This guide details how to install single or multiple systems, and how to exploit the product-inherent capabilities for a deployment infrastructure. Choose from various approaches: local installation from physical installation media, customizing the standard installation images, network installation server, mass deployment using a remote-controlled, highly-customized, automated installation process, and initial system configuration.
Contents

About This Guide xiii
Support Statement for SUSE Linux Enterprise Server xviii • Technology Previews xix

I INSTALLATION PREPARATION 1

1 Planning for SUSE Linux Enterprise Server 2
1.1 Considerations for Deployment of a SUSE Linux Enterprise Server 2
1.2 Deployment of SUSE Linux Enterprise Server 3
1.3 Running SUSE Linux Enterprise Server 3
1.4 Registering SUSE Linux Enterprise Server 4
1.5 Changes in Installation from SUSE Linux Enterprise Server Version 15 4
Unified Installer for SUSE Linux Enterprise-based Products 4 • Quarterly Update Media 5 • Installing with Internet Access 5 • Offline Installation 6

2 Installation on AMD64 and Intel 64 7
2.1 Hardware Requirements 7
2.2 Installation Considerations 8
Installation on Hardware or Virtual Machine 9 • Installation Target 9
2.3 Controlling the Installation 9
2.4 Booting the Installation System 10
2.5 Dealing with Boot and Installation Problems 12
Problems Booting 12 • Problems Installing 13 • Redirecting the Boot Source to the Boot DVD 13
3 Installation on Arm AArch64 14
 3.1 Hardware Requirements 14
 3.2 Installation Considerations 16
 Installation on Hardware or Virtual Machine 16 • Installation Target 16
 3.3 Controlling the Installation 16
 3.4 Booting the Installation System 17
 3.5 Dealing with Boot and Installation Problems 19
 Problems Booting 19 • Problems Installing 20 • Redirecting the Boot Source to the Boot DVD 20

4 Installation on IBM POWER 21
 4.1 Hardware Requirements 21
 4.2 Preparation 22
 Installation in a Partition Using IVM 23 • Installation on Servers with no Open Power Abstraction Layer 26
 4.3 For More Information 27

5 Installation on IBM Z 29
 5.1 System Requirements 29
 Hardware 29 • MicroCode Level, APARs, and Fixes 32 • Software 32
 5.2 General Information 33
 Installation Types 33 • IPL Options 34
 5.3 Preparing for Installation 35
 Making the Installation Data Available 36 • Installation Types 43 • Preparing the IPL of the SUSE Linux Enterprise Server Installation System 44 • IPLing the SUSE Linux Enterprise Server Installation System 47 • Network Configuration 52 • Connecting to the SUSE Linux Enterprise Server Installation System 56 • The SUSE Linux Enterprise Server Boot Procedure on IBM Z 59
 5.4 The Parmfile—Automating the System Configuration 60
5.5 Example Parmfiles 60
5.6 Using the vt220 Terminal Emulator 61
5.7 Further In-Depth Information about IBM Z 62
 General Documents about Linux on IBM Z 62 • Technical Issues of Linux on IBM Z 62 • Advanced Configurations for Linux on IBM Z 63

6 Installation on Hardware Not Supported at Release 64
6.1 Download Kernel Update 64
6.2 Boot Kernel Update 64

II INSTALLATION PROCEDURE 65
7 Boot Parameters 66
7.1 Using the Default Boot Parameters 66
7.2 PC (AMD64/Intel 64/Arm AArch64) 67
 The Boot Screen on Machines Equipped with Traditional BIOS 67 • The Boot Screen on Machines Equipped with UEFI 69
7.3 List of Important Boot Parameters 72
 General Boot Parameters 72 • Configuring the Network Interface 73 • Specifying the Installation Source 75 • Specifying Remote Access 76
7.4 Advanced Setups 76
 Providing Data to Access an RMT Server 77 • Configuring an Alternative Data Server for supportconfig 78 • Using IPv6 for the Installation 78 • Using a Proxy for the Installation 78 • Enabling SELinux Support 79 • Enabling the Installer Self-Update 79 • Scale User Interface for High DPI 79 • Using CPU Mitigations 80
7.5 IBM Z 80
7.6 More Information 82
8 Installation Steps 83

8.1 Overview 83

8.2 Installer Self-Update 84
 Self-Update Process 85 • Custom Self-Update Repositories 87

8.3 Language, Keyboard, and Product Selection 88

8.4 License Agreement 90

8.5 IBM Z: Disk Activation 90
 Configuring DASD Disks 91 • Configuring zFCP Disks 92

8.6 Network Settings 93

8.7 Registration 94
 Registering Manually 95 • Loading Registration Codes from USB Storage 97 • Installing without Registration 98

8.8 Extension and Module Selection 100
 Selecting Extensions and Modules with Registration 101 • Selecting Extensions and Modules without Registration 104

8.9 Add-On Product 108

8.10 System Role 110

8.11 Partitioning 112
 Important Information 112 • Suggested Partitioning 114

8.12 Clock and Time Zone 116

8.13 Create New User 118

8.14 Authentication for the System Administrator “root” 121

8.15 Installation Settings 123
 Software 123 • Booting 125 • Security 125 • Network Configuration 126 • Kdump 127 • IBM Z: Blacklist
 Devices 127 • Default systemd Target 127 • Import SSH Host Keys and Configuration 127 • System 128
8.16 Performing the Installation 129
 IBM Z: IPLing the Installed System 129 • IBM Z: Connecting to the Installed System 131

9 Registering SUSE Linux Enterprise and Managing Modules/Extensions 133

9.1 Registering During the Installation 134
9.2 Registering during Automated Deployment 134
9.3 Registering from the Installed System 134
 Registering with YaST 134 • Registering with SUSEConnect 137
9.4 Managing Modules and Extensions in a Running System 138
 Adding Modules and Extensions with YaST 138 • Deleting Modules and Extensions with YaST 139 • Adding/Deleting Modules and Extensions with SUSEConnect 140

10 Expert Partitioner 143

10.1 Using the Expert Partitioner 143
 Partition Tables 145 • Partitions 146 • Editing a Partition 150 • Expert Options 152 • Advanced Options 152 • More Partitioning Tips 153 • Partitioning and LVM 155

10.2 LVM Configuration 156
 Create Physical Volume 156 • Creating Volume Groups 156 • Configuring Logical Volumes 157

10.3 Soft RAID 159
 Soft RAID Configuration 159 • Troubleshooting 161 • For More Information 161

11 Remote Installation 162

11.1 Overview 162
11.2 Scenarios for Remote Installation 163
- Installation from DVD via VNC 163
- Installation from Network via VNC 164
- Installation from DVD via SSH 165
- Installation from Network via SSH 166

11.3 Monitoring Installation via VNC 167
- Preparing for VNC Installation 167
- Connecting to the Installation Program 168

11.4 Monitoring Installation via SSH 169
- Preparing for SSH Installation 169
- Connecting to the Installation Program 169

11.5 Monitoring Installation via Serial Console 170

12 Troubleshooting 171
12.1 Checking Media 171
12.2 No Bootable DVD Drive Available 171
12.3 Booting from Installation Media Fails 172
12.4 Boot Failure 173
12.5 Fails to Launch Graphical Installer 175
12.6 Only Minimalist Boot Screen Started 177
12.7 Log Files 177

III CUSTOMIZING INSTALLATION IMAGES 178

13 Cloning Disk Images 179
13.1 Overview 179
13.2 Cleaning Up Unique System Identifiers 179

14 Customizing Installation Images with mksusecd 181
14.1 Installing mksusecd 181
14.2 Creating a Minimal Boot Image 182
14.3 Set Default Kernel Boot Parameters 182
14.4 Customize Modules, Extensions, and Repositories 183
14.5 Creating a Minimal Netinstall ISO 184
14.6 Change Default Repository 184

15 Customizing Installation Images Manually 185

IV SETTING UP AN INSTALLATION SERVER 186

16 Setting Up a Network Installation Source 187
16.1 Setting Up an Installation Server Using YaST 187
16.2 Setting Up an NFS Repository Manually 189
16.3 Setting Up an FTP Repository Manually 192
16.4 Setting Up an HTTP Repository Manually 193
16.5 Managing an SMB Repository 194
16.6 Using ISO Images of the Installation Media on the Server 195

17 Preparing Network Boot Environment 197
17.1 Setting Up a DHCP Server 197
 Dynamic Address Assignment 198 • Assigning Static IP Addresses 199 • PXE and AutoYaST Installation Failures 199
17.2 Setting Up a TFTP Server 200
 Installing a TFTP Server 200 • Installing Files for Boot 201 • Configuring PXELINUX 202 • Preparing PXE Boot for EFI with GRUB2 202
17.3 PXELINUX Configuration Options 203
17.4 Preparing the Target System for PXE Boot 205
17.5 Preparing the Target System for Wake on LAN 206
17.6 Wake on LAN 206
17.7 Wake on LAN with YaST 206
18 Deploying Customized Preinstallations 208

18.1 Preparing the Master Machine 208

18.2 Customizing the Firstboot Installation 209
 Customizing YaST Messages 210 • Customizing the License Action 211 • Customizing the Release Notes 211 • Customizing the Workflow 212 • Configuring Additional Scripts 216 • Providing Translations of the Installation Workflow 216

18.3 Cloning the Master Installation 217

18.4 Personalizing the Installation 217

V INITIAL SYSTEM CONFIGURATION 218

19 Setting Up Hardware Components with YaST 219

19.1 Setting Up Your System Keyboard Layout 219

19.2 Setting Up Sound Cards 219

19.3 Setting Up a Printer 223
 Configuring Printers 223 • Configuring Printing via the Network with YaST 226 • Sharing Printers over the Network 228

20 Installing or Removing Software 229

20.1 Definition of Terms 229

20.2 Registering an Installed System 231
 Registering with YaST 231 • Registering with SUSEConnect 231

20.3 Using the YaST Software Manager 231
 Views for Searching Packages or Patterns 232 • Installing and Removing Packages or Patterns 233 • Updating Packages 235 • Package Dependencies 236 • Handling of Package Recommendations 238

20.4 Managing Software Repositories and Services 239
 Adding Software Repositories 239 • Managing Repository Properties 241 • Managing Repository Keys 242

20.5 The GNOME Package Updater 242
20.6 Updating Packages with GNOME Software 245

21 Installing Modules, Extensions, and Third Party Add-On Products 247
21.1 Installing Modules and Extensions from Online Channels 248
21.2 Installing Extensions and Third Party Add-On Products from Media 250
21.3 SUSE Package Hub 252

22 Installing Multiple Kernel Versions 253
22.1 Enabling and Configuring Multiversion Support 253
Automatically Deleting Unused Kernels 254 • Use Case: Deleting an Old Kernel after Reboot Only 255 • Use Case: Keeping Older Kernels as Fallback 256 • Use Case: Keeping a Specific Kernel Version 256
22.2 Installing/Removing Multiple Kernel Versions with YaST 256
22.3 Installing/Removing Multiple Kernel Versions with Zypper 257

23 Managing Users with YaST 259
23.1 User and Group Administration Dialog 259
23.2 Managing User Accounts 261
23.3 Additional Options for User Accounts 262
Automatic Login and Passwordless Login 263 • Enforcing Password Policies 263 • Managing Quotas 264
23.4 Changing Default Settings for Local Users 267
23.5 Assigning Users to Groups 267
23.6 Managing Groups 268
23.7 Changing the User Authentication Method 269
23.8 Default System Users 271
24 Changing Language and Country Settings with YaST 273

24.1 Changing the System Language 273
Modifying System Languages with YaST 274 • Switching the Default System Language 276 • Switching Languages for Standard X and GNOME Applications 277

24.2 Changing the Country and Time Settings 277

A Imaging and Creating Products 281

B GNU Licenses 282
B.1 GNU Free Documentation License 282
About This Guide

Installations of SUSE Linux Enterprise Server are possible in different ways. It is impossible to cover all combinations of boot, or installation server, automated installations or deploying images. This manual should help with selecting the appropriate method of deployment for your installation.

Part I, “Installation Preparation”

The standard deployment instructions differ depending on the architecture used. For differences and requirements regarding the architecture, see this part.

Part II, “Installation Procedure”

Most tasks that are needed during installations are described here. This includes the manual setup of your computer and installation of additional software, and cloning disk images and performing the setup remotely.

Part IV, “Setting Up an Installation Server”

SUSE® Linux Enterprise Server can be installed in different ways. Apart from the usual media installation, you can choose from various network-based approaches. This part describes setting up an installation server and how to prepare the boot of the target system for installation.

Part V, “Initial System Configuration”

Learn how to configure your system after installation. This part covers common tasks like setting up hardware components, installing or removing software, managing users, or changing settings with YaST.

1 Available Documentation

Note: Online Documentation and Latest Updates

Documentation for our products is available at https://documentation.suse.com/, where you can also find the latest updates, and browse or download the documentation in various formats. The latest documentation updates are usually available in the English version of the documentation.
The following documentation is available for this product:

Article “Installation Quick Start”
This Quick Start guides you step-by-step through the installation of SUSE® Linux Enterprise Server 15 SP1.

Deployment Guide
This guide details how to install single or multiple systems, and how to exploit the product-inherent capabilities for a deployment infrastructure. Choose from various approaches: local installation from physical installation media, customizing the standard installation images, network installation server, mass deployment using a remote-controlled, highly-customized, automated installation process, and initial system configuration.

Book “Administration Guide”
Covers system administration tasks like maintaining, monitoring and customizing an initially installed system.

Book “Virtualization Guide”
Describes virtualization technology in general, and introduces libvirt—the unified interface to virtualization—and detailed information on specific hypervisors.

Book “Storage Administration Guide”
Provides information about how to manage storage devices on a SUSE Linux Enterprise Server.

Book “AutoYaST Guide”
AutoYaST is a system for unattended mass deployment of SUSE Linux Enterprise Server systems using an AutoYaST profile containing installation and configuration data. The manual guides you through the basic steps of auto-installation: preparation, installation, and configuration.

Book “Security Guide”
Introduces basic concepts of system security, covering both local and network security aspects. Shows how to use the product inherent security software like AppArmor or the auditing system that reliably collects information about any security-relevant events.

Book “Hardening Guide”
Deals with the particulars of installing and setting up a secure SUSE Linux Enterprise Server, and additional post-installation processes required to further secure and harden that installation. Supports the administrator with security-related choices and decisions.
Book “System Analysis and Tuning Guide”
An administrator’s guide for problem detection, resolution and optimization. Find how to inspect and optimize your system by means of monitoring tools and how to efficiently manage resources. Also contains an overview of common problems and solutions and of additional help and documentation resources.

Book “Repository Mirroring Tool Guide”
An administrator’s guide to Subscription Management Tool—a proxy system for SUSE Customer Center with repository and registration targets. Learn how to install and configure a local SMT server, mirror and manage repositories, manage client machines, and configure clients to use SMT.

Book “GNOME User Guide”
Introduces the GNOME desktop of SUSE Linux Enterprise Server. It guides you through using and configuring the desktop and helps you perform key tasks. It is intended mainly for end users who want to make efficient use of GNOME as their default desktop.

The release notes for this product are available at https://www.suse.com/releasenotes/.

2 Giving Feedback

Your feedback and contribution to this documentation is welcome! Several channels are available:

Service Requests and Support
For services and support options available for your product, refer to https://www.suse.com/support/.
To open a service request, you need a subscription at SUSE Customer Center. Go to https://scc.suse.com/support/requests, log in, and click Create New.

Bug Reports
Report issues with the documentation at https://bugzilla.suse.com/. To simplify this process, you can use the Report Documentation Bug links next to headlines in the HTML version of this document. These preselect the right product and category in Bugzilla and add a link to the current section. You can start typing your bug report right away. A Bugzilla account is required.

Contributions
To contribute to this documentation, use the Edit Source links next to headlines in the HTML version of this document. They take you to the source code on GitHub, where you can open a pull request. A GitHub account is required.

For more information about the documentation environment used for this documentation, see the repository's README (https://github.com/SUSE/doc-sle/blob/master/README.adoc).

Mail

Alternatively, you can report errors and send feedback concerning the documentation to doc-team@suse.com. Make sure to include the document title, the product version and the publication date of the documentation. Refer to the relevant section number and title (or include the URL) and provide a concise description of the problem.

3 Documentation Conventions

The following notices and typographical conventions are used in this documentation:

- `/etc/passwd`: directory names and file names
- `PLACEHOLDER`: replace `PLACEHOLDER` with the actual value
- `PATH`: the environment variable PATH
- `ls`, `--help`: commands, options, and parameters
- `user`: users or groups
- `package name`: name of a package
- `Alt`, `Alt-F1`: a key to press or a key combination; keys are shown in uppercase as on a keyboard
- `File`, `File > Save As`: menu items, buttons
- `AMD/Intel` This paragraph is only relevant for the AMD64/Intel 64 architecture. The arrows mark the beginning and the end of the text block.
- `IBM Z, POWER` This paragraph is only relevant for the architectures IBM Z and POWER. The arrows mark the beginning and the end of the text block.
- `Dancing Penguins` (Chapter Penguins, †Another Manual): This is a reference to a chapter in another manual.
• Commands that must be run with root privileges. Often you can also prefix these commands with the sudo command to run them as non-privileged user.

```bash
root # command
tux > sudo command
```

• Commands that can be run by non-privileged users.

```bash
tux > command
```

• Notices

- **Warning: Warning Notice**
 Vital information you must be aware of before proceeding. Warns you about security issues, potential loss of data, damage to hardware, or physical hazards.

- **Important: Important Notice**
 Important information you should be aware of before proceeding.

- **Note: Note Notice**
 Additional information, for example about differences in software versions.

- **Tip: Tip Notice**
 Helpful information, like a guideline or a piece of practical advice.

4 Product Life Cycle and Support

SUSE products are supported for up to 13 years. To check the life cycle dates for your product, see https://www.suse.com/lifecycle/.”
For SUSE Linux Enterprise, the following life cycles and release cycles apply:

- SUSE Linux Enterprise Server has a 13-year life cycle: 10 years of general support and three years of extended support.
- SUSE Linux Enterprise Desktop has a 10-year life cycle: seven years of general support and three years of extended support.
- Major releases are published every four years. Service packs are published every 12-14 months.
- SUSE supports previous SUSE Linux Enterprise service packs for six months after the release of a new service pack.

Modules have a different life cycle, update policy, and update timeline than their base products. Modules contain software packages and are fully supported parts of SUSE Linux Enterprise Server. For more information, see the Article “Modules and Extensions Quick Start”.

4.1 Support Statement for SUSE Linux Enterprise Server

To receive support, you need an appropriate subscription with SUSE. To view the specific support offerings available to you, go to https://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1

Problem determination, which means technical support designed to provide compatibility information, usage support, ongoing maintenance, information gathering and basic troubleshooting using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce customer problems, isolate problem area and provide a resolution for problems not resolved by Level 1 or prepare for Level 3.

L3
Problem resolution, which means technical support designed to resolve problems by engaging engineering to resolve product defects which have been identified by Level 2 Support.

For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 support for all packages, except for the following:

- Technology Previews
- Sound, graphics, fonts and artwork.
- Packages that require an additional customer contract.
- Some packages shipped as part of the module Workstation Extension are L2-supported only.
- Packages with names ending in _devel_ (containing header files and similar developer resources) will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged and not recompiled.

4.2 Technology Previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses into upcoming innovations. The previews are included for your convenience to give you the chance to test new technologies within your environment. We would appreciate your feedback!

If you test a technology preview, please contact your SUSE representative and let them know about your experience and use cases. Your input is helpful for future development.

However, technology previews come with the following limitations:

- Technology previews are still in development. Therefore, they may be functionally incomplete, unstable, or in other ways not suitable for production use.
- Technology previews are not supported.
- Technology previews may only be available for specific hardware architectures.
• Details and functionality of technology previews are subject to change. As a result, upgrading to subsequent releases of a technology preview may be impossible and require a fresh installation.

• Technology previews can be dropped at any time. For example, if SUSE discovers that a preview does not meet the customer or market needs, or does not prove to comply with enterprise standards. SUSE does not commit to providing a supported version of such technologies in the future.

For an overview of technology previews shipped with your product, see the release notes at https://www.suse.com/releasenotes/.
I Installation Preparation

1 Planning for SUSE Linux Enterprise Server 2
2 Installation on AMD64 and Intel 64 7
3 Installation on Arm AArch64 14
4 Installation on IBM POWER 21
5 Installation on IBM Z 29
6 Installation on Hardware Not Supported at Release 64
1 Planning for SUSE Linux Enterprise Server

This chapter describes some basic considerations before installing SUSE Linux Enterprise Server.

1.1 Considerations for Deployment of a SUSE Linux Enterprise Server

The implementation of an operating system either in an existing IT environment or as a completely new roll out must be carefully prepared. At the beginning of the planning process, you should try to define the project goals and necessary features. This must always be done individually for each project, but the questions to answer should include the following:

- How many installations should be done? Depending on this, the best deployment methods differ.

- Will the system run as physical host or as a virtual machine?

- Will the system be in a hostile environment? Have a look at Book “Security Guide”, Chapter 1 “Security and Confidentiality” to get an overview of consequences.

- How will you get regular updates? All patches are provided online for registered users. Find the registration and patch support database at http://download.suse.com/.

- Do you need help for your local installation? SUSE provides training, support, and consulting for all topics pertaining to SUSE Linux Enterprise Server. Find more information about this at https://www.suse.com/products/server/.

- Do you need third-party products? Make sure that the required product is also supported on the desired platform. SUSE can provide help to support software on different platforms when needed.
1.2 Deployment of SUSE Linux Enterprise Server

To make sure that your system will run flawlessly, always try to use certified hardware. The hardware certification process is an ongoing process and the database of certified hardware is updated regularly. Find the search form for certified hardware at https://www.suse.com/yessearch/Search.jsp.

Depending on the number of desired installations, it is beneficial to use installation servers or even completely automatic installations. When using Xen or KVM virtualization technologies, network root file systems or network storage solutions like iSCSI should be considered.

SUSE Linux Enterprise Server provides you with a broad variety of services. Find an overview of the documentation in this book in Book “Administration Guide”, Preface “About This Guide”. Most of the needed configurations can be made with YaST, the SUSE configuration utility. In addition, many manual configurations are described in the corresponding chapters.

In addition to the plain software installation, you should consider training the end users of the systems and help desk staff.

Note: Terminology

In the following sections, the system to hold your new SUSE Linux Enterprise Server installation is called **target system or installation target**. The term **repository** (previously called “installation source”) is used for all sources of installation data. This includes physical media, such as CD and DVD, and network servers distributing the installation data in your network.

1.3 Running SUSE Linux Enterprise Server

The SUSE Linux Enterprise Server operating system is a well-tested and stable system. Unfortunately, this does not prevent hardware failures or other causes for downtime or data loss. For any serious computing task where data loss could occur, a regular backup should be done.

For optimal security and data safety, you should make regular updates of all the operated machines. If you have a mission critical server, you should run a second identical (pre-production) machine that you can use to test all changes. This also gives you the possibility of switching machines in the case of hardware failure.
1.4 Registering SUSE Linux Enterprise Server

To get technical support and product updates, you need to register and activate your SUSE product with the SUSE Customer Center. We recommend to register during the installation, since this will enable you to install the system with the latest updates and patches available. However, if you are offline or want to skip the registration step, you can register at any time later from the installed system.

In case your organization does not provide a local registration server, registering SUSE Linux Enterprise requires a SUSE Customer Center account. In case you do not have one yet, go to the SUSE Customer Center home page (https://scc.suse.com/) to create one.

During the installation you will be asked to enter your registration code. For details, see Section 8.7, “Registration”.

If you deploy your instances automatically using AutoYaST, you can register the system during the installation by providing the respective information in the AutoYaST control file. For details, see .

For registering an already installed system, see Section 20.2, “Registering an Installed System”.

1.5 Changes in Installation from SUSE Linux Enterprise Server Version 15

Starting with SUSE Linux Enterprise Server 15, all SUSE Linux Enterprise-based products on each supported architecture are installed using a Unified Installer from a single set of installation media.

1.5.1 Unified Installer for SUSE Linux Enterprise-based Products

As of SUSE Linux Enterprise Server 15 SP1, this includes the following base products.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Supported Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSE Linux Enterprise Server</td>
<td>AMD64/Intel 64; AArch64; POWER; IBM Z</td>
</tr>
<tr>
<td>SUSE Linux Enterprise High Performance Computing</td>
<td>AMD64/Intel 64; AArch64</td>
</tr>
</tbody>
</table>
1.5.2 Quarterly Update Media

In addition to the release versions of media, installer and packages images containing the latest updates are published every three months. These images are called quarterly updates, and their file names conform to the following naming rules: `SLE-15-SP1-Installer-DVD-ARCH-GM-DVD1.iso-ARCH-QUn-DVD1.iso` (the installer ISO image) and `SLE-15-SP1-Packages-ARCH-GM-DVD1.iso-ARCH-QUn-DVD1.iso` (the packages ISO image), where `n` is the number of the quarterly update. The images can be used to install the system that already contains the most recent updates.

1.5.3 Installing with Internet Access

If you are installing onto a computer or VM that has access to the Internet, then to install any of the products listed above, it is only necessary to download the `SLE-15-SP1-Installer-DVD-ARCH-GM-DVD1.iso` image for the desired architecture.

![Note: Installing SUSE Manager](image)

To install any SUSE Manager products, the target machine must have direct access to the SUSE Customer Center or to an RMT server.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Supported Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSE Linux Enterprise Real Time</td>
<td>AMD64/Intel 64</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server for SAP Applications</td>
<td>AMD64/Intel 64; POWER</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Desktop</td>
<td>AMD64/Intel 64</td>
</tr>
<tr>
<td>SUSE Manager Server</td>
<td>AMD64/Intel 64; POWER; IBM Z</td>
</tr>
<tr>
<td>SUSE Manager Proxy</td>
<td>AMD64/Intel 64</td>
</tr>
<tr>
<td>SUSE Manager for Retail Branch Server</td>
<td>AMD64/Intel 64</td>
</tr>
</tbody>
</table>

Quarterly Update Media SLES 15 SP1
1.5.4 Offline Installation

With the exception of SUSE Manager, you do not require access to the Internet, or to the SUSE Customer Center or to an RMT server, in order to install the other listed products.

For offline installation, additionally download the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso image for the desired architecture.

There is an additional, second Packages medium, but this contains only source code and is not required for installation.
2 Installation on AMD64 and Intel 64

This chapter describes the steps necessary to prepare for the installation of SUSE Linux Enterprise Server on AMD64 and Intel 64 computers. It introduces the steps required to prepare for various installation methods. The list of hardware requirements provides an overview of systems supported by SUSE Linux Enterprise Server. Find information about available installation methods and several commonly known problems. Also learn how to control the installation, provide installation media, and boot with regular methods.

2.1 Hardware Requirements

The SUSE® Linux Enterprise Server operating system can be deployed on a wide range of hardware. It is impossible to list all the different combinations of hardware SUSE Linux Enterprise Server supports. However, to provide you with a guide to help you during the planning phase, the minimum requirements are presented here.

If you want to be sure that a given computer configuration will work, find out which platforms have been certified by SUSE. Find a list at https://www.suse.com/yesssearch/.

The Intel 64 and AMD64 architectures support the simple migration of x86 software to 64 bits. Like the x86 architecture, they constitute a value-for-money alternative.

CPU

All CPUs available on the market to date are supported.

Maximum Number of CPUs

The maximum number of CPUs supported by software design is 8192 for Intel 64 and AMD64. If you plan to use such a large system, verify with our hardware system certification Web page for supported devices, see https://www.suse.com/yesssearch/.

Memory Requirements

A minimum of 1024 MB of memory is required for a minimal installation. On machines with more than two processors, add 512 MB per CPU. For remote installations via HTTP or FTP add another 150 MB. Note that these values are only valid for the installation of the operating system—the actual memory requirement in production depends on the system’s workload.
Hard Disk Requirements

The disk requirements depend largely on the installation selected and how you use your machine. Commonly, you need more space than the installation software itself needs to have a system that works properly. Minimum requirements for different selections are:

<table>
<thead>
<tr>
<th>Installation Scope</th>
<th>Minimum Hard Disk Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Mode</td>
<td>1.5 GB</td>
</tr>
<tr>
<td>Minimal System</td>
<td>2.5 GB</td>
</tr>
<tr>
<td>GNOME Desktop</td>
<td>3 GB</td>
</tr>
<tr>
<td>All patterns</td>
<td>4 GB</td>
</tr>
<tr>
<td>Recommended Minimum (no Btrfs snapshots):</td>
<td>10 GB</td>
</tr>
<tr>
<td>Required Minimum (with Btrfs snapshots):</td>
<td>16 GB</td>
</tr>
<tr>
<td>Recommended Minimum (with Btrfs snapshots):</td>
<td>32 GB</td>
</tr>
</tbody>
</table>

If your root partition is smaller than 10 GB, the installer will not make an automated partitioning proposal and you need to manually create partitions. Therefore the recommended minimum size for the root partition is 10 GB. If you want to enable Btrfs snapshots on the root volume to enable system rollbacks (see Book “Administration Guide”, Chapter 7 “System Recovery and Snapshot Management with Snapper”) the minimum size for the root partition is 16 GB.

Boot Methods

The computer can be booted from a CD or a network. A special boot server is required to boot over the network. This can be set up with SUSE Linux Enterprise Server.

2.2 Installation Considerations

This section encompasses many factors that need to be considered before installing SUSE Linux Enterprise Server on AMD64 and Intel 64 hardware.
2.2.1 Installation on Hardware or Virtual Machine

SUSE Linux Enterprise Server is normally installed as an independent operating system. With virtualization it is also possible to run multiple instances of SUSE Linux Enterprise Server on the same hardware. However, the installation of the VM Host Server is performed like a typical installation with some additional packages. The installation of virtual guests is described in Book “Virtualization Guide”, Chapter 9 “Guest Installation”.

2.2.2 Installation Target

Most installations are to a local hard disk. Therefore, it is necessary for the hard disk controllers to be available to the installation system. If a special controller (like a RAID controller) needs an extra kernel module, provide a kernel module update disk to the installation system.

Other installation targets may be various types of block devices that provide sufficient disk space and speed to run an operating system. This includes network block devices like iSCSI or SAN. It is also possible to install on network file systems that offer the standard Unix permissions. However, it may be problematic to boot these, because they must be supported by the initramfs before the actual system can start. Such installations can be useful when you need to start the same system in different locations or you plan to use virtualization features like domain migration.

2.3 Controlling the Installation

Control the installation in one of several ways. Boot the setup with one of the options listed in Section 2.4, “Booting the Installation System”. To enable the different control methods refer to Section 7.3.4, “Specifying Remote Access”. For information about how to use each remote control method, refer to Chapter 11, Remote Installation.

A brief overview of the different methods:

Local with Monitor and Keyboard

This is the method most frequently used to install SUSE Linux Enterprise Server. This also requires the smallest preparation effort but requires a lot of direct interaction.

Remote via SSH

You can control the installation via SSH either in text mode or use X-forwarding for a graphical installation. For details refer to Section 11.4, “Monitoring Installation via SSH”.

Remote via Serial Console

For this installation method you need a second computer connected by a null modem cable to the computer on which to install SUSE Linux Enterprise Server. The installation then proceeds in text mode. For details refer to Section 11.5, “Monitoring Installation via Serial Console”.

Remote via VNC

Use this method if you want a graphical installation without direct access to the target machine. For details refer to Section 11.3, “Monitoring Installation via VNC”.

Automatic via AutoYaST

If you need to install SUSE Linux Enterprise Server on several computers with similar hardware, it is recommended you perform the installations with the aid of AutoYaST. In this case, start by installing one SUSE Linux Enterprise Server and use this to create the necessary AutoYaST configuration files. For details refer to Book “AutoYaST Guide”.

2.4 Booting the Installation System

This section gives an overview of the steps required for the complete installation of SUSE® Linux Enterprise Server.

Unlike previous SLE products, the entire SLE 15 SP1 product line can be installed using the Unified Installer. For details about the changes since SUSE Linux Enterprise 15 and which media to download for installation, see: Section 1.5, “Changes in Installation from SUSE Linux Enterprise Server Version 15”.

For a full description of how to install and configure the system with YaST, refer to Part II, “Installation Procedure”.

Important: Hardware Support Updates

When using very recent hardware, it can be necessary to boot the installation with a newer kernel from a Kernel Update ISO image. For details, refer to Chapter 6, Installation on Hardware Not Supported at Release.

1. Prepare the installation media.

 USB Flash Drive
This is the simplest way to start the installation. To create a bootable flash disk, you need to copy a DVD image to the device using the `dd` command. The flash disk must not be mounted, and all data on the device will be erased.

```
root # dd if=PATH_TO_ISO_IMAGE of=USB_STORAGE_DEVICE bs=4M
```

DVD

DVD media are available from SUSE, or you can make your own. This method is useful if you have multiple machines to provision at the same time. It requires either a built-in or removable DVD drive. The process is straightforward for most computer users, but requires a lot of interaction for every installation process. If you did not receive a DVD, get the ISO image from the SUSE home page and burn it to a blank, writable DVD.

Network Booting

If the target computer's firmware supports it, you can boot the computer from the network and install from a server. This booting method requires a boot server that provides the needed boot images over the network. The exact protocol depends on your hardware. Commonly you need several services, such as TFTP and DHCP or PXE boot. For details, read *Chapter 17, Preparing Network Boot Environment*.

It is possible to install from many common network protocols, such as NFS, HTTP, FTP, or SMB. For more information on how to perform such an installation, refer to *Chapter 11, Remote Installation*.

1. Configure the target system firmware to boot the medium you chose. Refer to the documentation of your hardware vendor about how to configure the correct boot order.

2. Set the boot parameters required for your installation method. An overview of the different methods is provided in *Section 2.3, “Controlling the Installation”*. A list of boot parameters is available in *Chapter 7, Boot Parameters*.

3. Perform the installation as described in *Chapter 8, Installation Steps*. The system needs to restart after the installation is finished.

4. Optional: Change the boot order of the system to directly boot from the medium to which SUSE Linux Enterprise Server has been installed. If the system boots from the installation medium, the first boot parameter will be to boot the installed system.

5. Perform the initial system configuration as described in *Part V, “Initial System Configuration”*.
2.5 Dealing with Boot and Installation Problems

Prior to delivery, SUSE® Linux Enterprise Server is subjected to an extensive test program. Despite this, problems occasionally occur during boot or installation.

2.5.1 Problems Booting

Boot problems may prevent the YaST installer from starting on your system. Another symptom is when your system does not boot after the installation has been completed.

Installed System Boots, Not Media

Change your computer’s firmware or BIOS so that the boot sequence is correct. To do this, consult the manual for your hardware.

The Computer Hangs

Change the console on your computer so that the kernel outputs are visible. Be sure to check the last outputs. This is normally done by pressing \[\text{Ctrl} + \text{Alt} + \text{F10}]. If you cannot resolve the problem, consult the SUSE Linux Enterprise Server support staff. To log all system messages at boot time, use a serial connection as described in Section 2.3, “Controlling the Installation”.

Boot Disk

The boot disk is a useful interim solution if you have difficulties setting the other configurations or if you want to postpone the decision regarding the final boot mechanism. For more details on creating boot disks, see Book “Administration Guide”, Chapter 14 “The Boot Loader GRUB 2” grub2-mkrescue.

Virus Warning after Installation

There are BIOS variants that check the structure of the boot sector (MBR) and erroneously display a virus warning after the installation of GRUB 2. Solve this problem by entering the BIOS and looking for corresponding adjustable settings. For example, switch off virus protection. You can switch this option back on again later. It is unnecessary, however, if Linux is the only operating system you use.
2.5.2 Problems Installing

If an unexpected problem occurs during installation, information is needed to determine the cause of the problem. Use the following directions to help with troubleshooting:

- Check the outputs on the various consoles. You can switch consoles with the key combination \textit{Ctrl}--\textit{Alt}--\textit{Fn}. For example, obtain a shell in which to execute various commands by pressing \textit{Ctrl}--\textit{Alt}--\textit{F2}.

- Try launching the installation with “Safe Settings” (press $F5$ on the installation screen and choose \textit{Safe Settings}). If the installation works without problems in this case, there is an incompatibility that causes either \textit{ACPI} or \textit{APIC} to fail. In some cases, a BIOS or firmware update fixes this problem.

- Check the system messages on a console in the installation system by entering the command $\texttt{dmesg -T}$.

2.5.3 Redirecting the Boot Source to the Boot DVD

To simplify the installation process and avoid accidental installations, the default setting on the installation DVD for SUSE Linux Enterprise Server is that your system is booted from the first hard disk. At this point, an installed boot loader normally takes over control of the system. This means that the boot DVD can stay in the drive during an installation. To start the installation, choose one of the installation possibilities in the boot menu of the media.
3 Installation on Arm AArch64

This chapter describes the steps necessary to prepare for the installation of SUSE Linux Enterprise Server on Arm AArch64 computers. It introduces the steps required to prepare for various installation methods. The list of hardware requirements provides an overview of systems supported by SUSE Linux Enterprise Server. Find information about available installation methods and several common known problems. Also learn how to control the installation, provide installation media, and boot with regular methods.

3.1 Hardware Requirements

The SUSE® Linux Enterprise Server operating system can be deployed on a wide range of hardware. It is impossible to list all the different combinations of hardware SUSE Linux Enterprise Server supports. However, to provide you with a guide to help you during the planning phase, the minimum requirements are presented here.

If you want to be sure that a given computer configuration will work, find out which platforms have been certified by SUSE. Find a list at https://www.suse.com/yessearch/.

CPU

The minimum requirement is a CPU that supports the Armv8-A instruction set architecture (ISA), for example, Arm Cortex-A53 or Cortex-A57. Refer to https://www.arm.com/products/processors/cortex-a/ for a list of available Armv8-A processors.

CPUs with the Armv8-R (realtime) and Armv8-M (microcontroller) ISA are currently not supported.

Maximum Number of CPUs

The maximum number of CPUs supported by software design is 256. If you plan to use such a large system, check our hardware system certification Web page for supported devices, see https://www.suse.com/yessearch/.

Memory Requirements
A minimum of 1024 MB of memory is required for a minimal installation. On machines with more than two processors, add 512 MB per CPU. For remote installations via HTTP or FTP add another 150 MB. Note that these values are only valid for the installation of the operating system—the actual memory requirement in production depends on the system’s workload.

Hard Disk Requirements

The disk requirements depend largely on the installation selected and how you use your machine. Commonly, you need more space than the installation software itself needs to have a system that works properly. Minimum requirements for different selections are:

<table>
<thead>
<tr>
<th>Installation Scope</th>
<th>Minimum Hard Disk Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Mode</td>
<td>1.5 GB</td>
</tr>
<tr>
<td>Minimal System</td>
<td>2.5 GB</td>
</tr>
<tr>
<td>GNOME Desktop</td>
<td>3 GB</td>
</tr>
<tr>
<td>All patterns</td>
<td>4 GB</td>
</tr>
<tr>
<td>Recommended Minimum (no Btrfs snapshots):</td>
<td>10 GB</td>
</tr>
<tr>
<td>Required Minimum (with Btrfs snapshots):</td>
<td>16 GB</td>
</tr>
<tr>
<td>Recommended Minimum (with Btrfs snapshots):</td>
<td>32 GB</td>
</tr>
</tbody>
</table>

If your root partition is smaller than 10 GB, the installer will not make an automated partitioning proposal and you need to manually create partitions. Therefore the recommended minimum size for the root partition is 10 GB. If you want to enable Btrfs snapshots on the root volume to enable system rollbacks (see Book “Administration Guide”, Chapter 7 “System Recovery and Snapshot Management with Snapper”) the minimum size for the root partition is 16 GB.

Boot Methods

The computer can be booted from a CD or a network. A special boot server is required to boot over the network. This can be set up with SUSE Linux Enterprise Server.
3.2 Installation Considerations

This section encompasses many factors that need to be considered before installing SUSE Linux Enterprise Server on Arm AArch64 hardware.

3.2.1 Installation on Hardware or Virtual Machine

SUSE Linux Enterprise Server is normally installed as an independent operating system. With virtualization it is also possible to run multiple instances of SUSE Linux Enterprise Server on the same hardware. However, the installation of the VM Host Server is performed like a typical installation with some additional packages. The installation of virtual guests is described in Book “Virtualization Guide”, Chapter 9 “Guest Installation”.

3.2.2 Installation Target

Most installations are to a local hard disk. Therefore, it is necessary for the hard disk controllers to be available to the installation system. If a special controller (like a RAID controller) needs an extra kernel module, provide a kernel module update disk to the installation system.

Other installation targets may be various types of block devices that provide sufficient disk space and speed to run an operating system. This includes network block devices like iSCSI or SAN. It is also possible to install on network file systems that offer the standard Unix permissions. However, it may be problematic to boot these, because they must be supported by the initramfs before the actual system can start. Such installations can be useful when you need to start the same system in different locations or you plan to use virtualization features like domain migration.

3.3 Controlling the Installation

Control the installation in one of several ways. Boot the setup with one of the options listed in Section 2.4, “Booting the Installation System”. To enable the different control methods refer to Section 7.3.4, “Specifying Remote Access”. For information about how to use each remote control method, refer to Chapter 11, Remote Installation.

A brief overview of the different methods:

Local with Monitor and Keyboard
This is the method most frequently used to install SUSE Linux Enterprise Server. This also requires the smallest preparation effort but requires a lot of direct interaction.

Remote via SSH

You can control the installation via SSH either in text mode or use X-forwarding for a graphical installation. For details refer to *Section 11.4, “Monitoring Installation via SSH”.*

Remote via Serial Console

For this installation method you need a second computer connected by a *null modem* cable to the computer on which to install SUSE Linux Enterprise Server. The installation then proceeds in text mode. For details refer to *Section 11.5, “Monitoring Installation via Serial Console”.*

Remote via VNC

Use this method if you want a graphical installation without direct access to the target machine. For details refer to *Section 11.3, “Monitoring Installation via VNC”.*

Automatic via AutoYaST

If you need to install SUSE Linux Enterprise Server on several computers with similar hardware, it is recommended you perform the installations with the aid of AutoYaST. In this case, start by installing one SUSE Linux Enterprise Server and use this to create the necessary AutoYaST configuration files. For details refer to *Book “AutoYaST Guide”.*

3.4 Booting the Installation System

This section gives an overview of the steps required for the complete installation of SUSE® Linux Enterprise Server.

Unlike previous SLE products, the entire SLE 15 SP1 product line can be installed using the Unified Installer. For details about the changes since SUSE Linux Enterprise 15 and which media to download for installation, see: *Section 1.5, “Changes in Installation from SUSE Linux Enterprise Server Version 15”.*

For a full description of how to install and configure the system with YaST, refer to *Part II, “Installation Procedure”.*
Important: Hardware Support Updates

When using very recent hardware, it can be necessary to boot the installation with a newer kernel from a Kernel Update ISO image. For details, refer to Chapter 6, Installation on Hardware Not Supported at Release.

1. Prepare the installation media.

USB Flash Drive

This is the simplest way to start the installation. To create a bootable flash disk, you need to copy a DVD image to the device using the `dd` command. The flash disk must not be mounted, and all data on the device will be erased.

```
root # dd if=PATH_TO_ISO_IMAGE of=USB_STORAGE_DEVICE bs=4M
```

DVD

DVD media are available from SUSE, or you can make your own. This method is useful if you have multiple machines to provision at the same time. It requires either a built-in or removable DVD drive. The process is straightforward for most computer users, but requires a lot of interaction for every installation process. If you did not receive a DVD, get the ISO image from the SUSE home page and burn it to a blank, writable DVD.

Network Booting

If the target computer’s firmware supports it, you can boot the computer from the network and install from a server. This booting method requires a boot server that provides the needed boot images over the network. The exact protocol depends on your hardware. Commonly you need several services, such as TFTP and DHCP or PXE boot. For details, read Chapter 17, Preparing Network Boot Environment.

It is possible to install from many common network protocols, such as NFS, HTTP, FTP, or SMB. For more information on how to perform such an installation, refer to Chapter 11, Remote Installation.

2. Configure the target system firmware to boot the medium you chose. Refer to the documentation of your hardware vendor about how to configure the correct boot order.

3. Set the boot parameters required for your installation method. An overview of the different methods is provided in Section 3.3, “Controlling the Installation”. A list of boot parameters is available in Chapter 7, Boot Parameters.
3.5 Dealing with Boot and Installation Problems

Although SUSE® Linux Enterprise Server undergoes an extensive test program, problems may occasionally occur during boot or installation.

3.5.1 Problems Booting

Boot problems may prevent the YaST installer from starting on your system. Another symptom is failure to boot after the installation has been completed.

Installed System Boots, Not Media

Change your computer's firmware so that the boot sequence is correct. To do this, consult the manual for your hardware.

The Computer Hangs

Change the console on your computer so that the kernel outputs are visible. Be sure to check the last few lines of output. This is normally done by pressing \(\text{Ctrl} + \text{Alt} + \text{F10} \). If you cannot resolve the problem, consult the SUSE Linux Enterprise Server support staff. To log all system messages at boot time, use a serial connection as described in Section 2.3, “Controlling the Installation”.

Boot Disk

The boot disk is a useful interim solution for boot issues. If you have difficulties setting the other configurations, or if you want to postpone the decision regarding the final boot mechanism, use a boot disk. For more details on creating boot disks, see Book “Administration Guide”, Chapter 14 “The Boot Loader GRUB 2” grub2-mkrescue.
3.5.2 Problems Installing

If an unexpected problem occurs during installation, information is needed to determine the cause of the problem. Use the following directions to help with troubleshooting:

- Check the outputs on the various consoles. You can switch consoles with the key combination \(\text{Ctrl} - \text{Alt} - \text{Fn} \). For example, obtain a shell in which to execute various commands by pressing \(\text{Ctrl} - \text{Alt} - \text{F2} \).

- Try launching the installation with “Safe Settings” (press \(F5 \) on the installation screen and choose Safe Settings). If the installation works without problems in this case, there is an incompatibility that causes either ACPI or APIC to fail. In some cases, a firmware update fixes this problem.

- Check the system messages on a console in the installation system by entering the command `dmesg -T`.

3.5.3 Redirecting the Boot Source to the Boot DVD

To simplify the installation process and avoid accidental installations, the default setting on the installation DVD for SUSE Linux Enterprise Server is that your system is booted from the first hard disk. At this point, an installed boot loader normally takes over control of the system. This means that the boot DVD can stay in the drive during an installation. To start the installation, choose one of the installation possibilities in the boot menu of the media.
4 Installation on IBM POWER

This chapter describes the procedure for preparing the installation of SUSE® Linux Enterprise Server on IBM POWER systems.

