirt documentation at https://

libvirt.org/formatdomain.html#elementsCPU .

4.5.2.1 Virtual CPU Models and Features

The CPU model and topology can be specified individually for each VM Guest. Configuration
options range from selecting specific CPU models to excluding certain CPU features. Predefined
CPU models are listed in the /usr/share/libvirt/cpu_map.xml . A CPU model and topology
that is similar to the host generally provides the best performance. The host system CPU model
and topology can be displayed by running virsh capabilities .

Note that changing the default virtual CPU configuration will require a VM Guest shutdown
when migrating it to a host with different hardware. More information on VM Guest migration
is available at Book “Virtualization Guide”, Chapter 10 “Basic VM Guest Management”, Section 10.7 “Mi-

grating VM Guests”.

To specify a particular CPU model for a VM Guest, add a respective entry to the VM Guest
configuration le. The following example configures a Broadwell CPU with the invariant TSC
feature:

<cpu mode='custom' match='exact'>
 <model>Broadwell</model>
 <feature name='invtsc'/>
 </cpu>

For a virtual CPU that most closely resembles the host physical CPU, <cpu mod-

e='host-passthrough'> can be used. Note that a host-passthrough CPU model may not
exactly resemble the host physical CPU, since by default KVM will mask any non-migratable
features. For example invtsc is not included in the virtual CPU feature set. Changing the de-

18 CPUs SLES 12 SP5

https://libvirt.org/formatdomain.html#elementsCPU
https://libvirt.org/formatdomain.html#elementsCPU

fault KVM behavior is not directly supported through libvirt, although it does allow arbitrary
passthrough of KVM command line arguments. Continuing with the invtsc example, you can
achieve passthrough of the host CPU (including invtsc) with the following command line
passthrough in the VM Guest configuration le:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 <qemu:commandline>
 <qemu:arg value='-cpu'/>
 <qemu:arg value='host,migratable=off,+invtsc'/>
 </qemu:commandline>
 ...
 </domain>

Note: The host-passthrough Mode
Since host-passthrough exposes the physical CPU details to the virtual CPU, migration
to dissimilar hardware is not possible. See Section 4.5.2.3, “Virtual CPU Migration Considera-

tions” for more information.

4.5.2.2 Virtual CPU Pinning

Virtual CPU pinning is used to constrain virtual CPU threads to a set of physical CPUs. The
vcpupin element specifies the physical host CPUs that a virtual CPU can use. If this element is
not set and the attribute cpuset of the vcpu element is not specified, the virtual CPU is free
to use any of the physical CPUs.

CPU intensive workloads can benefit from virtual CPU pinning by increasing the physical CPU
cache hit ratio. To pin a virtual CPU to a specific physical CPU, run the following commands:

tux > virsh vcpupin DOMAIN_ID --vcpu vCPU_NUMBER
VCPU: CPU Affinity

0: 0-7
root # virsh vcpupin SLE12 --vcpu 0 0 --config

The last command generates the following entry in the XML configuration:

<cputune>
 <vcpupin vcpu='0' cpuset='0'/>
</cputune>

19 CPUs SLES 12 SP5

Note: Virtual CPU Pinning on NUMA Nodes
To confine a VM Guest's CPUs and its memory to a NUMA node, you can use virtual CPU
pinning and memory allocation policies on a NUMA system. See Section 4.6, “NUMA Tuning”

for more information related to NUMA tuning.

Warning: Virtual CPU Pinning and Live Migration
Even though vcpupin can improve performance, it can complicate live migration. See
Section 4.5.2.3, “Virtual CPU Migration Considerations” for more information on virtual CPU
migration considerations.

4.5.2.3 Virtual CPU Migration Considerations

Selecting a virtual CPU model containing all the latest features may improve performance of
a VM Guest workload, but often at the expense of migratability. Unless all hosts in the cluster
contain the latest CPU features, migration can fail when a destination host lacks the new features.
If migratability of a virtual CPU is preferred over the latest CPU features, a normalized CPU
model and feature set should be used. The virsh cpu-baseline command can help define a
normalized virtual CPU that can be migrated across all hosts. The following command, when
run on each host in the migration cluster, illustrates collection of all hosts' CPU capabilities in
all-hosts-cpu-caps.xml .

tux > sudo virsh capabilities | virsh cpu-baseline /dev/stdin >> all-hosts-cpu-caps.xml

With the CPU capabilities from each host collected in all-hosts-cpu-caps.xml, use virsh cpu-
baseline to create a virtual CPU definition that will be compatible across all hosts.

tux > sudo virsh cpu-baseline all-hosts-cpu-caps.xml

The resulting virtual CPU definition can be used as the cpu element in VM Guest configuration
le.

At a logical level, virtual CPU pinning is a form of hardware passthrough. Pinning couples phys-
ical resources to virtual resources, and can also be problematic for migration. For example, the
migration will fail if the requested physical resources are not available on the destination host,
or if the source and destination hosts have different NUMA topologies. For more recommenda-
tions about Live Migration see Book “Virtualization Guide”, Chapter 10 “Basic VM Guest Management”,

Section 10.7.1 “Migration Requirements”.

20 CPUs SLES 12 SP5

4.6 NUMA Tuning

NUMA is an acronym for Non Uniform Memory Access. A NUMA system has multiple physical
CPUs, each with local memory attached. Each CPU can also access other CPUs' memory, known
as “remote memory access”, but it is much slower than accessing local memory. NUMA systems
can negatively impact VM Guest performance if not tuned properly. Although ultimately tuning
is workload dependent, this section describes controls that should be considered when deploying
VM Guests on NUMA hosts. Always consider your host topology when configuring and deploying
VMs.

SUSE Linux Enterprise Server contains a NUMA auto-balancer that strives to reduce remote
memory access by placing memory on the same NUMA node as the CPU processing it. In addi-
tion, standard tools such as cgset and virtualization tools such as libvirt provide mechanisms
to constrain VM Guest resources to physical resources.

numactl is used to check for host NUMA capabilities:

tux > sudo numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 72 73 74 75 76 77 78
79 80 81 82 83 84 85 86 87 88 89
node 0 size: 31975 MB
node 0 free: 31120 MB
node 1 cpus: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 90 91 92 93
94 95 96 97 98 99 100 101 102 103 104 105 106 107
node 1 size: 32316 MB
node 1 free: 31673 MB
node 2 cpus: 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 108 109 110
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
node 2 size: 32316 MB
node 2 free: 31726 MB
node 3 cpus: 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 126 127 128
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
node 3 size: 32314 MB
node 3 free: 31387 MB
node distances:
node 0 1 2 3
0: 10 21 21 21
1: 21 10 21 21
2: 21 21 10 21
3: 21 21 21 10

The numactl output shows this is a NUMA system with 4 nodes or cells, each containing 36
CPUs and approximately 32G memory. virsh capabilities can also be used to examine the
systems NUMA capabilities and CPU topology.

21 NUMA Tuning SLES 12 SP5

4.6.1 NUMA Balancing

On NUMA machines, there is a performance penalty if remote memory is accessed by a CPU.
Automatic NUMA balancing scans a task's address space and unmaps pages. By doing so, it
detects whether pages are properly placed or whether to migrate the data to a memory node
local to where the task is running. In defined intervals (configured with numa_balancing_s-
can_delay_ms), the task scans the next scan size number of pages (configured with numa_bal-
ancing_scan_size_mb) in its address space. When the end of the address space is reached the
scanner restarts from the beginning.

