
SUSE Linux Enterprise Server 12 SP5

Docker Open Source
Engine Guide

Docker Open Source Engine Guide
SUSE Linux Enterprise Server 12 SP5

This guide introduces Docker Open Source Engine, a lightweight virtualization solu-
tion to run virtual units simultaneously on a single control host.

Publication Date: November 07, 2024

https://documentation.suse.com

Copyright © 2006–2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-

mentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright

notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation

License”.

https://documentation.suse.com

For SUSE trademarks, see https://www.suse.com/company/legal/ . All third-party trademarks are the property

of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks

(*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

https://www.suse.com/company/legal/

Contents

1 Docker Open Source Engine Overview 1
1.1 Docker Open Source Engine Architecture 3

1.2 Docker Open Source Engine Drivers 3

Container Drivers 3 • Storage Drivers 4

2 Docker Open Source Engine Installation 6

2.1 General Preparation 6

2.2 Networking 7

Networking Limitations on Power Architecture 8

3 Installing sle2docker 9

4 Storing Images 10

4.1 What is a Docker Registry? 10

4.2 Installing and Setting Up Docker Registry 11

4.3 Limitations 12

4.4 Portus 12

5 Creating Custom Images 13

5.1 Obtaining Base SLES Images 13

5.2 Customizing SLES Docker Images 14

Creating a Custom SLE 11 SP4 Image 17 • Creating a Custom SLE 12

Image 17 • Meta Information in SLE Container Images 18 • Adding SLE

Extensions and Modules to Images 19

6 Creating Docker Images of Applications 20

6.1 Running an Application with Specific Package Versions 21

6.2 Running Applications with Specific Configuration 22

iv Docker Open Source Engine Guide

6.3 Sharing Data between an Application and the Host System 23

6.4 Applications Running in the Background 24

7 Working with Containers 27

7.1 Linking Containers 27

8 Troubleshooting 28

8.1 Analyze container images with container-diff 28

Basic container-diff commands 28

A GNU licenses 30

v Docker Open Source Engine Guide

1 Docker Open Source Engine Overview

Docker Open Source Engine is a lightweight virtualization solution to run multiple virtual units
(containers) simultaneously on a single control host. Containers are isolated with Kernel Control
Groups (Control groups) and Namespace .

Full virtualization solutions such as Xen, KVM, or libvirt are based on the processor simulat-
ing a complete hardware environment and controlling the virtual machines. However, Docker
Open Source Engine only provides operating system-level virtualization where the Linux kernel
controls isolated containers.

Before going into detail about Docker Open Source Engine, let's define some of the terms used:

Docker Open Source Engine

Docker Open Source Engine is a server-client type application that performs all tasks re-
lated to virtual machines. Docker Open Source Engine comprises the following:

daemon - is the server side of Docker Open Source Engine that manages all Docker
objects (images, containers, network used by containers, etc.)

REST API - applications can use this API to communicate directly with the daemon

a CLI client - that enables you to communicate with the daemon. If the daemon is
running on a different machine than the CLI client, the CLI client can communicate
by using network sockets or the REST API provided by Docker Open Source Engine.

Image

An image is a read-only template used to create a virtual machine on the host server. A
Docker image is made by a series of layers built one over the other. Each layer corresponds
to a permanent change, for example an update of an application. The changes are stored in
a le called a Dockerfile . For more details see the official Docker documentation (http://

docs.docker.com/engine/reference/glossary#image) .

Dockerfile

A Dockerfile stores changes made on top of the base image. The Docker Open Source

Engine reads instructions in the Dockerfile and builds a new image according to the in-
structions.

Container

A container is a running instance based on a particular Docker Image. Each container can
be distinguished by a unique container ID.

1 SLES 12 SP5

http://docs.docker.com/engine/reference/glossary#image
http://docs.docker.com/engine/reference/glossary#image

Registry

A registry is storage for already created images. It typically contains several repositories
There are two types of registry:

public registry - where everyone (usually registered) can download and use images.
A typical public registry is Docker Hub (https://hub.docker.com/) .

private registry - these are accessible for particular users or from a particular private
network.

Repository

A repository is storage in a registry that stores a different version of a particular image. You
can pull or push images from or to a repository.

Control groups

Control groups, also called cgroups , is a Linux kernel feature that allows aggregating or
partitioning tasks (processes) and all their children into hierarchically organized groups
to isolate resources.

Namespace

Docker Open Source Engine uses namespaces for its containers that isolates resources re-
served for particular containers.

Orchestration

In a production environment you typically need a cluster with many containers on each
cluster node. The containers must cooperate and you need a framework that enables you
to manage the containers automatically. The act of automatic container management is
called container orchestration and is typically handled by Kubernetes.

Docker Open Source Engine is a platform that allows developers and system administrators to
manage the complete life cycle of images. Docker Open Source Engine makes it easy to build,
ship and run images containing applications.

Docker Open Source Engine provides you with the following advantages:

Isolation of applications and operating systems through containers.

Near native performance, as Docker Open Source Engine manages allocation of resources
in real time.

Controls network interfaces and resources available inside containers through cgroups.

Versioning of images.

2 SLES 12 SP5

https://hub.docker.com/

Allows building new images based on existing ones.

Provides you with container orchestration.