4.1 Hardware Requirements

The SUSE® Linux Enterprise Server operating system can be operated on IBM POWER servers. To provide you with a guide to help you during the planning phase, the minimum requirements are presented here.

Supported Servers

If you want to be sure that a given computer configuration will work, check the database of hardware certified by SUSE. Find a list of certified hardware at http://www.suse.com/yessearch/Search.jsp. SUSE Linux Enterprise Server may support additional IBM POWER systems not listed. For the latest information, see the IBM Information Center for Linux at http://www.ibm.com/support/knowledgecenter/linuxonibm/iaam/iaamdistros.htm.

Memory Requirements

A minimum of 1024 MB of memory is required for a minimal installation. For remote installations via HTTP or FTP add another 150 MB. Note that these values are only valid for the installation of the operating system—the actual memory requirement in production depends on the system's workload.

Hard Disk Requirements

The disk requirements depend largely on the installation selected and how you use your machine. Commonly, you need more space than the installation software itself needs to have a system that works properly. Minimum requirements for different selections are:

<table>
<thead>
<tr>
<th>Installation Scope</th>
<th>Minimum Hard Disk Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Mode</td>
<td>1.5 GB</td>
</tr>
<tr>
<td>Minimal System</td>
<td>2.5 GB</td>
</tr>
<tr>
<td>GNOME Desktop</td>
<td>3 GB</td>
</tr>
</tbody>
</table>
Installation Scope

<table>
<thead>
<tr>
<th>Installation Scope</th>
<th>Minimum Hard Disk Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patterns</td>
<td>4 GB</td>
</tr>
<tr>
<td>Recommended Minimum (no Btrfs snapshots):</td>
<td>10 GB</td>
</tr>
<tr>
<td>Required Minimum (with Btrfs snapshots):</td>
<td>16 GB</td>
</tr>
<tr>
<td>Recommended Minimum (with Btrfs snapshots):</td>
<td>32 GB</td>
</tr>
</tbody>
</table>

If your root partition is smaller than 10 GB, the installer will not make an automated partitioning proposal and you need to manually create partitions. Therefore the recommended minimum size for the root partition is 10 GB. If you want to enable Btrfs snapshots on the root volume to enable system rollbacks (see Book “Administration Guide”, Chapter 7 “System Recovery and Snapshot Management with Snapper”) the minimum size for the root partition is 16 GB.

Your servers should be equipped with the latest firmware before installing SUSE Linux Enterprise Server. Find up-to-date firmware at IBM FixCentral (http://www.ibm.com/support/fixcentral/). Select your system from the Product Group list. Additional software is available from the IBM PowerLinux Tools Repository. The IBM Tools Repository is also called the Yum Repository. For more information about using the IBM PowerLinux Tools Repository, see https://ibm.biz/Bdxn3N.

4.2 Preparation

This section describes the preparatory steps that must be taken before the actual installation of SUSE Linux Enterprise Server. The installation procedure depends on the system used. The following methods are supported:

- **Installation in a Partition Using IVM**
- **Installation on Servers with no Open Power Abstraction Layer**

If SUSE® Linux Enterprise Server needs to be installed on several systems or partitions, it is recommended you create a network installation source. The same source can also be used for the concurrent installation on several partitions or several systems. The configuration of a network installation source is described in Section 16.1, “Setting Up an Installation Server Using YaST”.

22 Preparation SLES 15 SP1
Warning: Installing on Systems with Multiple Fibre Channel Disks

If more than one disk is available, the partitioning scheme suggested during the installation puts the PReP and BOOT partitions on different disks. If these disks are Fibre Channel Disks, the GRUB boot loader is not able to find the BOOT partition and the system cannot be booted.

When prompted to select the partition scheme during the installation, choose Guided Setup and verify that only one disk is selected for installation. Alternatively, run the Expert Partitioner and manually set up a partitioning scheme that has PReP and BOOT on a single disk.

4.2.1 Installation in a Partition Using IVM

This guide helps you install SUSE Linux Enterprise Server on a Power Systems server partition using the Integrated Virtualization Manager (IVM) Web interface. Before starting the installation, make sure the following requirements are met:

- the Linux on Power system is powered on
- the Virtual I/O server is installed
- the IVM is initially configured

PROCEDURE 4.1: LOG IN TO THE IVM WEB INTERFACE

1. Open a Web browser window, and connect using the HTTP or HTTPS protocol to the IP address that was assigned to the IVM during the installation process (for example, https://IP_ADDRESS). The Welcome window is displayed.

2. Log in as the user padmin, providing the password that you defined during the installation process. The IVM interface is displayed.

3. Select View/Modify Virtual Ethernet.

4. Click Initialize Virtual Ethernet to provide Ethernet connectivity among the partitions.

5. When the Virtual Ethernet is initialized, click Apply.

6. If your installation requires external networking, create a virtual Ethernet bridge.
a. Select the Virtual Ethernet Bridge tab.

b. Select the physical adapter to bridge and proceed with Apply.

Next, create a partition, following these steps:

PROCEDURE 4.2: CREATE A PARTITION

1. In the IVM Web interface, click View/Modify Partition › Create Partition.

2. Enter a name for the partition. To advance to the next step, click Next on this and the following steps.

3. Specify memory for your partition. If you have created a shared memory pool, your partitions can share memory. Otherwise, select Dedicated.

4. Specify the number of processors and the processing mode for the partition.

5. Specify a virtual Ethernet for the partition. If you do not want to configure an adapter, select none for the virtual Ethernet.

6. Create a new virtual disk or assign existing virtual disks and physical volumes that are not currently assigned to a partition.

7. Verify the Virtual disk name and Storage pool name for your disk and specify a Virtual disk size.

8. Configure optical devices for your partition by expanding the Physical Optical Devices and Virtual Optical Devices and select the device(s) you want to assign to the partition.

9. Verify your partition configuration settings and click Finish. The partition is created and available from the View/Modify Partitions list.

Now activate the partition you have created:

PROCEDURE 4.3: ACTIVATE THE PARTITION

1. In the IVM Web interface, click View/Modify Partition and select the box next to the partition you want to activate.

2. Select More Tasks.

3. Select Open a terminal window.

4. Click Activate next to the partition.
5. In the terminal window, enter 1 to start the system management services (SMS).

The machine is set up now and you can boot into the installation:

PROCEDURE 4.4: BOOT THE LINUX INSTALLATION

1. At the Boot selection window, enter 1 to select the SMS Menu. Enter 1 before the firmware boot screen is completely shown on the display, because it will disappear when complete. If you miss the screen, reboot the system.

2. Now, you can insert the Virtual I/O Server (VIOS) media disk into the disk drive.

3. Enter 2 to continue to the password entry on the Language selection menu. Enter the password for the admin ID.

4. On the main SMS menu, enter 5 to choose Select Boot Options.

5. Enter 1 to select Install/Boot Device.

6. Enter 7 to view all of the available boot devices.

7. Enter the number corresponding to the device you want to use. If your device is not listed, enter N to display more.

8. Enter 2 to perform a Normal Mode Boot.

9. Enter 1 to leave the SMS menu and to start the boot process.

10. At the boot prompt from the installer, type

```
install vnc=1
vncpassword=VNC_PASSWORD
```

Replace VNC_PASSWORD with a password of your choice (minimum length is eight characters) and press Enter to start the installation of SUSE Linux Enterprise Server. The kernel will begin loading.

After the kernel has started to load, the installer needs some information from the system to set up a VNC session. You must have a valid TCP/IP stack to use VNC. Either use DHCP or manually define your networking information using directions provided by the installer.

PROCEDURE 4.5: START THE VNC SESSION

1. On the Network device window, select eth0 as your network device. Select OK and press Enter.
2. Test the installation media. Alternatively, proceed without the test by selecting Skip.

3. After the system has started the VNC server, you will see a message to connect your VNC client followed by an IP address. Note this IP address.

4. Start a VNC client on your laptop or PC. Enter the IP address from the previous step followed by :1, for example 192.168.2.103:1.

5. Complete the installation as described in Chapter 8, Installation Steps.

4.2.2 Installation on Servers with no Open Power Abstraction Layer

Use this information to install Linux using a serial console or using a monitor and keyboard on a Power Systems server. This installation assumes an unmanaged (stand-alone) system that is ready to boot.

1. Power on your system by selecting Power On from the Power On/Off System menu. When asked if you want to continue using the console, enter 0 to continue doing so.

2. Insert the SUSE Linux Enterprise Server installation media into the disk drive.

3. From the Select Language window, enter 2 to continue to booting.

4. Enter 1 to accept the license agreement.

5. At the Boot selection window, enter 1 to select the SMS Menu. Enter 1 before the firmware boot screen is completely shown on the display, because it will disappear when complete. If you miss the screen, reboot the system.

6. Enter 2 to continue to the password entry on the Language selection menu. Enter the password for the admin ID.

7. On the main SMS menu, enter 5 to choose Select Boot Options.

8. Enter 7 to view all of the available boot devices.

9. Enter the number corresponding to the device you want to use. If your device is not listed, enter N to display more.

10. Enter 2 to perform a Normal Mode Boot.
11. Enter \[1\] to leave the SMS menu and to start the boot process.

12. At the boot prompt from the installer, type

```
install vnc=1
vncpassword=VNC_PASSWORD
```

Replace \texttt{VNC_PASSWORD} with a password of your choice (minimum length is eight characters) and press \texttt{Enter} to start the installation of SUSE Linux Enterprise Server. The kernel will begin loading.

After the kernel has started to load, the installer needs some information from the system to set up a VNC session. You must have a valid TCP/IP stack to use VNC. Either use DHCP or manually define your networking information using directions provided by the installer.

PROCEDURE 4.6: START THE VNC SESSION

1. On the \textit{Network device} window, select \texttt{eth0} as your network device. Select \texttt{OK} and press \texttt{Enter}.

2. Test the installation media. Alternatively, proceed without the test by selecting \texttt{Skip}.

3. After the system has started the VNC server, you will see a message to connect your VNC client followed by an IP address. Note this IP address.

4. Start a VNC client on your laptop or PC. Enter the IP address from the previous step followed by \texttt{:1}, for example 192.168.2.103:1.

5. Complete the installation as described in \textit{Chapter 8, Installation Steps}.

4.3 For More Information

More information on IBM PowerLinux is available from SUSE and IBM:

- The SUSE Support Knowledge Base at \url{https://www.suse.com/support/kb/} is an effective help tool for assisting customers in solving problems. Search the knowledge base on SUSE Linux Enterprise Server using keywords like POWER.

- Find security alerts at \url{https://www.suse.com/support/security/}. SUSE also maintains two security-related mailing lists to which anyone may subscribe.
- **suse-security** — General discussion of security regarding Linux and SUSE. All security alerts for SUSE Linux Enterprise Server are sent to this list.

- **suse-security-announce** — The SUSE mailing list exclusively for security alerts.

- In case of hardware errors, check the control panel for any codes that might be displayed. You can look up any codes that are displayed at the IBM Power Systems Hardware Information Center at https://ibm.biz/Bdxn3T.

- For troubleshooting tips, see the IBM PowerLinux FAQ topic in the Information Center at https://ibm.biz/Bdxn35.

- To participate in the linuxppc-dev mailing list, register using the forms at http://lists.ozlabs.org/listinfo/linuxppc-dev.
5 Installation on IBM Z

This chapter describes the procedure for preparing the installation of SUSE® Linux Enterprise Server on IBM Z. It provides all information needed to prepare the installation on the LPAR and z/VM side.

5.1 System Requirements

This section provides a list of hardware for IBM Z supported by SUSE Linux Enterprise Server. Next, the level of the MicroCode (MCL) used in your IBM Z system, which is very important for the installation, is covered. Additional software to install and use for installation is mentioned at the end of this section.

5.1.1 Hardware

SUSE Linux Enterprise Server has run successfully on the following platforms:

- IBM zEnterprise EC12 (zEC12) (2827)
- IBM zEnterprise BC12 (zBC12) (2828)
- IBM z13 (2964)
- IBM z13s (2965)
- IBM LinuxONE Emperor (2964)
- IBM LinuxONE Rockhopper (2965)
- IBM z14 (3906)
- IBM z14 ZR1 (3907)
- IBM LinuxONE Emperor II (3906)
- IBM LinuxONE Rockhopper II (3907)
5.1.1.1 Memory Requirements

Different installation methods have different memory requirements during installation. After installation is completed, the system administrator may reduce memory to the desired size. SUSE recommends using:

<table>
<thead>
<tr>
<th>Memory Requirement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GB</td>
<td>For installation under z/VM.</td>
</tr>
<tr>
<td>1 GB</td>
<td>For installation under LPAR.</td>
</tr>
<tr>
<td>1 GB</td>
<td>For installation under KVM.</td>
</tr>
</tbody>
</table>

Note: Memory Requirements with Remote Installation Sources
For installation from NFS, FTP, or SMB installation sources or whenever VNC is used, 512MB of memory is required as a minimum. Otherwise, the installation attempt is likely to fail. Further note that the number of devices visible to the z/VM guest or LPAR image affects memory requirements. Installation with literally hundreds of accessible devices (even if unused for the installation) may require more memory.

5.1.1.2 Disk Space Requirements

The disk requirements depend largely on the installation. Commonly, you need more space than the installation software itself needs to have a system that works properly. Minimal requirements for different selections are:

<table>
<thead>
<tr>
<th>Installation Scope</th>
<th>Minimum Hard Disk Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Mode</td>
<td>1.5 GB</td>
</tr>
<tr>
<td>Minimal System</td>
<td>2.5 GB</td>
</tr>
<tr>
<td>GNOME Desktop</td>
<td>3 GB</td>
</tr>
<tr>
<td>All patterns</td>
<td>4 GB</td>
</tr>
<tr>
<td>Recommended Minimum</td>
<td>10 GB</td>
</tr>
<tr>
<td>(no Btrfs snapshots)</td>
<td></td>
</tr>
<tr>
<td>Required Minimum</td>
<td>16 GB</td>
</tr>
<tr>
<td>(with Btrfs snapshots)</td>
<td></td>
</tr>
</tbody>
</table>
Installation Scope

<table>
<thead>
<tr>
<th>Installation Scope</th>
<th>Minimum Hard Disk Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Minimum (with Btrfs snapshots): 32 GB</td>
<td></td>
</tr>
</tbody>
</table>

5.1.1.3 Network Connection

A network connection is needed to communicate with your SUSE Linux Enterprise Server system. This can be one or more of the following connections or network cards:

- OSA Express Ethernet (including Fast and Gigabit Ethernet)
- HiperSockets or Guest LAN
- 10 GBE, VSWITCH
- RoCE (RDMA over Converged Ethernet)

The following interfaces are still included, but no longer supported:

- CTC (or virtual CTC)
- ESCON
- IP network interface for IUCV

For installations under KVM make sure the following requirements are met to enable the VM Guest to access the network transparently:

- The virtual network interface is connected to a host network interface.
- The host network interface is connected to a network in which the virtual server will participate.
- If the host is configured to have a redundant network connection by grouping two independent OSA network ports into a bonded network interface, the identifier for the bonded network interface is `bond0`. Or, if more than one bonded interface exists, `bond1`, `bond2`, and so on.
- If the host network connection has *not* been set up redundantly, the identifier of the single network interface needs to be used. It has the form `enccw0.0.NNNN`, where `NNNN` is the device number of the desired network interface.
5.1.2 MicroCode Level, APARs, and Fixes

Documentation about restrictions and requirements for this release of SUSE Linux Enterprise Server be found on IBM developerWorks at http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html. It is recommended always to use the highest service level available. Contact your IBM support for minimum requirements.

For z/VM the following versions are supported:

- z/VM 6.4

Negotiate the order of installation with your IBM support, because it might be necessary to activate the VM APARs before installing the new MicroCode levels.

5.1.3 Software

When installing SUSE Linux Enterprise Server via non-Linux–based NFS or FTP, you might experience problems with NFS or FTP server software. The Windows* standard FTP server can cause errors, so installing via SMB on these machines is generally recommended.

To connect to the SUSE Linux Enterprise Server installation system, one of the following methods is required (SSH or VNC are recommended):

SSH with Terminal Emulation (xterm compatible)

SSH is a standard Unix tool that should be present on any Unix or Linux system. For Windows, there is an SSH client called Putty. It is free to use and is available from http://www.chiark.greenend.org.uk/~sgtatham/putty/.

VNC Client

For Linux, a VNC client called `vncviewer` is included in SUSE Linux Enterprise Server as part of the `tightvnc` package. For Windows, TightVNC is also available. Download it from http://www.tightvnc.com/.

X Server

Find a suitable X server implementation on any Linux or Unix workstation. There are many commercial X Window System environments for Windows and macOS*. Some can be downloaded as free trial versions. A trial version of the Mocha X Server from MochaSoft can be obtained at http://www.mochasoft.dk/freeware/x11.htm.
5.2 General Information

This section covers the different installation types and how to do an IPL for the first installation. For detailed technical information about IBM Z on SUSE Linux Enterprise Server refer to http://www.ibm.com/developerworks/linux/linux390/documentation_suse.html.

5.2.1 Installation Types

This section gives an overview of the different types of installation possible with SUSE Linux Enterprise Server for IBM Z. SUSE Linux Enterprise Server can be installed in an LPAR, as a guest within z/VM, or as a guest within KVM.

Depending on the mode of installation (LPAR or z/VM), there are different possibilities for starting the installation process and IPLing the installed system.

5.2.1.1 LPAR

If you install SUSE Linux Enterprise Server for IBM Z into a logical partition (LPAR), assign memory and processors to the instance. Installing into LPAR is recommended for highly loaded production machines. Running in LPAR also makes higher security standards available. Networking between LPARs is possible over external interfaces or HiperSockets. In case you plan to use your installation for virtualization with KVM, installing into LPAR is highly recommended.

5.2.1.2 z/VM

Running SUSE Linux Enterprise Server for IBM Z in z/VM means that SUSE Linux Enterprise Server is a guest system within z/VM. An advantage of this mode is that you have full control over SUSE Linux Enterprise Server from z/VM. This is very helpful for kernel development or
kernel-based debugging. It is also very easy to add or remove hardware to and from Linux guests. Creating additional SUSE Linux Enterprise Server guests is simple and you can run hundreds of Linux instances simultaneously.

5.2.1.3 **KVM Guest**

Being able to install SUSE Linux Enterprise Server for IBM Z as a KVM guest requires a KVM host server instance installed into LPAR. For details on the guest installation, refer to Procedure 5.3, “Overview of a KVM Guest Installation”.

5.2.2 **IPL Options**

This section provides the information needed to do an IPL for the first installation. Depending on the type of installation, different options need to be used. The VM reader, load from CD-ROM or server and load from an SCSI-attached DVD-ROM options are discussed. Installing the software packages, which is done over the network, does not require the IPL medium.

5.2.2.1 **VM Reader**

To IPL from a VM reader, transfer the necessary files into the reader first. For convenience of administration, it is recommended to create a user `linuxmnt` that owns a minidisk with the files and scripts needed for IPL. This minidisk is then accessed read-only by the Linux guests. For details, see Section 5.3.4.2.1, “IPL from the z/VM Reader”.

5.2.2.2 **Load from Removable Media or Server**

For IPLing into an LPAR, it is possible to either load the kernel image directly from the SE's or the HMC's CD/DVD-ROM device or from any remote system accessible through FTP. This function can be performed from the HMC. The installation process requires a file with a mapping of the location of the installation data in the file system and the memory locations where the data is to be copied.
For SUSE Linux Enterprise Server, there are two such files. Both are located in the root directory of the file system of DVD 1:

- **suse.ins**, for which to work you need to set up network access in Linuxrc before starting the installation.
- **susehmc.ins** which allows installing without network access.

In the left navigation pane of the HMC expand **Systems Management > Systems** and select the mainframe system you want to work with. Choose the LPAR where you want to boot SUSE Linux Enterprise Server from the table of LPARs and select **Load from Removable Media or Server**.

Now either choose **Hardware Management Console CD-ROM/DVD** or **FTP Source**. If having chosen the latter option, provide the servers address or name and your credentials. If the appropriate .ins file is not located in the root directory of the server, provide the path to this file. Continue to the **Select the software to load** menu and select the appropriate .ins entry. Start the installation with OK.

5.2.2.3 Load from SCSI-Attached DVD

To IPL from an SCSI DVD, you need access to an FCP adapter connected to a DVD drive. You need the values for WWPN and LUN from the SCSI drive. For details, see Section 5.3.4.1.2, “IPL from FCP-Attached SCSI DVD”.

5.2.2.4 Load from the Network with zPXE

IPLing from the Network with zPXE requires a Cobbler server providing the kernel, RAM disk and a parmfile. It is initiated by running the ZPXE EXEC script. See Section 5.3.1.3, “Using a Cobbler Server for zPXE” for details. zPXE is only available on z/VM.

5.3 Preparing for Installation

Learn how to make the data accessible for installation, install SUSE Linux Enterprise Server using different methods, and prepare and use the IPL of the SUSE Linux Enterprise Server installation system. Also find out about network configuration and network installation.
5.3.1 Making the Installation Data Available

This section provides detailed information about making the SUSE Linux Enterprise Server IBM Z installation data accessible for installation. Depending on your computer and system environment, choose between NFS or FTP installation. If you are running Microsoft Windows workstations in your environment, you can use the Windows network (including the SMB protocol) to install SUSE Linux Enterprise Server on your IBM Z system.

Tip: IPL from DVD

It is possible to IPL from DVD and use the DVD as the installation medium. This is very convenient if you have restrictions setting up an installation server providing installation media over your network. The prerequisite is an FCP-attached SCSI DVD Drive.

Note: No Installation “From Hard Disk”

It is not possible to install from hard disk by putting the content of the DVD to a partition on a DASD.

5.3.1.1 Using a Linux Workstation or SUSE Linux Enterprise Server DVD

If you have a Linux workstation running in your computer environment, use the workstation to provide the installation data to the IBM Z installation process by NFS or FTP. If the Linux workstation runs under SUSE Linux Enterprise Server, you can set up an installation server (NFS or FTP) using the YaST Installation Server module as described in Section 16.1, “Setting Up an Installation Server Using YaST”.

5.3.1.1.1 Over NFS

Use NFS (network file system) to make the installation media available.

Important: Exporting Mounted Devices with NFS

Exporting the file system root (/) does not imply the export of mounted devices, such as DVD. Explicitly name the mount point in /etc/exports:

/media/dvd *(ro)
After changing this file, restart the NFS server with the command \texttt{sudo systemctl restart nfsserver}.

5.3.1.1.2 Over FTP

Setting up an FTP server on a Linux system involves the installation and configuration of server software like \texttt{vsftpd}. If you are using SUSE Linux Enterprise Server, refer to Book “Administration Guide”, Chapter 39 “Setting Up an FTP Server with YaST” for installation instructions. Downloading the installation data via anonymous login is not supported, therefore you need to configure the FTP server to support user authentication.

5.3.1.1.3 SUSE Linux Enterprise Server on DVD

DVD1 of the SUSE Linux Enterprise Server for IBM Z contains a bootable Linux image for Intel-based workstations and an image for IBM Z.

For Intel-based workstations, boot from this DVD, answer the questions regarding your language and keyboard layout, and select \textit{Start rescue system}. You need at least 64 MB RAM for this. No disk space is needed because the entire rescue system resides in the workstation’s RAM. This approach takes some Linux and networking experience, because you need to set up the networking of the workstation manually.

For IBM Z, IPL your LPAR/VM guest from this DVD as described in Section 5.3.4.1.2, “IPL from FCP-Attached SCSI DVD”. After entering your network parameters, the installation system treats the DVD as the source of installation data. Because IBM Z cannot have an X11-capable terminal attached directly, choose between VNC or SSH installation. SSH also provides a graphical installation by tunneling the X connection through SSH with \texttt{ssh -X}.

5.3.1.2 Using a Microsoft Windows Workstation

If there is a Microsoft Windows workstation available in your network, use this computer to make the installation media available. The easiest way to do this is to use the SMB protocol, already included in the Windows operating system. Be sure to activate \textit{SMB over TCP/IP} as this enables the encapsulation of SMB packages into TCP/IP packages. Find details in the Windows online help or other Windows-related documentation that covers networking. Another option is to use FTP. This also requires some third-party software for Windows.
5.3.1.2.1 With SMB

To make the installation media available with SMB, insert the SUSE Linux Enterprise Server DVD 1 into the DVD drive of the Windows workstation. Then create a new share using the DVD-ROM drive's letter and make it available for everyone in the network.

The installation path in YaST can be:

\[\text{smb://DOMAIN;USER:PW@SERVERNAME/SHAREPATH}\]

Where the placeholders mean:

- **DOMAIN**: Optional workgroup or active directory domain.
- **USER**, **PW**: Optional user name and password of a user who can access this server and its share.
- **SERVERNAME**: The name of the server that hosts the share(s).
- **SHAREPATH**: The path to the share(s).

5.3.1.2.2 With NFS

Refer to the documentation provided with the third party product that enables NFS server services for your Windows workstation. The DVD-ROM drive containing the SUSE Linux Enterprise Server DVDs must be in the available NFS path.

5.3.1.2.3 With FTP

Refer to the documentation provided with the third party product that is enabling FTP server services on your Windows workstation. The DVD-ROM drive containing the SUSE Linux Enterprise Server DVDs must be in the available FTP path.

The FTP server that is bundled with some Microsoft Windows releases implements only a subset of the FTP commands, and it is not suitable for providing the installation data. If this applies to your Windows workstation, use a third party FTP server providing the required features.
5.3.1.2.4 Using an FCP-Attached SCSI DVD Drive

After you IPLed from the SCSI DVD as described in Section 5.2.2.3, “Load from SCSI-Attached DVD”, the installation system uses the DVD as the installation medium. In that case, you do not need the installation media on an FTP, NFS, or SMB server. However, you need the network configuration data for your SUSE Linux Enterprise Server, because you must set up the network during the installation to perform a graphical installation by VNC or by X.

5.3.1.3 Using a Cobbler Server for zPXE

IPLing from the network requires a Cobbler server, to provide the kernel, initrd, and the installation data. Preparing the Cobbler server requires four steps:

- Importing the Installation Data
- Adding a Distribution
- Adding Profiles
- Adding Systems

5.3.1.3.1 Importing the Installation Data

Importing the media requires the installation source to be available on the Cobbler server—either from DVD or from a network source. Run the following command to import the data:

```
tux > sudo cobbler import --path=PATH --name=IDENTIFIER --arch=s390x
```

1. Mount point of the installation data.
2. A string identifying the imported product, for example “sles15_s390x”. This string is used as the name for the subdirectory where the installation data is copied to. On a Cobbler server running on SUSE Linux Enterprise this is `/srv/www/cobbler/ks_mirror/IDENTIFIER`. This path may be different if Cobbler runs on another operating system.
5.3.1.3.2 Adding a Distribution

By adding a distribution, you tell Cobbler to provide the kernel and the initrd required to IPL via zPXE. Run the following command on the Cobbler server to add SUSE Linux Enterprise Server for IBM Z:

```
tux > sudo cobbler distro add --arch=s390 --breed=suse --name="IDENTIFIER" \
   --os-version=sles15 \
   --initrd=/srv/www/cobbler/ks_mirror/IDENTIFIER/boot/s390x/initrd \
   --kernel=/srv/www/cobbler/ks_mirror/IDENTIFIER/boot/s390x/linux \
   --kopts="install=http://cobbler.example.com/cobbler/ks_mirror/IDENTIFIER" \
```

1. Custom identifier for the distribution, for example “SLES 15 SP1 IBM Z”. Must be unique.
2. Operating system identifier. Use sles15.
3. Path to the initrd. The first part of the path (/sr\v/www/cobbler/ks_mirror/IDENTIFIER/) depends on the location where Cobbler imported the data and the subdirectory name you chose when importing the installation data.
4. Path to the kernel. The first part of the path (/sr\v/www/cobbler/ks_mirror/IDENTIFIER/) depends on the location where Cobbler imported the data and the subdirectory name you chose when importing the installation data.
5. URL to the installation directory on the Cobbler server.

5.3.1.3.3 Adjusting the Profile

When adding a distribution (see Section 5.3.1.3.2, “Adding a Distribution”) a profile with the corresponding IDENTIFIER is automatically generated. Use the following command to make a few required adjustments:

```
tux > sudo cobbler distro edit \
   --name=IDENTIFIER \
   --os-version=sles10 \
   --ksmeta="" \
   --kopts="install=http://cobbler.example.com/cobbler/ks_mirror/IDENTIFIER" \
```

1. Identifier for the profile. Use the same string as specified when having added the distribution.
2. Operating system version. Distribution to which the profile should apply. You must use the string specified with --name=IDENTIFIER in the importing step here.
3. Option needed for templating kickstart files. Not used for SUSE, so set to an empty value as specified in the example.
Space-separated list of kernel parameters. Should include at least the `install` parameter as shown in the example.

5.3.1.3.4 Adding Systems

The last step that is required is to add systems to the Cobbler server. A system addition needs to be done for every IBM Z guest that should boot via zPXE. Guests are identified via their z/VM user ID (in the following example, an ID called “linux01” is assumed). Note that this ID needs to be a lowercase string. To add a system, run the following command:

```bash
sudo cobbler system add --name=linux01 --hostname=linux01.example.com --profile=IDENTIFIER --interface=qdio --ip-address=192.168.2.103 --subnet=192.168.2.255 --netmask=255.255.255.0 --name-servers=192.168.1.116 --name-servers-search=example.com --gateway=192.168.2.1 --kopts="KERNEL_OPTIONS"
```

With the `--kopts` option you can specify the kernel and installation parameters you would normally specify in the parmfile. The parameters are entered as a space-separated list in the form of `PARAMETER1=VALUE1 PARAMETER2=VALUE2`. The installer will prompt you for missing parameters. For a completely automated installation you need to specify all parameters for networking, DASDs and provide an AutoYaST file. The following shows an example for a guest equipped with an OSA interface using the same network parameters as above.

```bash
--kopts=""
AutoYaST=http://192.168.0.5/autoinst.xml
Hostname=linux01.example.com
Domain=example.com
HostIP=192.168.2.103
Gateway=192.168.2.1
Nameserver=192.168.1.116
Searchdns=example.com
InstNetDev=osa;
Netmask=255.255.255.0
Broadcast=192.168.2.255
OsaInterface=qdio
Layer2=0
PortNo=0
ReadChannel=0.0.0700
WriteChannel=0.0.0701
DataChannel=0.0.0702
DASD=600"
```
5.3.1.4 Installing from DVD or Flash Disk of the HMC

To install SUSE Linux Enterprise Server on IBM Z servers, usually a network installation source is needed. However, in certain environments, it could occur that this requirement cannot be fulfilled. With SUSE Linux Enterprise Server, you can use the existing DVD or the flash disk of the Hardware Management Console (HMC) as an installation source for installation on an LPAR.

To install from the media in the DVD or the flash disk of the HMC, proceed as follows:

- Add `install=hmc:/` to the `parmfle` (see Section 5.4, “The Parmfile—Automating the System Configuration”) or kernel options.

- Alternatively, in manual mode, in `linuxrc`, choose:
 - Start Installation, then
 - Installation, then
 - Hardware Management Console.

The installation medium must be inserted in the HMC.

⚠️ Important: Configure Network

Do not forget to configure the network in `linuxrc` before starting the installation. There is no way to pass on boot parameters later in time, and it is very likely that you will need network access. In `linuxrc`, go to Start Installation, then choose Network Setup.

⚠️ Important: Linux System Must Boot First

Before granting access to the media in the DVD or the flash disk of the HMC, wait until the Linux system is booting. IPLing can disrupt the connection between the HMC and the LPAR. If the first attempt to use the described method fails, you can grant the access and retry the option `HMC`.

📰 Note: Installation Repository

Because of the transitory nature of the assignment, the DVD or the flash disk files will not be kept as a repository for installation. If you need an installation repository, register and use the online repository.
5.3.2 Installation Types

This section provides information about which steps must be performed to install SUSE Linux Enterprise Server for each of the installation modes and where to find the appropriate information. When the preparation steps described in the previous chapters have been completed, follow the installation overview of the desired installation mode to install SUSE Linux Enterprise Server on your system.

As described in Section 5.3.1, “Making the Installation Data Available”, there are three different installation modes for Linux on IBM Z:

- LPAR installation
- z/VM installation
- KVM guest installation

PROCEDURE 5.1: OVERVIEW OF AN LPAR INSTALLATION

1. Prepare the devices needed for installation. See Section 5.3.3.1, “Preparing the IPL of an LPAR Installation”.

2. IPL the installation system. See Section 5.3.4.1, “IPLing an LPAR Installation”.

3. Configure the network. See Section 5.3.5, “Network Configuration”.

4. Connect to the SUSE Linux Enterprise Server installation system. See Section 5.3.6, “Connecting to the SUSE Linux Enterprise Server Installation System”.

5. Start the installation using YaST and IPL the installed system. See Chapter 8, Installation Steps.

PROCEDURE 5.2: INSTALLATION OVERVIEW OF Z/VM INSTALLATION

1. Prepare the devices needed for installation. See Section 5.3.3.2, “Adding Linux Guest to z/VM”.

2. IPL the installation system. See Section 5.3.4.2, “IPLing a z/VM Installation”.

3. Configure the network. See Section 5.3.5, “Network Configuration”.

4. Connect to the SUSE Linux Enterprise Server installation system. See Section 5.3.6, “Connecting to the SUSE Linux Enterprise Server Installation System”.

5. Start the installation using YaST and IPL the installed system. See Chapter 8, Installation Steps.
PROCEDURE 5.3: OVERVIEW OF A KVM GUEST INSTALLATION

1. Create a virtual disk image and write a domain XML file. See Section 5.3.3.3, “Preparing the IPL of a KVM Guest Installation”.

2. Prepare the installation target and IPL the VM Guest. See Section 5.3.4.3, “IPLing a KVM Guest Installation”.

3. Section 5.3.5.3, “Set Up the Network and Select the Installation Source”.

4. Connect to the SUSE Linux Enterprise Server installation system. See Section 5.3.6, “Connecting to the SUSE Linux Enterprise Server Installation System”.

5. Start the installation using YaST and IPL the installed system. See Chapter 8, Installation Steps.

5.3.3 Preparing the IPL of the SUSE Linux Enterprise Server Installation System

5.3.3.1 Preparing the IPL of an LPAR Installation

Configure your IBM Z system to start in ESA/S390 or Linux-only mode with an appropriate activation profile and IOCDS. Consult IBM documentation for more on how to achieve this. Proceed with Section 5.3.4.1, “IPLing an LPAR Installation”.

5.3.3.2 Adding Linux Guest to z/VM

The first step is to attach and format one or multiple DASDs in the system to be used by the Linux guest in z/VM. Next, create a new user in z/VM. The example shows the directory for a user LINUX1 with the password LNPWDM, 1 GB of memory (extendable up to 2 GB), 32 MB of expanded RAM (XSTORE), several minidisks (MDISK), two CPUs, and an OSA QDIO device.

Tip: Assigning Memory to z/VM guests

When assigning memory to a z/VM guest, make sure that the memory size suits the needs of your preferred installation type. See Section 5.1.1.1, “Memory Requirements”. To set the memory size to 1 GB, use the command `CP DEFINE STORAGE 1G`. After the installation has finished, reset the memory size to the desired value.
EXAMPLE 5.1: CONFIGURATION OF A Z/VM DIRECTORY

```
 USER LINUX1 LINPWD 1024M 2048M G
 *
 * LINUX1
 *
 * This VM Linux guest has two CPUs defined.

 CPU 01 CPUID 111111
 CPU 02 CPUID 111222
 IPL CMS PARM AUTOCR
 IUCV ANY
 IUCV ALLOW
 MACH ESA 10
 OPTION MAINTCCW RMCHINFO
 SHARE RELATIVE 2000
 CONSOLE 01C0 3270 A
 SPPOOL 000C 2540 READER *
 SPPOOL 000D 2540 PUNCH A
 SPPOOL 000E 3203 A
 * OSA QDIO DEVICE DEFINITIONS
 DEDICATE 9A0 9A0
 DEDICATE 9A1 9A1
 DEDICATE 9A2 9A2
 *
 LINK MAINT 0190 0190 RR
 LINK MAINT 019E 019E RR
 LINK MAINT 019D 019D RR
 *
 MINIDISK DEFINITIONS
 MDISK 201 3390 0001 0050 DASD40 MR ONE4ME TWO4ME THR4ME
 MDISK 150 3390 0052 0200 DASD40 MR ONE4ME TWO4ME THR4ME
 MDISK 151 3390 0253 2800 DASD40 MR ONE4ME TWO4ME THR4ME
```

This example uses minidisk 201 as the guest's home disk. Minidisk 150 with 200 cylinders is the Linux swap device. Disk 151 with 2800 cylinders holds the Linux installation.

Now add (as the user MAINT) the guest to the user directory with **DIRM FOR LINUX1 ADD**. Enter the name of the guest (**LINUX1**) and press **F5**. Set up the environment of the user with:

```
DIRM DIRECT
DIRM USER WITHPASS
```

The last command returns a reader file number. This number is needed for the next command:

```
RECEIVE <number> USER DIRECT A (REPL)
```

You can now log in on the guest as user LINUX1.
If you do not have the `dirmaint` option available, refer to the IBM documentation to set up this user.

Proceed with Section 5.3.4.2, “IPLing a z/VM Installation”.

5.3.3.3 Preparing the IPL of a KVM Guest Installation

A KVM guest installation requires a domain XML file defining the virtual machine and at least one virtual disk image for the installation.

5.3.3.3.1 Create a Virtual Disk Image

By default libvirt searches for disk images in `/var/lib/libvirt/images/` on the VM Host Server. Although images can also be stored anywhere on the file system, it is recommended to store all images in a single location for easier maintainability. The following example creates a qcow2 image with a size of 10 GB in `/var/lib/libvirt/images/`. For more information refer to Book “Virtualization Guide”, Chapter 29 “Guest Installation”, Section 29.2 “Managing Disk Images with `qemu-img`”.

1. Log in to the KVM host server.

2. Run the following command to create the image:

   ```
   tux > sudo qemu-img create -f qcow2 /var/lib/libvirt/images/s15lin_qcow2.img 10G
   ```

5.3.3.3.2 Write a Domain XML File

A domain XML file is used to define the VM Guest. To create the domain XML file open an empty file `s15-1.xml` with an editor and create a file like in the following example.

Example 5.2: Example Domain XML File

The following example creates a VM Guest with a single CPU, 1 GB RAM, and the virtual disk image created in the previous section (Section 5.3.3.3.1, “Create a Virtual Disk Image”). It assumes that the host network interface to which the virtual server is attached is `bond0`. Change the source devices element to match your network setup.

```xml
<domain type="kvm">
```
5.3.4 IPLing the SUSE Linux Enterprise Server Installation System

5.3.4.1 IPLing an LPAR Installation

There are different ways to IPL SUSE Linux Enterprise Server into an LPAR. The preferred way is to use the Load from CD-ROM or server feature of the SE or HMC.
5.3.4.1.1 IPL from DVD-ROM

Mark the LPAR to install and select Load from CD-ROM or server. Leave the field for the file location blank or enter the path to the root directory of the first DVD-ROM and select continue. In the list of options that appears, select the default selection. Operating system messages should now show the kernel boot messages.

5.3.4.1.2 IPL from FCP-Attached SCSI DVD

You can use the Load procedure by selecting SCSI as Load type to IPL from SCSI. Enter the WWPN (Worldwide port name) and LUN Logical unit number) provided by your SCSI bridge or storage (16 digits—do not omit the trailing 0s). The boot program selector must be 2. Use your FCP adapter as Load address and perform an IPL.

5.3.4.2 IPLing a z/VM Installation

This section is about IPLing the installation system to install SUSE Linux Enterprise Server for IBM Z on a z/VM system.

5.3.4.2.1 IPL from the z/VM Reader

You need a working TCP/IP connection and an FTP client program within your newly defined z/VM guest to transfer the installation system via FTP. Setting up TCP/IP for z/VM is beyond the scope of this manual. Refer to the appropriate IBM documentation.

Log in as the z/VM Linux guest to IPL. Make the content of the directory /boot/s390x of the Unified Installer media (DVD1) available via FTP within your network. From this directory, get the files linux, initrd, parmfile, and sles.exec. Transfer the files with a fixed block size of 80 characters. Specify it with the FTP command locsite fix 80. It is important to copy linux (the Linux kernel) and initrd (the installation image) as binary files, so use the binary transfer mode. parmfile and sles.exec need to be transferred in ASCII mode.

The example shows the steps necessary. In this example, the required files are accessible from an FTP server at the IP address 192.168.0.3 and the login is lininst. It may differ for your network.

EXAMPLE 5.3: TRANSFERRING THE BINARIES VIA FTP

| FTP 192.168.0.3 | VM TCP/IP FTP Level 530 |
Connecting to 192.168.0.3, port 21
220 ftpserver FTP server (Version wu-2.4.2-academ[BETA-18])(1)
Thu Feb 11 16:09:02 GMT 2010) ready.

USER
lininst
331 Password required for lininst
PASS

230 User lininst logged in.

Command:
binary
200 Type set to I

Command:
locsite fix 80

Command:
get /media/dvd1/boot/s390x/linux sles15.linux
200 PORT Command successful
150 Opening BINARY mode data connection for /media/dvd1/boot/s390x/linux
(10664192 bytes)
226 Transfer complete.
10664192 bytes transferred in 13.91 seconds.
Transfer rate 766.70 Kbytes/sec.

Command:
get /media/dvd1/boot/s390x/initrd sles12.initrd
200 PORT Command successful
150 Opening BINARY mode data connection for /media/dvd1/boot/s390x/initrd
(21403276 bytes)
226 Transfer complete.
21403276 bytes transferred in 27.916 seconds.
Transfer rate 766.70 Kbytes/sec.

Command:
ascii
200 Type set to A

Command:
get /media/dvd1/boot/s390x/parmfile sles12.parmfile
150 Opening ASCII mode data connection for /media/dvd1/boot/s390x/parmfile
(5 bytes)
226 Transfer complete.
5 bytes transferred in 0.092 seconds.
Transfer rate 0.05 Kbytes/sec.

Command:
get /media/dvd1/boot/s390x/sles.exec sles.exec
150 Opening ASCII mode data connection for /media/dvd1/boot/s390x/sles.exec
(891 bytes)
226 Transfer complete.
891 bytes transferred in 0.097 seconds.
Transfer rate 0.89 Kbytes/sec.
Use the REXX script sles.exec you downloaded to IPL the Linux installation system. This script loads the kernel, parmfile, and the initial RAM disk into the reader for IPL.

EXAMPLE 5.4: SLES12 EXEC

```rexx
/* REXX LOAD EXEC FOR SUSE LINUX S/390 VM GUESTS */
/* LOADS SUSE LINUX S/390 FILES INTO READER */
SAY ''
SAY 'LOADING SLES12 FILES INTO READER...'
'CP CLOSE RDR'
'PURGE RDR ALL'
'SPOOL PUNCH * RDR'
'PUNCH SLES12 LINUX A (NOH'
'PUNCH SLES12 PARMFILE A (NOH'
'PUNCH SLES12 INITRD A (NOH'
'IPL 00C'
```

With this script you can IPL the SUSE Linux Enterprise Server installation system with the command `sles12`. The Linux kernel then starts and prints its boot messages.

To continue the installation, proceed to Section 5.3.5, “Network Configuration”.

5.3.4.2.2 IPL from FCP-Attached SCSI DVD

To IPL in z/VM, prepare the SCSI IPL process by using the SET LOADDEV parameter:

```
SET LOADDEV PORTNAME 200400E8 00D74E00 LUN 00020000 00000000 BOOT 2
```

After setting the LOADDEV parameter with the appropriate values, IPL your FCP adapter, for example:

```
IPL FC00
```

To continue the installation, proceed with Section 5.3.5, “Network Configuration”.

5.3.4.2.3 IPL from a Cobbler Server with zPXE

To IPL from a Cobbler server with zPXE you need to transfer the `zpxe.rexx` script via FTP from the Cobbler server to your z/VM guest. The z/VM guest needs a working TCP/IP connection and an FTP client program.
Log in as the z/VM Linux guest to IPL and transfer the script with a fixed size of 80 characters in ASCII mode (see Example 5.3, “Transferring the Binaries via FTP” for an example). The `zpxe.rexx` script is available on the Unified Installer DVD at `/boot/s390x/zpxe.rexx` or on a SLE Cobbler server at `/usr/share/doc/packages/s390-tools/zpxe.rexx`.

`zpxe.rexx` is supposed to replace the `PROFILE EXEC` of your guest. Make a backup copy of the existing `PROFILE EXEC` and rename `ZPXE REXX` to `PROFILE EXEC`. Alternatively call `ZPXE REXX` from the existing `PROFILE EXEC` by using a new line with the following content: `ZPXE REXX`.

The last step is to create a configuration file, `ZPXE CONF`, telling `ZPXE REXX` which Cobbler server to contact and which disk to IPL. Run `xedit zpxe conf a` and create `ZPXE CONF` with the following content (replace the example data accordingly):

```
HOST cobbler.example.com
IPLDISK 600
```

On the next login to your z/VM guest, the Cobbler server will be connected. If an installation is scheduled on the Cobbler server, it will be executed. To schedule the installation, run the following command on the Cobbler server:

```
tux > sudo cobbler system edit --name ID --netboot-enabled 1 --profile PROFILENAME
```

1. z/VM user ID.
2. Enable IPLing from the network.
3. Name of an existing profile, see Section 5.3.1.3.3, “Adjusting the Profile”.

5.3.4.3 IPLing a KVM Guest Installation

To start the guest installation, you first need to start the VM Guest defined in Section 5.3.3.3.1, “Create a Virtual Disk Image”. A prerequisite for this is to first make the kernel and initrd required for IPLing available.

5.3.4.3.1 Preparing the installation source

Kernel and initrd of the installation system need to be copied to the VM Host Server to IPL the VM Guest into the installation system.