Higher scan rates cause higher system overhead as page faults must be trapped and data needs
to be migrated. However, the higher the scan rate, the more quickly a task's memory is migrated
to a local node when the workload pattern changes. This minimizes the performance impact
caused by remote memory accesses. These sysctl directives control the thresholds for scan
delays and the number of pages scanned:

tux > sudo sysctl -a | grep numa_balancing
kernel.numa_balancing = 1 1

kernel.numa_balancing_scan_delay_ms = 1000 2

kernel.numa_balancing_scan_period_max_ms = 60000 3

kernel.numa_balancing_scan_period_min_ms = 1000 4

kernel.numa_balancing_scan_size_mb = 256 5

1 Enables/disables automatic page fault-based NUMA balancing

2 Starting scan delay used for a task when it initially forks

3 Maximum time in milliseconds to scan a task's virtual memory

4 Minimum time in milliseconds to scan a task's virtual memory

5 Size in megabytes' worth of pages to be scanned for a given scan

For more information see Book “System Analysis and Tuning Guide”, Chapter 10 “Automatic Non-Uni-

form Memory Access (NUMA) Balancing”.

The main goal of automatic NUMA balancing is either to reschedule tasks on the same node's
memory (so the CPU follows the memory), or to copy the memory's pages to the same node (so
the memory follows the CPU).

22 NUMA Tuning SLES 12 SP5

Warning: Task Placement
There are no rules to define the best place to run a task, because tasks could share memory
with other tasks. For best performance, it is recommended to group tasks sharing memory
on the same node. Check NUMA statistics with # cat /proc/vmstat | grep numa_ .

4.6.2 Memory Allocation Control with the CPUset Controller

The cgroups cpuset controller can be used confine memory used by a process to a NUMA node.
There are three cpuset memory policy modes available:

interleave : This is a memory placement policy which is also known as round-robin.
This policy can provide substantial improvements for jobs that need to place thread local
data on the corresponding node. When the interleave destination is not available, it will
be moved to another node.

bind : This will place memory only on one node, which means in case of insufficient
memory, the allocation will fail.

preferred : This policy will apply a preference to allocate memory to a node. If there is
not enough space for memory on this node, it will fall back to another node.

You can change the memory policy mode with the cgset tool from the libcgroup-tools
package:

tux > sudo cgset -r cpuset.mems=NODE sysdefault/libvirt/qemu/KVM_NAME/emulator

To migrate pages to a node, use the migratepages tool:

tux > migratepages PID FROM-NODE TO-NODE

To check everything is ne. use: cat /proc/PID/status | grep Cpus .

Note: Kernel NUMA/cpuset memory policy
For more information see Kernel NUMA memory policy (https://www.kernel.org/doc/Doc-

umentation/vm/numa_memory_policy.txt) and cpusets memory policy (https://www.ker-

nel.org/doc/Documentation/cgroup-v1/cpusets.txt) . Check also the Libvirt NUMA Tuning

documentation (https://libvirt.org/formatdomain.html#elementsNUMATuning) .

23 NUMA Tuning SLES 12 SP5

https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://libvirt.org/formatdomain.html#elementsNUMATuning
https://libvirt.org/formatdomain.html#elementsNUMATuning

4.6.3 VM Guest: NUMA Related Configuration

libvirt allows to set up virtual NUMA and memory access policies. Configuring these settings
is not supported by virt-install or virt-manager and needs to be done manually by editing
the VM Guest configuration le with virsh edit .

4.6.3.1 VM Guest Virtual NUMA Topology

Creating a VM Guest virtual NUMA (vNUMA) policy that resembles the host NUMA topology can
often increase performance of traditional large, scale-up workloads. VM Guest vNUMA topology
can be specified using the numa element in the XML configuration:

<cpu>
...
 <numa>
 <cell 1 id="0" 2 cpus='0-1' 3 memory='512000' unit='KiB'/>
 <cell id="1" cpus='2-3' memory='256000' 4

 unit='KiB' 5 memAccess='shared' 6 />
 </numa>
 ...
</cpu>

1 Each cell element specifies a vNUMA cell or node

2 All cells should have an id attribute, allowing to reference the cell in other configuration
blocks. Otherwise cells are assigned ids in ascending order starting from 0.

3 The CPU or range of CPUs that are part of the node

4 The node memory

5 Units in which node memory is specified

6 Optional attribute which can control whether the memory is to be mapped as shared or
private . This is valid only for hugepages-backed memory.

To nd where the VM Guest has allocated its pages. use: cat /proc/PID/numa_maps and cat /
sys/fs/cgroup/memory/sysdefault/libvirt/qemu/KVM_NAME/memory.numa_stat .

Warning: NUMA specification
The libvirt VM Guest NUMA specification is currently only available for QEMU/KVM.

24 NUMA Tuning SLES 12 SP5

4.6.3.2 Memory Allocation Control with libvirt

If the VM Guest has a vNUMA topology (see Section 4.6.3.1, “VM Guest Virtual NUMA Topology”),
memory can be pinned to host NUMA nodes using the numatune element. This method is cur-
rently only available for QEMU/KVM guests. See Important: Non-vNUMA VM Guest for how to con-
figure non-vNUMA VM Guests.

<numatune>
 <memory mode="strict" 1 nodeset="1-4,^3" 2 />
 <memnode 3 cellid="0" 4 mode="strict" nodeset="1"/>
 <memnode cellid="2" placement="strict" 5 mode="preferred" nodeset="2"/>
</numatune>

1 Policies available are: interleave (round-robin like), strict (default) or preferred .

2 Specify the NUMA nodes.

3 Specify memory allocation policies for each guest NUMA node (if this element is not defined
then this will fall back and use the memory element).

4 Addresses the guest NUMA node for which the settings are applied.

5 The placement attribute can be used to indicate the memory placement mode for a domain
process, the value can be auto or strict .

Important: Non-vNUMA VM Guest
On a non-vNUMA VM Guest, pinning memory to host NUMA nodes is done like in the
following example:

<numatune>
 <memory mode="strict" nodeset="0-1"/>
</numatune>

In this example, memory is allocated from the host nodes 0 and 1 . In case these memory
requirements cannot be fulfilled, starting the VM Guest will fail. virt-install also
supports this configuration with the --numatune option.

Warning: Memory and CPU across NUMA Nodes
You should avoid allocating VM Guest memory across NUMA nodes, and prevent virtual
CPUs from floating across NUMA nodes.

25 NUMA Tuning SLES 12 SP5

5 VM Guest Images
Images are virtual disks used to store the operating system and data of VM Guests. They can
be created, maintained and queried with the qemu-img command. Refer to Book “Virtualization

Guide”, Chapter 28 “Guest Installation”, Section 28.2.2 “Creating, Converting and Checking Disk Images”

for more information on the qemu-img tool and examples.

5.1 VM Guest Image Formats

Certain storage formats which QEMU recognizes have their origins in other virtualization tech-
nologies. By recognizing these formats, QEMU can leverage either data stores or entire guests
that were originally targeted to run under these other virtualization technologies. Some formats
are supported only in read-only mode. To use them in read/write mode, convert them to a fully
supported QEMU storage format (using qemu-img). Otherwise they can only be used as read-on-
ly data store in a QEMU guest. See SUSE Linux Enterprise Release Notes (https://www.suse.com/

releasenotes/x86_64/SUSE-SLES/12/#fate-317891) to get the list of supported formats.

Use qemu-img info VMGUEST.IMG to get information about an existing image, such as: the
format, the virtual size, the physical size, snapshots if available.

Note: Performance
It is recommended to convert the disk images to either raw or qcow2 to achieve good
performance.

Warning: Encrypted Images Cannot Be Compressed
When you create an image, you cannot use compression (-c) in the output le together
with the encryption option (-e).

5.1.1 Raw Format

This format is simple and easily exportable to all other emulators/hypervisors.

It provides best performance (least I/O overhead).

If your le system supports holes (for example in Ext2 or Ext3 on Linux or NTFS on Win-
dows*), then only the written sectors will reserve space.

26 VM Guest Images SLES 12 SP5

https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12/#fate-317891
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/12/#fate-317891

The raw format allows to copy a VM Guest image to a physical device (dd if=VMGUEST.RAW
of=/dev/sda).

