
SUSE Linux Enterprise Server 15 SP4

System Analysis and
Tuning Guide

System Analysis and Tuning Guide
SUSE Linux Enterprise Server 15 SP4

This guide supports administrators in problem detection, resolution and optimiza-
tion.

Publication Date: May 23, 2024

https://documentation.suse.com

Copyright © 2006–2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-

mentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright

notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation

License”.

https://documentation.suse.com

For SUSE trademarks, see https://www.suse.com/company/legal/ . All third-party trademarks are the property

of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks

(*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

https://www.suse.com/company/legal/

Contents

Preface xiii
1 Available documentation xiii

2 Improving the documentation xiv

3 Documentation conventions xv

4 Support xvii

Support statement for SUSE Linux Enterprise Server xvii • Technology

previews xviii

I BASICS 1

1 General notes on system tuning 2
1.1 Be sure what problem to solve 2

1.2 Rule out common problems 3

1.3 Finding the bottleneck 4

1.4 Step-by-step tuning 4

II SYSTEM MONITORING 5

2 System monitoring utilities 6
2.1 Multi-purpose tools 7

vmstat 7 • dstat 10 • System activity information: sar 11

2.2 System information 15

Device load information: iostat 15 • Processor activity monitoring:

mpstat 16 • Processor frequency monitoring: turbostat 17 • Task

monitoring: pidstat 17 • Kernel ring buffer: dmesg 18 • List of

open files: lsof 18 • Kernel and udev event sequence viewer: udevadm
monitor 19

iv System Analysis and Tuning Guide

2.3 Processes 19

Interprocess communication: ipcs 19 • Process list: ps 20 • Process

tree: pstree 21 • Table of processes: top 22 • IBM Z hypervisor

monitor: hyptop 23 • A top-like I/O monitor: iotop 25 • Modify a

process's niceness: nice and renice 26

2.4 Memory 27

Memory usage: free 27 • Detailed memory usage: /proc/

meminfo 27 • Process memory usage: smaps 32 • numaTOP 32

2.5 Networking 33

Basic network diagnostics: ip 33 • Show the network usage of processes:

nethogs 34 • Ethernet cards in detail: ethtool 34 • Show the network

status: ss 35

2.6 The /proc file system 36

procinfo 39 • System control parameters: /proc/sys/ 40

2.7 Hardware information 41

PCI resources: lspci 41 • USB devices: lsusb 42 • Monitoring

and tuning the thermal subsystem: tmon 43 • MCELog: machine

check exceptions (MCE) 43 • AMD64/Intel 64: dmidecode: DMI table

decoder 45 • POWER: list hardware 45

2.8 Files and file systems 45

Determine the file type: file 46 • File systems and their usage: mount,

df and du 46 • Additional information about ELF binaries 47 • File

properties: stat 48

2.9 User information 48

User accessing files: fuser 48 • Who is doing what: w 49

2.10 Time and date 49

Time measurement with time 49

2.11 Graph your data: RRDtool 50

How RRDtool works 50 • A practical example 51 • More

information 55

v System Analysis and Tuning Guide

3 System log files 56

3.1 System log files in /var/log/ 56

3.2 Viewing and parsing log files 58

3.3 Managing log files with logrotate 58

3.4 Monitoring log files with logwatch 60

3.5 Configuring mail forwarding for root 61

3.6 Forwarding log messages to a central syslog server 62

Set up the central syslog server 63 • Set up the client

machines 64 • More information 65

3.7 Using logger to make system log entries 65

III KERNEL MONITORING 66

4 SystemTap—filtering and analyzing system data 67
4.1 Conceptual overview 67

SystemTap scripts 67 • Tapsets 68 • Commands and

privileges 68 • Important files and directories 69

4.2 Installation and setup 70

4.3 Script syntax 71

Probe format 72 • SystemTap events (probe points) 73 • SystemTap

handlers (probe body) 74

4.4 Example script 78

4.5 User space probing 79

4.6 More information 80

5 Kernel probes 81

5.1 Supported architectures 81

5.2 Types of kernel probes 82

Kprobes 82 • Jprobes 82 • Return probe 82

vi System Analysis and Tuning Guide

5.3 Kprobes API 83

5.4 debugfs Interface 84

Listing registered kernel probes 84 • Globally enabling/disabling kernel

probes 84

5.5 More information 85

6 Hardware-based performance monitoring with
Perf 86

6.1 Hardware-based monitoring 86

6.2 Sampling and counting 86

6.3 Installing Perf 87

6.4 Perf subcommands 87

6.5 Counting particular types of event 88

6.6 Recording events specific to particular commands 89

6.7 More information 89

7 OProfile—system-wide profiler 91

7.1 Conceptual overview 91

7.2 Installation and requirements 91

7.3 Available OProfile utilities 92

7.4 Using OProfile 92

Creating a report 92 • Getting event configurations 93

7.5 Generating reports 95

7.6 More information 95

8 Dynamic debug—kernel debugging messages 97

8.1 Benefits of dynamic debugging 97

8.2 Checking the status of dynamic debug 97

vii System Analysis and Tuning Guide

8.3 Using dynamic debug 98

8.4 Viewing the dynamic debug messages 99

IV RESOURCE MANAGEMENT 100

9 General system resource management 101
9.1 Planning the installation 101

Partitioning 101 • Installation scope 102 • Default target 102

9.2 Disabling unnecessary services 102

9.3 File systems and disk access 103

File systems 104 • Time stamp update policy 104 • Prioritizing disk access

with ionice 105

10 Kernel control groups 106

10.1 Overview 106

10.2 Resource accounting 107

10.3 Setting resource limits 107

10.4 Preventing fork bombs with TasksMax 108

Finding the current default TasksMax values 108 • Overriding the

DefaultTasksMax value 108 • Default TasksMax limit on users 110

10.5 I/O control with cgroups 110

Prerequisites 111 • Configuring control quantities 112 • I/O control

behavior and setting expectations 112

10.6 More information 114

11 Automatic Non-Uniform Memory Access (NUMA)
balancing 115

11.1 Implementation 115

11.2 Configuration 116

11.3 Monitoring 117

viii System Analysis and Tuning Guide

11.4 Impact 118

12 Power management 120

12.1 Power management at CPU Level 120

C-states (processor operating states) 120 • P-states (processor performance

states) 121 • Turbo features 122

12.2 In-kernel governors 122

12.3 The cpupower tools 123

Viewing current settings with cpupower 124 • Viewing kernel idle statistics

with cpupower 124 • Monitoring kernel and hardware statistics with

cpupower 125 • Modifying current settings with cpupower 127

12.4 Special tuning options 127

Tuning options for P-states 127

12.5 Troubleshooting 128

12.6 More information 129

12.7 Monitoring power consumption with powerTOP 129

V KERNEL TUNING 132

13 Tuning I/O performance 133
13.1 Switching I/O scheduling 133

13.2 Available I/O elevators with blk-mq I/O path 134

MQ-DEADLINE 134 • NONE 135 • BFQ (Budget Fair

Queueing) 135 • KYBER 137

13.3 I/O barrier tuning 137

14 Tuning the task scheduler 139

14.1 Introduction 139

Preemption 139 • Timeslice 140 • Process priority 140

14.2 Process classification 140

ix System Analysis and Tuning Guide

14.3 Completely Fair Scheduler 141

How CFS works 142 • Grouping processes 142 • Kernel

configuration options 142 • Terminology 143 • Changing real-

time attributes of processes with chrt 143 • Runtime tuning with

sysctl 144 • Debugging interface and scheduler statistics 149

14.4 More information 151

15 Tuning the memory management subsystem 152

15.1 Memory usage 152

Anonymous memory 153 • Pagecache 153 • Buffercache 153 • Buffer

heads 153 • Writeback 153 • Readahead 154 • VFS caches 154

15.2 Reducing memory usage 155

Reducing malloc (anonymous) usage 155 • Reducing kernel memory

overheads 155 • Memory controller (memory cgroups) 155

15.3 Virtual memory manager (VM) tunable parameters 156

Reclaim ratios 156 • Writeback parameters 157 • Timing differences

of I/O writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise

11 159 • Readahead parameters 160 • Transparent HugePage

parameters 160 • khugepaged parameters 162 • Further VM

parameters 162

15.4 Monitoring VM behavior 163

16 Tuning the network 165

16.1 Configurable kernel socket buffers 165

16.2 Detecting network bottlenecks and analyzing network traffic 167

16.3 Netfilter 167

16.4 Improving the network performance with receive packet steering
(RPS) 167

x System Analysis and Tuning Guide

17 Tuning SUSE Linux Enterprise for SAP 170

17.1 Tuning SLE Systems with sapconf 5 170

Verifying sapconf setup 171 • Enabling and disabling sapconf and

viewing its status 172 • Configuring sapconf5 173 • Removing

sapconf 174 • For more information 174 • Using tuned together with

sapconf 174

VI HANDLING SYSTEM DUMPS 176

18 Tracing tools 177
18.1 Tracing system calls with strace 177

18.2 Tracing library calls with ltrace 181

18.3 Debugging and profiling with Valgrind 182

Installation 182 • Supported architectures 182 • General

information 183 • Default options 184 • How Valgrind

works 184 • Messages 185 • Error messages 186

18.4 More information 187

19 Kexec and Kdump 188

19.1 Introduction 188

19.2 Required packages 188

19.3 Kexec internals 189

19.4 Calculating crashkernel allocation size 190

19.5 Basic Kexec usage 194

19.6 How to configure Kexec for routine reboots 195

19.7 Basic Kdump configuration 195

Manual Kdump configuration 196 • YaST configuration 198 • Kdump over

SSH 200

19.8 Analyzing the crash dump 201

Kernel binary formats 202

xi System Analysis and Tuning Guide

19.9 Advanced Kdump configuration 206

19.10 More information 207

20 Using systemd-coredump to debug application
crashes 208

20.1 Use and configuration 208

VII SYNCHRONIZED CLOCKS WITH PRECISION TIME PROTOCOL 211

21 Precision Time Protocol 212
21.1 Introduction to PTP 212

PTP Linux implementation 212

21.2 Using PTP 213

Network driver and hardware support 213 • Using ptp4l 214 • ptp4l
configuration file 215 • Delay measurement 215 • PTP management

client: pmc 216

21.3 Synchronizing the clocks with phc2sys 217

Verifying time synchronization 218

21.4 Examples of configurations 219

21.5 PTP and NTP 220

NTP to PTP synchronization 220 • Configuring PTP-NTP bridge 221

A GNU licenses 222

xii System Analysis and Tuning Guide

Preface

1 Available documentation

Online documentation

Our documentation is available online at https://documentation.suse.com . Browse or
download the documentation in various formats.

Note: Latest updates
The latest updates are usually available in the English-language version of this doc-
umentation.

SUSE Knowledgebase

If you have run into an issue, also check out the Technical Information Documents (TIDs)
that are available online at https://www.suse.com/support/kb/ . Search the SUSE Knowl-
edgebase for known solutions driven by customer need.

Release notes

For release notes, see https://www.suse.com/releasenotes/ .

In your system

For offline use, the release notes are also available under /usr/share/doc/re-

lease-notes on your system. The documentation for individual packages is available at
/usr/share/doc/packages .
Many commands are also described in their manual pages. To view them, run man , followed
by a specific command name. If the man command is not installed on your system, install
it with sudo zypper install man .

xiii Available documentation SLES 15 SP4

https://documentation.suse.com
https://www.suse.com/support/kb/
https://www.suse.com/releasenotes/

2 Improving the documentation

Your feedback and contributions to this documentation are welcome. The following channels
for giving feedback are available:

Service requests and support

For services and support options available for your product, see https://www.suse.com/

support/ .
To open a service request, you need a SUSE subscription registered at SUSE Customer
Center. Go to https://scc.suse.com/support/requests , log in, and click Create New.

Bug reports

Report issues with the documentation at https://bugzilla.suse.com/ .
To simplify this process, click the Report an issue icon next to a headline in the HTML
version of this document. This preselects the right product and category in Bugzilla and
adds a link to the current section. You can start typing your bug report right away.
A Bugzilla account is required.

Contributions

To contribute to this documentation, click the Edit source document icon next to a headline
in the HTML version of this document. This will take you to the source code on GitHub,
where you can open a pull request.
A GitHub account is required.

Note: Edit source document only available for English
The Edit source document icons are only available for the English version of each
document. For all other languages, use the Report an issue icons instead.

For more information about the documentation environment used for this documentation,
see the repository's README.

Mail

You can also report errors and send feedback concerning the documentation to doc-
team@suse.com . Include the document title, the product version, and the publication date
of the document. Additionally, include the relevant section number and title (or provide
the URL) and provide a concise description of the problem.

xiv Improving the documentation SLES 15 SP4

https://www.suse.com/support/
https://www.suse.com/support/
https://scc.suse.com/support/requests
https://bugzilla.suse.com/

3 Documentation conventions
The following notices and typographic conventions are used in this document:

/etc/passwd : Directory names and le names

PLACEHOLDER : Replace PLACEHOLDER with the actual value

PATH : An environment variable

ls , --help : Commands, options, and parameters

user : The name of a user or group

package_name : The name of a software package

Alt , Alt – F1 : A key to press or a key combination. Keys are shown in uppercase as
on a keyboard.

File, File Save As: menu items, buttons

AMD/Intel This paragraph is only relevant for the AMD64/Intel 64 architectures. The
arrows mark the beginning and the end of the text block.
IBM Z, POWER This paragraph is only relevant for the architectures IBM Z and POWER .

The arrows mark the beginning and the end of the text block.

Chapter 1, “Example chapter”: A cross-reference to another chapter in this guide.

Commands that must be run with root privileges. You can also prefix these commands
with the sudo command to run them as a non-privileged user:

command
> sudo command

Commands that can be run by non-privileged users:

> command

Commands can be split into two or multiple lines by a backslash character (\) at the end
of a line. The backslash informs the shell that the command invocation will continue after
the line's end:

> echo a b \

xv Documentation conventions SLES 15 SP4

c d

A code block that shows both the command (preceded by a prompt) and the respective
output returned by the shell:

> command
output

Notices

Warning: Warning notice
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important: Important notice
Important information you should be aware of before proceeding.

Note: Note notice
Additional information, for example about differences in software versions.

Tip: Tip notice
Helpful information, like a guideline or a piece of practical advice.

Compact Notices

Additional information, for example about differences in software versions.

Helpful information, like a guideline or a piece of practical advice.

xvi Documentation conventions SLES 15 SP4

4 Support

Find the support statement for SUSE Linux Enterprise Server and general information about
technology previews below. For details about the product lifecycle, see https://www.suse.com/

lifecycle .

If you are entitled to support, nd details on how to collect information for a support ticket at
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html .

4.1 Support statement for SUSE Linux Enterprise Server

To receive support, you need an appropriate subscription with SUSE. To view the specific support
offers available to you, go to https://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1

Problem determination, which means technical support designed to provide compatibility
information, usage support, ongoing maintenance, information gathering and basic trou-
bleshooting using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce
customer problems, isolate a problem area and provide a resolution for problems not re-
solved by Level 1 or prepare for Level 3.

L3

Problem resolution, which means technical support designed to resolve problems by en-
gaging engineering to resolve product defects which have been identified by Level 2 Sup-
port.

For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 sup-
port for all packages, except for the following:

Technology previews.

Sound, graphics, fonts, and artwork.

Packages that require an additional customer contract.

xvii Support SLES 15 SP4

https://www.suse.com/lifecycle
https://www.suse.com/lifecycle
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://www.suse.com/support/

Some packages shipped as part of the module Workstation Extension are L2-supported only.

Packages with names ending in -devel (containing header les and similar developer
resources) will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged
and not recompiled.

