
Container Guide

The following guide covers the SUSE Linux Enterprise Server container
ecosystem. Since containers are a constantly evolving technology, the guide
is regularly updated, expanded and improved to reflect the latest technolog-
ical developments.

Publication Date: 25 Apr 2024

Contents

1 Introduction to Linux containers 3

2 Tools for building images and managing containers 5

3 Introduction to SLE Base Container Images 9

4 General-purpose SLE Base Container Images 11

5 Using Long Term Service Pack Support container images from the SUSE
Registry 14

6 Development Stack SLE Base Container Images 15

7 Application SLE Base Container Images 16

8 Important note on status and lifecycle SLE Base Container Images 16

9 SLE Base Container Image labels 17

10 SLE BCI tags 20

11 Understanding SLE BCIs 20

12 Getting started with SLE Base Container Images 23

13 Registration and Online Repositories 24

1 Container Guide

14 Podman overview 27

15 Setting up Docker Open Source Engine 35

16 Configuring image storage 38

17 Verifying container images 39

18 Buildah overview 43

19 Creating custom container images 45

20 Creating application container images 49

21 Container orchestration 56

22 Compatibility and support conditions 65

23 Troubleshooting 69

24 Terminology 70

25 Improving the documentation 72

26 Legal Notice 73

27 GNU Free Documentation License 74

2 Container Guide

1 Introduction to Linux containers

Linux containers offer a lightweight virtualization method to run multiple isolated virtual envi-
ronments simultaneously on a single host. This technology is based on the Linux kernel's name-
spaces for process isolation and kernel control groups (cgroups) for resource (CPU, memory,
disk I/O, network, etc.) management.

Unlike Xen and KVM, where a full guest operating system is executed through a virtualization
layer, Linux containers share and directly use the host OS kernel.

Advantages of using containers

Size: Container images should only include the content needed to run an application,
whereas a virtual machine includes an entire operating system,

Performance: Containers provide near-native performance, as the kernel overhead
is lower compared to virtualization and emulation.

Security: Containers make it possible to isolate applications into self-contained units,
separated from the rest of the host system.

Resources management: It is possible to granularly control CPU, memory, disk I/
O, network interfaces, etc. inside containers (via cgroups).

Flexibility: Container images hold all necessary libraries, dependencies, and les
needed to run an application, thus can be easily developed and deployed on multiple
hosts.

Limitations of containers

Containers share the host system's kernel, so the containers have to use the specific
kernel version provided by the host.

Only Linux-based applications can be containerized on a Linux host.

3 Container Guide

A container encapsulates binaries for a specific architecture (AMD64/Intel 64 or
AArch64 for instance). So a container made for AMD64/Intel 64 only runs on a
AMD64/Intel 64 system host without the use of emulation.

Containers in themselves are no more secure than executing binaries outside of a
container, and the overall security of containers depends on the host system. While
containerized applications can be secured through AppArmor or SELinux profiles,
container security requires putting in place tools and policies that ensure security of
the container infrastructure and applications.

1.1 Key concepts and introduction to Podman

Although Docker Open Source Engine is a popular choice for working with images and contain-
ers, Podman provides a drop-in replacement for Docker that offers several advantages. While
Section 14, “Podman overview” provides more information on Podman, this chapter offers a quick
introduction to key concepts and a basic procedure for creating a container image and using
Podman to run a container.

The basic Podman workflow is as follows:

Running a container, either on a local machine or in a cloud service, normally involves the
following steps:

1. Fetch a base image by pulling it from a registry to your local machine.

2. Create a Dockerfile and use it to build a custom image on top of the base image.

3. Use the created image to start one or more containers.

To run a container, you need an image. An image includes all dependencies needed to run the
application. For example, the SLE BCI-Base image contains the SLE distribution with a minimal
package selection.

While it is possible to create an image from scratch, few applications would work in such an
empty environment. Thus, using an existing base image is more practical in most situations. A
base image has no parent, meaning it is not based on another image.

Although you can use a base image for running containers, the main purpose of base images is
to serve as foundations for creating custom images that can run containers with specific appli-
cations, servers, services, and so on.

4 Container Guide

Both base and custom images are available through a repository of images called a registry.
Unless a registry is explicitly specified, Podman pulls images from the openSUSE (https://reg-

istry.opensuse.org) and Docker Hub (https://docker.io) registry. While you can fetch a base
image manually, Podman can do that automatically when building a custom image.

To build a custom image, you must create a special le called a Containerfile or Dockerfile
containing building instructions. For example, a Dockerfile can contain instructions to update
the system software, install the desired application, open specific network ports, run commands,
etc.

You can build images not only from base images, but also on top of custom images. So you can
have an image consisting of multiple layers. Please refer to Section 19, “Creating custom container

images” for more information.

2 Tools for building images and managing containers

All described tools described below are part of the SUSE Linux Enterprise Server Containers
Module, except the Open Build Service (https://openbuildservice.org) . You can see the full list
of packages in the Containers Module in the SUSE Customer Center (https://scc.suse.com/pack-

ages) .

2.1 SUSE Registry

https://registry.suse.com is the official source of SLE Base Container Images. It contains tested,
updated and certified SLE Base Container Images. All images in the SUSE Registry are regularly
rebuilt to include updates and fixes. The SUSE Registry's Web user interface lists a subset of
the available images: Base Container Images, Development Stack Container Images, Application
Container Images, SUSE Linux Enterprise Server Images, and Releases Out of General Support.
The Web UI also provides additional information for each image, including release date, support
level, size, digest of the images and packages inside the image.

5 Container Guide

https://registry.opensuse.org
https://registry.opensuse.org
https://docker.io
https://openbuildservice.org
https://scc.suse.com/packages
https://scc.suse.com/packages
https://registry.suse.com

2.2 Docker

Docker is a system for creating and managing containers. Its core is the Docker Open Source En-

gine— (https://github.com/moby/moby) a lightweight virtualization solution to run containers
simultaneously on a single host. Docker containers are be built using Dockerfiles.

2.3 Podman

Podman (https://podman.io) stands for Pod Manager tool. It is a daemonless container en-
gine for developing, managing and running Open Container Initiative (OCI) (https://opencontain-

ers.org/about/overview/) containers on a Linux system, and it offers a drop-in alternative for
Docker. Podman is the recommended container runtime for SLES. For a general introduction to
Podman, refer to Section 14, “Podman overview”.

2.4 Buildah

Buildah (https://buildah.io) is a utility for building OCI container images. It is a complementary
tool to Podman. In fact, the podman build command uses Buildah to perform container image
builds. Buildah makes it possible to build images from scratch, from existing images, and using
Dockerfiles. OCI images built using the Buildah command-line tool and the underlying OCI-based
technologies (for example, containers/image and containers/storage) are portable and
can therefore run in a Docker Open Source Engine environment. For information on installing
and using Buildah, refer to Section 18, “Buildah overview”.

2.5 skopeo

skopeo (https://github.com/containers/skopeo) is a command-line utility for managing, inspect-
ing and signing container images and image repositories. skopeo can be used to inspect contain-
ers and repositories on remote and local container registries. skopeo can copy container images
between different storage back-ends. skopeo is part of the Basesystem Module of SUSE Linux
Enterprise Server.

6 Container Guide

https://github.com/moby/moby
https://github.com/moby/moby
https://podman.io
https://opencontainers.org/about/overview/
https://opencontainers.org/about/overview/
https://buildah.io
https://github.com/containers/skopeo

2.6 Helm

Helm (https://helm.sh) is the Kubernetes package manager, and it is the de-facto stan-
dard for deploying containerized applications on Kubernetes clusters using charts. Helm
can be used to install, update and remove applications in a single or multiple contain-
ers. It can also handle the associated resources, such as configuration, storage volumes,
etc. For instance, it is used for instance to deploy the RMT server (see RMT documen-

tation (https://documentation.suse.com/sles/15-SP4/single-html/SLES-rmt/index.html#sec-rmt-de-

ploy-kubernetes) for more information).

2.7 Distribution

Distribution (https://github.com/distribution/distribution) is an open-source registry implemen-
tation for storing and distributing container images using the OCI Distribution Specification. It
provides a simple, secure and scalable base for building a large scale registry solution or run-
ning a simple private registry. Distribution can also mirror Docker Hub but not any other private

registry (https://docs.docker.com/registry/recipes/mirror/#gotcha) .

2.8 Open Build Service

The Open Build Service (OBS) (https://openbuildservice.org) provides free infrastructure for
building and storing RPM packages including different container formats. The OBS Container

Registry (https://registry.opensuse.org) provides a detailed listing of all container images built
by the OBS, complete with commands for pulling the images into your local environment. The
OBS openSUSEcontainer image templates (https://build.opensuse.org/image_templates) can be
modified to specific needs, which offers the easiest way to create your own container branch.
Container images can be built with Docker tools from an existing image using a Dockerfile .
Alternatively, images can be built from scratch using the KIWI NG image-building solution.

Instructions on how to build images on OBS can be found in the following blog post (https://

openbuildservice.org/2018/05/09/container-building-and-distribution/) .

SUSE Container Images, called SLE Base Container Images (SLE BCIs) are the only official con-
tainer images. They are not available at https://build.opensuse.org , and the RPMs exported
there are not identical to the internal ones. This means that it is not possible to build officially
supported images at https://build.opensuse.org .

7 Container Guide

https://helm.sh
https://documentation.suse.com/sles/15-SP4/single-html/SLES-rmt/index.html#sec-rmt-deploy-kubernetes
https://documentation.suse.com/sles/15-SP4/single-html/SLES-rmt/index.html#sec-rmt-deploy-kubernetes
https://documentation.suse.com/sles/15-SP4/single-html/SLES-rmt/index.html#sec-rmt-deploy-kubernetes
https://github.com/distribution/distribution
https://docs.docker.com/registry/recipes/mirror/#gotcha
https://docs.docker.com/registry/recipes/mirror/#gotcha
https://openbuildservice.org
https://registry.opensuse.org
https://registry.opensuse.org
https://build.opensuse.org/image_templates
https://openbuildservice.org/2018/05/09/container-building-and-distribution/
https://openbuildservice.org/2018/05/09/container-building-and-distribution/
https://build.opensuse.org
https://build.opensuse.org

For more information about SLE BCIs, refer to Section 4, “General-purpose SLE Base Container

Images” .

2.9 KIWI NG

KIWI (https://github.com/OSInside/kiwi) Next Generation (KIWI NG) is a multi-purpose tool for
building images. In addition to container images, regular installation ISO images, and images
for virtual machines, KIWI NG can build images that boot via PXE or Vagrant boxes. The main
building block in KIWI NG is an image XML description, a directory that includes the con-
fig.xml or .kiwi le along with scripts or configuration data. The process of creating images
with KIWI NG is fully automated and does not require any user interaction. Any information re-
quired for the image creation process is provided by the primary configuration le config.xml .
The image can be customized using the config.sh and images.sh scripts. KIWI NG is the core
engine of Open Build Service (OBS) (https://openbuildservice.org) .

Note
It is important to distinguish between KIWI NG (currently version 9.20.9) and its un-
maintained legacy versions (7.x.x or older), now called KIWI Legacy (https://documenta-

tion.suse.com/kiwi/) .

For information on how to install KIWI NG and use it to build images, see the KIWI NG docu-

mentation (https://osinside.github.io/kiwi/) . A collection of example image descriptions can be
found on the KIWI NG GitHub repository (https://github.com/OSInside/kiwi-descriptions) .

KIWI NG's man pages provide information on using the tool. To access the man pages, install
the kiwi-man-pages package.

8 Container Guide

https://github.com/OSInside/kiwi
https://openbuildservice.org
https://documentation.suse.com/kiwi/
https://documentation.suse.com/kiwi/
https://osinside.github.io/kiwi/
https://osinside.github.io/kiwi/
https://github.com/OSInside/kiwi-descriptions

3 Introduction to SLE Base Container Images
SLE Base Container Images (SLE BCIs) are minimal SLES 15-based images that you can use to
develop, deploy and share applications. There are two types of SLE BCIs:

General-purpose SLE BCIs can be used for building custom container images and for de-
ploying applications.

Development Stack SLE BCIs provide minimal environments for developing and deploying
applications in specific programming languages.

SLE Base Container Images are available from the SUSE Registry (https://registry.suse.com) . It
contains tested and updated SLE Base Container Images. All images in the SUSE Registry undergo
a maintenance process. The images are built to contain the latest available updates and fixes.
The SUSE Registry's Web user interface lists a subset of the available images. For information
about the SUSE Registry, see Section 2.1, “SUSE Registry”.

SLE base images in the SUSE Registry receive security updates and are covered by the SUSE
support plans. For more information about these support plans, see Section 22, “Compatibility and

support conditions”.

3.1 Why SLE Base Container Images

SLE BCIs offer a platform for creating SLES-based custom container images and containerized
applications that can be distributed freely. SLE BCIs feature the same predictable enterprise
lifecycle as SLES. The SLE_BCI 15 SP3 and SP4 repository (which is a subset of the SLE repository)
gives SLE BCIs access to 4000 packages available for the AMD64/Intel 64, AArch64, POWER,
and IBM Z architectures. The packages in the repository have undergone quality assurance and
security audits by SUSE. The container images are FIPS-compliant when running on a host in
FIPS mode. In addition to that, SUSE can provide official support for SLE BCIs through SUSE
subscription plans.

Security

Each package in the SLE_BCI repository undergoes security audits, and SLE BCIs bene-
fit from the same mechanism of dealing with CVEs as SUSE Linux Enterprise Server. All
discovered and xed vulnerabilities are announced via e-mail, the dedicated CVE pages

(https://www.suse.com/security/cve/) , and as OVAL and CVRF data. To ensure a secure
supply chain, all container images are signed with Notary v1, Podman's GPG signatures,
and Sigstore Cosign.

9 Container Guide

https://registry.suse.com
https://www.suse.com/security/cve/
https://www.suse.com/security/cve/

Stability

Since SLE BCIs are based on SLES, they feature the same level of stability and quality
assurance. Similar to SLES, SLE BCIs receive maintenance updates that provide bug fixes,
improvements and security patches.

Tooling and integration

SLE BCIs are designed to provide drop-in replacements for popular container images avail-
able on hub.docker.com. You can use the general-purpose SLE BCIs and the tools they put
at your disposal to create custom container images, while the Development Stack SLE BCIs
provide a foundation and the required tooling for building containerized applications.

Redistribution

SLE Base Container Images are covered by a permissive EULA (https://www.suse.com/de-

de/licensing/eula/#bci) that allows you to redistribute custom container images based on
a SLE Base Container Image.

3.2 Highlights

SLE BCIs are fully compatible with SLES, but they do not require a subscription to run
and distribute them.

SLE BCIs automatically run in FIPS-compatible mode when the host operating system is
running in FIPS mode.

Each SLE BCI includes the RPM database, which makes it possible to audit the contents
of the container image. You can use the RPM database to determine the specific version
of the RPM package any given le belongs to. This allows you to ensure that a container
image is not susceptible to known and already xed vulnerabilities.

All SLE BCIs (except for those without Zypper) come with the container-suseconnect
service. This gives containers that run on a registered SLES host access to the full SLES
repositories. container-suseconnect is invoked automatically when you run Zypper for
the rst time, and the service adds the correct SLES repositories into the running contain-
er. On an unregistered SLES host or on a non-SLES host, the service does nothing. See
Section 11.2, “Using container-suseconnect with SLE BCIs” for more information.