1. Log in to the KVM host and make sure you can connect to the remote host or device serving the installation source.
2. Copy the following two files from the installation source to `/var/lib/libvirt/images/`
 If the data is served from a remote host, use `ftp`, `sftp`, or `scp` to transfer the files:

 `/boot/s390x/initrd`
 `/boot/s390x/cd.ikr`

3. Rename the files on the KVM host:

   ```
   tux > sudo cd /var/lib/libvirt/images/
   tux > sudo mv initrd s15-initrd.boot
   tux > sudo mv cd.ikr s15-kernel.boot
   ```

5.3.4.3.2 IPL the VM Guest

To IPL the VM Guest, log in to the KVM host and run the following command:

   ```
   tux > virsh create s15-1.xml --console
   ```

After the start-up of the VM Guest has completed, the installation system starts and you will see the following message:

   ```
   Domain s15-1 started
   Connected to domain s15-1
   Escape character is ^]  
   Initializing cgroup subsys cpuset
   Initializing cgroup subsys cpu
   Initializing
   cgroup subsys cpuacct
   .
   .
   Please make sure your installation medium is available.
   Retry?
   0) <-- Back <--
   1) Yes
   2) No
   ```

Answer 2) No and choose `Installation` on the next step. Proceed as described in Section 5.3.5.3, “Set Up the Network and Select the Installation Source”.

5.3.5 Network Configuration

Wait until the kernel has completed its start-up routines. If you are installing in basic mode or in an LPAR, open the `Operating System Messages` on the HMC or SE.
First, choose *Start Installation* in the linuxrc main menu then *Start Installation or Update* to start the installation process. Select *Network* as your installation medium then select the type of network protocol you will be using for the installation. *Section 5.3.1, "Making the Installation Data Available"* describes how to make the installation data available for the various types of network connections. Currently, *FTP*, *HTTP*, *NFS*, and *SMB/CIFS* (Windows file sharing) are supported.

Now choose an OSA or HiperSockets network device over which to receive the installation data from the list of available devices. The list may also contain CTC, ESCON, or IUCV devices, but they are no longer supported on SUSE Linux Enterprise Server.

5.3.5.1 Configure a HiperSockets Interface

Select a Hipersocket device from the list of network devices. Then enter the numbers for the read, write and data channels:

EXAMPLE 5.5: SUPPORTED NETWORK CONNECTION TYPES AND DRIVER PARAMETERS

Choose the network device.

1. IBM parallel CTC Adapter (0.0.0600)
2. IBM parallel CTC Adapter (0.0.0601)
3. IBM parallel CTC Adapter (0.0.0602)
4. IBM Hipersocket (0.0.0800)
5. IBM Hipersocket (0.0.0801)
6. IBM Hipersocket (0.0.0802)
7. IBM OSA Express Network card (0.0.0700)
8. IBM OSA Express Network card (0.0.0701)
9. IBM OSA Express Network card (0.0.0702)
10. IBM OSA Express Network card (0.0.f400)
11. IBM OSA Express Network card (0.0.f401)
12. IBM OSA Express Network card (0.0.f402)
13. IBM IUCV

> 4

Device address for read channel. (Enter ‘+++’ to abort).

[0.0.0800]> 0.0.0800

Device address for write channel. (Enter ‘+++’ to abort).

[0.0.0801]> 0.0.0801

Device address for data channel. (Enter ‘+++’ to abort).

[0.0.0802]> 0.0.0802
5.3.5.2 Configure an OSA Express Device

Select an OSA Express device from the list of network devices and provide a port number. Then enter the numbers for the read, write and data channels and the port name, if applicable. Choose whether to enable OSI Layer 2 support.

The port number was added to support the new 2 port OSA Express 3 Network devices. If you are not using an OSA Express 3 device, enter 0. OSA Express cards also have the option of running in an “OSI layer 2 support” mode or using the older more common “layer 3” mode. The card mode affects all systems that share the device including systems on other LPARs. If in doubt, specify 2 for compatibility with the default mode used by other operating systems such as z/VM and z/OS. Consult with your hardware administrator for further information on these options.

EXAMPLE 5.6: NETWORK DEVICE DRIVER PARAMETERS

Choose the network device.

1) IBM parallel CTC Adapter (0.0.0600)
2) IBM parallel CTC Adapter (0.0.0601)
3) IBM parallel CTC Adapter (0.0.0602)
4) IBM Hipersocket (0.0.0800)
5) IBM Hipersocket (0.0.0801)
6) IBM Hipersocket (0.0.0802)
7) IBM OSA Express Network card (0.0.0700)
8) IBM OSA Express Network card (0.0.0701)
9) IBM OSA Express Network card (0.0.0702)
10) IBM OSA Express Network card (0.0.f400)
11) IBM OSA Express Network card (0.0.f401)
12) IBM OSA Express Network card (0.0.f402)
13) IBM IUCV

> 7

Enter the relative port number. (Enter ‘+++’ to abort).
> 0

Device address for read channel. (Enter ‘+++’ to abort).
[0.0.0700]> 0.0.0700

Device address for write channel. (Enter ‘+++’ to abort).
[0.0.0701]> 0.0.0701

Device address for data channel. (Enter ‘+++’ to abort).
[0.0.0702]> 0.0.0702

Enable OSI Layer 2 support?
5.3.5.3 Set Up the Network and Select the Installation Source

When all network device parameters have been entered, the respective driver is installed and you see the corresponding kernel messages.

Next, decide whether to use DHCP automatic configuration for setting up the network interface parameters. Because DHCP only works on a few devices and requires special hardware configuration settings, you probably want to say NO here. When you do so, you are prompted for the following networking parameters:

- The IP address of the system to install
- The corresponding netmask (if not having been specified with the IP address)
- The IP address of a gateway to reach the server
- A list of search domains covered by the domain name server (DNS)
- The IP address of your domain name server

EXAMPLE 5.7: NETWORKING PARAMETERS

Automatic configuration via DHCP?

0) <-- Back <--
1) Yes
2) No

> 2

Enter your IP address with network prefix.

You can enter more than one, separated by space, if necessary.
Leave empty for autoconfig.
Finally, you are prompted for details on the installation server, such as the IP address, the directory containing the installation data, and login credentials. Once all required data is entered, the installation system loads.

5.3.6 Connecting to the SUSE Linux Enterprise Server Installation System

After having loaded the installation system, linuxrc wants to know what type of display you want to use to control the installation procedure. Possible choices are **X11** (X Window System), **VNC** (Virtual Network Computing protocol), **SSH** (text mode or X11 installation via Secure Shell), or **ASCII Console**. Selecting **VNC** or **SSH** is recommended.

When selecting the latter (**ASCII Console**), YaST will be started in text mode and you can perform the installation directly within your terminal. See *Book “Administration Guide”, Chapter 5 “YaST in Text Mode”* for instructions on how to use YaST in text mode. Using the **ASCII Console** is only useful when installing into LPAR.

Note: Terminal Emulation for ASCII Console

To work with YaST in text mode, it needs to run in a terminal with VT220/Linux emulation (also called **ASCII console**). You cannot use YaST in a 3270 terminal, for example.
5.3.6.1 Initiating the Installation for VNC

To remotely control an installation via VNC, follow these steps:

1. After the installation option VNC has been chosen, the VNC server starts. A short note displayed in the console provides information about which IP address and display number is needed for a connection with vncviewer. Alternatively, a URL is given here for your JavaScript-enabled browser to connect to the installation system.

2. Start a VNC client application on your client system. Either use vncviewer, or the VNC JavaScript client and a JavaScript-enabled Web browser.

3. Enter the IP address and the display number of the SUSE Linux Enterprise Server installation system when prompted to do so.

4. If you connect via a JavaScript-enabled browser, enter a URL containing the IP address of the installation system and the appropriate port number in the format:

   ```
   http://<IP address of installation system>:5801/
   ```

5. After the connection has been established, start installing SUSE Linux Enterprise Server with YaST.

5.3.6.2 Initiating the Installation for the X Window System

⚠️ Important: X Authentication Mechanism

The direct installation with the X Window System relies on a primitive authentication mechanism based on host names. This mechanism is disabled on current SUSE Linux Enterprise Server versions. Installation with SSH or VNC is preferred.

To remotely control an installation via X forwarding, follow these steps:

1. Make sure that the X server allows the client (the system that is installed) to connect. Set the variable `DISPLAYMANAGER_XSERVER_TCP_PORT_6000_OPEN="yes"` in the file `/etc/sysconfig/displaymanager`. Then restart the X server and allow client binding to the server using `xhost CLIENT_IP_ADDRESS`.

2. When prompted at the installation system, enter the IP address of the machine running the X server.
3. Wait until YaST opens then start the installation.

5.3.6.3 Initiating the Installation for SSH

To connect to an installation system with the name `earth` using SSH, execute `ssh -X earth`. If your workstation runs on Microsoft Windows, use the SSH and telnet client and terminal emulator Putty which is available from http://www.chiark.greenend.org.uk/~sgtatham/putty/. Set `Enable X11 forwarding` in Putty under `Connection > SSH > X11`. If you use another operating system, execute `ssh -X earth` to connect to an installation system with the name `earth`. X-Forwarding over SSH is supported if you have a local X server available. Otherwise, YaST provides a text interface over ncurses.

A login prompt appears. Enter `root` and log in with your password. Enter `yast.ssh` to start YaST. YaST then guides you through the installation.

⚠️ Important: Fixing YaST over SSH Issue

In certain situations, running the GUI version of YaST over SSH with X forwarding may fail with the following error message:

```
XIO: fatal IO error 11 (Resource temporarily unavailable) on X server
"localhost:11.0"
```

In this case you have two options.

- Run YaST with the `QT_XCB_GL_INTEGRATION=none` option, for example:

```
QT_XCB_GL_INTEGRATION=none yast.ssh
QT_XCB_GL_INTEGRATION=none yast2 disk
```

- Run the ncurses version of YaST application by disabling X forwarding or by specifying ncurses as the desired UI. To do the latter, use the `yast2 disk --ncurses` or `YUI_PREFERED_BACKEND=ncurses yast2 disk` command.

Proceed with the detailed description of the installation procedure that can be found in Chapter 8, Installation Steps.
5.3.7 The SUSE Linux Enterprise Server Boot Procedure on IBM Z

On SLES 10 and 11 the boot process was handled by the zipl boot loader. To enable booting from Btrfs partitions and supporting system rollbacks with Snapper, the way SUSE Linux Enterprise Server is booted on IBM Z has changed.

GRUB 2 replaces zipl on SUSE Linux Enterprise Server for IBM Z. GRUB 2 on the AMD64/Intel 64 architecture includes device drivers on the firmware level to access the file system. On the mainframe there is no firmware and adding `ccw` to GRUB 2 would not only be a major undertaking, but would also require a reimplementation of zipl in GRUB 2. Therefore SUSE Linux Enterprise Server uses a two-stage approach:

Stage One:

A separate partition containing the kernel and an initrd is mounted to `/boot/zipl` (somewhat similar to `/boot/efi` on UEFI platforms). This kernel and the initrd are loaded via zipl using the configuration from `/boot/zipl/config`. This configuration adds the keyword `initgrub` to the kernel command line. When the kernel and initrd are loaded, the initrd activates the devices required to mount the root file system (see `/boot/zipl/active_devices.txt`). Afterward a GRUB 2 user space program is started, which reads `/boot/grub2/grub.cfg`.

Stage Two:

The kernel and the initrd specified in `/boot/grub2/grub.cfg` are started via `kexec`. Devices listed in `/boot/zipl/active_devices.txt` that are necessary for starting the on-disk system will be activated. Other devices from that list will be whitelisted, but otherwise ignored. The root file system is mounted and the boot procedure continues like on the other architectures.

For more details on the boot process, refer to Book “Administration Guide”, Chapter 12 “Introduction to the Boot Process”.
5.4 The Parmfile—Automating the System Configuration

The installation process can be partly automated by specifying the crucial parameters in the parmfile. The parmfile contains all the data required for network setup and DASD configuration. In addition to that, it can be used to set up the connection method to the SUSE Linux Enterprise Server installation system and the YaST instance running there. User interaction is thus limited to the actual YaST installation controlled by YaST dialogs.

The following parameters can be passed to the installation routine, which takes them as default values for installation. All IP addresses, server names, and numerical values are examples. Replace these values with the ones needed in your installation scenario.

The number of lines in the parmfile is limited to 10. Specify more than one parameter on a line. Parameter names are not case-sensitive. Separate the parameters by spaces. You may specify the parameters in any order. Always keep the PARAMETER=value string together in one line. For example:

```
Hostname=s390zvm01.suse.de HostIP=10.11.134.65
```

Tip: Using IPv6 during the Installation

By default you can only assign IPv4 network addresses to your machine. To enable IPv6 during installation, enter one of the following parameters at the boot prompt: `ipv6=1` (accept IPv4 and IPv6) or `ipv6only=1` (accept IPv6 only).

Some boot parameters are required. If they are missing, the automatic process pauses and asks you to enter the value manually.

A list of available boot parameters is available at Chapter 7, Boot Parameters.

5.5 Example Parmfiles

The maximum capacity of a parmfile is 860 characters. As a rule of thumb, the parmfile should contain a maximum of 10 lines with no more than 80 characters. When reading a parmfile, all lines are concatenated without adding white spaces, therefore the last character (80) of each line needs to be a `Space`.

To receive potential error messages on the console, use
EXAMPLE 5.8: PARMFILE FOR AN INSTALLATION FROM NFS WITH VNC AND AUTOYAST

```plaintext
ramdisk_size=131072 root=/dev/ram1 ro init=/linuxrc TERM=dumb instnetdev=osa osainterface=qdio layer2=1 osahwaddr=
pointopoint=192.168.0.1 hostip=192.168.0.2
nameserver=192.168.0.3
install=nfs://192.168.0.4/SLES/SLES-12-Server/s390x/DVD1
autoyast=http://192.168.0.5/autoinst.xml
linuxrclog=/dev/console vnc=1 VNCPassword=testing
```

EXAMPLE 5.9: PARMFILE FOR INSTALLATION WITH NFS, SSH, AND HSI AND AUTOYAST WITH NFS

```plaintext
ramdisk_size=131072 root=/dev/ram1 ro init=/linuxrc TERM=dumb
AutoYast=nfs://192.168.1.1/autoinst/s390.xml
Hostname=zsystems.example.com HostIP=192.168.1.2
Gateway=192.168.1.3 Nameserver=192.168.1.4
InstNetDev=hsi layer2=0
Netmask=255.255.255.128 Broadcast=192.168.1.255
readchannel=0.0.702c writechannel=0.0.702d datachannel=0.0.702e
install=nfs://192.168.1.5/SLES-12-Server/s390x/DVD1/
ssh=1 ssh.password=testing linuxrclog=/dev/console
```

EXAMPLE 5.10: PARMFILE FOR INSTALLATION IN VLAN

```plaintext
ro ramdisk_size=50000 MANUAL=0 PORTNO=1 ReadChannel=0.0.b140
WriteChannel=0.0.b141 DataChannel=0.0.b142
cio_ignore=all,aticondev,0.0.b140-0.0.b142,0.0.e92c,0.0.5000,0.0.5040
HostIP= Gateway= Hostname=zsystems.example.com nameserver=192.168.0.1
Install=ftp://user:password@10.0.0.1/s390x/SLES15.0/INST/ usevnc=1
vncpassword=12345 InstNetDev=osa Layer2=1 OSAInterface=qdio ssl_certs=0
osahwaddr= domain=example.com self_update=0
vlanid=201
```

5.6 Using the vt220 Terminal Emulator

Recent MicroCode Levels allow the use of an integrated vt220 terminal emulator (ASCII terminal) in addition to the standard line mode terminal. The vt220 terminal is connected to /dev/ttysclp0. The line mode terminal is connected to /dev/ttysclp_line0. For LPAR installations, the vt220 terminal emulator is activated by default.
To start the ASCII console on HMC, log in to the HMC, and select Systems Management > Systems > IMAGE_ID. Select the radio button for the LPAR and select Recovery > Integrated ASCII Console.

To redirect the kernel messages at boot time from the system console to the vt220 terminal, add the following entries to the parameters line in /etc/zipl.conf:

```console=ttysclp0 console=ttysclp_line0```

The resulting parameters line would look like the following example:

```parameters = "root=/dev/dasda2 TERM=dumb console=ttysclp0 console=ttysclp_line0"``` 

Save the changes in /etc/zipl.conf, run zipl, and reboot the system.

5.7 Further In-Depth Information about IBM Z

5.7.1 General Documents about Linux on IBM Z

A general coverage of Linux on IBM Z can be found in the following documents:

- Linux on IBM eServer zSeries and S/390: ISP and ASP Solutions (SG24-6299)

These documents might not reflect the current state of Linux, but the principles of Linux deployment outlined there remain accurate.

5.7.2 Technical Issues of Linux on IBM Z

Refer to the following documents to get in-depth technical information about the Linux kernel and application topics. Refer to the Internet for up-to-date versions of these documents for the most recent code drop (http://www.ibm.com/developerworks/linux/linux390/index.html).
- Linux on System z Device Drivers, Features, and Commands
- zSeries ELF Application Binary Interface Supplement
- Linux on System z Device Drivers, Using the Dump Tools
- IBM zEnterprise 196 Technical Guide
- IBM zEnterprise EC12 Technical Guide
- IBM z13 Technical Guide
- IBM z14 Technical Guide

There also is a Redbook for Linux application development at http://www.redbooks.ibm.com:

- Linux on IBM eServer zSeries and S/390: Application Development (SG24-6807)

5.7.3 Advanced Configurations for Linux on IBM Z

Refer to the following Redbooks, Redpapers, and links for some more complex IBM Z scenarios:

- Linux on IBM eServer zSeries and S/390: Large Scale Deployment (SG24-6824)
- Linux on IBM eServer zSeries and S/390: Performance Measuring and Tuning (SG24-6926)
- Linux with zSeries and ESS: Essentials (SG24-7025)
- IBM TotalStorage Enterprise Storage Server Implementing ESS Copy Services with IBM eServer zSeries (SG24-5680)
- Linux on IBM zSeries and S/390: High Availability for z/VM and Linux (REDP-0220)
- Saved Segments Planning and Administration
- Linux on System z documentation for "Development stream"
6 Installation on Hardware Not Supported at Release

With some newer hardware, the installation medium of SUSE Linux Enterprise Serv-
er cannot boot. This can be the case when the hardware did not exist at the time of
the release of SUSE Linux Enterprise Server. For such a situation SUSE provides *Kernel Update ISO (kISO)* images. This chapter describes how to use the Kernel Update
to install SUSE Linux Enterprise Server on current hardware.

6.1 Download Kernel Update

Kernel Update ISO images are available on the SUSE SolidDriver home page. Use https://driver-
s.suse.com to search for bootable ISO images for your vendor and operating system version.

You can download the full ISO image or only the *initrd* and *linux* files. The ISO usually
needs to be burned to a CD or DVD. The *initrd* and *linux* files can be used for a PXE boot.
For details about booting via PXE, see *Chapter 17, Preparing Network Boot Environment*.

6.2 Boot Kernel Update

To use the Kernel Update, boot from the DVD or via PXE. When the *linux* and the *initrd* are
loaded, you will be asked to insert the installation DVD.

You can use the boot parameters described in *Chapter 7, Boot Parameters*. This allows using other
installation sources than the installation DVD.
II Installation Procedure

7 Boot Parameters 66
8 Installation Steps 83
9 Registering SUSE Linux Enterprise and Managing Modules/Extensions 133
10 Expert Partitioner 143
11 Remote Installation 162
12 Troubleshooting 171
7 Boot Parameters

SUSE Linux Enterprise Server allows setting several parameters during boot, for example choosing the source of the installation data or setting the network configuration.

Using the appropriate set of boot parameters helps simplify your installation procedure. Many parameters can also be configured later using the linuxrc routines, but using the boot parameters is easier. In some automated setups, the boot parameters can be provided with \texttt{initrd} or an \texttt{info} file.

The way the system is started for the installation depends on the architecture—system startup is different for PC (AMD64/Intel 64) or mainframe, for example. If you install SUSE Linux Enterprise Server as a VM Guest on a KVM or Xen hypervisor, follow the instructions for the AMD64/Intel 64 architecture.

\begin{itemize}
\item \textbf{Note: Boot Options and Boot Parameters} \\
\begin{itemize}
\item The terms \textit{Boot Parameters} and \textit{Boot Options} are often used interchangeably. In this documentation, we mostly use the term \textit{Boot Parameters}.
\end{itemize}
\end{itemize}

7.1 Using the Default Boot Parameters

The boot parameters are described in detail in \textit{Chapter 8, Installation Steps}. Generally, selecting \textit{Installation} starts the installation boot process.

If problems occur, use \textit{Installation—ACPI Disabled} or \textit{Installation—Safe Settings}. For more information about troubleshooting the installation process, refer to \textit{Chapter 12, Troubleshooting}.

The menu bar at the bottom of the screen offers some advanced functionality needed in some setups. Using the function keys (\texttt{F1} ... \texttt{F12}), you can specify additional options to pass to the installation routines without having to know the detailed syntax of these parameters (see \textit{Chapter 7, Boot Parameters}). A detailed description of the available function keys is available in \textit{Section 7.2.1, “The Boot Screen on Machines Equipped with Traditional BIOS”}.
7.2 PC (AMD64/Intel 64/Arm AArch64)

This section describes changing the boot parameters for AMD64, Intel 64, and Arm AArch64.

7.2.1 The Boot Screen on Machines Equipped with Traditional BIOS

The boot screen displays several options for the installation procedure. *Boot from Hard Disk* boots the installed system and is selected by default, because the CD is often left in the drive. Select one of the other options with the arrow keys and press [Enter] to boot it. The relevant options are:

Installation

The normal installation mode. All modern hardware functions are enabled. In case the installation fails, see [F5] *Kernel* for boot parameters that disable potentially problematic functions.

Upgrade

Perform a system upgrade. For more information refer to Book “Upgrade Guide”, Chapter 1 “Upgrade Paths and Methods”.

More > Rescue System

Starts a minimal Linux system without a graphical user interface. For more information, see Book “Administration Guide”, Chapter 44 “Common Problems and Their Solutions”, Section 44.5.2 “Using the Rescue System”.

More > Boot Linux System

Boot a Linux system that is already installed. You will be asked from which partition to boot the system.

More > Check Installation Media

This option is only available when you install from media created from downloaded ISOs. In this case it is recommended to check the integrity of the installation medium. This option starts the installation system before automatically checking the media. In case the check was successful, the normal installation routine starts. If a corrupt media is detected, the installation routine aborts. Replace the broken medium and restart the installation process.

More > Memory Test

Tests your system RAM using repeated read and write cycles. Terminate the test by rebooting. For more information, see Section 12.4, “Boot Failure”.
FIGURE 7.1: THE BOOT SCREEN ON MACHINES WITH A TRADITIONAL BIOS

Use the function keys shown at the bottom of the screen to change the language, screen resolution, installation source or to add an additional driver from your hardware vendor:

F1 Help
Get context-sensitive help for the active element of the boot screen. Use the arrow keys to navigate, [Enter] to follow a link, and [Esc] to leave the help screen.

F2 Language
Select the display language and a corresponding keyboard layout for the installation. The default language is English (US).

F3 Video Mode
Select various graphical display modes for the installation. By Default the video resolution is automatically determined using KMS (“Kernel Mode Setting”). If this setting does not work on your system, choose No KMS and, optionally, specify `vga=ask` on the boot command line to get prompted for the video resolution. Choose Text Mode if the graphical installation causes problems.

F4 Source
Normally, the installation is performed from the inserted installation medium. Here, select other sources, like FTP or NFS servers. If the installation is deployed on a network with an SLP server, select an installation source available on the server with this option. Find information about setting up an installation server with SLP at *Chapter 16, Setting Up a Network Installation Source*.

F5 Kernel

If you encounter problems with the regular installation, this menu offers to disable a few potentially problematic functions. If your hardware does not support ACPI (advanced configuration and power interface) select *No ACPI* to install without ACPI support. *No local APIC* disables support for APIC (Advanced Programmable Interrupt Controllers) which may cause problems with some hardware. *Safe Settings* boots the system with the DMA mode (for CD/DVD-ROM drives) and power management functions disabled.

If you are not sure, try the following options first: *Installation—ACPI Disabled* or *Installation—Safe Settings*. Experts can also use the command line (*Boot Options*) to enter or change kernel parameters.

F6 Driver

Press this key to notify the system that you have an optional driver update for SUSE Linux Enterprise Server. With *File* or *URL*, load drivers directly before the installation starts. If you select *Yes*, you are prompted to insert the update disk at the appropriate point in the installation process.

Tip: Getting Driver Update Disks

Driver updates for SUSE Linux Enterprise are provided at http://drivers.suse.com/. These drivers have been created via the SUSE SolidDriver Program.

7.2.2 The Boot Screen on Machines Equipped with UEFI

UEFI (Unified Extensible Firmware Interface) is a new industry standard which replaces and extends the traditional BIOS. The latest UEFI implementations contain the “Secure Boot” extension, which prevents booting malicious code by only allowing signed boot loaders to be executed. See *Book “Administration Guide”, Chapter 13 “UEFI (Unified Extensible Firmware Interface)”* for more information.
The boot manager GRUB 2, used to boot machines with a traditional BIOS, does not support UEFI, therefore GRUB 2 is replaced with GRUB 2 for EFI. If Secure Boot is enabled, YaST will automatically select GRUB 2 for EFI for installation. From an administrative and user perspective, both boot manager implementations behave the same and are called **GRUB 2** in the following.

Tip: Using Additional Drivers with Secure Boot

When installing with Secure Boot enabled, you cannot load drivers that are not shipped with SUSE Linux Enterprise Server. This is also true of drivers shipped via SolidDriver, because their signing key is not trusted by default.

To load drivers not shipped with SUSE Linux Enterprise Server, do either of the following:

- Before the installation, add the needed keys to the firmware database via `firmware/system management tools`.
- Use a bootable ISO that will enroll the needed keys in the MOK list on the first boot.

For more information, see Book “Administration Guide”, Chapter 13 “UEFI (Unified Extensible Firmware Interface)”, Section 13.1 “Secure Boot”.

The boot screen displays several options for the installation procedure. Change the selected option with the arrow keys and press `Enter` to boot it. The relevant options are:

Installation

The normal installation mode. All modern hardware functions are enabled. In case the installation fails, see `FS Kernel` for boot parameters that disable potentially problematic functions.

Upgrade

Perform a system upgrade. For more information refer to Book “Upgrade Guide”, Chapter 1 “Upgrade Paths and Methods”.

More > Rescue System

Starts a minimal Linux system without a graphical user interface. For more information, see Book “Administration Guide”, Chapter 44 “Common Problems and Their Solutions”, Section 44.5.2 “Using the Rescue System”.

More > Boot Linux System
Boot a Linux system that is already installed. You will be asked from which partition to boot the system.

More > Check Installation Media

This option is only available when you install from media created from downloaded ISOs. In this case it is recommended to check the integrity of the installation medium. This option starts the installation system before automatically checking the media. In case the check was successful, the normal installation routine starts. If a corrupt media is detected, the installation routine aborts.

FIGURE 7.2: THE BOOT SCREEN ON MACHINES WITH UEFI

GRUB 2 for EFI on SUSE Linux Enterprise Server does not support a boot prompt or function keys for adding boot parameters. By default, the installation will be started with American English and the boot media as the installation source. A DHCP lookup will be performed to configure the network. To change these defaults or to add boot parameters you need to edit the respective boot entry. Highlight it using the arrow keys and press **E**. See the on-screen help for editing hints (note that only an English keyboard is available now). The *Installation* entry will look similar to the following:

```
setparams 'Installation'
set gfxpayload=keep
```
Add space-separated parameters to the end of the line starting with `linuxefi`. To boot the edited entry, press [F10]. If you access the machine via serial console, press [Esc]-[0]. A complete list of parameters is available at http://en.opensuse.org/Linuxrc.

7.3 List of Important Boot Parameters

This section contains a selection of important boot parameters.

7.3.1 General Boot Parameters

autoyast= URL

The `autoyast` parameter specifies the location of the `autoinst.xml` control file for automatic installation.

manual=<0|1>

The `manual` parameter controls whether the other parameters are only default values that still must be acknowledged by the user. Set this parameter to 0 if all values should be accepted and no questions asked. Setting `autoyast` implies setting `manual` to 0.

Info= URL

Specifies a location for a file from which to read additional options.

This helps to overcome the limitations of 10 lines (and 80 characters per line under z/VM) for the parmfile. More documentation on the Info file can be found in . Since the Info file can typically only be accessed through the network on IBM Z, you cannot use it to specify options required to set up the network (these options are described in Section 7.3.2, “Configuring the Network Interface”). Also other linuxrc specific options such as for debugging need to be specified in the parmfile to be effective.

upgrade=<0|1>

To upgrade SUSE Linux Enterprise Server, specify `Upgrade=1`.

A custom parmfile is required for upgrading an existing installation of SUSE Linux Enterprise. Without this parameter, the installation provides no upgrade option.
Load driver updates from URL.

Set dud=ftp://ftp.example.com/PATH_TO_DRIVER or dud=http://www.example.com/PATH_TO_DRIVER to load drivers from a URL. When dud=1 you will be asked for the URL during boot.

Set the installation language. Some supported values are cs_CZ, de_DE, es_ES, fr_FR, ja_JP, pt_BR, pt_PT, ru_RU, zh_CN, and zh_TW.

Disable ACPI support.

No logical APIC.

Disable KMS.

Start installer in text mode.

SERIAL_DEVICE can be an actual serial or parallel device (for example ttyS0) or a virtual terminal (for example tty1). MODE is the baud rate, parity and stop bit (for example 9600n8). The default for this setting is set by the mainboard firmware. If you do not see output on your monitor, try setting console=tty1. It is possible to define multiple devices.

Configuring the Network Interface

Important: Configuring the Network Interface

The settings discussed in this section apply only to the network interface used during installation. Configure additional network interfaces in the installed system by following the instructions given in Book “Administration Guide”, Chapter 19 “Basic Networking”, Section 19.5 “Configuring a Network Connection Manually”.

The network will only be configured if it is required during the installation. To force the network to be configured, use the netsetup parameter.
netsetup=VALUE

- netsetup=dhcp forces a configuration via DHCP. Set netsetup=-dhcp when configuring the network with the boot parameters hostip, gateway and nameserver. With the option netsetup=hostip,netmask,gateway,nameserver the installer asks for the network settings during boot.

ifcfg=INTERFACE[.VLAN]=SETTINGS

- INTERFACE can be * to match all interfaces or, for example, eth* to match all interfaces that start with eth. It is also possible to use MAC addresses as values.
 - Optionally, a VLAN can be set behind the interface name, separated by a period.
 - If SETTINGS is dhcp, all matching interfaces will be configured with DHCP. It is possible to set static parameters. With static parameters, only the first matching interface will be configured. The syntax for the static configuration is:

```plaintext
ifcfg=*="IPS_NETMASK,GATEWAYS,NAMESERVERS,DOMAINS"
```

- Each comma separated value can in turn contain a list of space character separated values. IPS_NETMASK is in the CIDR notation, for example 10.0.0.1/24. The quotes are only needed when using space character separated lists. Example with two name servers:

```plaintext
ifcfg=*="10.0.0.10/24,10.0.0.1,10.0.0.1 10.0.0.2,example.com"
```

Tip: Other Networking Parameters

The ifcfg boot parameter is very powerful and allows you to set almost all networking parameters. In addition to the parameters mentioned above, you can set values for all configuration options (comma separated) from /etc/sysconfig/network/ifcfg.template and /etc/sysconfig/network/config. The following example sets a custom MTU size on an interface otherwise configured via DHCP:

```plaintext
ifcfg=eth0=dhcp,MTU=1500
```

hostname=host.example.com

- Enter the fully qualified host name.

domain=example.com

- Domain search path for DNS. Allows you to use short host names instead of fully qualified ones.
hostip=192.168.1.2[/24]

Enter the IP address of the interface to configure. The IP can contain the subnet mask, for example `hostip=192.168.1.2/24`. This setting is only evaluated if the network is required during the installation.

gateway=192.168.1.3

Specify the gateway to use. This setting is only evaluated if the network is required during the installation.

nameserver=192.168.1.4

Specify the DNS server in charge. This setting is only evaluated if the network is required during the installation.

domain=example.com

Domain search path. This setting is only evaluated if the network is required during the installation.

7.3.3 Specifying the Installation Source

If you are not using the DVD for installation, specify an alternative installation source.

install=SOURCE

Specify the location of the installation source to use. Possible protocols are cd, hd, slp, nfs, smb (Samba/CIFS), ftp, tftp, http, and https. Not all source types are available on all platforms. For example IBM Z does not support cd and hd. The default option is cd.

If an ftp, tftp or smb URL is given, specify the user name and password with the URL. These parameters are optional and anonymous or guest login is assumed if they are not given. Example:

install=ftp://USER:PASSWORD@SERVER/DIRECTORY/DVD1/

To install over an encrypted connection, use an https URL. If the certificate cannot be verified, use the sslcerts=0 boot parameter to disable certificate checking.

In case of a Samba or CIFS installation, you can also specify the domain that should be used:

install=smb://WORKDOMAIN;USER:PASSWORD@SERVER/DIRECTORY/DVD1/

To use cd, hd or slp, set them as the following example:

install=cd:
7.3.4 Specifying Remote Access

Only one of the different remote control methods should be specified at a time. The different methods are: SSH, VNC, remote X server. For information about how to use the parameters listed in this section, see Chapter 11, Remote Installation.

display_ip=IP_ADDRESS

Display_IP causes the installing system to try to connect to an X server at the given address.

Important: X Authentication Mechanism

The direct installation with the X Window System relies on a primitive authentication mechanism based on host names. This mechanism is disabled on current SUSE Linux Enterprise Server versions. Installation with SSH or VNC is preferred.

vnc=1

Enables a VNC server during the installation.

vncpassword=PASSWORD

Sets the password for the VNC server.

ssh=1

ssh enables SSH installation.

ssh.password=PASSWORD

Specifies an SSH password for the root user during installation.

7.4 Advanced Setups

To configure access to a local RMT or supportconfig server for the installation, you can specify boot parameters to set up these services during installation. The same applies if you need IPv6 support during the installation.
7.4.1 Providing Data to Access an RMT Server

By default, updates for SUSE Linux Enterprise Server are delivered by the SUSE Customer Center. If your network provides a so called RMT server to provide a local update source, you need to equip the client with the server's URL. Client and server communicate solely via HTTPS protocol, therefore you also need to enter a path to the server's certificate if the certificate was not issued by a certificate authority.

⚠️ Note: Non-Interactive Installation Only

Providing parameters for accessing an RMT server is only needed for non-interactive installations. During an interactive installation the data can be provided during the installation (see Section 8.7, “Registration” for details).

regurl
URL of the RMT server. This URL has a fixed format of https://FQN/center/regsvc/. FQN needs to be a fully qualified host name of the RMT server. Example:

```
regurl=https://smt.example.com/center/regsvc/
```

Make sure the values you enter are correct. If `regurl` has not been specified correctly, the registration of the update source will fail.

regcert
Location of the RMT server's certificate. Specify one of the following locations:

- **URL**
 Remote location (HTTP, HTTPS or FTP) from which the certificate can be downloaded. In case `regcert` is not specified, it will default to http://FQN/smt.crt with FQN being the name of the RMT server. Example:

```
regcert=http://rmt.example.com/smt-ca.crt
```

- **local path**
 Absolute path to the certificate on the local machine. Example:

```
regcert=/data/inst/smt/smt-ca.cert
```

- **Interactive**
 Use `ask` to open a pop-up menu during the installation where you can specify the path to the certificate. Do not use this option with AutoYaST. Example
Deactivate certificate installation

Use \texttt{done} if the certificate will be installed by an add-on product, or if you are using a certificate issued by an official certificate authority. For example:

\begin{verbatim}
regcert=done
\end{verbatim}

7.4.2 Configuring an Alternative Data Server for \texttt{supportconfig}

The data that \texttt{supportconfig} (see \textit{Book “Administration Guide”, Chapter 43 “Gathering System Information for Support”} for more information) gathers is sent to the SUSE Customer Center by default. It is also possible to set up a local server to collect this data. If such a server is available on your network, you need to set the server's URL on the client. This information needs to be entered at the boot prompt.

\texttt{supporturl}. URL of the server. The URL has the format \texttt{http://FQN/Path/}, where \texttt{FQN} is the fully qualified host name of the server and \texttt{Path} is the location on the server. For example:

\begin{verbatim}
supporturl=http://support.example.com/supportconfig/data/
\end{verbatim}

7.4.3 Using IPv6 for the Installation

By default you can only assign IPv4 network addresses to your machine. To enable IPv6 during installation, enter one of the following parameters at the boot prompt:

Accept IPv4 and IPv6

\begin{verbatim}
ipv6=1
\end{verbatim}

Accept IPv6 only

\begin{verbatim}
ipv6only=1
\end{verbatim}

7.4.4 Using a Proxy for the Installation

In networks enforcing the usage of a proxy server for accessing remote Web sites, registration during installation is only possible when configuring a proxy server.
To use a proxy during the installation, press \texttt{F4} on the boot screen and set the required parameters in the \textit{HTTP Proxy} dialog. Alternatively provide the kernel parameter \texttt{proxy} at the boot prompt:

\begin{verbatim}
proxy=http://USER:PASSWORD@proxy.example.com:PORT
\end{verbatim}

Specifying \texttt{USER} and \texttt{PASSWORD} is optional—if the server allows anonymous access, the following data is sufficient: \texttt{http://proxy.example.com:PORT}.

7.4.5 Enabling SELinux Support

Enabling SELinux upon installation start-up enables you to configure it after the installation has been finished without having to reboot. Use the following parameters:

\begin{verbatim}
security=selinux selinux=1
\end{verbatim}

7.4.6 Enabling the Installer Self-Update

During installation and upgrade, YaST can update itself as described in Section 8.2, “Installer Self-Update” to solve potential bugs discovered after release. The \texttt{self_update} parameter can be used to modify the behavior of this feature.

To enable the installer self-update, set the parameter to \texttt{1}:

\begin{verbatim}
self_update=1
\end{verbatim}

To use a user-defined repository, specify a URL:

\begin{verbatim}
self_update=https://updates.example.com/
\end{verbatim}

7.4.7 Scale User Interface for High DPI

If your screen uses a very high DPI, use the boot parameter \texttt{QT_AUTO_SCREEN_SCALE_FACTOR}. This scales font and user interface elements to the screen DPI.

\begin{verbatim}
QT_AUTO_SCREEN_SCALE_FACTOR=1
\end{verbatim}
7.4.8 Using CPU Mitigations

The boot parameter **mitigations** lets you control mitigation options for side-channel attacks on affected CPUs. Its possible values are:

auto. Enables all mitigations required for your CPU model, but does not protect against cross-CPU thread attacks. This setting may impact performance to some degree, depending on the workload.

nosmt. Provides the full set of available security mitigations. Enables all mitigations required for your CPU model. In addition, it disables Simultaneous Multithreading (SMT) to avoid side-channel attacks across multiple CPU threads. This setting may further impact performance, depending on the workload.

off. Disables all mitigations. Side-channel attacks against your CPU are possible, depending on the CPU model. This setting has no impact on performance.

Each value comes with a set of specific parameters, depending on the CPU architecture, the kernel version, and on the vulnerabilities that need to be mitigated. Refer to the kernel documentation for details.

7.5 IBM Z

For IBM Z platforms, the system is booted (IPL, Initial Program Load) as described in Section 5.3.4, “IPLing the SUSE Linux Enterprise Server Installation System”. SUSE Linux Enterprise Server does not show a splash screen on these systems. During the installation, load the kernel, initrd, and parmfile manually. YaST starts with its installation screen when a connection has been established to the installation system via VNC, X, or SSH. Because there is no splash screen, kernel or boot parameters cannot be entered on screen, but must be specified in a parmfile (see Section 5.4, “The Parmfile—Automating the System Configuration”).

InstNetDev=osa

Enter the type of interface to configure. Possible values are osa, hsi, ctc, escon, and iucv (CTC, ESCON, and IUCV are no longer officially supported).

For the interfaces of type hsi and osa, specify an appropriate netmask and an optional broadcast address:

| Netmask=255.255.255.0 |
| Broadcast=192.168.255.255 |
For the interfaces of type `ctc`, `escon`, and `iucv` (CTC, ESCON, and IUCV are no longer officially supported), enter the IP address of the peer:

```
Pointopoint=192.168.55.20
```

OsaInterface=<lcs|qdio>

For `osa` network devices, specify the host interface (`qdio` or `lcs`).

Layer2=<0|1>

For `osa` QDIO Ethernet and `hsi` devices, specify whether to enable (1) or disable (0) OSI Layer 2 support.

```
OSAHWAddr=02:00:65:00:01:09
```

For Layer 2-enabled `osa` QDIO Ethernet devices, either specify a MAC address manually or state `OSAHWADDR=` (with trailing white space) for the system default.

PortNo=<0|1>

For `osa` network devices, specify the port number (provided the device supports this feature). The default value is 0.

Each of the interfaces requires certain setup options:

- **Interfaces `ctc` and `escon` (CTC and ESCON are no longer officially supported):**

  ```
  ReadChannel=0.0.0600
  WriteChannel=0.0.0601
  ```

 `ReadChannel` specifies the READ channel to use. `WriteChannel` specifies the WRITE channel.

- For the `ctc` interface (no longer officially supported), specify the protocol that should be used for this interface:

 CTCProtocol=<0/1/2>

 Valid entries would be:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Compatibility mode, also for non-Linux peers other than OS/390 and z/OS (this is the default mode)</td>
</tr>
<tr>
<td>1</td>
<td>Extended mode</td>
</tr>
</tbody>
</table>
Compatibility mode with OS/390 and z/OS

- Network device type `osa` with interface `lcs`:

 | ReadChannel=0.0.0124 |
 |
 `ReadChannel` stands for the channel number used in this setup. A second port number can be derived from this by adding one to `ReadChannel`. `Portnumber` is used to specify the relative port.

- Interface `iucv`:

 | IUCVPeer=PEER |
 |
 Enter the name of the peer machine.

- Network device type `osa` with interface `qdio` for OSA-Express Gigabit Ethernet:

 | ReadChannel=0.0.0700
 | WriteChannel=0.0.0701
 | DataChannel=0.0.0702 |
 |
 For `ReadChannel`, enter the number of the READ channel. For `WriteChannel`, enter the number of the WRITE channel. `DataChannel` specifies the DATA channel. Make sure that the READ channel carries an even device number.

- Interface `hsi` for HiperSockets and VM guest LANs:

 | ReadChannel=0.0.0800
 | WriteChannel=0.0.0801
 | DataChannel=0.0.0802 |
 |
 For `ReadChannel`, enter the appropriate number for the READ channel. For `WriteChannel` and `DataChannel`, enter the WRITE and DATA channel numbers.

7.6 More Information

8 Installation Steps

This chapter describes the procedure in which the data for SUSE Linux Enterprise Server is copied to the target device. Some basic configuration parameters for the newly installed system are set during the procedure. A graphical user interface will guide you through the installation. The procedure described in the following also applies to remote installation procedures as described in Chapter 11, Remote Installation. The text mode installation has the same steps and only looks different. For information about performing non-interactive automated installations, see Book “AutoYaST Guide”.

Before running the installer, read Part I, “Installation Preparation”. Depending on the architecture of your system, it describes the steps necessary to start the installation.

If you are a first-time user of SUSE Linux Enterprise Server, you should follow the default YaST proposals in most parts, but you can also adjust the settings as described here to fine-tune your system according to your preferences. Help for each installation step is provided by clicking Help.

Tips: Installation Without a Mouse

If the installer does not detect your mouse correctly, use ← for navigation, arrow keys to scroll, and Enter to confirm a selection. Various buttons or selection fields contain a letter with an underscore. Use Alt–Letter to select a button or a selection directly instead of navigating there with ←.

8.1 Overview

This section provides an overview of all installation steps. Each step contains a link to a more detailed description.

1. Before the installation starts, the installer can update itself. For details, see Section 8.2, “Installer Self-Update”.

2. The actual installation starts with choosing the language and the product. For details, see Section 8.3, “Language, Keyboard, and Product Selection”.

3. Accept the license agreement. For details, see Section 8.4, “License Agreement”.

Tip: Installation Without a Mouse

If the installer does not detect your mouse correctly, use ← for navigation, arrow keys to scroll, and Enter to confirm a selection. Various buttons or selection fields contain a letter with an underscore. Use Alt–Letter to select a button or a selection directly instead of navigating there with ←.
4. IBM Z machines need to activate disks. For details, see Section 8.5, “IBM Z: Disk Activation”.

5. Configure the network. This is only required when you need network access during the installation and the automatic network configuration via DHCP failed. If the automatic network configuration succeeded, this step is skipped. For details, see Section 8.6, “Network Settings”.

6. With a working network connection you can register the machine at the SUSE Customer Center or an RMT server. For details, see Section 8.7, “Registration”.

7. Select the modules you want to enable for the machine. This impacts the availability of system roles in the next step and packages later on. For details, see Section 8.8, “Extension and Module Selection”.

8. You can manually add repositories. For details, see Section 8.9, “Add-On Product”.

9. Select a role for your system. Among other things, this defines the default list of packages to install and makes a suggestion for partitioning the hard disks. For details, see Section 8.10, “System Role”.

10. Partition the hard disks of your system. For details, see Section 8.11, “Partitioning”.

11. Choose a time zone. For details, see Section 8.12, “Clock and Time Zone”.

12. Create a user. For details, see Section 8.13, “Create New User”.

13. Optionally, set a different password for the system administrator root. For details, see Section 8.14, “Authentication for the System Administrator “root””.

14. In a final step, the installer presents an overview of all settings. If required, you can change them. For details, see Section 8.15, “Installation Settings”.

15. The installer copies all required data and informs you about the progress. For details, see Section 8.16, “Performing the Installation”.

8.2 Installer Self-Update

During the installation and upgrade process, YaST can update itself to solve bugs in the installer that were discovered after the release. This functionality is enabled by default; to disable it, set the boot parameter self_update to 0. For more information, see Section 7.4.6, “Enabling the Installer Self-Update”.
Important: Quarterly Media Update: Self-Update Disabled
The installer self-update is only available if you use the GM images of the Unified Installer and Packages ISOs. If you install from the ISOs published as quarterly update (they can be identified by the string QU in the name), the installer cannot update itself, because this feature has been disabled in the updated media.

Important: Networking during Self-Update
To download installer updates, YaST needs network access. By default, it tries to use DHCP on all network interfaces. If there is a DHCP server in the network, it will work automatically.

If you need a static IP setup, you can use the ifcfg boot argument. For more details, see the linuxrc documentation at https://en.opensuse.org/Linuxrc.