4.2 Technology previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses
into upcoming innovations. Technology previews are included for your convenience to give you
a chance to test new technologies within your environment. We would appreciate your feedback.
If you test a technology preview, please contact your SUSE representative and let them know
about your experience and use cases. Your input is helpful for future development.

Technology previews have the following limitations:

Technology previews are still in development. Therefore, they may be functionally incom-
plete, unstable, or otherwise not suitable for production use.

Technology previews are not supported.

Technology previews may only be available for specific hardware architectures.

Details and functionality of technology previews are subject to change. As a result, up-
grading to subsequent releases of a technology preview may be impossible and require a
fresh installation.

SUSE may discover that a preview does not meet customer or market needs, or does not
comply with enterprise standards. Technology previews can be removed from a product
at any time. SUSE does not commit to providing a supported version of such technologies
in the future.

For an overview of technology previews shipped with your product, see the release notes at
https://www.suse.com/releasenotes .

xviii Technology previews SLES 15 SP4

https://www.suse.com/releasenotes

I Basics

1 General notes on system tuning 2

1 General notes on system tuning

This manual discusses how to nd the reasons for performance problems and pro-
vides means to solve these problems. Before you start tuning your system, you
should make sure you have ruled out common problems and have found the cause
for the problem. You should also have a detailed plan on how to tune the system,
because applying random tuning tips often will not help and could make things
worse.

PROCEDURE 1.1: GENERAL APPROACH WHEN TUNING A SYSTEM

1. Specify the problem that needs to be solved.

2. In case the degradation is new, identify any recent changes to the system.

3. Identify why the issue is considered a performance problem.

4. Specify a metric that can be used to analyze performance. This metric could for example
be latency, throughput, the maximum number of users that are simultaneously logged in,
or the maximum number of active users.

5. Measure current performance using the metric from the previous step.

6. Identify the subsystem(s) where the application is spending the most time.

7.
a. Monitor the system and/or the application.

b. Analyze the data, categorize where time is being spent.

8. Tune the subsystem identified in the previous step.

9. Remeasure the current performance without monitoring using the same metric as before.

10. If performance is still not acceptable, start over with Step 3.

1.1 Be sure what problem to solve
Before starting to tuning a system, try to describe the problem as exactly as possible. A statement
like “The system is slow!” is not a helpful problem description. For example, it could make a
difference whether the system speed needs to be improved in general or only at peak times.

2 Be sure what problem to solve SLES 15 SP4

Furthermore, make sure you can apply a measurement to your problem, otherwise you cannot
verify if the tuning was a success or not. You should always be able to compare “before” and
“after”. Which metrics to use depends on the scenario or application you are looking into. Rel-
evant Web server metrics, for example, could be expressed in terms of:

Latency

The time to deliver a page

Throughput

Number of pages served per second or megabytes transferred per second

Active users

The maximum number of users that can be downloading pages while still receiving pages
within an acceptable latency

1.2 Rule out common problems
A performance problem often is caused by network or hardware problems, bugs, or configuration
issues. Make sure to rule out problems such as the ones listed below before attempting to tune
your system:

Check the output of the systemd journal (see Book “Administration Guide”, Chapter 21 “jour-
nalctl: Query the systemd journal”) for unusual entries.

Check (using top or ps) whether a certain process misbehaves by eating up unusual
amounts of CPU time or memory.

Check for network problems by inspecting /proc/net/dev .

In case of I/O problems with physical disks, make sure it is not caused by hardware prob-
lems (check the disk with the smartmontools) or by a full disk.

Ensure that background jobs are scheduled to be carried out in times the server load is
low. Those jobs should also run with low priority (set via nice).

If the machine runs several services using the same resources, consider moving services
to another server.

Last, make sure your software is up-to-date.

3 Rule out common problems SLES 15 SP4

1.3 Finding the bottleneck
Finding the bottleneck very often is the hardest part when tuning a system. SUSE Linux Enter-
prise Server offers many tools to help you with this task. See Part II, “System monitoring” for de-
tailed information on general system monitoring applications and log le analysis. If the problem
requires a long-time in-depth analysis, the Linux kernel offers means to perform such analysis.
See Part III, “Kernel monitoring” for coverage.

Once you have collected the data, it needs to be analyzed. First, inspect if the server's hardware
(memory, CPU, bus) and its I/O capacities (disk, network) are sufficient. If these basic conditions
are met, the system might benefit from tuning.

1.4 Step-by-step tuning
Make sure to carefully plan the tuning itself. It is of vital importance to only do one step at a time.
Only by doing so can you measure whether the change made an improvement or even had a
negative impact. Each tuning activity should be measured over a sufficient time period to ensure
you can do an analysis based on significant data. If you cannot measure a positive effect, do not
make the change permanent. Chances are, that it might have a negative effect in the future.

4 Finding the bottleneck SLES 15 SP4

II System monitoring

2 System monitoring utilities 6

3 System log files 56

2 System monitoring utilities

There are number of programs, tools, and utilities which you can use to examine
the status of your system. This chapter introduces some and describes their most im-
portant and frequently used parameters.

Note: Gathering and Analyzing System Information with
supportconfig
Apart from the utilities presented in the following, SUSE Linux Enterprise Server also
contains supportconfig , a tool to create reports about the system such as: current kernel
version, hardware, installed packages, partition setup and much more. These reports are
used to provide the SUSE support with needed information in case a support ticket is
created. However, they can also be analyzed for known issues to help resolve problems
faster. For this purpose, SUSE Linux Enterprise Server provides both an appliance and
a command line tool for Supportconfig Analysis (SCA). See Book “Administration Guide”,

Chapter 47 “Gathering system information for support” for details.

For each of the described commands, examples of the relevant outputs are presented. In the ex-
amples, the rst line is the command itself (after the tux > or root #). Omissions are indicated
with square brackets ([...]) and long lines are wrapped where necessary. Line breaks for long
lines are indicated by a backslash (\).

> command -x -y
output line 1
output line 2
output line 3 is annoyingly long, so long that \
 we need to break it
output line 4
[...]
output line 98
output line 99

The descriptions have been kept short so that we can include as many utilities as possible. Further
information for all the commands can be found in the manual pages. Most of the commands also
understand the parameter --help , which produces a brief list of possible parameters.

6 SLES 15 SP4

2.1 Multi-purpose tools
While most Linux system monitoring tools monitor only a single aspect of the system, there are
a few tools with a broader scope. To get an overview and nd out which part of the system to
examine further, use these tools rst.

2.1.1 vmstat

vmstat collects information about processes, memory, I/O, interrupts and CPU:

vmstat [options] [delay [count]]

When called without values for delay and count, it displays average values since the last reboot.
When called with a value for delay (in seconds), it displays values for the given period (two
seconds in the examples below). The value for count specifies the number of updates vmstat
should perform. If not specified, it will run until manually stopped.

EXAMPLE 2.1: vmstat OUTPUT ON A LIGHTLY USED MACHINE

> vmstat 2
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 1 0 44264 81520 424 935736 0 0 12 25 27 34 1 0 98 0 0
 0 0 44264 81552 424 935736 0 0 0 0 38 25 0 0 100 0 0
 0 0 44264 81520 424 935732 0 0 0 0 23 15 0 0 100 0 0
 0 0 44264 81520 424 935732 0 0 0 0 36 24 0 0 100 0 0
 0 0 44264 81552 424 935732 0 0 0 0 51 38 0 0 100 0 0

EXAMPLE 2.2: vmstat OUTPUT ON A HEAVILY USED MACHINE (CPU BOUND)

> vmstat 2
procs -----------memory----------- ---swap-- -----io---- -system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
32 1 26236 459640 110240 6312648 0 0 9944 2 4552 6597 95 5 0 0 0
23 1 26236 396728 110336 6136224 0 0 9588 0 4468 6273 94 6 0 0 0
35 0 26236 554920 110508 6166508 0 0 7684 27992 4474 4700 95 5 0 0 0
28 0 26236 518184 110516 6039996 0 0 10830 4 4446 4670 94 6 0 0 0
21 5 26236 716468 110684 6074872 0 0 8734 20534 4512 4061 96 4 0 0 0

Tip: First line of output
The rst line of the vmstat output always displays average values since the last reboot.

7 Multi-purpose tools SLES 15 SP4

The columns show the following:

r

Shows the number of processes in a runnable state. These processes are either executing or
waiting for a free CPU slot. If the number of processes in this column is constantly higher
than the number of CPUs available, this may be an indication of insufficient CPU power.

b

Shows the number of processes waiting for a resource other than a CPU. A high number
in this column may indicate an I/O problem (network or disk).

swpd

The amount of swap space (KB) currently used.

free

The amount of unused memory (KB).

inact

Recently unused memory that can be reclaimed. This column is only visible when calling
vmstat with the parameter -a (recommended).

active

Recently used memory that normally does not get reclaimed. This column is only visible
when calling vmstat with the parameter -a (recommended).

buff

File buer cache (KB) in RAM that contains le system metadata. This column is not visible
when calling vmstat with the parameter -a .

cache

Page cache (KB) in RAM with the actual contents of les. This column is not visible when
calling vmstat with the parameter -a .

si / so

Amount of data (KB) that is moved from swap to RAM (si) or from RAM to swap (so)
per second. High so values over a long period of time may indicate that an application
is leaking memory and the leaked memory is being swapped out. High si values over a
long period of time could mean that an application that was inactive for a very long time
is now active again. Combined high si and so values for prolonged periods of time are
evidence of swap thrashing and may indicate that more RAM needs to be installed in the
system because there is not enough memory to hold the working set size.

8 vmstat SLES 15 SP4

bi

Number of blocks per second received from a block device (for example, a disk read). Note
that swapping also impacts the values shown here. The block size may vary between le
systems but can be determined using the stat utility. If throughput data is required then
iostat may be used.

bo

Number of blocks per second sent to a block device (for example, a disk write). Note that
swapping also impacts the values shown here.

in

Interrupts per second. A high value may indicate a high I/O level (network and/or disk),
but could also be triggered for other reasons such as inter-processor interrupts triggered
by another activity. Make sure to also check /proc/interrupts to identify the source
of interrupts.

cs

Number of context switches per second. This is the number of times that the kernel replaces
executable code of one program in memory with that of another program.

us

Percentage of CPU usage executing application code.

sy

Percentage of CPU usage executing kernel code.

id

Percentage of CPU time spent idling. If this value is zero over a longer time, your CPU(s)
are working to full capacity. This is not necessarily a bad sign—rather refer to the values
in columns r and b to determine if your machine is equipped with sufficient CPU power.

wa

If "wa" time is non-zero, it indicates throughput lost because of waiting for I/O. This may
be inevitable, for example, if a le is being read for the rst time, background writeback
cannot keep up, and so on. It can also be an indicator for a hardware bottleneck (network
or hard disk). Lastly, it can indicate a potential for tuning the virtual memory manager
(refer to Chapter 15, Tuning the memory management subsystem).

st

Percentage of CPU time stolen from a virtual machine.

9 vmstat SLES 15 SP4

See vmstat --help for more options.

2.1.2 dstat

dstat is a replacement for tools such as vmstat , iostat , netstat , or ifstat . dstat dis-
plays information about the system resources in real time. For example, you can compare disk
usage in combination with interrupts from the IDE controller, or compare network bandwidth
with the disk throughput (in the same interval).

By default, its output is presented in readable tables. Alternatively, CSV output can be produced
which is suitable as a spreadsheet import format.

It is written in Python and can be enhanced with plug-ins.

This is the general syntax:

dstat [-afv] [OPTIONS..] [DELAY [COUNT]]

All options and parameters are optional. Without any parameter, dstat displays statistics about
CPU (-c , --cpu), disk (-d , --disk), network (-n , --net), paging (-g , --page), and the
interrupts and context switches of the system (-y , --sys); it refreshes the output every second
ad infinitum:

dstat
You did not select any stats, using -cdngy by default.
----total-cpu-usage---- -dsk/total- -net/total- ---paging-- ---system--
usr sys idl wai hiq siq| read writ| recv send| in out | int csw
 0 0 100 0 0 0| 15k 44k| 0 0 | 0 82B| 148 194
 0 0 100 0 0 0| 0 0 |5430B 170B| 0 0 | 163 187
 0 0 100 0 0 0| 0 0 |6363B 842B| 0 0 | 196 185

-a , --all

equal to -cdngy (default)

-f , --full

expand -C , -D , -I , -N and -S discovery lists

-v , --vmstat

equal to -pmgdsc , -D total

DELAY

delay in seconds between each update

10 dstat SLES 15 SP4

COUNT

the number of updates to display before exiting

The default delay is 1 and the count is unspecified (unlimited).

For more information, see the man page of dstat and its Web page at http://dag.wieer-

s.com/home-made/dstat/ .

2.1.3 System activity information: sar

sar can generate extensive reports on almost all important system activities, among them CPU,
memory, IRQ usage, I/O, and networking. It can also generate reports in real time. The sar
command gathers data from the /proc le system.

Note: sysstat package
The sar command is a part of the sysstat package. Install it with YaST, or with the
zypper in sysstat command. sysstat.service does not start by default, and must
be enabled and started with the following command:

> sudo systemctl enable --now sysstat

2.1.3.1 Generating reports with sar

To generate reports in real time, call sar with an interval (seconds) and a count. To generate
reports from les specify a le name with the option -f instead of interval and count. If le
name, interval and count are not specified, sar attempts to generate a report from /var/log/
sa/saDD , where DD stands for the current day. This is the default location to where sadc (the
system activity data collector) writes its data. Query multiple les with multiple -f options.

sar 2 10 # real time report, 10 times every 2 seconds
sar -f ~/reports/sar_2014_07_17 # queries file sar_2014_07_17
sar # queries file from today in /var/log/sa/
cd /var/log/sa && \
sar -f sa01 -f sa02 # queries files /var/log/sa/0[12]

Find examples for useful sar calls and their interpretation below. For detailed information on
the meaning of each column, refer to the man (1) of sar .

11 System activity information: sar SLES 15 SP4

http://dag.wieers.com/home-made/dstat/
http://dag.wieers.com/home-made/dstat/

Note: sysstat reporting when the service stops
When the sysstat service is stopped (for example, during reboot or shutdown), the tool
still collects last-minute statistics by automatically running the /usr/lib64/sa/sa1 -S
ALL 1 1 command. The collected binary data is stored in the system activity data le.

2.1.3.1.1 CPU usage report: sar

When called with no options, sar shows a basic report about CPU usage. On multi-processor
machines, results for all CPUs are summarized. Use the option -P ALL to also see statistics for
individual CPUs.

sar 10 5
Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (2 CPU)

17:51:29 CPU %user %nice %system %iowait %steal %idle
17:51:39 all 57,93 0,00 9,58 1,01 0,00 31,47
17:51:49 all 32,71 0,00 3,79 0,05 0,00 63,45
17:51:59 all 47,23 0,00 3,66 0,00 0,00 49,11
17:52:09 all 53,33 0,00 4,88 0,05 0,00 41,74
17:52:19 all 56,98 0,00 5,65 0,10 0,00 37,27
Average: all 49,62 0,00 5,51 0,24 0,00 44,62

%iowait displays the percentage of time that the CPU was idle while waiting for an I/O request.
If this value is significantly higher than zero over a longer time, there is a bottleneck in the
I/O system (network or hard disk). If the %idle value is zero over a longer time, your CPU is
working at capacity.