10 Container Guide

https://www.suse.com/de-de/licensing/eula/#bci
https://www.suse.com/de-de/licensing/eula/#bci

Note: SLE_BCI repository
There is a SLE_BCI repository for each SLE service pack. This means that SLE BCIs based
on SP4 have access to the SLE_BCI repository for SP4, all SLE BCIs based on SP5 use the
SLE_BCI repository for SP5, and so on. Each SLE_BCI repository contains all SLE packages
except kernels, boot loaders, installers (including YaST), desktop environments and hy-
pervisors (such as KVM and Xen).

Note: Requesting a missing package
If the SLE_BCI repository does not have a package you need, you have two options. As
an existing SUSE customer, you can le a feature request. As a regular user, you can re-
quest a package to be created by creating an issue in Bugzilla (https://bugzilla.suse.com/en-

ter_bug.cgi?product=SUSE%20Linux%20Enterprise%20Base%20Container%20Images) .

4 General-purpose SLE Base Container Images
There are four general-purpose SLE BCIs, and each container image comes with a minimum set
of packages to keep its size low. You can use a general-purpose SLE BCI either as a starting point
for building custom container images, or as a platform for deploying specific software.

SUSE offers several general-purpose SLE BCIs that are intended as deployment targets or as
foundations for creating customized images: SLE BCI-Base, SLE BCI-Minimal, SLE BCI-Micro and
SLE BCI-BusyBox. These images share the common SLES base, and none of them ship with a spe-
cific language or an application stack. All images feature the RPM database (even if the specific
image does not include the RPM package manager) that can be used to verify the provenance
of every le in the image. Each image includes the SLES certificate bundle, which allows the
deployed applications to use the system's certificates to verify TLS connections.

The table below provides a quick overview of the differences between SLE BCI-Base, SLE BCI-
Minimal, SLE BCI-Micro and SLE BCI-BusyBox.

TABLE 1: SUPPORT MATRIX

Features SLE BCI-Base SLE BCI-
Minimal

SLE BCI-Micro SLE BCI-
BusyBox

glibc ✓ ✓ ✓ ✓

11 Container Guide

https://bugzilla.suse.com/enter_bug.cgi?product=SUSE%20Linux%20Enterprise%20Base%20Container%20Images
https://bugzilla.suse.com/enter_bug.cgi?product=SUSE%20Linux%20Enterprise%20Base%20Container%20Images

Features SLE BCI-Base SLE BCI-
Minimal

SLE BCI-Micro SLE BCI-
BusyBox

CA certificates ✓ ✓ ✓ ✓

rpm database ✓ ✓ ✓ ✓

coreutils ✓ ✓ ✓ busybox

bash ✓ ✓ ✓ ╳

rpm (binary) ✓ ✓ ╳ ╳

zypper ✓ ╳ ╳ ╳

4.1 SLE BCI-Base and SLE BCI-Init: When you need flexibility

This SLE BCI comes with the Zypper package manager and the free SLE_BCI repository. This
allows you to install software available in the repository and customize the image during the
build. The downside is the size of the image. It is the largest of the general-purpose SLE BCIs,
so it is not always the best choice for a deployment image.

A variant of SLE BCI-Base called SLE BCI-Init comes with systemd preinstalled. The SLE BCI-
Init container image can be useful in scenarios requiring systemd for managing services in a
single container.

Important: Using SLE BCI-init with Docker
When using SLE BCI-init container with Docker, you must use the following arguments
for systemd to work correctly in the container:

> docker run -ti --tmpfs /run -v /sys/fs/cgroup:/sys/fs/cgroup:rw --cgroupns=host
 registry.suse.com/bci/bci-init:latest

To correctly shut down the container, use the following command:

> docker kill -s SIGRTMIN+3 CONTAINER_ID

12 Container Guide

4.2 SLE BCI-Minimal: When you do not need Zypper

This is a stripped-down version of the SLE BCI-Base image. SLE BCI-Minimal comes without
Zypper, but it does have the RPM package manager installed. This significantly reduces the
size of the image. However, while RPM can install and remove packages, it lacks support for
repositories and automated dependency resolution. The SLE BCI-Minimal image is therefore
intended for creating deployment containers, and then installing the desired RPM packages
inside the containers. Although you can install the required dependencies, you need to download
and resolve them manually. However, this approach is not recommended as it is prone to errors.

4.3 SLE BCI-Micro: When you need to deploy static binaries

This image is similar to SLE BCI-Minimal but without the RPM package manager. The primary
use case for the image is deploying static binaries produced externally or during multi-stage
builds. As there is no straightforward way to install additional dependencies inside the container
image, we recommend deploying a project using the SLE BCI-Minimal image only when the final
build artifact bundles all dependencies and has no external runtime requirements (like Python
or Ruby).

4.4 SLE BCI-BusyBox: When you need the smallest and GPLv3-free
image

Similar to SLE BCI-Micro, the SLE BCI-BusyBox image comes with the most basic tools only.
However, these tools are provided by the BusyBox project. This has the benefit of further size
reduction. Furthermore, the image contains no GPLv3 licensed software. When using the image,
keep in mind that there are certain differences between the BusyBox tools and the GNU Coreutils.
So scripts written for a system that uses GNU Coreutils may require modification to work with
BusyBox.

4.5 Approximate sizes

For your reference, the list below provides an approximate size of each SLE BCI. Keep in mind
that the provided numbers are rough estimations.

SLE BCI-Base ~94 MB

SLE BCI-Minimal ~42 MB

13 Container Guide

SLE BCI-Micro ~26 MB

SLE BCI-BusyBox ~14 MB

5 Using Long Term Service Pack Support container
images from the SUSE Registry

Long Term Service Pack Support (LTSS) container images are available at registry.suse.com/suse/

ltss/ . To access and use the container images, you must have a valid LTSS subscription.

Before you can pull or download LTSS container images, you must log in to the SUSE Registry
as a user. There are three ways to do that.

Use the system registration of your host system

If the host system you are using to build or run a container is already registered with the
correct subscription required for accessing the LTSS container images, you can use the
registration information from the host to log in to the registry.
The le /etc/zypp/credentials.d/SCCcredentials contains a username and a pass-
word. These credentials allow you to access any container that is available under the sub-
scription of the respective host system. You can use these credentials to log in to SUSE
Registry using the following commands (use the leading space before the echo command
to avoid storing the credentials in the shell history):

> set +o history
 > echo PASSWORD | podman login -u USERNAME --password-stdin registry.suse.com
 > set -o history

Use a separate SUSE Customer Center registration code

If the host system is not registered with SUSE Customer Center, you can use a valid SUSE
Customer Center registration code to log in to the registry:

set +o history
 echo SCC_REGISTRATION_CODE | podman login -u "regcode" --password-stdin
 registry.suse.com
set -o history

The user parameter in this case is the verbatim string regcode , and SCC_REGIS-

TRATION_CODE is the actual registration code obtained from SUSE.

14 Container Guide

registry.suse.com/suse/ltss/
registry.suse.com/suse/ltss/

Use the organization mirroring credentials

You can also use the organization mirroring credentials to log in to the SUSE Registry:

set +o history
 echo SCC_MIRRORING_PASSWORD | podman login -u "SCC_MIRRORING_USER" --password-stdin
 registry.suse.com
set -o history

These credentials give you access to all subscriptions the organization owns, including
those related to container images in the SUSE Registry. The credentials are highly privi-
leged and should be preferably used for a private mirroring registry only.

6 Development Stack SLE Base Container Images
Development Stack SLE BCIs are built on top of the SLE BCI-Base. Each container image comes
with the Zypper stack and the free SLE_BCI repository. Additionally, each image includes most
common tools for building and deploying applications in the specific language environment. This
includes tools like a compiler or interpreter as well as the language-specific package manager.

Below is an overview of the Development Stack SLE BCIs available in the SUSE Registry (https://

registry.suse.com) .

python

Ships with the python3 version from the tag and pip3, curl, git tools.

node

Comes with nodejs version from the tag, npm and git. The yarn package manager can be
installed with the npm install -g yarn command.

openjdk

Ships with the OpenJDK runtime. Designed for deploying Java applications.

openjdk-devel

Includes the development part of OpenJDK in addition to the OpenJDK runtime. Instead
of Bash, the default entry point is the jshell shell.

ruby

A standard development environment based on Ruby 2.5, featuring ruby, gem and bundler
as well as git and curl.

rust

Ships with the Rust compiler and the Cargo package manager.

15 Container Guide

https://registry.suse.com
https://registry.suse.com

golang

Ships with the go compiler version specified in the tag.

dotnet-runtime

Includes the .NET runtime from Microsoft and the Microsoft .NET repository.

dotnet-aspnet

Ships with the ASP.NET runtime from Microsoft and the Microsoft .NET repository.

dotnet-sdk

Comes with the .NET and ASP.NET SDK from Microsoft as well as the Microsoft .NET
repository.

php

Ships with the PHP version specified in the tag.

7 Application SLE Base Container Images
Application SLE BCIs are SLE BCI-Base container images that include specific applications, such
as the PostgreSQL database and the Performance Co-Pilot a system-level performance analysis
toolkit. Application SLE BCIs are available in the dedicated section of the SUSE Registry (https://

registry.suse.com/#apps) .

8 Important note on status and lifecycle SLE Base
Container Images
All container images, except for base, are currently classified as tech preview, and SUSE does
not provide official support for them. This information is visible on the web on registry.suse.com

(https://registry.suse.com) . It is also indicated via the com.suse.supportlevel label whether
a container image still has the tech preview status. You can use the skopeo and jq utilities to
check the status of the desired SLE BCI as follows:

> skopeo inspect docker://registry.suse.com/bci/bci-micro:15.4 | jq
 '.Labels["com.suse.supportlevel"]'
 "techpreview"

 > skopeo inspect docker://registry.suse.com/bci/bci-base:15.4 | jq
 '.Labels["com.suse.supportlevel"]'
 "l3"

16 Container Guide

https://registry.suse.com/#apps
https://registry.suse.com/#apps
https://registry.suse.com
https://registry.suse.com

In the example above, the com.suse.supportlevel label is set to techpreview in the bci-
micro container image, indicating that the image still has the tech preview status. The bci-
base container image, on the other hand, has full L3 support. Unlike like the general purpose
SLE BCIs, the Development Stack SLE BCIs may not follow the lifecycle of the SLES distribution:
they are supported as long as the respective language stack receives support. In other words,
new versions of SLE BCIs (indicated by the OCI tags) may be released during the lifecycle of
a SLES Service Pack, while older versions may become unsupported. Refer to https://suse.com/

lifecycle to nd out whether the container in question is still under support.

Important
A SLE Base Container Image is no longer updated after its support period ends. You will
not receive any notification when that happens.

9 SLE Base Container Image labels
SLE BCIs feature the following labels.

com.suse.image-type

Shows whether this is a pure SLE BCI or an application container based on another SLE BCI.

com.suse.eula

Marks which section of the SUSE EULA applies to the container image.

com.suse.release-stage

Indicates the current release stage of the image.

prototype Indicates that the container image is in the ALP prototype phase.

alpha Prevents the container image from appearing in the registry.suse.com Web
interface even if it is available there. The value also indicates the alpha quality of
the container image.

beta Lists the container image in the Beta Container Images section of the reg-
istry.suse.com Web interface and adds the Beta label to the image. The value also
indicates the beta quality of the container image.

released Indicates that the container image is released and suitable for production
use.

17 Container Guide

https://suse.com/lifecycle
https://suse.com/lifecycle

com.suse.supportlevel

Shows the support level for the container.

l2 Problem isolation, which means technical support designed to analyze data, re-
produce customer problems, isolate problem areas, and provide a resolution for prob-
lems not resolved by Level 1, or prepare for Level 3.

l3 Problem resolution, which means technical support designed to resolve problems
by engaging engineering to resolve product defects which have been identified by
Level 2 Support.

acc Software delivered with the SLE Base Container Image may require an external
contract.

techpreview The image is unsupported and intended for use in proof-of-concept
scenarios.

unsupported No support is provided for the image.

com.suse.lifecycle-url

Points to the https://www.suse.com/lifecycle/ page that offers information about the life-
cycle of the image.

9.1 Working with SLE BCI labels

All SLE Base Container Images include information such as a build time stamp and description.
This information is provided in the form of labels attached to the base images, and is therefore
available for derived images and containers.

Here is an example of the labels information shown by podman inspect :

podman inspect registry.suse.com/suse/sle15
 [...]
 "Labels": {
 "com.suse.bci.base.created": "2023-01-26T22:15:08.381030307Z",
 "com.suse.bci.base.description": "Image for containers based on SUSE
 Linux Enterprise Server 15 SP4.",
 "com.suse.bci.base.disturl": "obs://build.suse.de/SUSE:SLE-15-
SP4:Update:CR/images/1477b070ae019f95b0f2c3c0dce13daf-sles15-image",
 "com.suse.bci.base.eula": "sle-bci",
 "com.suse.bci.base.image-type": "sle-bci",
 "com.suse.bci.base.lifecycle-url": "https://www.suse.com/lifecycle",

18 Container Guide

https://www.suse.com/lifecycle/

 "com.suse.bci.base.reference": "registry.suse.com/suse/
sle15:15.4.27.14.31",
 "com.suse.bci.base.release-stage": "released",
 "com.suse.bci.base.source": "https://sources.suse.com/SUSE:SLE-15-
SP4:Update:CR/sles15-image/1477b070ae019f95b0f2c3c0dce13daf/",
 "com.suse.bci.base.supportlevel": "l3",
 "com.suse.bci.base.title": "SLE 15 SP4 Base Container Image",
 "com.suse.bci.base.url": "https://www.suse.com/products/server/",
 "com.suse.bci.base.vendor": "SUSE LLC",
 "com.suse.bci.base.version": "15.4.27.14.31",
 "com.suse.eula": "sle-bci",
 "com.suse.image-type": "sle-bci",
 "com.suse.lifecycle-url": "https://www.suse.com/lifecycle",
 "com.suse.release-stage": "released",
 "com.suse.sle.base.created": "2023-01-26T22:15:08.381030307Z",
 "com.suse.sle.base.description": "Image for containers based on SUSE
 Linux Enterprise Server 15 SP4.",
 "com.suse.sle.base.disturl": "obs://build.suse.de/SUSE:SLE-15-
SP4:Update:CR/images/1477b070ae019f95b0f2c3c0dce13daf-sles15-image",
 "com.suse.sle.base.eula": "sle-bci",
 "com.suse.sle.base.image-type": "sle-bci",
 "com.suse.sle.base.lifecycle-url": "https://www.suse.com/lifecycle",
 "com.suse.sle.base.reference": "registry.suse.com/suse/
sle15:15.4.27.14.31",
 "com.suse.sle.base.release-stage": "released",
 "com.suse.sle.base.source": "https://sources.suse.com/SUSE:SLE-15-
SP4:Update:CR/sles15-image/1477b070ae019f95b0f2c3c0dce13daf/",
 "com.suse.sle.base.supportlevel": "l3",
 "com.suse.sle.base.title": "SLE 15 SP4 Base Container Image",
 "com.suse.sle.base.url": "https://www.suse.com/products/server/",
 "com.suse.sle.base.vendor": "SUSE LLC",
 "com.suse.sle.base.version": "15.4.27.14.31",
 "com.suse.supportlevel": "l3",
 "org.openbuildservice.disturl": "obs://build.suse.de/SUSE:SLE-15-
SP4:Update:CR/images/1477b070ae019f95b0f2c3c0dce13daf-sles15-image",
 "org.opencontainers.image.created": "2023-01-26T22:15:08.381030307Z",
 "org.opencontainers.image.description": "Image for containers based on
 SUSE Linux Enterprise Server 15 SP4.",
 "org.opencontainers.image.source": "https://sources.suse.com/SUSE:SLE-15-
SP4:Update:CR/sles15-image/1477b070ae019f95b0f2c3c0dce13daf/",
 "org.opencontainers.image.title": "SLE 15 SP4 Base Container Image",
 "org.opencontainers.image.url": "https://www.suse.com/products/server/",
 "org.opencontainers.image.vendor": "SUSE LLC",
 "org.opencontainers.image.version": "15.4.27.14.31",
 "org.opensuse.reference": "registry.suse.com/suse/sle15:15.4.27.14.31"
 },
 [...]