It is byte-for-byte the same as what the VM Guest sees, so this wastes a lot of space.

5.1.2 qcow2 Format

Use this to have smaller images (useful if your le system does not supports holes, for
example on Windows*).

It has optional AES encryption.

Zlib-based compression option.

Support of multiple VM snapshots (internal, external).

Improved performance and stability.

Supports changing the backing le.

Supports consistency checks.

Less performance than raw format.

l2-cache-size

qcow2 can provide the same performance for random read/write access as raw format, but
it needs a well-sized cache size. By default cache size is set to 1 MB. This will give good
performance up to a disk size of 8 GB. If you need a bigger disk size, you need to adjust
the cache size. For a disk size of 64 GB (64*1024 = 65536), you need 65536 / 8192B =
8 MB of cache (-drive format=qcow2,l2-cache-size=8M).

Cluster Size

The qcow2 format offers the capability to change the cluster size. The value must be be-
tween 512 KB and 2 MB. Smaller cluster sizes can improve the image le size whereas
larger cluster sizes generally provide better performance.

Preallocation

An image with preallocated metadata is initially larger but can improve performance when
the image needs to grow.

27 VM Guest Image Formats SLES 12 SP5

Lazy Refcounts

Reference count updates are postponed with the goal of avoiding metadata I/O and im-
proving performance. This is particularly beneficial with cache=writethrough . This op-
tion does not batch metadata updates, but if in case of host crash, the reference count
tables must be rebuilt, this is done automatically at the next open with qemu-img check
-r all . Note that this takes some time.

5.1.3 qed format

qed is the next-generation qcow (QEMU Copy On Write). Its characteristics include:

Strong data integrity because of simple design.

Retains sparseness over non-sparse channels (for example HTTP).

Supports changing the backing le.

Supports consistency checks.

Fully asynchronous I/O path.

Does not support internal snapshots.

Relies on the host le system and cannot be stored on a logical volume directly.

5.1.4 VMDK format

VMware 3, 4, or 6 image format, for exchanging images with that product.

5.2 Overlay Disk Images

The qcow2 and qed formats provide a way to create a base image (also called backing le) and
overlay images on top of the base image. A backing le is useful to be able to revert to a known
state and discard the overlay. If you write to the image, the backing image will be untouched and
all changes will be recorded in the overlay image le. The backing le will never be modified
unless you use the commit monitor command (or qemu-img commit).

To create an overlay image:

root # qemu-img create -o 1 backing_file=vmguest.raw 2 ,backing_fmt=raw 3 \
 -f 4 qcow2 vmguest.cow 5

28 Overlay Disk Images SLES 12 SP5

1 Use -o ? for an overview of available options.

2 The backing le name.

3 Specify the le format for the backing le.

4 Specify the image format for the VM Guest.

5 Image name of the VM Guest, it will only record the differences from the backing le.

Warning: Backing Image Path
You should not change the path to the backing image, otherwise you will need to adjust
it. The path is stored in the overlay image le. To update the path, you should make a
symbolic link from the original path to the new path and then use the qemu-img rebase
option.

root # ln -sf /var/lib/images/vmguest.raw /var/lib/images/SLE12/vmguest.raw
root # qemu-img rebase 1 -u 2 -b 3 /var/lib/images/vmguest.raw /var/lib/images/
SLE12/vmguest.cow 4

The rebase subcommand tells qemu-img to change the backing le image. The -u op-
tion activates the unsafe mode (see note below). The backing image to be used is specified
with -b and the image path is the last argument of the command.

There are two different modes in which rebase can operate:

Safe: This is the default mode and performs a real rebase operation. The safe mode
is a time-consuming operation.

Unsafe: The unsafe mode (-u) only changes the backing les name and the format
of the le name without making any checks on the les contents. You should use
this mode to rename or moving a backing le.

A common use is to initiate a new guest with the backing le. Let's assume we have a
sle12_base.img VM Guest ready to be used (fresh installation without any modification).
This will be our backing le. Now you need to test a new package, on an updated system
and on a system with a different kernel. We can use sle12_base.img to instantiate the new
SUSE Linux Enterprise VM Guest by creating a qcow2 overlay le pointing to this backing le
(sle12_base.img).

In our example we will use sle12_updated.qcow2 for the updated system, and sle12_ker-
nel.qcow2 for the system with a different kernel.

29 Overlay Disk Images SLES 12 SP5

To create the two thin provisioned systems use the qemu-img command line with the -b option:

root # qemu-img create -b /var/lib/libvirt/sle12_base.img -f qcow2 \
/var/lib/libvirt/sle12_updated.qcow2
Formatting 'sle12_updated.qcow2', fmt=qcow2 size=17179869184
backing_file='sle12_base.img' encryption=off cluster_size=65536
lazy_refcounts=off nocow=off
root # qemu-img create -b /var/lib/libvirt/sle12_base.img -f qcow2 \
/var/lib/libvirt/sle12_kernel.qcow2
Formatting 'sle12_kernel.qcow2', fmt=qcow2 size=17179869184
backing_file='vmguest-sle12_base.img' encryption=off cluster_size=65536
lazy_refcounts=off nocow=off

The images are now usable, and you can do your test without touching the initial
sle12_base.img backing le, all changes will be stored in the new overlay images. Addition-
ally, you can also use these new images as a backing le, and create a new overlay.

root # qemu-img create -b sle12_kernel.qcow2 -f qcow2 sle12_kernel_TEST.qcow2

When using qemu-img info with the option --backing-chain , it will return all information
about the entire backing chain recursively:

root # qemu-img info --backing-chain
/var/lib/libvirt/images/sle12_kernel_TEST.qcow2
image: sle12_kernel_TEST.qcow2
file format: qcow2
virtual size: 16G (17179869184 bytes)
disk size: 196K
cluster_size: 65536
backing file: sle12_kernel.qcow2
Format specific information:
compat: 1.1
lazy refcounts: false

image: sle12_kernel.qcow2
file format: qcow2
virtual size: 16G (17179869184 bytes)
disk size: 196K
cluster_size: 65536
backing file: SLE12.qcow2
Format specific information:
compat: 1.1
lazy refcounts: false

image: sle12_base.img
file format: qcow2

30 Overlay Disk Images SLES 12 SP5

virtual size: 16G (17179869184 bytes)
disk size: 16G
cluster_size: 65536
Format specific information:
compat: 1.1
lazy refcounts: true

FIGURE 1: UNDERSTANDING IMAGE OVERLAY

5.3 Opening a VM Guest Image

To access the le system of an image, use the guestfs-tools . If you do not have this tool
installed on your system you can mount an image with other Linux tools. Avoid accessing
an untrusted or unknown VM Guest's image system because this can lead to security issues
(for more information, read D. Berrangé's post (https://www.berrange.com/posts/2013/02/20/a-

reminder-why-you-should-never-mount-guest-disk-images-on-the-host-os/)).

5.3.1 Opening a Raw Image

PROCEDURE 5: MOUNTING A RAW IMAGE

1. To be able to mount the image, nd a free loop device. The following command displays
the rst unused loop device, /dev/loop1 in this example.