2.1.3.1.2 Memory usage report: sar -r

Generate an overall picture of the system memory (RAM) by using the option -r :

sar -r 10 5
Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (2 CPU)

17:55:27 kbmemfree kbmemused %memused kbbuffers kbcached kbcommit %commit kbactive kbinact kbdirty
17:55:37 104232 1834624 94.62 20 627340 2677656 66.24 802052 828024 1744
17:55:47 98584 1840272 94.92 20 624536 2693936 66.65 808872 826932 2012
17:55:57 87088 1851768 95.51 20 605288 2706392 66.95 827260 821304 1588
17:56:07 86268 1852588 95.55 20 599240 2739224 67.77 829764 820888 3036
17:56:17 104260 1834596 94.62 20 599864 2730688 67.56 811284 821584 3164
Average: 96086 1842770 95.04 20 611254 2709579 67.03 815846 823746 2309

12 System activity information: sar SLES 15 SP4

The columns kbcommit and %commit show an approximation of the maximum amount of memory
(RAM and swap) that the current workload could need. While kbcommit displays the absolute
number in kilobytes, %commit displays a percentage.

2.1.3.1.3 Paging statistics report: sar -B

Use the option -B to display the kernel paging statistics.

sar -B 10 5
Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (2 CPU)

18:23:01 pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff
18:23:11 366.80 11.60 542.50 1.10 4354.80 0.00 0.00 0.00 0.00
18:23:21 0.00 333.30 1522.40 0.00 18132.40 0.00 0.00 0.00 0.00
18:23:31 47.20 127.40 1048.30 0.10 11887.30 0.00 0.00 0.00 0.00
18:23:41 46.40 2.50 336.10 0.10 7945.00 0.00 0.00 0.00 0.00
18:23:51 0.00 583.70 2037.20 0.00 17731.90 0.00 0.00 0.00 0.00
Average: 92.08 211.70 1097.30 0.26 12010.28 0.00 0.00 0.00 0.00

The majflt/s (major faults per second) column shows how many pages are loaded from disk into
memory. The source of the faults may be le accesses or faults. At times, many major faults are
normal. For example, during application start-up time. If major faults are experienced for the
entire lifetime of the application it may be an indication that there is insufficient main memory,
particularly if combined with large amounts of direct scanning (pgscand/s).

The %vmeff column shows the number of pages scanned (pgscand/s) in relation to the ones being
reused from the main memory cache or the swap cache (pgsteal/s). It is a measurement of the
efficiency of page reclaim. Healthy values are either near 100 (every inactive page swapped out
is being reused) or 0 (no pages have been scanned). The value should not drop below 30.

2.1.3.1.4 Block device statistics report: sar -d

Use the option -d to display the block device (hard disk, optical drive, USB storage device, etc.).
Make sure to use the additional option -p (pretty-print) to make the DEV column readable.

sar -d -p 10 5
 Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (2 CPU)

18:46:09 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:19 sda 1.70 33.60 0.00 19.76 0.00 0.47 0.47 0.08
18:46:19 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:19 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:29 sda 8.60 114.40 518.10 73.55 0.06 7.12 0.93 0.80
18:46:29 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 System activity information: sar SLES 15 SP4

18:46:29 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:39 sda 40.50 3800.80 454.90 105.08 0.36 8.86 0.69 2.80
18:46:39 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:39 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:49 sda 1.40 0.00 204.90 146.36 0.00 0.29 0.29 0.04
18:46:49 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:49 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:59 sda 3.30 0.00 503.80 152.67 0.03 8.12 1.70 0.56
18:46:59 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average: DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
Average: sda 11.10 789.76 336.34 101.45 0.09 8.07 0.77 0.86
Average: sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Compare the Average values for tps, rd_sec/s, and wr_sec/s of all disks. Constantly high values in
the svctm and %util columns could be an indication that I/O subsystem is a bottleneck.

If the machine uses multiple disks, then it is best if I/O is interleaved evenly between disks
of equal speed and capacity. It will be necessary to take into account whether the storage has
multiple tiers. Furthermore, if there are multiple paths to storage then consider what the link
saturation will be when balancing how storage is used.

2.1.3.1.5 Network statistics reports: sar -n KEYWORD

The option -n lets you generate multiple network related reports. Specify one of the following
keywords along with the -n :

DEV: Generates a statistic report for all network devices

EDEV: Generates an error statistics report for all network devices

NFS: Generates a statistic report for an NFS client

NFSD: Generates a statistic report for an NFS server

SOCK: Generates a statistic report on sockets

ALL: Generates all network statistic reports

2.1.3.2 Visualizing sar data

sar reports are not always easy to parse for humans. kSar, a Java application visualizing your
sar data, creates easy-to-read graphs. It can even generate PDF reports. kSar takes data gener-
ated in real time, and past data from a le. kSar is licensed under the BSD license and is available
from https://sourceforge.net/projects/ksar/ .

14 System activity information: sar SLES 15 SP4

https://sourceforge.net/projects/ksar/

2.2 System information

2.2.1 Device load information: iostat

To monitor the system device load, use iostat . It generates reports that can be useful for better
balancing the load between physical disks attached to your system.

To be able to use iostat , install the package sysstat .

The rst iostat report shows statistics collected since the system was booted. Subsequent
reports cover the time since the previous report.

> iostat
Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (4 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 17.68 4.49 4.24 0.29 0.00 73.31

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sdb 2.02 36.74 45.73 3544894 4412392
sda 1.05 5.12 13.47 493753 1300276
sdc 0.02 0.14 0.00 13641 37

Invoking iostat in this way will help you nd out whether throughput is different from your
expectation, but not why. Such questions can be better answered by an extended report which
can be generated by invoking iostat -x . Extended reports additionally include, for example,
information on average queue sizes and average wait times. It may also be easier to evaluate
the data if idle block devices are excluded using the -z switch. Find definitions for each of the
displayed column titles in the man page of iostat (man 1 iostat).

You can also specify that a certain device should be monitored at specified intervals. For exam-
ple, to generate ve reports at three-second intervals for the device sda , use:

> iostat -p sda 3 5

To show statistics of network le systems (NFS), there are two similar utilities:

nfsiostat-sysstat is included with the package sysstat .

nfsiostat is included with the package nfs-client .

15 System information SLES 15 SP4

Note: Using iostat in multipath setups
The iostat command might not show all controllers that are listed by nvme list-
subsys . By default, iostat filters out all block devices with no I/O. To make iostat
show all devices, use the following command:

> iostat -p ALL

2.2.2 Processor activity monitoring: mpstat

The utility mpstat examines activities of each available processor. If your system has one
processor only, the global average statistics will be reported.

The timing arguments work the same way as with the iostat command. Entering mpstat 2
5 prints ve reports for all processors in two-second intervals.

mpstat 2 5
Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (2 CPU)

13:51:10 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
13:51:12 all 8,27 0,00 0,50 0,00 0,00 0,00 0,00 0,00 0,00 91,23
13:51:14 all 46,62 0,00 3,01 0,00 0,00 0,25 0,00 0,00 0,00 50,13
13:51:16 all 54,71 0,00 3,82 0,00 0,00 0,51 0,00 0,00 0,00 40,97
13:51:18 all 78,77 0,00 5,12 0,00 0,00 0,77 0,00 0,00 0,00 15,35
13:51:20 all 51,65 0,00 4,30 0,00 0,00 0,51 0,00 0,00 0,00 43,54
Average: all 47,85 0,00 3,34 0,00 0,00 0,40 0,00 0,00 0,00 48,41

From the mpstat data, you can see:

The ratio between the %usr and %sys. For example, a ratio of 10:1 indicates the workload
is mostly running application code and analysis should focus on the application. A ratio
of 1:10 indicates the workload is mostly kernel-bound and tuning the kernel is worth
considering. Alternatively, determine why the application is kernel-bound and see if that
can be alleviated.

Whether there is a subset of CPUs that are nearly fully utilized even if the system is lightly
loaded overall. Few hot CPUs can indicate that the workload is not parallelized and could
benefit from executing on a machine with a smaller number of faster processors.

16 Processor activity monitoring: mpstat SLES 15 SP4

2.2.3 Processor frequency monitoring: turbostat

turbostat shows frequencies, load, temperature, and power of AMD64/Intel 64 processors.
It can operate in two modes: If called with a command, the command process is forked and
statistics are displayed upon command completion. When run without a command, it will display
updated statistics every ve seconds. Note that turbostat requires the kernel module msr to
be loaded.

> sudo turbostat find /etc -type d -exec true {} \;
0.546880 sec
 CPU Avg_MHz Busy% Bzy_MHz TSC_MHz
 - 416 28.43 1465 3215
 0 631 37.29 1691 3215
 1 416 27.14 1534 3215
 2 270 24.30 1113 3215
 3 406 26.57 1530 3214
 4 505 32.46 1556 3214
 5 270 22.79 1184 3214

The output depends on the CPU type and may vary. To display more details such as temperature
and power, use the --debug option. For more command line options and an explanation of the
eld descriptions, refer to man 8 turbostat .

2.2.4 Task monitoring: pidstat

If you need to see what load a particular task applies to your system, use pidstat command. It
prints activity of every selected task or all tasks managed by Linux kernel if no task is specified.
You can also set the number of reports to be displayed and the time interval between them.

For example, pidstat -C firefox 2 3 prints the load statistic for tasks whose command name
includes the string “firefox”. There will be three reports printed at two second intervals.

pidstat -C firefox 2 3
Linux 4.4.21-64-default (jupiter) 10/12/16 _x86_64_ (2 CPU)

14:09:11 UID PID %usr %system %guest %CPU CPU Command
14:09:13 1000 387 22,77 0,99 0,00 23,76 1 firefox

14:09:13 UID PID %usr %system %guest %CPU CPU Command
14:09:15 1000 387 46,50 3,00 0,00 49,50 1 firefox

14:09:15 UID PID %usr %system %guest %CPU CPU Command
14:09:17 1000 387 60,50 7,00 0,00 67,50 1 firefox

17 Processor frequency monitoring: turbostat SLES 15 SP4

Average: UID PID %usr %system %guest %CPU CPU Command
Average: 1000 387 43,19 3,65 0,00 46,84 - firefox

Similarly, pidstat -d can be used to estimate how much I/O tasks are doing, whether they
are sleeping on that I/O and how many clock ticks the task was stalled.

2.2.5 Kernel ring buffer: dmesg

The Linux kernel keeps certain messages in a ring buer. To view these messages, enter the
command dmesg -T .

Older events are logged in the systemd journal. See Book “Administration Guide”, Chapter 21

“journalctl: Query the systemd journal” for more information on the journal.

2.2.6 List of open files: lsof

To view a list of all the les open for the process with process ID PID , use -p . For example,
to view all the les used by the current shell, enter:

lsof -p $$
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 8842 root cwd DIR 0,32 222 6772 /root
bash 8842 root rtd DIR 0,32 166 256 /
bash 8842 root txt REG 0,32 656584 31066 /bin/bash
bash 8842 root mem REG 0,32 1978832 22993 /lib64/libc-2.19.so
[...]
bash 8842 root 2u CHR 136,2 0t0 5 /dev/pts/2
bash 8842 root 255u CHR 136,2 0t0 5 /dev/pts/2

The special shell variable $$, whose value is the process ID of the shell, has been used.

When used with -i , lsof lists currently open Internet les as well:

lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
wickedd-d 917 root 8u IPv4 16627 0t0 UDP *:bootpc
wickedd-d 918 root 8u IPv6 20752 0t0 UDP [fe80::5054:ff:fe72:5ead]:dhcpv6-client
sshd 3152 root 3u IPv4 18618 0t0 TCP *:ssh (LISTEN)
sshd 3152 root 4u IPv6 18620 0t0 TCP *:ssh (LISTEN)
master 4746 root 13u IPv4 20588 0t0 TCP localhost:smtp (LISTEN)
master 4746 root 14u IPv6 20589 0t0 TCP localhost:smtp (LISTEN)
sshd 8837 root 5u IPv4 293709 0t0 TCP jupiter.suse.de:ssh->venus.suse.de:33619 (ESTABLISHED)
sshd 8837 root 9u IPv6 294830 0t0 TCP localhost:x11 (LISTEN)
sshd 8837 root 10u IPv4 294831 0t0 TCP localhost:x11 (LISTEN)

18 Kernel ring buffer: dmesg SLES 15 SP4

2.2.7 Kernel and udev event sequence viewer: udevadm monitor
udevadm monitor listens to the kernel uevents and events sent out by a udev rule and prints
the device path (DEVPATH) of the event to the console. This is a sequence of events while
connecting a USB memory stick:

Note: Monitoring udev events
Only root user is allowed to monitor udev events by running the udevadm command.

UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2
UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UEVENT[1138806687] add@/class/scsi_host/host4
UEVENT[1138806687] add@/class/usb_device/usbdev4.10
UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2
UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UDEV [1138806687] add@/class/scsi_host/host4
UDEV [1138806687] add@/class/usb_device/usbdev4.10
UEVENT[1138806692] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UEVENT[1138806692] add@/block/sdb
UEVENT[1138806692] add@/class/scsi_generic/sg1
UEVENT[1138806692] add@/class/scsi_device/4:0:0:0
UDEV [1138806693] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UDEV [1138806693] add@/class/scsi_generic/sg1
UDEV [1138806693] add@/class/scsi_device/4:0:0:0
UDEV [1138806693] add@/block/sdb
UEVENT[1138806694] add@/block/sdb/sdb1
UDEV [1138806694] add@/block/sdb/sdb1
UEVENT[1138806694] mount@/block/sdb/sdb1
UEVENT[1138806697] umount@/block/sdb/sdb1

2.3 Processes

2.3.1 Interprocess communication: ipcs
The command ipcs produces a list of the IPC resources currently in use:

ipcs
------ Message Queues --------
key msqid owner perms used-bytes messages

19 Kernel and udev event sequence viewer: udevadm monitor SLES 15 SP4

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 65536 tux 600 524288 2 dest
0x00000000 98305 tux 600 4194304 2 dest
0x00000000 884738 root 600 524288 2 dest
0x00000000 786435 tux 600 4194304 2 dest
0x00000000 12058628 tux 600 524288 2 dest
0x00000000 917509 root 600 524288 2 dest
0x00000000 12353542 tux 600 196608 2 dest
0x00000000 12451847 tux 600 524288 2 dest
0x00000000 11567114 root 600 262144 1 dest
0x00000000 10911763 tux 600 2097152 2 dest
0x00000000 11665429 root 600 2336768 2 dest
0x00000000 11698198 root 600 196608 2 dest
0x00000000 11730967 root 600 524288 2 dest

------ Semaphore Arrays --------
key semid owner perms nsems
0xa12e0919 32768 tux 666 2

2.3.2 Process list: ps

The command ps produces a list of processes. Most parameters must be written without a minus
sign. Refer to ps --help for a brief help or to the man page for extensive help.

To list all processes with user and command line information, use ps axu :

> ps axu
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.3 34376 4608 ? Ss Jul24 0:02 /usr/lib/systemd/systemd
root 2 0.0 0.0 0 0 ? S Jul24 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Jul24 0:00 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Jul24 0:00 [kworker/0:0H]
root 6 0.0 0.0 0 0 ? S Jul24 0:00 [kworker/u2:0]
root 7 0.0 0.0 0 0 ? S Jul24 0:00 [migration/0]
[...]
tux 12583 0.0 0.1 185980 2720 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-mtp-volume-monitor
tux 12587 0.0 0.1 198132 3044 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-gphoto2-volume-monitor
tux 12591 0.0 0.1 181940 2700 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-goa-volume-monitor
tux 12594 8.1 10.6 1418216 163564 ? Sl 10:12 0:03 /usr/bin/gnome-shell
tux 12600 0.0 0.3 393448 5972 ? Sl 10:12 0:00 /usr/lib/gnome-settings-daemon-3.0/gsd-
printer
tux 12625 0.0 0.6 227776 10112 ? Sl 10:12 0:00 /usr/lib/gnome-control-center-search-
provider
tux 12626 0.5 1.5 890972 23540 ? Sl 10:12 0:00 /usr/bin/nautilus --no-default-window
[...]