19 Container Guide

All labels are shown twice to ensure that the information in derived images about the original
base image is still visible and not overwritten.

Use Podman to retrieve labels of a local image. The following command lists all labels and only
the labels information of the bci-base:15.5 image:

podman inspect -f {{.Labels | json}} registry.suse.com/bci/bci-base:15.5

It is also possible to retrieve the value of a specific label:

podman inspect -f {{ index .Labels \"com.suse.sle.base.supportlevel\" }}
 registry.suse.com/bci/bci-base:15.5

The preceding command retrieves the value of the com.suse.sle.base.supportlevel label.

The skopeo tool makes it possible to examine labels of an image without pulling it rst. For
example:

skopeo inspect -f {{.Labels | json}} docker://registry.suse.com/bci/bci-base:15.5
skopeo inspect -f {{ index .Labels \"com.suse.sle.base.supportlevel\" }} docker://
registry.suse.com/bci/bci-base:15.5

10 SLE BCI tags

Tags are used to refer to images. A tag forms a part of the image's name. Unlike labels, tags can
be freely defined, and they are usually used to indicate a version number.

If a tag exists in multiple images, the newest image is used. The image maintainer decides which
tags to assign to the container image.

The conventional tag format is repository name : image version specification (usually
version number). For example, the tag for the latest published image of SLE 15 SP2 would be
suse/sle15:15.2 .

11 Understanding SLE BCIs

There are certain features that set SLE BCIs apart from similar offerings, like images based on
Debian or Alpine Linux. Understanding the specics can help you to get the most out of SLE
BCIs in the shortest time possible.

20 Container Guide

11.1 Package manager

The default package manager in SLES is Zypper. Similar to APT in Debian and APK in Alpine
Linux, Zypper offers a command-line interface for all package management tasks. Below is a
brief overview of commonly used container-related Zypper commands.

Install packages

zypper --non-interactive install PACKAGE_NAME

Add a repository

zypper --non-interactive addrepo REPOSITORY_URL; zypper --non-interactive
refresh

Update all packages

zypper --non-interactive update

Remove a package

zypper --non-interactive remove --clean-deps PACKAGE_NAME (the --clean-deps
ag ensures that no longer required dependencies are removed as well)

Clean up temporary files

zypper clean

For more information on using Zypper, refer to https://documentation.suse.com/sles/html/SLES-

all/cha-sw-cl.html#sec-zypper .

All the described commands use the --non-interactive ag to skip confirmations, since you
cannot approve these manually during container builds. Keep in mind that you must use the
ag with any command that modifies the system. Also note that --non-interactive is not a
"yes to all" ag. Instead, --non-interactive confirms what is considered to be the intention
of the user. For example, an installation command with the --non-interactive option fails
if it needs to import new repository signing keys, as that is something that the user must verify
themselves.

11.2 Using container-suseconnect with SLE BCIs

container-suseconnect (https://github.com/SUSE/container-suseconnect) is a plugin available
in all SLE BCIs that ship with Zypper. When the plugin detects the host's SUSE Linux Enterprise
Server registration credentials, it uses them to give the container access the SUSE Linux Enter-

21 Container Guide

https://documentation.suse.com/sles/html/SLES-all/cha-sw-cl.html#sec-zypper
https://documentation.suse.com/sles/html/SLES-all/cha-sw-cl.html#sec-zypper
https://github.com/SUSE/container-suseconnect

prise repositories. This includes additional modules and previous package versions that are not
part of the free SLE_BCI repository. Refer to Section 13.3, “container-suseconnect” for more infor-
mation on how to use the repository for SLES, openSUSE, and non-SLES hosts.

11.3 Common patterns

The following examples demonstrate how to accomplish certain tasks in a SLE BCI compared
to Debian.

Remove orphaned packages

Debian: apt-get autoremove -y

SLE BCI: Not required if you remove installed packages using the zypper --non-
interactive remove --clean-deps PACKAGE_NAME

Obtain container's architecture

Debian: dpkgArch="$(dpkg --print-architecture | awk -F- '{ print
$NF }')"

SLE BCI: arch="$(uname -p)"

Install packages required for compilation

Debian: apt-get install -y build-essential

SLE BCI: zypper -n in gcc gcc-c++ make

Verify GnuPG signatures

Debian: gpg --batch --verify SIGNATURE_URL FILE_TO_VERIFY

SLE BCI: zypper -n in dirmngr; gpg --batch --verify SIGNATURE_URL

FILE_TO_VERIFY; zypper -n remove --clean-deps dirmngr; zypper -n clean

11.4 Package naming conventions

SLE package naming conventions differ from Debian, Ubuntu and Alpine, and they are closer to
those of Red Hat Enterprise Linux. The main difference is that development packages of libraries
(that is, packages containing headers and build description les) are named PACKAGE-devel

22 Container Guide

in SLE, as opposed to PACKAGE-dev in Debian and Ubuntu. When in doubt, search for the
package using the following command: docker run --rm registry.suse.com/bci/bci-
base:OS_VERSION zypper search PACKAGE_NAME (replace OS_VERSION with the appropriate
service version number, for example: 15.3 or 15.4).

11.5 Adding GPG signing keys

Adding external repositories to a container or container image normally requires importing the
GPG key used for signing the packages. This can be done with the rpm --import KEY_URL
command. This adds the key to the RPM database, and all packages from the repository can
be installed afterwards.

12 Getting started with SLE Base Container Images
The SLE BCIs are available as OCI-compatible container images directly from the SUSE Registry

(https://registry.suse.com) , and they can be used like any other container image, for example:

> podman run --rm -it registry.suse.com/bci/bci-base:15.4 grep '^NAME' /etc/os-release
 NAME="{sles}"

Alternatively, you can use a SLE BCI in Dockerfile as follows:

FROM registry.suse.com/bci/bci-base:15.4
 RUN zypper --non-interactive in python3 && \
 echo "Hello Green World!" > index.html
 ENTRYPOINT ["/usr/bin/python3", "-m", "http.server"]
 EXPOSE 8000

You can then build container images using the docker build . or buildah bud . commands:

> docker build .
 Sending build context to Docker daemon 2.048kB
 Step 1/4 : FROM registry.suse.com/bci/bci-base:15.4
 ---> e34487b4c4e1
 Step 2/4 : RUN zypper --non-interactive in python3 && echo "Hello Green World!" >
 index.html
 ---> Using cache
 ---> 9b527dfa45e8
 Step 3/4 : ENTRYPOINT ["/usr/bin/python3", "-m", "http.server"]
 ---> Using cache
 ---> 953080e91e1e
 Step 4/4 : EXPOSE 8000

23 Container Guide

https://registry.suse.com
https://registry.suse.com

 ---> Using cache
 ---> 48b33ec590a6
 Successfully built 48b33ec590a6

 > docker run -p 8000:8000 --rm -d 48b33ec590a6
 575ad7edf43e11c2c9474055f7f6b7a221078739fc8ce5765b0e34a0c899b46a

 > curl localhost:8000
 Hello Green World!

13 Registration and Online Repositories
As a pre-requisite to work with containers on a SUSE Linux Enterprise Server, you have to enable
the SLE Containers Module. It consists of container-related packages, including container engine
and core container tools like on-premise registry. For more information about SLE Modules,
refer to https://documentation.suse.com/sles/html/SLES-all/article-modules.html .

The regular SLE subscription includes SLE Containers Module free of charge.

13.1 Enabling the Containers Module using the YaST graphical
interface

1. Start YaST, and select Software Software Repositories.

2. Click Add to open the add-on dialog.

3. Select Extensions and Modules from Registration Server and click Next.

4. From the list of available extensions and modules, select Containers Module 15 SP4
x86_64 and click Next. This adds the Containers Module and its repositories to the
system.

5. If you use Repository Mirroring Tool, update the list of repositories on the RMT server.

13.2 Enabling the Containers Module from the command line
using SUSEConnect

The Containers Module can also be added with the following command:

> sudo SUSEConnect -p sle-module-containers/15.4/x86_64

24 Container Guide

https://documentation.suse.com/sles/html/SLES-all/article-modules.html

13.3 container-suseconnect

container-suseconnect (https://github.com/SUSE/container-suseconnect) is a plugin available
in all SLE Base Container Images that ship with Zypper. When the plugin detects the host's
SUSE Linux Enterprise Server registration credentials, it uses them to give the container access
the SUSE Linux Enterprise repositories. This includes additional modules and previous package
versions that are not part of the free SLE_BCI repository.

13.3.1 Using container-suseconnect on SLES and openSUSE

If you are running a registered SLES system with Docker, container-suseconnect automati-
cally detects and uses the subscription, without requiring any action on your part.

On openSUSE systems with Docker, you must copy the les /etc/SUSEConnect and /etc/
zypp/credentials.d/SCCcredentials from a registered SLES machine to your local machine.
Note that the /etc/SUSEConnect le is required only if you are using RMT for managing your
registration credentials.

13.3.2 Using container-suseconnect on non-SLES hosts or with Podman and
Buildah

You need a registered SLES system to use container-suseconnect on non-SLE hosts or with
Podman and Buildah. This can be a physical machine, a virtual machine, or the SLE BCI-Base
container with SUSEConnect installed and registered.

If you do not use RMT, copy /etc/zypp/credentials.d/SCCcredentials to the development
machine. Otherwise, copy both the /etc/zypp/credentials.d/SCCcredentials and /etc/
SUSEConnect les.

You can use the following command to obtain SCCcredentials (replace REGISTRATION_CODE
with your SCC registration code)

podman run --rm registry.suse.com/suse/sle15:latest bash -c \
 "zypper -n in SUSEConnect; SUSEConnect --regcode REGISTRATION_CODE; \
 cat /etc/zypp/credentials.d/SCCcredentials"

If you are running a container based on a SLE BCI, mount SCCcredentials (and optionally
/etc/SUSEConnect) in the correct destination. The following example shows how to mount
SCCcredentials in the current working directory:

podman run -v /path/to/SCCcredentials:/etc/zypp/credentials.d/SCCcredentials \

25 Container Guide

https://github.com/SUSE/container-suseconnect

 -it --pull=always registry.suse.com/bci/bci-base:latest

Do not copy the SCCcredentials and SUSEConnect les into the container image to avoid
inadvertently adding them to the final image. Use secrets instead, as they are only available to
a single layer and are not part of the built image. To do this, put a copy of SCCcredentials
(and optionally SUSEConnect) somewhere on the le system and modify the RUN instructions
that invoke Zypper as follows:

FROM registry.suse.com/bci/bci-base:latest

 RUN --mount=type=secret,id=SUSEConnect \
 --mount=type=secret,id=SCCcredentials \
 zypper -n in fluxbox

Buildah support mounting secrets via the --secret ag as follows:

buildah bud --layers --secret=id=SCCcredentials,src=/path/to/SCCcredentials \
 --secret=id=SUSEConnect,src=/path/to/SUSEConnect .

Note: known issue
container-suseconnect runs automatically every time you invoke Zypper. If you are not
using a registered SLES host, you may see the following error message:

> zypper ref
 Refreshing service 'container-suseconnect-zypp'.
 Problem retrieving the repository index file for service 'container-
suseconnect-zypp':
 [container-suseconnect-zypp|file:/usr/lib/zypp/plugins/services/container-
suseconnect-zypp]
 Warning: Skipping service 'container-suseconnect-zypp' because of the above
 error.

Ignore the message, as it simply indicates that container-suseconnect was not able to
retrieve your SUSE Customer Center credentials, and thus could not add the full SLE
repositories. You still have full access to the SLE_BCI repository, and can continue using
the container as intended.

26 Container Guide

13.3.3 Adding modules into the container or container Image

container-suseconnect allows you to automatically add SLE Modules into a container or con-
tainer image. What modules are added is determined by the environment variable ADDITION-
AL_MODULES that includes a comma-separated list of the module names. In a Dockerfile , this
is done using the ENV directive as follows:

FROM registry.suse.com/bci/bci-base:latest
 ENV ADDITIONAL_MODULES sle-module-desktop-applications,sle-module-development-tools

 RUN --mount=type=secret,id=SCCcredentials zypper -n in fluxbox && zypper -n clean

14 Podman overview

Podman (https://podman.io/) is short for Pod Manager Tool. It is a daemonless container engine
for managing Open Container Initiative (OCI) containers on a Linux system. By default, Podman
supports rootless containers, which reduces attack surface when running containers. Podman can
be used to create OCI-compliant container images using a Dockerfile and a range of commands
identical to Docker Open Source Engine. For example, the podman build command performs
the same task as docker build . In other words, Podman provides a drop-in replacement for
Docker Open Source Engine.

Moving from Docker Open Source Engine to Podman does not require any changes in the estab-
lished workflow. There is no need to rebuild images, and you can use the exact same commands
to build and manage images as well as run and control containers.

Podman differs from Docker Open Source Engine in the following ways:

Podman does not use a daemon, so the container engine interacts directly with an image
registry, containers and image storage when needed.

Podman features native systemd integration that allows for the use of systemd to run con-
tainers. Generating the required systemd unit les is supported by Podman using the pod-
man generate systemd command. Moreover, Podman can run systemd inside containers.

Podman does not require root privileges to create and run containers. This means that
Podman can run under the root user as well as in an unprivileged environment. Moreover,
a container created by an unprivileged user cannot get higher privileges on the host than
the container's creator.

27 Container Guide

https://podman.io/

Podman can be configured to search multiple registries by reading /etc/contain-
ers/registries.conf le.

Podman can deploy applications from Kubernetes manifests

Podman supports launching systemd inside a container and requires no potentially dan-
gerous workarounds.

Podman makes it possible to group containers into pods. Pods share the same network interface.
A typical scenario for grouping containers into a pod is a container that runs a database and a
container with a client that accesses the database. For further information about pods, refer to
Section 21.1, “Single container host with Podman”.

14.1 Podman installation

To install Podman, make sure you have the SLE Containers Module enabled (see Section 13,

“Registration and Online Repositories”), run the command sudo zypper in podman . Then run
podman info to check whether Podman has been installed successfully.

By default, Podman launches containers as the current user. For unprivileged users, this means
launching containers in rootless mode. Support for rootless containers is enabled for all newly
created users in SLE by default, and no additional steps are necessary.