Tip: Language Selection
The installer self-update is executed before the language selection step. This means that progress and errors which happen during this process are displayed in English by default. To use another language for this part of the installer, use the language boot parameter if available for your architecture, for example, language=de_DE. On machines equipped with a traditional BIOS, alternatively, press F2 in the boot menu and select the language from the list.

Although this feature was designed to run without user intervention, it is worth knowing how it works. If you are not interested, you can jump directly to Section 8.3, “Language, Keyboard, and Product Selection” and skip the rest of this section.

8.2.1 Self-Update Process
The process can be broken down into two different parts:

1. Determine the update repository location.
2. Download and apply the updates to the installation system.
8.2.1.1 Determining the Update Repository Location

Installer Self-Updates are distributed as regular RPM packages via a dedicated repository, so the first step is to find out the repository URL.

⚠️ Important: Installer Self-Update Repository Only

No matter which of the following options you use, only the installer self-update repository URL is expected, for example:

```plaintext
self_update=https://www.example.com/my_installer_updates/
```

Do not supply any other repository URL—for example the URL of the software update repository.

YaST will try the following sources of information:

1. The `self_update` boot parameter. (For more details, see Section 7.4.6, “Enabling the Installer Self-Update”.) If you specify a URL, it will take precedence over any other method.

2. The `/general/self_update_url` profile element in case you are using AutoYaST.

3. A registration server. YaST will query the registration server for the URL. The server to be used is determined in the following order:

 a. By evaluating the `regurl` boot parameter (Section 7.4.1, “Providing Data to Access an RMT Server”).

 b. By evaluating the `/suse_register/reg_server` profile element if you are using AutoYaST.

 c. By performing an SLP lookup. If an SLP server is found, YaST will ask you whether it should be used because there is no authentication involved and everybody on the local network could announce a registration server.

 d. By querying the SUSE Customer Center.

4. If none of the previous attempts worked, the fallback URL (defined in the installation media) will be used.
8.2.1.2 Downloading and Applying the Updates

When the updates repository is determined, YaST will check whether an update is available. If so, all the updates will be downloaded and applied to the installation system. Finally, YaST will be restarted to load the new version and the welcome screen will be shown. If no updates were available, the installation will continue without restarting YaST.

Note: Update Integrity

Update signatures will be checked to ensure integrity and authorship. If a signature is missing or invalid, you will be asked whether you want to apply the update.

8.2.1.3 Temporary Self-Update Add-on Repository

Some packages distributed in the self-update repository provide additional data for the installer, like the installation defaults, system role definitions and similar. If the installer finds such packages in the self-update repository, a local temporary repository is created, to which those packages are copied. They are used during the installation process, but at the end of the installation, the temporary local repository is removed. Its packages are not installed onto the target system. This additional repository is not displayed in the list of add-on products, but during installation it may still be visible as SelfUpdate0 repository in the package management.

8.2.2 Custom Self-Update Repositories

YaST can use a user-defined repository instead of the official one by specifying a URL through the self_update boot parameter. However, the following points should be considered:

- Only HTTP/HTTPS and FTP repositories are supported.
- Only RPM-MD repositories are supported (required by RMT).
- Packages are not installed in the usual way: They are uncompressed only and no scripts are executed.
- No dependency checks are performed. Packages are installed in alphabetical order.
- Files from the packages override the files from the original installation media. This means that the update packages might not need to contain all files, only files that have changed. Unchanged files are omitted to save memory and download bandwidth.
8.3 Language, Keyboard, and Product Selection

The Language and Keyboard Layout settings are initialized with the language you chose on the boot screen. If you did not change the default, it will be English (US). Change the settings here, if necessary.
Changing the language will automatically preselect a corresponding keyboard layout. Override this proposal by selecting a different keyboard layout from the drop-down box. Use the Keyboard Test text box to test the layout. The language selected here is also used to assume a time zone for the system clock. This setting can be modified later in the installed system as described in Chapter 24, Changing Language and Country Settings with YaST.

With the Unified Installer you can install all SUSE Linux Enterprise base products:

- SUSE Linux Enterprise Server 15 SP1 (covered here)
- SUSE Linux Enterprise Desktop 15 SP1 (refer to https://documentation.suse.com/sled/ for installation instructions)
- SUSE Linux Enterprise High Performance Computing 15 SP1
- SUSE Linux Enterprise Real Time 15 SP1 (refer to https://documentation.suse.com/sle-rt/ for installation instructions)
- SUSE Linux Enterprise Server for SAP Applications 15 SP1 (refer to https://documentation.suse.com/sles-sap/ for installation instructions)
- SUSE Manager Server 4.0 (refer to https://documentation.suse.com/suma/4.0/ for installation instructions)
- SUSE Manager Proxy 4.0 (refer to https://documentation.suse.com/suma/4.0/ for installation instructions)
- SUSE Manager Retail Branch Server 4.0 (refer to https://documentation.suse.com/suma-retail/4.0/ for installation instructions)

Select a product for installation. You need to have a registration code for the respective product. In this document it is assumed you have chosen SUSE Linux Enterprise Server. Proceed with Next.
8.4 License Agreement

Read the License Agreement. It is presented in the language you have chosen on the boot screen. Translations are available via the License Language drop-down box. If you agree to the terms, check I Agree to the License Terms and click Next to proceed with the installation. If you do not agree to the license agreement, you cannot install SUSE Linux Enterprise Server; click Abort to terminate the installation.

8.5 IBM Z: Disk Activation

When installing on IBM Z platforms, the language selection dialog is followed by a dialog to configure the attached hard disks.
Select DASD, Fibre Channel Attached SCSI Disks (zFCP), or iSCSI for installation of SUSE Linux Enterprise Server. The DASD and zFCP configuration buttons are only available if the corresponding devices are attached. For instructions on how to configure iSCSI disks, refer to Book “Storage Administration Guide”, Chapter 14 “Mass Storage over IP Networks: iSCSI”, Section 14.3 “Configuring iSCSI Initiator”.

You can also change the Network Configuration in this screen by launching the Network Settings dialog. Choose a network interface from the list and click Edit to change its settings. Use the tabs to configure DNS and routing. See Book “Administration Guide”, Chapter 19 “Basic Networking”, Section 19.4 “Configuring a Network Connection with YaST” for more details.

8.5.1 Configuring DASD Disks

Skip this step if you are not installing on IBM Z hardware.
After selecting *Configure DASD Disks*, an overview lists all available DASDs. To get a clearer picture of the available devices, use the text box located above the list to specify a range of channels to display. To filter the list according to such a range, select *Filter*.

Specify the DASDs to use for the installation by selecting the corresponding entries in the list. Use *Select All* to select all DASDs currently displayed. Activate and make the selected DASDs available for the installation by selecting *Perform Action > Activate*. To format the DASDs, select *Perform Action > Format*. Alternatively, use the YaST partitioner later as described in *Section 10.1, “Using the Expert Partitioner”*.

8.5.2 Configuring zFCP Disks

To use zFCP disks for the SUSE Linux Enterprise Server installation, select *Configure zFCP Disks* in the selection dialog. This opens a dialog with a list of the zFCP disks available on the system. In this dialog, select *Add* to open another dialog in which to enter zFCP parameters.
To make a zFCP disk available for the SUSE Linux Enterprise Server installation, choose an available Channel Number from the drop-down box. Get WWPNs (World Wide Port Number) and Get LUNs (Logical Unit Number) return lists with available WWPNs and FCP-LUNs, respectively, to choose from. Automatic LUN scanning only works with NPIV enabled. When completed, exit the zFCP dialog with Next and the general hard disk configuration dialog with Finish to continue with the rest of the configuration.

8.6 Network Settings

After booting into the installation, the installation routine is set up. During this setup, an attempt to configure at least one network interface with DHCP is made. In case this attempt has failed, the Network Settings dialog launches now.

![Network Settings](network_settings.png)

FIGURE 8.5: NETWORK SETTINGS
Choose a network interface from the list and click *Edit* to change its settings. Use the tabs to configure DNS and routing. See *Book “Administration Guide”, Chapter 19 “Basic Networking”, Section 19.4 “Configuring a Network Connection with YaST”* for more details. On IBM Z this dialog does not start automatically. It can be started in the *Disk Activation* step.

In case DHCP was successfully configured during installation setup, you can also access this dialog by clicking *Network Configuration* at the *SUSE Customer Center Registration* and the *Installation Settings* step. It lets you change the automatically provided settings.

Note: Network Configuration with Boot Parameters

If at least one network interface has been configured via boot parameters (see *Section 7.3.2, “Configuring the Network Interface”*), automatic DHCP configuration is disabled and the boot parameter configuration is imported and used.

Tip: Accessing Network Storage or Local RAID

To access a SAN or a local RAID during the installation, you can use the libstorage command line client for this purpose:

1. Switch to a console with `Ctrl–Alt–F2`.

2. Install the libstoragemgmt extension by running `extend libstoragemgmt`.

3. Now you have access to the `lsmcli` command. For more information, run `lsmcli --help`.

4. To return to the installer, press `Alt–F7`

Supported are Netapp Ontap, all SMI-S compatible SAN providers, and LSI MegaRAID.

8.7 Registration

To get technical support and product updates, you need to register and activate your product with the SUSE Customer Center or a local registration server. Registering SUSE Linux Enterprise Server at this stage also grants you immediate access to the update repository. This enables you to install the system with the latest updates and patches available.
When registering, repositories and dependencies for the modules and extensions, which you may install with the next step, are loaded from the registration server.

From this dialog, you can switch to the YaST Network Settings module by clicking Network Configuration. For details, see Book “Administration Guide”, Chapter 19 “Basic Networking”, Section 19.4 “Configuring a Network Connection with YaST”.

If you are offline or want to skip registration, activate Skip Registration. See Section 8.7.3, “Installing without Registration” for instructions.

8.7.1 Registering Manually

To register with the SUSE Customer Center, enter your Registration Code for SUSE Linux Enterprise Server. If your organization provides a local registration server, you may alternatively register there. Activate Register System via local RMT Server and either choose a URL from the drop-down box or type in an address. Start the registration process with Next.
Tip: Installing Product Patches at Installation Time

After SUSE Linux Enterprise Server has been successfully registered, you are asked whether to install the latest available online updates during the installation. If choosing Yes, the system will be installed with the most current packages without having to apply the updates after installation. Activating this option is recommended.

If the system was successfully registered during installation, YaST will disable repositories from local installation media such as CD/DVD or flash disks when the installation has been completed. This prevents problems if the installation source is no longer available and ensures that you always get the latest updates from the online repositories.
8.7.2 Loading Registration Codes from USB Storage

To make the registration more convenient, you can also store your registration codes on a USB storage device such as a flash disk. YaST will automatically pre-fill the corresponding text box. This is particularly useful when testing the installation or if you need to register many systems or extensions.

Create a file named `regcodes.txt` or `regcodes.xml` on the USB disk. If both are present, the XML takes precedence.

In that file, identify the product with the name returned by `zypper search --type product` and assign it a registration code as follows:

EXAMPLE 8.1: `regcodes.txt`

```
SLES    cc36aae1
SLED    309105d4
sle-we  5eedd26a
sle-live-patching 8c541494
```

EXAMPLE 8.2: `regcodes.xml`

```
<?xml version="1.0"?>
<profile xmlns="http://www.suse.com/1.0/yast2ns"
         xmlns:config="http://www.suse.com/1.0/configns">
   <suse_register>
      <addons config:type="list">
      <addon>
         <name>SLES</name>
         <reg_code>cc36aae1</reg_code>
      </addon>
      <addon>
         <name>SLED</name>
         <reg_code>309105d4</reg_code>
      </addon>
      <addon>
         <name>sle-we</name>
         <reg_code>5eedd26a</reg_code>
      </addon>
      <addon>
         <name>sle-live-patching</name>
         <reg_code>8c541494</reg_code>
      </addon>
      </addons>
   </suse_register>
</profile>
```
Note that **SLES** and **SLED** are not extensions, but listing them as add-ons allows for combining several base product registration codes in a single file. See for details.

Note: Limitations
Currently flash disks are only scanned during installation or upgrade, but not when registering a running system.

8.7.3 Installing without Registration

To install the system without registration activate *Skip Registration*. Accept the warning with *OK* and proceed with *Next*. The installation follows the same workflow as when registering, only the step for choosing the modules and extensions differs.
Note: Registering SUSE Linux Enterprise Server

Your system and extensions need to be registered to retrieve updates and to be eligible for support. If you do not register during the installation, you can do so at any time later from the running system. To do so, run YaST > Product Registration.

If you perform an installation without connecting to a registration server, you cannot register your system during the installation. Therefore you cannot receive the repository configuration for modules and extensions from the registration server. To enable a regular installation, SUSE offers a second installation medium, the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso image.

To perform the installation without registration, make sure the contents of the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso image can be accessed during the installation. This can be achieved by copying it to a local hard disk or a removable flash disk or by making it available in the local network. Choose a method that is supported by your hardware.

Tip: Copying Data from the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso Image to a Removable Flash Disk

To copy the contents of the image available on a removable flash disk, use the following command.

```
tux > sudo dd if=PATH_TO_IMAGE of=FLASH_STORAGE_PARTITION bs=4M && sync
```

`PATH_TO_IMAGE` needs to be replaced with the relative or absolute path to this image file. `FLASH_STORAGE_PARTITION` needs to be replaced with the path to a partition on the flash device (usually there is just one). To identify the device, and its partition(s), insert it and use the commands shown in the example below:

```
root # grep -Ff <(hwinfo --disk --short) <(hwinfo --usb --short)
disk:
   /dev/sdc             General USB Flash Disk
root # fdisk -l /dev/sdc | grep -e "^/dev"
/dev/sdc1 * 2048 31490047 31488000 15G 83 Linux
```

In this case the command to use would be for example:

```
dd if=/tmp/SLE-15-SP1-Packages-ARCH-GM-DVD1.iso \
of=/dev/sdc1 bs=4M && sync
```
Make sure a partition with sufficient size (8 GB or more) exists on the device. It also must not be mounted when running the `dd` command. Note that all data on the partition will be erased!

8.8 Extension and Module Selection

In this dialog the installer lists modules and extensions that are available for SUSE Linux Enterprise Server. Modules are components which allow you to shape the product according to your needs. They are free of charge. Extensions add functionality to your product. They are offered as subscriptions and require a registration key that is liable for costs.

The availability of certain modules or extensions depends on the product you chose in the first step of this installation. For a description of the modules and their lifecycles, select a module to see the accompanying text. More detailed information is available in the [Release Notes](https://www.suse.com/releasenotes/x86_64/SUSE-SLES/15/#Intro.Module).

The selection of modules indirectly affects the scope of the installation, because it defines which software sources (repositories) are available for installation and in the running system.

The way you select modules and extensions depends on whether you registered your system in the previous step:

- **Section 8.8.1, “Selecting Extensions and Modules with Registration”**
- **Section 8.8.2, “Selecting Extensions and Modules without Registration”**
8.8.1 Selecting Extensions and Modules with Registration

The following modules and extensions are available for SUSE Linux Enterprise Server:

Basesystem Module

This module adds a basic system on top of the Unified Installer. It is required by all other modules and extensions. The scope of an installation that only contains the base system is comparable to the installation pattern *minimal system* of previous SUSE Linux Enterprise Server versions. This module is selected for installation by default and should not be deselected.

Dependencies: None

Containers Module

Contains support and tools for containers.
Dependencies: Basesystem

Desktop Applications Module

Adds a graphical user interface and essential desktop applications to the system.

Dependencies: Basesystem

Development Tools Module

Contains compilers (including gcc) and libraries required for compiling and debugging applications. Replaces the former Software Development Kit (SDK).

Dependencies: Basesystem, Desktop Applications

Legacy Module

Contains packages that were available in previous versions of SUSE Linux Enterprise Server, but have been discontinued in SLES 15 SP1. This module is recommended when migrating from a previous product version.

Dependencies: Basesystem, Server Applications

Public Cloud Module

Contains all tools required to create images for deploying SUSE Linux Enterprise Server in cloud environments such as the Amazon Web Services (AWS), Microsoft Azure, Google Compute Platform, or the SUSE OpenStack Cloud.

Dependencies: Basesystem, Server Applications

Python 2 Module

SUSE Linux Enterprise 15 SP1 uses Python version 3. This module contains the Python 2 runtime and modules.

Dependencies: Basesystem

Server Applications Module

Adds server functionality by providing network services such as DHCP server, name server, or Web server. This module is selected for installation by default; deselecting it is not recommended.

Dependencies: Basesystem

SUSE Cloud Application Platform Tools Module

Adds tools allowing you to interact with a SUSE Cloud Application Platform product.

Dependencies: Basesystem

SUSE Enterprise Storage

Adds support for distributed storage with Ceph to SUSE Linux Enterprise Server. Requires a separate license key.
Dependencies: Basesystem, Server Applications

SUSE Linux Enterprise High Availability Extension

Adds clustering support for mission critical setups to SUSE Linux Enterprise Server. This extension requires a separate license key.

Dependencies: Basesystem, Server Applications

SUSE Linux Enterprise Live Patching

Adds support for performing critical patching without having to shut down the system. This extension requires a separate license key.

Dependencies: Basesystem, Server Applications

SUSE Linux Enterprise Workstation Extension

Extends the functionality of SUSE Linux Enterprise Server with packages from SUSE Linux Enterprise Desktop, like additional desktop applications (office suite, email client, graphical editor, etc.) and libraries. It allows to combine both products to create a fully featured workstation. This extension requires a separate license key.

Dependencies: Basesystem, Server Applications

SUSE Package Hub

Provides access to packages for SUSE Linux Enterprise Server maintained by the openSUSE community. These packages are delivered without L3 support and do not interfere with the supportability of SUSE Linux Enterprise Server. For more information refer to https://packagehub.suse.com/.

Dependencies: Basesystem

Transactional Server Module

Adds support for transactional updates. Updates are either applied to the system all together in a single transaction, or not at all. This happens without influencing the running system. If an update fails, or if the successful update is deemed to be incompatible or otherwise incorrect, it can be discarded to immediately return the system to its previous functioning state.

Dependencies: Basesystem

Web and Scripting Module

Contains packages intended for a running Web server.

Dependencies: Basesystem, Server Applications

Some modules depend on the installation of other modules. Therefore, when selecting a module, other modules may be selected automatically to fulfill dependencies.
Depending on the product, the registration server can mark modules and extensions as recommended. Recommended modules and extensions are preselected for registration and installation. To avoid installing these recommendations, deselect them manually.

Select the modules and extension you would like to install and proceed with Next. In case you have chosen one or more extensions, you will be prompted to provide the respective registration codes. Depending on your choice, it may also be necessary to accept additional license agreements.

8.8.2 Selecting Extensions and Modules without Registration

If you have skipped the registration you need to access the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso ISO image via the Add-On Product dialog:

![Add-On Product](image)

FIGURE 8.9: ADD-ON PRODUCT
On the Add-On Product dialog, activate I would like to Install an Add-On Product and specify the source for the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso image. Check Download repository description files to download the files describing the repository now. If deactivated, they will be downloaded after the installation starts. Proceed with Next. If you chose DVD as the data source, you will be prompted to insert the media.

On the Extension and Module Selection you need to select a product, at least one module, and optionally, one or more extensions.

FIGURE 8.10: EXTENSION AND MODULE SELECTION

The SLE-15-SP1-Packages-ARCH-GM-DVD1.iso images contain extensions and modules for all SUSE Linux Enterprise products. Make sure to only select modules and extensions listed below, otherwise you will end up with a system that may fail to install and is not covered by SUSE support.

Product

Selecting a product is mandatory. Choose SLES15-SP1 15.1-0.
Modules

Modules extend the functionality of SUSE Linux Enterprise Server and are free of charge. Installing the *Basesystem-Module 15.1-0* is required. It is also recommended to install the *Server-Applications-Module 15.1-0*.

Note that most modules depend on other modules. These dependencies cannot be resolved automatically here. Make sure to manually solve the dependencies, otherwise the installation will fail later on. Refer to the following list for details.

Basesystem-Module 15.1-0. This module adds a basic system on top of the Unified Installer. It is required by all other modules and extensions. The scope of an installation that only contains the base system is comparable to the installation pattern *minimal system* of previous SUSE Linux Enterprise Server versions. *Dependencies:* None

Containers-Module 15.1-0. Contains support and tools for containers. *Dependencies:* Basesystem

Desktop-Applications-Module 15.1-0. Adds a graphical user interface and essential desktop applications to the system. *Dependencies:* Basesystem

Development-Tools-Module 15.1-0. Contains compilers (including *gcc*) and libraries required for compiling and debugging applications.

Legacy-Module 15.1-0. Contains packages that were available in previous versions of SUSE Linux Enterprise Server, but have been discontinued in SLES 15 SP1. This module is recommended when migrating from a previous SLES version. *Dependencies:* Basesystem, Server Applications

Public-Cloud-Module 15.1-0. Contains all tools required to create images for deploying SUSE Linux Enterprise Server in cloud environments such as the Amazon Web Services (AWS), Microsoft Azure, Google Compute Platform, or the SUSE OpenStack Cloud. *Dependencies:* Basesystem, Server Applications

Python 2 Module 15.1-0. SUSE Linux Enterprise 15SP 1 uses Python version 3. This module contains the Python 2 runtime and modules. *Dependencies:* Basesystem

Server-Applications-Module 15.1-0. Adds server functionality by providing network services such as DHCP server, name server, or Web server. *Dependencies:* Basesystem

Transactional Server 15.1-0. Adds support for transactional updates. Updates are either applied to the system all together in a single transaction, or not at all. This happens without
influencing the running system. If an update fails, or if the successful update is deemed to be incompatible or otherwise incorrect, it can be discarded to immediately return the system to its previous functioning state. **Dependencies:** Basesystem

Web-Scripting-Module 15.1-0. Contains packages intended for a running Web server. **Dependencies:** Basesystem, Server Applications

Extensions

Choosing an extension is optional. Extensions add further core functionality to SUSE Linux Enterprise Server and require a registration code which is liable for costs.

Note that extensions depend on modules. These dependencies cannot be resolved automatically here. Make sure to manually solve the dependencies, otherwise the installation will fail later on. Refer to the following list for details.

SUSE Linux Enterprise High Availability Extension (SLEHA15-1 15.1-0). Adds clustering support for mission critical setups to SUSE Linux Enterprise Server. Choose **SLEHA15-1 15.1-0** to install it. **Dependencies:** Basesystem, Server Applications

SUSE Linux Enterprise Workstation Extension (SLEWE15-1 15.1-0). Extends the functionality of SUSE Linux Enterprise Server with packages from SUSE Linux Enterprise Desktop, like additional desktop applications (office suite, email client, graphical editor, etc.) and libraries. It allows to combine both products to create a fully featured workstation. Choose **SLEWE15-1 15.1-0** to install it. **Dependencies:** Basesystem, Desktop Applications

Warning: Forbidden Selections

Do *not* install any of the following selections on SUSE Linux Enterprise Server, otherwise you will end up with a system that may fail to install and is not covered by SUSE support.

- **HPC-Module 15.1-0**
- **SAP-Applications-Module 15.1-0**
- **SLE-15-1-HPC 15.1-0**
- **SLE-15-1-RT 15.1-0**
- **SLE-15-1-SAP 15.1-0**
- **SLED15-1 15.1-0**

When you have finished selecting modules and extensions, proceed with **Next**.
All modules selected for installation are listed on the *Add-On Product Installation* dialog. To change the list, use the *Add* or *Delete* options. Using *Add* you may optionally add other add-on products from different sources. Refer to Section 8.9, “Add-On Product” for details.

To proceed with the installation, choose *Next*. Skip the following chapter and continue reading at Section 8.10, “System Role”.

8.9 Add-On Product

The *Add On Product* dialog allows you to add additional software sources (so-called “repositories”) to SUSE Linux Enterprise Server, that are not provided by the SUSE Customer Center. Such add-on products may include third-party products and drivers or additional software for your system.
FIGURE 8.12: ADD-ON PRODUCT

From this dialog, you can switch to the YaST Network Settings module by clicking Network Configuration. For details, see Book “Administration Guide”, Chapter 19 “Basic Networking”, Section 19.4 “Configuring a Network Connection with YaST”.

Tip: Adding Drivers during the Installation

You can also add driver update repositories via the Add On Product dialog. Driver updates for SUSE Linux Enterprise are provided at http://drivers.suse.com/. These drivers have been created via the SUSE SolidDriver Program.

If you do not want to install add-ons, proceed with Next. Otherwise activate I would like to install an additional Add On Product. Specify the Media Type by choosing from CD, DVD, Hard Disk, USB Mass Storage, a Local Directory or a Local ISO Image. If network access has been configured you can choose from additional remote sources such as HTTP, SLP, FTP, etc. Alternatively you
may directly specify a URL. Check *Download repository description files* to download the files describing the repository now. If deactivated, they will be downloaded after the installation starts. Proceed with *Next* and insert a CD or DVD if required.

Depending on the add-on's content, it may be necessary to accept additional license agreements.

8.10 System Role

SUSE Linux Enterprise Server supports a broad range of features. To simplify the installation, the installer offers predefined use cases which adjust the system to be installed so it is tailored for the selected scenario.

![System Role](image)

FIGURE 8.13: SYSTEM ROLE
Choose the System Role that meets your requirements best. The availability of system roles depends on your selection of modules and extensions. Therefore, the dialog is omitted under the following conditions:

- If from the enabled modules no role is suitable for the respective base product. In this case, the installation proceeds with the default settings for this product.

- If from the enabled modules only one role is suitable for the respective base product. In this case, the installation proceeds with the settings of this particular role.

With the default selection, the following system roles are available:

Text Mode
This option installs a basic SLES without a desktop environment but with a rich set of command line tools.

Dependencies: Basesystem

Minimal
Select this role if you want a very small installation with only the basic command line tools.

Dependencies: None

KVM Virtualization Host
Select this scenario when installing on a machine that should serve as a KVM host that can run other virtual machines. /var/lib/libvirt will be placed on a separate partition and the firewall and Kdump will be disabled.

Dependencies: Basesystem, Server Applications

Xen Virtualization Host
Select this scenario when installing on a machine that should serve as a Xen host that can run other virtual machines. /var/lib/libvirt will be placed on a separate partition and the firewall and Kdump will be disabled.

Dependencies: Basesystem, Server Applications
8.11 Partitioning

8.11.1 Important Information

⚠️ Warning: Read this Section Carefully

Read this section carefully before continuing with Section 8.11.2, “Suggested Partitioning”.

Custom Partitioning on UEFI Machines

A UEFI machine requires an EFI system partition that must be mounted to /boot/efi. This partition must be formatted with the FAT32 file system.

If an EFI system partition is already present on your system (for example from a previous Windows installation) use it by mounting it to /boot/efi without formatting it.

If no EFI system partition is present on your UEFI machine, make sure to create it. The EFI system partition must be a physical partition or RAID 1. Other RAID levels, LVM and other technologies are not supported. It needs to be formatted with the FAT32 file system.

Custom Partitioning and Snapper

If the root partition is larger than 16 GB, SUSE Linux Enterprise Server by default enables file system snapshots.

SUSE Linux Enterprise Server uses Snapper together with Btrfs for this feature. Btrfs needs to be set up with snapshots enabled for the root partition.

If the disk is smaller than 16 GB, all Snapper features and automatic snapshots are disabled to prevent the system partition / from running out of space.

Being able to create system snapshots that enable rollbacks requires important system directories to be mounted on a single partition, for example /usr and /var. Only directories that are excluded from snapshots may reside on separate partitions, for example /usr/local, /var/log, and /tmp.

For details, see Book “Administration Guide”, Chapter 7 “System Recovery and Snapshot Management with Snapper”.

⚠️ Important: Btrfs Snapshots and Root Partition Size

Snapshots occupy space on their partition. As a rule of thumb, the older a snapshot is, or the bigger the changeset they cover is, the bigger the snapshot. Plus, the more snapshots you keep, the more disk space you need.
To prevent the root partition running full with snapshot data, you need to make sure it is big enough. In case you do frequent updates or other installations, consider at least 30 GB for the root partition. If you plan to keep snapshots activated for a system upgrade or a service pack migration (to be able to roll back), you should consider 40 GB or more.

Btrfs Data Volumes

Using Btrfs for data volumes is supported on SUSE Linux Enterprise Server 15 SP1. For applications that require Btrfs as a data volume, consider creating a separate file system with quota groups disabled. This is already the default for non-root file systems.

Btrfs on an Encrypted Root Partition

The default partitioning setup suggests the root partition as Btrfs. To encrypt the root partition, make sure to use the GPT partition table type instead of the MSDOS type. Otherwise the GRUB2 boot loader may not have enough space for the second stage loader.

IBM Z: Using Minidisks in z/VM

If SUSE Linux Enterprise Server is installed on minidisks in z/VM, which reside on the same physical disk, the access path of the minidisks (/dev/disk/by-id/) is not unique. This is because it represents the ID of the physical disk. If two or more minidisks are on the same physical disk, they all have the same ID.

To avoid problems when mounting minidisks, always mount them either by path or by UUID.

IBM Z: LVM Root File System

If you configure the system with a root file system on LVM or software RAID array, you must place `/boot` on a separate, non-LVM or non-RAID partition, otherwise the system will fail to boot. The recommended size for such a partition is 500 MB and the recommended file system is Ext4.

IBM POWER: Installing on Systems with Multiple Fibre Channel Disks

If more than one disk is available, the partitioning scheme suggested during the installation puts the PReP and BOOT partitions on different disks. If these disks are Fibre Channel Disks, the GRUB boot loader is not able to find the BOOT partition and the system cannot be booted.

When prompted to select the partition scheme during the installation, choose *Guided Setup* and verify that only one disk is selected for installation. Alternatively, run the *Expert Partitioner* and manually set up a partitioning scheme that has PReP and BOOT on a single disk.
Supported Software RAID Volumes

Installing to and booting from existing software RAID volumes is supported for Disk Data Format (DDF) volumes and Intel Matrix Storage Manager (IMSM) volumes. IMSM is also known by the following names:

- Intel Rapid Storage Technology
- Intel Matrix Storage Technology
- Intel Application Accelerator / Intel Application Accelerator RAID Edition

Mount Points for FCoE and iSCSI Devices

FCoE and iSCSI devices will appear asynchronously during the boot process. While the initrd guarantees that those devices are set up correctly for the root file system, there are no such guarantees for any other file systems or mount points like `/usr`. Hence any system mount points like `/usr` or `/var` are not supported. To use those devices, ensure correct synchronization of the respective services and devices.

8.11.2 Suggested Partitioning

Define a partition setup for SUSE Linux Enterprise Server in this step.
Depending on the system role, the installer creates a proposal for one of the disks available. All proposals contain a root partition formatted with Btrfs (with snapshots enabled) and a swap partition. The GNOME desktop and the text mode proposals create a separate home partition on disks larger than 20 GB. The system roles for virtualization hosts create a separate partition for `/var/lib/libvirt`, the directory that hosts the image files by default. If one or more swap partitions have been detected on the available hard disks, these existing ones will be used (rather than proposing a new swap partition). You have several options to proceed:

Next

To accept the proposal without any changes, click Next to proceed with the installation workflow.

Guided Setup
To adjust the proposal, choose *Guided Setup*. First, choose which hard disks and partitions to use. In the *Partitioning Scheme* screen, you can enable Logical Volume Management (LVM) and activate disk encryption. Afterwards specify the *Filesystem Options*. You can adjust the file system for the root partition and create a separate home and swap partitions. If you plan to suspend your machine, make sure to create a separate swap partition and check *Enlarge to RAM Size for Suspend*. If the root file system format is Btrfs, you can also enable or disable Btrfs snapshots here.

Expert Partitioner

To create a custom partition setup click *Expert Partitioner*. Select either *Start with Current Proposal* if you want start with the suggested disk layout, or *Start with Existing Partitions* to ignore the suggested layout and start with the existing layout on the disk. You can *Add*, *Edit*, *Resize*, or *Delete* partitions.

You can also set up Logical Volumes (LVM), configure software RAID and device mapping (DM), encrypt Partitions, mount NFS shares and manage tmpfs volumes with the Expert Partitioner. To fine-tune settings such as the subvolume and snapshot handling for each Btrfs partition, choose *Btrfs*. For more information about custom partitioning and configuring advanced features, refer to *Section 10.1, “Using the Expert Partitioner”*.

8.12 Clock and Time Zone

In this dialog, select your region and time zone. Both are preselected according to the installation language.
To change the preselected values, either use the map or the drop-down boxes for Region and Time Zone. When using the map, point the cursor at the rough direction of your region and left-click to zoom. Now choose your country or region by left-clicking. Right-click to return to the world map.

To set up the clock, choose whether the Hardware Clock is Set to UTC. If you run another operating system on your machine, such as Microsoft Windows, it is likely your system uses local time instead. If you run Linux on your machine, set the hardware clock to UTC and have the switch from standard time to daylight saving time performed automatically.
Important: Set the Hardware Clock to UTC

The switch from standard time to daylight saving time (and vice versa) can only be performed automatically when the hardware clock (CMOS clock) is set to UTC. This also applies if you use automatic time synchronization with NTP, because automatic synchronization will only be performed if the time difference between the hardware and system clock is less than 15 minutes.

Since a wrong system time can cause serious problems (missed backups, dropped mail messages, mount failures on remote file systems, etc.), it is strongly recommended to always set the hardware clock to UTC.

POWER, AMD/Intel

If a network is already configured, you can configure time synchronization with an NTP server. Click Other Settings to either alter the NTP settings or to Manually set the time. See Book “Administration Guide”, Chapter 31 “Time Synchronization with NTP” for more information on configuring the NTP service. When finished, click Accept to continue the installation.

POWER, AMD/Intel

If running without NTP configured, consider setting SYSTOHC=no (sysconfig variable) to avoid saving unsynchronized time into the hardware clock.

Note: Time Cannot Be Changed on IBM Z

Since the operating system is not allowed to change time and date directly, the Other Settings option is not available on IBM Z.

8.13 Create New User

Create a local user in this step.
After entering the first name and last name, either accept the proposal or specify a new User name that will be used to log in. Only use lowercase letters (a-z), digits (0-9) and the characters . (dot), - (hyphen) and _ (underscore). Special characters, umlauts and accented characters are not allowed.

Finally, enter a password for the user. Re-enter it for confirmation (to ensure that you did not type something else by mistake). To provide effective security, a password should be at least six characters long and consist of uppercase and lowercase letters, numbers and special characters (7-bit ASCII). Umlauts or accented characters are not allowed. Passwords you enter are checked for weakness. When entering a password that is easy to guess (such as a dictionary word or a name) you will see a warning. It is a good security practice to use strong passwords.
Important: User Name and Password

Remember both your user name and the password because they are needed each time you log in to the system.

If you install SUSE Linux Enterprise Server on a machine with one or more existing Linux installations, YaST allows you to import user data such as user names and passwords. Select Import User Data from a Previous Installation and then Choose Users for import.

If you do not want to configure any local users (for example when setting up a client on a network with centralized user authentication), skip this step by choosing Next and confirming the warning. Network user authentication can be configured at any time later in the installed system; refer to Chapter 23, Managing Users with YaST for instructions.

Two additional options are available:

Use this Password for System Administrator

If checked, the same password you have entered for the user will be used for the system administrator root. This option is suitable for stand-alone workstations or machines in a home network that are administrated by a single user. When not checked, you are prompted for a system administrator password in the next step of the installation workflow (see Section 8.14, “Authentication for the System Administrator “root””).

Automatic Login

This option automatically logs the current user in to the system when it starts. This is mainly useful if the computer is operated by only one user. For automatic login to work, the option must be explicitly enabled.

Warning: Automatic Login

With the automatic login enabled, the system boots straight into your desktop with no authentication. If you store sensitive data on your system, you should not enable this option if the computer can also be accessed by others.

In an environment where users are centrally managed (for example by NIS or LDAP) you may want to skip the creation of local users. Select Skip User Creation in this case.
8.14 Authentication for the System Administrator “root”

If you have not chosen Use this Password for System Administrator in the previous step, you will be prompted to enter a password for the System Administrator root or provide a public SSH key. Otherwise this configuration step is skipped.

root is the name of the superuser, or the administrator of the system. Unlike regular users, root has unlimited rights to change the system configuration, install programs, and set up new hardware. If users forget their passwords or have other problems with the system, root can help. The root account should only be used for system administration, maintenance, and repair. Logging in as root for daily work is rather risky: a single mistake could lead to irretrievable loss of system files.
For verification purposes, the password for root must be entered twice. Do not forget the root password. After having been entered, this password cannot be retrieved.

Tip: Passwords and Keyboard Layout

It is recommended to only use characters that are available on an English keyboard. In case of a system error or when you need to start your system in rescue mode a localized keyboard might not be available.

The root password can be changed any time later in the installed system. To do so run YaST and start Security and Users → User and Group Management.

Important: The root User

The user root has all the permissions needed to make changes to the system. To carry out such tasks, the root password is required. You cannot carry out any administrative tasks without this password.

In some situations it is preferred to access the system remotely via SSH using a public key. This screen allows you to select a public key from a medium.

The following procedure describes how to add a public SSH key from a USB stick. It works the same way with CD/DVD-ROM or from an existing partition. Proceed as follows:

PROCEDURE 8.1: ADDING A PUBLIC SSH KEY FOR USER root

1. Insert into your computer the USB storage device containing the public SSH key. The public SSH key has the file extension .pub.
2. Click Refresh. You should see the device in the list selector under Import Public Key.
3. Click Browse and select the public SSH key.
4. Proceed with Next.
5. In the Installation Settings summary, make sure to check under Firewall and SSH the SSH port. Click open so it reads SSH port will be open.

After the installation is finished, you can log in through SSH using the provided public SSH key.
8.15 Installation Settings

On the last step before the real installation takes place, you can alter installation settings suggested by the installer. To modify the suggestions, click the respective headline. After having made changes to a particular setting, you are always returned to the Installation Settings window, which is updated accordingly.

If you have added an SSH key for your root as mentioned in Procedure 8.1, make sure to open the SSH port in the Firewall and SSH settings.

8.15.1 Software

SUSE Linux Enterprise Server contains several software patterns for various application purposes. The available choice of patterns and packages depends on your selection of modules and extensions.
Click *Software* to open the *Software Selection and System Tasks* screen where you can modify the pattern selection according to your needs. Select a pattern from the list and see a description in the right-hand part of the window.

Each pattern contains several software packages needed for specific functions (for example Web and LAMP server or a print server). For a more detailed selection based on software packages to install, select *Details* to switch to the YaST Software Manager.

You can also install additional software packages or remove software packages from your system at any later time with the YaST Software Manager. For more information, refer to *Chapter 20, Installing or Removing Software*.

If you choose to install GNOME, SUSE Linux Enterprise Server is installed with the X.org display server. As an alternative to GNOME, the lightweight window manager IceWM can be installed. Select *Details* from the *Software Selection and System Tasks* screen and search for *icewm*.
Tip: IBM Z: Hardware Cryptography Support

The hardware cryptography stack is not installed by default. To install it, select System z HW crypto support in the Software Selection and System Tasks screen.

Tip: Adding Secondary Languages

The language you selected with the first step of the installation will be used as the primary (default) language for the system. You can add secondary languages from within the Software dialog by choosing Details > View > Languages.

8.15.2 Booting

The installer proposes a boot configuration for your system. Other operating systems found on your computer, such as Microsoft Windows or other Linux installations, will automatically be detected and added to the boot loader. However, SUSE Linux Enterprise Server will be booted by default. Normally, you can leave these settings unchanged. If you need a custom setup, modify the proposal according to your needs. For information, see Book “Administration Guide”, Chapter 14 “The Boot Loader GRUB 2”, Section 14.3 “Configuring the Boot Loader with YaST”.

Important: Software RAID 1

Booting a configuration where /boot resides on a software RAID 1 device is supported, but it requires to install the boot loader into the MBR (Boot Loader Location > Boot from Master Boot Record). Having /boot on software RAID devices with a level other than RAID 1 is not supported. Also see Book “Storage Administration Guide”, Chapter 8 “Configuring Software RAID for the Root Partition”.

8.15.3 Security

The CPU Mitigations refer to kernel boot command line parameters for software mitigations that have been deployed to prevent CPU side-channel attacks. Click the highlighted entry to choose a different option. For details, see Book “Administration Guide”, Chapter 14 “The Boot Loader GRUB 2” CPU Mitigations.
By default, `firewalld` is enabled on all configured network interfaces. To globally disable the firewall for this computer, click `Disable` (not recommended).

Note: Firewall Settings

If the firewall is activated, all interfaces are configured to be in the “External Zone”, where all ports are closed by default, ensuring maximum security. The only port you can open during the installation is port 22 (SSH), to allow remote access. All other services requiring network access (such as FTP, Samba, Web server, etc.) will only work after having adjusted the firewall settings. Refer to *Book “Security Guide”, Chapter 18 “Masquerading and Firewalls”* for more information.

To enable remote access via the secure shell (SSH), make sure the `SSH service` is enabled and the `SSH port` is open.

Tip: Existing SSH Host Keys

If you install SUSE Linux Enterprise Server on a machine with existing Linux installations, the installation routine imports an SSH host key. It chooses the host key with the most recent access time by default. See also *Section 8.15.8, “Import SSH Host Keys and Configuration”*.

If you are performing a remote administration over VNC, you can also specify whether the machine should be accessible via VNC after the installation. Note that enabling VNC also requires you to set the `Default systemd Target` to `graphical`.

8.15.4 Network Configuration

This category displays the current network settings (as automatically configured after booting into the installation, see *Section 8.6*) or as manually configured from the `Registration` or `Add-On Product` dialog during the respective steps of the installation process. If you want to check or adjust the network settings at this stage (before performing the installation), click `Network Configuration`. This takes you to the YaST `Network Settings` module. For details, see *Book “Administration Guide”, Chapter 19 “Basic Networking”, Section 19.4 “Configuring a Network Connection with YaST”*.
8.15.5 **Kdump**

Using Kdump, you can save a dump of the kernel (in case of a crash) to analyze what went wrong. Use this dialog to enable and configure Kdump. Find detailed information at Book “System Analysis and Tuning Guide”, Chapter 17 “Kexec and Kdump”.

8.15.6 **IBM Z: Blacklist Devices**

To save memory, all channels for devices currently not in use are blacklisted by default (each channel that is not blacklisted occupies approximately 50 KB of memory). To configure additional hardware in the installed system using channels that are currently blacklisted, run the respective YaST module to enable the respective channels first.

To disable blacklisting, click disable.

8.15.7 **Default systemd Target**

SUSE Linux Enterprise Server can boot into two different targets (formerly known as “runlevels”). The graphical target starts a display manager, whereas the multi-user target starts the command line interface.

The default target is graphical. In case you have not installed the X Window System patterns, you need to change it to multi-user. If the system should be accessible via VNC, you need to choose graphical.

8.15.8 **Import SSH Host Keys and Configuration**

If an existing Linux installation on your computer was detected, YaST will import the most recent SSH host key found in /etc/ssh by default, optionally including other files in the directory as well. This makes it possible to reuse the SSH identity of the existing installation, avoiding the REMOTE HOST IDENTIFICATION HAS CHANGED warning on the first connection. Note that this item is not shown in the installation summary if YaST has not discovered any other installations.

You have the following choices:

I would like to import SSH keys from a previous install:

Select this option to import the SSH host key and optionally the configuration of an installed system. You can select the installation to import from in the option list below.
Import SSH Configuration

Enable this to copy other files in /etc/ssh to the installed system in addition to the host keys.

8.15.9 System

This screen lists all the hardware information the installer could obtain about your computer. When opened for the first time, the hardware detection is started. Depending on your system, this may take some time. Select any item in the list and click Details to see detailed information about the selected item. Use Save to File to save a detailed list to either the local file system or a removable device.

Advanced users can also change the PCI ID Setup and kernel settings by choosing Kernel Settings. A screen with two tabs opens:

PCI ID Setup

Each kernel driver contains a list of device IDs of all devices it supports. If a new device is not in any driver's database, the device is treated as unsupported, even if it can be used with an existing driver. You can add PCI IDs to a device driver here. Only advanced users should attempt to do so.

To add an ID, click Add and select whether to Manually enter the data, or whether to choose from a list. Enter the required data. The SysFS Dir is the directory name from /sys/bus/pci/drivers—if empty, the driver name is used as the directory name. Existing entries can be managed with Edit and Delete.

Kernel Settings

Change the Global I/O Scheduler here. If Not Configured is chosen, the default setting for the respective architecture will be used. This setting can also be changed at any time later from the installed system. Refer to Book “System Analysis and Tuning Guide”, Chapter 12 “Tuning I/O Performance” for details on I/O tuning.

Also activate the Enable SysRq Keys here. These keys will let you issue basic commands (such as rebooting the system or writing kernel dumps) in case the system crashes. Enabling these keys is recommended when doing kernel development. Refer to https://www.kernel.org/doc/html/latest/admin-guide/sysrq.html for details.
8.16 Performing the Installation

After configuring all installation settings, click *Install* in the Installation Settings window to start the installation. Some software may require a license confirmation. If your software selection includes such software, license confirmation dialogs are displayed. Click *Accept* to install the software package. When not agreeing to the license, click *I Disagree* and the software package will not be installed. In the dialog that follows, confirm with *Install* again.

The installation usually takes between 15 and 30 minutes, depending on the system performance and the selected software scope. After having prepared the hard disk and having saved and restored the user settings, the software installation starts. Choose *Details* to switch to the installation log or *Release Notes* to read important up-to-date information that was not available when the manuals were printed.

After the software installation has completed, the system reboots into the new installation where you can log in. To customize the system configuration or to install additional software packages, start YaST.

8.16.1 IBM Z: IPLing the Installed System

YaST usually reboots into the installed system on the IBM Z platform. Exceptions are installations where the boot loader resides on an FCP device in environments with LPAR on a machine older than z196 or with z/VM older than release 5.4. The boot loader gets written to a separate partition mounted as `/boot/zipl/`.

In cases where an automatic reboot is not possible, YaST will show a dialog containing information about from which device to do an IPL. Accept the shutdown option and perform an IPL after the shutdown. The procedure varies according to the type of installation:

LPAR Installation

In the IBM Z HMC, select *Load*, select *Clear*, then enter the loading address (the address of the device containing the `/boot/zipl/` directory with the boot loader). If using a zFCP disk as the boot device, choose *Load from SCSI* and specify the load address of your FCP adapter plus WWPN and LUN of the boot device. Now start the loading process.

z/VM Installation

Log in to the VM guest (see Example 5.1, “Configuration of a z/VM Directory” for the configuration) as LINUX1 and proceed to IPL the installed system:

```
IPL 151 CLEAR
```
is an example address of the DASD boot device, replace this value with the correct address.