31 Opening a VM Guest Image SLES 12 SP5

https://www.berrange.com/posts/2013/02/20/a-reminder-why-you-should-never-mount-guest-disk-images-on-the-host-os/
https://www.berrange.com/posts/2013/02/20/a-reminder-why-you-should-never-mount-guest-disk-images-on-the-host-os/

root # losetup -f
/dev/loop1

2. Associate an image (SLE12.raw in this example) with the loop device:

root # losetup /dev/loop1 SLE12.raw

3. Check whether the image has successfully been associated with the loop device by getting
detailed information about the loop device:

root # losetup -l
NAME SIZELIMIT OFFSET AUTOCLEAR RO BACK-FILE
/dev/loop1 0 0 0 0 /var/lib/libvirt/images/SLE12.raw

4. Check the image's partitions with kpartx :

root # kpartx -a 1 -v 2 /dev/loop1
add map loop1p1 (254:1): 0 29358080 linear /dev/loop1 2048

1 Add partition device mappings.

2 Verbose mode.

5. Now mount the image partition(s) (to /mnt/sle12mount in the following example):

root # mkdir /mnt/sle12mount
root # mount /dev/mapper/loop1p1 /mnt/sle12mount

Note: Raw image with LVM
If your raw image contains an LVM volume group you should use LVM tools to mount
the partition. Refer to Section 5.3.3, “Opening Images Containing LVM”.

PROCEDURE 6: UNMOUNTING A RAW IMAGE

1. Unmount all mounted partitions of the image, for example:

root # umount /mnt/sle12mount

2. Delete partition device mappings with kpartx :

root # kpartx -d /dev/loop1

3. Detach the devices with losetup

32 Opening a VM Guest Image SLES 12 SP5

root # losetup -d /dev/loop1

5.3.2 Opening a qcow2 Image

PROCEDURE 7: MOUNTING A QCOW2 IMAGE

1. First you need to load the nbd (network block devices) module. The following example
loads it with support for 16 block devices (max_part=16). Check with dmesg whether
the operation was successful:

root # modprobe nbd max_part=16
root # dmesg | grep nbd
[89155.142425] nbd: registered device at major 43

2. Connect the VM Guest image (for example SLE12.qcow2) to an NBD device (/debv/nbd0
in the following example) with the qemu-nbd command. Make sure to use a free NBD
device:

root # qemu-nbd -c 1 /dev/nbd0 2 SLE12.qcow2 3

1 Connect SLE12.qcow2 to the local NBD device /dev/nbd0

2 NBD device to use

3 VM Guest image to use

Tip: Checking for a free NBD Device
To check whether an NBD device is free, run the following command:

root # lsof /dev/nbd0
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
qemu-nbd 15149 root 10u BLK 43,0 0t0 47347 /dev/nbd0

If the command produces an output like in the example above, the device is busy
(not free). This can also be confirmed by the presence of the /sys/devices/vir-
tual/block/nbd0/pid le.

3. Inform the operating system about partition table changes with partprobe :

root # partprobe /dev/nbd0 -s
/dev/nbd0: msdos partitions 1 2

33 Opening a VM Guest Image SLES 12 SP5

root # dmesg | grep nbd0 | tail -1
[89699.082206] nbd0: p1 p2

4. In the example above, the SLE12.qcow2 contains two partitions: /dev/nbd0p1 and /
dev/nbd0p2 . Before mounting these partitions, use vgscan to check whether they belong
to an LVM volume:

root # vgscan -v
 Wiping cache of LVM-capable devices
 Wiping internal VG cache
 Reading all physical volumes. This may take a while...
 Using volume group(s) on command line.
 No volume groups found.

5. If no LVM volume has been found, you can mount the partition with mount :

root # mkdir /mnt/nbd0p2
mount /dev/nbd0p1 /mnt/nbd0p2

Refer to Section 5.3.3, “Opening Images Containing LVM” for information on how to handle
LVM volumes.

PROCEDURE 8: UNMOUNTING A QCOW2 IMAGE

1. Unmount all mounted partitions of the image, for example:

root # umount /mnt/nbd0p2

2. Disconnect the image from the /dev/nbd0 device.

root # qemu-nbd -d /dev/nbd0

5.3.3 Opening Images Containing LVM

PROCEDURE 9: MOUNTING IMAGES CONTAINING LVM

1. To check images for LVM groups, use vgscan -v . If an image contains LVM groups, the
output of the command looks like the following:

root # vgscan -v
Wiping cache of LVM-capable devices
Wiping internal VG cache
Reading all physical volumes. This may take a while...

34 Opening a VM Guest Image SLES 12 SP5

Finding all volume groups
Finding volume group "system"
Found volume group "system" using metadata type lvm2

2. The system LVM volume group has been found on the system. You can get more informa-
tion about this volume with vgdisplay VOLUMEGROUPNAME (in our case VOLUMEGROUP-
NAME is system). You should activate this volume group to expose LVM partitions as de-
vices so the system can mount them. Use vgchange :

root # vgchange -ay -v
Finding all volume groups
Finding volume group "system"
Found volume group "system"
activation/volume_list configuration setting not defined: Checking only
host tags for system/home
Creating system-home
Loading system-home table (254:0)
Resuming system-home (254:0)
Found volume group "system"
activation/volume_list configuration setting not defined: Checking only
host tags for system/root
Creating system-root
Loading system-root table (254:1)
Resuming system-root (254:1)
Found volume group "system"
activation/volume_list configuration setting not defined: Checking only
host tags for system/swap
Creating system-swap
Loading system-swap table (254:2)
Resuming system-swap (254:2)
Activated 3 logical volumes in volume group system
 3 logical volume(s) in volume group "system" now active

3. All partitions in the volume group will be listed in the /dev/mapper directory. You can
simply mount them now.

root # ls /dev/mapper/system-*
/dev/mapper/system-home /dev/mapper/system-root /dev/mapper/system-swap

root # mkdir /mnt/system-root
root # mount /dev/mapper/system-root /mnt/system-root

root # ls /mnt/system-root/
bin dev home lib64 mnt proc root sbin srv tmp var
boot etc lib lost+found opt read-write run selinux sys usr

35 Opening a VM Guest Image SLES 12 SP5

PROCEDURE 10: UNMOUNTING IMAGES CONTAINING LVM

1. Unmount all partitions (with umount)

root # umount /mnt/system-root

2. Deactivate the LVM volume group (with vgchange -an VOLUMEGROUPNAME)

root # vgchange -an -v system
Using volume group(s) on command line
Finding volume group "system"
Found volume group "system"
Removing system-home (254:0)
Found volume group "system"
Removing system-root (254:1)
Found volume group "system"
Removing system-swap (254:2)
Deactivated 3 logical volumes in volume group system
0 logical volume(s) in volume group "system" now active

3. Now you have two choices:

In case of a qcow2 image, proceed as described in Step 2 (qemu-nbd -d /dev/nbd0).

In case of a raw image, proceeds as described in Step 2 (kpartx -d /dev/loop1 ;
losetup -d /dev/loop1).

Important: Check for a Successful Unmount
You should double-check that umounting succeeded by using a system command
like losetup , qemu-nbd , mount or vgscan . If this is not the case you may have
trouble using the VM Guest because its system image is used in different places.

5.4 File System Sharing

You can access a host directory in the VM Guest using the filesystem element. In the following
example we will share the /data/shared directory and mount it in the VM Guest. Note that
the accessmode parameter only works with type='mount' for the QEMU/KVM drive (most
other values for type are exclusively used for the LXC driver).

<filesystem type='mount' 1 accessmode='mapped' 2 >
 <source dir='/data/shared' 3 >

36 File System Sharing SLES 12 SP5

 <target dir='shared' 4 />
</filesystem>

1 A host directory to mount VM Guest.

2 Access mode (the security mode) set to mapped will give access with the permissions of
the hypervisor. Use passthrough to access this share with the permissions of the user
inside the VM Guest.

3 Path to share with the VM Guest.

4 Name or label of the path for the mount command.

To mount the shared directory on the VM Guest, use the following commands: Under the VM
Guest now you need to mount the target dir='shared' :

root # mkdir /opt/mnt_shared
root # mount shared -t 9p /opt/mnt_shared -o trans=virtio

See libvirt File System (https://libvirt.org/formatdomain.html#elementsFilesystems) and QE-

MU 9psetup (http://wiki.qemu.org/Documentation/9psetup) for more information.