In case Podman fails to launch containers in rootless mode, check whether an entry for the
current user is present in /etc/subuid :

> grep $(id -nu) /etc/subuid
 user:10000:65536

When no entry is found, add the required sub-UID and sub-GID entries via the following com-
mand:

> sudo usermod --add-subuids 100000-165535 --add-subgids 100000-165535 $(id -nu)

To enable the change, reboot the machine or stop the session of the current user. To do the latter,
run loginctl list-sessions | grep USER and note the session ID. Then run loginctl
kill-session SESSION_ID to stop the session.

The usermod above defines a range of local UIDs to which the UIDs allocated to users inside
the container are mapped on the host. Note that the ranges defined for different users must
not overlap. It is also important that the ranges do not reuse the UID of an existing local user
or group. By default, adding a user with the useradd command on SUSE Linux Enterprise
automatically allocates sub-UID and sub-GID ranges.

28 Container Guide

When using rootless containers with Podman, it is recommended to use cgroups v2. cgroups
v1 are limited in terms of functionality compared to v2. For example, cgroups v1 do not allow
proper hierarchical delegation to user's subtrees. Additionally, Podman is unable to read con-
tainer logs properly with cgroups v1 and the systemd log driver. To enable cgroups v2, add the
following to the kernel cmdline: systemd.unified_cgroup_hierarchy=1

Running a container with Podman in rootless mode on SUSE Linux Enterprise Server may fail,
because the container needs read access to the SUSE Customer Center credentials. For example,
running a container with the command podman run -it --rm registry.suse.com/suse/
sle15 bash and then executing zypper ref results in the following error message:

Refreshing service 'container-suseconnect-zypp'.
 Problem retrieving the repository index file for service 'container-suseconnect-
zypp':
 [container-suseconnect-zypp|file:/usr/lib/zypp/plugins/services/container-
suseconnect-zypp]
 Warning: Skipping service 'container-suseconnect-zypp' because of the above error.
 Warning: There are no enabled repositories defined.
 Use 'zypper addrepo' or 'zypper modifyrepo' commands to add or enable repositories

To solve the problem, grant the current user the required access rights by running the following
command on the host:

> sudo setfacl -m u:$(id -nu):r /etc/zypp/credentials.d/*

Log out and log in again to apply the changes.

To give multiple users the required access, create a dedicated group using the groupadd GROUP-
NAME command. Then use the following command to change the group ownership and rights of
les in the /etc/zypp/credentials.d/ directory.

> sudo chgrp GROUPNAME /etc/zypp/credentials.d/*
 > sudo chmod g+r /etc/zypp/credentials.d/*

You can then grant a specific user write access by adding them to the created group.

14.1.1 Tips and tricks for rootless containers

Podman remaps user IDs with rootless containers. In the following example, Podman remaps
the current user to the default user in the container:

> podman run --rm -it registry.suse.com/bci/bci-base id

29 Container Guide

 uid=0(root) gid=0(root) groups=0(root)

Note that even if you are root in the container, you cannot gain superuser privileges outside of it.

This user remapping can have undesired side effects when sharing data with the host, where
the shared les belong to different user IDs in the container and on the host. The issue can
be solved using the command-line ag --userns=keep-id that makes it possible to keep the
current user id in the container:

> podman run --userns=keep-id --rm -it registry.suse.com/bci/bci-base id
 uid=1000(user) gid=1000(users) groups=1000(users)

The ag --userns=keep-id has a similar effect when used with bind mounts:

> podman run --rm -it -v $(pwd):/share/ registry.suse.com/bci/bci-base stat /share/
 File: /share/
 Size: 318 Blocks: 0 IO Block: 4096 directory
 Device: 2ch/44d Inode: 3506170 Links: 1
 Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
 Access: 2023-05-03 12:52:18.636392618 +0000
 Modify: 2023-05-03 12:52:17.178380923 +0000
 Change: 2023-05-03 12:52:17.178380923 +0000
 Birth: 2023-05-03 12:52:15.852370288 +0000

 > podman run --userns=keep-id --rm -it -v $(pwd):/share/ registry.suse.com/bci/bci-
base stat /share/
 File: /share/
 Size: 318 Blocks: 0 IO Block: 4096 directory
 Device: 2ch/44d Inode: 3506170 Links: 1
 Access: (0755/drwxr-xr-x) Uid: (1000/ user) Gid: (1000/ users)
 Access: 2023-05-03 12:52:18.636392618 +0000
 Modify: 2023-05-03 12:52:17.178380923 +0000
 Change: 2023-05-03 12:52:17.178380923 +0000
 Birth: 2023-05-03 12:52:15.852370288 +0000

Podman stores the containers' data in the storage graph root (default is ~/.local/share/con-
tainers/storage). Because of the way Podman remaps user IDs in rootless containers, the
graph root may contain les that are not owned by your current user but by a user ID in the
sub-UID region assigned to your user. As these les do not belong to your current user, they
can be inaccessible to you.

To read or modify any le in the graph root, enter a shell as follows:

> podman unshare bash

 > id

30 Container Guide

 uid=0(root) gid=0(root) groups=0(root),65534(nobody)

Note that podman unshare performs the same user remapping as podman run does when
launching a rootless container. You cannot gain elevated privileges via podman unshare .

Do not modify les in the graph root as this can corrupt Podman's internal state and render your
containers, images and volumes inoperable.

14.1.2 Caveats of rootless containers

Because unprivileged users cannot configure network namespaces on Linux, Podman relies on a
userspace network implementation called slirp4netns . It emulates the full TCP-IP stack and
can cause a heavy performance degradation for workloads relying on high network transfer
rates. This means that rootless containers suffer from slow network transfers.

On Linux, unprivileged users cannot open ports below port number 1024. This limitation also
applies to Podman, so by default, rootless containers cannot expose ports below port number
1024. You can remove this limitation using the following command: sysctl net.ipv4.ip_un-
privileged_port_start=0 .

To remove the limitation permanently, run sysctl -w net.ipv4.ip_unprivileged_port_s-
tart=0 .

Note that this allows all unprivileged applications to bind to ports below 1024.

14.1.3 podman-docker

Because Podman is compatible with Docker Open Source Engine, it features the same com-
mand-line interface. You can also install the package podman-docker that allows you to use an
emulated Docker CLI with Podman. For example, the docker pull command, that fetches a
container image from a registry, executes podman pull instead. The docker build command
executes podman build , etc.

Podman also features a Docker Open Source Engine compatible socket that can be launched use
the following command:

> sudo systemctl start podman.socket

The Podman socket can be used by applications designed to communicate with Docker Open
Source Engine to launch containers transparently via Podman. The Podman socket can be used
to launch containers using docker compose , without running Docker Open Source Engine.

31 Container Guide

14.2 Obtaining container images

14.2.1 Configuring container registries

Unlike Docker Open Source Engine, Podman can be configured to search multiple container
registries. To make Podman search the SUSE Registry rst and use Docker Hub as a fallback,
add the following configuration to the /etc/containers/registries.conf le:

unqualified-search-registries = ["registry.suse.com", "docker.io"]

Note that this step can be skipped on SUSE Linux Enterprise. On both distributions, SUSE Reg-
istry and registry.opensuse.org have priority over Docker Hub.

14.2.2 Searching images in registries

Using the podman search command allow you to list available containers in the registries
defined in /etc/containers/registries.conf .

To search in all registries:

podman search go

To search in a specific registry:

podman search registry.suse.com/go

14.2.3 Downloading (pulling) images

The podman pull command pulls an image from an image registry:

> podman pull REGISTRY:PORT/NAMESPACE/NAME:TAG

For example:

> podman pull registry.suse.com/bci/bci-base

Note that if you do not specify a tag, Podman pulls the latest tag.

14.3 Renaming images and images tag

Tags are used to assign container images descriptive names, thus making it easier to identify
individual images.

32 Container Guide

Pull the SLE BCI-Base image from SUSE Registry:

> podman pull registry.suse.com/bci/bci-base
 Trying to pull registry.suse.com/bci/bci-base:latest...
 Getting image source signatures
 Copying blob bf6ca87723f2 done
 Copying config 34578a383c done
 Writing manifest to image destination
 Storing signatures
 34578a383c7b6fdcb85f90fbad59b7e7a16071cf47843688e90fe20ff64a684

List the pulled images:

> podman images
 REPOSITORY TAG IMAGE ID CREATED SIZE
 registry.suse.com/bci/bci-base latest 34578a383c7b 22 hours ago 122 MB

Rename the SLE BCI-Base image to my-base :

podman tag 34578a383c7b my-base

podman images
 REPOSITORY TAG IMAGE ID CREATED SIZE
 registry.suse.com/bci/bci-base latest 34578a383c7b 22 hours ago 122 MB
 localhost/my-base latest 34578a383c7b 22 hours ago 122 MB

Add a custom tag 1 (indicating that this version 1 of the image) to my-base :

> podman tag 34578a383c7b my-base:1

> podman images
 REPOSITORY TAG IMAGE ID CREATED SIZE
 registry.suse.com/bci/bci-base latest 34578a383c7b 22 hours ago 122 MB
 localhost/my-base latest 34578a383c7b 22 hours ago 122 MB
 localhost/my-base 1 34578a383c7b 22 hours ago 122 MB

Note that the default tag latest is still present.

14.4 Deploying container images

Similar to Docker Open Source Engine, Podman can run containers in an interactive mode,
allowing you to inspect and work with an image. To run the suse/sle15 image in interactive
mode, use the following command:

> podman run --rm -ti suse/sle15

33 Container Guide

Note: Fixing the lost network access to rootful containers
Rootful containers may occasionally become inaccessible from the outside. The issue
is caused by firewalld reloading its permanent rules and discarding any temporary
rules created by Podman's networking back-end (either CNI or Netavark). A temporary
workaround is to reload the Podman network using the podman network reload --all
command. If you use Netavark 1.9.0 or higher as the network back-end, a permanent x
to the problem is to use the netavark-firewalld-reload.service service. Enable and
start the service as follows:

systemctl enable netavark-firewalld-reload.service
systemctl restart netavark-firewalld-reload.service

You can check which back-end and version you are using by running podman info --
format "{{.Host.NetworkBackend}}" and podman info --format "{{.Host.Net-
workBackendInfo.Version}}" , respectively.

We recommend adding permanent firewall rules for containers you want to be accessible
from outside of the host. This ensures that the rules persist on firewall reloads and system
reboots. This approach also offers greater flexibility (for example, it allows you to assign
the rules to a certain firewalld zone).

14.5 Building images with Podman

Podman can build images from a Dockerfile . The podman build command behaves as dock-
er build , and it accepts the same options.

Podman's companion tool Buildah provides an alternative way to build images. For further
information about Buildah, refer to Section 18, “Buildah overview”.

34 Container Guide

15 Setting up Docker Open Source Engine

15.1 Preparing the host

Before installing any Docker-related packages, you need to enable the Containers Module:

Note: Built-in Docker orchestration support
Container orchestration is a part of Docker Open Source Engine. Even though this fea-
ture is available in SUSE Linux Enterprise, it is not supported by SUSE, and is only pro-
vided as a technology preview. Use Kubernetes for container orchestration. For details,
refer to the Kubernetes documentation (https://kubernetes.io/docs/getting-started-guides/

kubeadm/) .

15.1.1 Installing and configuring Docker Open Source Engine

1. Install the docker package:

> sudo zypper install docker

2. Enable the Docker service, so it starts automatically at boot time:

> sudo systemctl enable docker.service

This also enables docker.socket .

3. Open the /etc/sysconfig/docker le. Search for the parameter DOCKER_OPTS and add
--insecure-registry ADDRESS_OF_YOUR_REGISTRY .

a. Add CA certificates to the directory /etc/docker/certs.d/REGISTRY_ADDRESS :

> sudo cp CA /etc/pki/trust/anchors/

b. Copy the CA certificates to your system:

> sudo update-ca-certificates

4. Start the Docker service:

> sudo systemctl start docker.service

35 Container Guide

https://kubernetes.io/docs/getting-started-guides/kubeadm/
https://kubernetes.io/docs/getting-started-guides/kubeadm/

This also starts docker.socket .

The Docker daemon listens on a local socket accessible only by the root user and by the members
of the docker group. The docker group is automatically created during package installation.

To allow a certain user to connect to the local Docker daemon, use the following command:

> sudo /usr/sbin/usermod -aG docker USERNAME

This allows the user to communicate with the local Docker daemon.

15.2 Configuring the network

To give the containers access to the external network, enable the ipv4 ip_forward rule.

15.2.1 How Docker Open Source Engine interacts with iptables

To learn more about how containers interact with each other and the system firewall,
see the Docker documentation (https://docs.docker.com/v17.09/engine/userguide/networking/de-

fault_network/container-communication/) .

It is also possible to prevent Docker Open Source Engine from manipulating iptables . See the
Docker documentation (https://docs.docker.com/network/iptables/#prevent-docker-from-manipu-

lating-iptables) .

15.3 Storage drivers

Docker Open Source Engine supports different storage drivers:

vfs: This driver is automatically used when the Docker host le system does not support
copy-on-write. This driver is simpler than the others listed and does not offer certain ad-
vantages of Docker Open Source Engine such as shared layers. It is a slow but reliable
driver.

devicemapper: This driver relies on the device-mapper thin provisioning module. It sup-
ports copy-on-write, so it provides all the advantages of Docker Open Source Engine.

btrfs: This driver relies on Btrfs to offer all the features required by Docker Open Source
Engine. To use this driver, the /var/lib/docker directory must be on a Btrfs le system.

36 Container Guide

https://docs.docker.com/v17.09/engine/userguide/networking/default_network/container-communication/
https://docs.docker.com/v17.09/engine/userguide/networking/default_network/container-communication/
https://docs.docker.com/network/iptables/#prevent-docker-from-manipulating-iptables
https://docs.docker.com/network/iptables/#prevent-docker-from-manipulating-iptables

SUSE Linux Enterprise uses the Btrfs le system by default. This forces Docker Open Source
Engine to use the btrfs driver.

It is possible to specify what driver to use by changing the value of the DOCKER_OPTS variable
defined in the /etc/sysconfig/docker le. This can be done either manually or using YaST
by browsing to the System /etc/sysconfig Editor System Management DOCKER_OPTS menu
and entering the -s storage_driver string.

For example, to enable the devicemapper driver, enter the following text:

DOCKER_OPTS="-s devicemapper"

Important: Mounting /var/lib/docker
It is recommended to mount /var/lib/docker on a separate partition or volume. In case
of le system corruption, this allows the operating system to run Docker Open Source
Engine unaffected.

If you choose the Btrfs le system for /var/lib/docker , it is strongly recommended
to create a subvolume for it. This ensures that the directory is excluded from le sys-
tem snapshots. If you do not exclude /var/lib/docker from snapshots, there is a risk
of the le system running out of disk space soon after you start deploying containers.
Moreover, a rollback to a previous snapshot will also reset the Docker database and
images. For more information, see https://documentation.suse.com/sles/html/SLES-all/cha-

snapper.html#sec-snapper-setup-customizing-new-subvolume .

15.4 Updates

All updates to the docker package are marked as interactive (that is, no automatic updates)
to avoid accidental updates that can break running container workloads. Stop all running con-
tainers before applying a Docker Open Source Engine update.

To prevent data loss, avoid workloads that rely on containers which automatically start after
Docker Open Source Engine update. Although it is technically possible to keep containers run-
ning during an update via the --live-restore option, such updates can introduce regressions.
SUSE does not support this feature.