To check how many sshd processes are running, use the option -p together with the command
pidof , which lists the process IDs of the given processes.

20 Process list: ps SLES 15 SP4

> ps -p $(pidof sshd)
 PID TTY STAT TIME COMMAND
 1545 ? Ss 0:00 /usr/sbin/sshd -D
 4608 ? Ss 0:00 sshd: root@pts/0

The process list can be formatted according to your needs. The option L returns a list of all
keywords. Enter the following command to issue a list of all processes sorted by memory usage:

> ps ax --format pid,rss,cmd --sort rss
 PID RSS CMD
 PID RSS CMD
 2 0 [kthreadd]
 3 0 [ksoftirqd/0]
 4 0 [kworker/0:0]
 5 0 [kworker/0:0H]
 6 0 [kworker/u2:0]
 7 0 [migration/0]
 8 0 [rcu_bh]
[...]
12518 22996 /usr/lib/gnome-settings-daemon-3.0/gnome-settings-daemon
12626 23540 /usr/bin/nautilus --no-default-window
12305 32188 /usr/bin/Xorg :0 -background none -verbose
12594 164900 /usr/bin/gnome-shell

USEFUL ps CALLS

ps aux --sort COLUMN

Sort the output by COLUMN . Replace COLUMN with

pmem for physical memory ratio
pcpu for CPU ratio
rss for resident set size (non-swapped physical memory)

ps axo pid,%cpu,rss,vsz,args,wchan

Shows every process, their PID, CPU usage ratio, memory size (resident and virtual), name,
and their syscall.

ps axfo pid,args

Show a process tree.

2.3.3 Process tree: pstree
The command pstree produces a list of processes in the form of a tree:

> pstree

21 Process tree: pstree SLES 15 SP4

systemd---accounts-daemon---{gdbus}
 | |-{gmain}
 |-at-spi-bus-laun---dbus-daemon
 | |-{dconf worker}
 | |-{gdbus}
 | |-{gmain}
 |-at-spi2-registr---{gdbus}
 |-cron
 |-2*[dbus-daemon]
 |-dbus-launch
 |-dconf-service---{gdbus}
 | |-{gmain}
 |-gconfd-2
 |-gdm---gdm-simple-slav---Xorg
 | | |-gdm-session-wor---gnome-session---gnome-setti+
 | | | | |-gnome-shell+++
 | | | | |-{dconf work+
 | | | | |-{gdbus}
 | | | | |-{gmain}
 | | | |-{gdbus}
 | | | |-{gmain}
 | | |-{gdbus}
 | | |-{gmain}
 | |-{gdbus}
 | |-{gmain}
[...]

The parameter -p adds the process ID to a given name. To have the command lines displayed
as well, use the -a parameter:

2.3.4 Table of processes: top
The command top (an abbreviation of “table of processes”) displays a list of processes that
is refreshed every two seconds. To terminate the program, press q . The parameter -n 1
terminates the program after a single display of the process list. The following is an example
output of the command top -n 1 :

> top -n 1
Tasks: 128 total, 1 running, 127 sleeping, 0 stopped, 0 zombie
%Cpu(s): 2.4 us, 1.2 sy, 0.0 ni, 96.3 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 1535508 total, 699948 used, 835560 free, 880 buffers
KiB Swap: 1541116 total, 0 used, 1541116 free. 377000 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 116292 4660 2028 S 0.000 0.303 0:04.45 systemd

22 Table of processes: top SLES 15 SP4

 2 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kthreadd
 3 root 20 0 0 0 0 S 0.000 0.000 0:00.07 ksoftirqd+
 5 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kworker/0+
 6 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kworker/u+
 7 root rt 0 0 0 0 S 0.000 0.000 0:00.00 migration+
 8 root 20 0 0 0 0 S 0.000 0.000 0:00.00 rcu_bh
 9 root 20 0 0 0 0 S 0.000 0.000 0:00.24 rcu_sched
 10 root rt 0 0 0 0 S 0.000 0.000 0:00.01 watchdog/0
 11 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 khelper
 12 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kdevtmpfs
 13 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 netns
 14 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 writeback
 15 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kintegrit+
 16 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 bioset
 17 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 crypto
 18 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kblockd

By default the output is sorted by CPU usage (column %CPU, shortcut Shift – P). Use the
following key combinations to change the sort eld:

Shift – M : Resident Memory (RES)
Shift – N : Process ID (PID)
Shift – T : Time (TIME+)

To use any other eld for sorting, press F and select a eld from the list. To toggle the sort
order, Use Shift – R .

The parameter -U UID monitors only the processes associated with a particular user. Replace
UID with the user ID of the user. Use top -U $(id -u) to show processes of the current user

2.3.5 IBM Z hypervisor monitor: hyptop
hyptop provides a dynamic real-time view of an IBM Z hypervisor environment, using the kernel
infrastructure via debugfs. It works with either the z/VM or the LPAR hypervisor. Depending
on the available data it, for example, shows CPU and memory consumption of active LPARs or
z/VM guests. It provides a curses based user interface similar to the top command. hyptop
provides two windows:

sys_list: Lists systems that the current hypervisor is running

sys: Shows one system in more detail

You can run hyptop in interactive mode (default) or in batch mode with the -b option. Help
in the interactive mode is available by pressing ? after hyptop is started.

23 IBM Z hypervisor monitor: hyptop SLES 15 SP4

Output for the sys_list window under LPAR:

12:30:48 | CPU-T: IFL(18) CP(3) UN(3) ?=help
system #cpu cpu mgm Cpu+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
H05LP30 10 461.14 10.18 1547:41 8:15 11:05:59
H05LP33 4 133.73 7.57 220:53 6:12 11:05:54
H05LP50 4 99.26 0.01 146:24 0:12 10:04:24
H05LP02 1 99.09 0.00 269:57 0:00 11:05:58
TRX2CFA 1 2.14 0.03 3:24 0:04 11:06:01
H05LP13 6 1.36 0.34 4:23 0:54 11:05:56
TRX1 19 1.22 0.14 13:57 0:22 11:06:01
TRX2 20 1.16 0.11 26:05 0:25 11:06:00
H05LP55 2 0.00 0.00 0:22 0:00 11:05:52
H05LP56 3 0.00 0.00 0:00 0:00 11:05:52
 413 823.39 23.86 3159:57 38:08 11:06:01

Output for the "sys_list" window under z/VM:

12:32:21 | CPU-T: UN(16) ?=help
system #cpu cpu Cpu+ online memuse memmax wcur
(str) (#) (%) (hm) (dhm) (GiB) (GiB) (#)
T6360004 6 100.31 959:47 53:05:20 1.56 2.00 100
T6360005 2 0.44 1:11 3:02:26 0.42 0.50 100
T6360014 2 0.27 0:45 10:18:41 0.54 0.75 100
DTCVSW1 1 0.00 0:00 53:16:42 0.01 0.03 100
T6360002 6 0.00 166:26 40:19:18 1.87 2.00 100
OPERATOR 1 0.00 0:00 53:16:42 0.00 0.03 100
T6360008 2 0.00 0:37 30:22:55 0.32 0.75 100
T6360003 6 0.00 3700:57 53:03:09 4.00 4.00 100
NSLCF1 1 0.00 0:02 53:16:41 0.03 0.25 500
EREP 1 0.00 0:00 53:16:42 0.00 0.03 100
PERFSVM 1 0.00 0:53 2:21:12 0.04 0.06 0
TCPIP 1 0.00 0:01 53:16:42 0.01 0.12 3000
DATAMOVE 1 0.00 0:05 53:16:42 0.00 0.03 100
DIRMAINT 1 0.00 0:04 53:16:42 0.01 0.03 100
DTCVSW2 1 0.00 0:00 53:16:42 0.01 0.03 100
RACFVM 1 0.00 0:00 53:16:42 0.01 0.02 100
 75 101.57 5239:47 53:16:42 15.46 22.50 3000

Output for the sys window under LPAR:

14:08:41 | H05LP30 | CPU-T: IFL(18) CP(3) UN(3) ? = help
cpuid type cpu mgm visual.
(#) (str) (%) (%) (vis)
0 IFL 96.91 1.96 |## |
1 IFL 81.82 1.46 |##################################### |

24 IBM Z hypervisor monitor: hyptop SLES 15 SP4

2 IFL 88.00 2.43 |## |
3 IFL 92.27 1.29 |## |
4 IFL 83.32 1.05 |##################################### |
5 IFL 92.46 2.59 |## |
6 IFL 0.00 0.00 | |
7 IFL 0.00 0.00 | |
8 IFL 0.00 0.00 | |
9 IFL 0.00 0.00 | |
 534.79 10.78

Output for the sys window under z/VM:

15:46:57 | T6360003 | CPU-T: UN(16) ? = help
cpuid cpu visual
(#) (%) (vis)
0 548.72 |### |
 548.72

2.3.6 A top-like I/O monitor: iotop
The iotop utility displays a table of I/O usage by processes or threads.

Note: Installing iotop
iotop is not installed by default. You need to install it manually with zypper in iotop
as root .

iotop displays columns for the I/O bandwidth read and written by each process during the
sampling period. It also displays the percentage of time the process spent while swapping in
and while waiting on I/O. For each process, its I/O priority (class/level) is shown. In addition,
the total I/O bandwidth read and written during the sampling period is displayed at the top
of the interface.

The ← and → keys change the sorting.

R reverses the sort order.

O toggles between showing all processes and threads (default view) and showing only
those doing I/O. (This function is similar to adding --only on command line.)

P toggles between showing threads (default view) and processes. (This function is similar
to --only .)

25 A top-like I/O monitor: iotop SLES 15 SP4

A toggles between showing the current I/O bandwidth (default view) and accumulated
I/O operations since iotop was started. (This function is similar to --accumulated .)

I lets you change the priority of a thread or a process's threads.

Q quits iotop .

Pressing any other key will force a refresh.

Following is an example output of the command iotop --only , while find and emacs are
running:

iotop --only
Total DISK READ: 50.61 K/s | Total DISK WRITE: 11.68 K/s
 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
 3416 be/4 tux 50.61 K/s 0.00 B/s 0.00 % 4.05 % find /
 275 be/3 root 0.00 B/s 3.89 K/s 0.00 % 2.34 % [jbd2/sda2-8]
 5055 be/4 tux 0.00 B/s 3.89 K/s 0.00 % 0.04 % emacs

iotop can be also used in a batch mode (-b) and its output stored in a le for later analysis.
For a complete set of options, see the manual page (man 8 iotop).

2.3.7 Modify a process's niceness: nice and renice

The kernel determines which processes require more CPU time than others by the process's nice
level, also called niceness. The higher the “nice” level of a process is, the less CPU time it will
take from other processes. Nice levels range from -20 (the least “nice” level) to 19. Negative
values can only be set by root .

Adjusting the niceness level is useful when running a non time-critical process that lasts long
and uses large amounts of CPU time. For example, compiling a kernel on a system that also
performs other tasks. Making such a process “nicer”, ensures that the other tasks, for example
a Web server, will have a higher priority.

Calling nice without any parameters prints the current niceness:

> nice
0

Running nice COMMAND increments the current nice level for the given command by 10. Using
nice -n LEVEL COMMAND lets you specify a new niceness relative to the current one.

26 Modify a process's niceness: nice and renice SLES 15 SP4

To change the niceness of a running process, use renice PRIORITY -p PROCESS_ID , for ex-
ample:

> renice +5 3266

To renice all processes owned by a specific user, use the option -u USER . Process groups are
reniced by the option -g PROCESS_GROUP_ID .

2.4 Memory

2.4.1 Memory usage: free

The utility free examines RAM and swap usage. Details of both free and used memory and
swap areas are shown:

> free
 total used free shared buffers cached
Mem: 32900500 32703448 197052 0 255668 5787364
-/+ buffers/cache: 26660416 6240084
Swap: 2046972 304680 1742292

The options -b , -k , -m , -g show the output in bytes, KB, MB, or GB, respectively. The para-
meter -s delay ensures that the display is refreshed every DELAY seconds. For example, free
-s 1.5 produces an update every 1.5 seconds.

2.4.2 Detailed memory usage: /proc/meminfo

Use /proc/meminfo to get more detailed information on memory usage than with free . Ac-
tually free uses some data from this le. See an example output from a 64-bit system below.
Note that it slightly differs on 32-bit systems because of different memory management:

MemTotal: 1942636 kB
MemFree: 1294352 kB
MemAvailable: 1458744 kB
Buffers: 876 kB
Cached: 278476 kB
SwapCached: 0 kB
Active: 368328 kB

27 Memory SLES 15 SP4

Inactive: 199368 kB
Active(anon): 288968 kB
Inactive(anon): 10568 kB
Active(file): 79360 kB
Inactive(file): 188800 kB
Unevictable: 80 kB
Mlocked: 80 kB
SwapTotal: 2103292 kB
SwapFree: 2103292 kB
Dirty: 44 kB
Writeback: 0 kB
AnonPages: 288592 kB
Mapped: 70444 kB
Shmem: 11192 kB
Slab: 40916 kB
SReclaimable: 17712 kB
SUnreclaim: 23204 kB
KernelStack: 2000 kB
PageTables: 10996 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 3074608 kB
Committed_AS: 1407208 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 145996 kB
VmallocChunk: 34359588844 kB
HardwareCorrupted: 0 kB
AnonHugePages: 86016 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 79744 kB
DirectMap2M: 2017280 kB

These entries stand for the following:

MemTotal

Total amount of RAM.

MemFree

Amount of unused RAM.

MemAvailable

Estimate of how much memory is available for starting new applications without swapping.

28 Detailed memory usage: /proc/meminfo SLES 15 SP4

Buffers

File buer cache in RAM containing le system metadata.

Cached

Page cache in RAM. This excludes buer cache and swap cache, but includes Shmem mem-
ory.

SwapCached

Page cache for swapped-out memory.

Active, Active(anon), Active(file)

Recently used memory that will not be reclaimed unless necessary or on explicit request.
Active is the sum of Active(anon) and Active(file):

Active(anon) tracks swap-backed memory. This includes private and shared anony-
mous mappings and private le pages after copy-on-write.

Active(file) tracks other le system backed memory.

Inactive, Inactive(anon), Inactive(file)

Less recently used memory that will usually be reclaimed rst. Inactive is the sum of Inac-
tive(anon) and Inactive(file):

Inactive(anon) tracks swap backed memory. This includes private and shared anony-
mous mappings and private le pages after copy-on-write.

Inactive(file) tracks other le system backed memory.

Unevictable

Amount of memory that cannot be reclaimed (for example, because it is Mlocked or used
as a RAM disk).

Mlocked

Amount of memory that is backed by the mlock system call. mlock allows processes to
define which part of physical RAM their virtual memory should be mapped to. However,
mlock does not guarantee this placement.

SwapTotal

Amount of swap space.

SwapFree

Amount of unused swap space.

29 Detailed memory usage: /proc/meminfo SLES 15 SP4

Dirty

Amount of memory waiting to be written to disk, because it contains changes compared to
the backing storage. Dirty data can be explicitly synchronized either by the application or
by the kernel after a short delay. A large amount of dirty data may take considerable time
to write to disk resulting in stalls. The total amount of dirty data that can exist at any time
can be controlled with the sysctl parameters vm.dirty_ratio or vm.dirty_bytes
(refer to Section 15.1.5, “Writeback” for more details).

Writeback

Amount of memory that is currently being written to disk.

Mapped

Memory claimed with the mmap system call.

Shmem

Memory shared between groups of processes, such as IPC data, tmpfs data, and shared
anonymous memory.