On the other hand, Docker Open Source Engine has the following limitations:

LIMITATIONS OF DOCKER OPEN SOURCE ENGINE

Containers run inside the host system's kernel and cannot use a different kernel.

Only allows Linux guest operating systems.

Docker Open Source Engine is not a full virtualization stack like Xen, KVM, or libvirt .

Security depends on the host system. Refer to the official security documentation (http://

docs.docker.com/articles/security/) for more details.

1.1 Docker Open Source Engine Architecture
Docker Open Source Engine uses a client/server architecture. You can use the CLI client to com-
municate with the daemon. The daemon then performs operations with containers and manages
images locally or in registry. The CLI client can run on the same server as the host daemon or
on a different machine. The CLI client communicates with the daemon by using network sockets.
The architecture is depicted in Figure 1.1, “The Docker Open Source Engine architecture”.

FIGURE 1.1: THE DOCKER OPEN SOURCE ENGINE ARCHITECTURE

1.2 Docker Open Source Engine Drivers

1.2.1 Container Drivers

Docker Open Source Engine uses libcontainer (https://github.com/docker/libcontainer) as the
back-end driver to handle containers.

3 Docker Open Source Engine Architecture SLES 12 SP5

http://docs.docker.com/articles/security/
http://docs.docker.com/articles/security/
https://github.com/docker/libcontainer

1.2.2 Storage Drivers

Docker Open Source Engine supports different storage drivers:

vfs : this driver is automatically used when the Docker host le system does not support
copy-on-write. This is a simple driver which does not offer some advantages of Docker
Open Source Engine (like sharing layers, more on that in the next sections). It is highly
reliable but also slow.

devicemapper : this driver relies on the device-mapper thin provisioning module. It sup-
ports copy-on-write, hence it offers all the advantages of Docker Open Source Engine.

btrfs : this driver relies on Btrfs to provide all the features required by Docker Open
Source Engine. To use this driver the /var/lib/docker directory must be on a Btrfs le
system.

AUFS : this driver relies on the AUFS union le system. Neither the upstream kernel nor
the SUSE one supports this le system. Hence the AUFS driver is not built into the SUSE
docker package.

SLE 12 uses the Btrfs le system by default, which leads Docker Open Source Engine to use the
btrfs driver.

It is possible to specify which driver to use by changing the value of the DOCKER_OPTS variable
defined inside of the /etc/sysconfig/docker le. This can be done either manually or using
YaST by browsing to System /etc/sysconfig Editor System Management DOCKER_OPTS menu
and entering the -s storage_driver string.

For example, to force the usage of the devicemapper driver enter the following text:

DOCKER_OPTS="-s devicemapper"

Important: Mounting /var/lib/docker
It is recommended to have /var/lib/docker mounted on a separate partition or volume
to not affect the Docker Open Source Engine host operating system in case of a le system
corruption.

In case you choose the Btrfs le system for /var/lib/docker , it is strongly recommend-
ed to create a subvolume for it. This ensures that the directory is excluded from le sys-
tem snapshots. If not excluding /var/lib/docker from snapshots, the le system will
likely run out of disk space soon after you start deploying containers. What's more, a

4 Storage Drivers SLES 12 SP5

rollback to a previous snapshot will also reset the Docker Open Source Engine database
and images. Refer to Creating and Mounting New Subvolumes in Book “Administration Guide”,

Chapter 7 “System Recovery and Snapshot Management with Snapper”, Section 7.1 “Default Setup”

for details.

5 Storage Drivers SLES 12 SP5

2 Docker Open Source Engine Installation

2.1 General Preparation
Prepare the host as described below. Before installing any Docker-related packages, you need
to enable the container module:

Note: Built-in Docker Orchestration Support
Starting with Docker Open Source Engine 1.12, the container orchestration is now an
integral part of the Docker Open Source Engine. Even though this feature is available in
SLESSP1 and in SLESSP2, it is not supported and is only a technical preview. Use Kuber-
netes for Docker container orchestration, for details refer to the Kubernetes documenta-

tion (http://kubernetes.io/docs/getting-started-guides/kubeadm/) .

PROCEDURE 2.1: ENABLING THE CONTAINER MODULE USING YAST

1. Start YaST, and select Software Software Repositories.

2. Click Add to open the add-on dialog.

3. Select Extensions and Modules from Registration Server and click Next.

4. From the list of available extensions and modules, select Container Module 12 x86_64 and
click Next.
The containers module and its repositories will be added to your system.

5. If you use Subscription Management Tool, update the list of repositories on the SMT server.

PROCEDURE 2.2: ENABLING THE CONTAINER MODULE USING SUSECONNECT

The Container Module can be added also with the following command:

$ sudo SUSEConnect -p sle-module-containers/12/x86_64 -r ''

Note: Note about the SUSEConnect syntax
The -r '' ag is required to avoid a known limitation of SUSEConnect.

6 General Preparation SLES 12 SP5

http://kubernetes.io/docs/getting-started-guides/kubeadm/
http://kubernetes.io/docs/getting-started-guides/kubeadm/

PROCEDURE 2.3: INSTALLING AND SETTING UP DOCKER OPEN SOURCE ENGINE

1. Install the docker package:

sudo zypper install docker

2. To automatically start the Docker service at boot time:

sudo systemctl enable docker.service

This will automatically enable docker.socket in consequence.