37 Container Guide

https://documentation.suse.com/sles/html/SLES-all/cha-snapper.html#sec-snapper-setup-customizing-new-subvolume
https://documentation.suse.com/sles/html/SLES-all/cha-snapper.html#sec-snapper-setup-customizing-new-subvolume

16 Configuring image storage
Before creating custom images, decide where you want to store images. The easiest solution is to
push images to Docker Hub (https://hub.docker.com) . By default, all images pushed to Docker
Hub are public. Make sure not to publish sensitive data or software not licensed for public use.

You can restrict access to custom container images with the following:

Docker Hub allows creating private repositories for paid subscribers.

An on-site Docker Registry allows storing all the container images used by your organiza-
tion.

Instead of using Docker Hub you can run a local instance of Docker Registry, an open source
platform for storing and retrieving container images.

16.1 Running a Docker Registry

The SUSE Registry provides a container image that makes it possible to run a local Docker
Registry as a container. Before you start a container, create a config.yml le with the following
example configuration:

version: 0.1
 log:
 level: info
 storage:
 filesystem:
 rootdirectory: /var/lib/docker-registry
 http:
 addr: 0.0.0.0:5000

Also create an empty directory to map the /var/lib/docker-registry directory outside the
container. This directory is used for storing container images.

Run the following command to pull the registry container image from the SUSE Registry and
start a container that can be accessed on port 5000:

> podman run -d --restart=always --name registry -p 5000:5000 \
 -v /PATH/config.yml:/etc/docker/registry/config.yml \
 -v /PATH/DIR:/var/lib/ \ docker-registry registry.suse.com/sles12/registry:2.6.2

To make it easier to manage the registry, create a corresponding system unit:

> sudo podman generate systemd registry > \

38 Container Guide

https://hub.docker.com

 /etc/systemd/system/suse_registry.service

Enable and start the registry service, then verify its status:

> sudo systemctl enable suse_registry.service
 > sudo systemctl start suse_registry.service
 > sudo systemctl status suse_registry.service

For more details about Docker Registry and its configuration, see the official documentation at
https://docs.docker.com/registry/ .

16.2 Limitations

Docker Registry has two major limitations:

It lacks any form of authentication. That means everybody with access to Docker Registry
can push and pull images to it. That includes overwriting existing images.

It is not possible to see which images have been pushed to Docker Registry. You need to
keep a record of what is being stored on it. There is also no search functionality.

17 Verifying container images
Verifying container images allows you to confirm their provenance, thus ensuring the supply
chain security. This chapter provides information on signing and verifying container images.

17.1 Verifying SLE Base Container Images with Docker

Signatures for images available through SUSE Registry are stored in the Notary. You can verify
the signature of a specific image using the following command:

> docker trust inspect --pretty registry.suse.com/suse/IMAGE:TAG

For example, the command docker trust inspect --pretty registry.suse.com/suse/
sle15:latest verifies the signature of the latest SLE15 base image.

To automatically validate an image when you pull it, set the environment DOCKER_CON-
TENT_TRUST to 1 . For example:

env DOCKER_CONTENT_TRUST=1 docker pull registry.suse.com/suse/sle15:latest

39 Container Guide

https://docs.docker.com/registry/

17.2 Verifying SLE Base Container Images with Cosign

To verify a SLE BCI, run Cosign in the container. The command below fetches the signing key
from the SUSE server and uses it to verify the latest SLE BCI-Base container image.

> podman run --rm -it gcr.io/projectsigstore/cosign verify \
 --key https://ftp.suse.com/pub/projects/security/keys/container-key.pem \
 registry.suse.com/bci/bci-base:latest | tail -1 | jq

 [
 {
 "critical": {
 "identity": {
 "docker-reference": "registry.suse.com/bci/bci-base"
 },
 "image": {
 "docker-manifest-digest":
 "sha256:52a828600279746ef669cf02a599660cd53faf4b2430a6b211d593c3add047f5"
 },
 "type": "cosign container image signature"
 },
 "optional": {
 "creator": "OBS"
 }
 }
]

The signing key can be used to verify all SLE BCIs, and it also ships with SUSE Linux Enterprise
(the /usr/share/container-keys/suse-container-key.pem le).

You can also check SLE BCIs against rekor (https://github.com/sigstore/rekor) , the immutable
tamper resistant ledger. For example:

> podman run --rm -it -e COSIGN_EXPERIMENTAL=1 gcr.io/projectsigstore/cosign \
 verify --key https://ftp.suse.com/pub/projects/security/keys/container–key.pem \
 registry.suse.com/bci/bci-base:latest | tail -1 | jq
 [
 {
 "critical": {
 "identity": {
 "docker-reference": "registry.suse.com/bci/bci-base"
 },
 "image": {
 "docker-manifest-digest":
 "sha256:52a828600279746ef669cf02a599660cd53faf4b2430a6b211d593c3add047f5"
 },
 "type": "cosign container image signature"

40 Container Guide

https://github.com/sigstore/rekor

 },
 "optional": {
 "creator": "OBS"
 }
 }
]

If verification fails, the output of the cosign verify command is similar to the one below.

Error: no matching signatures:
 crypto/rsa: verification error
 main.go:62: error during command execution: no matching signatures:
 crypto/rsa: verification error

17.3 Verifying SLE Base Container Images with Podman

Before you can verify SLE BCIs using Podman, you must specify registry.suse.com as the
registry for image verification.

Note
Skip this step on SUSE Linux Enterprise, as the correct configuration is already in place.

To do this, add the following configuration to /etc/containers/registries.d/de-

fault.yaml :

docker:
 registry.suse.com:
 use-sigstore-attachments: true

Instead of editing the default.yaml , you can create a new le in /etc/containers/reg-
istries.d/ with a filename of your choice.

Next, modify the /etc/containers/policy.json (https://github.com/containers/image/blob/main/

docs/containers-policy.json.5.md) le. Under the docker attribute, add the reg-

istry.suse.com configuration similar to the following:

{
 "default": [
 {
 "type": "insecureAcceptAnything"
 }

41 Container Guide

https://github.com/containers/image/blob/main/docs/containers-policy.json.5.md
https://github.com/containers/image/blob/main/docs/containers-policy.json.5.md

],
 "transports": {
 "docker-daemon": {
 "": [
 {
 "type": "insecureAcceptAnything"
 }
]
 },
 "docker": {
 "registry.suse.com": [
 {
 "type": "sigstoreSigned",
 "keyPath": "/usr/share/pki/containers/suse-container-key.pem",
 "signedIdentity": {
 "type": "matchRepository"
 }
 }
]
 }
 }
 }

The specified configuration instructs Podman, skopeo and Buildah to verify images under the
registry.suse.com repository. This way,Podman checks the validity of the signature using
the specified public key before pulling the image. It rejects the image if the validation fails.

Note
Do not remove existing entries in transports.docker . Append the entry for reg-
istry.suse.com to the list.

Fetch the public key used to sign SLE BCIs from SUSE Signing Keys (https://www.suse.com/sup-

port/security/keys/) , or use the following command:

> sudo curl -s https://ftp.suse.com/pub/projects/security/keys/container–key.pem \
 -o /usr/share/pki/containers/suse-container-key.pem

Note
This step is optional on SUSE Linux Enterprise. The signing key is already available in /
usr/share/pki/containers/suse-container-key.pem

42 Container Guide

https://www.suse.com/support/security/keys/
https://www.suse.com/support/security/keys/

Buildah, Podman and skopeo automatically verifies every image pulled from reg-

istry.suse.com from now on. There are no additional steps required.

If verification fails, the command returns an error message as follows:

> podman pull registry.suse.com/bci/bci-base:latest
 Trying to pull registry.suse.com/bci/bci-base:latest...
 Error: copying system image from manifest list: Source image rejected: Signature for
 identity registry.suse.com/bci/bci-base is not accepted

If there are no issues with the signed image and your configuration, you can proceed with using
the container image.

18 Buildah overview
Buildah (https://buildah.io/) is tool for building OCI-compliant container images. Buildah can
handle the following tasks:

Create containers from scratch or from existing images.

Create an image from a working container or via a Dockerfile .

Build images in the OCI or Docker Open Source Engine image formats.

Mount a working container's root le system for manipulation.

Use the updated contents of a container's root le system as a le system layer to create
a new image.

Delete a working container or an image and rename a local container.

Compared to Docker Open Source Engine, Buildah offers the following advantages:

The tool makes it possible to mount a working container's le system, so it becomes ac-
cessible by the host.

The process of building container images using Buildah can be automated via scripts by
using Buildah subcommands instead of a Containerfile or Dockerfile .

Similar to Podman, Buildah does not require a daemon to run and can be used by unpriv-
ileged users.

It is possible to build images inside a container without mounting the Docker socket, which
improves security.

43 Container Guide

https://buildah.io/

Both Podman and Buildah can be used to build container images. While Podman makes it pos-
sible to build images using Dockerfiles, Buildah offers an expanded range of image building
options and capabilities.

18.1 Buildah installation

To install Buildah, run the command sudo zypper in buildah . Run the command buildah
--version to check whether Buildah has been installed successfully.

If you already have Podman installed and set up for use in rootless mode, Buildah can be used in
an unprivileged environment without any further configuration. If you need to enable rootless
mode for Buildah, run the following command:

> sudo usermod --add-subuids 100000-165535 --add-subgids 100000-165535 USER

This command enables rootless mode for the current user. After running the command, log out
and log in again to enable the changes.

The command above defines a range of local UIDs on the host, onto which the UIDs allocated
to users inside the container are mapped. Note that the ranges defined for different users must
not overlap. It is also important that the ranges do not reuse the UID of any existing local users
or groups. By default, adding a user with the useradd command on SUSE Linux Enterprise
automatically allocates subUID and subGID ranges.

Note: Buildah in rootless mode
In rootless mode, Buildah commands must be executed in a modified user namespace of
the user. To enter this user namespace, run the command buildah unshare . Otherwise,
the buildah mount command will fail.

18.2 Building images with Buildah

Instead of a special le with instructions, Buildah uses individual commands to build an image.
Building an image with Buildah involves the following steps:

run a container based on the specified image

edit the container (install packages, configure settings, etc.)

44 Container Guide

configure the container options

commit all changes into a new image

While this process may include additional steps, such as mounting the container's le system
and working with it, the basic workflow logic remains the same.

The following example can give you a general idea of how to build an image with Buildah.

container=$(buildah from suse/sle15) 1

 buildah run $container zypper up 2

 buildah copy $container . /usr/src/example/ 3

 buildah config --workingdir /usr/src/example $container 4

 buildah config --port 8000 $container
 buildah config --cmd "php -S 0.0.0.0:8000" $container
 buildah config --label maintainer="Tux" $container 5

 buildah config --label version="0.1" $container
 buildah commit $container example 6

 buildah rm $container 7

1 Specify a container (also called a working container) based on the specified image (in this
case, sle15).

2 Run a command in the working container you just created. In this example, Buildah runs
the zypper up command.

3 Copy les and directories to the specified location in the container. In this example, Buildah
copies the entire contents of the current directory to /usr/src/example/ .

4 The buildah config commands specify container options. These include defining a work-
ing directory, exposing a port, and running a command inside the container.

5 The buildah config --label command allows you to assign labels to the container. This
may include maintainer , description , version , and so on.

6 Create an image from the working container by committing all the modifications.

7 Delete the working container.

19 Creating custom container images

To create a custom image, you need a base image of SUSE Linux Enterprise Server. You can use
any of the pre-built SUSE Linux Enterprise Server images.

45 Container Guide

19.1 Pulling base SUSE Linux Enterprise Server images

To obtain a pre-built base image, use the following command:

> podman pull registry.suse.com/suse/IMAGENAME

For example, for SUSE Linux Enterprise Server 15, the command is as follows:

> podman pull registry.suse.com/suse/sle15

For information on obtaining specific base images, refer to Section 3, “Introduction to SLE Base

Container Images”.

When the container image is ready, you can customize it as described in Section 19.2, “Customizing

container images”.

19.2 Customizing container images

19.2.1 Repositories and Registration

The pre-built images do not have any repositories configured and do not include any modules
or extensions. They contain a zypper service (https://github.com/SUSE/container-suseconnect)

that contacts either the SUSE Customer Center or a Repository Mirroring Tool (RMT) server,
according to the configuration of the SUSE Linux Enterprise Server host that runs the contain-
er. The service obtains the list of repositories available for the product used by the container
image. You can also directly declare extensions in your Dockerfile . For more information, see
Section 13.3, “container-suseconnect”.

Note: SLE_BCI repository
The default base image includes the SLE_BCI repository. This repository is only used when
a container is built or runs on a non-registered SLES host, or when registration credentials
are not made available to the container. The repository provides a subset of SLE packages
useful for customizing SLES container images. The repository is available without any
registration, and it is not supported.

46 Container Guide

https://github.com/SUSE/container-suseconnect

You do not need to add any credentials to the container image, because the machine credentials
are automatically injected into the /run/secrets directory in the container by the docker dae-
mon. The same applies to the /etc/SUSEConnect le of the host system, which is automatically
injected into the /run/secrets directory.

Note: Credentials and security
The contents of the /run/secrets directory are never included in a container image,
which means that there is no risk of your credentials leaking.

Note: Building images on systems registered with RMT
When the host system used for building container images is registered with RMT, the
default behavior allows only building containers of the same code base as the host. For
example, if your container host is an SLE 15 system, you can only build SLE 15-based
images on that host by default. To build images for a different SLE version, for example,
SLE 12 on an SLE 15 host, the host machine credentials for the target release can be
injected into the container as outlined below.

Note that if the RMT server is using a self-signed certificate, the matching CA certificate
needs to be added into the container at CA_TRUSTSTORE/rmt-server.pem for the cer-
tificate to be accepted.

When the host system is registered with SUSE Customer Center, this restriction does not
apply.

To obtain the list of repositories, use the following command:

> sudo zypper repos

This automatically adds all the repositories to the container. For each repository added to the
system, a new le is created under /etc/zypp/repos.d . The URLs of these repositories include
an access token that automatically expires after 12 hours. To renew the token, run the command
zypper ref -s . Including these les in a container image does not pose any security risk.

To use a different set of credentials, put a custom /etc/zypp/credentials.d/SCCcreden-
tials le inside the container image. It contains the machine credentials that have the sub-
scription you want to use. The same applies to the SUSEConnect le: to override the existing
le on the host system running the container, add a custom /etc/SUSEConnect le inside the
container image.

47 Container Guide

Now you can create a custom container image by using a Dockerfile as described in Sec-

tion 19.2.2, “Creating a custom image for SLE 12 SP5 and later”.

After you have edited the Dockerfile , build the image by running the following command in
the directory where the Dockerfile resides:

> podman build .

For more information about podman build options, see the official Podman documentation

(https://docs.podman.io/en/latest/markdown/podman-build.1.html) .

19.2.2 Creating a custom image for SLE 12 SP5 and later

The following Dockerfile creates a simple container image based on SUSE Linux Enterprise
Server 15:

FROM registry.suse.com/suse/sle15
 RUN zypper ref -s && zypper -n in vim && zypper -n clean

When the Podman host machine is registered with an internal RMT server, the image requires
the SSL certificate used by RMT:

FROM registry.suse.com/suse/sle15
 # Import the crt file of our private SMT server
 ADD http://smt./smt.crt /etc/pki/trust/anchors/smt.crt
 RUN update-ca-certificates && \
 zypper ref -s && \
 zypper -n in vim && \
 zypper -n clean

If you wish to add SLE extensions and modules to your images, refer to Section 13.3.3, “Adding

modules into the container or container Image”.