Slab

Memory allocation for internal data structures of the kernel.

SReclaimable

Slab section that can be reclaimed, such as caches (inode, dentry, etc.).

SUnreclaim

Slab section that cannot be reclaimed.

KernelStack

Amount of kernel space memory used by applications (through system calls).

PageTables

Amount of memory dedicated to page tables of all processes.

NFS_Unstable

NFS pages that have already been sent to the server, but are not yet committed there.

Bounce

Memory used for bounce buers of block devices.

WritebackTmp

Memory used by FUSE for temporary writeback buers.

30 Detailed memory usage: /proc/meminfo SLES 15 SP4

CommitLimit

Amount of memory available to the system based on the overcommit ratio setting. This is
only enforced if strict overcommit accounting is enabled.

Committed_AS

An approximation of the total amount of memory (RAM and swap) that the current work-
load would need in the worst case.

VmallocTotal

Amount of allocated kernel virtual address space.

VmallocUsed

Amount of used kernel virtual address space.

VmallocChunk

The largest contiguous block of available kernel virtual address space.

HardwareCorrupted

Amount of failed memory (can only be detected when using ECC RAM).

AnonHugePages

Anonymous hugepages that are mapped into user space page tables. These are allocated
transparently for processes without being specifically requested, therefore they are also
known as transparent hugepages (THP).

HugePages_Total

Number of preallocated hugepages for use by SHM_HUGETLB and MAP_HUGETLB or through
the hugetlbfs le system, as defined in /proc/sys/vm/nr_hugepages .

HugePages_Free

Number of hugepages available.

HugePages_Rsvd

Number of hugepages that are committed.

HugePages_Surp

Number of hugepages available beyond HugePages_Total (“surplus”), as defined in /proc/
sys/vm/nr_overcommit_hugepages .

Hugepagesize

Size of a hugepage—on AMD64/Intel 64 the default is 2048 KB.

31 Detailed memory usage: /proc/meminfo SLES 15 SP4

DirectMap4k etc.

Amount of kernel memory that is mapped to pages with a given size (in the example: 4 kB).

2.4.3 Process memory usage: smaps

Exactly determining how much memory a certain process is consuming is not possible with
standard tools like top or ps . Use the smaps subsystem, introduced in kernel 2.6.14, if you
need exact data. It can be found at /proc/PID/smaps and shows you the number of clean
and dirty memory pages the process with the ID PID is using at that time. It differentiates
between shared and private memory, so you can see how much memory the process is using
without including memory shared with other processes. For more information see /usr/src/
linux/Documentation/filesystems/proc.txt (requires the package kernel-source to be
installed).

smaps is expensive to read. Therefore it is not recommended to monitor it regularly, but only
when closely monitoring a certain process.

2.4.4 numaTOP

numaTOP is a tool for NUMA (Non-uniform Memory Access) systems. The tool helps to identify
NUMA-related performance bottlenecks by providing real-time analysis of a NUMA system.

Generally speaking, numaTOP allows you to identify and investigate processes and threads with
poor locality (that is poor ratio of local versus remote memory usage) by analyzing the number
of Remote Memory Accesses (RMA), the number of Local Memory Accesses (LMA), and the
RMA/LMA ratio.

numaTOP is supported on PowerPC and the following Intel Xeon processors: 5500-series,
6500/7500-series, 5600-series, E7-x8xx-series, and E5-16xx/24xx/26xx/46xx-series.

numaTOP is available in the official software repositories, and you can install the tool using the
sudo zypper in numatop command. To launch numaTOP, run the numatop command. To
get an overview of numaTOP functionality and usage, use the man numatop command.

32 Process memory usage: smaps SLES 15 SP4

2.5 Networking

Tip: Traffic shaping
In case the network bandwidth is lower than expected, you should rst check if any traffic
shaping rules are active for your network segment.

2.5.1 Basic network diagnostics: ip

ip is a powerful tool to set up and control network interfaces. You can also use it to quickly
view basic statistics about network interfaces of the system. For example, whether the interface
is up or how many errors, dropped packets, or packet collisions there are.

If you run ip with no additional parameter, it displays a help output. To list all network inter-
faces, enter ip addr show (or abbreviated as ip a). ip addr show up lists only running
network interfaces. ip -s link show DEVICE lists statistics for the specified interface only:

ip -s link show br0
6: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
 link/ether 00:19:d1:72:d4:30 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 6346104756 9265517 0 10860 0 0
 TX: bytes packets errors dropped carrier collsns
 3996204683 3655523 0 0 0 0

ip can also show interfaces (link), routing tables (route), and much more—refer to man 8
ip for details.

ip route
default via 192.168.2.1 dev eth1
192.168.2.0/24 dev eth0 proto kernel scope link src 192.168.2.100
192.168.2.0/24 dev eth1 proto kernel scope link src 192.168.2.101
192.168.2.0/24 dev eth2 proto kernel scope link src 192.168.2.102

ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen
 1000
 link/ether 52:54:00:44:30:51 brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen
 1000
 link/ether 52:54:00:a3:c1:fb brd ff:ff:ff:ff:ff:ff

33 Networking SLES 15 SP4

4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen
 1000
 link/ether 52:54:00:32:a4:09 brd ff:ff:ff:ff:ff:ff

2.5.2 Show the network usage of processes: nethogs

In some cases, for example if the network traffic suddenly becomes very high, it is desirable to
quickly nd out which application(s) is/are causing the traffic. nethogs , a tool with a design
similar to top , shows incoming and outgoing traffic for all relevant processes:

PID USER PROGRAM DEV SENT RECEIVED
27145 root zypper eth0 5.719 391.749 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30015 0.102 2.326 KB/sec
26635 tux /usr/lib64/firefox/firefox eth0 0.026 0.026 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.021 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.018 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30015 0.000 0.018 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.017 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.017 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.069 0.000 KB/sec
? root unknown TCP 0.000 0.000 KB/sec

TOTAL 5.916 394.192 KB/sec

Like in top , nethogs features interactive commands:

M : cycle between display modes (kb/s, kb, b, mb)
R : sort by RECEIVED
S : sort by SENT
Q : quit

2.5.3 Ethernet cards in detail: ethtool

ethtool can display and change detailed aspects of your Ethernet network device. By default
it prints the current setting of the specified device.

ethtool eth0
Settings for eth0:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full

34 Show the network usage of processes: nethogs SLES 15 SP4

 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
[...]
 Link detected: yes

The following table shows ethtool options that you can use to query the device for specific
information:

TABLE 2.1: LIST OF QUERY OPTIONS OF ethtool

ethtool option it queries the device for

-a pause parameter information

-c interrupt coalescing information

-g Rx/Tx (receive/transmit) ring parameter in-
formation

-i associated driver information

-k offload information

-S NIC and driver-specific statistics

2.5.4 Show the network status: ss

ss is a tool to dump socket statistics and replaces the netstat command. To list all connections
use ss without parameters:

ss
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
u_str ESTAB 0 0 * 14082 * 14083
u_str ESTAB 0 0 * 18582 * 18583
u_str ESTAB 0 0 * 19449 * 19450
u_str ESTAB 0 0 @/tmp/dbus-gmUUwXABPV 18784 * 18783
u_str ESTAB 0 0 /var/run/dbus/system_bus_socket 19383 * 19382
u_str ESTAB 0 0 @/tmp/dbus-gmUUwXABPV 18617 * 18616
u_str ESTAB 0 0 @/tmp/dbus-58TPPDv8qv 19352 * 19351
u_str ESTAB 0 0 * 17658 * 17657

35 Show the network status: ss SLES 15 SP4

u_str ESTAB 0 0 * 17693 * 17694
[..]

To show all network ports currently open, use the following command:

ss -l
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
nl UNCONN 0 0 rtnl:4195117 *
nl UNCONN 0 0 rtnl:wickedd-auto4/811 *
nl UNCONN 0 0 rtnl:wickedd-dhcp4/813 *
nl UNCONN 0 0 rtnl:4195121 *
nl UNCONN 0 0 rtnl:4195115 *
nl UNCONN 0 0 rtnl:wickedd-dhcp6/814 *
nl UNCONN 0 0 rtnl:kernel *
nl UNCONN 0 0 rtnl:wickedd/817 *
nl UNCONN 0 0 rtnl:4195118 *
nl UNCONN 0 0 rtnl:nscd/706 *
nl UNCONN 4352 0 tcpdiag:ss/2381 *
[...]

When displaying network connections, you can specify the socket type to display: TCP (-t)
or UDP (-u) for example. The -p option shows the PID and name of the program to which
each socket belongs.

The following example lists all TCP connections and the programs using these connections. The
-a option make sure all established connections (listening and non-listening) are shown. The
-p option shows the PID and name of the program to which each socket belongs.

ss -t -a -p
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:ssh *:* users:(("sshd",1551,3))
LISTEN 0 100 127.0.0.1:smtp *:* users:(("master",1704,13))
ESTAB 0 132 10.120.65.198:ssh 10.120.4.150:55715 users:(("sshd",2103,5))
LISTEN 0 128 :::ssh :::* users:(("sshd",1551,4))
LISTEN 0 100 ::1:smtp :::* users:(("master",1704,14))

2.6 The /proc file system
The /proc le system is a pseudo le system in which the kernel reserves important information
in the form of virtual les. For example, display the CPU type with this command:

> cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6

36 The /proc file system SLES 15 SP4

model : 30
model name : Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
stepping : 5
microcode : 0x6
cpu MHz : 1197.000
cache size : 8192 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 4
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 11
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
 pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc
 arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor
 ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida dtherm
 tpr_shadow vnmi flexpriority ept vpid
bogomips : 5333.85
clflush size : 64
cache_alignment : 64
address sizes : 36 bits physical, 48 bits virtual
power management:
[...]

Tip: Detailed processor information
Detailed information about the processor on the AMD64/Intel 64 architecture is also
available by running x86info .

Query the allocation and use of interrupts with the following command:

> cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
 0: 121 0 0 0 IO-APIC-edge timer
 8: 0 0 0 1 IO-APIC-edge rtc0
 9: 0 0 0 0 IO-APIC-fasteoi acpi
 16: 0 11933 0 0 IO-APIC-fasteoi ehci_hcd:+
 18: 0 0 0 0 IO-APIC-fasteoi i801_smbus
 19: 0 117978 0 0 IO-APIC-fasteoi ata_piix,+
 22: 0 0 3275185 0 IO-APIC-fasteoi enp5s1
 23: 417927 0 0 0 IO-APIC-fasteoi ehci_hcd:+

37 The /proc file system SLES 15 SP4

 40: 2727916 0 0 0 HPET_MSI-edge hpet2
 41: 0 2749134 0 0 HPET_MSI-edge hpet3
 42: 0 0 2759148 0 HPET_MSI-edge hpet4
 43: 0 0 0 2678206 HPET_MSI-edge hpet5
 45: 0 0 0 0 PCI-MSI-edge aerdrv, P+
 46: 0 0 0 0 PCI-MSI-edge PCIe PME,+
 47: 0 0 0 0 PCI-MSI-edge PCIe PME,+
 48: 0 0 0 0 PCI-MSI-edge PCIe PME,+
 49: 0 0 0 387 PCI-MSI-edge snd_hda_i+
 50: 933117 0 0 0 PCI-MSI-edge nvidia
NMI: 2102 2023 2031 1920 Non-maskable interrupts
LOC: 92 71 57 41 Local timer interrupts
SPU: 0 0 0 0 Spurious interrupts
PMI: 2102 2023 2031 1920 Performance monitoring int+
IWI: 47331 45725 52464 46775 IRQ work interrupts
RTR: 2 0 0 0 APIC ICR read retries
RES: 472911 396463 339792 323820 Rescheduling interrupts
CAL: 48389 47345 54113 50478 Function call interrupts
TLB: 28410 26804 24389 26157 TLB shootdowns
TRM: 0 0 0 0 Thermal event interrupts
THR: 0 0 0 0 Threshold APIC interrupts
MCE: 0 0 0 0 Machine check exceptions
MCP: 40 40 40 40 Machine check polls
ERR: 0
MIS: 0

The address assignment of executables and libraries is contained in the maps le:

> cat /proc/self/maps
08048000-0804c000 r-xp 00000000 03:03 17753 /bin/cat
0804c000-0804d000 rw-p 00004000 03:03 17753 /bin/cat
0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]
b7d27000-b7d5a000 r--p 00000000 03:03 11867 /usr/lib/locale/en_GB.utf8/
b7d5a000-b7e32000 r--p 00000000 03:03 11868 /usr/lib/locale/en_GB.utf8/
b7e32000-b7e33000 rw-p b7e32000 00:00 0
b7e33000-b7f45000 r-xp 00000000 03:03 8837 /lib/libc-2.3.6.so
b7f45000-b7f46000 r--p 00112000 03:03 8837 /lib/libc-2.3.6.so
b7f46000-b7f48000 rw-p 00113000 03:03 8837 /lib/libc-2.3.6.so
b7f48000-b7f4c000 rw-p b7f48000 00:00 0
b7f52000-b7f53000 r--p 00000000 03:03 11842 /usr/lib/locale/en_GB.utf8/
[...]
b7f5b000-b7f61000 r--s 00000000 03:03 9109 /usr/lib/gconv/gconv-module
b7f61000-b7f62000 r--p 00000000 03:03 9720 /usr/lib/locale/en_GB.utf8/
b7f62000-b7f76000 r-xp 00000000 03:03 8828 /lib/ld-2.3.6.so
b7f76000-b7f78000 rw-p 00013000 03:03 8828 /lib/ld-2.3.6.so
bfd61000-bfd76000 rw-p bfd61000 00:00 0 [stack]
ffffe000-fffff000 ---p 00000000 00:00 0 [vdso]

38 The /proc file system SLES 15 SP4

A lot more information can be obtained from the /proc le system. Some important les and
their contents are:

/proc/devices

Available devices

/proc/modules

Kernel modules loaded

/proc/cmdline

Kernel command line

/proc/meminfo

Detailed information about memory usage

/proc/config.gz

gzip -compressed configuration le of the kernel currently running

/proc/ PID/

Find information about processes currently running in the /proc/ NNN directories, where
NNN is the process ID (PID) of the relevant process. Every process can nd its own char-
acteristics in /proc/self/ .

Further information is available in the text le /usr/src/linux/Documentation/filesys-
tems/proc.txt (this le is available when the package kernel-source is installed).

2.6.1 procinfo
Important information from the /proc le system is summarized by the command procinfo :

> procinfo
Linux 3.11.10-17-desktop (geeko@buildhost) (gcc 4.8.1 20130909) #1 4CPU
 [jupiter.example.com]

Memory: Total Used Free Shared Buffers Cached
Mem: 8181908 8000632 181276 0 85472 2850872
Swap: 10481660 1576 10480084

Bootup: Mon Jul 28 09:54:13 2014 Load average: 1.61 0.85 0.74 2/904 25949

user : 1:54:41.84 12.7% page in : 2107312 disk 1: 52212r 20199w
nice : 0:00:00.46 0.0% page out: 1714461 disk 2: 19387r 10928w
system: 0:25:38.00 2.8% page act: 466673 disk 3: 548r 10w

39 procinfo SLES 15 SP4

IOwait: 0:04:16.45 0.4% page dea: 272297
hw irq: 0:00:00.42 0.0% page flt: 105754526
sw irq: 0:01:26.48 0.1% swap in : 0
idle : 12:14:43.65 81.5% swap out: 394
guest : 0:02:18.59 0.2%
uptime: 3:45:22.24 context : 99809844

irq 0: 121 timer irq 41: 3238224 hpet3
irq 8: 1 rtc0 irq 42: 3251898 hpet4
irq 9: 0 acpi irq 43: 3156368 hpet5
irq 16: 14589 ehci_hcd:usb1 irq 45: 0 aerdrv, PCIe PME
irq 18: 0 i801_smbus irq 46: 0 PCIe PME, pciehp
irq 19: 124861 ata_piix, ata_piix, f irq 47: 0 PCIe PME, pciehp
irq 22: 3742817 enp5s1 irq 48: 0 PCIe PME, pciehp
irq 23: 479248 ehci_hcd:usb2 irq 49: 387 snd_hda_intel
irq 40: 3216894 hpet2 irq 50: 1088673 nvidia

To see all the information, use the parameter -a . The parameter -nN produces updates of the
information every N seconds. In this case, terminate the program by pressing Q .