3. In case you will use Portus and an SSL secured registry, open the /etc/sysconfig/dock-
er le. Search for the parameter DOCKER_OPTS and add --insecure-registry AD-
DRESS_OF_YOUR_REGISTRY .

4. In the production environment when using the SSL secured registry with Portus, add CA
certificates to the directory /etc/docker/certs.d/<registry address> and copy the
CA certificates to your system:

 sudo cp CA /etc/pki/trust/anchors/ && update-ca-certificates

5. Start the Docker service:

sudo systemctl start docker.service

This will automatically start docker.socket in consequence.

The Docker daemon listens on a local socket which is accessible only by the root user and
by the members of the docker group. The docker group is automatically created at package
installation time. To allow a certain user to connect to the local Docker daemon, use the fol-
lowing command:

sudo /usr/sbin/usermod -aG docker USERNAME

The user can communicate with the local Docker daemon upon his next login.

2.2 Networking
If you want your containers to be able to access the external network, you must enable the ipv4
ip_forward rule. This can be done using YaST by browsing to System Network Settings Routing
menu and ensuring Enable IPv4 Forwarding is checked.

7 Networking SLES 12 SP5

This option cannot be changed when networking is handled by the Network Manager. In such
cases the /etc/sysconfig/SuSEfirewall2 le needs to be edited manually to ensure the
FW_ROUTE ag is set to yes :

FW_ROUTE="yes"

2.2.1 Networking Limitations on Power Architecture

Currently Docker networking has two limitations on the POWER architecture.

The rst limitation is about iptables. SLE 12 machines cannot run Docker Open Source Engine
with the iptables support enabled. An update of the kernel is going to solve this issue. In the
meantime the docker package for POWER has iptables support disabled via a dedicated direc-
tive inside of /etc/sysconfig/docker .

As a result of this limitation Docker containers will not have access to the outer network. A pos-
sible workaround is to share the same network namespace between the host and the containers.
This however reduces the isolation of the containers.

The network namespace of the host can be shared on a per-container basis by adding --
net=host to the docker run command.

Note: iptables support on SLE 12 SP1
SLE 12 SP1 hosts are not affected by this limitation but, given they use the same SLE 12
package, they will have iptables support disabled. This can be changed by removing the
-iptables=false setting inside of /etc/sysconfig/docker .

The second limitation is about network isolation between the containers and the host. Currently
it is not possible to prevent containers from probing or accessing arbitrary ports of each other.

8 Networking Limitations on Power Architecture SLES 12 SP5

3 Installing sle2docker

The sle2docker is used to import pre-built SUSE Linux Enterprise images. The imported pre-
built images can then be used to create base Docker images.

The tool is part of the official container module. You can install it by using zypper . But prior
to installing sle2docker , verify that the following prerequisites are fulfilled:

Ruby is installed on the host machine.

The docker daemon is running on the system.

The user invoking sle2docker must have proper rights to invoke Docker commands.

If the conditions above are fulfilled, you can install the sle2docker tool by running:

sudo zypper in sle2docker

9 SLES 12 SP5

4 Storing Images

Prior to creating your own images, you should decide where you will store the images. The
easiest solution would be to push these images to the Docker Hub (https://hub.docker.com) .
By default all images pushed to the Docker Hub are public. This is probably ne as long as
this does not violate your company's policy and your images do not contain sensitive data or
proprietary software.

If you need to restrict access to your Docker images, there are two options:

Get a subscription on Docker Hub that unlocks the feature to create private repositories.

Run an on-site Docker Registry where to store all the Docker images used by your organi-
zation or company and combine them with Portus to secure the registry.

This chapter describes how to set up an on-site Docker Registry and how to combine it with
Portus.

4.1 What is a Docker Registry?
The Docker Registry is an open source project created by Docker Inc. It allows the storage and
retrieval of Docker images. By running a local instance of the Docker Registry it is possible to
completely avoid usage of the Docker Hub.

The Docker Registry is also used by the Docker Hub. However, the Docker Hub, as seen from
the user perspective, is made of the following parts at least:

The user interface (UI): The part that is accessed by users with their browser. The UI
provides a nice and intuitive way to browse the contents of the Docker Hub either manually
or by using a search feature. It also allows to create organizations made by different users.
This component is closed source.

The authentication component: This is used to protect the images stored inside of the
Docker Hub. It validates all push, pull and search requests.
This component is closed source.

The storage back-end: This is where the Docker images are sent and downloaded from. It
is provided by the Docker Registry.
This component is open source.

10 What is a Docker Registry? SLES 12 SP5

https://hub.docker.com

4.2 Installing and Setting Up Docker Registry

1. Install the docker-distribution-registry package:

sudo zypper install docker-distribution-registry

2. To automatically start the Docker Registry at boot time:

sudo systemctl enable registry

3. Start the Docker Registry:

sudo systemctl start registry

The Docker Registry configuration is defined inside of /etc/registry/config.yml .

With the default configuration the registry listens on ports 5000 and stores the Docker images
under /var/lib/docker-registry .

Note: Incompatible Versions of Docker Open Source Engine and
Docker Registry
Docker Registry version 2.3 is not compatible with Docker Registry versions older than
1.10, because v2 manifests were only introduced with Docker Open Source Engine 1.10.
As Docker Open Source Engine and Docker Registry can be installed on different boxes,
the versions might be incompatible. If you experience communication errors between be-
tween Docker Open Source Engine and Docker Registry, update both to the latest versions.