6 VM Guest Configuration

6.1 Virtio Driver

To increase VM Guest performance it is recommended to use paravirtualized drivers within
the VM Guests. The virtualization standard for such drivers for KVM are the virtio drivers,
which are designed for running in a virtual environment. Xen uses similar paravirtualized device
drivers (like VMDP (https://www.suse.com/products/vmdriverpack/) in a Windows* guest). For
a better understanding of this topic, refer to Book “Virtualization Guide”, Chapter 1 “Virtualization

Technology”, Section 1.5 “I/O Virtualization”.

6.1.1 virtio blk

virtio_blk is the virtio block device for disk. To use the virtio blk driver for a block device,
specify the bus='virtio' attribute in the disk definition:

<disk type='....' device='disk'>

 <target dev='vda' bus='virtio'/>

37 VM Guest Configuration SLES 12 SP5

https://libvirt.org/formatdomain.html#elementsFilesystems
http://wiki.qemu.org/Documentation/9psetup
http://wiki.qemu.org/Documentation/9psetup
https://www.suse.com/products/vmdriverpack/

</disk>

Important: Disk Device Names
virtio disk devices are named /dev/vd[a-z][1-9] . If you migrate a Linux guest from
a non-virtio disk you need to adjust the root= parameter in the GRUB configuration, and
regenerate the initrd le. Otherwise the system cannot boot. On VM Guests with other
operating systems, the boot loader may need to be adjusted or reinstalled accordingly, too.

Important: Using virtio Disks with qemu-system-ARCH
When running qemu-system-ARCH , use the -drive option to add a disk to the VM Guest.
See Book “Virtualization Guide”, Chapter 28 “Guest Installation”, Section 28.1 “Basic Installation

with qemu-system-ARCH” for an example. The -hd[abcd] option will not work for virtio
disks.

6.1.2 virtio net

virtio_net is the virtio network device. The kernel modules should be loaded automatically
in the guest at boot time. You need to start the service to make the network available.

<interface type='network'>
 ...
 <model type='virtio' />
</interface>

6.1.3 virtio balloon

The virtio balloon is used for host memory over-commits for guests. For Linux guests, the balloon
driver runs in the guest kernel, whereas for Windows guests, the balloon driver is in the VMDP
package. virtio_balloon is a PV driver to give or take memory from a VM Guest.

Inflate balloon: Return memory from guest to host kernel (for KVM) or to hypervisor (for
Xen)

Deflate balloon: Guest will have more available memory

It is controlled by the currentMemory and memory options.

38 Virtio Driver SLES 12 SP5

<memory unit='KiB'>16777216</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 [...]
 <devices>
 <memballoon model='virtio'/>
 </devices>

You can also use virsh to change it:

tux > virsh setmem DOMAIN_ID MEMORY in KB

6.1.4 Checking virtio Presence

You can check the virtio block PCI with:

tux > find /sys/devices/ -name virtio*
/sys/devices/pci0000:00/0000:00:06.0/virtio0
/sys/devices/pci0000:00/0000:00:07.0/virtio1
/sys/devices/pci0000:00/0000:00:08.0/virtio2

To nd the block device associated with vdX :

tux > find /sys/devices/ -name virtio* -print -exec ls {}/block 2>/dev/null \;
/sys/devices/pci0000:00/0000:00:06.0/virtio0
/sys/devices/pci0000:00/0000:00:07.0/virtio1
/sys/devices/pci0000:00/0000:00:08.0/virtio2
vda

To get more information on the virtio block:

tux > udevadm info -p /sys/devices/pci0000:00/0000:00:08.0/virtio2
P: /devices/pci0000:00/0000:00:08.0/virtio2
E: DEVPATH=/devices/pci0000:00/0000:00:08.0/virtio2
E: DRIVER=virtio_blk
E: MODALIAS=virtio:d00000002v00001AF4
E: SUBSYSTEM=virtio

To check all virtio drivers being used:

tux > find /sys/devices/ -name virtio* -print -exec ls -l {}/driver 2>/dev/null \;
/sys/devices/pci0000:00/0000:00:06.0/virtio0
lrwxrwxrwx 1 root root 0 Jun 17 15:48 /sys/devices/pci0000:00/0000:00:06.0/virtio0/driver
 -> ../../../../bus/virtio/drivers/virtio_console
/sys/devices/pci0000:00/0000:00:07.0/virtio1
lrwxrwxrwx 1 root root 0 Jun 17 15:47 /sys/devices/pci0000:00/0000:00:07.0/virtio1/driver
 -> ../../../../bus/virtio/drivers/virtio_balloon

39 Virtio Driver SLES 12 SP5

/sys/devices/pci0000:00/0000:00:08.0/virtio2
lrwxrwxrwx 1 root root 0 Jun 17 14:35 /sys/devices/pci0000:00/0000:00:08.0/virtio2/driver
 -> ../../../../bus/virtio/drivers/virtio_blk

6.1.5 Find Device Driver Options

Virtio devices and other drivers have various options. To list all of them, use the help parameter
of the qemu-system-ARCH command.

tux > qemu-system-x86_64 -device virtio-net,help
virtio-net-pci.ioeventfd=on/off
virtio-net-pci.vectors=uint32
virtio-net-pci.indirect_desc=on/off
virtio-net-pci.event_idx=on/off
virtio-net-pci.any_layout=on/off
.....

6.2 Cirrus Video Driver

To get 16-bit color, high compatibility and better performance it is recommended to use the
cirrus video driver.

Note: libvirt
libvirt ignores the vram value because video size has been hardcoded in QEMU.

<video>
 <model type='cirrus' vram='9216' heads='1'/>
</video>

6.3 Better Entropy

Virtio RNG (random number generator) is a paravirtualized device that is exposed as a hardware
RNG device to the guest. On the host side, it can be wired up to one of several sources of entropy
(including a real hardware RNG device and the host's /dev/random) if hardware support does
not exist. The Linux kernel contains the guest driver for the device from version 2.6.26 and
higher.

40 Cirrus Video Driver SLES 12 SP5

The system entropy is collected from various non-deterministic hardware events and is mainly
used by cryptographic applications. The virtual random number generator device (paravirtual-
ized device) allows the host to pass through entropy to VM Guest operating systems. This results
in a better entropy in the VM Guest.

To use Virtio RNG, add an RNG device in virt-manager or directly in the VM Guest's XML
configuration:

<devices>
 <rng model='virtio'>
 <backend model='random'>/dev/random</backend>
 </rng>
</devices>

The host now should used /dev/random :

tux > lsof /dev/random
qemu-syst 4926 qemu 6r CHR 1,8 0t0 8199 /dev/random

On the VM Guest, the source of entropy can be checked with:

tux > cat /sys/devices/virtual/misc/hw_random/rng_available

The current device used for entropy can be checked with:

tux > cat /sys/devices/virtual/misc/hw_random/rng_current
virtio_rng.0

You should install the rng-tools package on the VM Guest, enable the service, and start it.
Under SLE12 do the following:

root # zypper in rng-tools
root # systemctl enable rng-tools
root # systemctl start rng-tools

6.4 Disable Unused Tools and Devices

Per host, use one virtualization technology only. For example, do not use KVM and Containers
on the same computer. Otherwise, you may nd yourself with a reduced amount of available
resources, increased security risk and a longer software update queue. Even when the amount
of resources allocated to each of the technologies is configured carefully, the host may suffer
from reduced overall availability and degraded performance.

41 Disable Unused Tools and Devices SLES 12 SP5

Minimize the amount of software and services available on hosts. Most default installations of
operating systems are not optimized for VM usage. Install what you really need and remove all
other components in the VM Guest.