If using a zFCP disk as the boot device, specify both the zFCP WWPN and LUN of the boot device before initiating the IPL. The parameter length is limited to eight characters. Longer numbers must be separated by spaces:

```
SET LOADDEV PORT 50050763 00C590A9 LUN 50010000 00000000
```

Finally, initiate the IPL:

```
IPL FC00
```

FC00 is an example address of the zFCP adapter, replace this value with the correct address.

KVM Guest Installation

After the installation has finished, the virtual machine is shut down. At this point, log in to the KVM host, edit the virtual machine's description file and restart it to IPL into the installed system:

1. Log in to the KVM host.
2. Edit the domain XML file by running

```
tux > sudo virsh edit s12-1
```

and remove the following lines:

```
<!-- Boot kernel - remove 3 lines after successful installation -->
<kernel>/var/lib/libvirt/images/s12-kernel.boot</kernel>
<initrd>/var/lib/libvirt/images/s12-initrd.boot</initrd>
<cmdline>linuxrcstderr=/dev/console</cmdline>
```

3. Restart the VM Guest to IPL into the installed system:

```
tux > sudo virsh start s12-1 --console
```
Note: cio_ignore is Disabled for KVM Installations

The kernel parameter `cio_ignore` prevents the kernel from looking at all the available hardware devices. However, for KVM guests, the hypervisor already takes care to only provide access to the correct devices. Therefore `cio_ignore` is disabled by default when installing a KVM guest (for z/VM and LPAR installations it is activated by default).

8.16.2 IBM Z: Connecting to the Installed System

After IPLing the system, establish a connection via VNC, SSH, or X to log in to the installed system. Using either VNC or SSH is recommended. To customize the system configuration or to install additional software packages, start YaST.

8.16.2.1 Using VNC to Connect

A message in the 3270 terminal asks you to connect to the Linux system using a VNC client. However, this message is easily missed, because it is mixed with kernel messages and the terminal process might quit before you notice the message. If nothing happens for five minutes, try to initiate a connection to the Linux system using a VNC viewer.

If you connect using a JavaScript-capable browser, enter the complete URL, consisting of the IP address of the installed system along with the port number, in the following fashion:

```
http://IP_OF_INSTALLED_SYSTEM:5801/
```

8.16.2.2 Using SSH to Connect

A message in the 3270 terminal asks you to connect to the Linux system with an SSH client. This message is easily missed, however, because it is mixed with kernel messages and the terminal process might quit before you become aware of the message.

When the message appears, use SSH to log in to the Linux system as `root`. If the connection is denied or times out, wait for the login timeout to expire, then try again (this time depends on server settings).
8.16.2.3 Using X to Connect

When IPLing the installed system, make sure that the X server used for the first phase of the installation is up and still available before booting from the DASD. YaST opens on this X server to finish the installation. Complications may arise if the system is booted up but unable to connect to the X server in a timely fashion.
9 Registering SUSE Linux Enterprise and Managing Modules/Extensions

To get technical support and product updates, you need to register and activate SUSE Linux Enterprise Server with the SUSE Customer Center. It is recommended to register during the installation, since this will enable you to install the system with the latest updates and patches available. However, if you are offline or want to skip the registration step, you can register at any time later from the installed system.

Modules and extensions add features to your system and allow you to customize the system according to your needs. These components also need to be registered and can be managed with YaST or command line tools. For more details also refer to the Article “Modules and Extensions Quick Start”.

Note: SUSE Account

Registering with the SUSE Customer Center requires a SUSE account. In case you do not have a SUSE account yet, go to the SUSE Customer Center home page (https://sc-c.suse.com/) to create one.

Tip: Deregistering a System

To completely deregister a system including all modules and extensions use the command line tool SUSEConnect. Deregistering a system removes its entry on the registration server and also removes all repositories for modules, extensions, and the product itself.

```
tux > sudo SUSEConnect -d
```
9.1 Registering During the Installation

The easiest and recommended way to register is to do it during the installation. It will not only allow you to install the latest patch level of SUSE Linux Enterprise Server, but you will also get access to all modules and extensions without having to provide an additional installation media. This also applies to all modules or extension you install. For details on the registration process refer to Section 8.7, “Registration”.

If the system was successfully registered during installation, YaST will add online repositories provided by SUSE Customer Center. This prevents problems if local installation sources are no longer available and ensures that you always get the latest updates from the online repositories.

9.2 Registering during Automated Deployment

If you deploy your instances automatically using AutoYaST, you can register the system during the installation by providing the respective information in the AutoYaST control file. Refer to for details.

9.3 Registering from the Installed System

If you have skipped the registration during the installation or want to re-register your system, you can do so at any time using the YaST module Product Registration or the command line tool SUSEConnect.

9.3.1 Registering with YaST

To register the system start YaST Software Product Registration. First register SUSE Linux Enterprise Server, then choose the modules and extensions you want to make available.

⚠️ Important: Modules and Extensions

If you have installed the system by skipping the registration and installing from the SLE-15-SP1-Packages-ARCH-GM-DVD1.iso media, make sure to register all the modules and extension you have chosen during the installation. You will only receive security updates and patches for modules and extensions that have been registered.
PROCEDURE 9.1: PRODUCT REGISTRATION WITH YAST

1. Start YaST > Software > Product Registration.

2. Provide the E-mail address associated with the SUSE account you or your organization uses to manage subscriptions. Also enter the Registration Code you received with your copy of SUSE Linux Enterprise Server.

3. By default the system is registered with the SUSE Customer Center. Proceed to the next step to make this happen.
 If your organization provides local registration servers you can either choose one from the list of auto-detected servers or provide the URL at Register System via local SMT Server.

4. Choose Next to start the registration process. SUSE Linux Enterprise Server is registered with the chosen server and the associated repositories are added to your system. The Extension and Module Selection dialog opens.
5. Select all modules and extensions you would like to make available in the system. You should at least choose the preselected modules (*Basesystem Module* and *Server Applications Module*). Also make sure to choose any additional module or extension that you have added during the installation. Note that all extensions require additional registration codes which are liable for cost. Proceed with Next.

6. Depending on your selection, you may have to accept one or more license agreements now. All components are registered with the chosen server and the associated repositories are added to your system.

7. The YaST package installer opens to install release-packages for each module and, depending on your choice of modules and extensions, additional packages. It is strongly recommended *not to deselect* any of the preselected packages; you may, however, add additional packages.
Choose Accept and Finish to conclude the registration process.

9.3.2 Registering with SUSEConnect

Registering the system plus modules and extensions is also possible from the command line using SUSEConnect. For information that go beyond the scope of this section, refer to the inline documentation with man 8 SUSEConnect

PROCEDURE 9.2: PRODUCT REGISTRATION WITH SUSECONNECT

1. To register SUSE Linux Enterprise Server with SUSE Customer Center run SUSEConnect as follows:

   ```
   tux > sudo SUSEConnect -r REGISTRATION_CODE -e EMAIL_ADDRESS
   ```

 To register with a local registration server, additionally provide the URL to the server:

   ```
   tux > sudo SUSEConnect -r REGISTRATION_CODE -e EMAIL_ADDRESS \
   --url "https://suse_register.example.com/"
   ```

 Replace REGISTRATION_CODE with the registration code you received with your copy of SUSE Linux Enterprise Server. Replace EMAIL_ADDRESS with the E-mail address associated with the SUSE account you or your organization uses to manage subscriptions.
This process will register the *Basesystem Module* and *Server Applications Module* and add the associated repositories to your system.

2. SUSE Linux Enterprise Server including the two default repositories is now registered. In case you want to register additional modules or extensions, proceed as outlined in Section 9.4, “Managing Modules and Extensions in a Running System”.

9.4 Managing Modules and Extensions in a Running System

Even after a system is installed and registered, adding and removing modules and extensions is still possible. You can either use YaST or [SUSEConnect](#) for this task. For more details also refer to the Article “Modules and Extensions Quick Start”.

9.4.1 Adding Modules and Extensions with YaST

1. Start **YaST > Software > Add System Extensions or Modules**.

 ![Extension and Module Selection](image)

2. To add modules or extensions, select all components you would like to install. Note that all extensions require additional registration codes which are liable for cost.
3. All additional components are registered with the registration server and the associated repositories are added to your system.

4. The YaST package installer opens to install release-packages for each module and, depending on your choice of modules and extensions, additional packages. It is strongly recommended *not to deselect* any of the preselected packages; you may, however, add additional packages. Choose *Accept* and *Finish* to conclude the process.

Tip: Module Dependencies

Similar to software packages, which may depend on other packages to function, a module may have dependencies on other modules. If this is the case, the modules on which it depends are automatically selected for installation.

9.4.2 Deleting Modules and Extensions with YaST

1. Start *YaST > Software > Add-On Products*.

2. Choose the module or extension that should be removed and click *Delete*. Confirm the warning saying that all packages from the selected component will be removed.
3. The YaST Software Manager opens and shows a list of all installed packages from the deleted module or extension. Click Accept to remove all of them. It is strongly recommended to do so, because you will no longer get updates for packages from deleted modules or extensions. In case you keep packages, make sure to at least remove the *-release package for each module or extension that gets deleted. Proceed with Accept and then OK.

Warning: Deleting Modules

Note that you should never delete the Basesystem Module. It is also not recommended to delete the Server Applications Module.

Warning: No Updates for Packages from Deleted Modules and Extensions

If you choose to keep packages from deleted modules or extensions, you will no longer receive updates for these packages. Because this includes security fixes, keeping such packages may introduce a security risk to your system.

9.4.3 Adding/Deleting Modules and Extensions with SUSEConnect

1. Run **SUSEConnect -list-extensions** to get an overview of available extensions:

```
tux > sudo SUSEConnect -list-extensions
AVAILABLE EXTENSIONS AND MODULES

Basesystem Module 15 SP1 x86_64 (Installed)
Deactivate with: SUSEConnect -d -p sle-module-basesystem/15.1/x86_64

Containers Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-containers/15.1/x86_64

Desktop Applications Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-desktop-applications/15.1/x86_64

Development Tools Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-development-tools/15.1/x86_64

SUSE Linux Enterprise Workstation Extension 15 SP1 x86_64
Activate with: SUSEConnect -p sle-we/15.1/x86_64 -r ADDITIONAL REGCODE
```
SUSE Cloud Application Platform Tools Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-cap-tools/15.1/x86_64

SUSE Linux Enterprise Live Patching 15 SP1 x86_64
Activate with:
 SUSEConnect -p sle-module-live-patching/15.1/x86_64 -r ADDITIONAL REGCODE

SUSE Package Hub 15 SP1 x86_64
Activate with: SUSEConnect -p PackageHub/15.1/x86_64

Server Applications Module 15 SP1 x86_64 (Installed)
Deactivate with: SUSEConnect -d -p sle-module-server-applications/15.1/x86_64

Legacy Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-legacy/15.1/x86_64

Public Cloud Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-public-cloud/15.1/x86_64

SUSE Enterprise Storage 6 x86_64
Activate with: SUSEConnect -p ses/6/x86_64 -r ADDITIONAL REGCODE

SUSE Linux Enterprise High Availability Extension 15 SP1 x86_64
Activate with: SUSEConnect -p sle-ha/15.1/x86_64 -r ADDITIONAL REGCODE

Web and Scripting Module 15 SP1 x86_64
Activate with: SUSEConnect -p sle-module-web-scripting/15.1/x86_64

MORE INFORMATION

You can find more information about available modules here:

2. Run the commands in the listing for activating/deactivating a module or extension to add or delete a component. Note that adding an extensions requires additional registration codes which are liable for cost.

⚠️ Warning: Deleting Modules

Note that you should never delete the *Basesystem Module*. It is also not recommended to delete the *Server Applications Module*.
Important: No Automated Installation/Removal of Packages

When using SUSEConnect to add or delete modules and extensions, the components get de-registered and the respective repositories or services get removed from the system. No installation or removal of packages will be done. If you want this to be done automatically, use YaST to add or delete modules and extensions.

When adding a module or extension, this means no automatic installation of default packages or patterns is performed. You need to do this manually with Zypper on the command line or by running YaST › Software Management.

When deleting a module or extension, this means no automatic cleanup will be done. All packages that belonged to the module or extension will remain installed on the system, but are longer associated with a repository and therefore will no longer receive updates. To remove these so-called “orphaned” packages use Zypper on the command line. zypper packages --orphaned lists these packages and zypper remove deletes one or more packages. Alternatively use YaST › Software Management to list and delete orphaned packages.

Warning: No Updates for Packages from Deleted Modules and Extensions

If you choose to keep packages from deleted modules or extensions, you will no longer receive updates for these packages. Because this includes security fixes, keeping such packages may introduce a security risk to your system.
Sophisticated system configurations require specific disk setups. All common partitioning tasks can be done during the installation. To get persistent device naming with block devices, use the block devices below /dev/disk/by-id or /dev/disk/by-uuid. Logical Volume Management (LVM) is a disk partitioning scheme that is designed to be much more flexible than the physical partitioning used in standard setups. Its snapshot functionality enables easy creation of data backups. Redundant Array of Independent Disks (RAID) offers increased data integrity, performance, and fault tolerance. SUSE Linux Enterprise Server also supports multipath I/O (see Book “Storage Administration Guide”, Chapter 17 “Managing Multipath I/O for Devices” for details). There is also the option to use iSCSI as a networked disk (read more about iSCSI in Book “Storage Administration Guide”, Chapter 14 “Mass Storage over IP Networks: iSCSI”).

10.1 Using the Expert Partitioner

With the Expert Partitioner, shown in Figure 10.1, “The YaST Partitioner”, manually modify the partitioning of one or several hard disks. You can add, delete, resize, and edit partitions, or access the soft RAID, and LVM configuration.

⚠️ Warning: Repartitioning the Running System

Although it is possible to repartition your system while it is running, the risk of making a mistake that causes data loss is very high. Try to avoid repartitioning your installed system and always create a complete backup of your data before attempting to do so.
Tip: IBM Z: Device Names

IBM Z recognizes only DASD and SCSI hard disks. IDE hard disks are not supported. This is why these devices appear in the partition table as `/dev/sda` or `/dev/da` for the first recognized device.

All existing or suggested partitions on all connected hard disks are displayed in the list of Available Storage in the YaST Expert Partitioner dialog. Entire hard disks are listed as devices without numbers, such as `/dev/sda` (or `/dev/da`). Partitions are listed as parts of these devices, such as `/dev/sda1` (or `/dev/da1`, respectively). The size, type, encryption status, file system, and mount point of the hard disks and their partitions are also displayed. The mount point describes where the partition appears in the Linux file system tree.

Several functional views are available on the left hand System View. These views can be used to collect information about existing storage configurations, configure functions (like RAID, Volume Management, Crypt Files), and view file systems with additional features, such as Btrfs, NFS, or TMPFS.
If you run the expert dialog during installation, any free hard disk space is also listed and automatically selected. To provide more disk space to SUSE Linux Enterprise Server, free the needed space by going from the bottom toward the top in the list of partitions.

10.1.1 Partition Tables

SUSE Linux Enterprise Server allows to use and create different partition tables. In some cases the partition table is called disk label. The partition table is important to the boot process of your computer. To boot your machine from a partition in a newly created partition table, make sure that the table format is supported by the firmware.

To change the partition table, click the relevant disk name in the System View and choose Expert > Create New Partition Table.

10.1.1.1 Master Boot Record

The master boot record (MBR) is the legacy partition table used on IBM PCs. It is sometimes also called an MS-DOS partition table. The MBR only supports four primary partitions. If the disk already has an MBR, SUSE Linux Enterprise Server allows you to create additional partitions in it which can be used as the installation target.

The limit of four partitions can be overcome by creating an extended partition. The extended partition itself is a primary partition and can contain more logical partitions.

UEFI firmwares usually support booting from MBR in the legacy mode.

10.1.1.2 GPT Partition Table

UEFI computers use a GUID Partition Table (GPT) by default. SUSE Linux Enterprise Server will create a GPT on a disk if no other partition table exists.

Old BIOS firmwares do not support booting from GPT partitions.

You need a GPT partition table to use one of the following features:

- More than four primary partitions
- UEFI Secure Boot
- Use disks larger than 2 TB
Note: Partitions Created with Parted 3.1 or Earlier Mislabeled

GPT partitions created with Parted 3.1 or earlier used the Microsoft Basic Data partition type instead of the newer Linux-specific GPT GUID. Newer versions of Parted will set the misleading flag msftdata on such partitions. This will also lead to various disk tools labeling the partition as a Windows Data Partition or similar.

To remove the flag, run:

```bash
root # parted DEVICE set PARTITION_NUMBER msftdata off
```

10.1.1.3 Partition Tables on IBM Z

On IBM Z platforms, SUSE Linux Enterprise Server supports SCSI hard disks and direct access storage devices (DASD). While SCSI disks can be partitioned as described above, DASDs can have no more than three partition entries in their partition tables.

10.1.2 Partitions

The YaST Partitioner can create and format partitions with several file systems. The default file system used by SUSE Linux Enterprise Server is Btrfs. For details, see Section 10.1.2.2, “Btrfs Partitioning”.

Other commonly used file systems are available: Ext2, Ext3, Ext4, FAT, XFS, Swap, and UDF.

10.1.2.1 Creating a Partition

To create a partition select Hard Disks and then a hard disk with free space. The actual modification can be done in the Partitions tab:

1. Click Add to create a new partition. When using MBR, specify to create a primary or extended partition. Within the extended partition, you can create several logical partitions. For details, see Section 10.1.1, “Partition Tables”.

2. Specify the size of the new partition. You can either choose to occupy all the free unpartitioned space, or enter a custom size.
3. Select the file system to use and a mount point. YaST suggests a mount point for each partition created. To use a different mount method, like mount by label, select **Fstab Options**.

4. Specify additional file system options if your setup requires them. This is necessary, for example, if you need persistent device names. For details on the available options, refer to **Section 10.1.3, “Editing a Partition”**.

5. Click **Finish** to apply your partitioning setup and leave the partitioning module. If you created the partition during installation, you are returned to the installation overview screen.

10.1.2.2 Btrfs Partitioning

The default file system for the root partition is Btrfs. For details, see **Book “Administration Guide”, Chapter 7 “System Recovery and Snapshot Management with Snapper”** and **Book “Storage Administration Guide”, Chapter 1 “Overview of File Systems in Linux”**. The root file system is the default subvolume and it is not listed in the list of created subvolumes. As a default Btrfs subvolume, it can be mounted as a normal file system.

Important: Btrfs on an Encrypted Root Partition

The default partitioning setup suggests the root partition as Btrfs with `/boot` being a directory. To encrypt the root partition, make sure to use the GPT partition table type instead of the default MSDOS type. Otherwise the GRUB2 boot loader may not have enough space for the second stage loader.

It is possible to create snapshots of Btrfs subvolumes—either manually, or automatically based on system events. For example when making changes to the file system, **zypper** invokes the **snapper** command to create snapshots before and after the change. This is useful if you are not satisfied with the change **zypper** made and want to restore the previous state. As **snapper** invoked by **zypper** creates snapshots of the root file system by default, it makes sense to exclude specific directories from snapshots. This is the reason YaST suggests creating the following separate subvolumes:

```
/boot/grub2/i386-pc, /boot/grub2/x86_64-efi, /boot/grub2/powerpc-ieee1275, /boot/grub2/s390x-emu
```
A rollback of the boot loader configuration is not supported. The directories listed above are architecture-specific. The first two directories are present on AMD64/Intel 64 machines, the latter two on IBM POWER and on IBM Z, respectively.

/home
If /home does not reside on a separate partition, it is excluded to avoid data loss on rollbacks.

/opt
Third-party products usually get installed to /opt. It is excluded to avoid uninstalling these applications on rollbacks.

/srv
Contains data for Web and FTP servers. It is excluded to avoid data loss on rollbacks.

/tmp
All directories containing temporary files and caches are excluded from snapshots.

/usr/local
This directory is used when manually installing software. It is excluded to avoid uninstalling these installations on rollbacks.

/var
This directory contains many variable files, including logs, temporary caches, third party products in /var/opt, and is the default location for virtual machine images and databases. Therefore this subvolume is created to exclude all of this variable data from snapshots and has Copy-On-Write disabled.

Tip: Size of Btrfs Partition
Since saved snapshots require more disk space, it is recommended to reserve enough space for Btrfs. While the minimum size for a root Btrfs partition with snapshots and default subvolumes is 16 GB, SUSE recommends at least 32 GB, or more if /home does not reside on a separate partition.

10.1.2.3 Managing Btrfs Subvolumes using YaST
Subvolumes of a Btrfs partition can be now managed with the YaST Expert partitioner module. You can add new or remove existing subvolumes.
1. Start the YaST Expert Partitioner with System › Partitioner.

2. Choose Btrfs in the left System View pane.

3. Select the Btrfs partition whose subvolumes you need to manage and click Edit.

4. Click Subvolume Handling. You can see a list of all existing subvolumes of the selected Btrfs partition. There are several @/.snapshots/xyz/snapshot entries—each of these subvolumes belongs to one existing snapshot.

5. Depending on whether you want to add or remove subvolumes, do the following:

 a. To remove a subvolume, select it from the list of Existing Subvolumes and click Remove.

 b. To add a new subvolume, enter its name to the New Subvolume text box and click Add new.

7. Leave the partitioner with Finish.
10.1.3 Editing a Partition

When you create a new partition or modify an existing partition, you can set various parameters. For new partitions, the default parameters set by YaST are usually sufficient and do not require any modification. To edit your partition setup manually, proceed as follows:

1. Select the partition.

2. Click *Edit* to edit the partition and set the parameters:

 File System ID

 Even if you do not want to format the partition at this stage, assign it a file system ID to ensure that the partition is registered correctly. Typical values are Linux, Linux `swap`, Linux `LVM`, and Linux `RAID`.

 File System

 To change the partition file system, click *Format Partition* and select file system type in the *File System* list.

 SUSE Linux Enterprise Server supports several types of file systems. Btrfs is the Linux file system of choice for the root partition because of its advanced features. It supports copy-on-write functionality, creating snapshots, multi-device spanning, subvolumes, and other useful techniques. XFS, Ext3, and Ext4 are journaling file systems. These file systems can restore the system very quickly after a system crash, using write processes logged during the operation. Ext2 is not a journaling file system, but it is adequate for smaller partitions because it does not require much disk space for management.

 The default file system for the root partition is Btrfs. The default file system for additional partitions is XFS.

 The UDF file system can be used on optical rewritable and non-rewritable media, USB flash drives and hard drives. It is supported by multiple operating systems.

 Swap is a special format that allows the partition to be used as a virtual memory. Create a swap partition of at least 256 MB. However, if you use up your swap space, consider adding memory to your system instead of adding swap space.

Warning: Changing the File System

Changing the file system and reformatting partitions irreversibly deletes all data from the partition.
For details on the various file systems, refer to Storage Administration Guide.

Encrypt Device

If you activate the encryption, all data is written to the hard disk in encrypted form. This increases the security of sensitive data, but reduces the system speed, as the encryption takes some time to process. More information about the encryption of file systems is provided in Book “Security Guide”, Chapter 13 “Encrypting Partitions and Files”.

Mount Point

Specify the directory where the partition should be mounted in the file system tree. Select from YaST suggestions or enter any other name.

Fstab Options

Specify various parameters contained in the global file system administration file (`/etc/fstab`). The default settings should suffice for most setups. You can, for example, change the file system identification from the device name to a volume label. In the volume label, use all characters except `/` and space.

To get persistent devices names, use the mount option `Device ID`, `UUID` or `LABEL`. In SUSE Linux Enterprise Server, persistent device names are enabled by default.

⚠️ **Note: IBM Z: Mounting by Path**

Since mounting by ID causes problems on IBM Z when using disk-to-disk copying for cloning purposes, devices are mounted by path in `/etc/fstab` on IBM Z by default.

If you prefer to mount the partition by its label, you need to define one in the Volume label text entry. For example, you could use the partition label `HOME` for a partition intended to mount to `/home`.

If you intend to use quotas on the file system, use the mount option `Enable Quota Support`. This must be done before you can define quotas for users in the YaST User Management module. For further information on how to configure user quota, refer to Section 23.3.3, “Managing Quotas”.

3. Select Finish to save the changes.
Note: Resize File Systems
To resize an existing file system, select the partition and use Resize. Note, that it is not possible to resize partitions while mounted. To resize partitions, unmount the relevant partition before running the partitioner.

10.1.4 Expert Options
After you select a hard disk device (like sda) in the System View pane, you can access the Expert menu in the lower right part of the Expert Partitioner window. The menu contains the following commands:

Create New Partition Table
This option helps you create a new partition table on the selected device.

Warning: Creating a New Partition Table
Creating a new partition table on a device irreversibly removes all the partitions and their data from that device.

Clone This Disk
This option helps you clone the device partition layout (but not the data) to other available disk devices.

10.1.5 Advanced Options
After you select the host name of the computer (the top-level of the tree in the System View pane), you can access the Configure menu in the lower right part of the Expert Partitioner window. The menu contains the following commands:

Configure iSCSI
To access SCSI over IP block devices, you first need to configure iSCSI. This results in additionally available devices in the main partition list.

Configure Multipath
Selecting this option helps you configure the multipath enhancement to the supported mass storage devices.
10.1.6 More Partitioning Tips

The following section includes a few hints and tips on partitioning that should help you make the right decisions when setting up your system.

10.1.6.1 Cylinder Numbers

Note, that different partitioning tools may start counting the cylinders of a partition with 0 or with 1. When calculating the number of cylinders, you should always use the difference between the last and the first cylinder number and add one.

10.1.6.2 Using swap

Swap is used to extend the available physical memory. It is then possible to use more memory than physical RAM available. The memory management system of kernels before 2.4.10 needed swap as a safety measure. Then, if you did not have twice the size of your RAM in swap, the performance of the system suffered. These limitations no longer exist.

Linux uses a page called “Least Recently Used” (LRU) to select pages that might be moved from memory to disk. Therefore, running applications have more memory available and caching works more smoothly.

If an application tries to allocate the maximum allowed memory, problems with swap can arise. There are three major scenarios to look at:

System with no swap

The application gets the maximum allowed memory. All caches are freed, and thus all other running applications are slowed. After a few minutes, the kernel's out-of-memory kill mechanism activates and kills the process.

System with medium sized swap (128 MB–512 MB)

At first, the system slows like a system without swap. After all physical RAM has been allocated, swap space is used as well. At this point, the system becomes very slow and it becomes impossible to run commands from remote. Depending on the speed of the hard disks that run the swap space, the system stays in this condition for about 10 to 15 minutes until the out-of-memory kill mechanism resolves the issue. Note that you will need a certain amount of swap if the computer needs to perform a “suspend to disk”. In that case, the swap size should be large enough to contain the necessary data from memory (512 MB–1GB).
System with lots of swap (several GB)

It is better to not have an application that is out of control and swapping excessively in this case. If you use such application, the system will need many hours to recover. In the process, it is likely that other processes get timeouts and faults, leaving the system in an undefined state, even after terminating the faulty process. In this case, do a hard machine reboot and try to get it running again. Lots of swap is only useful if you have an application that relies on this feature. Such applications (like databases or graphics manipulation programs) often have an option to directly use hard disk space for their needs. It is advisable to use this option instead of using lots of swap space.

If your system is not out of control, but needs more swap after some time, it is possible to extend the swap space online. If you prepared a partition for swap space, add this partition with YaST. If you do not have a partition available, you can also use a swap file to extend the swap. Swap files are generally slower than partitions, but compared to physical RAM, both are extremely slow so the actual difference is negligible.

PROCEDURE 10.2: ADDING A SWAP FILE MANUALLY

To add a swap file in the running system, proceed as follows:

1. Create an empty file in your system. For example, to add a swap file with 128 MB swap at /var/lib/swap/swapfile, use the commands:

   ```
   tux > sudo mkdir -p /var/lib/swap
   tux > sudo dd if=/dev/zero of=/var/lib/swap/swapfile bs=1M count=128
   ```

2. Initialize this swap file with the command

   ```
   tux > sudo mkswap /var/lib/swap/swapfile
   ```

 Note: Changed UUID for Swap Partitions When Formatting via `mkswap`

 Do not reformat existing swap partitions with `mkswap` if possible. Reformatting with `mkswap` will change the UUID value of the swap partition. Either reformat via YaST (which will update `/etc/fstab`) or adjust `/etc/fstab` manually.

3. Activate the swap with the command

   ```
   tux > sudo swapon /var/lib/swap/swapfile
   ```
To disable this swap file, use the command

```
tux > sudo swapoff /var/lib/swap/swapfile
```

4. Check the current available swap spaces with the command

```
tux > cat /proc/swaps
```

Note that at this point, it is only temporary swap space. After the next reboot, it is no longer used.

5. To enable this swap file permanently, add the following line to `/etc/fstab`:

```
/var/lib/swap/swapfile swap swap defaults 0 0
```

10.1.7 Partitioning and LVM

From the *Expert partitioner*, access the LVM configuration by clicking the *Volume Management* item in the *System View* pane. However, if a working LVM configuration already exists on your system, it is automatically activated upon entering the initial LVM configuration of a session. In this case, all disks containing a partition (belonging to an activated volume group) cannot be repartitioned. The Linux kernel cannot reread the modified partition table of a hard disk when any partition on this disk is in use. If you already have a working LVM configuration on your system, physical repartitioning should not be necessary. Instead, change the configuration of the logical volumes.

At the beginning of the physical volumes (PVs), information about the volume is written to the partition. To reuse such a partition for other non-LVM purposes, it is advisable to delete the beginning of this volume. For example, in the VG `system` and PV `/dev/sda2`, do this with the command:

```
```

```
dd if=/dev/zero of=/dev/sda2 bs=512 count=1
```

Warning: File System for Booting

The file system used for booting (the root file system or `/boot`) must not be stored on an LVM logical volume. Instead, store it on a normal physical partition.

For more details about LVM, see *Book “Storage Administration Guide”*.
10.2 LVM Configuration

This section explains specific steps to take when configuring LVM. If you need information about the Logical Volume Manager in general, refer to the Book “Storage Administration Guide”, Chapter 5 “LVM Configuration”, Section 5.1 “Understanding the Logical Volume Manager”.

⚠️ Warning: Back up Your Data

Using LVM is sometimes associated with increased risk such as data loss. Risks also include application crashes, power failures, and faulty commands. Save your data before implementing LVM or reconfiguring volumes. Never work without a backup.

The YaST LVM configuration can be reached from the YaST Expert Partitioner (see Section 10.1, “Using the Expert Partitioner”) within the Volume Management item in the System View pane. The Expert Partitioner allows you to edit and delete existing partitions and create new ones that need to be used with LVM.

10.2.1 Create Physical Volume

The first task is to create physical volumes that provide space to a volume group:

1. Select a hard disk from Hard Disks.
2. Change to the Partitions tab.
3. Click Add and enter the desired size of the PV on this disk.
4. Use Do not format partition and change the File System ID to 0x8E Linux LVM. Do not mount this partition.
5. Repeat this procedure until you have defined all the desired physical volumes on the available disks.

10.2.2 Creating Volume Groups

If no volume group exists on your system, you must add one (see Figure 10.3, “Creating a Volume Group”). It is possible to create additional groups by clicking Volume Management in the System View pane, and then on Add Volume Group. One single volume group is usually sufficient.
1. Enter a name for the VG, for example, *system*.

2. Select the desired *Physical Extend Size*. This value defines the *size* of a physical block in the volume group. All the disk space in a volume group is handled in blocks of this size.

3. Add the prepared PVs to the VG by selecting the device and clicking *Add*. Selecting several devices is possible by holding *Ctrl* while selecting the devices.

4. Select *Finish* to make the VG available to further configuration steps.

If you have multiple volume groups defined and want to add or remove PVs, select the volume group in the *Volume Management* list and click *Resize*. In the following window, you can add or remove PVs to the selected volume group.

10.2.3 Configuring Logical Volumes

After the volume group has been filled with PVs, define the LVs which the operating system should use in the next dialog. Choose the current volume group and change to the *Logical Volumes* tab. *Add*, *Edit*, *Resize*, and *Delete* LVs as needed until all space in the volume group has been occupied. Assign at least one LV to each volume group.
Click *Add* and go through the wizard-like pop-up that opens:

1. Enter the name of the LV. For a partition that should be mounted to `/home`, a name like `HOME` could be used.

2. Select the type of the LV. It can be either *Normal Volume*, *Thin Pool*, or *Thin Volume*. Note that you need to create a thin pool first, which can store individual thin volumes. The big advantage of thin provisioning is that the total sum of all thin volumes stored in a thin pool can exceed the size of the pool itself.

3. Select the size and the number of stripes of the LV. If you have only one PV, selecting more than one stripe is not useful.

4. Choose the file system to use on the LV and the mount point.

By using stripes it is possible to distribute the data stream in the LV among several PVs (striping). However, striping a volume can only be done over different PVs, each providing at least the amount of space of the volume. The maximum number of stripes equals to the number of PVs, where Stripe "1" means "no striping". Striping only makes sense with PVs on different hard disks, otherwise performance will decrease.
Warning: Striping
YaST cannot, at this point, verify the correctness of your entries concerning striping. Any mistake made here is apparent only later when the LVM is implemented on disk.

If you have already configured LVM on your system, the existing logical volumes can also be used. Before continuing, assign appropriate mount points to these LVs. With Finish, return to the YaST Expert Partitioner and finish your work there.

10.3 Soft RAID

This section describes actions required to create and configure various types of RAID. In case you need background information about RAID, refer to Book “Storage Administration Guide”, Chapter 7 “Software RAID Configuration”, Section 7.1 “Understanding RAID Levels”.

10.3.1 Soft RAID Configuration

The YaST RAID configuration can be reached from the YaST Expert Partitioner, described in Section 10.1, “Using the Expert Partitioner”. This partitioning tool enables you to edit and delete existing partitions and create new ones to be used with soft RAID:

1. Select a hard disk from Hard Disks.
2. Change to the Partitions tab.
3. Click Add and enter the desired size of the raid partition on this disk.
4. Use Do not Format the Partition and change the File System ID to OxFD Linux RAID. Do not mount this partition.
5. Repeat this procedure until you have defined all the desired physical volumes on the available disks.

For RAID 0 and RAID 1, at least two partitions are needed—for RAID 1, usually exactly two and no more. If RAID 5 is used, at least three partitions are required, RAID 6 and RAID 10 require at least four partitions. It is recommended to use partitions of the same size only. The RAID partitions should be located on different hard disks to decrease the risk of losing data if one is defective (RAID 1 and 5) and to optimize the performance of RAID 0. After creating all the partitions to use with RAID, click RAID > Add RAID to start the RAID configuration.
In the next dialog, choose between RAID levels 0, 1, 5, 6 and 10. Then, select all partitions with either the “Linux RAID” or “Linux native” type that should be used by the RAID system. No swap or DOS partitions are shown.

Tip: Classify Disks
For RAID types where the order of added disks matters, you can mark individual disks with one of the letters A to E. Click the Classify button, select the disk and click of the Class X buttons, where X is the letter you want to assign to the disk. Assign all available RAID disks this way, and confirm with OK. You can easily sort the classified disks with the Sorted or Interleaved buttons, or add a sort pattern from a text file with Pattern File.

To add a previously unassigned partition to the selected RAID volume, first click the partition then Add. Assign all partitions reserved for RAID. Otherwise, the space on the partition remains unused. After assigning all partitions, click Next to select the available RAID Options.
In this last step, set the file system to use, encryption and the mount point for the RAID volume. After completing the configuration with Finish, see the /dev/md0 device and others indicated with RAID in the Expert Partitioner.
10.3.2 Troubleshooting

Check the file `/proc/mdstat` to find out whether a RAID partition has been damaged. If the system fails, shut down your Linux system and replace the defective hard disk with a new one partitioned the same way. Then restart your system and enter the command `mdadm /dev/mdX --add /dev/sdX`. Replace 'X' with your particular device identifiers. This integrates the hard disk automatically into the RAID system and fully reconstructs it.

Note that although you can access all data during the rebuild, you may encounter some performance issues until the RAID has been fully rebuilt.

10.3.3 For More Information

Configuration instructions and more details for soft RAID can be found at:

- Book “Storage Administration Guide”
- http://raid.wiki.kernel.org

Linux RAID mailing lists are available, such as http://marc.info/?l=linux-raid
11 Remote Installation

The installation of SUSE® Linux Enterprise Server can be fully performed over the network. This chapter describes how to provide the required environment for booting, installing and controlling the installation via the network.

11.1 Overview

For a remote installation you need to consider how to boot, how to control the installation, and the source of the installation data. All available options can be combined with each other, if they are available for your hardware platform.

Boot method

Depending on the hardware, several options for booting a system exist. Common options are DVD, USB drive or PXE boot. For more information about your platform, refer to Part I, “Installation Preparation”.

To set up a server for booting via PXE, refer to Chapter 17, Preparing Network Boot Environment.

Data source

Most commonly, DVDs or USB drives are used as a source for installing SUSE Linux Enterprise Server. Alternatively, installation servers can be used. In this case, use the install boot parameter to specify the source. For details, refer to Section 7.3.3, “Specifying the Installation Source”.

To use a network source for the installation, prepare a server as described in Chapter 16, Setting Up a Network Installation Source.

Controlling the installation

Instead of using a keyboard and monitor directly attached to the target machine, the installation can be controlled via SSH, VNC, or by using the serial console of a machine. This is described in the sections Section 11.3, “Monitoring Installation via VNC”, Section 11.4, “Monitoring Installation via SSH” and Section 11.5, “Monitoring Installation via Serial Console”.

Instead of manually controlling the installation, AutoYaST can be used for fully automating the installation process. For details, refer to Book “AutoYaST Guide”.
11.2 Scenarios for Remote Installation

This section introduces the most common installation scenarios for remote installations. For each scenario, carefully check the list of prerequisites and follow the procedure outlined for that scenario. If in need of detailed instructions for a particular step, follow the links provided for each one of them.

11.2.1 Installation from DVD via VNC

This type of installation still requires some degree of physical access to the target system to boot for installation. The installation is controlled by a remote workstation using VNC to connect to the installation program. User interaction is required as with the manual installation in Chapter 8, Installation Steps.

For this type of installation, make sure that the following requirements are met:

- Target system with working network connection.
- Controlling system with working network connection and VNC viewer software or JavaScript-enabled browser (Firefox, Chromium, Internet Explorer, Opera, etc.).
- Installation DVD.

To perform this kind of installation, proceed as follows:

1. Boot the target system using DVD1 of the SUSE Linux Enterprise Server media kit.

2. When the boot screen of the target system appears, use the boot parameters prompt to set the VNC options and, if required, the static network configuration. For information about boot parameters, see Chapter 7, Boot Parameters.

 a. Boot parameters for a static network configuration:

   ```
   netdevice=NETDEVICE hostip=IP_ADDRESS netmask=NETMASK gateway=IP_GATEWAY vnc=1 VNCPassword=PASSWORD
   ```

 b. Boot parameters for a dynamic (DHCP) network configuration:

   ```
   vnc=1 VNCPassword=PASSWORD
   ```
3. The target system boots to a text-based environment, giving the network address and display number under which the graphical installation environment can be addressed by any VNC viewer application or browser. VNC installations announce themselves over OpenSLP and if the firewall settings permit. They can be found using `slptool` as described in Section 11.3.1, “Preparing for VNC Installation”.

4. On the controlling workstation, open a VNC viewing application or Web browser and connect to the target system as described in Section 11.3, “Monitoring Installation via VNC”.

5. Perform the installation as described in Chapter 8, Installation Steps.

6. Reconnect to the target system after it reboots for the initial system configuration. For details, see Part V, “Initial System Configuration”.

11.2.2 Installation from Network via VNC

This type of installation does not require a direct interaction with the target machine. The system is booted via PXE and the installation data is fetched from a server.

To perform this type of installation, make sure that the following requirements are met:

- At least one machine that can be used for installing a DHCP, NFS, HTTP, FTP, TFTP, or SMB server.
- Target system capable of PXE boot, networking, and Wake on LAN, plugged in and connected to the network.
- Controlling system with working network connection and VNC viewer software or JavaScript-enabled browser (Firefox, Chromium, Microsoft Edge, Opera, etc.).

To perform this type of installation, proceed as follows:

1. Set up the server that contains the installation data. For details, see Part IV, “Setting Up an Installation Server”.

2. Set up a DHCP and TFTP server for the network. This is described in Chapter 17, Preparing Network Boot Environment. Add the required boot parameters to enable the VNC server.

3. Enable PXE boot in the target machine firmware. For more information, see Section 17.4, “Preparing the Target System for PXE Boot”.

4. The target system boots to a text-based environment, giving the network address and display number under which the graphical installation environment can be addressed by any VNC viewer application or browser. VNC installations announce themselves over OpenSLP and if the firewall settings permit. They can be found using `slptool` as described in Section 11.3.1, “Preparing for VNC Installation”.

4. On the controlling workstation, open a VNC viewing application or Web browser and connect to the target system as described in Section 11.3, “Monitoring Installation via VNC”.

5. Perform the installation as described in Chapter 8, Installation Steps.

6. Reconnect to the target system after it reboots for the initial system configuration. For details, see Part V, “Initial System Configuration”.

11.2.2 Installation from Network via VNC

This type of installation does not require a direct interaction with the target machine. The system is booted via PXE and the installation data is fetched from a server.

To perform this type of installation, make sure that the following requirements are met:

- At least one machine that can be used for installing a DHCP, NFS, HTTP, FTP, TFTP, or SMB server.
- Target system capable of PXE boot, networking, and Wake on LAN, plugged in and connected to the network.
- Controlling system with working network connection and VNC viewer software or JavaScript-enabled browser (Firefox, Chromium, Microsoft Edge, Opera, etc.).

To perform this type of installation, proceed as follows:

1. Set up the server that contains the installation data. For details, see Part IV, “Setting Up an Installation Server”.

2. Set up a DHCP and TFTP server for the network. This is described in Chapter 17, Preparing Network Boot Environment. Add the required boot parameters to enable the VNC server.

3. Enable PXE boot in the target machine firmware. For more information, see Section 17.4, “Preparing the Target System for PXE Boot”.

11.2.2 Installation from Network via VNC

This type of installation does not require a direct interaction with the target machine. The system is booted via PXE and the installation data is fetched from a server.

To perform this type of installation, make sure that the following requirements are met:

- At least one machine that can be used for installing a DHCP, NFS, HTTP, FTP, TFTP, or SMB server.
- Target system capable of PXE boot, networking, and Wake on LAN, plugged in and connected to the network.
- Controlling system with working network connection and VNC viewer software or JavaScript-enabled browser (Firefox, Chromium, Microsoft Edge, Opera, etc.).

To perform this type of installation, proceed as follows:

1. Set up the server that contains the installation data. For details, see Part IV, “Setting Up an Installation Server”.

2. Set up a DHCP and TFTP server for the network. This is described in Chapter 17, Preparing Network Boot Environment. Add the required boot parameters to enable the VNC server.

3. Enable PXE boot in the target machine firmware. For more information, see Section 17.4, “Preparing the Target System for PXE Boot”.

4. The target system boots to a text-based environment, giving the network address and display number under which the graphical installation environment can be addressed by any VNC viewer application or browser. VNC installations announce themselves over OpenSLP and if the firewall settings permit. They can be found using `slptool` as described in Section 11.3.1, “Preparing for VNC Installation”.

4. On the controlling workstation, open a VNC viewing application or Web browser and connect to the target system as described in Section 11.3, “Monitoring Installation via VNC”.

5. Perform the installation as described in Chapter 8, Installation Steps.

6. Reconnect to the target system after it reboots for the initial system configuration. For details, see Part V, “Initial System Configuration”.

11.2.2 Installation from Network via VNC

This type of installation does not require a direct interaction with the target machine. The system is booted via PXE and the installation data is fetched from a server.

To perform this type of installation, make sure that the following requirements are met:

- At least one machine that can be used for installing a DHCP, NFS, HTTP, FTP, TFTP, or SMB server.
- Target system capable of PXE boot, networking, and Wake on LAN, plugged in and connected to the network.
- Controlling system with working network connection and VNC viewer software or JavaScript-enabled browser (Firefox, Chromium, Microsoft Edge, Opera, etc.).

To perform this type of installation, proceed as follows:

1. Set up the server that contains the installation data. For details, see Part IV, “Setting Up an Installation Server”.

2. Set up a DHCP and TFTP server for the network. This is described in Chapter 17, Preparing Network Boot Environment. Add the required boot parameters to enable the VNC server.

3. Enable PXE boot in the target machine firmware. For more information, see Section 17.4, “Preparing the Target System for PXE Boot”.

11.2.2 Installation from Network via VNC

This type of installation does not require a direct interaction with the target machine. The system is booted via PXE and the installation data is fetched from a server.

To perform this type of installation, make sure that the following requirements are met:

- At least one machine that can be used for installing a DHCP, NFS, HTTP, FTP, TFTP, or SMB server.
- Target system capable of PXE boot, networking, and Wake on LAN, plugged in and connected to the network.
- Controlling system with working network connection and VNC viewer software or JavaScript-enabled browser (Firefox, Chromium, Microsoft Edge, Opera, etc.).

To perform this type of installation, proceed as follows:

1. Set up the server that contains the installation data. For details, see Part IV, “Setting Up an Installation Server”.

2. Set up a DHCP and TFTP server for the network. This is described in Chapter 17, Preparing Network Boot Environment. Add the required boot parameters to enable the VNC server.

3. Enable PXE boot in the target machine firmware. For more information, see Section 17.4, “Preparing the Target System for PXE Boot”.
4. Initiate the boot process of the target system using Wake on LAN. This is described in Section 17.6, “Wake on LAN”.

5. On the controlling workstation, open a VNC viewing application or Web browser and connect to the target system as described in Section 11.3, “Monitoring Installation via VNC”.

6. Perform the installation as described in Chapter 8, Installation Steps.

7. Reconnect to the target system after it reboots for the initial system configuration. For details, see Part V, “Initial System Configuration”.

11.2.3 Installation from DVD via SSH

This type of installation still requires some degree of physical access to the target system to boot for installation and to determine the IP address of the installation target. The installation itself is entirely controlled from a remote workstation using SSH to connect to the installer. User interaction is required as with the regular installation described in Chapter 8, Installation Steps.

For this type of installation, make sure that the following requirements are met:

- Target system with working network connection.
- Controlling system with working network connection and working SSH client software.
- Installation DVD.