By default, the cumulative values are displayed. The parameter -d produces the differential
values. procinfo -dn5 displays the values that have changed in the last ve seconds:

2.6.2 System control parameters: /proc/sys/

System control parameters are used to modify the Linux kernel parameters at runtime. They
reside in /proc/sys/ and can be viewed and modified with the sysctl command. To list all
parameters, run sysctl -a . A single parameter can be listed with sysctl PARAMETER_NAME .

Parameters are grouped into categories and can be listed with sysctl CATEGORY or by listing
the contents of the respective directories. The most important categories are listed below. The
links to further readings require the installation of the package kernel-source .

sysctl dev (/proc/sys/dev/)

Device-specific information.

sysctl fs (/proc/sys/fs/)

Used le handles, quotas, and other le system-oriented parameters. For details see /usr/
src/linux/Documentation/sysctl/fs.txt .

sysctl kernel (/proc/sys/kernel/)

Information about the task scheduler, system shared memory, and other kernel-related
parameters. For details see /usr/src/linux/Documentation/sysctl/kernel.txt

40 System control parameters: /proc/sys/ SLES 15 SP4

sysctl net (/proc/sys/net/)

Information about network bridges, and general network parameters (mainly the ipv4/
subdirectory). For details see /usr/src/linux/Documentation/sysctl/net.txt

sysctl vm (/proc/sys/vm/)

Entries in this path relate to information about the virtual memory, swapping, and caching.
For details see /usr/src/linux/Documentation/sysctl/vm.txt

To set or change a parameter for the current session, use the command sysctl -w PARA-
METER= VALUE . To permanently change a setting, add a line PARAMETER= VALUE to /etc/
sysctl.conf .

2.7 Hardware information

2.7.1 PCI resources: lspci

Note: Accessing PCI configuration.
Most operating systems require root user privileges to grant access to the computer's PCI
configuration.

The command lspci lists the PCI resources:

lspci
00:00.0 Host bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \
 DRAM Controller/Host-Hub Interface (rev 01)
00:01.0 PCI bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \
 Host-to-AGP Bridge (rev 01)
00:1d.0 USB Controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 01)
00:1d.1 USB Controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #2 (rev 01)
00:1d.2 USB Controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #3 (rev 01)
00:1d.7 USB Controller: Intel Corporation 82801DB/DBM \
 (ICH4/ICH4-M) USB2 EHCI Controller (rev 01)
00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 81)
00:1f.0 ISA bridge: Intel Corporation 82801DB/DBL (ICH4/ICH4-L) \
 LPC Interface Bridge (rev 01)

41 Hardware information SLES 15 SP4

00:1f.1 IDE interface: Intel Corporation 82801DB (ICH4) IDE \
 Controller (rev 01)
00:1f.3 SMBus: Intel Corporation 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) \
 SMBus Controller (rev 01)
00:1f.5 Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 01)
01:00.0 VGA compatible controller: Matrox Graphics, Inc. G400/G450 (rev 85)
02:08.0 Ethernet controller: Intel Corporation 82801DB PRO/100 VE (LOM) \
 Ethernet Controller (rev 81)

Using -v results in a more detailed listing:

lspci -v
[...]
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet \
Controller (rev 02)
 Subsystem: Intel Corporation PRO/1000 MT Desktop Adapter
 Flags: bus master, 66MHz, medium devsel, latency 64, IRQ 19
 Memory at f0000000 (32-bit, non-prefetchable) [size=128K]
 I/O ports at d010 [size=8]
 Capabilities: [dc] Power Management version 2
 Capabilities: [e4] PCI-X non-bridge device
 Kernel driver in use: e1000
 Kernel modules: e1000

Information about device name resolution is obtained from the le /usr/share/pci.ids . PCI
IDs not listed in this le are marked “Unknown device.”

The parameter -vv produces all the information that could be queried by the program. To view
the pure numeric values, use the parameter -n .

2.7.2 USB devices: lsusb
The command lsusb lists all USB devices. With the option -v , print a more detailed list. The
detailed information is read from the directory /proc/bus/usb/ . The following is the output
of lsusb with these USB devices attached: hub, memory stick, hard disk and mouse.

lsusb
Bus 004 Device 007: ID 0ea0:2168 Ours Technology, Inc. Transcend JetFlash \
 2.0 / Astone USB Drive
Bus 004 Device 006: ID 04b4:6830 Cypress Semiconductor Corp. USB-2.0 IDE \
 Adapter
Bus 004 Device 005: ID 05e3:0605 Genesys Logic, Inc.
Bus 004 Device 001: ID 0000:0000
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000

42 USB devices: lsusb SLES 15 SP4

Bus 001 Device 005: ID 046d:c012 Logitech, Inc. Optical Mouse
Bus 001 Device 001: ID 0000:0000

2.7.3 Monitoring and tuning the thermal subsystem: tmon

tmon is a tool to help visualize, tune, and test the complex thermal subsystem. When started
without parameters, tmon runs in monitoring mode:

┌──────THERMAL ZONES(SENSORS)──────────────────────────────┐
│Thermal Zones: acpitz00 │
│Trip Points: PC │
└──┘
┌─────────── COOLING DEVICES ──────────────────────────────┐
│ID Cooling Dev Cur Max Thermal Zone Binding │
│00 Processor 0 3 ││││││││││││ │
│01 Processor 0 3 ││││││││││││ │
│02 Processor 0 3 ││││││││││││ │
│03 Processor 0 3 ││││││││││││ │
│04 intel_powerc -1 50 ││││││││││││ │
└──┘
┌──┐
│ 10 20 30 40 │
│acpitz 0:[8][>>>>>>>>>P9 C31 │
└──┘
┌────────────────── CONTROLS ──────────────────────────────┐
│PID gain: kp=0.36 ki=5.00 kd=0.19 Output 0.00 │
│Target Temp: 65.0C, Zone: 0, Control Device: None │
└──┘

Ctrl-c - Quit TAB - Tuning

For detailed information on how to interpret the data, how to log thermal data and how to use
tmon to test and tune cooling devices and sensors, refer to the man page: man 8 tmon . The
package tmon is not installed by default.

2.7.4 MCELog: machine check exceptions (MCE)

Note: Availability
This tool is only available on AMD64/Intel 64 systems.

43 Monitoring and tuning the thermal subsystem: tmon SLES 15 SP4

The mcelog package logs and parses/translates Machine Check Exceptions (MCE) on hardware
errors, including I/O, CPU, and memory errors. In addition, mcelog handles predictive bad page
offlining and automatic core offlining when cache errors happen. Formerly this was managed
by a cron job executed hourly. Now hardware errors are immediately processed by an mcelog
daemon.

Note: Support for AMD scalable MCA
SUSE Linux Enterprise Server supports AMD's Scalable Machine Check Architecture (Scal-
able MCA). Scalable MCA improves hardware error reporting in AMD Zen processors. It
expands information logged in MCA banks for improved error handling and better diag-
nosability.

mcelog captures MCA messages (rasdaemon and dmesg also capture MCA messages).
See section 3.1, Machine Check Architecture of Processor Programming Reference (PPR) for
AMD Family 17h Model 01h, Revision B1 Processors for detailed information, http://devel-

oper.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf .

mcelog is configured in /etc/mcelog/mcelog.conf . Configuration options are documented in
man mcelog , and at http://mcelog.org/ . The following example shows only changes to the
default le:

daemon = yes
filter = yes
filter-memory-errors = yes
no-syslog = yes
logfile = /var/log/mcelog
run-credentials-user = root
run-credentials-group = nobody
client-group = root
socket-path = /var/run/mcelog-client

The mcelog service is not enabled by default. The service can either be enabled and started via
the YaST system services editor, or via command line:

systemctl enable mcelog
systemctl start mcelog

44 MCELog: machine check exceptions (MCE) SLES 15 SP4

http://developer.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf
http://developer.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf
http://mcelog.org/

2.7.5 AMD64/Intel 64: dmidecode: DMI table decoder

dmidecode shows the machine's DMI table containing information such as serial numbers and
BIOS revisions of the hardware.

dmidecode
dmidecode 2.12
SMBIOS 2.5 present.
27 structures occupying 1298 bytes.
Table at 0x000EB250.

Handle 0x0000, DMI type 4, 35 bytes
Processor Information
 Socket Designation: J1PR
 Type: Central Processor
 Family: Other
 Manufacturer: Intel(R) Corporation
 ID: E5 06 01 00 FF FB EB BF
 Version: Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
 Voltage: 1.1 V
 External Clock: 133 MHz
 Max Speed: 4000 MHz
 Current Speed: 2667 MHz
 Status: Populated, Enabled
 Upgrade: Other
 L1 Cache Handle: 0x0004
 L2 Cache Handle: 0x0003
 L3 Cache Handle: 0x0001
 Serial Number: Not Specified
 Asset Tag: Not Specified
 Part Number: Not Specified
[..]

2.7.6 POWER: list hardware

lshw extracts and displays the hardware configuration of the machine.

2.8 Files and file systems

For le system-specific information, refer to Book “Storage Administration Guide”.

45 AMD64/Intel 64: dmidecode: DMI table decoder SLES 15 SP4

2.8.1 Determine the file type: file

The command file determines the type of a le or a list of les by checking /usr/share/
misc/magic .

> file /usr/bin/file
/usr/bin/file: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), \
 for GNU/Linux 2.6.4, dynamically linked (uses shared libs), stripped

The parameter -f LIST specifies a le with a list of le names to examine. The -z allows
file to look inside compressed les:

> file /usr/share/man/man1/file.1.gz
/usr/share/man/man1/file.1.gz: gzip compressed data, from Unix, max compression
> file -z /usr/share/man/man1/file.1.gz
/usr/share/man/man1/file.1.gz: troff or preprocessor input text \
 (gzip compressed data, from Unix, max compression)

The parameter -i outputs a mime type string rather than the traditional description.

> file -i /usr/share/misc/magic
/usr/share/misc/magic: text/plain charset=utf-8

2.8.2 File systems and their usage: mount, df and du

The command mount shows which le system (device and type) is mounted at which mount
point:

mount
/dev/sda2 on / type ext4 (rw,acl,user_xattr)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
debugfs on /sys/kernel/debug type debugfs (rw)
devtmpfs on /dev type devtmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,mode=1777)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sda3 on /home type ext3 (rw)
securityfs on /sys/kernel/security type securityfs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
gvfs-fuse-daemon on /home/tux/.gvfs type fuse.gvfs-fuse-daemon \
(rw,nosuid,nodev,user=tux)

Obtain information about total usage of the le systems with the command df . The parameter -
h (or --human-readable) transforms the output into a form understandable for common users.

46 Determine the file type: file SLES 15 SP4

> df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda2 20G 5,9G 13G 32% /
devtmpfs 1,6G 236K 1,6G 1% /dev
tmpfs 1,6G 668K 1,6G 1% /dev/shm
/dev/sda3 208G 40G 159G 20% /home

Display the total size of all the les in a given directory and its subdirectories with the command
du . The parameter -s suppresses the output of detailed information and gives only a total for
each argument. -h again transforms the output into a human-readable form:

> du -sh /opt
192M /opt

2.8.3 Additional information about ELF binaries

Read the content of binaries with the readelf utility. This even works with ELF les that were
built for other hardware architectures:

> readelf --file-header /bin/ls
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1
 Entry point address: 0x402540
 Start of program headers: 64 (bytes into file)
 Start of section headers: 95720 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 9
 Size of section headers: 64 (bytes)
 Number of section headers: 32
 Section header string table index: 31

47 Additional information about ELF binaries SLES 15 SP4

2.8.4 File properties: stat

The command stat displays le properties:

> stat /etc/profile
 File: `/etc/profile'
 Size: 9662 Blocks: 24 IO Block: 4096 regular file
Device: 802h/2050d Inode: 132349 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-20 07:51:17.000000000 +0100
Modify: 2009-01-08 19:21:14.000000000 +0100
Change: 2009-03-18 12:55:31.000000000 +0100

The parameter --file-system produces details of the properties of the le system in which
the specified le is located:

> stat /etc/profile --file-system
 File: "/etc/profile"
 ID: d4fb76e70b4d1746 Namelen: 255 Type: ext2/ext3
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 2581445 Free: 1717327 Available: 1586197
Inodes: Total: 655776 Free: 490312

2.9 User information

2.9.1 User accessing files: fuser

It can be useful to determine what processes or users are currently accessing certain les. Sup-
pose, for example, you want to unmount a le system mounted at /mnt . umount returns "de-
vice is busy." The command fuser can then be used to determine what processes are accessing
the device:

> fuser -v /mnt/*

 USER PID ACCESS COMMAND
/mnt/notes.txt tux 26597 f.... less

Following termination of the less process, which was running on another terminal, the le sys-
tem can successfully be unmounted. When used with -k option, fuser will terminate processes
accessing the le as well.

48 File properties: stat SLES 15 SP4

2.9.2 Who is doing what: w
With the command w , nd out who is logged in to the system and what each user is doing.
For example:

> w
 16:00:59 up 1 day, 2:41, 3 users, load average: 0.00, 0.01, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
tux :0 console Wed13 ?xdm? 8:15 0.03s /usr/lib/gdm/gd
tux console :0 Wed13 26:41m 0.00s 0.03s /usr/lib/gdm/gd
tux pts/0 :0 Wed13 20:11 0.10s 2.89s /usr/lib/gnome-

If any users of other systems have logged in remotely, the parameter -f shows the computers
from which they have established the connection.

2.10 Time and date

2.10.1 Time measurement with time
Determine the time spent by commands with the time utility. This utility is available in two
versions: as a Bash built-in and as a program (/usr/bin/time).

> time find . > /dev/null

real 0m4.051s 1

user 0m0.042s 2

sys 0m0.205s 3

1 The real time that elapsed from the command's start-up until it finished.

2 CPU time of the user as reported by the times system call.

3 CPU time of the system as reported by the times system call.

The output of /usr/bin/time is much more detailed. It is recommended to run it with the -
v switch to produce human-readable output.

/usr/bin/time -v find . > /dev/null
 Command being timed: "find ."
 User time (seconds): 0.24
 System time (seconds): 2.08
 Percent of CPU this job got: 25%
 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:09.03
 Average shared text size (kbytes): 0

49 Who is doing what: w SLES 15 SP4

 Average unshared data size (kbytes): 0
 Average stack size (kbytes): 0
 Average total size (kbytes): 0
 Maximum resident set size (kbytes): 2516
 Average resident set size (kbytes): 0
 Major (requiring I/O) page faults: 0
 Minor (reclaiming a frame) page faults: 1564
 Voluntary context switches: 36660
 Involuntary context switches: 496
 Swaps: 0
 File system inputs: 0
 File system outputs: 0
 Socket messages sent: 0
 Socket messages received: 0
 Signals delivered: 0
 Page size (bytes): 4096
 Exit status: 0

2.11 Graph your data: RRDtool
There are a lot of data in the world around you, which can be easily measured in time. For
example, changes in the temperature, or the number of data sent or received by your comput-
er's network interface. RRDtool can help you store and visualize such data in detailed and cus-
tomizable graphs.