19.2.3 Building container images in on-demand SLE instances in the public
cloud

Building container images on SLE instances that were launched as on-demand or pay-as-you-go
instances on a public cloud (AWS, GCE, or Azure) requires additional steps. To install packages
and updates, the on-demand public cloud instances are connected to the update infrastructure.
This infrastructure is based on RMT servers operated by SUSE on public cloud providers.

48 Container Guide

https://docs.podman.io/en/latest/markdown/podman-build.1.html
https://docs.podman.io/en/latest/markdown/podman-build.1.html

Therefore, your machines need to locate the required services and authenticate with them. This
can be done using the containerbuild-regionsrv service. This service is available in the
public cloud images provided through the marketplaces of public cloud providers. Before build-
ing an image, this service must be started on the public cloud instance by running the following
command:

> sudo systemctl start containerbuild-regionsrv

To start it automatically on system boot, enable it:

> sudo systemctl enable containerbuild-regionsrv

The Zypper plug-ins provided by the SLE base images connect to this service and retrieve au-
thentication details and information about which update server to talk to. For this to work, the
container has to be built with host networking enabled, for example:

> podman build --network host build-directory/

Since update infrastructure in the public clouds is based upon RMT, the restrictions on building
SLE images for SLE versions different from the SLE version of the host apply as well (see Note:

Building images on systems registered with RMT).

20 Creating application container images
Applications that are suitable for running inside containers include daemons, Web servers, and
applications that expose IP ports for communications. You can use Podman to automate the
building and deployment processes by performing the build process inside a container, building
an image, and then deploying containers based on the image.

Running an application inside a container has the following advantages:

The image with the application is portable across servers running different Linux host
distributions and versions.

You can share the image of the application using a repository.

You can use different versions of software in the container and on the host system, without
creating dependency issues.

You can run multiple instances of the same application that are independent from each
other.

49 Container Guide

Using Podman to build applications has the following advantages:

You can prepare an image of the complete build environment.

The application can run in the same environment it was built in.

Developers can test their code in the same environment as used in production.

The following section provides examples and recommendations on creating container images for
applications. Before proceeding, make sure that you have activated your SUSE Linux Enterprise
Server base image as described in Section 19.1, “Pulling base SUSE Linux Enterprise Server images” .

20.1 Running an application with specific package versions

If your application needs a version of a package different from the package installed on the
system, you can create a container image that includes the package version the application
requires. The following example Dockerfile allows building an image based on an up-to-date
version of SUSE Linux Enterprise Server with an older version of the example package:

FROM registry.suse.com/suse/sle15
 LABEL maintainer=EXAMPLEUSER_PLAIN
 RUN zypper ref && zypper in -f example-1.0.0-0
 COPY application.rpm /tmp/
 RUN zypper --non-interactive in /tmp/application.rpm
 ENTRYPOINT ["/etc/bin/application"]
 CMD ["-i"]

Build the image by running the following command in the directory that the Dockerfile resides
in:

> podman build --tag tux_application:latest .

The Dockerfile example shown above performs the following operations during the image
build process:

1. Updates the SUSE Linux Enterprise Server repositories.

2. Installs the desired version of the example package.

3. Copies the application package to the image. The binary RPM must be placed in the build
context.

4. Unpacks the application.

5. The last two steps run the application after a container is started.

50 Container Guide

After a successful build of the tux_application image, you can start a container based on the
new image using the following command:

> podman run -it --name application_instance tux_application:latest

Keep in mind that after closing the application, the container exits as well.

20.2 Running an application with a specific configuration

To run an instance using a different configuration, create a derived image and include the ad-
ditional configuration with it. In the example below, an application called example is configured
using the le /etc/example/configuration_example :

FROM registry.suse.com/suse/sle15 1

 RUN zypper ref && zypper --non-interactive in example 2

 ENV BACKUP=/backup 3

 RUN mkdir -p $BACKUP 4

 COPY configuration_example /etc/example/ 5

 ENTRYPOINT ["/etc/bin/example"] 6

The above example Dockerfile performs the following operations:

1 Pulls the sle15 base image as described in Section 19.1, “Pulling base SUSE Linux Enterprise

Server images”.

2 Refreshes repositories and installations of the example.

3 Sets a BACKUP environment variable (the variable persists to containers started from the
image). You can always overwrite the value of the variable while running the container
by specifying a new value.

4 Creates the directory /backup .

5 Copies the configuration_example to the image.

6 Runs the example application.

20.3 Sharing data between an application and the host system

Podman allows sharing data between host and a container by using volumes. You can specify
a mount point directly in the Dockerfile . However, you cannot specify a directory on the
host system in the Dockerfile , as the directory may not be accessible at build time. Find the
mounted directory under /var/lib/docker/volumes/ on the host system.

51 Container Guide

Note: Discarding changes to the directory to be shared
After you specify a mount point by using the VOLUME instruction, all changes made to
the directory with the RUN instruction are discarded. After the mount point is specified,
the volume becomes a part of a temporary container which is removed after a successful
build. This means that for certain actions to take effect, they must be performed before
specifying a mount point. For example, if you need to change permissions, do this before
you specify the directory as a mount point in the Dockerfile .

Specify a particular mount point on the host system when running a container by using the -
v option:

> podman run -it --name testing -v /home/tux/data:/data sles12sp4:latest /bin/bash

Note
The -v option overwrites the VOLUME instruction if you specify the same mount point
in the container.

The following Dockerfile example builds an image containing a Web server that reads Web
content from the host's le system:

FROM registry.suse.com/suse/sles12sp4
 RUN zypper ref && zypper --non-interactive in apache2
 COPY apache2 /etc/sysconfig/
 RUN chown -R admin /data
 EXPOSE 80
 VOLUME /data
 ENTRYPOINT ["apache2ctl"]

The example above installs the Apache Web server to the image and copies the entire configu-
ration to the image. The data directory is owned by the admin user and is used as a mount
point to store Web pages.

20.4 Applications running in the background

If your application needs to run in the background as a daemon, or as an application exposing
ports for communication, you can run the container in the background.

52 Container Guide

An example Dockerfile for an application exposing a port is as follows:

FROM registry.suse.com/suse/sle15 1

 LABEL maintainer=EXAMPLEUSER_PLAIN 2

 ADD etc/ /etc/zypp/ 3

 RUN zypper refs && zypper refresh 4

 RUN zypper --non-interactive in apache2 5

 RUN echo "The Web server is running" > /srv/www/htdocs/test.html 6

 # COPY data/* /srv/www/htdocs/ 7

 EXPOSE 80 8

 ENTRYPOINT ["/usr/sbin/httpd"]
 CMD ["-D", "FOREGROUND"]

1 Pull the base image as described in Section 19.1, “Pulling base SUSE Linux Enterprise Server

images”.

2 Maintainer of the image (optional).

3 The repositories and service les to be copied to /etc/zypp/repos.d and /etc/zypp/
services.d . This makes them available on the host in the container.

4 Command to refresh repositories and services.

5 Command to install Apache2.

6 Test line for debugging purposes. This line can be removed if everything works as expected.

7 A COPY instruction to copy data from the host system to the directory in the container
used by the server. The leading hash character (#) marks this line as a comment; it is
not executed.

8 The exposed port for the Apache Web server.

Note
To use port 80, make sure there is no other server software running on this port on the
host.

To use the container, proceed as follows:

1. Prepare the host system for the build process.

53 Container Guide

a. Make sure the host system is subscribed to the Server Applications Module of SUSE
Linux Enterprise Server. To view installed modules or install additional modules,
open YaST and select Add System Extensions or Modules.

b. Make sure the SLE images from the SUSE Registry are installed as described in Sec-

tion 19.1, “Pulling base SUSE Linux Enterprise Server images”.

c. Save the Dockerfile in the docker directory.

d. Within the container, you need access to software repositories and services that are
registered on the host. To make them available, copy repositories and service les
from the host to the docker/etc directory:

> cd docker
 > mkdir etc
 > sudo cp -a /etc/zypp/{repos.d,services.d} etc/

Instead of copying all repository and service les, you can also copy only the subset
that is required by the container.

e. Add Web site data (such as HTML les) into the docker/data directory. The contents
of this directory are copied to the container image and are thus published by the
Web server.

2. Build the container. Set a tag for your image with the -t option (in the command below,
it is EXAMPLEUSER_PLAIN):

> docker build -t EXAMPLEUSER_PLAIN/apache2 .

Docker Open Source Engine executes the instructions provided in the Dockerfile : pull
the base image, copy content, refresh repositories, install the Apache2, etc.

3. Start a container instance from the image created in the previous step:

> docker run --detach --interactive --tty EXAMPLEUSER_PLAIN/apache2

Docker Open Source Engine returns the container ID, for example:

7bd674eb196d330d50f8a3cfc2bc61a243a4a535390767250b11a7886134ab93

54 Container Guide

4. Point a browser to http://localhost:80/test.html . You should see the message The Web
server is running.

5. To see an overview of running containers, run the docker ps --latest command:

> docker ps --latest
 CONTAINER ID IMAGE COMMAND [...]
 7bd674eb196d
 tux/apache2 "/usr/sbin/httpd -..." [...]

To stop and delete the container, run the following command:

> docker rm --force 7bd674eb196d

You can use the resulting container to serve your data with the Apache2 Web server by following
these steps:

1. In the Dockerfile :

In the example Dockerfile , comment the line that starts with RUN echo by adding
a # character at its beginning.

In the example Dockerfile , uncomment the line starting with COPY by removing
the leading # character.

2. Rebuild the image.

3. Run the image in detached mode:

> docker run --detach --interactive --tty EXAMPLEUSER_PLAIN/apache2

Docker Open Source Engine responds with the container ID, for example:

e43fff4ae9832ecdb7677c058a73039d7610c32145a1d9b6ad0a4ed52b5c4dc7

To view the published data, point a browser at http://localhost:80/test.html .

To avoid copying Web site data into the container, share a directory of the host with the con-
tainer. For more information, see https://docs.docker.com/storage/volumes/ .

55 Container Guide

http://localhost:80/test.html
http://localhost:80/test.html
https://docs.docker.com/storage/volumes/

21 Container orchestration
In a production environment, you are likely to manage multiple containers. To work with mul-
tiple containers, you have to group the containers into a pod that provides a specification for
deploying and running the containers as well as allowing them to share storage and network
resources. In other words, a pod encapsulates an application composed of multiple containers
into a single unit. The concept of pod was introduced by Kubernetes (https://kubernetes.io/docs/

concepts/workloads/pods/) . Podman uses the same definition as Kubernetes.

Usually, containers within a pod can communicate directly with each other. Each pod contains
an infrastructure container (INFRA), whose purpose is to hold the namespace. INFRA also en-
ables Podman to add other containers to the pod. Port bindings, cgroup-parent values and kernel
namespaces are all assigned to the infrastructure container. Therefore, you cannot change any
of these values later.

Each container in a pod has its own instance of a monitoring program. The monitoring program
watches the container's process and if the container dies, the monitoring program saves its exit
code. The program also holds open the tty interface for the particular container. The monitoring
program enables you to run containers in the detached mode when Podman exits, because this
program continues to run and enables you to attach tty later.

21.1 Single container host with Podman

podman pod is the command-line tool for creating, removing, querying and inspecting pods.
You can check all the subcommands of podman pod in the official upstream documentation

(https://docs.podman.io/en/latest/markdown/podman-pod.1.html) .

podman pod create creates a pod with a random name. You can use the --name parameter
to assign the desired name to a pod.

> podman pod create
 344940492c00b6a19ececbc5b109351bf0a3b8b19b3c279a097da7a653c592d0

you can list our pods using the podman pod list command:

> podman pod list
 POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS

56 Container Guide

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://docs.podman.io/en/latest/markdown/podman-pod.1.html
https://docs.podman.io/en/latest/markdown/podman-pod.1.html

 344940492c00 suspicious_curie Created 2 minutes ago 617d7e3ce399 1

You can also list all containers with the pods they are associated with:

> podman ps -a --pod
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
 NAMES POD ID PODNAME
 617d7e3ce399 localhost/podman-pause:4.3.1-1669118400 5 minutes ago
 Created 344940492c00-infra 344940492c00 suspicious_curie

The created pod has an infra container identified by the localhost/podman-pause:4.x name.
The purpose of this container is to reserve the namespaces associated with the pod and allow
Podman to add other containers to the pod.

Using the podman run --pod command, you can run a container and add it to the desired pod.
For example, the command below runs a container based on the suse/sle15 image and adds
the container to the suspicious_curie pod:

> podman run -d --pod suspicious_curie registry.suse.com/bci/bci-base sleep 1h
 8f5af62a7c385bbd1a3a5cc3a53a8d0f8cf942adc26a065960d4232fcc93ac98

Warning
If this command shows the following warning, refer to Using container-suseconnect on

non-SLE hosts or with Podman, Buildah, and nerdctl (https://documentation.suse.com/con-

tainer/all/single-html/SLES-container/#sec-bci-suseconnect-podman-buildah-nerdctl) :

WARN[0005] Path "/etc/SUSEConnect" from "/etc/containers/mounts.conf" doesn't exist,
 skipping
 WARN[0005] Failed to mount subscriptions, skipping entry in /etc/containers/
mounts.conf: open /etc/zypp/credentials.d/SCCcredentials: permission denied

The command above adds a container that sleeps for 60 minutes and then exits. Run the podman
ps -a --pod command again and you should see that the pod now has two containers.

You can also check the command podman pod ps :

> podman pod ps
 POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
 344940492c00 suspicious_curie Running 21 minutes ago 617d7e3ce399 2

To stop our newly created container named objective_jemison

> podman ps -a --pod

57 Container Guide

https://documentation.suse.com/container/all/single-html/SLES-container/#sec-bci-suseconnect-podman-buildah-nerdctl
https://documentation.suse.com/container/all/single-html/SLES-container/#sec-bci-suseconnect-podman-buildah-nerdctl
https://documentation.suse.com/container/all/single-html/SLES-container/#sec-bci-suseconnect-podman-buildah-nerdctl

 CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS NAMES POD ID PODNAME
 617d7e3ce399 localhost/podman-pause:4.3.1-1669118400
 14 minutes ago Up 4 minutes ago 344940492c00-infra 344940492c00
 suspicious_curie 8f5af62a7c38 registry.suse.com/bci/bci-base:latest sleep 1h
 4 minutes ago Up 4 minutes ago objective_jemison 344940492c00
 suspicious_curie
 > podman stop objective_jemison
 objective_jemison
 > podman pod ps
 POD ID NAME STATUS CREATED INFRA ID # OF CONTAINERS
 344940492c00 suspicious_curie Degraded 25 minutes ago 617d7e3ce399 2
 > podman ps -a --pod
 CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS NAMES POD ID PODNAME
 617d7e3ce399 localhost/podman-pause:4.3.1-1669118400 25
 minutes ago Up 15 minutes ago 344940492c00-infra 344940492c00
 suspicious_curie 8f5af62a7c38 registry.suse.com/bci/bci-base:latest sleep 1h 15
 minutes ago Exited (137) 14 seconds ago objective_jemison 344940492c00
 suspicious_curie

You can also stop the pod and all of its containers using, podman pod stop

podman pod stop suspicious_curie
 344940492c00b6a19ececbc5b109351bf0a3b8b19b3c279a097da7a653c592d0
 > podman ps -ap
 CONTAINER ID IMAGE COMMAND CREATED STATUS
 PORTS NAMES POD ID PODNAME
 617d7e3ce399 localhost/podman-pause:4.3.1-1669118400 29
 minutes ago Exited (0) 7 seconds ago 344940492c00-infra 344940492c00
 suspicious_curie 8f5af62a7c38 registry.suse.com/bci/bci-base:latest sleep 1h 19
 minutes ago Exited (137) 3 minutes ago objective_jemison 344940492c00
 suspicious_curie

You can also start and restart everything with sudo podman start CONTAINER_NAME , podman
pod start POD_NAME or podman pod restart POD_NAME .