Windows* Guest:

Disable the screen saver

Remove all graphical effects

Disable indexing of hard disks if not necessary

Check the list of started services and disable the ones you do not need

Check and remove all unneeded devices

Disable system update if not needed, or configure it to avoid any delay while rebooting
or shutting down the host

Check the Firewall rules

Schedule backups and anti-virus updates appropriately

Install the VMDP (https://www.suse.com/products/vmdriverpack/) paravirtualized driver
for best performance

Check the operating system recommendations, such as on the Microsoft Windows*

7 better performance (http://windows.microsoft.com/en-us/windows/optimize-windows-bet-

ter-performance#optimize-windows-better-performance=windows-7) Web page.

Linux Guest:

Remove or do not start the X Window System if not necessary

Check the list of started services and disable the ones you do not need

Check the OS recommendations for kernel parameters that enable better performance

Only install software that you really need

Optimize the scheduling of predictable tasks (system updates, hard disk checks, etc.)

42 Disable Unused Tools and Devices SLES 12 SP5

https://www.suse.com/products/vmdriverpack/
http://windows.microsoft.com/en-us/windows/optimize-windows-better-performance#optimize-windows-better-performance=windows-7
http://windows.microsoft.com/en-us/windows/optimize-windows-better-performance#optimize-windows-better-performance=windows-7
http://windows.microsoft.com/en-us/windows/optimize-windows-better-performance#optimize-windows-better-performance=windows-7

6.5 Updating the Guest Machine Type

QEMU machine types define details of the architecture that are particularly relevant for migra-
tion and session management. As changes or improvements to QEMU are made, new machine
types are added. Old machine types are still supported for compatibility reasons, but to take
advantage of improvements, we recommend to always migrate to the latest machine type when
upgrading.

Changing the guest's machine type for a Linux guest will mostly be transparent. For Windows*
guests, we recommend to take a snapshot or backup of the guest—in case Windows* has issues
with the changes it detects and subsequently the user decides to revert to the original machine
type the guest was created with.

Note: Changing the Machine Type
Refer to Book “Virtualization Guide”, Chapter 14 “Configuring Virtual Machines”, Section 14.10

“Changing the Machine Type with virsh” for documentation.

7 VM Guest-Specific Configurations and Settings

7.1 ACPI Testing

The ability to change a VM Guest's state heavily depends on the operating system. It is very
important to test this feature before any use of your VM Guests in production. For example,
most Linux operating systems disable this capability by default, so this requires you to enable
this operation (mostly through Polkit).

ACPI must be enabled in the guest for a graceful shutdown to work. To check if ACPI is enabled,
run:

tux > virsh dumpxml VMNAME | grep acpi

If nothing is printed, ACPI is not enabled for your machine. Use virsh edit to add the following
XML under <domain>:

<features>
 <acpi/>
</features>

43 Updating the Guest Machine Type SLES 12 SP5

If ACPI was enabled during a Windows Server* guest installation, it is not sufficient to turn it on
in the VM Guest configuration only. For more information, see https://support.microsoft.com/en-

us/kb/309283 .

Regardless of the VM Guest's configuration, a graceful shutdown is always possible from within
the guest operating system.

7.2 Keyboard Layout

Though it is possible to specify the keyboard layout from a qemu-system-ARCH command, it is
recommended to configure it in the libvirt XML le. To change the keyboard layout while
connecting to a remote VM Guest using VNC, you should edit the VM Guest XML configuration
le. For example, to add an en-us keymap, add in the <devices> section:

<graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>

Check the vncdisplay configuration and connect to your VM Guest:

tux > virsh vncdisplay sles12 127.0.0.1:0

7.3 Spice default listen URL

If no network interface other than lo is assigned an IPv4 address on the host, the default address
on which the spice server listens will not work. An error like the following one will occur:

tux > virsh start sles12
error: Failed to start domain sles12
error: internal error: process exited while connecting to monitor: ((null):26929): Spice-
Warning **: reds.c:2330:reds_init_socket: getaddrinfo(127.0.0.1,5900): Address family for
 hostname not supported
2015-08-12T11:21:14.221634Z qemu-system-x86_64: failed to initialize spice server

To x this, you can change the default spice_listen value in /etc/libvirt/qemu.conf
using the local IPv6 address ::1 . The spice server listening address can also be changed on
a per VM Guest basis, use virsh edit to add the listen XML attribute to the graphics
type='spice' element:

<graphics type='spice' listen='::1' autoport='yes'/>>

44 Keyboard Layout SLES 12 SP5

https://support.microsoft.com/en-us/kb/309283
https://support.microsoft.com/en-us/kb/309283

7.4 XML to QEMU command line

Sometimes it could be useful to get the QEMU command line to launch the VM Guest from the
XML le.

tux > virsh domxml-to-native 1 qemu-argv 2 SLE12.xml 3

1 Convert the XML le in domain XML format to the native guest configuration

2 For the QEMU/KVM hypervisor, the format argument needs be qemu-argv

3 Domain XML le to use

tux > sudo virsh domxml-to-native qemu-argv /etc/libvirt/qemu/SLE12.xml
LC_ALL=C PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin \
 QEMU_AUDIO_DRV=none /usr/bin/qemu-system-x86_64 -name SLE12 -machine \
 pc-i440fx-2.3,accel=kvm,usb=off -cpu SandyBridge -m 4048 -realtime \
 mlock=off -smp 4,sockets=4,cores=1,threads=1 -uuid
 8616d00f-5f05-4244-97cc-86aeaed8aea7 \
 -no-user-config -nodefaults -chardev socket,id=charmonitor,path=/var/lib/libvirt/qemu/
SLE12.monitor,server,nowait \
 -mon chardev=charmonitor,id=monitor,mode=control -rtc base=utc,driftfix=slew \
 -global kvm-pit.lost_tick_policy=discard -no-hpet \
 -no-shutdown -global PIIX4_PM.disable_s3=1 -global PIIX4_PM.disable_s4=1 \
 -boot strict=on -device ich9-usb-ehci1,id=usb,bus=pci.0,addr=0x4.0x7 \
 -device ich9-usb-uhci1,masterbus=usb.0,firstport=0,bus=pci.0,multifunction=on,addr=0x4
 \
 -device ich9-usb-uhci2,masterbus=usb.0,firstport=2,bus=pci.0,addr=0x4.0x1 \
 -device ich9-usb-uhci3,masterbus=usb.0,firstport=4,bus=pci.0,addr=0x4.0x2 \
 -drive file=/var/lib/libvirt/images/SLE12.qcow2,if=none,id=drive-virtio-
disk0,format=qcow2,cache=none \
 -device virtio-blk-pci,scsi=off,bus=pci.0,addr=0x6,drive=drive-virtio-disk0,id=virtio-
disk0,bootindex=2 \
 -drive if=none,id=drive-ide0-0-1,readonly=on,format=raw \
 -device ide-cd,bus=ide.0,unit=1,drive=drive-ide0-0-1,id=ide0-0-1 -netdev
 tap,id=hostnet0 \
 -device virtio-net-
pci,netdev=hostnet0,id=net0,mac=52:54:00:28:04:a9,bus=pci.0,addr=0x3,bootindex=1 \
 -chardev pty,id=charserial0 -device isa-serial,chardev=charserial0,id=serial0 \
 -vnc 127.0.0.1:0 -device cirrus-vga,id=video0,bus=pci.0,addr=0x2 \
 -device virtio-balloon-pci,id=balloon0,bus=pci.0,addr=0x5 -msg timestamp=on

45 XML to QEMU command line SLES 12 SP5

7.5 Change Kernel Parameters at Boot Time

7.5.1 SUSE Linux Enterprise 11

To change the value for SLE 11 products at boot time, you need to modify your /boot/grub/
menu.lst le by adding the OPTION=parameter . Then reboot your system.

7.5.2 SUSE Linux Enterprise 12

To change the value for SLE 12 products at boot time, you need to modify your /etc/de-
fault/grub le. Find the variable starting with GRUB_CMDLINE_LINUX_DEFAULT and add at
the end OPTION=parameter (or change it with the correct value if it is already available).