For more details about Docker Registry and its configuration, see the official documentation at:
https://docs.docker.com/registry/ .

11 Installing and Setting Up Docker Registry SLES 12 SP5

https://docs.docker.com/registry/

4.3 Limitations
The Docker Registry has two major limitations:

It lacks any form of authentication. That means everybody with access to the Docker Reg-
istry can push and pull images to it. That also includes the possibility to overwrite already
existing images.

There is no way to see which images have been pushed to the Docker Registry. You can
manually take notes of what is being stored inside of it. There is also no search function-
ality, which makes collaboration harder.

The next section is going to introduce Portus, the solution to all of the problems above.

4.4 Portus
Portus is an authentication service and user interface for the Docker Registry. It is an open source
project created by SUSE to address all the limitations faced by the local instances of Docker
Registry. By combining Portus and Docker Registry, it is possible to have a secure and enterprise
ready on-premise version of the Docker Hub.

Portus is available for SLES customers as a Docker image from SUSE Container Registry. For
example, to pull the 2.4.0 tag, run the following command:

tux > docker pull registry.suse.com/sles12/portus:2.4.0

In addition to the official version of the Portus image from SUSE Container Registry, there is
a community version that can be found on Docker Hub. However, as a customer of SLES, we
strongly suggest you use the official Portus image instead. The Portus image for SLES customers
has the same code as the one from the community. Therefore, the setup instructions from http://

port.us.org/docs/deploy.html apply for both images.

Portus was previously also available as an RPM package. To migrate from the RPM package to
the Docker image, follow the instructions at http://port.us.org/docs/migrate-from-rpm.html .

12 Limitations SLES 12 SP5

http://port.us.org/docs/deploy.html
http://port.us.org/docs/deploy.html
http://port.us.org/docs/migrate-from-rpm.html

5 Creating Custom Images

For creating your custom image you need a base Docker image of SLES. You can use any of the
pre-built SLES images that you can obtain as described in Section 5.2, “Customizing SLES Docker

Images”.

Note: No SLES Images in Docker Hub
Usually you can pull a variety of base Docker images from the docker hub (https://

hub.docker.com/) but that does not apply for SLES. Currently we cannot distribute SLES
images for Docker Open Source Engine because there is no way to associate an End-User
License Agreement (EULA) to a Docker image. sle2docker enables you to import pre-
built SLES images that you can use for creating base SLES images.

After you obtain your base docker image, you can modify the image by using a Dockerfile
(usually placed in the build directory). Then use the standard building tool to create your custom
image:

docker build PATH_TO_BUILD_DIRECTORY

For more docker build options, refer to the official Docker documentation (https://docs.dock-

er.com/engine/reference/commandline/build/) .

Note: Dockerizing Your Applications
You may want to write a dockerfile for your own application that should be run inside a
docker container. For a procedure refer to Chapter 6, Creating Docker Images of Applications.

5.1 Obtaining Base SLES Images
How to obtain a pre-built base image depends on the SUSE Linux Enterprise Server version:

Up to SLES 12 SP2

tux > sudo zypper in sles11sp4-docker-image

SLES 12 SP3 and higher

docker pull registry.suse.com/suse/sles12sp4

13 Obtaining Base SLES Images SLES 12 SP5

https://hub.docker.com/
https://hub.docker.com/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

Pre-built images do not have repositories configured. But when the Docker host has an SLE
subscription that provides access to the product used in the image, Zypper will automatically
have access to the right repositories.

Important: Docker Image Packages are no Longer supported
Pre-built base images like sles11sp4-docker-image and suse-sles12sp3-image that
ship with the SUSE Linux Enterprise12 Containers module do not receive updates. We
recommend to use SUSE Linux Enterprise12SP3 and newer images that can be obtained
through the registry.suse.com Docker registry.

If you have obtained the image with Zypper, you need to activate it. Proceed as follows:

PROCEDURE 5.1: ACTIVATING THE BASE IMAGE FOR UP TO SLES 12 SP2

1. Get the proper image name with sle2docker by running

sle2docker list

2. Activate the image by using the image name from the previous step:

sle2docker activate PRE-BUILT_IMAGE_NAME

3. Check if the image was successfully activated by running

sle2docker

You can customize the docker image as described in Section 5.2, “Customizing SLES Docker Images”.

The latest tag refers to the most recently built and published image for the newest Service
Pack release, while builds for a specific Service Pack can be referenced by MAJOR.SP . To refer to
a specific image build, the build identification numbers need to be appended, e.g. 15.0.3.2.1
or 15.1.2.3 . The full reference including the tag to a specific image is part of the meta infor-
mation, see Section 5.2.3, “Meta Information in SLE Container Images”.

5.2 Customizing SLES Docker Images
The pre-built images do not have any repository configured and do not include any modules
or extensions. They contain a zypper service (https://github.com/SUSE/container-suseconnect)

that contacts either the SUSE Customer Center (SCC) or your Subscription Management Tool

14 Customizing SLES Docker Images SLES 12 SP5

https://github.com/SUSE/container-suseconnect

(SMT) server, according to the configuration of the SLE host that runs the Docker container.
The service obtains the list of repositories available for the product used by the Docker image.
You can also directly declare extensions in your Dockerfile (for details refer to Section 5.2.4,

“Adding SLE Extensions and Modules to Images”.