There are two ways to remove pods. You can use the podman pod rm command to remove one
or more pods. Alternatively, you can remove all stopped pods using the podman pod prune
command. To remove a pod or several pods, run the podman pod rm command as follows:

> podman pod rm POD

POD can be a pod name or a pod ID. To remove all currently stopped pods, use the podman pod
prune command. Make sure that all stopped pods are intended to be removed before you run
the podman pod prune command, otherwise there is a risk of removing pods that are still in use.

58 Container Guide

A container runtime makes it easy to launch an application distributed as a single container.
But things get more complicated when you need to run applications consisting of multiple con-
tainers, or when it's necessary to start the applications automatically on system boot and restart
them after they crash. While container orchestration tools like Kubernetes are designed for that
exact purpose, they are intended to be used for highly distributed and scalable systems with
hundreds of nodes, and not for a single machine. systemd and Podman are much better suited for
the single-machine scenario, as they do not add another layer complexity to your existing setup.

Podman supports creating systemd unit les with the podman generate systemd subcommand.
The subcommand creates a systemd unit le, making it possible to control a container or pod
via systemd. Using the unit le you can launch a container or pod on boot, automatically restart
it if a failure occurs, and keep its logs in journald.

The following example uses a simple NGINX container:

> podman run -d --name web -p 8080:80 docker.io/nginx
 c0148d8476418a2da938a711542c55efc09e4119909aea70e287465c6fb51618

Generating a systemd unit for the container can be done as follows:

> podman generate systemd --name --new web
 # container-web.service
 # autogenerated by Podman 4.2.0
 # Tue Sep 13 10:58:54 CEST 2022

 [Unit]
 Description=Podman container-web.service
 Documentation=man:podman-generate-systemd(1)
 Wants=network-online.target
 After=network-online.target
 RequiresMountsFor=%t/containers

 [Service]
 Environment=PODMAN_SYSTEMD_UNIT=%n
 Restart=on-failure
 TimeoutStopSec=70
 ExecStartPre=/bin/rm -f %t/%n.ctr-id
 ExecStart=/usr/bin/podman run \
 --cidfile=%t/%n.ctr-id \
 --cgroups=no-conmon \
 --rm \
 --sdnotify=conmon \
 --replace \
 -d \
 --name web \

59 Container Guide

 -p 8080:80 docker.io/nginx
 ExecStop=/usr/bin/podman stop --ignore --cidfile=%t/%n.ctr-id
 ExecStopPost=/usr/bin/podman rm -f --ignore --cidfile=%t/%n.ctr-id
 Type=notify
 NotifyAccess=all

 [Install]
 WantedBy=default.target

Podman outputs a unit le to the console that can be put either into the user unit systemd direc-
tories (~/.config/systemd/user/ or /etc/systemd/user/) or into the system unit systemd
directory (/etc/systemd/system) and control the container via systemd. The --new ag in-
structs Podman to recreate the container on a restart. This ensures that the systemd unit is self-
contained, and it does not depend on external state. The --name ag allows you to assign a user-
friendly name to the container: without it Podman uses container IDs instead of their names.

To control the container as a user unit, proceed as follows:

> podman generate systemd --name --new --files web
 /home/user/container-web.service
 > mv container-web.service ~/.config/systemd/user/
 > systemctl --user daemon-reload

Now the container can be started with systemctl --user start container-web :

> systemctl --user start container-web
 > systemctl --user is-active container-web.service
 active

Run the podman ps command to see the list of all running containers :

> podman ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 af92743971d2 docker.io/library/nginx:latest nginx -g daemon o... 15 minutes ago
 Up 15 minutes ago 0.0.0.0:8080->80/tcp web

One of the benefits of managing the container via systemd is the ability to automatically restart
the container if it crashes. You can simulate a crash by sending SIGKILL to the main process
in the container:

> podman ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 4c89582fa9cb docker.io/library/nginx:latest nginx -g daemon o... About a minute
 ago Up About a minute ago 0.0.0.0:8080->80/tcp web

 > kill -9 $(podman inspect --format "{{.State.Pid}}" web)

60 Container Guide

 > podman ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 0b5be4493251 docker.io/library/nginx:latest nginx -g daemon o... 4 seconds ago Up
 4 seconds ago 0.0.0.0:8080->80/tcp web

Note that the container is not restarted when it is stopped gracefully, e.g. via podman stop web .
To always restart it, add the ag --restart-policy=always to podman generate systemd .

21.2 Updating container images

Using the described approach means that the container image is never updated. You can solve
the problem by adding the --pull=always ag to the ExecStart= entry in the unit le. But
be aware that this increases the startup time of the container and updates the image on every
restart. The latter also means that a container image update can make the container unavailable
outside of a scheduled maintenance window due to a newly introduced bug.

The auto-update (https://docs.podman.io/en/latest/markdown/podman-auto-update.1.html)

subcommand in Podman provides a possible solution. Add the label io.containers.autoup-
date=registry to a container to make Podman pull a new version of the container image from
the registry when running podman auto-update . This makes it possible to update all container
images with a single command at a desired time, and without increasing the startup time of
the systemd units.

The auto update feature can be enabled by adding the line --label "io.containers.autoup-
date=registry" \ to the ExecStart= entry of the container's systemd unit le. for the NGINX
example, modify ~/.config/systemd/user/container-web.service as follows:

ExecStart=/usr/bin/podman run \
 --cidfile=%t/%n.ctr-id \
 --cgroups=no-conmon \
 --rm \
 --sdnotify=conmon \
 --replace \
 -d \
 --name web \
 --label "io.containers.autoupdate=registry" \
 -p 8080:80 docker.io/nginx

After reloading the daemons and restarting the container, perform a dry run of the update (it
will most likely not report any updates):

> podman auto-update --dry-run

61 Container Guide

https://docs.podman.io/en/latest/markdown/podman-auto-update.1.html

 UNIT CONTAINER IMAGE POLICY UPDATED
 container-web.service 87d263489307 (web) docker.io/nginx registry false

It is good practice to have external testing in place to make sure that image updates are gener-
ally safe to be deployed. If you are confident in the quality of our container image, you can
let Podman automatically apply image updates periodically by enabling the podman-auto-up-
date.timer :

only for the current user
 > systemctl --user enable podman-auto-update.timer
 Created symlink /home/user/.config/systemd/user/timers.target.wants/podman-auto-
update.timer → /usr/lib/systemd/user/podman-auto-update.timer.
 # or as root
 > sudo systemctl enable podman-auto-update.timer
 Created symlink /etc/systemd/system/timers.target.wants/podman-auto-update.timer → /
usr/lib/systemd/system/podman-auto-update.timer.

21.3 Managing multiple containers

Certain applications rely on more than one container to function, for example, a web front-
end, a back-end server and a database. Docker compose (https://docs.docker.com/compose/)

is popular tool for deploying multi-container applications on a single machine. While Podman
does not support the compose command natively, in most cases compose les can be ported to
a Podman pod and multiple containers.

The following example deploys a Drupal and PostgreSQL container in a single pod and manages
these via systemd units. First, create a new pod that exposes the Drupal web interface:

> podman pod create -p 8080:80 --name drupal
 736cab072c49e68ad368ba819e9117be13ef8fa048a2eb88736b5968b3a19a64

Once the pod has been created, launch the Drupal front-end and the PostgreSQL database inside
it:

> podman run -d --name drupal-frontend --pod drupal docker.io/drupal
 ffd2fbd6d445e63fb0c28abb8d25ced78f819211d3bce9d6174fe4912d89f0ca

 > podman run -d --name drupal-pg --pod drupal \
 -e POSTGRES_DB=drupal \
 -e POSTGRES_USER=user \
 -e POSTGRES_PASSWORD=pass \
 docker.io/postgres:11

62 Container Guide

https://docs.docker.com/compose/

 a4dc31b24000780d9ffd81a486d0d144c47c3adfbecf0f7effee24a00273fcde

This results in three running containers: the Drupal web interface, the PostgreSQL database and
the pod's infrastructure container.

> podman ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES
 2948fa1476c6 localhost/podman-pause:4.2.0-1660228937 2
 minutes ago Up About a minute ago 0.0.0.0:8080->80/tcp 736cab072c49-infra
 ffd2fbd6d445 docker.io/library/drupal:latest apache2-foregroun... About a
 minute ago Up About a minute ago 0.0.0.0:8080->80/tcp drupal-frontend
 a4dc31b24000 docker.io/library/postgres:11 postgres 40
 seconds ago Up 41 seconds ago 0.0.0.0:8080->80/tcp drupal-pg

Creating a systemd unit for the pod is done similar to a single container:

> podman generate systemd --name --new --files drupal
 /home/user/pod-drupal.service
 /home/user/container-drupal-frontend.service
 /home/user/container-drupal-pg.service
 > mv *service ~/.config/systemd/user/
 > systemctl daemon-reload --user

Since Podman is aware of which containers belong to the drupal pod and how their systemd
units are called, it can correctly add the dependencies to the pod's unit le. This means that
when you start or stop the pod, systemd ensures that all containers inside the pod are started
or stopped automatically.

To check systemd's dependency handling, rst stop the drupal pod and verify that no containers
are currently running on the host:

> podman pod stop drupal
 736cab072c49e68ad368ba819e9117be13ef8fa048a2eb88736b5968b3a19a64
 > podman pod rm drupal
 736cab072c49e68ad368ba819e9117be13ef8fa048a2eb88736b5968b3a19a64
 > podman ps -a
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

Start the drupal pod via systemctl start --user pod-drupal.service , and systemd
launches the containers inside the pod:

> systemctl start --user pod-drupal.service
 > podman ps
 CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

63 Container Guide

 d1589d3ac68b localhost/podman-pause:4.2.0-1660228937 5
 seconds ago Up 5 seconds ago 0.0.0.0:8080->80/tcp ca41b505bd13-infra
 a49bea53c20c docker.io/library/postgres:11 postgres 4
 seconds ago Up 5 seconds ago 0.0.0.0:8080->80/tcp drupal-pg
 dc9dca018dad docker.io/library/drupal:latest apache2-foregroun... 4
 seconds ago Up 5 seconds ago 0.0.0.0:8080->80/tcp drupal-frontend

21.4 More on Podman

If you want to learn more about Podman and handling pod deployment, please check https://

docs.podman.io/en/latest/ and https://github.com/containers/podman

21.5 Multi-container host with Kubernetes

Kubernetes (https://kubernetes.io) is an open source container orchestration engine for
automating deployment, scaling and management of containerized applications. The open
source project is hosted by the Cloud Native Computing Foundation (CNCF (https://www.c-

ncf.io/about)).

Kubernetes makes it possible for multiple machines (or servers or nodes) to work together and
create a cluster that you can then interact with through APIs. We recommend using Rancher

(https://ranchermanager.docs.rancher.com) for deploying Kubernetes clusters and managing
applications running on top of them. A single Rancher setup can manage multiple Kubernetes
clusters running anywhere: from bare-metal, to on-prem or cloud service providers.

For more information on Ranger, refer to the official Rancher documentation (https://rancher-

manager.docs.rancher.com) .

21.6 Lightweight Kubernetes (k3s)

K3s (https://k3s.io) is lightweight CNCF-certified Kubernetes distribution built for IoT & Edge
computing. Unlike Kubernetes K3s is packaged as a single <60 MB binary and optimized for
the Arm architecture.

For more info, refer to Introduction to K3s (https://www.suse.com/c/rancher_blog/in-

troduction-to-k3s/) and how to install K3s and Rancher on SUSE Linux Enter-

prise Server (https://documentation.suse.com/trd/kubernetes/single-html/kubernetes_ri_ranch-

er-k3s-sles/index.html#id-introduction)

64 Container Guide

https://docs.podman.io/en/latest/
https://docs.podman.io/en/latest/
https://github.com/containers/podman
https://kubernetes.io
https://www.cncf.io/about
https://www.cncf.io/about
https://ranchermanager.docs.rancher.com
https://ranchermanager.docs.rancher.com
https://ranchermanager.docs.rancher.com
https://ranchermanager.docs.rancher.com
https://k3s.io
https://www.suse.com/c/rancher_blog/introduction-to-k3s/
https://www.suse.com/c/rancher_blog/introduction-to-k3s/
https://documentation.suse.com/trd/kubernetes/single-html/kubernetes_ri_rancher-k3s-sles/index.html#id-introduction
https://documentation.suse.com/trd/kubernetes/single-html/kubernetes_ri_rancher-k3s-sles/index.html#id-introduction
https://documentation.suse.com/trd/kubernetes/single-html/kubernetes_ri_rancher-k3s-sles/index.html#id-introduction

22 Compatibility and support conditions

The term "support" refers to two distinct concepts: a) technical enablement of a feature or com-
bination of, for example, host and container, and b) enterprise support as delivered by SUSE
to SUSE customers. Enterprise support requires a subscription for SUSE products according to
https://www.suse.com/products/terms_and_conditions.pdf . Technical enablement is described
below.

22.1 Support for SLES hosts

Consult the following support and compatibility matrix to make sure that the desired host system
and container combination is compatible and supported.

TABLE 2: SUPPORT MATRIX

Host ↓ Container image → SLES 12 SLES 15

SLES 12 SP5 ✓ ❋

SLES 15 ✓ ✓

SLE Micro ✓ ✓

✓ Fully supported

❋ Limited support (see the Limited support note)

Important: Limited support note
SUSE provides limited support for SLES 15 GA-based containers running on SLES 12 SP5
hosts due to the fact that containerized applications can make system calls not available in
the host's kernel. To avoid potential risks and compatibility problems, SUSE recommends
using the same Service Pack release for both containers and hosts.

SLE BCIs support the following architectures: AMD64/Intel 64, AArch64, POWER, and IBM Z.
Container architecture must match the architecture of the host. Mismatching container and host
scenarios are not supported.

65 Container Guide

https://www.suse.com/products/terms_and_conditions.pdf

In most scenarios, all SLE containers are expected to be interoperable if the application and
its dependencies do not interact directly with kernel version-specific data structures and their
derivatives (ioctl , /proc , /sys , routing , iptables , nftables , BTF , (e)BPF , etc.) or
modules (KVM, OVS, SystemTap, etc.). Support for ioctl and access to /proc is limited to the
most common scenarios needed by unprivileged users.

22.2 Support for non-SLES hosts

While SUSE-based containers are fully supported, issues in the host environment must be han-
dled by the host environment vendor. SUSE supports components that are part of the SUSE base
containers. Packages from SUSE repositories are also supported. Additional components and
applications in the containers are not covered by SUSE support. A SLE subscription is required
for building derived containers.

Containers based on SLES 12 SP5 and SLES 15 (all service packs) are supported according to
their official lifecycles and the following table.

The following third-party container host platforms are supported.