To perform this kind of installation, proceed as follows:

1. Set up the installation target and installation server as described in Part IV, “Setting Up an Installation Server”.

2. Boot the target system using DVD1 of the SUSE Linux Enterprise Server media kit.

3. When the boot screen of the target system appears, use the boot parameters prompt to set the SSH options and, if required, the static network configuration. For information about boot parameters, see Chapter 7, Boot Parameters.

 a. Boot parameters for a static network configuration:

   ```
   netdevice=NETDEVICE host=IP_ADDRESS netmask=NETMASK gateway=IP_GATEWAY ssh=1
   ssh.password=PASSWORD
   ```
b. Boot parameters for a dynamic (DHCP) network configuration:

```
ssh=1 ssh.password=PASSWORD
```

4. The target system boots to a text-based environment, giving the network address under which the graphical installation environment can be addressed by any SSH client.

5. On the controlling workstation, open a terminal window and connect to the target system as described in Section 11.4.2, “Connecting to the Installation Program”.

6. Perform the installation as described in Chapter 8, Installation Steps.

7. Reconnect to the target system after it reboots for the initial system configuration. For details, see Part V, “Initial System Configuration”.

11.2.4 Installation from Network via SSH

This type of installation does not require a direct interaction with the target machine. The system is booted via PXE and the installation data is fetched from a server.

To perform this type of installation, make sure that the following requirements are met:

- At least one machine that can be used for installing a DHCP, NFS, HTTP, FTP, TFTP, or SMB server.
- Target system capable of PXE boot, networking, and Wake on LAN, plugged in and connected to the network.
- Controlling system with working network connection and SSH viewer software.

To perform this type of installation, proceed as follows:

1. Set up the server that contains the installation data. For details, see Part IV, “Setting Up an Installation Server”.

2. Set up a DHCP and TFTP server for the network. This is described in Chapter 17, Preparing Network Boot Environment. Add the required boot parameters to enable the SSH server.

3. Enable PXE boot in the target machine firmware. For more information, see Section 17.4, “Preparing the Target System for PXE Boot”.

4. Initiate the boot process of the target system using Wake on LAN. This is described in Section 17.6, “Wake on LAN”.

5. On the controlling workstation, open an SSH client software and connect to the target system as described in Section 11.4, “Monitoring Installation via SSH”.

6. Perform the installation as described in Chapter 8, Installation Steps.

7. Reconnect to the target system after it reboots for the initial system configuration. For details, see Part V, “Initial System Configuration”.

11.3 Monitoring Installation via VNC

Using any VNC viewer software, you can remotely control the installation of SUSE Linux Enterprise Server from virtually any operating system. This section introduces the setup using a VNC viewer application or a Web browser.

11.3.1 Preparing for VNC Installation

To enable VNC on the installation target, specify the appropriate boot parameters at the initial boot for installation (see Chapter 7, Boot Parameters). The target system boots into a text-based environment and waits for a VNC client to connect to the installation program.

The installation program announces the IP address and display number needed to connect for installation. If you have physical access to the target system, this information is provided right after the system booted for installation. Enter this data when your VNC client software prompts for it and provide your VNC password.

Because the installation target announces itself via OpenSLP, you can retrieve the address information of the installation target via an SLP browser. There is no need for any physical contact with the installation target itself, provided your network setup and all machines support OpenSLP:

PROCEDURE 11.1: LOCATING VNC INSTALLATIONS VIA OPENSLP

1. Run `slptool findsrvtypes | grep vnc` to get a list of all services offering VNC. The VNC installation targets should be available under a service named `YaST.installation.suse`.

2. Run `slptool findsrvs YaST.installation.suse` to get a list of installations available. Use the IP address and the port (usually 5901) provided with your VNC viewer.
11.3.2 Connecting to the Installation Program

There are two ways to connect to a VNC server (the installation target in this case). You can either start an independent VNC viewer application on any operating system or connect using a JavaScript-enabled Web browser.

Using VNC, you can control the installation of a Linux system from any other operating system, including other Linux flavors, Windows, or macOS.

On a Linux machine, make sure that the package `tightvnc` is installed. On a Windows machine, install the Windows port of this application, which can be obtained at the TightVNC home page (http://www.tightvnc.com/download.html).

To connect to the installation program running on the target machine, proceed as follows:

1. Start the VNC viewer.
2. Enter the IP address and display number of the installation target as provided by the SLP browser or the installation program itself:

 [IP_ADDRESS:DISPLAY_NUMBER]

 A window opens on your desktop displaying the YaST screens as in a normal local installation.

Using a Web browser to connect to the installation program makes you totally independent of any VNC software or the underlying operating system. As long as the browser application has JavaScript support enabled, you can use any browser (Firefox, Internet Explorer, Chromium, Opera, etc.) to perform the installation of your Linux system.

Note that the browser VNC connection is not encrypted.

To perform a VNC installation, proceed as follows:

1. Launch your preferred Web browser.
2. Enter the following at the address prompt:

 [http://IP_ADDRESS_OF_TARGET:5801]

3. Enter your VNC password when prompted to do so. The browser window now displays the YaST screens as in a normal local installation.
11.4 Monitoring Installation via SSH

Using SSH, you can remotely control the installation of your Linux machine using any SSH client software.

11.4.1 Preparing for SSH Installation

In addition to installing the required software package (OpenSSH for Linux and PuTTY for Windows), you need to specify the appropriate boot parameters to enable SSH for installation. See Chapter 7, Boot Parameters for details. OpenSSH is installed by default on any SUSE Linux–based operating system.

11.4.2 Connecting to the Installation Program

After you have started the SSH installation, use this procedure to connect to the SSH session.

1. Retrieve the installation target's IP address. If you have physical access to the target machine, take the IP address the installation routine provides in the console after the initial boot. Otherwise take the IP address that has been assigned to this particular host in the DHCP server configuration.

2. In a command line, enter the following command:

   ```
   ssh -X root@TARGET_IP_ADDRESS
   ```

 Replace `TARGET_IP_ADDRESS` with the actual IP address of the installation target.

3. When prompted for a user name, enter `root`.

4. When prompted for the password, enter the password that has been set with the SSH boot parameter. After you have successfully authenticated, a command line prompt for the installation target appears.

5. Enter `yast` to launch the installation program. A window opens showing the normal YaST screens as described in Chapter 8, Installation Steps.
11.5 Monitoring Installation via Serial Console

For this installation method, you need a second computer connected by a null modem cable to the computer on which to install SUSE Linux Enterprise Server. Hardware and firmware of both machines need to support the serial console. Some firmware implementations are already configured to send the boot console output to a serial console (by providing a device tree with /chosen/stdout-path set appropriately). In this case no additional configuration is required.

If the firmware does not use the serial console for the boot console output, set the following boot parameter for the installation: `console=TTY,BAUDRATE`. For details, see Book “Administration Guide”, Chapter 14 “The Boot Loader GRUB 2”, Section 14.2.5 “Editing Menu Entries during the Boot Procedure” and Chapter 7, Boot Parameters.

`BAUDRATE` needs to be replaced by the baud rate for the interface. Valid values are 115200, 38400, or 9600. `TTY` needs to be replaced by the name of the interface. On most computers, there is one or more serial interfaces. Depending on the hardware, the names of the interfaces may vary:

- `ttyS0` for APM
- `ttyAMA0` for Server Base System Architecture (SBSA)
- `ttyPS0` for Xilinx

For the installation, you need a terminal program like `minicom` or `screen`. To initiate the serial connection, launch the screen program in a local console by entering the following command:

```
tux > screen /dev/ttyUSB0 115200
```

This means that screen listens to the first serial port with a baud rate of 115200. From this point on, the installation proceeds similarly to the text-based installation over this terminal.
12 Troubleshooting

This section highlights some typical problems you may run into during installation and offers possible solutions or workarounds.

12.1 Checking Media

If you encounter any problems using the SUSE Linux Enterprise Server installation media, check the integrity of your installation media. Boot from the media and choose More > Check Installation Media from the boot menu. A minimal system boots and lets you choose which device to check. Select the respective device and confirm with OK to perform the check.

In a running system, start YaST and choose Software > Media Check. Insert the medium click Start Check. Checking may take several minutes.

If errors are detected during the check, do not use this medium for installation. Media problems may, for example, occur when having burned the medium on DVD yourself. Burning the media at a low speed (4x) helps to avoid problems.

12.2 No Bootable DVD Drive Available

If your computer does not contain a built-in bootable DVD drive there are several alternatives. This is also an option if your drive is not supported by SUSE Linux Enterprise Server.

Using External DVD Device

Linux supports most existing DVD drives. If the system has no DVD drive, it is still possible that an external DVD drive, connected through USB, FireWire, or SCSI, can be used to boot the system. Sometimes a BIOS update may help if you encounter problems.

Network Boot via PXE

If a machine lacks a DVD drive, but provides a working Ethernet connection, perform a completely network-based installation. See Section 11.2.2, “Installation from Network via VNC” and Section 11.2.4, “Installation from Network via SSH” for details.

USB Flash Drive
You can use a USB flash drive if your machine lacks a DVD drive and network connection. For details, see:

- **AMD/Intel** Section 2.4, “Booting the Installation System”
- **Arm** Section 3.4, “Booting the Installation System”

12.3 Booting from Installation Media Fails

One reason a machine does not boot the installation media can be an incorrect boot sequence setting in BIOS. The BIOS boot sequence must have DVD drive set as the first entry for booting. Otherwise the machine would try to boot from another medium, typically the hard disk. Guidance for changing the BIOS boot sequence can be found in the documentation provided with your mainboard, or in the following paragraphs.

The BIOS is the software that enables the very basic functions of a computer. Motherboard vendors provide a BIOS specifically made for their hardware. Normally, the BIOS setup can only be accessed at a specific time—when the machine is booting. During this initialization phase, the machine performs several diagnostic hardware tests. One of them is a memory check, indicated by a memory counter. When the counter appears, look for a line, usually below the counter or somewhere at the bottom, mentioning the key to press to access the BIOS setup. Usually the key to press is one of `Del`, `F1`, or `Esc`. Press this key until the BIOS setup screen appears.

PROCEDURE 12.1: CHANGING THE BIOS BOOT SEQUENCE

1. Enter the BIOS using the proper key as announced by the boot routines and wait for the BIOS screen to appear.

2. To change the boot sequence in an AWARD BIOS, look for the *BIOS FEATURES SETUP* entry. Other manufacturers may have a different name for this, such as *ADVANCED CMOS SETUP*. When you have found the entry, select it and confirm with `Enter`.

3. In the screen that opens, look for a subentry called *BOOT SEQUENCE* or *BOOT ORDER*. Change the settings by pressing `Page ↑` or `Page ↓` until the DVD drive is listed first.

4. Leave the BIOS setup screen by pressing `Esc`. To save the changes, select *SAVE & EXIT SETUP*, or press `F10`. To confirm that your settings should be saved, press `Y`.

PROCEDURE 12.2: CHANGING THE BOOT SEQUENCE IN AN SCSI BIOS (ADAPTEC HOST ADAPTER)

1. Open the setup by pressing `Ctrl-A`.
2. Select Disk Utilities. The connected hardware components are now displayed. Make note of the SCSI ID of your DVD drive.

3. Exit the menu with Esc.

5. Enter the ID of the DVD drive and press Enter again.

6. Press Esc twice to return to the start screen of the SCSI BIOS.

7. Exit this screen and confirm with Yes to boot the computer.

Regardless of what language and keyboard layout your final installation will be using, most BIOS configurations use the US keyboard layout as shown in the following figure:

![US Keyboard Layout](image)

FIGURE 12.1: US KEYBOARD LAYOUT

12.4 Boot Failure

Some hardware types, mainly very old or very recent ones, fail to boot. Reasons can be missing support for hardware in the installation kernel or drivers causing problems on some specific hardware.

If your system fails to install using the standard Installation mode from the first installation boot screen, try the following:

1. With the DVD still in the drive, reboot the machine with Ctrl-Alt-Del or using the hardware reset button.
2. When the boot screen appears, press \[F5\], use the arrow keys of your keyboard to navigate to *No ACPI* and press \[Enter\] to launch the boot and installation process. This option disables the support for ACPI power management techniques.

3. Proceed with the installation as described in *Chapter 8, Installation Steps*.

If this fails, proceed as above, but choose *Safe Settings* instead. This option disables ACPI and DMA support. Most hardware will boot with this option.

If both of these options fail, use the boot parameters prompt to pass any additional parameters needed to support this type of hardware to the installation kernel. For more information about the parameters available as boot parameters, refer to the kernel documentation located in `/usr/src/linux/Documentation/kernel-parameters.txt`.

Tip: Obtaining Kernel Documentation

Install the `kernel-source` package to view the kernel documentation.

There are other ACPI-related kernel parameters that can be entered at the boot prompt prior to booting for installation:

- `acpi=off`

 This parameter disables the complete ACPI subsystem on your computer. This may be useful if your computer cannot handle ACPI or if you think ACPI in your computer causes trouble.

- `acpi=force`

 Always enable ACPI even if your computer has an old BIOS dated before the year 2000. This parameter also enables ACPI if it is set in addition to `acpi=off`.

- `acpi=noirq`

 Do not use ACPI for IRQ routing.

- `acpi=ht`

 Run only enough ACPI to enable hyper-threading.

- `acpi=strict`

 Be less tolerant of platforms that are not strictly ACPI specification compliant.

- `pci=noacpi`

 Disable PCI IRQ routing of the new ACPI system.
pnpcpi=off
This option is for serial or parallel problems when your BIOS setup contains wrong inter-
rupts or ports.

notsc
Disable the time stamp counter. This option can be used to work around timing problems
on your systems. It is a recent feature, so if you see regressions on your machine, especially
time related or even total hangs, this option is worth a try.

nohz=off
Disable the nohz feature. If your machine hangs, this option may help. Otherwise it is of
no use.

When you have determined the right parameter combination, YaST automatically writes them
to the boot loader configuration to make sure that the system boots properly next time.

If inexplicable errors occur when the kernel is loaded or during the installation, select Memory
Test in the boot menu to check the memory. If Memory Test returns an error, it is usually a
hardware error.

12.5 Fails to Launch Graphical Installer

After you insert the medium into your drive and reboot your machine, the installation screen
comes up, but after you select Installation, the graphical installer does not start.

There are several ways to deal with this situation:

- Try to select another screen resolution for the installation dialogs.
- Select Text Mode for installation.
- Do a remote installation via VNC using the graphical installer.

PROCEDURE 12.3: CHANGE SCREEN RESOLUTION FOR INSTALLATION

1. Boot for installation.

2. Press [F3] to open a menu from which to select a lower resolution for installation purposes.

3. Select Installation and proceed with the installation as described in Chapter 8, Installation
 Steps.
PROCEDURE 12.4: INSTALLATION IN TEXT MODE

1. Boot for installation.

2. Press [F3] and select Text Mode.

3. Select Installation and proceed with the installation as described in Chapter 8, Installation Steps.

PROCEDURE 12.5: VNC INSTALLATION

1. Boot for installation.

2. Enter the following text at the boot parameters prompt:

 vnc=1 vncpassword=SOME_PASSWORD

 Replace SOME_PASSWORD with the password to use for VNC installation.

3. Select Installation then press Enter to start the installation.

 Instead of starting right into the graphical installation routine, the system continues to run in a text mode. The system then halts, displaying a message containing the IP address and port number at which the installer can be reached via a browser interface or a VNC viewer application.

4. If using a browser to access the installer, launch the browser and enter the address information provided by the installation routines on the future SUSE Linux Enterprise Server machine and press Enter:

 http://IP_ADDRESS_OF_MACHINE:5801

 A dialog opens in the browser window prompting you for the VNC password. Enter it and proceed with the installation as described in Chapter 8, Installation Steps.

 ! Important: Cross-platform Support

 Installation via VNC works with any browser under any operating system, provided Java support is enabled.

 Provide the IP address and password to your VNC viewer when prompted. A window opens, displaying the installation dialogs. Proceed with the installation as usual.
12.6 Only Minimalist Boot Screen Started

You inserted the medium into the drive, the BIOS routines are finished, but the system does not start with the graphical boot screen. Instead it launches a very minimalist text-based interface. This may happen on any machine not providing sufficient graphics memory for rendering a graphical boot screen.

Although the text boot screen looks minimalist, it provides nearly the same functionality as the graphical one:

Boot Options

Unlike the graphical interface, the different boot parameters cannot be selected using the cursor keys of your keyboard. The boot menu of the text mode boot screen offers some keywords to enter at the boot prompt. These keywords map to the options offered in the graphical version. Enter your choice and press \[\text{Enter}\] to launch the boot process.

Custom Boot Options

After selecting a boot parameter, enter the appropriate keyword at the boot prompt or enter some custom boot parameters as described in Section 12.4, “Boot Failure”. To launch the installation process, press \[\text{Enter}\].

Screen Resolutions

Use the function keys (\[F1\] ... \[F12\]) to determine the screen resolution for installation. If you need to boot in text mode, choose \[F3\].

12.7 Log Files

For more information about log files that are created during installation, see Book “Administration Guide”, Chapter 43 “Gathering System Information for Support”, Section 43.5 “Gathering Information during the Installation”.

177
III Customizing Installation Images

13 Cloning Disk Images 179
14 Customizing Installation Images with mksusecd 181
15 Customizing Installation Images Manually 185
13 Cloning Disk Images

This chapter describes how to use cloned images for installing SUSE Linux Enterprise Server. This is mostly used in virtualized environments.

13.1 Overview

SUSE Linux Enterprise Server provides a script to clean up configuration that is unique to each installation. With the introduction of systemd, unique system identifiers are used and set in different locations and files. Therefore, cloning is no longer the recommended way to build system images. Images can be created with KIWI, see https://doc.opensuse.org/projects/kiwi/doc/.

To clone disks of machines, refer to the documentation of your virtualization environment.

13.2 Cleaning Up Unique System Identifiers

⚠️ Warning: Important Configuration Loss

Executing the following procedure permanently deletes important system configuration data. If the source system for the clone is used in production, run the clean up script on the cloned image.

To clean all unique system identifiers, execute the following procedure before or after cloning a disk image. If run on the clone, this procedure needs to be run on each clone. Therefore, we recommend to create a golden image that is not used in production and only serves as a source for new clones. The golden image is already cleaned up and clones can be used immediately.

The clone-master-clean-up command for example removes:

- Swap files
- Zypper repositories
- SSH host and client keys
- Temporary directories, like /tmp/*
- Postfix data
• HANA firewall script

• systemd journal

1. Use **zypper** to install **clone-master-clean-up**:

   ```
   tux > sudo zypper install clone-master-clean-up
   ```

2. Configure the behavior of **clone-master-clean-up** by editing `/etc/sysconfig/clone-master-clean-up`. This configuration file defines whether users with a UID larger than 1000, the `/etc/sudoers` file, Zyper repositories and Btrfs snapshots should be removed.

3. Remove existing configuration and unique identifiers by running the script:

   ```
   tux > sudo clone-master-clean-up
   ```
14 Customizing Installation Images with mksusecd

mksusecd is a useful tool for creating a customized installation image. Use it to modify the regular SUSE Linux Enterprise installation images, adding and removing files, creating a minimal network installation image, customizing boot and repository options, and creating a minimal boot image as an alternative to booting a system from a PXE server.

14.1 Installing mksusecd

In SLE 15 mksusecd is in the Development Tools Module. If you have not enabled this module you must enable it. First find the exact module name with zypper:

```
tux > zypper search-packages mksusecd
Following packages were found in following modules:

<table>
<thead>
<tr>
<th>Package</th>
<th>Module or Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>mksusecd</td>
<td>Development Tools Module (sle-module-development-tools/15/x86_64)</td>
</tr>
<tr>
<td>mksusecd-debuginfo</td>
<td>Development Tools Module (sle-module-development-tools/15/x86_64)</td>
</tr>
<tr>
<td>mksusecd-debugsource</td>
<td>Development Tools Module (sle-module-development-tools/15/x86_64)</td>
</tr>
<tr>
<td>mksusecd</td>
<td>Available</td>
</tr>
<tr>
<td>srcpackage:mksusecd</td>
<td>Available</td>
</tr>
</tbody>
</table>

To activate the respective module or product, use SUSEConnect --product. Use SUSEConnect --help for more details.
```

Enable it with SUSEConnect:

```
tux > sudo SUSEConnect -p sle-module-development-tools/15/x86_64
```

In SLE 15.1 and later it is in the Main Update Repository, which is enabled by default.

Install mksusecd in the usual way:

```
tux > sudo zypper se mksusecd
```

Run mksusecd --help to see a complete list of commands.

After you create your custom image, copy it to a CD/DVD using your preferred disk-writing program such as Brasero or mybashburn.
Create a bootable USB drive using the `dd` command. Make sure the device is not mounted, then run the following command:

```
root # dd if=min-install.iso of=/dev/SDB bs=4M
```

Then your new bootable device is ready to use.

14.2 Creating a Minimal Boot Image

Use `mksusecd` to create a minimal boot image to start client machines from a CD/DVD or USB drive, in place of starting them from a PXE boot server. The minimal boot image launches the kernel and initrd, and then the remaining installation files are fetched from a local NFS server (see Section 16.1, “Setting Up an Installation Server Using YaST”).

Run the following command to create the minimal ISO image:

```
tux > sudo mksusecd --create min-install.iso \
 --net=nfs://192.168.1.1:/srv/install/ARCH/OS_VERSION/SP_VERSION/cd1 \
 /srv/tftpboot/EFI/ARCH/boot
```

Replace the NFS server address with your own. Replace `ARCH` with the directory corresponding to the target system architecture. Also replace `OS_VERSION` and `SP_VERSION` (service pack) according to your paths in Section 16.1, “Setting Up an Installation Server Using YaST”.

14.3 Set Default Kernel Boot Parameters

Rather than waiting for a boot prompt to enter your custom kernel boot parameters, configure them in a custom `mksusecd` image:

```
tux > sudo mksusecd --create install.iso \
 --boot "textmode=1 splash=silent mitigations=auto"
```

Verify that your custom parameters loaded correctly after startup by querying `/proc`:

```
tux > cat /proc/cmdline
```
14.4 Customize Modules, Extensions, and Repositories

SUSE Linux Enterprise 15 supports Modules (not to be confused with kernel modules) and Extensions for different product components. These are add-ons to the default Basesystem, such as Development Tools, Desktop Applications, and SUSE Linux Enterprise Live Patching. For more information refer to the Modules and Extensions Quick Start guide.

With `mksusecd` you may create an installation image containing all the additional Modules and Extensions you want. Start by querying existing images, like this example for SUSE Linux Enterprise 15 SP1:

```bash

Repositories:
    SLES15-SP1 [15.1-0]
    SLES15 [15.1-0]
    Basesystem-Module [15.1-0]
    SUSE-CAP-Tools-Module [15.1-0]
    Containers-Module [15.1-0]
    Desktop-Applications-Module [15.1-0]
    Development-Tools-Module [15.1-0]
    [...]
```

Create a new installation image that is built from the Modules, Extensions, and repositories that you select, and automatically enable them:

```bash
    tux > sudo mksusecd --create myinstaller.iso \    --enable-repos auto --include-repos Basesystem-Module,Desktop-Applications-Module \    SLE-15-SP1-Installer-DVD-ARCH-GM-DVD1.iso \    SLE-15-SP1-Packages-ARCH-GM-DVD1.iso
```

This creates and adds the `add_on_products.xml` file to the new image. Replace `--enable-repos auto` with `--enable-repos ask` to have the installer present a dialog for choosing modules.

Note: AutoYaST Control File

If you are using AutoYaST to configure your installations, it is not necessary to list these modules in the AutoYaST control file when you use the `--enable-repos` option.
14.5 Creating a Minimal Netinstall ISO

To create a minimal installation image to launch a network installation, use the \texttt{--nano} option:

\begin{verbatim}
tux > sudo mksusecd --create netinstall.iso \
 --nano SLE-15-SP1-Installer-DVD-ARCH-GM-DVD1.iso
\end{verbatim}

14.6 Change Default Repository

To set a different repository, such as your own local repository, use the \texttt{--net} option:

\begin{verbatim}
tux > sudo mksusecd --create localinstall.iso \
\end{verbatim}
15 Customizing Installation Images Manually

You may customize the standard SUSE Linux Enterprise installation images by editing a file in the installation ISO image, media.1/products. Add modules and extensions to create a single customized installation image. Then copy your custom image to a CD, DVD, or USB device to create a bootable customized installation medium. See How to Create a Custom Installation Medium for SUSE Linux Enterprise 15 https://documentation.suse.com/sbp/all/single-html/SBP-SLE15-Custom-Installation-Medium/ for complete instructions.
IV Setting Up an Installation Server

16 Setting Up a Network Installation Source 187
17 Preparing Network Boot Environment 197
18 Deploying Customized Preinstallations 208
Chapter 16 Setting Up a Network Installation Source

This chapter describes how to create a server that provides the data required for installing SUSE Linux Enterprise Server over the network.

Depending on the operating system of the machine used as the network installation source for SUSE Linux Enterprise Server, there are several options for the server configuration. The easiest way to set up an installation server is to use YaST.

Tip: Installation Server Operating System
You can even use a Microsoft Windows machine as the installation server for your Linux deployment. See Section 16.5, "Managing an SMB Repository" for details.

16.1 Setting Up an Installation Server Using YaST

YaST offers a graphical tool for creating network repositories. It supports HTTP, FTP, and NFS network installation servers.

1. Log in as root to the machine that should act as installation server.

2. Start YaST > Miscellaneous > Installation Server.

3. Select the repository type (HTTP, FTP, or NFS). The selected service is started automatically every time the system starts. If a service of the selected type is already running on your system and you want to configure it manually for the server, deactivate the automatic configuration of the server service with Do Not Configure Any Network Services. In both cases, define the directory in which the installation data should be made available on the server.

4. Configure the required repository type. This step relates to the automatic configuration of server services. It is skipped when automatic configuration is deactivated. Define an alias for the root directory of the FTP or HTTP server on which the installation data should be found. The repository will later be located under ftp://Server-IP/Alias/Name (FTP) or under http://Server-IP/Alias/Name (HTTP). Name stands for the name of the repository, which is defined in the following step. If you select-
ed NFS in the previous step, define wild cards and export options. The NFS server will be accessible under `nfs://Server-IP/Name`. Details of NFS and exports can be found in Book “Administration Guide”, Chapter 34 “Sharing File Systems with NFS”.

Tip: Firewall Settings

Make sure that the firewall settings of your server system allow traffic on ports for HTTP, NFS, and FTP. If they currently do not, enable Open Port in Firewall or check Firewall Details first.

5. Configure the repository. Before the installation media are copied to their destination, define the name of the repository (ideally, an easily remembered abbreviation of the product and version). YaST allows providing ISO images of the media instead of copies of the installation DVDs. If you want this, activate the relevant check box and specify the directory path under which the ISO files can be found locally. Depending on the product to distribute using this installation server, it might be necessary to add media, such as service pack DVDs as extra repositories. To announce your installation server in the network via OpenSLP, activate the appropriate option.

Tip: Announcing the Repository

Consider announcing your repository via OpenSLP if your network setup supports this option. This saves you from entering the network installation path on every target machine. The target systems are booted using the SLP boot parameter and find the network repository without any further configuration. For details on this option, refer to Chapter 7, Boot Parameters.

6. Configuring extra repositories. YaST follows a specific naming convention to configure add-on CD or service pack CD repositories. Configuration is accepted only if the repository name of the add-on CDs starts with the repository name of the installation media. In other words, if you chose `SLES12SP1` as repository name for DVD1 then you should choose `SLES12SP1addon` as repository name for DVD2.

7. Upload the installation data. The most lengthy step in configuring an installation server is copying the actual installation media. Insert the media in the sequence requested by YaST and wait for the copying procedure to end. When the sources have been fully copied, return to the overview of existing repositories and close the configuration by selecting Finish.
Your installation server is now fully configured and ready for service. It is automatically started every time the system is started. No further intervention is required. You only need to configure and start this service correctly manually if you deactivated the automatic configuration of the selected network service with YaST as an initial step.

To deactivate a repository, select the repository to remove then select Delete. The installation data are removed from the system. To deactivate the network service, use the respective YaST module.

If your installation server needs to provide the installation data for more than one product of the product version, start the YaST installation server module. Then select Add in the overview of existing repositories to configure the new repository.

Warning: YaST Installation Server Will Conflict with RMT Server

Configuring a server to be an installation server with YaST automatically installs and configures the Apache web server, listening on port 80.

However, configuring a machine to be an RMT server (Repository Mirroring Tool) automatically installs the NGINX web server and configures it to listen on port 80.

Do not try to enable both these functions on the same server. It is not possible for a single server to host both simultaneously.

16.2 Setting Up an NFS Repository Manually

Setting up an NFS source for installation is done in two main steps. In the first step, create the directory structure holding the installation data and copy the installation media over to this structure. Second, export the directory holding the installation data to the network.

To create a directory to hold the installation data, proceed as follows:

1. Log in as root.

2. Create a directory that will later hold all installation data and change into this directory. For example:

 root # mkdir -p /srv/install/PRODUCT/PRODUCTVERSION
 root # cd /srv/install/PRODUCT/PRODUCTVERSION
Replace \textit{PRODUCT} with an abbreviation of the product name and \textit{PRODUCTVERSION} with a string that contains the product name and version.

3. For each DVD contained in the media kit execute the following commands:

 a. Copy the entire content of the installation DVD into the installation server directory:

 \begin{verbatim}
 root # cp -a /media/PATH_TO_YOUR_DVD_DRIVE .
 \end{verbatim}

 Replace \textit{PATH_TO_YOUR_DVD_DRIVE} with the actual path under which your DVD drive is addressed. Depending on the type of drive used in your system, this can be \texttt{cdrom, cdrecorder, dvd}, or \texttt{dvdrecorder}.

 b. Rename the directory to the DVD number:

 \begin{verbatim}
 root # mv PATH_TO_YOUR_DVD_DRIVE DVDX
 \end{verbatim}

 Replace \texttt{X} with the actual number of your DVD.

On SUSE Linux Enterprise Server, you can export the repository with NFS using YaST. Proceed as follows:

1. Log in as \texttt{root}.

2. Start \texttt{YaST} \rightarrow \texttt{Network Services} \rightarrow \texttt{NFS Server}.

3. Select \texttt{Start} and \texttt{Open Port in Firewall} and click \texttt{Next}.

4. Select \texttt{Add Directory} and browse for the directory containing the installation sources, in this case, \textit{PRODUCTVERSION}.

5. Select \texttt{Add Host} and enter the host names of the machines to which to export the installation data. Instead of specifying host names here, you could also use wild cards, ranges of network addresses, or the domain name of your network. Enter the appropriate export options or leave the default, which works fine in most setups. For more information about the syntax used in exporting NFS shares, read the \texttt{exports} man page.

6. Click \texttt{Finish}. The NFS server holding the SUSE Linux Enterprise Server repository is automatically started and integrated into the boot process.
If you prefer manually exporting the repository via NFS instead of using the YaST NFS Server module, proceed as follows:

1. Log in as `root`.

2. Open the file `/etc/exports` and enter the following line:

   ```
   /PRODUCTVERSION *(ro,root_squash,sync)
   ```

 This exports the directory `/PRODUCTVERSION` to any host that is part of this network or to any host that can connect to this server. To limit the access to this server, use netmasks or domain names instead of the general wild card `*`. Refer to the `export` man page for details. Save and exit this configuration file.

3. To add the NFS service to the list of servers started during system boot, execute the following commands:

   ```
   root # systemctl enable nfsserver
   ```

4. Start the NFS server with `systemctl start nfsserver`. If you need to change the configuration of your NFS server later, modify the configuration file and restart the NFS daemon with `systemctl restart nfsserver`.

 Announcing the NFS server via OpenSLP makes its address known to all clients in your network.

 1. Log in as `root`.

 2. Create the `/etc/slp.reg.d/install.suse.nfs.reg` configuration file with the following lines:

   ```
   # Register the NFS Installation Server
   service:install.suse:nfs://$HOSTNAME/PATH_TO_REPOSITORY/DVD1,en,65535
description=NFS Repository
   ```

 Replace `PATH_TO_REPOSITORY` with the actual path to the installation source on your server.

 3. Start the OpenSLP daemon with `systemctl start slpd`.
For more information about OpenSLP, refer to the package documentation located under `/usr/share/doc/packages/openslp/` or refer to Book “Administration Guide”, Chapter 37 “SLP”. For more Information about NFS, refer to Book “Administration Guide”, Chapter 34 “Sharing File Systems with NFS”.

16.3 Setting Up an FTP Repository Manually

Creating an FTP repository is very similar to creating an NFS repository. An FTP repository can be announced over the network using OpenSLP as well.

1. Create a directory holding the installation sources as described in Section 16.2, “Setting Up an NFS Repository Manually”.

2. Configure the FTP server to distribute the contents of your installation directory:

 a. Log in as `root` and install the package `vsftpd` using the YaST software management.

 b. Enter the FTP server root directory:

   ```
   root # cd /srv/ftp
   ```

 c. Create a subdirectory holding the installation sources in the FTP root directory:

   ```
   root # mkdir REPOSITORY
   ```

 Replace `REPOSITORY` with the product name.

 d. Mount the contents of the installation repository into the change root environment of the FTP server:

   ```
   root # mount --bind PATH_TO_REPOSITORY /srv/ftp/REPOSITORY
   ```

 Replace `PATH_TO_REPOSITORY` and `REPOSITORY` with values matching your setup. If you need to make this permanent, add it to `/etc/fstab`.

 e. Start vsftpd with `vsftpd`.
3. Announce the repository via OpenSLP, if this is supported by your network setup:

 a. Create the `/etc/slp.reg.d/install.suse.ftp.reg` configuration file with the following lines:

   ```
   # Register the FTP Installation Server
   service:install.suse:ftp://$HOSTNAME/REPOSITORY/DVD1,en,65535
   description=FTP Repository
   ```

 Replace `REPOSITORY` with the actual name of the repository directory on your server. The `service:` line should be entered as one continuous line.

 b. Start the OpenSLP daemon with `systemctl start slpd`.

Tip: Configuring an FTP Server with YaST

If you prefer to use YaST rather than manually configuring the FTP installation server, refer to Book “Administration Guide”, Chapter 39 “Setting Up an FTP Server with YaST”.

16.4 Setting Up an HTTP Repository Manually

Creating an HTTP repository is very similar to creating an NFS repository. An HTTP repository can be announced over the network using OpenSLP as well.

1. Create a directory holding the installation sources as described in Section 16.2, “Setting Up an NFS Repository Manually”.

2. Configure the HTTP server to distribute the contents of your installation directory:

 a. Install the Web server Apache as described in Book “Administration Guide”, Chapter 38 “The Apache HTTP Server”, Section 38.1.2 “Installation”.

 b. Enter the root directory of the HTTP server (`/srv/www/htdocs`) and create the sub-directory that will hold the installation sources:

   ```
   root # mkdir REPOSITORY
   ```

 Replace `REPOSITORY` with the product name.
c. Create a symbolic link from the location of the installation sources to the root directory of the Web server (/srv/www/htdocs):

```
root # ln -s /PATH_TO_REPOSITORY/srv/www/htdocs/REPOSITORY
```

d. Modify the configuration file of the HTTP server (/etc/apache2/default-server.conf) to make it follow symbolic links. Replace the following line:

```
Options None
```

with

```
Options Indexes FollowSymLinks
```

e. Reload the HTTP server configuration using `systemctl reload apache2`.

3. Announce the repository via OpenSLP, if this is supported by your network setup:

a. Create the /etc/slp.reg.d/install.suse.http.reg configuration file with the following lines:

```
# Register the HTTP Installation Server
service:install.suse:http://$HOSTNAME/REPOSITORY/DVD1/,en,65535
description=HTTP Repository
```

Replace `REPOSITORY` with the actual path to the repository on your server. The `service:` line should be entered as one continuous line.

b. Start the OpenSLP daemon using `systemctl start slpd`.

16.5 Managing an SMB Repository

Using SMB, you can import the installation sources from a Microsoft Windows server and start your Linux deployment even with no Linux machine around.

To set up an exported Windows Share holding your SUSE Linux Enterprise Server repository, proceed as follows:

1. Log in to your Windows machine.

2. Create a new directory that will hold the entire installation tree and name it `INSTALL`, for example.
3. Export this share according to the procedure outlined in your Windows documentation.

4. Enter this share and create a subdirectory, called PRODUCT. Replace PRODUCT with the actual product name.

5. Enter the INSTALL/PRODUCT directory and copy each DVD to a separate directory, such as DVD1 and DVD2.

To use an SMB mounted share as a repository, proceed as follows:

1. Boot the installation target.

2. Select Installation.

3. Press F4 for a selection of the repository.

4. Choose SMB and enter the Windows machine's name or IP address, the share name (INSTALL/PRODUCT/DVD1, in this example), user name, and password. The syntax looks like this:

 smb://workdomain;user:password@server/INSTALL/DVD1

After you press Enter, YaST starts and you can perform the installation.

16.6 Using ISO Images of the Installation Media on the Server

Instead of copying physical media into your server directory manually, you can also mount the ISO images of the installation media into your installation server and use them as a repository. To set up an HTTP, NFS or FTP server that uses ISO images instead of media copies, proceed as follows:

1. Download the ISO images and save them to the machine to use as the installation server.

2. Log in as root.

4. Create subdirectories for each DVD.
5. To mount and unpack each ISO image to the final location, issue the following command:

```
root # mount -o loop PATH_TO_ISO PATH_TO_REPOSITORY/PRODUCT/MEDIUMX
```

Replace `PATH_TO_ISO` with the path to your local copy of the ISO image. Replace `PATH_TO_REPOSITORY` with the source directory of your server. Replace `PRODUCT` with the product name and replace `MEDIUMX` with the type (CD or DVD) and number of media you are using.

6. Repeat the previous step to mount all ISO images needed for your product.

To automatically mount the ISO images at boot time, add the respective mount entries to `/etc/fstab`. An entry according to the previous example would look like the following:

```
PATH_TO_ISO PATH_TO_REPOSITORY/PRODUCTMEDIUM auto loop
```
17 Preparing Network Boot Environment

This chapter describes how to configure a DHCP and a TFTP server that provide the required infrastructure for booting with PXE.

SUSE® Linux Enterprise Server can be installed via a Preboot Execution Environment (PXE). The client hardware needs to support booting via PXE. The network needs to provide a DHCP server and a TFTP server providing the required data to the clients. This chapter guides you through setting up the required servers.

PXE only boots a kernel and initrd. This can be used to boot into an installation environment or into live systems. To set up the installation sources, see Chapter 16, Setting Up a Network Installation Source.

This section covers the configuration tasks needed in complex boot scenarios. It contains ready-to-apply configuration examples for DHCP, PXE boot, TFTP, and Wake on LAN.

The examples assume that the DHCP, TFTP and NFS server reside on the same machine with the IP 192.168.1.1. All services can reside on different machines without any problems. Make sure to change the IP addresses as required.

17.1 Setting Up a DHCP Server

A DHCP server provides both dynamic (Section 17.1.1, “Dynamic Address Assignment”) and static IP address assignments (Section 17.1.2, “Assigning Static IP Addresses”) to your network clients. It advertises servers, routes, and domains. For TFTP servers, DHCP also provides the kernel and initrd files. Which files are loaded depends on the architecture of the target machine, and whether legacy BIOS or UEFI boot is used. The clients transmit their architecture type in their DHCP requests. Based on this information, the DHCP server decides which files the client must download for booting.

Warning: PXE and AutoYaST Installation Failure

Starting with SUSE Linux Enterprise 15.0, there are special conditions that cause PXE boot and AutoYaST installations to fail. See Section 17.1.3, “PXE and AutoYaST Installation Failures” for more information and the solution.
17.1.1 Dynamic Address Assignment

The following example shows how to set up a DHCP server that dynamically assigns IP addresses to clients, and advertises servers, routers, domains, and boot files.

1. Log in as **root** to the machine hosting the DHCP server.

2. Enable the DHCP server by executing **systemctl enable dhcpd**.

3. Append the following lines to a subnet configuration of your DHCP server's configuration file located under `/etc/dhcpd.conf`:

   ```
   # The following lines are optional
   option domain-name "my.lab";
   option domain-name-servers 192.168.1.1;
   option routers 192.168.1.1;
   option ntp-servers 192.168.1.1;
   ddns-update-style none;
   default-lease-time 3600;
   # The following lines are required
   option arch code 93 = unsigned integer 16; # RFC4578
   subnet 192.168.1.0 netmask 255.255.255.0 {
   next-server 192.168.1.1;
   range 192.168.1.100 192.168.1.199;
   default-lease-time 3600;
   max-lease-time 3600;
   if option arch = 00:07 or option arch = 00:09 {
       filename "/EFI/x86/grub.efi";
   } else if option arch = 00:0b {
       filename "/EFI/aarch64/bootaa64.efi";
   } else {
       filename "/BIOS/x86/pxelinux.0";
   }
   }
   
   This configuration example uses the subnet **192.168.1.0/24** with the DHCP, DNS and gateway on the server with the IP **192.168.1.1**. Make sure that all IP addresses are changed according to your network layout. For more information about the options available in **dhcpd.conf**, refer to the **dhcpd.conf** manual page.

4. Restart the DHCP server by executing **systemctl restart dhcpd**.
17.1.2 Assigning Static IP Addresses

A DHCP server may also assign static IP addresses and host names to network clients. One use case is assigning static addresses to servers. Another use case is restricting which clients may join the network to those with assigned static IP addresses, and providing no dynamic address pools.

Modify the above DHCP configuration according to the following example:

```
group {
 host test {
 hardware ethernet MAC_ADDRESS;
 fixed-address IP_ADDRESS;
 }
}
```

The host statement assigns a host name to the installation target. To bind the host name and IP address to a specific host, you must specify the client’s hardware (MAC) address. Replace all the variables used in this example with the actual values that match your environment, then save your changes and restart the DHCP server.

17.1.3 PXE and AutoYaST Installation Failures

Starting with SUSE Linux Enterprise 15.0 and ISC DHCP 4.3.x, there are special circumstances that cause PXE boot and AutoYaST installations to fail. If your DHCP server does not have a pool of available dynamic IP addresses, but allows only pre-defined static addresses per client, and the clients send RFC 4361 client identifiers, then PXE/AutoYaST installations will not work. (Allowing only addresses assigned to specific network clients, and providing no dynamic address pools, prevents random machines from joining the network.)

When a new system starts in PXE, it sends a request to the DHCP server and identifies itself using a client identifier constructed from the hardware type plus the MAC address of the network interface. This is a RFC 2132 `client-id`. The DHCP server then offers the assigned IP address. Next, the installation kernel is loaded, and sends another DHCP request, but this `client-id` is different, and is sent in RFC 4361 format. The DHCP server will not recognize this as the same client, and will look for a free dynamic IP address, which is not available, and the installation stops.

The solution is to configure clients to send RFC 2132 client IDs. To send a RFC 2132 `client-id` during the installation, use `linuxrc` to pass the following `ifcfg` command:

```
ifcfg=eth0=dhcp,DHCLIENT_CLIENT_ID=01:03:52:54:00:02:c2:67,
DHCLIENT6_CLIENT_ID=00:03:52:54:00:02:c2:67
```

The traditionally-used RFC 2132 DHCPv4 client-id on Ethernet is constructed from the hardware type (01 for Ethernet) and followed by the hardware address (the MAC address), for example:

01:52:54:00:02:c2:67

The RFC 4361 DHCPv4 client-id attempts to correct the problem of identifying a machine that has more than one network interface. The new DHCPv4 client-id has the same format as the DHCPv6 client-id. It starts with the \texttt{0xff} prefix, instead of the hardware type, followed by the DHCPv6 IAID (the interface-address association ID that describes the interface on the machine), followed by the DHCPv6 DHCP Unique Identifier (DUID), which uniquely identifies the machine.

Using the above hardware type-based and hardware address-based DUID, the new RFC 4361 DHCPv4 client-id would be:

- Using the last bytes of the MAC address as the IAID:
  \texttt{ff:00:02:c2:67:00:01:xx:xx:xx:xx:52:54:00:02:c2:67}

- When the IAID is a simple incremented number:
  \texttt{ff:00:00:00:01:00:01:xx:xx:xx:xx:52:54:00:02:c2:67}

The \texttt{xx:xx:xx:xx} fields in the DUID-Link-Layer Timestamp (DUID-LLT) is a creation timestamp. A DUID-Link-Layer (DUID-LL) (\texttt{00:03:00:01:$MAC}) does not have a timestamp.

For more information on using \texttt{linuxrc}, see the \textit{AutoYaST Guide}. Also see \texttt{man 4 initrd}, and the documentation for the options \texttt{dhcp4 "create-cid"}, \texttt{dhcp6 "default-duid"} in \texttt{man 5 wicked-config}, \texttt{wicked duid --help}, and \texttt{wicked iaid --help}.

## 17.2 Setting Up a TFTP Server

The following procedures describe how to prepare the server for target machines with UEFI and BIOS on x86 architectures with 32 and 64 bits. The prepared structure also already provides for AArch64 systems.

### 17.2.1 Installing a TFTP Server

To install a TFTP server, use the following procedure:

1. Install the \texttt{tftp} package.
tux > sudo zypper in tftp

2. Review the `tftpd` configuration in `/etc/sysconfig/tftp` and add or change options as required. Refer to `man 8 tftpd` for more details. The TFTP daemon works without changing the configuration. The default root directory for the files is `/srv/tftpboot`.

3. Ensure that `tftpd` is started at boot time, and restart it to read the new configuration.

```bash
tux > sudo systemctl enable tftp.socket
tux > sudo systemctl restart tftp.socket
```

17.2.2 Installing Files for Boot

SUSE Linux Enterprise Server provides the required files for booting via a PXE on BIOS or UEFI machines in an RPM. Install the files on the machine running the TFTP server:

```bash
tux > sudo zypper in tftpboot-installation-SLE-OS_VERSION-ARCHITECTURE
```

Replace `OS_VERSION` with the version of your SUSE Linux Enterprise Server installation, for example `SLE-15-SP1-x86_64` with the architecture of your system, for example `x86_64`. Run `zypper se tftpboot` to search for all available versions and architectures.

The files will be installed in `/srv/tftpboot/SLE-OS_VERSION-ARCHITECTURE`. You can also copy the files for other versions and architectures of SUSE Linux Enterprise Server to the `/srv/tftpboot` directory.

Note: Existing `/srv/tftpboot/` Directory

If the directory `/srv/tftpboot/` already exists on your machine, then all files will be installed to `/usr/share/tftpboot-installation/`. This is the case if you are upgrading your PXE server from a previous SLES release.

To fix this problem, copy the files manually from `/usr/share/tftpboot-installation/` to `/srv/tftpboot/`. Alternatively, remove `/srv/tftpboot/` and reinstall the `tftpboot-installation-SLE-OS_VERSION-ARCHITECTURE` package.
17.2.3 Configuring PXELINUX

Open the file /srv/tftpboot/SLE-OS_VERSION-ARCHITECTURE/net/pxelinux.cfg/default in an editor. Replace the path for the `install` parameter according to your setup as described in Chapter 16, Setting Up a Network Installation Source. Also replace `TFTP_SERVER` with the IP address of the TFTP server. For an overview of the PXELINUX configuration options, see Section 17.3, “PXELINUX Configuration Options”.