You do not need to add any credentials to the Docker image because the machine credentials
are automatically injected into the container by the Docker daemon. They are injected inside
of the /run/secrets directory. The same applies to the /etc/SUSEConnect le of the host
system, which is automatically injected into the /run/secrets directory.

Note: Credentials and Security
The contents of the /run/secrets directory are never committed to a Docker image,
hence there is no risk of your credentials leaking.

Note: Building Images on Systems Registered with RMT
When the host system used for building Docker images is registered against RMT, the
default behavior allows only building containers of the same code base as the host. For
example, if your Docker host is a SLE 15 system you can only build SLE 15-based images
on that host by default. To build images for a different SLE version, for example SLE 12
on a SLE 15 host, the host machine credentials for the target release can be injected into
the container as outlined below.

When the host system is registered again SUSE Customer Center this restriction does not
apply.

Note: Building Container Images in On-Demand SLE Instances
in the Public Cloud
When building container images on SLE instances that were launched as so-called "on-
demand" or "pay as you go" instances on a Public Cloud (AWS, GCE, or Azure), some ad-
ditional steps have to be performed. For installing packages and updates, the "on-demand"
public cloud instances are connected to a public cloud-specific update infrastructure,
which is based on RMT servers operated by SUSE on the various Public Cloud Providers.
Some additional steps are required to locate the required services and authenticate with
them.

15 Customizing SLES Docker Images SLES 12 SP5

A new service was introduced to enable this, called containerbuild-regionsrv . This
service is available in the public cloud images provided through the Marketplaces of the
various Public Cloud Providers. So before building an image, this service has to be started
on the public cloud instance by running the following command:

tux > sudo systemctl start containerbuild-regionsrv

To start it automatically after system startup, enable it with systemctl :

tux > sudo systemctl enable containerbuild-regionsrv

The Zypper plugins provided by the SLE base images will then connect to this service
for retrieving authentication details and information about which update server to talk
to. In order for that to work the container has to be built with host networking enabled,
like the following example:

tux > docker build --network host build-directory/

Since update infrastructure in the Public Clouds is based upon RMT, the same restrictions
with regard to building SLE images for SLE versions differing from the SLE version of the
host apply here as well (see Note: Building Images on Systems Registered with RMT).

To obtain the list of repositories use the following command:

zypper ref -s

It will automatically add all the repositories to your container. For each repository added to the
system a new le will be created under /etc/zypp/repos.d . The URLs of these repositories
include an access token that automatically expires after 12 hours. To renew the token call the
zypper ref -s command. It is secure to commit these les to a Docker image.

If you want to use a different set of credentials, place a custom /etc/zypp/credentials.d/SC-
Ccredentials le inside of the Docker image. It contains the machine credentials that have
the subscription you want to use. The same applies to the SUSEConnect le: to override the
le available on the host system that is running the Docker container, add a custom /etc/
SUSEConnect le inside of the Docker image.

16 Customizing SLES Docker Images SLES 12 SP5

Now you can create a custom Docker image by using a Dockerfile . If you want to create a
custom image, refer to Dockerfile as described in Section 5.2.2. In case you would like to move
your application to a Docker container, refer to Chapter 6, Creating Docker Images of Applications.
After you have edited the Dockerfile , build the image by running the following command in
the same directory in which the Dockerfile resides:

Section 5.2.1, “Creating a Custom SLE 11 SP4 Image” for SLE 11 SP4

Section 5.2.2, “Creating a Custom SLE 12 Image” for SLE 12

In case you would like to move your application to a Docker container, refer to Chapter 6, Creating

Docker Images of Applications.

5.2.1 Creating a Custom SLE 11 SP4 Image

The following Dockerfile creates a simple Docker image based on SLE 11 SP4:

FROM suse/sles11sp4:latest

RUN zypper ref -s
RUN zypper -n in vim

When the Docker host machine is registered against an internal SMT server, the Docker image
requires the SSL certificate used by SMT:

FROM suse/sles11sp4:latest

Import the crt file of our private SMT server
ADD http://smt.test.lan/smt.crt /etc/ssl/certs/smt.pem
RUN c_rehash /etc/ssl/certs

RUN zypper ref -s
RUN zypper -n in vim

5.2.2 Creating a Custom SLE 12 Image

The following Dockerfile creates a simple Docker image based on SLE 12 SP4:

FROM registry.suse.com/suse/sles12sp4:latest

RUN zypper ref -s

17 Creating a Custom SLE 11 SP4 Image SLES 12 SP5

RUN zypper -n in vim

When the Docker host machine is registered against an internal SMT server, the Docker image
requires the SSL certificate used by SMT:

FROM registry.suse.com/suse/sles12sp4:latest

Import the crt file of our private SMT server
ADD http://smt.test.lan/smt.crt /etc/pki/trust/anchors/smt.crt
RUN update-ca-certificates