TABLE 3: SUPPORT FOR NON-SLES HOSTS

Container host platform Container runtime Support status

Rancher Kubernetes En-
gine (RKE)

docker ✓

Rancher Kubernetes En-
gine 2 (RKE2)

containerd ✓

K3S containerd ✓

Red Hat OpenShift cri-o ✓

Microsoft Azure Kuber-
netes Service (AKS)

containerd ✓

Google Kubernetes Engine
(GKE)

containerd ❋

66 Container Guide

Container host platform Container runtime Support status

Amazon Elastic Contain-
er Service for Kubernetes
(EKS)

containerd ✓

IBM Hyper Protect Plat-
form

docker/podman ❋❋

✓ Fully compatible and fully supported

❋ Workload specific: fully supported but compatibility depends on type of container (privileged
or unprivileged) and on the application interactions (direct with kernel-version-specific data
structures, kernel-version-specific modules, etc.)

❋❋ Provisional support status until testing is completed for full compatibility and full support.

Refer to the Rancher Support Matrix (https://www.suse.com/suse-rancher/support-matrix/all-sup-

ported-versions/) for more information regarding support for Rancher-related products.

22.3 Support plans

There are three guiding principles of SUSE container support.

1. The container image lifecycle follows the lifecycle of the related products.
For example, SLESS 15 SP4 container images follow the SLES 15 SP4 lifecycle.

2. Container release status also matches the status of the related product.
For example, if SLES 15 SP4 is in Alpha, Beta, RC or GA stage, the related containers have
the same release status.

3. Containers are built using the packages from the related products.
For example, SLES 15 SP4 container images are built using the same packages as the main
SLES 15 SP4 release.

For further information, refer to the Product Support Lifecycle (https://www.suse.com/lifecycle)

page and the documentation available for specific container images on SUSE Registry (https://

registry.suse.com) .

Container images can have different support status, and they can have limited support. Refer
to the appropriate https://registry.suse.com page for the further information about a specific
container image.

67 Container Guide

https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/
https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/
https://www.suse.com/lifecycle
https://registry.suse.com
https://registry.suse.com
https://registry.suse.com

22.4 Containers and host environments support overview

The following support options are valid for SLES containers on SUSE host environments.

Containers and host environments delivered by SUSE are fully supported. This also applies to
all products under support, including both general support and Long Term Service Pack Support

(https://www.suse.com/products/long-term-service-pack-support/) (LTSS).

Partner containers and host environments with a joint engineering collaboration agreement are
fully supported. This applies to both the container and host environment as well as all products
under support (both general and LTSS) covered by the agreement.

While SUSE-based containers are fully supported, issues in the host environment must be han-
dled by the host environment vendor. SUSE supports components that come from the SUSE base
containers. Packages from SUSE repositories are also supported. Additional components and
applications in the containers are not covered by SUSE support. No subscription is required for
building derived containers based on the content of the SLE SLE BCIs or the SLE_BCI Repository.
To build containers that include packages from the full SLE universe, you need a subscription
that grants you access to the repositories containing these packages.

Any container and host environment not mentioned above has limited support. Details can be
discussed with the SUSE Support Team responsible for triaging the issue and recommending
alternative solutions. In any other case, issues in the host environment must be handled by the
host environment vendor.

22.5 Technology previews

Container images labeled as Tech Preview are provided by SUSE to give you an opportunity to
test new technologies within your environment and share your feedback. If you test a technology
preview, contact your SUSE representative to share your experiences and use cases. Your input
is helpful for future development.

Technology previews come with the following limitations:

Technology previews may be functionally incomplete, unstable, and not suitable for pro-
duction use.

Technology previews are not supported.

Technology previews may be available only for specific hardware architectures.

68 Container Guide

https://www.suse.com/products/long-term-service-pack-support/
https://www.suse.com/products/long-term-service-pack-support/

Specics and functionality of technology previews are subject to change. As a result, up-
grading to subsequent releases of a technology preview may not be possible and may re-
quire a fresh installation.

Technology previews can be canceled at any time. For example, this might happen if SUSE
discovers that a preview does not meet the customer or market needs, or that it does not
comply with enterprise standards. SUSE does not commit to providing a supported version
of such technologies in the future.

Container images are labeled as Tech Preview and are marked as such at registry.suse.com (https://

registry.suse.com) . Additionally, container images that are technology previews include the
com.suse.supportlevel="techpreview" label in the container image metadata. You can
check whether the metadata includes the label using the docker inspect command, or an
appropriate command in other container runtimes.

23 Troubleshooting

23.1 Analyze container images with container-diff
In case a custom Docker Open Source Engine container image built on top of the SLE-Base
container image is not working as expected, the container-diff tool can help you analyze
the image and collect information relevant for troubleshooting.

container-diff makes it possible to analyze image changes by computing differences between
images and presenting the di in a human-readable and actionable format. The tool can nd
differences in system packages, language-level packages, and les in a container image.

container-diff can handle local container images (using the prefix daemon://), images in a
remote registry (using the prefix remote://), and images saved as .tar archives. You can use
container-diff to compute the di between a local version of an image and a remote version.

To install container-diff , run the sudo zypper in container-diff command.

23.1.1 Basic container-diff commands

The command container-diff analyze IMAGE runs a standard analysis on a single image.
By default, it returns a hash and size of the container image. For more information that can
help you to identify and x problems, use the specific analyzers. Use the --type parameter to

69 Container Guide

https://registry.suse.com
https://registry.suse.com

specify the desired analyzer. Two of the most useful analyzers are history (returns a list of
descriptions of how an image layer was created) and file (returns a list of le system contents,
including names, paths, and sizes):

> sudo container-diff analyze --type=history daemon://IMAGE
 > sudo container-diff analyze --type=file daemon://IMAGE

To view all available parameters and their brief descriptions, run the container-diff analyze
--help command.

Using the container-diff diff command, you can compare two container images and ex-
amine differences between them. Similar to the container-diff analyze command, con-
tainer-diff diff supports several parameters. The example command below compares two
images and returns a list of descriptions of how IMAGE2 was created from IMAGE1.

> sudo container-diff diff daemon://IMAGE1 daemon://IMAGE2 --type=history

To view all available parameters and their brief descriptions, run the container-diff diff
--help command.

24 Terminology

Container

A container is a running instance based on a particular container image. Each container can
be distinguished by a unique container ID.

Control groups

Control groups, also called cgroups , are a Linux kernel feature that allows aggregating or
partitioning tasks (processes) and all their children into hierarchically-organized groups,
to manage their resource limits.

70 Container Guide

Docker Open Source Engine

Docker Open Source Engine is a server-client type application that performs all tasks re-
lated to containers. Docker Open Source Engine comprises the following: +

Daemon:. + The server side of Docker Open Source Engine, which manages all
Docker objects (images, containers, network connections used by containers, etc.).

REST API:. + Applications can use this API to communicate directly with the dae-
mon.

CLI client:. + Enables you to communicate with the daemon. If the daemon is run-
ning on a different machine than the CLI client, the CLI client can communicate by
using network sockets or the REST API provided by Docker Open Source Engine.

Dockerfile

A Dockerfile provides instructions on how to build a container image. Docker Open Source
Engine reads instructions in the Dockerfile and builds a new image according to the in-
structions.

Image

An image is a read-only template used to create a container. A Docker image is made of a
series of layers built one over the other. Each layer corresponds to a permanent change, for
example, an update of an application. The changes are stored in a le called a Dockerfile.
For more details, see the official Docker documentation (https://docs.docker.com/engine/ref-

erence/glossary#image) .

Container image

A container image is an unchangeable, static le that includes executable code so it can run
an isolated process on IT infrastructure. The image is comprised of system libraries, system
tools, and other platform settings a program needs to run on a containerization platform. A
container image is compiled from le system layers built on top of a parent or base image.

Base image

A base image is an image that does not have a parent image. In a Dockerfile, a base image
is identified by the FROM scratch directive.

Parent image

The image that serves as the basis for another container image. In other words, if an image
is not a base image, it is derived from a parent image. In a Dockerfile, the FROM directive
is pointing to the parent image. Most Docker containers are created using parent images.

71 Container Guide

https://docs.docker.com/engine/reference/glossary#image
https://docs.docker.com/engine/reference/glossary#image

Namespaces

Docker Open Source Engine uses Linux namespaces for its containers, which isolates re-
sources reserved for particular containers.

Orchestration

In a production environment, you typically need a cluster with many containers on each
cluster node. The containers must cooperate and you need a framework that enables you
to automatically manage the containers. The act of automatic container management is
called container orchestration and is typically handled by Kubernetes.

Registry

A registry is storage for already-created images. It typically contains several repositories.
There are two types of registries: +

public registry: Any (usually registered) user can download and use images. A typical
example of a public registry is Docker Hub (https://hub.docker.com/) .

private registry: Access is restricted to particular users, or from a particular private
network.

Repository

A repository is storage for images in a registry.

25 Improving the documentation
Feedback and contributions to this documentation can be submitted using any of the following
options.

Service requests and support

For services and support options available for your product, see https://www.suse.com/

support/ . To open a service request, you need a SUSE subscription registered at SUSE
Customer Center. Go to https://scc.suse.com/support/requests , log in, and click Create
New.

Bug reports

Report issues with the documentation at https://bugzilla.suse.com/ (this requires a Bugzil-
la account). To simplify the process, use the Report an issue link in the HTML version of this
document. Point the cursor to the desired sentence, and click Report an issue in the Give

72 Container Guide

https://hub.docker.com/
https://www.suse.com/support/
https://www.suse.com/support/
https://scc.suse.com/support/requests
https://bugzilla.suse.com/

feedback section of the right-side navigation panel. This automatically selects the correct
product and category in Bugzilla and adds a link to the current section. You can now write
your bug report.

Contributions

To contribute to this documentation, use the Edit source document link in the HTML version
of this document (this requires a GitHub account). Point the cursor to the desired sentence,
and click Report an issue in the Give feedback section of the right-side navigation panel.
This takes you to the source code on GitHub, where you can open a pull request.

Note: Edit source document only available for English
The Edit source document links are only available for the English version of each docu-
ment. For all other languages, use the Report an issue link as described above.

For more information about the documentation environment used for this documentation,
refer to the repository's README le at https://github.com/SUSE/doc-unversioned/blob/main/

README.adoc

Mail

You can also report errors and send feedback concerning the documentation to doc-
team@suse.com . Include the document title, the product version, and the publication date
of the document. Additionally, include the relevant section number and title (or provide
the URL), and provide a concise description of the problem.

26 Legal Notice

Copyright© 2006–2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trade-
marks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trade-
marks of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.

73 Container Guide

https://github.com/SUSE/doc-unversioned/blob/main/README.adoc
https://github.com/SUSE/doc-unversioned/blob/main/README.adoc
https://www.suse.com/company/legal/

All information found in this book has been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors, nor the
translators shall be held liable for possible errors or the consequences thereof.

27 GNU Free Documentation License
Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or non-commercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

74 Container Guide

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or po-
litical position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent le format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

75 Container Guide

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-com-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other condi-
tions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material

76 Container Guide

on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the rst
ones listed (as many as t reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take rea-
sonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least ve of the principal
authors of the Document (all of its principal authors, if it has fewer than ve), unless they
release you from this requirement.

77 Container Guide

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

78 Container Guide

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties--for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled "Ac-
knowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

79 Container Guide

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires spe-
cial permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

80 Container Guide

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See https://www.gnu.org/

copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

81 Container Guide

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

82 Container Guide

	Container Guide
	Contents
	1. Introduction to Linux containers
	1.1. Key concepts and introduction to Podman

	2. Tools for building images and managing containers
	2.1. SUSE Registry
	2.2. Docker
	2.3. Podman
	2.4. Buildah
	2.5. skopeo
	2.6. Helm
	2.7. Distribution
	2.8. Open Build Service
	2.9. KIWI NG

	3. Introduction to SLE Base Container Images
	3.1. Why SLE Base Container Images
	3.2. Highlights

	4. General-purpose SLE Base Container Images
	4.1. SLE BCI-Base and SLE BCI-Init: When you need flexibility
	4.2. SLE BCI-Minimal: When you do not need Zypper
	4.3. SLE BCI-Micro: When you need to deploy static binaries
	4.4. SLE BCI-BusyBox: When you need the smallest and GPLv3-free image
	4.5. Approximate sizes

	5. Using Long Term Service Pack Support container images from the SUSE Registry
	6. Development Stack SLE Base Container Images
	7. Application SLE Base Container Images
	8. Important note on status and lifecycle SLE Base Container Images
	9. SLE Base Container Image labels
	9.1. Working with SLE BCI labels

	10. SLE BCI tags
	11. Understanding SLE BCIs
	11.1. Package manager
	11.2. Using container-suseconnect with SLE BCIs
	11.3. Common patterns
	11.4. Package naming conventions
	11.5. Adding GPG signing keys

	12. Getting started with SLE Base Container Images
	13. Registration and Online Repositories
	13.1. Enabling the Containers Module using the YaST graphical interface
	13.2. Enabling the Containers Module from the command line using SUSEConnect
	13.3. container-suseconnect
	13.3.1. Using container-suseconnect on SLES and openSUSE
	13.3.2. Using container-suseconnect on non-SLES hosts or with Podman and Buildah
	13.3.3. Adding modules into the container or container Image

	14. Podman overview
	14.1. Podman installation
	14.1.1. Tips and tricks for rootless containers
	14.1.2. Caveats of rootless containers
	14.1.3. podman-docker

	14.2. Obtaining container images
	14.2.1. Configuring container registries
	14.2.2. Searching images in registries
	14.2.3. Downloading (pulling) images

	14.3. Renaming images and images tag
	14.4. Deploying container images
	14.5. Building images with Podman

	15. Setting up Docker Open Source Engine
	15.1. Preparing the host
	15.1.1. Installing and configuring Docker Open Source Engine

	15.2. Configuring the network
	15.2.1. How Docker Open Source Engine interacts with iptables

	15.3. Storage drivers
	15.4. Updates

	16. Configuring image storage
	16.1. Running a Docker Registry
	16.2. Limitations

	17. Verifying container images
	17.1. Verifying SLE Base Container Images with Docker
	17.2. Verifying SLE Base Container Images with Cosign
	17.3. Verifying SLE Base Container Images with Podman

	18. Buildah overview
	18.1. Buildah installation
	18.2. Building images with Buildah

	19. Creating custom container images
	19.1. Pulling base SUSE Linux Enterprise Server images
	19.2. Customizing container images
	19.2.1. Repositories and Registration
	19.2.2. Creating a custom image for SLE 12 SP5 and later
	19.2.3. Building container images in on-demand SLE instances in the public cloud

	20. Creating application container images
	20.1. Running an application with specific package versions
	20.2. Running an application with a specific configuration
	20.3. Sharing data between an application and the host system
	20.4. Applications running in the background

	21. Container orchestration
	21.1. Single container host with Podman
	21.2. Updating container images
	21.3. Managing multiple containers
	21.4. More on Podman
	21.5. Multi-container host with Kubernetes
	21.6. Lightweight Kubernetes (k3s)

	22. Compatibility and support conditions
	22.1. Support for SLES hosts
	22.2. Support for non-SLES hosts
	22.3. Support plans
	22.4. Containers and host environments support overview
	22.5. Technology previews

	23. Troubleshooting
	23.1. Analyze container images with container-diff
	23.1.1. Basic container-diff commands

	24. Terminology
	25. Improving the documentation
	26. Legal Notice
	27. GNU Free Documentation License