Now you need to regenerate your grub2 configuration:

grub2-mkconfig -o /boot/grub2/grub.cfg

Then reboot your system

7.6 Add a Device to an XML Configuration

To create a new VM Guest based on an XML le, you can specify the QEMU command line using
the special tag qemu:commandline . For example, to add a virtio-balloon-pci, add this block at
the end of the XML configuration le (before the </domain> tag):

<qemu:commandline>
 <qemu:arg value='-device'/>
 <qemu:arg value='virtio-balloon-pci,id=balloon0'/>
</qemu:commandline>

8 Hypervisors Compared to Containers
TABLE 4: HYPERVISORS COMPARED TO CONTAINERS

Features Hypervisors Containers

Technologies Emulation of a physical com-
puting environment

Use kernel host

46 Change Kernel Parameters at Boot Time SLES 12 SP5

Features Hypervisors Containers

System layer level Managed by a virtualization
layer (Hypervisor)

Rely on kernel namespaces
and cgroups

Level (layer) Hardware level Software level

Virtualization mode available FV or PV None, only user space

Security Strong Warning
Security is very low

Confinement Full isolation Warning
Host kernel (OS must
be compatible with
kernel version)

Operating system Any operating system Only Linux (must be "kernel"
compatible)

Type of system Full OS needed Scope is an instance of Linux

Boot time Slow to start (OS delay) Really quick start

Overhead High Very low

Efficiency Depends on OS Very efficient

Sharing with host Warning
Complex because of
isolation

Sharing is easy (host sees
everything; container sees its
own objects)

Migration Supports migration (live
mode)

Warning
Not possible

47 Hypervisors Compared to Containers SLES 12 SP5

8.1 Getting the Best of Both Worlds

Even if the above table seems to indicate that running a single application in a highly secure way
is not possible, virt-sandbox will allow running a single application in a KVM guest, starting
with SUSE Linux Enterprise Server 12 SP1. virt-sandbox bootstraps any command within a
Linux kernel with a minimal root le system.

The guest root le system can either be the root le system mounted read-only or a disk image.
The following steps will show how to set up a sandbox with qcow2 disk image as root le system.

1. Create the disk image using qemu-img :

root # qemu-img create -f qcow2 rootfs.qcow2 6G

2. Format the disk image:

root # modprobe nbd 1

root # /usr/bin/qemu-nbd --format qcow2 -n -c /dev/nbd0 $PWD/test-base.qcow2 2

root # mkfs.ext3 /dev/nbd0 3

1 Make sure the nbd module is loaded: it is not loaded by default and will only be used
to format the qcow image.

2 Create an NBD device for the qcow2 image. This device will then behave like any
other block device. The example uses /dev/nbd0 but any other free NBD device will
work.

3 Format the disk image directly. Note that no partition table has been created: virt-
sandbox considers the image to be a partition, not a disk.
The partition formats that can be used are limited: the Linux kernel bootstrapping
the sandbox needs to have the corresponding features built in. The Ext4 module is
also available at the sandbox start-up time.

3. Now populate the newly formatted image:

root # guestmount -a base.qcow2 -m /dev/sda:/ /mnt 1

root # zypper --root /mnt ar cd:///?devices=/dev/dvd SLES12_DVD
root # zypper --root /mnt in -t pattern Minimal 2

root # guestunmount /mnt 3

1 Mount the qcow2 image using the guestfs tools.

48 Getting the Best of Both Worlds SLES 12 SP5

2 Use Zypper with the --root parameter to add a SUSE Linux Enterprise Server repos-
itory and install the Minimal pattern in the disk image. Any additional package or
configuration change should be performed in this step.

Note: Using backing chains
To share the root le system between several sandboxes, create qcow2 images
with a common disk image as backing chain as described in Section 5.2, “Overlay

Disk Images”.

3 Unmount the qcow2 image.

4. Run the sandbox, using virt-sandbox . This command has many interesting options, read
its man page to discover them all. The command can be run as root or as an unprivileged
user.

root # virt-sandbox -n NAME \
 -m host-image:/=$PWD/rootfs.qcow2 \ 1

 -m host-bind:/srv/www=/guests/www \ 2

 -m ram:/tmp=100MiB \
 -m ram:/run=100MiB \ 3

 -N source=default,address=192.168.122.12/24 \ 4

 -- \
 /bin/sh

1 Mount the created disk image as the root le system. Note that without any image
being mounted as / , the host root le system is read-only mounted as the guest one.
The host-image mount is not reserved for the root le system, it can be used to mount
any disk image anywhere in the guest.

2 The host-bind mount is pretty convenient for sharing les and directories between
the host and the guest. In this example the host directory /guests/www is mounted
as /srv/www in the sandbox.

3 The RAM mounts are defining tmpfs mounts in the sandbox.

4 The network uses a network defined in libvirt. When running as an unprivileged user,
the source can be omitted, and the KVM user networking feature will be used. Using
this option requires the dhcp-client and iproute2 packages, which are part of
the SUSE Linux Enterprise Server Minimal pattern.

49 Getting the Best of Both Worlds SLES 12 SP5

9 Xen: Converting a Paravirtual (PV) Guest to a Fully
Virtual (FV/HVM) Guest

This chapter explains how to convert a Xen paravirtual machine into a Xen fully virtualized
machine.

PROCEDURE 11: GUEST SIDE

In order to start the guest in FV mode, you have to run the following steps inside the guest.

1. Prior to converting the guest, apply all pending patches and reboot the guest.

2. FV machines use the -default kernel. If this kernel is not already installed, install the
kernel-default package (while running in PV mode).

3. PV machines typically use disk names such as vda* . These names must be changed to the
FV hd* syntax. This change must be done in the following les:

/etc/fstab

/boot/grub/menu.lst (SLES 11 only)

/boot/grub*/device.map

/etc/sysconfig/bootloader

/etc/default/grub (SLES 12 and later; only)

Note: Prefer UUIDs
You should use UUIDs or logical volumes within your /etc/fstab . Using UUID
simplifies using attached network storage, multipathing, and virtualization. To nd
the UUID of your disk use the command blkid .

4. To avoid any error regenerating the initrd with the required modules you can create a
symlink from /dev/hda2 to /dev/xvda2 etc. by using the ln :

ln -sf /dev/xvda2 /dev/hda2
ln -sf /dev/xvda1 /dev/hda1
.....

50 Xen: Converting a Paravirtual (PV) Guest to a Fully Virtual (FV/HVM) Guest SLES 12 SP5

5. PV and FV machines use different disk and network driver modules. These FV modules
must be added to the initrd manually. The expected modules are xen-vbd (for disk) and
xen-vnif (for network). These are the only PV drivers for a fully virtualized VM Guest.
All other modules, such as ata_piix , ata_generic and libata , should be added au-
tomatically.

Tip: Adding Modules to the initrd

On SLES 11, you can add modules to the INITRD_MODULES line in the /etc/
sysconfig/kernel le. For example:

INITRD_MODULES="xen-vbd xen-vnif"

Run mkinitrd to build a new initrd containing the modules.

On SLES 12, open or create /etc/dracut.conf.d/10-virt.conf and add
the modules with force_drivers by adding a line as in the example below
(mind the leading whitespace):

force_drivers+=" xen-vbd xen-vnif"

Run dracut -f --kver KERNEL_VERSION-default to build a new initrd (for
the -default version of the kernel) that contains the required modules.

Note: Find Your Kernel Version
Use the uname -r command to get the current version used on your
system.

6. Before shutting down the guest, set the default boot option to the -default kernel using
yast bootloader .

7. Under SUSE Linux Enterprise Server 11, if you have an X server running on your guest,
you need to adjust the /etc/X11/xorg.conf le in order to adjust the X driver. Search
for fbdev and change to cirrus .