RRDtool is available for most Unix platforms and Linux distributions. SUSE® Linux Enterprise
Server ships RRDtool as well. Install it either with YaST or by entering

zypper install rrdtool in the command line as root .

Tip: Bindings
There are Perl, Python, Ruby, and PHP bindings available for RRDtool, so that you can
write your own monitoring scripts in your preferred scripting language.

2.11.1 How RRDtool works

RRDtool is an abbreviation of Round Robin Database tool. Round Robin is a method for manipu-
lating with a constant amount of data. It uses the principle of a circular buer, where there is no
end nor beginning to the data row which is being read. RRDtool uses Round Robin Databases
to store and read its data.

50 Graph your data: RRDtool SLES 15 SP4

As mentioned above, RRDtool is designed to work with data that change in time. The ideal
case is a sensor which repeatedly reads measured data (like temperature, speed etc.) in constant
periods of time, and then exports them in a given format. Such data are perfectly ready for
RRDtool, and it is easy to process them and create the desired output.

Sometimes it is not possible to obtain the data automatically and regularly. Their format needs
to be pre-processed before it is supplied to RRDtool, and often you need to manipulate RRDtool
even manually.

The following is a simple example of basic RRDtool usage. It illustrates all three important phases
of the usual RRDtool workflow: creating a database, updating measured values, and viewing the
output.

2.11.2 A practical example

Suppose we want to collect and view information about the memory usage in the Linux system
as it changes in time. To make the example more vivid, we measure the currently free memory
over a period of 40 seconds in 4-second intervals. Three applications that usually consume a lot
of system memory are started and closed: the Firefox Web browser, the Evolution e-mail client,
and the Eclipse development framework.

2.11.2.1 Collecting data

RRDtool is very often used to measure and visualize network traffic. In such case, the Simple
Network Management Protocol (SNMP) is used. This protocol can query network devices for
relevant values of their internal counters. Exactly these values are to be stored with RRDtool.
For more information on SNMP, see http://www.net-snmp.org/ .

Our situation is different—we need to obtain the data manually. A helper script free_mem.sh
repetitively reads the current state of free memory and writes it to the standard output.

> cat free_mem.sh
INTERVAL=4
for steps in {1..10}
do
 DATE=`date +%s`
 FREEMEM=`free -b | grep "Mem" | awk '{ print $4 }'`
 sleep $INTERVAL
 echo "rrdtool update free_mem.rrd $DATE:$FREEMEM"
done

51 A practical example SLES 15 SP4

http://www.net-snmp.org/

The time interval is set to 4 seconds, and is implemented with the sleep command.

RRDtool accepts time information in a special format - so called Unix time. It is defined
as the number of seconds since the midnight of January 1, 1970 (UTC). For example,
1272907114 represents 2010-05-03 17:18:34.

The free memory information is reported in bytes with free -b . Prefer to supply basic
units (bytes) instead of multiple units (like kilobytes).

The line with the echo ... command contains the future name of the database le
(free_mem.rrd), and together creates a command line for updating RRDtool values.

After running free_mem.sh , you see an output similar to this:

> sh free_mem.sh
rrdtool update free_mem.rrd 1272974835:1182994432
rrdtool update free_mem.rrd 1272974839:1162817536
rrdtool update free_mem.rrd 1272974843:1096269824
rrdtool update free_mem.rrd 1272974847:1034219520
rrdtool update free_mem.rrd 1272974851:909438976
rrdtool update free_mem.rrd 1272974855:832454656
rrdtool update free_mem.rrd 1272974859:829120512
rrdtool update free_mem.rrd 1272974863:1180377088
rrdtool update free_mem.rrd 1272974867:1179369472
rrdtool update free_mem.rrd 1272974871:1181806592

It is convenient to redirect the command's output to a le with

sh free_mem.sh > free_mem_updates.log

to simplify its future execution.

2.11.2.2 Creating the database

Create the initial Robin Round database for our example with the following command:

> rrdtool create free_mem.rrd --start 1272974834 --step=4 \
DS:memory:GAUGE:600:U:U RRA:AVERAGE:0.5:1:24

POINTS TO NOTICE

This command creates a le called free_mem.rrd for storing our measured values in a
Round Robin type database.

52 A practical example SLES 15 SP4

The --start option specifies the time (in Unix time) when the rst value will be added to
the database. In this example, it is one less than the rst time value of the free_mem.sh
output (1272974835).

The --step specifies the time interval in seconds with which the measured data will be
supplied to the database.

The DS:memory:GAUGE:600:U:U part introduces a new data source for the database. It
is called memory, its type is gauge, the maximum number between two updates is 600
seconds, and the minimal and maximal value in the measured range are unknown (U).

RRA:AVERAGE:0.5:1:24 creates Round Robin archive (RRA) whose stored data are
processed with the consolidation functions (CF) that calculates the average of data points. 3
arguments of the consolidation function are appended to the end of the line.

If no error message is displayed, then free_mem.rrd database is created in the current directory:

> ls -l free_mem.rrd
-rw-r--r-- 1 tux users 776 May 5 12:50 free_mem.rrd

2.11.2.3 Updating database values

After the database is created, you need to ll it with the measured data. In Section 2.11.2.1, “Col-

lecting data”, we already prepared the le free_mem_updates.log which consists of rrdtool
update commands. These commands do the update of database values for us.

> sh free_mem_updates.log; ls -l free_mem.rrd
-rw-r--r-- 1 tux users 776 May 5 13:29 free_mem.rrd

As you can see, the size of free_mem.rrd remained the same even after updating its data.

2.11.2.4 Viewing measured values

We have already measured the values, created the database, and stored the measured value in
it. Now we can play with the database, and retrieve or view its values.

To retrieve all the values from our database, enter the following on the command line:

> rrdtool fetch free_mem.rrd AVERAGE --start 1272974830 \
--end 1272974871
 memory

53 A practical example SLES 15 SP4

1272974832: nan
1272974836: 1.1729059840e+09
1272974840: 1.1461806080e+09
1272974844: 1.0807572480e+09
1272974848: 1.0030243840e+09
1272974852: 8.9019289600e+08
1272974856: 8.3162112000e+08
1272974860: 9.1693465600e+08
1272974864: 1.1801251840e+09
1272974868: 1.1799787520e+09
1272974872: nan

POINTS TO NOTICE

AVERAGE will fetch average value points from the database, because only one data source
is defined (Section 2.11.2.2, “Creating the database”) with AVERAGE processing and no other
function is available.

The rst line of the output prints the name of the data source as defined in Section 2.11.2.2,

“Creating the database”.

The left results column represents individual points in time, while the right one represents
corresponding measured average values in scientific notation.

The nan in the last line stands for “not a number”.

Now a graph representing the values stored in the database is drawn:

> rrdtool graph free_mem.png \
--start 1272974830 \
--end 1272974871 \
--step=4 \
DEF:free_memory=free_mem.rrd:memory:AVERAGE \
LINE2:free_memory#FF0000 \
--vertical-label "GB" \
--title "Free System Memory in Time" \
--zoom 1.5 \
--x-grid SECOND:1:SECOND:4:SECOND:10:0:%X

POINTS TO NOTICE

free_mem.png is the le name of the graph to be created.

--start and --end limit the time range within which the graph will be drawn.

--step specifies the time resolution (in seconds) of the graph.

54 A practical example SLES 15 SP4

The DEF:... part is a data definition called free_memory. Its data are read from the
free_mem.rrd database and its data source called memory. The average value points are
calculated, because no others were defined in Section 2.11.2.2, “Creating the database”.

The LINE... part specifies properties of the line to be drawn into the graph. It is 2 pixels
wide, its data come from the free_memory definition, and its color is red.

--vertical-label sets the label to be printed along the y axis, and --title sets the
main label for the whole graph.

--zoom specifies the zoom factor for the graph. This value must be greater than zero.

--x-grid specifies how to draw grid lines and their labels into the graph. Our example
places them every second, while major grid lines are placed every 4 seconds. Labels are
placed every 10 seconds under the major grid lines.

FIGURE 2.1: EXAMPLE GRAPH CREATED WITH RRDTOOL

2.11.3 More information

RRDtool is a very complex tool with a lot of sub-commands and command line options. Some are
easy to understand, but to make it produce the results you want and ne-tune them according
to your liking may require a lot of effort.

Apart from RRDtool's man page (man 1 rrdtool) which gives you only basic information,
you should have a look at the RRDtool home page (https://oss.oetiker.ch/rrdtool/) . There is a
detailed documentation (https://oss.oetiker.ch/rrdtool/doc/index.en.html) of the rrdtool com-
mand and all its sub-commands. There are also several tutorials (https://oss.oetiker.ch/rrdtool/tut/

index.en.html) to help you understand the common RRDtool workflow.

If you are interested in monitoring network traffic, have a look at MRTG (Multi Router Traffic

Grapher) (https://oss.oetiker.ch/mrtg/) . MRTG can graph the activity of many network devices.
It can use RRDtool.

55 More information SLES 15 SP4

https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/doc/index.en.html
https://oss.oetiker.ch/rrdtool/tut/index.en.html
https://oss.oetiker.ch/rrdtool/tut/index.en.html
https://oss.oetiker.ch/mrtg/
https://oss.oetiker.ch/mrtg/

3 System log files

System log le analysis is one of the most important tasks when analyzing the system. In fact,
looking at the system log les should be the rst thing to do when maintaining or troubleshooting
a system. SUSE Linux Enterprise Server automatically logs almost everything that happens on
the system in detail. Since the move to systemd , kernel messages and messages of system
services registered with systemd are logged in systemd journal (see Book “Administration Guide”,

Chapter 21 “journalctl: Query the systemd journal”). Other log les (mainly those of system
applications) are written in plain text and can be easily read using an editor or pager. It is also
possible to parse them using scripts. This allows you to filter their content.

3.1 System log files in /var/log/
System log les are always located under the /var/log directory. The following list presents
an overview of all system log les from SUSE Linux Enterprise Server present after a default
installation. Depending on your installation scope, /var/log also contains log les from other
services and applications not listed here. Some les and directories described below are “place-
holders” and are only used, when the corresponding application is installed. Most log les are
only visible for the user root .

apparmor/

AppArmor log les. For more information about AppArmor, see Book “Security and Hardening

Guide”.

audit/

Logs from the audit framework. See Book “Security and Hardening Guide” for details.

ConsoleKit/

Logs of the ConsoleKit daemon (daemon for tracking what users are logged in and how
they interact with the computer).

cups/

Access and error logs of the Common Unix Printing System (cups).

firewall

Firewall logs.

gdm/

Log les from the GNOME display manager.

56 System log files in /var/log/ SLES 15 SP4

krb5/

Log les from the Kerberos network authentication system.

lastlog

A database containing information on the last login of each user. Use the command last-
log to view. See man 8 lastlog for more information.

localmessages

Log messages of some boot scripts, for example the log of the DHCP client.

mail*

Mail server (postfix , sendmail) logs.

messages

This is the default place where all kernel and system log messages go and should be the
rst place (along with /var/log/warn) to look at in case of problems.

NetworkManager

NetworkManager log les.

news/

Log messages from a news server.

chrony/

Logs from the Network Time Protocol daemon (chrony).

pk_backend_zypp*

PackageKit (with libzypp back-end) log les.

samba/

Log les from Samba, the Windows SMB/CIFS le server.

warn

Log of all system warnings and errors. This should be the rst place (along with the output
of the systemd journal) to look in case of problems.

wtmp

Database of all login/logout activities, and remote connections. Use the command last
to view. See man 1 last for more information.

Xorg.NUMBER.log

X.Org start-up log le. Refer to these les in case you have problems starting X.Org.

57 System log files in /var/log/ SLES 15 SP4

The NUMBER in the le name is the display number. For example, the default Xorg.0.log
is the log for display number 0 , and Xorg.1.log is the log for display number 1 . Copies
from previous X.Org starts are named as Xorg.NUMBER.log.old .

Note
The X.Org log les are available in the /var/log/ directory only if you start an
X.Org session as root . If you start an X.Org session as any other user, you can locate
the log les in the ~/.local/share/xorg/ directory.

YaST2/

All YaST log les.

zypp/

libzypp log les. Refer to these les for the package installation history.

zypper.log

Logs from the command line installer zypper .

3.2 Viewing and parsing log files
To view log les, you can use any text editor. There is also a simple YaST module for viewing
the system log available in the YaST control center under Miscellaneous System Log.

For viewing log les in a text console, use the commands less or more . Use head and tail
to view the beginning or end of a log le. To view entries appended to a log le in real-time use
tail -f . For information about how to use these tools, see their man pages.

To search for strings or regular expressions in log les use grep . awk is useful for parsing and
rewriting log les.

3.3 Managing log files with logrotate
Log les under /var/log grow on a daily basis and quickly become very large. logrotate is
a tool that helps you manage log les and their growth. It allows automatic rotation, removal,
compression, and mailing of log les. Log les can be handled periodically (daily, weekly, or
monthly) or when exceeding a particular size.

58 Viewing and parsing log files SLES 15 SP4

logrotate is usually run daily by systemd , and thus usually modifies log les only once a
day. However, exceptions occur when a log le is modified because of its size, if logrotate is
run multiple times a day, or if --force is enabled. Use /var/lib/misc/logrotate.status
to nd out when a particular le was last rotated.

The main configuration le of logrotate is /etc/logrotate.conf . System packages and
programs that produce log les (for example, apache2) put their own configuration les in
the /etc/logrotate.d/ directory. The content of /etc/logrotate.d/ is included via /etc/
logrotate.conf .

EXAMPLE 3.1: EXAMPLE FOR /etc/logrotate.conf

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

uncomment this if you want your log files compressed
#compress

comment these to switch compression to use gzip or another
compression scheme
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

Important: Avoid permission conflicts
The create option pays heed to the modes and ownership of les specified in /etc/
permissions* . If you modify these settings, make sure no conflicts arise.

59 Managing log files with logrotate SLES 15 SP4

3.4 Monitoring log files with logwatch
logwatch is a customizable, pluggable log-monitoring script. It parses system logs, extracts
the important information and presents them in a human readable manner. To use logwatch ,
install the logwatch package.

logwatch can either be used at the command line to generate on-the-y reports, or via cron to
regularly create custom reports. Reports can either be printed on the screen, saved to a le, or
be mailed to a specified address. The latter is especially useful when automatically generating
reports via cron .

On the command line, you can tell logwatch for which service and time span to generate a
report and how much detail should be included:

Detailed report on all kernel messages from yesterday
logwatch --service kernel --detail High --range Yesterday --print

Low detail report on all sshd events recorded (incl. archived logs)
logwatch --service sshd --detail Low --range All --archives --print

Mail a report on all smartd messages from May 5th to May 7th to root@localhost
logwatch --service smartd --range 'between 5/5/2005 and 5/7/2005' \
--mailto root@localhost --print

The --range option has got a complex syntax—see logwatch --range help for details. A
list of all services that can be queried is available with the following command:

> ls /usr/share/logwatch/default.conf/services/ | sed 's/\.conf//g'

logwatch can be customized to great detail. However, the default configuration should usual-
ly be sufficient. The default configuration les are located under /usr/share/logwatch/de-
fault.conf/ . Never change them because they would get overwritten again with the next
update. Rather place custom configuration in /etc/logwatch/conf/ (you may use the de-
fault configuration le as a template, though). A detailed HOWTO on customizing logwatch is
available at /usr/share/doc/packages/logwatch/HOWTO-Customize-LogWatch . The follow-
ing configuration les exist:

logwatch.conf

The main configuration le. The default version is extensively commented. Each configu-
ration option can be overwritten on the command line.

ignore.conf

Filter for all lines that should globally be ignored by logwatch .