RUN zypper ref -s
RUN zypper -n in vim

5.2.3 Meta Information in SLE Container Images

Starting from SUSE Linux Enterprise 12 SP3, all base container images include information such
as a build time stamp and description. This information is provided in the form of labels attached
to the base images and is thus available for derived images and containers as well. It can be
displayed with docker inspect :

tux > docker inspect registry.suse.com/suse/sle15
[...]
 "Labels": {
 "com.suse.sle.base.created": "2019-06-20T18:21:37.729383880Z",
 "com.suse.sle.base.description": "Image containing a minimal environment
 for containers based on SUSE Linux Enterprise Server 15 SP1.",
 "com.suse.sle.base.disturl": "obs://build.suse.de/SUSE:SLE-15-
SP1:Update:CR/images/20efed47827dc48da9537c1aeed4dbe2-sles15-image",
 "com.suse.sle.base.reference": "registry.suse.com/suse/
sle15:15.1.6.2.31",
 "com.suse.sle.base.title": "SUSE Linux Enterprise Server 15 SP1 Base
 Container",
 "com.suse.sle.base.url": "https://www.suse.com/products/server/",
 "com.suse.sle.base.vendor": "SUSE LLC",
 "com.suse.sle.base.version": "15.1.6.2.31",
 "org.openbuildservice.disturl": "obs://build.suse.de/SUSE:SLE-15-
SP1:Update:CR/images/20efed47827dc48da9537c1aeed4dbe2-sles15-image",
 "org.opencontainers.image.created": "2019-06-20T18:21:37.729383880Z",
 "org.opencontainers.image.description": "Image containing a minimal
 environment for containers based on SUSE Linux Enterprise Server 15 SP1.",
 "org.opencontainers.image.title": "SUSE Linux Enterprise Server 15 SP1
 Base Container",
 "org.opencontainers.image.url": "https://www.suse.com/products/server/",

18 Meta Information in SLE Container Images SLES 12 SP5

 "org.opencontainers.image.vendor": "SUSE LLC",
 "org.opencontainers.image.version": "15.1.6.2.31",
 "org.opensuse.reference": "registry.suse.com/suse/sle15:15.1.6.2.31"
 }
[...]

All labels are shown twice. This is necessary to ensure that in derived images the information
about the original base image is still visible and not overwritten.

5.2.4 Adding SLE Extensions and Modules to Images

You may have subscriptions to SLE extensions or modules that you would like to use in your
custom image. To add them to the Docker image, proceed as follows:

PROCEDURE 5.2: ADDING EXTENSION AND MODULES

1. Add the following into your Dockerfile :

ADD *.repo /etc/zypp/repos.d/
ADD *.service /etc/zypp/services.d
RUN zypper refs && zypper refresh

2. Copy all .service and .repo les that you will use into the directory where you will
build the Docker image from the Dockerfile .

19 Adding SLE Extensions and Modules to Images SLES 12 SP5

6 Creating Docker Images of Applications

Docker Open Source Engine is a technology that can help you to minimize resources used to run
or build your applications. There are several types of applications that are suitable to run inside
a Docker container like daemons, Web pages or applications that expose ports for communica-
tion. You can use Docker Open Source Engine to automate building and deployment processes
by adding the build process into a Docker image, then building the image and then running
containers based on that image.

Running your application inside a Docker container provides you with the following advantages:

You can minimize the runtime environment of the application as you can add to the Docker
image of the application just the required processes and applications.

The image with your application is portable across machines also with different Linux host
systems.

You can share the image of your application by using a repository.

You can use different versions of required packages in the container than the host system
uses without having problems with dependencies.

You can run several instances of the same application that are completely independent
from each other.

Using Docker Open Source Engine for building of applications provides the following features:

You can prepare a complete building image.

Your build always runs in the same environment.

Your developers can test their code in the same environment as used in production.

You can set up an automated building process.

The following section provides you with examples and tips on how to create Docker images of
your applications. Prior to reading further, make sure that you have activated your SLES base
Docker image as described in Section 5.1, “Obtaining Base SLES Images”.

20 SLES 12 SP5

6.1 Running an Application with Specific Package
Versions
You may face a problem that your application uses a specific version of a package that is different
from the package installed on the system that should run your application. You can modify your
application to work with another version or you may create a Docker image with that particular
package version. The following example of a Dockerfile shows an image based on a current
version of SLES but with an older version of the example package

FROM registry.suse.com/suse/sles12sp4:latest
MAINTAINER Tux

RUN zypper ref && zypper in -f example-1.0.0-0
COPY application.rpm /tmp/

RUN zypper --non-interactive in /tmp/application.rpm

ENTRYPOINT ["/etc/bin/application"]

CMD ["-i"]

Now you can build the image by running in the same directory as the Dockerfile resides:

docker build --tag tux_application:latest .

The Dockerfile example shown above performs the following operations during the docker
build :

1. Updates the SLES repositories.

2. Installs the desired version of the example package.

3. Copies your application package to the image. The source RPM must be placed in the build
context.

4. Unpacks your application.

5. The last two steps run your application after a container is started.

After a successful build of the tux_application image, you can start a container based on
your new image:

docker run -it --name application_instance tux_application:latest

21 Running an Application with Specific Package Versions SLES 12 SP5

You have created a container that runs a single instance of your application. Bear in mind that
after closing the application, the Docker container exits as well.

6.2 Running Applications with Specific Configuration

You may need to run an application that is delivered in a standard package accessible through
SLES repositories but you may need to use a different configuration or use specific environment
variables. In case you would like to run several instances of the application with non-standard
configuration, you can create your own image that will pass the custom configuration to the
application.