```
default linux

install
label linux
 ipappend 2
 kernel boot/ARCHITECTURE/loader/linux
 append initrd=boot/ARCHITECTURE/loader/initrd instsys=tftp://TFTP_SERVER/
 SLE-OS_VERSION-ARCHITECTURE/boot/ARCHITECTURE/root install=PROTOCOL://SERVER_IP://PATH

display message
implicit 1
prompt 1
timeout 50
```

For details about the boot parameters that are used in the `append` line, see Section 7.3, “List of Important Boot Parameters”.

If required, edit the `/srv/tftpboot/SLE-OS_VERSION-ARCHITECTURE/net/pxelinux.cfg/message` to display a message in the boot menu.

17.2.4 Preparing PXE Boot for EFI with GRUB2

There is no need to change the GRUB2 configuration files. However, in the default settings no network source for the installation system is provided. If you want to fully install SUSE Linux Enterprise Server via the network, add the `install` parameter to the `linuxefi` lines in the file `/srv/tftpboot/SLE-OS_VERSION-ARCHITECTURE/EFI/BOOT/grub.cfg`. Set the `install` parameter according to your setup as described in Chapter 16, Setting Up a Network Installation Source. For details about other boot parameters that are used in the `efilinux` lines, see Section 7.3, “List of Important Boot Parameters”.
17.3 PXELINUX Configuration Options

The options listed here are a subset of all the options available for the PXELINUX configuration file.

**APPEND OPTIONS**

Adds one or more options to the kernel command line. These are added for both automatic and manual boots. The options are added at the very beginning of the kernel command line, usually permitting explicitly entered kernel options to override them.

**APPEND -**

Appends nothing. **APPEND** with a single hyphen as argument in a **LABEL** section can be used to override a global **APPEND**.

**DEFAULT KERNEL OPTIONS...**

Sets the default kernel command line. If PXELINUX boots automatically, it acts as if the entries after DEFAULT had been typed in at the boot prompt, except the auto option is automatically added, indicating an automatic boot.

If no configuration file exists or no DEFAULT entry is defined in the configuration file, the default is the kernel name “linux” with no options.

**IFAPPEND FLAG**

Adds a specific option to the kernel command line depending on the **FLAG** value. The **IFAPPEND** option is available only on PXELINUX. **FLAG** expects a value, described in Table 17.1, “Generated and Added Kernel Command Line Options from IFAPPEND”:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Generated Kernel Command Line / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>ip=CLIENT_IP:BOOT_SERVER_IP:GW_IP:NETMASK</code></td>
</tr>
<tr>
<td></td>
<td>The placeholders are replaced based on the input from the DHCP/BOOTP or PXE boot server.</td>
</tr>
<tr>
<td></td>
<td>Note, this option is not a substitute for running a DHCP client in the booted system. Without regular renewals, the lease acquired by the PXE BIOS will expire, making the IP address available for reuse by the DHCP server.</td>
</tr>
<tr>
<td>2</td>
<td><code>BOOTIF=MAC_ADDRESS_OF_BOOT_INTERFACE</code></td>
</tr>
</tbody>
</table>
This option is useful to avoid timeouts when the installation server probes one LAN interface after another until it gets a reply from a DHCP server. This option allows an initrd program to determine from which interface the system has been booted. linuxrc reads this option and uses this network interface.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Generated Kernel Command Line / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>SYSUUID=SYSTEM_UUID</td>
</tr>
</tbody>
</table>

Adds UUIDs in lowercase hexadecimals, see /usr/share/doc/packages/syslinux/pxelinux.txt

**LABEL LABEL KERNEL IMAGE APPEND OPTIONS...**

Indicates that if _LABEL_ is entered as the kernel to boot, PXELINUX should instead boot _IMAGE_ and the specified _APPEND_ options should be used. They replace the ones specified in the global section of the file, before the first _LABEL_ command. The default for _IMAGE_ is the same as _LABEL_ and, if no _APPEND_ is given, the default is to use the global entry (if any). Up to 128 _LABEL_ entries are permitted.

PXELINUX uses the following syntax:

```
label MYLABEL
 kernel MYKERNEL
 append MYOPTIONS
```

Labels are mangled as if they were file names and they must be unique after mangling. For example, the two labels “v2.6.30” and “v2.6.31” would not be distinguishable under PXELINUX because both mangle to the same DOS file name.

The kernel does not need to be a Linux kernel. It can also be a boot sector or a COMBOOT file.

**LOCALBOOT TYPE**

On PXELINUX, specifying LOCALBOOT 0 instead of a KERNEL option means invoking this particular label and causes a local disk boot instead of a kernel boot.

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Perform a normal boot</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>4</td>
<td>Perform a local boot with the Universal Network Driver Interface (UNDI) driver still resident in memory</td>
</tr>
<tr>
<td>5</td>
<td>Perform a local boot with the entire PXE stack, including the UNDI driver, still resident in memory</td>
</tr>
</tbody>
</table>

All other values are undefined. If you do not know what the UNDI or PXE stacks are, specify 0.

**TIMEOUT TIME-OUT**

Indicates how long to wait at the boot prompt until booting automatically, in units of 1/10 second. The time-out is canceled when the user types anything on the keyboard, assuming the user will complete the command begun. A time-out of zero disables the time-out completely (this is also the default). The maximum possible time-out value is 35996 (just less than one hour).

**PROMPT flag_val**

If flag_val is 0, displays the boot prompt only if Shift or Alt is pressed or Caps Lock or Scroll Lock is set (this is the default). If flag_val is 1, always displays the boot prompt.

| F2 FILENAME |
| F1 FILENAME |
| ..etc...    |
| F9 FILENAME |
| F10 FILENAME |

Displays the indicated file on the screen when a function key is pressed at the boot prompt. This can be used to implement preboot online help (presumably for the kernel command line options). For backward compatibility with earlier releases, F10 can be also entered as F0. Note that there is currently no way to bind file names to F11 and F12.

### 17.4 Preparing the Target System for PXE Boot

Prepare the system's BIOS for PXE boot by including the PXE option in the BIOS boot order.
Warning: BIOS Boot Order

Do not place the PXE option ahead of the hard disk boot parameter in the BIOS. Otherwise this system would try to re-install itself every time you boot it.

17.5 Preparing the Target System for Wake on LAN

Wake on LAN (WOL) requires the appropriate BIOS option to be enabled prior to the installation. Also, note down the MAC address of the target system. This data is needed to initiate Wake on LAN.

17.6 Wake on LAN

Wake on LAN allows a machine to be turned on by a special network packet containing the machine's MAC address. Because every machine in the world has a unique MAC identifier, you do not need to worry about accidentally turning on the wrong machine.

Important: Wake on LAN across Different Network Segments

If the controlling machine is not located on the same network segment as the target of the WOL command, you have 2 options. Either configure the WOL requests to be sent as multicasts, or remotely control a machine on that network segment to act as the sender of these requests.

Users of SUSE Linux Enterprise Server can use a YaST module called WOL to easily configure Wake on LAN. Users of other versions of SUSE Linux-based operating systems can use a command line tool.

17.7 Wake on LAN with YaST

Use this procedure to configure Wake on LAN with YaST.

1. Log in as root.
2. Start YaST > Network Services > WOL.
3. Click *Add* and enter the host name and MAC address of the target system.

4. To turn on this machine, select the appropriate entry and click *Wake up*.
Rolling out customized preinstallations of SUSE Linux Enterprise Server to a large number of identical machines spares you from installing each one of them separately and provides a standardized installation for the end users. With YaST Firstboot, create customized preinstallation images and determine the workflow for the final personalization steps that involve end user interaction (as opposed to AutoYaST, which allows completely automated installations; for more information, see the System Registration and Extension Selection of the AutoYaST Guide.

Creating a custom installation, rolling it out to your hardware, and personalizing the final product involves the following steps:

1. Prepare the master machine whose disk needs to be cloned to the client machines. For more information, refer to Section 18.1, “Preparing the Master Machine”.

2. Customize the firstboot workflow. For more information, refer to Section 18.2, “Customizing the Firstboot Installation”.

3. Clone the master machine’s disk and roll this image out to the clients’ disks. For more information, refer to Section 18.3, “Cloning the Master Installation”.

4. Have the end user personalize the instance of SUSE Linux Enterprise Server. For more information, refer to Section 18.4, “Personalizing the Installation”.

18.1 Preparing the Master Machine

To prepare a master machine for a firstboot workflow, proceed as follows:

1. Insert the installation media into the master machine.

2. Boot the machine.

3. Perform a normal installation including all necessary configuration steps, and make sure to select the `yast2-firstboot` package for installation.

4. To define your own workflow of YaST configuration steps for the end user or to add your own YaST modules to this workflow, proceed to Section 18.2, “Customizing the Firstboot Installation”. Otherwise proceed directly to Step 5.
5. **Enable firstboot as root:**

Create an empty file `/var/lib/YaST2/reconfig_system` to trigger firstboot's execution. This file will be deleted after the firstboot configuration has been successfully accomplished. Create this file using the following command:

```
touch /var/lib/YaST2/reconfig_system
```

6. **Proceed to Section 18.3, “Cloning the Master Installation”**.

## 18.2 Customizing the Firstboot Installation

Customizing the firstboot installation workflow may involve several different components. Customizing them is recommended. If you do not make any changes, firstboot performs the installation using the default settings. The following options are available:

- Customizing messages to the user, as described in Section 18.2.1, “Customizing YaST Messages”.
- Customizing licenses and license actions, as described in Section 18.2.2, “Customizing the License Action”.
- Customizing the release notes to display, as described in Section 18.2.3, “Customizing the Release Notes”.
- Customizing the order and number of components involved in the installation, as described in Section 18.2.4, “Customizing the Workflow”.
- Configuring additional optional scripts, as described in Section 18.2.5, “Configuring Additional Scripts”.

To customize any of these components, modify the following configuration files:

- `/etc/sysconfig/firstboot`
  
  Configure various aspects of firstboot (such as release notes, scripts, and license actions).

- `/etc/YaST2/firstboot.xml`
  
  Configure the installation workflow by enabling or disabling components or adding custom ones.

  Provide translations for such a customized installation workflow, as described in Section 18.2.6, “Providing Translations of the Installation Workflow”.
Tip: Alternative Location of the Control File

/etc/YaST2/firstboot.xml is the default path for the control file, installed by the yast2-firstboot package. If you need to define a different location for the control file, edit /etc/sysconfig/firstboot, and change the FIRSTBOOT_CONTROL_FILE variable to your preferred location.

If you want to customize more than the workflow components, refer to the control.xml documentation at http://doc.opensuse.org/projects/YaST/SLES11/tdg/inst_in_general_chap.html#product_control.

18.2.1 Customizing YaST Messages

By default, an installation of SUSE Linux Enterprise Server contains several default messages that are localized and displayed at certain stages of the installation process. These include a welcome message, a license message, and a congratulatory message at the end of installation. You can replace any of these with your own versions and include localized versions of them in the installation. To include your own welcome message, proceed as follows:

1. Log in as root.
2. Open the /etc/sysconfig/firstboot configuration file and apply the following changes:
   a. Set FIRSTBOOT_WELCOME_DIR to the directory path where you want to store the files containing the welcome message and the localized versions, for example:

   ```
 FIRSTBOOT_WELCOME_DIR="/usr/share/firstboot/"
   ```
   
   b. If your welcome message has file names other than welcome.txt and welcome_locale.txt (where locale matches the ISO 639 language codes such as “cs” or “de”), specify the file name pattern in FIRSTBOOT_WELCOME_PATTERNS. For example:

   ```
 FIRSTBOOT_WELCOME_PATTERNS="mywelcome.txt"
   ```

   If unset, the default value of welcome.txt is assumed.
3. Create the welcome file and the localized versions and place them in the directory specified in the /etc/sysconfig/firstboot configuration file.
Proceed in a similar way to configure customized license and finish messages. These variables are \texttt{FIRSTBOOT\_LICENSE\_DIR} and \texttt{FIRSTBOOT\_FINISH\_FILE}.

Change the \texttt{SHOW\_Y2CC\_CHECKBOX} to “yes” if the user needs to be able to start YaST directly after performing the installation.

### 18.2.2 Customizing the License Action

You can customize the way the installation system reacts to a user’s refusal to accept the license agreement. There are three different ways which the system could react to this scenario:

- **halt**
  - The firstboot installation is aborted and the entire system shuts down. This is the default setting.

- **continue**
  - The firstboot installation continues.

- **abort**
  - The firstboot installation is aborted, but the system attempts to boot.

Make your choice and set \texttt{LICENSE\_REFUSAL\_ACTION} to the appropriate value.

### 18.2.3 Customizing the Release Notes

Depending on if you have changed the instance of SUSE Linux Enterprise Server you are deploying with firstboot, you probably need to educate the end users about important aspects of their new operating system. A standard installation uses release notes (displayed during one of the final stages of the installation) to provide important information to the users. To have your own modified release notes displayed as part of a firstboot installation, proceed as follows:

1. Create your own release notes file. Use the RTF format as in the example file in \texttt{/usr/share/doc/release-notes} and save the result as \texttt{RELEASE\_NOTES.en.rtf} (for English).

2. Store optional localized versions next to the original version and replace the \texttt{en} part of the file name with the actual ISO 639 language code, such as \texttt{de} for German.

3. Open the firstboot configuration file from \texttt{/etc/sysconfig/firstboot} and set \texttt{FIRSTBOOT\_RELEASE\_NOTES\_PATH} to the actual directory where the release notes files are stored.
18.2.4 Customizing the Workflow

The provided `/etc/YaST2/firstboot.xml` example, defines a standard workflow which includes the following enabled components:

- Language Selection
- Welcome
- License Agreement
- Time and Date
- Users
- Root Password
- Finish Setup

Bear in mind that this workflow is just a template. You may adjust it properly, manually editing the firstboot configuration file `/etc/YaST2/firstboot.xml`. This XML file is a subset of the standard `control.xml` file that is used by YaST to control the installation workflow. See Example 18.2, “Configuring the Workflow Section” to learn more about how to configure the workflow section.

For an overview about proposals, see Example 18.1, “Configuring the Proposal Screens”. This provides you with enough background to modify the firstboot installation workflow. The basic syntax of the firstboot configuration file (plus how the key elements are configured) is explained with this example.

**EXAMPLE 18.1: CONFIGURING THE PROPOSAL SCREENS**

```xml
<proposals config:type="list">
 <proposal>
 <name>firstboot_hardware</name>
 <mode>installation</mode>
 <stage>firstboot</stage>
 <label>Hardware Configuration</label>
 <proposal_modules config:type="list">
 <proposal_module>printer</proposal_module>
 </proposal_modules>
 </proposal>
 ...
</proposals>
```
The container for all proposals that should be part of the firstboot workflow.

The container for an individual proposal.

The internal name of the proposal.

The mode of this proposal. Do not make any changes here. For a firstboot installation, this must be set to `installation`.

The stage of the installation process at which this proposal is invoked. Do not make any changes here. For a firstboot installation, this must be set to `firstboot`.

The label to be displayed on the proposal.

The container for all modules that are part of the proposal screen.

One or more modules that are part of the proposal screen.

The next section of the firstboot configuration file consists of the workflow definition. All modules that should be part of the firstboot installation workflow must be listed here.

**EXAMPLE 18.2: CONFIGURING THE WORKFLOW SECTION**

```xml
<workflows config:type="list">
 <workflow>
 <defaults>
 <enable_back>yes</enable_back>
 <enable_next>yes</enable_next>
 <archs>all</archs>
 </defaults>
 <stage>firstboot</stage>
 <label>Configuration</label>
 <mode>installation</mode>
 ... <!-- list of modules -->
 </workflow>
</workflows>
```

The overall structure of the `workflows` section is very similar to that of the `proposals` section. A container holds the workflow elements and the workflow elements all include stage, label and mode information (just as the proposals introduced in Example 18.1, “Configuring the Proposal Screens”). The most notable difference is the `defaults` section, which contains basic design information for the workflow components:

- **enable_back**
  
  Include the Back button in all dialogs.

- **enable_next**
Include the Next button in all dialogs.

archs
Specify the hardware architectures on which this workflow should be used.

EXAMPLE 18.3: CONFIGURING THE LIST OF WORKFLOW COMPONENTS

```xml
<modules config:type="list">
 <module>
 <label>Language</label>
 <enabled config:type="boolean">false</enabled>
 <name>firstboot_language</name>
 </module>
</modules>
```

1. The container for all components of the workflow.
2. The module definition.
3. The label displayed with the module.
4. The switch to enable or disable this component in the workflow.
5. The module name. The module itself must be located under `/usr/share/YaST2/clients`.

To make changes to the number or order of proposal screens during the firstboot installation, proceed as follows:

1. Open the firstboot configuration file at `/etc/YaST2/firstboot.xml`.
2. Delete or add proposal screens or change the order of the existing ones:
   - To delete an entire proposal, remove the `proposal` element including all its sub-elements from the `proposals` section and remove the respective `module` element (with sub-elements) from the workflow.
   - To add a new proposal, create a new `proposal` element and fill in all the required sub-elements. Make sure that the proposal exists as a YaST module in `/usr/share/YaST2/clients`.
   - To change the order of proposals, move the respective `module` elements containing the proposal screens around in the workflow. Note that there may be dependencies to other installation steps that require a certain order of proposals and workflow components.
3. Apply your changes and close the configuration file.
You can always change the workflow of the configuration steps when the default does not meet your needs. Enable or disable certain modules in the workflow (or add your own custom ones).

To toggle the status of a module in the firstboot workflow, proceed as follows:

1. Open the `/etc/YaST2/firstboot.xml` configuration file.
2. Change the value for the `enabled` element from `true` to `false` to disable the module or from `false` to `true` to enable it again.

   ```xml
 <module>
 <label>Time and Date</label>
 <enabled config:type="boolean">true</enabled>
 <name>firstboot_timezone</name>
 </module>
   ```
3. Apply your changes and close the configuration file.

To add a custom made module to the workflow, proceed as follows:

1. Create your own YaST module and store the module file `module_name.rb` in `/usr/share/YaST2/clients`.
2. Open the `/etc/YaST2/firstboot.xml` configuration file.
3. Determine at which point in the workflow your new module should be run. In doing so, make sure that possible dependencies to other steps in the workflow are taken into account and resolved.
4. Create a new `module` element inside the `modules` container and add the appropriate sub-elements:

   ```xml
 <modules config:type="list">
 -
 <module>
 <label>my_module</label>
 <enabled config:type="boolean">true</enabled>
 <name>filename_my_module</name>
 </module>
 </modules>

 a. Enter the label to be displayed on your module in the `label` element.
 b. Make sure that `enabled` is set to `true` to have your module included in the workflow.
c. Enter the file name of your module in the `name` element. Omit the full path and the `.rb` suffix.

5. Apply your settings and close the configuration file.

Tip: Finding Connected Network Interface For Auto-Configuration

If the target hardware may feature more than one network interface add the `network-autoconfig` package to the application image. `network-autoconfig` cycles through all available Ethernet interfaces until one is successfully configured via DHCP.

18.2.5 Configuring Additional Scripts

Firstboot can be configured to execute additional scripts after the firstboot workflow has been completed. To add additional scripts to the firstboot sequence, proceed as follows:

1. Open the `/etc/sysconfig/firstboot` configuration file and make sure that the path specified for `SCRIPT_DIR` is correct. The default value is `/usr/share/firstboot/scripts`.

2. Create your shell script, store it in the specified directory, and apply the appropriate file permissions.

18.2.6 Providing Translations of the Installation Workflow

Depending on the end user it could be desirable to offer translations of the customized workflow. Those translations could be necessary, if you customized the workflow by changing the `/etc/YaST2/firstboot.xml` file, as described in Section 18.2.4, “Customizing the Workflow”.

If you have changed `/etc/YaST2/firstboot.xml` and introduced string changes, generate a new translation template file (.pot file) and use the `gettext` tool chain to translate and finally install the translated files in the YaST locale directories (/usr/share/YaST2/locale) as compiled .mo files. Proceed as follows:

1. Change the `textdomain` setting from:

   ```xml
   <textdomain>firstboot</textdomain>
   ```
to, for example,

```text
<textdomain>firstboot-oem</textdomain>
```

2. Use `xgettext` to extract the translatable strings to the translation template file (.pot file), for example to `firstboot-oem.pot`:

```bash
xgettext -L Glade -o firstboot-oem.pot /etc/YaST2/firstboot.xml
```

3. Start the translation process. Then package the translated files (`.LL_code.po` files) the same way as translations of the other projects and install the compiled `firstboot-oem.mo` files.

If you need translations for additional or changed YaST modules, provide translations within such a module itself. If you changed an existing module, make sure to change also its text-domain statement to avoid undesired side effects.

⚠️ Tip: For More Information

18.3 Cloning the Master Installation

Clone the master machine's disk using any of the imaging mechanisms available to you, and roll these images out to the target machines. For more information about imaging, see http://doc.opensuse.org/projects/kiwi/doc/.

18.4 Personalizing the Installation

As soon as the cloned disk image is booted, firstboot starts and the installation proceeds exactly as laid out in Section 18.2.4, “Customizing the Workflow”. Only the components included in the firstboot workflow configuration are started. All other installation steps are skipped. The end user adjusts language, keyboard, network, and password settings to personalize the workstation. After this process is finished, a firstboot installed system behaves as any other instance of SUSE Linux Enterprise Server.
V Initial System Configuration

19 Setting Up Hardware Components with YaST 219
20 Installing or Removing Software 229
21 Installing Modules, Extensions, and Third Party Add-On Products 247
22 Installing Multiple Kernel Versions 253
23 Managing Users with YaST 259
24 Changing Language and Country Settings with YaST 273
19 Setting Up Hardware Components with YaST

YaST allows you to configure hardware items such as audio hardware, your system keyboard layout or printers.

Note: Graphics Card, Monitor, Mouse and Keyboard Settings
Graphics card, monitor, mouse and keyboard can be configured with GNOME tools.

19.1 Setting Up Your System Keyboard Layout

The YaST System Keyboard Layout module lets you define the default keyboard layout for the system (also used for the console). Users can modify the keyboard layout in their individual X sessions, using the desktop's tools.

1. Start the YaST System Keyboard Configuration dialog by clicking Hardware › System Keyboard Layout in YaST. Alternatively, start the module from the command line with `sudo yast2 keyboard`.

2. Select the desired Keyboard Layout from the list.

3. Optionally, you can also define the keyboard repeat rate or keyboard delay rate in the Expert Settings.

4. Try the selected settings in the Test text box.

5. If the result is as expected, confirm your changes and close the dialog. The settings are written to `/etc/sysconfig/keyboard`.

19.2 Setting Up Sound Cards

YaST detects most sound cards automatically and configures them with the appropriate values. To change the default settings, or to set up a sound card that could not be configured automatically, use the YaST sound module. There, you can also set up additional sound cards or switch their order.
To start the sound module, start YaST and click Hardware > Sound. Alternatively, start the Sound Configuration dialog directly by running `yast2 sound` & as user root from a command line. If the sound module is not available, install it using the `sudo zypper install yast2-sound` command.

The dialog shows all sound cards that were detected.

PROCEDURE 19.1: CONFIGURING SOUND CARDS

If you have added a new sound card or YaST could not automatically configure an existing sound card, follow the steps below. For configuring a new sound card, you need to know your sound card vendor and model. If in doubt, refer to your sound card documentation for the required information. For a reference list of sound cards supported by ALSA with their corresponding sound modules, see http://www.alsa-project.org/main/index.php/Matrix:Main.

During configuration, you can choose between the following setup options:

Quick Automatic Setup

You are not required to go through any of the further configuration steps—the sound card is configured automatically. You can set the volume or any options you want to change later.
Normal Setup

Allows you to adjust the output volume and play a test sound during the configuration.

Advanced setup with possibility to change options

For experts only. Allows you to customize all parameters of the sound card.

⚠️ **Important: Advanced Configuration**

Only use this option if you know exactly what you are doing. Otherwise leave the parameters untouched and use the normal or the automatic setup options.

1. Start the YaST sound module.

2. To configure a detected, but Not Configured sound card, select the respective entry from the list and click **Edit**.

 To configure a new sound card, click **Add**. Select your sound card vendor and model and click **Next**.

3. Choose one of the setup options and click **Next**.

4. If you have chosen Normal Setup, you can now **Test** your sound configuration and make adjustments to the volume. You should start at about ten percent volume to avoid damage to your hearing or the speakers.

5. If all options are set according to your wishes, click **Next**.

 The **Sound Configuration** dialog shows the newly configured or modified sound card.

6. To remove a sound card configuration that you no longer need, select the respective entry and click **Delete**.

7. Click **OK** to save the changes and leave the YaST sound module.

PROCEDURE 19.2: MODIFYING SOUND CARD CONFIGURATIONS

1. To change the configuration of an individual sound card (for experts only!), select the sound card entry in the **Sound Configuration** dialog and click **Edit**.

 This takes you to the **Sound Card Advanced Options** where you can fine-tune several parameters. For more information, click **Help**.
2. To adjust the volume of an already configured sound card or to test the sound card, select the sound card entry in the *Sound Configuration* dialog and click *Other*. Select the respective menu item.

Note: YaST Mixer

The YaST mixer settings provide only basic options. They are intended for troubleshooting (for example, if the test sound is not audible). Access the YaST mixer settings from *Other > Volume*. For everyday use and fine-tuning of sound options, use the mixer applet provided by your desktop or the `alsasound` command line tool.

3. For playback of MIDI files, select *Other > Start Sequencer*.

4. When a supported sound card is detected, you can install SoundFonts for playback of MIDI files:

 a. Insert the original driver CD-ROM into your CD or DVD drive.

 b. Select *Other > Install SoundFonts* to copy SF2 SoundFonts™ to your hard disk. The SoundFonts are saved in the directory `/usr/share/sfbank/creative/`.

5. If you have configured more than one sound card in your system you can adjust the order of your sound cards. To set a sound card as primary device, select the sound card in the *Sound Configuration* and click *Other > Set as the Primary Card*. The sound device with index 0 is the default device and thus used by the system and the applications.

6. By default, SUSE Linux Enterprise Server uses the PulseAudio sound system. This is an abstraction layer that helps to mix multiple audio streams, bypassing any restrictions the hardware may have. To enable or disable the PulseAudio sound system, click *Other > PulseAudio Configuration*. If enabled, PulseAudio daemon is used to play sounds. Disable *PulseAudio Support* to use something else system-wide.

The volume and configuration of all sound cards are saved when you click *OK* and leave the YaST sound module. The mixer settings are saved to the file `/etc/asound.state`. The ALSA configuration data is appended to the end of the file `/etc/modprobe.d/sound` and written to `/etc/sysconfig/sound`.
19.3 Setting Up a Printer

YaST can be used to configure a local printer connected to your machine via USB and to set up printing with network printers. It is also possible to share printers over the network. Further information about printing (general information, technical details, and troubleshooting) is available in Book “Administration Guide”, Chapter 20 “Printer Operation”.

In YaST, click Hardware > Printer to start the printer module. By default it opens in the Printer Configurations view, displaying a list of all printers that are available and configured. This is especially useful when having access to a lot of printers via the network. From here you can also Print a Test Page and configure printers.

Note: Starting CUPS
To print from your system, CUPS must be running. In case it is not running, you are asked to start it. Answer with Yes, or you cannot configure printing. In case CUPS is not started at boot time, you will also be asked to enable this feature. It is recommended to say Yes, otherwise CUPS would need to be started manually after each reboot.

19.3.1 Configuring Printers

Usually a USB printer is automatically detected. There are two possible reasons it is not automatically detected:

- The USB printer is switched off.
- Communication between printer and computer is not possible. Check the cable and the plugs to make sure that the printer is properly connected. If this is the case, the problem may not be printer-related, but rather a USB-related problem.

Configuring a printer is a three-step process: specify the connection type, choose a driver, and name the print queue for this setup.

For many printer models, several drivers are available. When configuring the printer, YaST defaults to those marked recommended as a general rule. Normally it is not necessary to change the driver. However, if you want a color printer to print only in black and white, you can use a driver that does not support color printing. If you experience performance problems with a PostScript printer when printing graphics, try to switch from a PostScript driver to a PCL driver (provided your printer understands PCL).
If no driver for your printer is listed, try to select a generic driver with an appropriate standard language from the list. Refer to your printer’s documentation to find out which language (the set of commands controlling the printer) your printer understands. If this does not work, refer to Section 19.3.1.1, “Adding Drivers with YaST” for another possible solution.

A printer is never used directly, but always through a print queue. This ensures that simultaneous jobs can be queued and processed one after the other. Each print queue is assigned to a specific driver, and a printer can have multiple queues. This makes it possible to set up a second queue on a color printer that prints black and white only, for example. Refer to Book “Administration Guide”, Chapter 20 “Printer Operation”, Section 20.1 “The CUPS Workflow” for more information about print queues.

PROCEDURE 19.3: ADDING A NEW PRINTER

1. Start the YaST printer module with Hardware > Printer.

2. In the Printer Configurations screen click Add.

3. If your printer is already listed under Specify the Connection, proceed with the next step. Otherwise, try to Detect More or start the Connection Wizard.

4. In the text box under Find and Assign a Driver enter the vendor name and the model name and click Search for.

5. Choose a driver that matches your printer. It is recommended to choose the driver listed first. If no suitable driver is displayed:
 a. Check your search term.
 b. Broaden your search by clicking Find More.
 c. Add a driver as described in Section 19.3.1.1, “Adding Drivers with YaST”.

7. In the Set Arbitrary Name field, enter a unique name for the print queue.

8. The printer is now configured with the default settings and ready to use. Click OK to return to the Printer Configurations view. The newly configured printer is now visible in the list of printers.
19.3.1.1 Adding Drivers with YaST

Not all printer drivers available for SUSE Linux Enterprise Server are installed by default. If no suitable driver is available in the *Find and Assign a Driver* dialog when adding a new printer, install a driver package containing drivers for your printers:

PROCEDURE 19.4: INSTALLING ADDITIONAL DRIVER PACKAGES

1. Start the YaST printer module with *Hardware > Printer*.

2. In the *Printer Configurations* screen, click *Add*.

3. In the *Find and Assign a Driver* section, click *Driver Packages*.

4. Choose one or more suitable driver packages from the list. Do *not* specify the path to a printer description file.

5. Choose *OK* and confirm the package installation.

6. To directly use these drivers, proceed as described in *Procedure 19.3, “Adding a New Printer”*.

PostScript printers do not need printer driver software. PostScript printers need only a PostScript Printer Description (PPD) file which matches the particular model. PPD files are provided by the printer manufacturer.

If no suitable PPD file is available in the *Find and Assign a Driver* dialog when adding a PostScript printer, install a PPD file for your printer:

Several sources for PPD files are available. It is recommended to first try additional driver packages that are shipped with SUSE Linux Enterprise Server but not installed by default (see below for installation instructions). If these packages do not contain suitable drivers for your printer, get PPD files directly from your printer vendor or from the driver CD of a PostScript printer. For details, see *Book “Administration Guide”, Chapter 20 “Printer Operation”, Section 20.8.2 “No Suitable PPD File Available for a PostScript Printer”*. Alternatively, find PPD files at http://www.linuxfoundation.org/collaborate/workgroups/openprinting/database/databaseintro, the “OpenPrinting.org printer database”. When downloading PPD files from OpenPrinting, keep in mind that it always shows the latest Linux support status, which is not necessarily met by SUSE Linux Enterprise Server.

PROCEDURE 19.5: ADDING A PPD FILE FOR POSTSCRIPT PRINTERS

1. Start the YaST printer module with *Hardware > Printer*.

2. In the *Printer Configurations* screen, click *Add*.
3. In the **Find and Assign a Driver** section, click **Driver Packages**.

4. Enter the full path to the PPD file into the text box under **Make a Printer Description File Available**.

5. Click **OK** to return to the **Add New Printer Configuration** screen.

6. To directly use this PPD file, proceed as described in *Procedure 19.3, “Adding a New Printer”*.

19.3.1.2 Editing a Local Printer Configuration

By editing an existing configuration for a printer you can change basic settings such as connection type and driver. It is also possible to adjust the default settings for paper size, resolution, media source, etc. You can change identifiers of the printer by altering the printer description or location.

1. Start the YaST printer module with *Hardware > Printer*.

2. In the **Printer Configurations** screen, choose a local printer configuration from the list and click **Edit**.

3. Change the connection type or the driver as described in *Procedure 19.3, “Adding a New Printer”*. This should only be necessary in case you have problems with the current configuration.

4. Optionally, make this printer the default by checking **Default Printer**.

5. Adjust the default settings by clicking **All Options for the Current Driver**. To change a setting, expand the list of options by clicking the relative + sign. Change the default by clicking an option. Apply your changes with **OK**.

19.3.2 Configuring Printing via the Network with YaST

Network printers are not detected automatically. They must be configured manually using the YaST printer module. Depending on your network setup, you can print to a print server (CUPS, LPD, SMB, or IPX) or directly to a network printer (preferably via TCP). Access the configuration view for network printing by choosing **Printing via Network** from the left pane in the YaST printer module.
19.3.2.1 Using CUPS

In a Linux environment CUPS is usually used to print via the network. The simplest setup is to only print via a single CUPS server which can directly be accessed by all clients. Printing via more than one CUPS server requires a running local CUPS daemon that communicates with the remote CUPS servers.

Important: Browsing Network Print Queues

CUPS servers announce their print queues over the network either via the traditional CUPS browsing protocol or via Bonjour/DNS-SD. Clients need to browse these lists, so users can select specific printers to send their print jobs to. To browse network print queues, the service `cups-browsed` provided by the package `cups-filters-cups-browsed` must run on all clients that print via CUPS servers. `cups-browsed` is started automatically when configuring network printing with YaST.

In case browsing does not work after having started `cups-browsed`, the CUPS server(s) probably announce the network print queues via Bonjour/DNS-SD. In this case you need to additionally install the package `avahi` and start the associated service with `sudo systemctl start avahi-daemon` on all clients.

PROCEDURE 19.6: PRINTING VIA A SINGLE CUPS SERVER

1. Start the YaST printer module with *Hardware > Printer*.
2. From the left pane, launch the *Print via Network* screen.
3. Check *Do All Your Printing Directly via One Single CUPS Server* and specify the name or IP address of the server.
4. Click *Test Server* to make sure you have chosen the correct name or IP address.
5. Click *OK* to return to the *Printer Configurations* screen. All printers available via the CUPS server are now listed.

PROCEDURE 19.7: PRINTING VIA MULTIPLE CUPS SERVERS

1. Start the YaST printer module with *Hardware > Printer*.
2. From the left pane, launch the *Print via Network* screen.
3. Check *Accept Printer Announcements from CUPS Servers*.
4. Under General Settings specify which servers to use. You may accept connections from all networks available or from specific hosts. If you choose the latter option, you need to specify the host names or IP addresses.

5. Confirm by clicking OK and then Yes when asked to start a local CUPS server. After the server has started YaST will return to the Printer Configurations screen. Click Refresh list to see the printers detected so far. Click this button again, in case more printers are available.

19.3.2.2 Using Print Servers other than CUPS

If your network offers print services via print servers other than CUPS, start the YaST printer module with Hardware > Printer and launch the Print via Network screen from the left pane. Start the Connection Wizard and choose the appropriate Connection Type. Ask your network administrator for details on configuring a network printer in your environment.

19.3.3 Sharing Printers over the Network

Printers managed by a local CUPS daemon can be shared over the network and so turn your machine into a CUPS server. Usually you share a printer by enabling so-called “browsing mode” in CUPS. If browsing is enabled, the local print queues are made available on the network for listening to remote CUPS daemons. It is also possible to set up a dedicated CUPS server that manages all print queues and can directly be accessed by remote clients. In this case it is not necessary to enable browsing.

PROCEDURE 19.8: SHARING PRINTERS

1. Start the YaST printer module with Hardware > Printer.

2. Launch the Share Printers screen from the left pane.

3. Select Allow Remote Access. Also check For computers within the local network and enable browsing mode by also checking Publish printers by default within the local network.

4. Click OK to restart the CUPS server and to return to the Printer Configurations screen.

5. Regarding CUPS and firewall settings, see http://en.opensuse.org/SD-B:CUPS_and_SANE_Firewall_settings.
20 Installing or Removing Software

Use YaST's software management module to search for software components you want to add or remove. YaST resolves all dependencies for you. To install packages not shipped with the installation media, add software repositories to your setup and let YaST manage them. Keep your system up-to-date by managing software updates with the update applet.

Change the software collection of your system with the YaST Software Manager. This YaST module is available in two flavors: a graphical variant for X Window and a text-based variant to be used on the command line. The graphical flavor is described here—for details on the text-based YaST, see Book “Administration Guide”, Chapter 5 “YaST in Text Mode”.

Note: Confirmation and Review of Changes
When installing, updating or removing packages, any changes in the Software Manager are only applied after clicking Accept or Apply. YaST maintains a list with all actions, allowing you to review and modify your changes before applying them to the system.

20.1 Definition of Terms

The following terms are important for understanding installing and removing software in SUSE Linux Enterprise Server.

Repository
A local or remote directory containing packages, plus additional information about these packages (package metadata).

(Repository) Alias/Repository Name
A short name for a repository (called Alias within Zypper and Repository Name within YaST). It can be chosen by the user when adding a repository and must be unique.

Repository Description Files
Each repository provides files describing content of the repository (package names, versions, etc.). These repository description files are downloaded to a local cache that is used by YaST.
Product
Represents a whole product, for example SUSE® Linux Enterprise Server.

Pattern
A pattern is an installable group of packages dedicated to a certain purpose. For example, the Laptop pattern contains all packages that are needed in a mobile computing environment. Patterns define package dependencies (such as required or recommended packages) and come with a preselection of packages marked for installation. This ensures that the most important packages needed for a certain purpose are available on your system after installation of the pattern. If necessary, you can manually select or deselect packages within a pattern.

Package
A package is a compressed file in rpm format that contains the files for a particular program.

Patch
A patch consists of one or more packages and may be applied by means of delta RPMs. It may also introduce dependencies to packages that are not installed yet.

Resolvable
A generic term for product, pattern, package or patch. The most commonly used type of resolvable is a package or a patch.

Delta RPM
A delta RPM consists only of the binary diff between two defined versions of a package, and therefore has the smallest download size. Before being installed, the full RPM package is rebuilt on the local machine.

Package Dependencies
Certain packages are dependent on other packages, such as shared libraries. In other terms, a package may require other packages—if the required packages are not available, the package cannot be installed. In addition to dependencies (package requirements) that must be fulfilled, some packages recommend other packages. These recommended packages are only installed if they are actually available, otherwise they are ignored and the package recommending them is installed nevertheless.
20.2 Registering an Installed System

If you skipped registration during installation or want to re-register your system, you can register the system at any time. Use the YaST module *Product Registration* or the command line tool *SUSEConnect*.

20.2.1 Registering with YaST

To register the system, start YaST and switch to *Software*, then *Product Registration*.

By default the system is registered with the SUSE Customer Center. If your organization provides local registration servers, you can either choose one from the list of auto-detected servers or provide the URL manually.

20.2.2 Registering with SUSEConnect

To register from the command line, use the command

```
tux > sudo SUSEConnect -r REGISTRATION_CODE -e EMAIL_ADDRESS
```

Replace *REGISTRATION_CODE* with the registration code you received with your copy of SUSE Linux Enterprise Server. Replace *EMAIL_ADDRESS* with the e-mail address associated with the SUSE account you or your organization uses to manage subscriptions.

To register with a local registration server, also provide the URL to the server:

```
tux > sudo SUSEConnect -r REGISTRATION_CODE -e EMAIL_ADDRESS --url "URL"
```

20.3 Using the YaST Software Manager

Start the software manager from the *YaST Control Center* by choosing *Software* > *Software Management*.
20.3.1 Views for Searching Packages or Patterns

The YaST software manager can install packages or patterns from all currently enabled repositories. It offers different views and filters to make it easier to find the software you are searching for. The Search view is the default view of the window. To change view, click View and select one of the following entries from the drop-down box. The selected view opens in a new tab.

Patterns
Lists all patterns available for installation on your system.

Package Groups
Lists all packages sorted by groups such as Graphics, Programming, or Security.

Languages
A filter to list all packages needed to add a new system language.

Repositories
A filter to list packages by repository. To select more than one repository, hold the Ctrl key while clicking repository names. The "pseudo repository" @System lists all packages currently installed.

Services
Shows which packages belong to a certain module or extension. Select an entry (for example, `Basesystem` or `High Availability`) to display a list of packages that belong to this module or extension.

Search

Lets you search for a package according to certain criteria. Enter a search term and press **Enter**. Refine your search by specifying where to `Search In` and by changing the `Search Mode`. For example, if you do not know the package name but only the name of the application that you are searching for, try including the package `Description` in the search process.

Installation Summary

If you have already selected packages for installation, update or removal, this view shows the changes that will be applied to your system when you click `Accept`. To filter for packages with a certain status in this view, activate or deactivate the respective check boxes. Press **Shift-F1** for details on the status flags.

Tip: Finding Packages Not Belonging to an Active Repository

To list all packages that do not belong to an active repository, choose `View` ➤ `Repositories` ➤ `@System` and then choose `Secondary Filter` ➤ `Unmaintained Packages`. This is useful, for example, if you have deleted a repository and want to make sure no packages from that repository remain installed.

20.3.2 Installing and Removing Packages or Patterns

Certain packages are dependent on other packages, such as shared libraries. On the other hand, some packages cannot coexist with others on the system. If possible, YaST automatically resolves these dependencies or conflicts. If your choice results in a dependency conflict that cannot be automatically solved, you need to solve it manually as described in Section 20.3.4, “Package Dependencies”.

Note: Removal of Packages

When removing any packages, by default YaST only removes the selected packages. If you want YaST to also remove any other packages that become unneeded after removal of the specified package, select `Options` ➤ `Cleanup when deleting packages` from the main menu.
1. Search for packages as described in Section 20.3.1, “Views for Searching Packages or Patterns”.

2. The packages found are listed in the right pane. To install a package or remove it, right-click it and choose Install or Delete. If the relevant option is not available, check the package status indicated by the symbol in front of the package name—press [Shift]–[F1] for help.

 Tip: Applying an Action to All Packages Listed
 To apply an action to all packages listed in the right pane, go to the main menu and choose an action from Package ➤ All in This List.

3. To install a pattern, right-click the pattern name and choose Install.

4. It is not possible to remove a pattern. Instead, select the packages of a pattern you want to remove and mark them for removal.

5. To select more packages, repeat the steps mentioned above.

6. Before applying your changes, you can review or modify them by clicking View ➤ Installation Summary. By default, all packages that will change status, are listed.

7. To revert the status for a package, right-click the package and select one of the following entries: Keep if the package was scheduled to be deleted or updated, or Do Not Install if it was scheduled for installation. To abandon all changes and quit the Software Manager, click Cancel and Abandon.

8. When you are finished, click Accept to apply your changes.

9. In case YaST found dependencies on other packages, a list of packages that have additionally been chosen for installation, update or removal is presented. Click Continue to accept them. After all selected packages are installed, updated or removed, the YaST Software Manager automatically terminates.

Note: Installing Source Packages
Installing source packages with YaST Software Manager is not possible at the moment. Use the command line tool `zypper` for this purpose. For more information, see Book “Administration Guide”, Chapter 6 “Managing Software with Command Line Tools”, Section 6.1.3.5 “Installing or Downloading Source Packages”.

20.3.3 Updating Packages

Instead of updating individual packages, you can also update all installed packages or all packages from a certain repository. When mass updating packages, the following aspects are generally considered:

- priorities of the repositories that provide the package,
- architecture of the package (for example, AMD64/Intel 64),
- version number of the package,
- package vendor.

Which of the aspects has the highest importance for choosing the update candidates depends on the respective update option you choose.

1. To update all installed packages to the latest version, choose Package > All Packages > Update if Newer Version Available from the main menu.

 All repositories are checked for possible update candidates, using the following policy: YaST first tries to restrict the search to packages with the same architecture and vendor like the installed one. If the search is positive, the “best” update candidate from those is selected according to the process below. However, if no comparable package of the same vendor can be found, the search is expanded to all packages with the same architecture. If still no comparable package can be found, all packages are considered and the “best” update candidate is selected according to the following criteria:

 1. Repository priority: Prefer the package from the repository with the highest priority.
 2. If more than one package results from this selection, choose the one with the “best” architecture (best choice: matching the architecture of the installed one).

 If the resulting package has a higher version number than the installed one, the installed package will be updated and replaced with the selected update candidate. This option tries to avoid changes in architecture and vendor for the installed packages, but under certain circumstances, they are tolerated.
Note: Update Unconditionally

If you choose Package › All Packages › Update Unconditionally instead, the same criteria apply but any candidate package found is installed unconditionally. Thus, choosing this option might actually lead to downgrading some packages.

2. To make sure that the packages for a mass update derive from a certain repository:

 a. Choose the repository from which to update as described in Section 20.3.1, “Views for Searching Packages or Patterns”.

 b. On the right hand side of the window, click Switch system packages to the versions in this repository. This explicitly allows YaST to change the package vendor when replacing the packages.

 When you proceed with Accept, all installed packages will be replaced by packages deriving from this repository, if available. This may lead to changes in vendor and architecture and even to downgrading some packages.

 c. To refrain from this, click Cancel switching system packages to the versions in this repository. Note that you can only cancel this until you click the Accept button.

3. Before applying your changes, you can review or modify them by clicking View › Installation Summary. By default, all packages that will change status, are listed.