Section "Device"
 Driver "cirrus"

51 Xen: Converting a Paravirtual (PV) Guest to a Fully Virtual (FV/HVM) Guest SLES 12 SP5

 EndSection

Note: SUSE Linux Enterprise Server 12 and Xorg
Under SUSE Linux Enterprise Server 12, Xorg will automatically adjust the driver
needed to be able to get a working X server.

8. Shut down the guest.

PROCEDURE 12: HOST SIDE

The following steps explain the action you have to perform on the host.

1. To start the guest in FV mode, the configuration of the VM must be modified to match
an FV configuration. Editing the configuration of the VM can easily be done using virsh
edit [DOMAIN] . The following changes are recommended:

Make sure the machine, the type and the loader entries in the OS section are
changed from xenpv to xenfv . The updated OS section should look similar to:

<os>
 <type arch='x86_64' machine='xenfv'>hvm</type>
 <loader>/usr/lib/xen/boot/hvmloader</loader>
 <boot dev='hd'/>
</os>

In the OS section remove anything that is specific to PV guest:

<bootloader>pygrub</bootloader>

<kernel>/usr/lib/grub2/x86_64-xen/grub.xen</kernel>

<cmdline>xen-fbfront.video=4,1024,768</cmdline>

In the devices section, add the qemu emulator as:

<emulator>/usr/lib/xen/bin/qemu-system-i386</emulator>

Update the disk configuration so the target device and bus use the FV syntax. This
requires replacing the xen disk bus with ide , and the vda target device with hda .
The changes should look similar to:

<target dev='hda' bus='ide'/>

52 Xen: Converting a Paravirtual (PV) Guest to a Fully Virtual (FV/HVM) Guest SLES 12 SP5

Change the bus for the mouse and keyboard from xen to ps2 . Also add a new USB
tablet device:

<input type='mouse' bus='ps2'/>
 <input type='keyboard' bus='ps2'/>
<input type='tablet' bus='usb'/>

Change the console target type from xen to serial :

<console type='pty'>
 <target type='serial' port='0'/>
</console>

Change the video configuration from xen to cirrus , with 8 M of VRAM:

<video>
 <model type='cirrus' vram='8192' heads='1' primary='yes'/>
</video>

If desired, add acpi and apic to the features of the VM:

<features>
 <acpi/>
 <apic/>
</features>

2. Start the guest (using virsh or virt-manager). If the guest is running kernel-default (as
verified through uname -a), the machine is running in Fully Virtual mode.

Note: guestfs-tools
To script this process, or work on disk images directly, you can use the suite described
in Book “Virtualization Guide”, Chapter 17 “libguestfs”, Section 17.3 “Guestfs Tools”. Numerous
tools exist there to help modify disk images.

10 External References
Increasing memory density using KSM (https://kernel.org/doc/ols/2009/ols2009-

pages-19-28.pdf)

linux-kvm.org KSM (http://www.linux-kvm.org/page/KSM)

53 External References SLES 12 SP5

https://kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
https://kernel.org/doc/ols/2009/ols2009-pages-19-28.pdf
http://www.linux-kvm.org/page/KSM

KSM's kernel documentation (https://www.kernel.org/doc/Documentation/vm/ksm.txt)

ksm - dynamic page sharing driver for linux v4 (https://lwn.net/Articles/329123/)

Memory Ballooning (http://www.espenbraastad.no/post/memory-ballooning/)

libvirt virtio (https://wiki.libvirt.org/page/Virtio)

CFQ's kernel documentation (https://www.kernel.org/doc/Documentation/block/cfq-

iosched.txt)

Documentation for sysctl (https://www.kernel.org/doc/Documentation/sysctl/kernel.txt)

LWN Random Number (https://lwn.net/Articles/525459/)

Dr. Khoa Huynh, IBM Linux Technology Center (http://events.linuxfoundation.org/sites/events/

files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf)

Kernel Parameters (https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Docu-

mentation/admin-guide/kernel-parameters.txt)

Huge pages Administration (Mel Gorman) (https://lwn.net/Articles/374424/)

kernel hugetlbpage (https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt)

54 External References SLES 12 SP5

https://www.kernel.org/doc/Documentation/vm/ksm.txt
https://lwn.net/Articles/329123/
http://www.espenbraastad.no/post/memory-ballooning/
https://wiki.libvirt.org/page/Virtio
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
https://lwn.net/Articles/525459/
http://events.linuxfoundation.org/sites/events/files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf
http://events.linuxfoundation.org/sites/events/files/slides/CloudOpen2013_Khoa_Huynh_v3.pdf
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/admin-guide/kernel-parameters.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/Documentation/admin-guide/kernel-parameters.txt
https://lwn.net/Articles/374424/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

	Virtualization Best Practices
	1. Virtualization Scenarios
	2. Before You Apply Modifications
	2.1. Back Up First
	2.2. Test Your Workloads

	3. Recommendations
	3.1. Prefer the libvirt Framework
	3.2. qemu-system-i386 Compared to qemu-system-x86_64

	4. VM Host Server Configuration and Resource Allocation
	4.1. Memory
	4.1.1. Configuring the VM Host Server and the VM Guest to use Huge Pages
	4.1.2. Transparent Huge Pages
	4.1.3. Xen-specific Memory Notes
	4.1.3.1. Managing Domain-0 Memory
	4.1.3.2. xenstore in tmpfs

	4.1.4. KSM and Page Sharing
	4.1.5. VM Guest: Memory Hotplug

	4.2. Swap
	4.2.1. swappiness

	4.3. I/O
	4.3.1. I/O Scheduler
	4.3.2. Asynchronous I/O
	4.3.3. I/O Virtualization

	4.4. Storage and File System
	4.4.1. NFS Read/Write (Client)
	4.4.2. NFS Threads (Server)

	4.5. CPUs
	4.5.1. Assigning CPUs
	4.5.2. VM Guest CPU Configuration
	4.5.2.1. Virtual CPU Models and Features
	4.5.2.2. Virtual CPU Pinning
	4.5.2.3. Virtual CPU Migration Considerations

	4.6. NUMA Tuning
	4.6.1. NUMA Balancing
	4.6.2. Memory Allocation Control with the CPUset Controller
	4.6.3. VM Guest: NUMA Related Configuration
	4.6.3.1. VM Guest Virtual NUMA Topology
	4.6.3.2. Memory Allocation Control with libvirt

	5. VM Guest Images
	5.1. VM Guest Image Formats
	5.1.1. Raw Format
	5.1.2. qcow2 Format
	5.1.3. qed format
	5.1.4. VMDK format

	5.2. Overlay Disk Images
	5.3. Opening a VM Guest Image
	5.3.1. Opening a Raw Image
	5.3.2. Opening a qcow2 Image
	5.3.3. Opening Images Containing LVM

	5.4. File System Sharing

	6. VM Guest Configuration
	6.1. Virtio Driver
	6.1.1. virtio blk
	6.1.2. virtio net
	6.1.3. virtio balloon
	6.1.4. Checking virtio Presence
	6.1.5. Find Device Driver Options

	6.2. Cirrus Video Driver
	6.3. Better Entropy
	6.4. Disable Unused Tools and Devices
	6.5. Updating the Guest Machine Type

	7. VM Guest-Specific Configurations and Settings
	7.1. ACPI Testing
	7.2. Keyboard Layout
	7.3. Spice default listen URL
	7.4. XML to QEMU command line
	7.5. Change Kernel Parameters at Boot Time
	7.5.1. SUSE Linux Enterprise 11
	7.5.2. SUSE Linux Enterprise 12

	7.6. Add a Device to an XML Configuration

	8. Hypervisors Compared to Containers
	8.1. Getting the Best of Both Worlds

	9. Xen: Converting a Paravirtual (PV) Guest to a Fully Virtual (FV/HVM) Guest
	10. External References