An example with the example application follows:

FROM registry.suse.com/suse/sles12sp4:latest

RUN zypper ref && zypper --non-interactive in example

ENV BACKUP=/backup

RUN mkdir -p $BACKUP
COPY configuration_example /etc/example/

ENTRYPOINT ["/etc/bin/example"]

The above example Dockerfile results in the following operations:

1. Refreshing of repositories and installation of the example.

2. Sets a BACKUP environment variable (the variable persists to containers started from the
image). You can always overwrite the value of the variable with a new one while running
the container by specifying a new value.

3. Creates the directory /backup .

4. Copies the configuration_example to the image.

5. Runs the example application.

Now you can build the image and after a successful build, you can run a container based on
your image.

22 Running Applications with Specific Configuration SLES 12 SP5

6.3 Sharing Data between an Application and the
Host System
You may run an application that needs to share data between the application's container and the
host le system. Docker Open Source Engine enables you to do data sharing by using volumes.
You can declare a mount point directly in the Dockerfile . But you cannot specify a directory
on the host system in the Dockerfile as the directory may not be accessible at the build time.
You can nd the mounted directory in the /var/lib/docker/volumes/ directory on the host
system.

Note: Discarding Changes to the Directory to Be Shared
After you declare a mount point by using the VOLUME instruction, all your changes per-
formed (by using the RUN instruction) to the directory will be discarded. After the decla-
ration, the volume is part of a temporary container that is then removed after a successful
build. In case you need to e.g. change permissions, perform the change before you declare
the directory as a mount point in the Dockerfile .

You can specify a particular mount point on the host system when running a container by using
the -v option:

docker run -it --name testing -v /home/tux/data:/data sles12sp4:latest /bin/bash

Note
Using the -v option overwrites the VOLUME instruction if you specify the same mount
point in the container.

Now let's create an example image with a Web server that will read Web content from the host's
le system. The Dockerfile could look as follows:

FROM registry.suse.com/suse/sles12sp4:latest

RUN zypper ref && zypper --non-interactive in apache2

COPY apache2 /etc/sysconfig/

RUN chown -R admin /data

23 Sharing Data between an Application and the Host System SLES 12 SP5

EXPOSE 80

VOLUME /data

ENTRYPOINT ["apache2ctl"]

The example above installs the Apache Web server to the image and copies all your configuration
to the image. The data directory will be owned by the admin user and will be used as a mount
point to store your web pages.

6.4 Applications Running in the Background

Your application may need to run in the background as a daemon or as an application exposing
ports for communication. In that case a typical Docker Open Source Engine container may be run
in background. An example Dockerfile for an Apache2 server exposing a port looks as follows:

EXAMPLE 6.1: Dockerfile FOR AN APACHE2 WEB SERVER

FROM registry.suse.com/suse/sles12sp4:latest 1

MAINTAINER tux 2

RUN zypper ref -s && zypper --non-interactive in apache2

RUN echo "The Web Server is running" > /srv/www/htdocs/test.html 3

COPY data/* /srv/www/htdocs/ 4

EXPOSE 80 5

ENTRYPOINT ["/usr/sbin/httpd"]
CMD ["-D", "FOREGROUND"]

1 Base image, taken from Section 5.1, “Obtaining Base SLES Images”.

2 Optional maintainer of the image.

3 The test line for debugging purposes; can be removed if everything works as expected.

4 The copy instruction to copy your own data to the server's directory. Currently, this line is
disabled due to the hash mark in the rst column.

5 The exposed port for the Apache Web server.

24 Applications Running in the Background SLES 12 SP5

Note: Check for Running Apache2 Instances on Your Host
Make sure that you do not have any Apache2 server instances running on your host. The
Docker container would not serve any data if you have a host Apache2 server running.
Remove or stop any Apache2 servers on your host.

To use the container, proceed as follows:

PROCEDURE 6.1: TESTING THE APACHE2 WEB SERVER

1. Prepare for the build process:

a. Make sure you have installed the SUSE Linux Enterprise images as described in Sec-

tion 5.1, “Obtaining Base SLES Images”.

b. Save the Dockerfile from Example 6.1, “Dockerfile for an Apache2 Web Server” to
a directory docker .

c. Create your HTML les inside docker/data . Anything you put in this directory is
copied to the Docker image and as such exposed on your Web server.

2. Build the container. Set a tag for your image with the -t option (here tux/apache2 , but
you can use any name you want):

sudo docker build -t tux/apache2 .

Docker Open Source Engine refreshes repositories and installs the Apache2 server as it is
not installed by default in the SLES Docker image.

3. Run the image in “detached” mode:

docker run --detach --interactive --tty tux/apache2

Docker Open Source Engine responds with the container ID, for example:

7bd674eb196d330d50f8a3cfc2bc61a243a4a535390767250b11a7886134ab93

4. Open a Web browser and enter in the text eld http://localhost:80/test.html . You
should see the output The Web Server is running .

25 Applications Running in the Background SLES 12 SP5

With the last procedure, you have built an image which was used to test the build process and
the Apache2 Web server. If everything was successful, use the following steps to serve your data
through the Apache2 Web server:

PROCEDURE 6.2: CREATING A DOCKER CONTAINER WITH YOUR OWN DATA

1. Stop and remove the previous container with:

docker ps --latest
CONTAINER ID IMAGE COMMAND [...]
afee0124a0c7 tux/apache2 "/usr/sbin/httpd -..." [...]
docker rm --force afee0124a0c7

2. Remove or disable the echo line 3 in Example 6.1, “Dockerfile for an Apache2 Web Server”

and remove the hash character in the rst column of the copy line 4 .