4. If all options are set according to your wishes, confirm your changes with Accept to start the mass update.

20.3.4 Package Dependencies

Most packages are dependent on other packages. If a package, for example, uses a shared library, it is dependent on the package providing this library. On the other hand, some packages cannot coexist, causing a conflict (for example, you can only install one mail transfer agent: sendmail or postfix). When installing or removing software, the Software Manager makes sure no dependencies or conflicts remain unsolved to ensure system integrity.
In case there exists only one solution to resolve a dependency or a conflict, it is resolved automatically. Multiple solutions always cause a conflict which needs to be resolved manually. If solving a conflict involves a vendor or architecture change, it also needs to be solved manually. When clicking Accept to apply any changes in the Software Manager, you get an overview of all actions triggered by the automatic resolver which you need to confirm.

By default, dependencies are automatically checked. A check is performed every time you change a package status (for example, by marking a package for installation or removal). This is generally useful, but can become exhausting when manually resolving a dependency conflict. To disable this function, go to the main menu and deactivate Dependencies > Autocheck. Manually perform a dependency check with Dependencies > Check Now. A consistency check is always performed when you confirm your selection with Accept.

To review a package's dependencies, right-click it and choose Show Solver Information. A map showing the dependencies opens. Packages that are already installed are displayed in a green frame.

Note: Manually Solving Package Conflicts

Unless you are very experienced, follow the suggestions YaST makes when handling package conflicts, otherwise you may not be able to resolve them. Keep in mind that every change you make, potentially triggers other conflicts, so you can easily end up with a steadily increasing number of conflicts. In case this happens, Cancel the Software Manager, Abandon all your changes and start again.
20.3.5 Handling of Package Recommendations

In addition to the hard dependencies required to run a program (for example a certain library), a package can also have weak dependencies, that add for example extra functionality or translations. These weak dependencies are called package recommendations.

The way package recommendations are handled has slightly changed starting with SUSE Linux Enterprise Server 12 SP1. Nothing has changed when installing a new package—recommended packages are still installed by default.

Prior to SUSE Linux Enterprise Server 12 SP1, missing recommendations for already installed packages were installed automatically. Now these packages will no longer be installed automatically. To switch to the old default, set `PKGMGR_REEVALUATE_RECOMMENDED="yes"` in `/etc/sysconfig/yast2`. To install all missing recommendations for already installed packages, start YaST › Software Manager and choose Extras › Install All Matching Recommended Packages.

To disable the installation of recommended packages when installing new packages, deactivate Dependencies › Install Recommended Packages in the YaST Software Manager. If using the command line tool Zypper to install packages, use the option `--no-recommends`.
20.4 Managing Software Repositories and Services

To install third-party software, add software repositories to your system. By default, the product repositories such as SUSE Linux Enterprise Server-DVD 15 SP1 and a matching update repository are automatically configured after you have registered your system. For more information about registration, see Section 8.7, “Registration” or Book “Upgrade Guide”, Chapter 4 “Upgrading Offline”, Section 4.8 “Registering Your System”. Depending on the initially selected product, an additional repository containing translations, dictionaries, etc. might also be configured.

To manage repositories, start YaST and select Software > Software Repositories. The Configured Software Repositories dialog opens. Here, you can also manage subscriptions to so-called Services by changing the View at the right corner of the dialog to All Services. A Service in this context is a Repository Index Service (RIS) that can offer one or more software repositories. Such a Service can be changed dynamically by its administrator or vendor.

Each repository provides files describing content of the repository (package names, versions, etc.). These repository description files are downloaded to a local cache that is used by YaST. To ensure their integrity, software repositories can be signed with the GPG Key of the repository maintainer. Whenever you add a new repository, YaST offers the ability to import its key.

⚠️ Warning: Trusting External Software Sources

Before adding external software repositories to your list of repositories, make sure this repository can be trusted. SUSE is not responsible for any problems arising from software installed from third-party software repositories.

20.4.1 Adding Software Repositories

You can either add repositories from DVD/CD, removable mass storage devices (such as flash disks), a local directory, an ISO image or a network source.

To add repositories from the Configured Software Repositories dialog in YaST proceed as follows:

1. Click Add.
2. Select one of the options listed in the dialog:

- **Add On Product**

 - Scan Using SLP...
 - Extensions and Modules from Registration Server...
 - Specify URL...
 - FTP...
 - HTTP...
 - HTTP(S)...
 - SMB/CIFS
 - NFS...
 - CD...
 - DVD...
 - Hard Disk...
 - USB Mass Storage (USB Stick, Disk)...
 - Local Directory...
 - Local ISO Image...
 - Download repository description files

FIGURE 20.2: ADDING A SOFTWARE REPOSITORY

- To scan your network for installation servers announcing their services via SLP, select *Scan Using SLP* and click *Next*.

- To add a repository from a removable medium, choose the relevant option and insert the medium or connect the USB device to the machine, respectively. Click *Next* to start the installation.

- For the majority of repositories, you will be asked to specify the path (or URL) to the media after selecting the respective option and clicking *Next*. Specifying a *Repository Name* is optional. If none is specified, YaST will use the product name or the URL as repository name.

The option *Download Repository Description Files* is activated by default. If you deactivate the option, YaST will automatically download the files later, if needed.

3. Depending on the repository you have added, you may be prompted to import the repository's GPG key or asked to agree to a license. After confirming these messages, YaST will download and parse the metadata. It will add the repository to the list of *Configured Repositories*.

4. If needed, adjust the repository *Properties* as described in *Section 20.4.2, "Managing Repository Properties"*.
5. Confirm your changes with OK to close the configuration dialog.

6. After having successfully added the repository, the software manager starts and you can install packages from this repository. For details, refer to *Chapter 20, Installing or Removing Software*.

20.4.2 Managing Repository Properties

The *Configured Software Repositories* overview of the *Software Repositories* lets you change the following repository properties:

Status

The repository status can either be *Enabled* or *Disabled*. You can only install packages from repositories that are enabled. To turn a repository off temporarily, select it and deactivate *Enable*. You can also double-click a repository name to toggle its status. To remove a repository completely, click *Delete*.

Refresh

When refreshing a repository, its content description (package names, versions, etc.) is downloaded to a local cache that is used by YaST. It is sufficient to do this once for static repositories such as CDs or DVDs, whereas repositories whose content changes often should be refreshed frequently. The easiest way to keep a repository's cache up-to-date is to choose *Automatically Refresh*. To do a manual refresh click *Refresh* and select one of the options.

Keep Downloaded Packages

Packages from remote repositories are downloaded before being installed. By default, they are deleted upon a successful installation. Activating *Keep Downloaded Packages* prevents the deletion of downloaded packages. The download location is configured in `/etc/zypp/zypp.conf`, by default it is `/var/cache/zypp/packages`.

Priority

The *Priority* of a repository is a value between 1 and 200, with 1 being the highest priority and 200 the lowest priority. Any new repositories that are added with YaST get a priority of 99 by default. If you do not care about a priority value for a certain repository, you can also set the value to 0 to apply the default priority to that repository (99). If a package is available in more than one repository, then the repository with the highest priority takes precedence. This is useful to avoid downloading packages unnecessarily from the Internet by giving a local repository (for example, a DVD) a higher priority.
Important: Priority Compared to Version

The repository with the highest priority takes precedence in any case. Therefore, make sure that the update repository always has the highest priority, otherwise you might install an outdated version that will not be updated until the next online update.

Name and URL

To change a repository name or its URL, select it from the list with a single-click and then click Edit.

20.4.3 Managing Repository Keys

To ensure their integrity, software repositories can be signed with the GPG Key of the repository maintainer. Whenever you add a new repository, YaST offers to import its key. Verify it as you would do with any other GPG key and make sure it does not change. If you detect a key change, something might be wrong with the repository. Disable the repository as an installation source until you know the cause of the key change.

To manage all imported keys, click GPG Keys in the Configured Software Repositories dialog. Select an entry with the mouse to show the key properties at the bottom of the window. Add, Edit or Delete keys with a click on the respective buttons.

20.5 The GNOME Package Updater

SUSE offers a continuous stream of software security patches and updates for your product. They can be installed using tools available with your desktop or by running the YaST Online Update module. This section describes how to update the system from the GNOME desktop using the Package Updater.

Contrary to the YaST Online Update module, the GNOME Package Updater not only offers to install patches from the update repositories, but also new versions of packages that are already installed. (Patches fix security issues or malfunctions; the functionality and version number is usually not changed. New versions of a package increase the version number and usually add functionality or introduce major changes).

Whenever new patches or package updates are available, GNOME shows a notification in the notification area or on the lock screen.
To configure the notification settings for the Package Updater, start GNOME Settings and choose Notifications > Package Update.

PROCEDURE 20.1: INSTALLING PATCHES AND UPDATES WITH THE GNOME PACKAGE UPDATER

1. To install the patches and updates, click the notification message. This opens the GNOME Package Updater. Alternatively, open the updater from Activities by typing `package U` and choosing Package Updater.
2. Updates are sorted into four categories:

Security Updates (Patches)

Fix severe security hazards and should always be installed.

Recommended Updates (Patches)

Fix issues that could compromise your computer. Installing them is strongly recommended.

Optional Updates (Patches)

Fix non-security relevant issues or provide enhancements.

Other Updates

New versions of packages that are installed.

All available updates are preselected for installation. If you do not want to install all updates, deselect unwanted updates first. It is strongly recommended to always install all security and recommended updates.

To get detailed information on an update, click its title and then Details. The information will be displayed in a box beneath the package list.

3. Click **Install Updates** to start the installation.
4. Some updates may require to restart the machine or to log out. Check the message that is displayed after the installation for instructions.

20.6 Updating Packages with GNOME Software

In addition to the GNOME Package Updater, GNOME provides GNOME Software which has the following functionality:

- Install, update, and remove software delivered as an RPM via PackageKit
- Install, update, and remove software delivered as a Flatpak
- Install, update, and remove GNOME shell extensions (https://extensions.gnome.org)
- Update firmware for hardware devices using Linux Vendor Firmware Service (LVFS, https://fwupd.org)

In addition to this, GNOME Software provides screenshots, ratings and reviews for software.
GNOME Software has the following differences to other tools provided on SUSE Linux Enterprise Server:

- Unlike YaST or Zypper, for installing software packaged as an RPM, *GNOME Software* is restricted to software that provides AppStream metadata. This includes most desktop applications.

- While the GNOME *Package Updater* updates packages within the running system (forcing you to restart the respective applications), *GNOME Software* downloads the updates but only applies them at the next reboot of the system.
21 Installing Modules, Extensions, and Third Party Add-On Products

Modules and extensions add parts or functionality to the system. This chapter covers their installation, scope, support status, and lifecycle.

Modules are fully supported parts of SUSE Linux Enterprise Server with a different lifecycle and update timeline. They are a set of packages, have a clearly defined scope, and are delivered via online channel only. For a list of modules, their dependencies, and lifecycles, see https://www.suse.com/releasenotes/x86_64/SUSE-SLES/15/#Intro.ModuleExtensionRelated.

Extensions, such as the SUSE Linux Enterprise Workstation Extension or the High Availability Extension, add functionality to the system and require an own registration key that is liable for costs. Extensions are delivered via online channel or physical media. Registering at the SUSE Customer Center or a local registration server is a prerequisite for subscribing to the online channels. The Package Hub (Section 21.3, “SUSE Package Hub”) extension is an exception which does not require a registration key and is not covered by SUSE support agreements. Some extensions do require a registration key with one base product but not with another, because YaST will automatically register them with their base product’s key.

A list of modules and extensions for your product is available after having registered your system at SUSE Customer Center or a local registration server. If you skipped the registration step during the installation, you can register your system at any time using the SUSE Customer Center Configuration module in YaST. For details, refer to Book “Upgrade Guide”, Chapter 4 “Upgrading Offline”, Section 4.8 “Registering Your System”.

Some add-on products are also provided by third parties, for example, binary-only drivers that are needed by certain hardware to function properly. If you have such hardware, refer to the release notes for more information about availability of binary drivers for your system. The release notes are available from https://www.suse.com/releasenotes/, from YaST or from /usr/share/doc/release-notes/ in your installed system.
21.1 Installing Modules and Extensions from Online Channels

The following procedure requires that you have registered your system with SUSE Customer Center, or a local registration server. When registering your system, you will see a list of extensions and modules immediately after having completed Step 5 of Book “Upgrade Guide”, Chapter 4 “Upgrading Offline”, Section 4.8 “Registering Your System”. In that case, skip the next steps and proceed with Step 2.

Note: Viewing Already Installed Add-Ons

To view already installed add-ons, start YaST and select Software › Add-Ons

PROCEDURE 21.1: INSTALLING ADD-ONS AND EXTENSIONS FROM ONLINE CHANNELS WITH YAST

1. Start YaST and select Software › Add System Extensions or Modules.
 YaST connects to the registration server and displays a list of Available Extensions and Modules.

Note: Available Extensions and Modules

The amount of available extensions and modules depends on the registration server. A local registration server may only offer update repositories and no additional extensions.

2. Click an entry to see its description.

3. Select one or multiple entries for installation by activating their check marks.
4. Click Next to proceed.

5. Depending on the repositories to be added for the extension or module, you may be prompted to import the repository’s GPG key or asked to agree to a license. After confirming these messages, YaST will download and parse the metadata. The repositories for the selected extensions will be added to your system—no additional installation sources are required.

6. If needed, adjust the repository Properties as described in Section 20.4.2, “Managing Repository Properties”.
21.2 Installing Extensions and Third Party Add-On Products from Media

When installing an extension or add-on product from media, you can select various types of product media, like DVD/CD, removable mass storage devices (such as flash disks), or a local directory or ISO image. The media can also be provided by a network server, for example, via HTTP, FTP, NFS, or Samba.

1. Start YaST and select *Software > Add-On Products*. Alternatively, start the YaST *Add-On Products* module from the command line with `sudo yast2 add-on`.
 The dialog will show an overview of already installed add-on products, modules and extensions.

 ![FIGURE 21.2: LIST OF INSTALLED ADD-ON PRODUCTS, MODULES AND EXTENSIONS](image)

2. Choose *Add* to install a new add-on product.
3. In the *Add-On Product* dialog, select the option that matches the type of medium from which you want to install:

![Add-On Product dialog](image)

FIGURE 21.3: INSTALLATION OF AN ADD-ON PRODUCT OR AN EXTENSION

- To scan your network for installation servers announcing their services via SLP, select *Scan Using SLP* and click *Next*.

- To add a repository from a removable medium, choose the relevant option and insert the medium or connect the USB device to the machine, respectively. Click *Next* to start the installation.

- For most media types, you will be prompted to specify the path (or URL) to the media after selecting the respective option and clicking *Next*. Specifying a *Repository Name* is optional. If none is specified, YaST will use the product name or the URL as the repository name.

The option *Download Repository Description Files* is activated by default. If you deactivate the option, YaST will automatically download the files later, if needed.

4. Depending on the repository you have added, you may be prompted to import the repository's GPG key or asked to agree to a license.

After confirming these messages, YaST will download and parse the metadata. It will add the repository to the list of *Configured Repositories*.
5. If needed, adjust the repository Properties as described in Section 20.4.2, “Managing Repository Properties”.

6. Confirm your changes with OK to close the configuration dialog.

7. After having successfully added the repository for the add-on media, the software manager starts and you can install packages. For details, refer to Chapter 20, Installing or Removing Software.

21.3 SUSE Package Hub

In the list of Available Extensions and Modules you find the SUSE Package Hub. It is available without any additional fee. It provides a large set of additional community packages for SUSE Linux Enterprise that can easily be installed but are not supported by SUSE.

More information about SUSE Package Hub and how to contribute is available at https://packagehub.suse.com/

⚠ Important: SUSE Package Hub Is Not Supported

Be aware that packages provided in the SUSE Package Hub are not officially supported by SUSE. SUSE only provides support for enabling the Package Hub repository and help with installation or deployment of the RPM packages.
SUSE Linux Enterprise Server supports the parallel installation of multiple kernel versions. When installing a second kernel, a boot entry and an initrd are automatically created, so no further manual configuration is needed. When rebooting the machine, the newly added kernel is available as an additional boot parameter.

Using this functionality, you can safely test kernel updates while being able to always fall back to the proven former kernel. To do this, do not use the update tools (such as the YaST Online Update or the updater applet), but instead follow the process described in this chapter.

Warning: Support Entitlement

Be aware that you lose your entire support entitlement for the machine when installing a self-compiled or a third-party kernel. Only kernels shipped with SUSE Linux Enterprise Server and kernels delivered via the official update channels for SUSE Linux Enterprise Server are supported.

Tip: Check Your Boot Loader Configuration Kernel

It is recommended to check your boot loader configuration after having installed another kernel to set the default boot entry of your choice. See Book “Administration Guide”, Chapter 14 “The Boot Loader GRUB 2”, Section 14.3 “Configuring the Boot Loader with YaST” for more information.

22.1 Enabling and Configuring Multiversion Support

Installing multiple versions of a software package (multiversion support) is enabled by default from SUSE Linux Enterprise Server 12. To verify this setting, proceed as follows:

1. Open `/etc/zypp/zypp.conf` with the editor of your choice as `root`.
2. Search for the string `multiversion`. If multiversion is enabled for all kernel packages capable of this feature, the following line appears uncommented:

```
multiversion = provides:multiversion(kernel)
```

3. To restrict multiversion support to certain kernel flavors, add the package names as a comma-separated list to the `multiversion` option in `/etc/zypp/zypp.conf`—for example

```
multiversion = kernel-default,kernel-default-base,kernel-source
```

4. Save your changes.

Warning: Kernel Module Packages (KMP)

Make sure that required vendor provided kernel modules (Kernel Module Packages) are also installed for the new updated kernel. The kernel update process will not warn about eventually missing kernel modules because package requirements are still fulfilled by the old kernel that is kept on the system.

22.1.1 Automatically Deleting Unused Kernels

When frequently testing new kernels with multiversion support enabled, the boot menu quickly becomes confusing. Since a `/boot` partition usually has limited space you also might run into trouble with `/boot` overflowing. While you can delete unused kernel versions manually with YaST or Zyper (as described below), you can also configure `libzypp` to automatically delete kernels no longer used. By default no kernels are deleted.

1. Open `/etc/zypp/zypp.conf` with the editor of your choice as `root`.

2. Search for the string `multiversion.kernels` and activate this option by uncommenting the line. This option takes a comma-separated list of the following values:

 - `4.4.126-48`: keep the kernel with the specified version number
 - `latest`: keep the kernel with the highest version number
 - `latest-N`: keep the kernel with the Nth highest version number
 - `running`: keep the running kernel
oldest: keep the kernel with the lowest version number (the one that was originally shipped with SUSE Linux Enterprise Server)

oldest+N: keep the kernel with the Nth lowest version number

Here are some examples

```
multiversion.kernels = latest,running
```
Keep the latest kernel and the one currently running. This is similar to not enabling the multiversion feature, except that the old kernel is removed after the next reboot and not immediately after the installation.

```
multiversion.kernels = latest,latest-1,running
```
Keep the last two kernels and the one currently running.

```
multiversion.kernels = latest,running,4.4.126-48
```
Keep the latest kernel, the one currently running, and 4.4.126-48.

Tip: Keep the Running Kernel

Unless you are using a special setup, always keep the kernel marked running.
If you do not keep the running kernel, it will be deleted when updating the kernel. In turn, this means that all of the running kernel's modules are also deleted and cannot be loaded anymore.
If you decide not to keep the running kernel, always reboot immediately after a kernel upgrade to avoid issues with modules.

22.1.2 Use Case: Deleting an Old Kernel after Reboot Only

You want to make sure that an old kernel will only be deleted after the system has rebooted successfully with the new kernel.

Change the following line in `/etc/zypp/zypp.conf`:

```
multiversion.kernels = latest,running
```

The previous parameters tell the system to keep the latest kernel and the running one only if they differ.
22.1.3 Use Case: Keeping Older Kernels as Fallback

You want to keep one or more kernel versions to have one or more “spare” kernels. This can be useful if you need kernels for testing. If something goes wrong (for example, your machine does not boot), you still can use one or more kernel versions which are known to be good.

Change the following line in /etc/zypp/zypp.conf:

```
multiversion.kernels = latest,latest-1,latest-2,running
```

When you reboot your system after the installation of a new kernel, the system will keep three kernels: the current kernel (configured as latest, running) and its two immediate predecessors (configured as latest-1 and latest-2).

22.1.4 Use Case: Keeping a Specific Kernel Version

You make regular system updates and install new kernel versions. However, you are also compiling your own kernel version and want to make sure that the system will keep them.

Change the following line in /etc/zypp/zypp.conf:

```
multiversion.kernels = latest,3.12.28-4.20,running
```

When you reboot your system after the installation of a new kernel, the system will keep two kernels: the new and running kernel (configured as latest, running) and your self-compiled kernel (configured as 3.12.28-4.20).

22.2 Installing/Removing Multiple Kernel Versions with YaST

You can install or remove multiple kernels with YaST:

1. Start YaST and open the software manager via Software Software Management.
2. List all packages capable of providing multiple versions by choosing View Package Groups Multiversion Packages.
3. Select a package and open its Version tab in the bottom pane on the left.

4. To install a package, click the check box next to it. A green check mark indicates it is selected for installation.
 To remove an already installed package (marked with a white check mark), click the check box next to it until a red X indicates it is selected for removal.

5. Click Accept to start the installation.

22.3 Installing/Removing Multiple Kernel Versions with Zypper

You can install or remove multiple kernels with **zypper**:

1. Use the command `zypper se -s 'kernel*` to display a list of all kernel packages available:

<table>
<thead>
<tr>
<th>S</th>
<th>Name</th>
<th>Type</th>
<th>Version</th>
<th>Arch</th>
<th>Repository</th>
</tr>
</thead>
</table>

FIGURE 22.1: THE YAST SOFTWARE MANAGER: MULTIVERSION VIEW
2. Specify the exact version when installing:

```bash
sudo zypper in kernel-default-2.6.32.10-0.4.1
```

3. When uninstalling a kernel, use the commands `zypper se -si 'kernel*'` to list all kernels installed and `zypper rm PACKAGENAME-VERSION` to remove the package.
23 Managing Users with YaST

During installation, you could have created a local user for your system. With the YaST module *User and Group Management* you can add users or edit existing ones. It also lets you configure your system to authenticate users with a network server.

23.1 User and Group Administration Dialog

To administer users or groups, start YaST and click *Security and Users* › *User and Group Management*. Alternatively, start the *User and Group Administration* dialog directly by running `sudo yast2 users &` from a command line.

Every user is assigned a system-wide user ID (UID). Apart from the users which can log in to your machine, there are also several *system users* for internal use only. Each user is assigned to one or more groups. Similar to *system users*, there are also *system groups* for internal use.
Depending on the set of users you choose to view and modify with, the dialog (local users, network users, system users), the main window shows several tabs. These allow you to execute the following tasks:

Managing User Accounts

From the Users tab create, modify, delete or temporarily disable user accounts as described in Section 23.2, “Managing User Accounts”. Learn about advanced options like enforcing password policies, using encrypted home directories, or managing disk quotas in Section 23.3, “Additional Options for User Accounts”.

Changing Default Settings

Local users accounts are created according to the settings defined on the Defaults for New Users tab. Learn how to change the default group assignment, or the default path and access permissions for home directories in Section 23.4, “Changing Default Settings for Local Users”.

Assigning Users to Groups

Learn how to change the group assignment for individual users in Section 23.5, “Assigning Users to Groups”.

Managing Groups

From the Groups tab, you can add, modify or delete existing groups. Refer to Section 23.6, “Managing Groups” for information on how to do this.

Changing the User Authentication Method

When your machine is connected to a network that provides user authentication methods like NIS or LDAP, you can choose between several authentication methods on the Authentication Settings tab. For more information, refer to Section 23.7, “Changing the User Authentication Method”.

For user and group management, the dialog provides similar functionality. You can easily switch between the user and group administration view by choosing the appropriate tab at the top of the dialog.

Filter options allow you to define the set of users or groups you want to modify: On the Users or Group tab, click Set Filter to view and edit users or groups. They are listed according to certain categories, such as Local Users or LDAP Users, if applicable. With Set Filter > Customize Filter you can also set up and use a custom filter.

Depending on the filter you choose, not all of the following options and functions will be available from the dialog.
23.2 Managing User Accounts

YaST offers to create, modify, delete or temporarily disable user accounts. Do not modify user accounts unless you are an experienced user or administrator.

Note: Changing User IDs of Existing Users

File ownership is bound to the user ID, not to the user name. After a user ID change, the files in the user's home directory are automatically adjusted to reflect this change. However, after an ID change, the user no longer owns the files they created elsewhere in the file system unless the file ownership for those files are manually modified.

In the following, learn how to set up default user accounts. For further options, refer to Section 23.3, “Additional Options for User Accounts”.

PROCEDURE 23.1: ADDING OR MODIFYING USER ACCOUNTS

1. Open the YaST User and Group Administration dialog and click the Users tab.

2. With Set Filter define the set of users you want to manage. The dialog lists users in the system and the groups the users belong to.

3. To modify options for an existing user, select an entry and click Edit. To create a new user account, click Add.

4. Enter the appropriate user data on the first tab, such as Username (which is used for login) and Password. This data is sufficient to create a new user. If you click OK now, the system will automatically assign a user ID and set all other values according to the default.

5. Activate Receive System Mail if you want any kind of system notifications to be delivered to this user's mailbox. This creates a mail alias for root and the user can read the system mail without having to first log in as root.

The mails sent by system services are stored in the local mailbox /var/spool/mail/USERNAME, where USERNAME is the login name of the selected user. To read e-mails, you can use the mail command.

6. To adjust further details such as the user ID or the path to the user's home directory, do so on the Details tab.

If you need to relocate the home directory of an existing user, enter the path to the new home directory there and move the contents of the current home directory with Move to New Location. Otherwise, a new home directory is created without any of the existing data.
7. To force users to regularly change their password or set other password options, switch to Password Settings and adjust the options. For more details, refer to Section 23.3.2, “Enforcing Password Policies”.

8. If all options are set according to your wishes, click OK.

9. Click OK to close the administration dialog and to save the changes. A newly added user can now log in to the system using the login name and password you created. Alternatively, to save all changes without exiting the User and Group Administration dialog, click Expert Options > Write Changes Now.

Tip: Matching User IDs

It is useful to match the (local) user ID to the ID in the network. For example, a new (local) user on a laptop should be integrated into a network environment with the same user ID. This ensures that the file ownership of the files the user creates “offline” is the same as if they had created them directly on the network.

PROCEDURE 23.2: DISABLING OR DELETING USER ACCOUNTS

1. Open the YaST User and Group Administration dialog and click the Users tab.

2. To temporarily disable a user account without deleting it, select the user from the list and click Edit. Activate Disable User Login. The user cannot log in to your machine until you enable the account again.

3. To delete a user account, select the user from the list and click Delete. Choose if you also want to delete the user's home directory or to retain the data.

23.3 Additional Options for User Accounts

In addition to the settings for a default user account, SUSE® Linux Enterprise Server offers further options. For example, options to enforce password policies, use encrypted home directories or define disk quotas for users and groups.
23.3.1 Automatic Login and Passwordless Login

If you use the GNOME desktop environment you can configure Auto Login for a certain user and Passwordless Login for all users. Auto login causes a user to become automatically logged in to the desktop environment on boot. This functionality can only be activated for one user at a time. Login without password allows all users to log in to the system after they have entered their user name in the login manager.

Warning: Security Risk

Enabling Auto Login or Passwordless Login on a machine that can be accessed by more than one person is a security risk. Without the need to authenticate, any user can gain access to your system and your data. If your system contains confidential data, do not use this functionality.

to activate auto login or login without password, access these functions in the YaST User and Group Administration with Expert Options > Login Settings.

23.3.2 Enforcing Password Policies

On any system with multiple users, it is a good idea to enforce at least basic password security policies. Users should change their passwords regularly and use strong passwords that cannot easily be exploited. For local users, proceed as follows:

PROCEDURE 23.3: CONFIGURING PASSWORD SETTINGS

1. Open the YaST User and Group Administration dialog and select the Users tab.
2. Select the user for which to change the password options and click Edit.
3. Switch to the Password Settings tab. The user's last password change is displayed on the tab.
4. To make the user change their password at next login, activate Force Password Change.
5. To enforce password rotation, set a Maximum Number of Days for the Same Password and a Minimum Number of Days for the Same Password.
6. To remind the user to change their password before it expires, set the number of Days before Password Expiration to Issue Warning.
7. To restrict the period of time the user can log in after their password has expired, change the value in *Days after Password Expires with Usable Login*.

8. You can also specify a certain expiration date for the complete account. Enter the *Expiration Date* in *YYYY-MM-DD* format. Note that this setting is not password-related but rather applies to the account itself.

9. For more information about the options and about the default values, click *Help*.

10. Apply your changes with *OK*.

23.3.3 Managing Quotas

To prevent system capacities from being exhausted without notification, system administrators can set up quotas for users or groups. Quotas can be defined for one or more file systems and restrict the amount of disk space that can be used and the number of inodes (index nodes) that can be created there. Inodes are data structures on a file system that store basic information about a regular file, directory, or other file system object. They store all attributes of a file system object (like user and group ownership, read, write, or execute permissions), except file name and contents.

SUSE Linux Enterprise Server allows usage of *soft* and *hard* quotas. Additionally, grace intervals can be defined that allow users or groups to temporarily violate their quotas by certain amounts.

Soft Quota

Defines a warning level at which users are informed that they are nearing their limit. Administrators will urge the users to clean up and reduce their data on the partition. The soft quota limit is usually lower than the hard quota limit.

Hard Quota

 Defines the limit at which write requests are denied. When the hard quota is reached, no more data can be stored and applications may crash.

Grace Period

Defines the time between the overflow of the soft quota and a warning being issued. Usually set to a rather low value of one or several hours.

PROCEDURE 23.4: ENABLING QUOTA SUPPORT FOR A PARTITION

To configure quotas for certain users and groups, you need to enable quota support for the respective partition in the YaST Expert Partitioner first.
Note: Quotas Btrfs Partitions
Quotas for Btrfs partitions are handled differently. For more information, see Book “Storage Administration Guide”, Chapter 1 “Overview of File Systems in Linux”, Section 1.2.5 “Btrfs Quota Support for Subvolumes”.

1. In YaST, select System > Partitioner and click Yes to proceed.

2. In the Expert Partitioner, select the partition for which to enable quotas and click Edit.

3. Click Fstab Options and activate Enable Quota Support. If the quota package is not already installed, it will be installed when you confirm the respective message with Yes.

5. Make sure the service quotaon is running by entering the following command:

   ```
   tux > sudo systemctl status quotaon
   ```

 It should be marked as being active. If this is not the case, start it with the command systemctl start quotaon.

PROCEDURE 23.5: SETTING UP QUOTAS FOR USERS OR GROUPS

Now you can define soft or hard quotas for specific users or groups and set time periods as grace intervals.

1. In the YaST User and Group Administration, select the user or the group you want to set the quotas for and click Edit.

2. On the Plug-Ins tab, select the Manage User Quota entry and click Launch to open the Quota Configuration dialog.

3. From File System, select the partition to which the quota should apply.
4. Below **Size Limits**, restrict the amount of disk space. Enter the number of 1 KB blocks the user or group may have on this partition. Specify a **Soft Limit** and a **Hard Limit** value.

5. Additionally, you can restrict the number of inodes the user or group may have on the partition. Below **Inodes Limits**, enter a **Soft Limit** and **Hard Limit**.

6. You can only define grace intervals if the user or group has already exceeded the soft limit specified for size or inodes. Otherwise, the time-related text boxes are not activated. Specify the time period for which the user or group is allowed to exceed the limits set above.

7. Confirm your settings with **OK**.

8. Click **OK** to close the administration dialog and save the changes. Alternatively, to save all changes without exiting the **User and Group Administration** dialog, click **Expert Options** > **Write Changes Now**.

SUSE Linux Enterprise Server also ships command line tools like `repquota` or `warnquota`. System administrators can use these tools to control the disk usage or send e-mail notifications to users exceeding their quota. Using `quota_nld`, administrators can also forward kernel messages about exceeded quotas to D-BUS. For more information, refer to the `repquota`, the `warnquota` and the `quota_nld` man page.
23.4 Changing Default Settings for Local Users

When creating new local users, several default settings are used by YaST. These include, for example, the primary group and the secondary groups the user belongs to, or the access permissions of the user's home directory. You can change these default settings to meet your requirements:

1. Open the YaST User and Group Administration dialog and select the Defaults for New Users tab.

2. To change the primary group the new users should automatically belong to, select another group from Default Group.

3. To modify the secondary groups for new users, add or change groups in Secondary Groups. The group names must be separated by commas.

4. If you do not want to use /home/USERNAME as default path for new users' home directories, modify the Path Prefix for Home Directory.

5. To change the default permission modes for newly created home directories, adjust the umask value in Umask for Home Directory. For more information about umask, refer to Book “Security Guide”, Chapter 12 “Access Control Lists in Linux” and to the umask man page.

6. For information about the individual options, click Help.

7. Apply your changes with OK.

23.5 Assigning Users to Groups

Local users are assigned to several groups according to the default settings which you can access from the User and Group Administration dialog on the Defaults for New Users tab. In the following, learn how to modify an individual user's group assignment. If you need to change the default group assignments for new users, refer to Section 23.4, “Changing Default Settings for Local Users”.

PROCEDURE 23.6: CHANGING A USER'S GROUP ASSIGNMENT

1. Open the YaST User and Group Administration dialog and click the Users tab. It lists users and the groups the users belong to.

2. Click Edit and switch to the Details tab.
3. To change the primary group the user belongs to, click *Default Group* and select the group from the list.

4. To assign the user additional secondary groups, activate the corresponding check boxes in the *Additional Groups* list.

5. Click *OK* to apply your changes.

6. Click *OK* to close the administration dialog and save the changes. Alternatively, to save all changes without exiting the *User and Group Administration* dialog, click *Expert Options > Write Changes Now*.

23.6 Managing Groups

With YaST you can also easily add, modify or delete groups.

PROCEDURE 23.7: CREATING AND MODIFYING GROUPS

1. Open the YaST *User and Group Management* dialog and click the *Groups* tab.

2. With *Set Filter* define the set of groups you want to manage. The dialog lists groups in the system.

3. To create a new group, click *Add*.

4. To modify an existing group, select the group and click *Edit*.

5. In the following dialog, enter or change the data. The list on the right shows an overview of all available users and system users which can be members of the group.
6. To add existing users to a new group select them from the list of possible Group Members by checking the corresponding box. To remove them from the group deactivate the box.

7. Click OK to apply your changes.

8. Click OK to close the administration dialog and save the changes.

Alternatively, to save all changes without exiting the User and Group Administration dialog, click Expert Options > Write Changes Now.

To delete a group, it must not contain any group members. To delete a group, select it from the list and click Delete. Click OK to close the administration dialog and save the changes. Alternatively, to save all changes without exiting the User and Group Administration dialog, click Expert Options > Write Changes Now.

23.7 Changing the User Authentication Method

When your machine is connected to a network, you can change the authentication method. The following options are available:

NIS
Users are administered centrally on a NIS server for all systems in the network. For details, see Book “Security Guide”, Chapter 3 “Using NIS”.

SSSD
The System Security Services Daemon (SSSD) can locally cache user data and then allow users to use the data, even if the real directory service is (temporarily) unreachable. For details, see Book “Security Guide”, Chapter 4 “Setting Up Authentication Clients Using YaST”, Section 4.2 “SSSD”.

Samba
SMB authentication is often used in mixed Linux and Windows networks. For details, see Book “Administration Guide”, Chapter 35 “Samba”.

To change the authentication method, proceed as follows:

1. Open the User and Group Administration dialog in YaST.

2. Click the Authentication Settings tab to show an overview of the available authentication methods and the current settings.

3. To change the authentication method, click Configure and select the authentication method you want to modify. This takes you directly to the client configuration modules in YaST. For information about the configuration of the appropriate client, refer to the following sections:

 Samba: Book “Administration Guide”, Chapter 35 “Samba”, Section 35.5.1 “Configuring a Samba Client with YaST”

4. After accepting the configuration, return to the User and Group Administration overview.

5. Click OK to close the administration dialog.
23.8 Default System Users

By default, SUSE Linux Enterprise Server creates user names which cannot be deleted. These users are typically defined in the Linux Standard Base. The following list provides the common user names and their purpose:

COMMON USER NAMES INSTALLED BY DEFAULT

- **bin**, **daemon**
 - Legacy user, included for compatibility with legacy applications. New applications should no longer use this user name.
- **gdm**
 - Used by GNOME Display Manager (GDM) to provide graphical logins and manage local and remote displays.
- **lp**
 - Used by the Printer daemon for Common Unix Printing System (CUPS).
- **mail**
 - User reserved for mailer programs like `sendmail` or `postfix`.
- **man**
 - Used by man to access man pages.
- **messagebus**
 - Used to access D-Bus (desktop bus), a software bus for inter-process communication. Daemon is `dbus-daemon`.
- **nobody**
 - User that owns no files and is in no privileged groups. Nowadays, its use is limited as it is recommended by Linux Standard Base to provide a separate user account for each daemon.
- **nscd**
 - Used by the Name Service Caching Daemon. This daemon is a lookup service to improve performance with NIS and LDAP. Daemon is `nscd`.
- **polkitd**
 - Used by the PolicyKit Authorization Framework which defines and handles authorization requests for unprivileged processes. Daemon is `polkitd`.
postfix
Used by the Postfix mailer.

pulse
Used by the Pulseaudio sound server.

root
Used by the system administrator, providing all appropriate privileges.

rpc
Used by the rpcbind command, an RPC port mapper.

rtkit
Used by the rtkit package providing a D-Bus system service for real time scheduling mode.

salt
User for parallel remote execution provided by Salt. Daemon is named salt-master.

scard
User for communication with smart cards and readers. Daemon is named pcscd.

ersvGeoClue
Used by the GeoClue D-Bus service to provide location information.

sshd
Used by the Secure Shell daemon (SSH) to ensure secured and encrypted communication over an insecure network.

statd
Used by the Network Status Monitor protocol (NSM), implemented in the rpc.statd daemon, to listen for reboot notifications.

systemd-coredump
Used by the /usr/lib/systemd/systemd-coredump command to acquire, save and process core dumps.

systemd-timesync
Used by the /usr/lib/systemd/systemd-timesyncd command to synchronize the local system clock with a remote Network Time Protocol (NTP) server.
Changing Language and Country Settings with YaST

Working in different countries or having to work in a multilingual environment requires your computer to be set up to support this. SUSE® Linux Enterprise Server can handle different locales in parallel. A locale is a set of parameters that defines the language and country settings reflected in the user interface.

The main system language was selected during installation and keyboard and time zone settings were adjusted. However, you can install additional languages on your system and determine which of the installed languages should be the default.

For those tasks, use the YaST language module as described in Section 24.1, “Changing the System Language”. Install secondary languages to get optional localization if you need to start applications or desktops in languages other than the primary one.

Apart from that, the YaST timezone module allows you to adjust your country and timezone settings accordingly. It also lets you synchronize your system clock against a time server. For details, refer to Section 24.2, “Changing the Country and Time Settings”.

24.1 Changing the System Language

Depending on how you use your desktop and whether you want to switch the entire system to another language or only the desktop environment itself, there are several ways to do this:

Changing the System Language Globally

Proceed as described in Section 24.1.1, “Modifying System Languages with YaST” and Section 24.1.2, “Switching the Default System Language” to install additional localized packages with YaST and to set the default language. Changes are effective after the next login. To ensure that the entire system reflects the change, reboot the system or close and restart all running services, applications, and programs.

Changing the Language for the Desktop Only

Provided you have previously installed the desired language packages for your desktop environment with YaST as described below, you can switch the language of your desktop using the desktop's control center. After the X server has been restarted, your entire...
desktop reflects your new choice of language. Applications not belonging to your desktop framework are not affected by this change and may still appear in the language that was set in YaST.

Temporarily Switching Languages for One Application Only

You can also run a single application in another language (that has already been installed with YaST). To do so, start it from the command line by specifying the language code as described in Section 24.1.3, “Switching Languages for Standard X and GNOME Applications”.

24.1.1 Modifying System Languages with YaST

YaST knows two different language categories:

Primary Language

The primary language set in YaST applies to the entire system, including YaST and the desktop environment. This language is used whenever available unless you manually specify another language.

Secondary Languages

Install secondary languages to make your system multilingual. Languages installed as secondary languages can be selected manually for a specific situation. For example, use a secondary language to start an application in a certain language to do word processing in this language.

Before installing additional languages, determine which of them should be the default system language (primary language).

To access the YaST language module, start YaST and click **System › Language**. Alternatively, start the **Languages** dialog directly by running `sudo yast2 language &` from a command line.
PROCEDURE 24.1: INSTALLING ADDITIONAL LANGUAGES

When installing additional languages, YaST also allows you to set different locale settings for the user **root**, see Step 4. The option *Locale Settings for User root* determines how the locale variables (**LC_***) in the file `/etc/sysconfig/language` are set for **root**. You can set them to the same locale as for normal users. Alternatively, you can keep it unaffected by any language changes, or only set the variable **RC_LC_CTYPE** to the same values as for the normal users. The **RC_LC_CTYPE** variable sets the localization for language-specific function calls.

1. To add languages in the YaST language module, select the *Secondary Languages* you want to install.

2. To make a language the default language, set it as *Primary Language*.

3. Additionally, adapt the keyboard to the new primary language and adjust the time zone, if appropriate.
Tip: Advanced Settings

For advanced keyboard or time zone settings, select Hardware > System Keyboard Layout or System > Date and Time in YaST to start the respective dialogs. For more information, refer to Section 19.1, “Setting Up Your System Keyboard Layout” and Section 24.2, “Changing the Country and Time Settings”.

4. To change language settings specific to the user root, click Details.
 a. Set Locale Settings for User root to the desired value. For more information, click Help.
 b. Decide if you want to Use UTF-8 Encoding for root or not.

5. If your locale was not included in the list of primary languages available, try specifying it with Detailed Locale Setting. However, some localization may be incomplete.

6. Confirm your changes in the dialogs with OK. If you have selected secondary languages, YaST installs the localized software packages for the additional languages.

The system is now multilingual. However, to start an application in a language other than the primary one, you need to set the desired language explicitly as explained in Section 24.1.3, “Switching Languages for Standard X and GNOME Applications”.

24.1.2 Switching the Default System Language

To globally change the default language of a system, use the following procedure:

1. Start the YaST language module.

2. Select the desired new system language as Primary Language.

Important: Deleting Former System Languages

If you switch to a different primary language, the localized software packages for the former primary language will be removed from the system. To switch the default system language but keep the former primary language as additional language, add it as Secondary Language by enabling the respective check box.

3. Adjust the keyboard and time zone options as desired.
4. Confirm your changes with **OK**.

5. After YaST has applied the changes, restart current X sessions (for example, by logging out and logging in again) to make YaST and the desktop applications reflect your new language settings.

24.1.3 Switching Languages for Standard X and GNOME Applications

After you have installed the respective language with YaST, you can run a single application in another language.

Start the application from the command line by using the following command:

```
LANG=LANGUAGE application
```

For example, to start f-spot in German, run `LANG=de_DE f-spot`. For other languages, use the appropriate language code. Get a list of all language codes available with the `locale -av` command.

24.2 Changing the Country and Time Settings

Using the YaST date and time module, adjust your system date, clock and time zone information to the area you are working in. To access the YaST module, start YaST and click **System > Date and Time**. Alternatively, start the **Clock and Time Zone** dialog directly by running `sudo yast2 timezone &` from a command line.
First, select a general region, such as Europe. Choose an appropriate country that matches the one you are working in, for example, Germany.

Depending on which operating systems run on your workstation, adjust the hardware clock settings accordingly:

- If you run another operating system on your machine, such as Microsoft Windows®, it is likely your system does not use UTC, but local time. In this case, deactivate Hardware Clock Set To UTC.

- If you only run Linux on your machine, set the hardware clock to UTC and have the switch from standard time to daylight saving time performed automatically.

Important: Set the Hardware Clock to UTC

The switch from standard time to daylight saving time (and vice versa) can only be performed automatically when the hardware clock (CMOS clock) is set to UTC. This also applies if you use automatic time synchronization with NTP, because automatic synchronization will only be performed if the time difference between the hardware and system clock is less than 15 minutes.
Since a wrong system time can cause serious problems (missed backups, dropped mail messages, mount failures on remote file systems, etc.) it is strongly recommended to always set the hardware clock to UTC.

You can change the date and time manually or opt for synchronizing your machine against an NTP server, either permanently or only for adjusting your hardware clock.

PROCEDURE 24.2: MANUALLY ADJUSTING TIME AND DATE

1. In the YaST timezone module, click Other Settings to set date and time.
2. Select Manually and enter date and time values.
3. Confirm your changes.

PROCEDURE 24.3: SETTING DATE AND TIME WITH NTP SERVER

1. Click Other Settings to set date and time.
2. Select Synchronize with NTP Server.
3. Enter the address of an NTP server, if not already populated.
4. Click Synchronize Now to get your system time set correctly.
5. To use NTP permanently, enable Save NTP Configuration.
6. With the *Configure* button, you can open the advanced NTP configuration. For details, see *Book “Administration Guide”, Chapter 31 “Time Synchronization with NTP”, Section 31.1 “Configuring an NTP Client with YaST”.*

7. Confirm your changes.
A Imaging and Creating Products

To adapt the operating system better to your deployment, you can create custom media for use as an appliance or live system with KIWI. KIWI can be used either on a local machine or online in SUSE Studio Express (OBS).

With KIWI, you can create Live CDs, Live DVDs, flash disks to use on Linux-supported hardware platforms and virtual disks for virtualization and cloud systems (like Xen, KVM, VMware, EC2 and more). Images created by KIWI can also be used in a PXE environment to boot from the network.

This guide does not cover topics related to KIWI in depth, as there is separate documentation available:

- For more information, see the KIWI documentation at https://github.com/openSUSE/kiwi (also available in the package kiwi-doc).
- SUSE Studio Express on Open Build Service can be used to create OS images online. It supports creating virtual appliances and live systems, based on either openSUSE or SUSE Linux Enterprise. For more information and documentation, see https://studioexpress.opensuse.org/.
B GNU Licenses

This appendix contains the GNU Free Documentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially. Secondly, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The Document, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or redistribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the Document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, TeXinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named submitt of the Document whose title either is precisely XYZ or contains XYZ in parentheses following this text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History"). To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication of these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also make copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legally, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the year, name, authors, and publisher of the Modified Version as given on its Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copyrighted from the Document, you may at your option designate some or all of these sections as Invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another, but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.