3. Rebuild the image as described in Step 2 of Procedure 6.1.

4. Run the image in “detached” mode:

docker run --detach --interactive --tty tux/apache2

Docker Open Source Engine responds with the container ID, for example:

e43fff4ae9832ecdb7677c058a73039d7610c32145a1d9b6ad0a4ed52b5c4dc7

You can now access your data at http://localhost:80 . If you do not want to copy your data
into the Docker container, share a specific directory on your host. Refer to https://docs.dock-

er.com/storage/volumes/ for more information.

26 Applications Running in the Background SLES 12 SP5

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/

7 Working with Containers

After you have created your images, you can start your containers based on that image. You can
run an instance of the image by using the docker run command. The Docker Open Source En-
gine then creates and starts the container. The command docker run takes several arguments:

A container name - it is recommended to name your container.

Specify a user to use in your container.

Define a mount point.

Specify a particular host name, etc.

The container typically exits if its main process finishes. For example, if your container starts
a particular application, as soon as you quit the application, the container exits. You can start
the container again by running:

docker start -ai <container name>

You may need to remove unused containers, you can achieve this by using:

docker rm <container name>

7.1 Linking Containers
Docker Open Source Engine enables you to link containers together which allows for communi-
cation between containers on the same host server. If you use the standard networking model,
you can link containers by using the --link option when running containers:

First create a container to link to:

docker run -d --name sles sles12sp4 /bin/bash

Then create a container that will link to the sles container:

docker run --link sles:sles sles12sp4 /bin/bash

The container that links to sles has defined environment variables that enable connecting to the
linked container.

27 Linking Containers SLES 12 SP5

8 Troubleshooting

8.1 Analyze container images with container-diff
In case a custom Docker Open Source Engine container image built on top of the SLE base
container image is not working as expected, the container-diff tool can help you analyze
the image and collect information relevant for troubleshooting.

container-diff makes it possible to analyze image changes by computing differences between
images and presenting the di in a human-readable and actionable format. The tool can nd
differences in system packages, language-level packages, and les in a container image.

container-diff can handle local container images (using the prefix daemon://), images in a
remote registry (using the prefix remote://), and images saved as .tar archives. You can use
container-diff to compute the di between a local version of an image and a remote version.

To install container-diff , run the sudo zypper in container-diff command.

8.1.1 Basic container-diff commands

The command container-diff analyze IMAGE runs a standard analysis on a single image.
By default, it returns a hash and size of the container image. For more information that can
help you to identify and x problems, use the specific analyzers. Use the --type parameter to
specify the desired analyzer. Two of the most useful analyzers are history (returns a list of
descriptions of how an image layer was created) and file (returns a list of le system contents,
including names, paths, and sizes):

 tux > sudo container-diff analyze --type=history daemon://
 IMAGE
 tux > sudo container-diff analyze --type=file daemon://
 IMAGE

To view all available parameters and their brief descriptions, run the container-diff analyze
--help command.

Using the container-diff diff command, you can compare two container images and ex-
amine differences between them. Similar to the container-diff analyze command, con-
tainer-diff diff supports several parameters. The example command below compares two
images and returns a list of descriptions of how IMAGE_2 was created from IMAGE_1.

28 Analyze container images with container-diff SLES 12 SP5

 tux > sudo container-diff diff daemon://
 IMAGE_1
 daemon://
 IMAGE_2
 --type=history

To view all available parameters and their brief descriptions, run the container-diff diff
--help command.

29 Basic container-diff commands SLES 12 SP5

A GNU licenses
This appendix contains the GNU Free Docu-
mentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

30 SLES 12 SP5

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

31 SLES 12 SP5

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See https://www.gnu.org/

copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

32 SLES 12 SP5

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

	Docker Open Source Engine Guide
	Chapter 1. Docker Open Source Engine Overview
	1.1. Docker Open Source Engine Architecture
	1.2. Docker Open Source Engine Drivers
	1.2.1. Container Drivers
	1.2.2. Storage Drivers

	Chapter 2. Docker Open Source Engine Installation
	2.1. General Preparation
	2.2. Networking
	2.2.1. Networking Limitations on Power Architecture

	Chapter 3. Installing sle2docker
	Chapter 4. Storing Images
	4.1. What is a Docker Registry?
	4.2. Installing and Setting Up Docker Registry
	4.3. Limitations
	4.4. Portus

	Chapter 5. Creating Custom Images
	5.1. Obtaining Base SLES Images
	5.2. Customizing SLES Docker Images
	5.2.1. Creating a Custom SLE 11 SP4 Image
	5.2.2. Creating a Custom SLE 12 Image
	5.2.3. Meta Information in SLE Container Images
	5.2.4. Adding SLE Extensions and Modules to Images

	Chapter 6. Creating Docker Images of Applications
	6.1. Running an Application with Specific Package Versions
	6.2. Running Applications with Specific Configuration
	6.3. Sharing Data between an Application and the Host System
	6.4. Applications Running in the Background

	Chapter 7. Working with Containers
	7.1. Linking Containers

	Chapter 8. Troubleshooting
	8.1. Analyze container images with container-diff
	8.1.1. Basic container-diff commands

	Appendix A. GNU licenses
	A.1. GNU Free Documentation License