60 Monitoring log files with logwatch SLES 15 SP4

services/*.conf

The service directory holds configuration les for each service you can generate a report
for.

logfiles/*.conf

Specifications on which log les should be parsed for each service.

3.5 Configuring mail forwarding for root
System daemons, cron jobs, systemd timers, and other applications can generate messages and
send them to the root user of the system. By default, each user account owns a local mailbox
and will be notified about new mail messages upon login.

These messages can contain security relevant reports and incidents that might require a quick
response by the system administrator. To get notified about these messages in a timely fashion,
it is strongly recommended to forward these mails to a dedicated remote e-mail account that
is regularly checked.

PROCEDURE 3.1: CONFIGURE MAIL FORWARDING FOR THE root USER

To forward mail for the root user, perform the following steps:

1. Install the yast2-mail package:

zypper in yast2-mail

2. Run the interactive YaST mail configuration:

yast mail

3. Choose Permanent as Connection type and proceed with Next.

4. Enter the address of the Outgoing mail server. If necessary, configure Authentication. It is
strongly recommended to Enforce TLS encryption to prevent potentially sensitive system
data from being sent unencrypted over the network. Proceed with Next.

5. Enter the e-mail address to Forward root's mail to and Finish the configuration.

Important: Do not accept remote SMTP connections
Do not enable Accept remote SMTP connections, otherwise the local machine will act
as a mail relay.

61 Configuring mail forwarding for root SLES 15 SP4

6. Send a message to test whether mail forwarding works correctly:

> mail root
subject: test
test
.

7. Use the mailq command to verify that the test message has been sent. Upon success, the
queue should be empty. The message should be received by the dedicated mail address
configured previously.

Depending on the number of managed machines and the number of persons who need to be
informed about system events, different e-mail address models can be established:

Collect messages from different systems in an e-mail account that is only accessed by a
single person.

Collect messages from different systems in a group e-mail account (aliases or mailing list)
that can be accessed by all relevant persons.

Create separate e-mail accounts for each system.

It is crucial that administrators regularly check the related e-mail accounts. To facilitate this
effort and identify important events, avoid sending unnecessary information. Configure appli-
cations to only send relevant information.

3.6 Forwarding log messages to a central syslog
server

System log data can be forwarded from individual systems to a central syslog server on the
network. This allows administrators to get an overview of events on all hosts, and prevents
attackers that succeed in taking over a system from manipulating system logs to cover their
tracks.

Setting up a central syslog server consists of two parts. First you configure the central log server,
then the clients for remote logging.

62 Forwarding log messages to a central syslog server SLES 15 SP4

3.6.1 Set up the central syslog server

PROCEDURE 3.2: CONFIGURE THE CENTRAL rsyslog SERVER

To set up a central syslog server, perform the following steps:

1. Edit the configuration le /etc/rsyslog.d/remote.conf .

2. Uncomment the following lines in the UDP Syslog Server or TCP Syslog Server
section of the configuration le. Assign an IP address and port for rsyslogd .
TCP example:

$ModLoad imtcp.so
$UDPServerAddress IP 1

$InputTCPServerRun PORT 2

UDP example:

$ModLoad imudp.so
$UDPServerAddress IP 1

$UDPServerRun PORT 2

1 IP address of the interface for rsyslogd to listen on. If no address is given, the
daemon listens on all interfaces.

2 Port for rsyslogd to listen on. Select a privileged port below 1024. The default is
514.

Important: TCP versus UDP protocol
Traditionally syslog uses the UDP protocol to transmit log messages over the net-
work. This involves less overhead, but lacks reliability. Log messages can get lost
under high load.

The TCP protocol is more reliable and should be preferred over UDP.

Note: UDPServerAddress with TCP
The $UDPServerAddress configuration parameter in the TCP example is no error.
Despite its name it is used for both TCP and UDP.

3. Save the le.

63 Set up the central syslog server SLES 15 SP4

4. Restart the rsyslog service:

> sudo systemctl restart rsyslog.service

5. Open the respective port in the firewall. For firewalld with TCP on port 514 run:

> sudo firewall-cmd --add-port 514/tcp --permanent
> sudo firewall-cmd --reload

You have now configured the central syslog server. Next, configure clients for remote logging.

3.6.2 Set up the client machines

PROCEDURE 3.3: CONFIGURE A RSYSLOG INSTANCE FOR REMOTE LOGGING

To configure a machine for remote logging to a central syslog server, perform the following
steps:

1. Edit the configuration le /etc/rsyslog.d/remote.conf .

2. Uncomment the appropriate line (TCP or UDP) and replace remote-host with the address
of the central syslog server set up in Section 3.6.1, “Set up the central syslog server”.
TCP example:

Remote Logging using TCP for reliable delivery
remote host is: name/ip:port, e.g. 192.168.0.1:514, port optional
. @@remote-host

UDP example:

Remote Logging using UDP
remote host is: name/ip:port, e.g. 192.168.0.1:514, port optional
. @remote-host

3. Save the le.

4. Restart the rsyslog service:

> sudo systemctl restart rsyslog.service

5. Verify the proper function of the syslog forwarding:

> logger "hello world"

64 Set up the client machines SLES 15 SP4

The log message hello world should now appear on the central syslog server.

You have now configured a system for remote logging to your central syslog server. Repeat this
procedure for all systems that should log remotely.

3.6.3 More information

This basic setup does not include encryption and is only suitable for trusted internal networks.
TLS encryption is strongly recommended, but requires a certificate infrastructure.

In this configuration, all messages from remote hosts will be treated the same on the central
syslog server. Consider filtering messages into separate les by remote host or classify them by
message category.

For more information about encryption, filtering, and other advanced topics, consult the RSyslog
documentation at https://www.rsyslog.com/doc/master/index.html#manual .

3.7 Using logger to make system log entries
logger is a tool for making entries in the system log. It provides a shell command interface to
the rsyslogd system log module. For example, the following line outputs its message in /var/
log/messages or directly in the journal (if no logging facility is running):

> logger -t Test "This message comes from $USER"

Depending on the current user and host name, the log contains a line similar to this:

Sep 28 13:09:31 venus Test: This message comes from tux

65 More information SLES 15 SP4

https://www.rsyslog.com/doc/master/index.html#manual

III Kernel monitoring

4 SystemTap—filtering and analyzing system data 67

5 Kernel probes 81

6 Hardware-based performance monitoring with Perf 86

7 OProfile—system-wide profiler 91

8 Dynamic debug—kernel debugging messages 97

4 SystemTap—filtering and analyzing system data

SystemTap provides a command line interface and a scripting language to examine the activities
of a running Linux system, particularly the kernel, in ne detail. SystemTap scripts are written
in the SystemTap scripting language, are then compiled to C-code kernel modules and inserted
into the kernel. The scripts can be designed to extract, filter and summarize data, thus allowing
the diagnosis of complex performance problems or functional problems. SystemTap provides
information similar to the output of tools like netstat , ps , top , and iostat . However, more
filtering and analysis options can be used for the collected information.

4.1 Conceptual overview

Each time you run a SystemTap script, a SystemTap session is started. Several passes are done
on the script before it is allowed to run. Then, the script is compiled into a kernel module and
loaded. If the script has been executed before and no system components have changed (for
example, different compiler or kernel versions, library paths, or script contents), SystemTap does
not compile the script again. Instead, it uses the *.c and *.ko data stored in the SystemTap
cache (~/.systemtap).

The module is unloaded when the tap has finished running. For an example, see the test run in
Section 4.2, “Installation and setup” and the respective explanation.

4.1.1 SystemTap scripts

SystemTap usage is based on SystemTap scripts (*.stp). They tell SystemTap which type of
information to collect, and what to do once that information is collected. The scripts are written
in the SystemTap scripting language that is similar to AWK and C. For the language definition,
see https://sourceware.org/systemtap/langref/ . A lot of useful example scripts are available
from http://www.sourceware.org/systemtap/examples/ .

The essential idea behind a SystemTap script is to name events , and to give them handlers .
When SystemTap runs the script, it monitors for certain events. When an event occurs, the Linux
kernel runs the handler as a sub-routine, then resumes. Thus, events serve as the triggers for
handlers to run. Handlers can record specified data and print it in a certain manner.

67 Conceptual overview SLES 15 SP4

https://sourceware.org/systemtap/langref/
http://www.sourceware.org/systemtap/examples/

The SystemTap language only uses a few data types (integers, strings, and associative arrays of
these), and full control structures (blocks, conditionals, loops, functions). It has a lightweight
punctuation (semicolons are optional) and does not need detailed declarations (types are in-
ferred and checked automatically).

For more information about SystemTap scripts and their syntax, refer to Section 4.3, “Script syn-

tax” and to the stapprobes and stapfuncs man pages, that are available with the system-
tap-docs package.

4.1.2 Tapsets

Tapsets are a library of pre-written probes and functions that can be used in SystemTap scripts.
When a user runs a SystemTap script, SystemTap checks the script's probe events and handlers
against the tapset library. SystemTap then loads the corresponding probes and functions before
translating the script to C. Like SystemTap scripts themselves, tapsets use the le name extension
*.stp .

However, unlike SystemTap scripts, tapsets are not meant for direct execution. They constitute
the library from which other scripts can pull definitions. Thus, the tapset library is an abstraction
layer designed to make it easier for users to define events and functions. Tapsets provide aliases
for functions that users could want to specify as an event. Knowing the proper alias is often
easier than remembering specific kernel functions that might vary between kernel versions.

4.1.3 Commands and privileges

The main commands associated with SystemTap are stap and staprun . To execute them, you
either need root privileges or must be a member of the stapdev or stapusr group.

stap

SystemTap front-end. Runs a SystemTap script (either from le, or from standard input). It
translates the script into C code, compiles it, and loads the resulting kernel module into a
running Linux kernel. Then, the requested system trace or probe functions are performed.

staprun

SystemTap back-end. Loads and unloads kernel modules produced by the SystemTap front-
end.

68 Tapsets SLES 15 SP4

For a list of options for each command, use --help . For details, refer to the stap and the
staprun man pages.

To avoid giving root access to users solely to enable them to work with SystemTap, use one
of the following SystemTap groups. They are not available by default on SUSE Linux Enterprise
Server, but you can create the groups and modify the access rights accordingly. Also adjust
the permissions of the staprun command if the security implications are appropriate for your
environment.

stapdev

Members of this group can run SystemTap scripts with stap , or run SystemTap instru-
mentation modules with staprun . As running stap involves compiling scripts into ker-
nel modules and loading them into the kernel, members of this group still have effective
root access.

stapusr

Members of this group are only allowed to run SystemTap instrumentation modules
with staprun . In addition, they can only run those modules from /lib/modules/KER-
NEL_VERSION/systemtap/ . This directory must be owned by root and must only be
writable for the root user.

4.1.4 Important files and directories

The following list gives an overview of the SystemTap main les and directories.

/lib/modules/KERNEL_VERSION/systemtap/

Holds the SystemTap instrumentation modules.

/usr/share/systemtap/tapset/

Holds the standard library of tapsets.

/usr/share/doc/packages/systemtap/examples

Holds several example SystemTap scripts for various purposes. Only available if the sys-
temtap-docs package is installed.

~/.systemtap/cache

Data directory for cached SystemTap les.

/tmp/stap*

Temporary directory for SystemTap les, including translated C code and kernel object.

69 Important files and directories SLES 15 SP4

4.2 Installation and setup
As SystemTap needs information about the kernel, some additional kernel-related packages must
be installed. For each kernel you want to probe with SystemTap, you need to install a set of
the following packages. This set should exactly match the kernel version and flavor (indicated
by * in the overview below).

Important: Repository for packages with debugging information
If you subscribed your system for online updates, you can nd “debuginfo” packages in the
*-Debuginfo-Updates online installation repository relevant for SUSE Linux Enterprise
Server 15 SP4. Use YaST to enable the repository.

For the classic SystemTap setup, install the following packages (using either YaST or zypper).

systemtap

systemtap-server

systemtap-docs (optional)

kernel-*-base

kernel-*-debuginfo

kernel-*-devel

kernel-source-*

gcc

To get access to the man pages and to a helpful collection of example SystemTap scripts for
various purposes, additionally install the systemtap-docs package.

To check if all packages are correctly installed on the machine and if SystemTap is ready to use,
execute the following command as root .

stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'

It probes the currently used kernel by running a script and returning an output. If the output is
similar to the following, SystemTap is successfully deployed and ready to use:

Pass 1 : parsed user script and 59 library script(s) in 80usr/0sys/214real ms.
Pass 2 : analyzed script: 1 probe(s), 11 function(s), 2 embed(s), 1 global(s) in
 140usr/20sys/412real ms.

70 Installation and setup SLES 15 SP4

Pass 3 : translated to C into
 "/tmp/stapDwEk76/stap_1856e21ea1c246da85ad8c66b4338349_4970.c" in 160usr/0sys/408real ms.
Pass 4 : compiled C into "stap_1856e21ea1c246da85ad8c66b4338349_4970.ko" in
 2030usr/360sys/10182real ms.
Pass 5 : starting run.
 read performed
Pass 5 : run completed in 10usr/20sys/257real ms.

1 Checks the script against the existing tapset library in /usr/share/systemtap/tapset/
for any tapsets used. Tapsets are scripts that form a library of pre-written probes and func-
tions that can be used in SystemTap scripts.

2 Examines the script for its components.

3 Translates the script to C. Runs the system C compiler to create a kernel module from it.
Both the resulting C code (*.c) and the kernel module (*.ko) are stored in the SystemTap
cache, ~/.systemtap .

4 Loads the module and enables all the probes (events and handlers) in the script by hooking
into the kernel. The event being probed is a Virtual File System (VFS) read. As the event
occurs on any processor, a valid handler is executed (prints the text read performed)
and closed with no errors.

5 After the SystemTap session is terminated, the probes are disabled, and the kernel module
is unloaded.

In case any error messages appear during the test, check the output for hints about any missing
packages and make sure they are installed correctly. Rebooting and loading the appropriate
kernel may also be needed.

4.3 Script syntax
SystemTap scripts consist of the following two components:

SystemTap events (probe points)

Name the kernel events at the associated handler should be executed. Examples for events
are entering or exiting a certain function, a timer expiring, or starting or terminating a
session.

SystemTap handlers (probe body)

Series of script language statements that specify the work to be done whenever a certain
event occurs. This normally includes extracting data from the event context, storing them
into internal variables, or printing results.

71 Script syntax SLES 15 SP4

An event and its corresponding handler is collectively called a probe . SystemTap events are
also called probe points . A probe's handler is also called a probe body .

Comments can be inserted anywhere in the SystemTap script in various styles: using either # ,
/* */ , or // as marker.

4.3.1 Probe format

A SystemTap script can have multiple probes. They must be written in the following format:

probe EVENT {STATEMENTS}

Each probe has a corresponding statement block. This statement block must be enclosed in { }
and contains the statements to be executed per event.

EXAMPLE 4.1: SIMPLE SYSTEMTAP SCRIPT

The following example shows a simple SystemTap script.

probe 1 begin 2

{ 3

 printf 4 ("hello world\n") 5

 exit () 6

} 7

1 Start of the probe.

2 Event begin (the start of the SystemTap session).

3 Start of the handler definition, indicated by { .

4 First function defined in the handler: the printf function.

5 String to be printed by the printf function, followed by a line break (/n).

6 Second function defined in the handler: the exit() function. Note that the System-
Tap script will continue to run until the exit() function executes. If you want to
stop the execution of the script before, stop it manually by pressing Ctrl – C .

7 End of the handler definition, indicated by } .

The event begin 2 (the start of the SystemTap session) triggers the handler enclosed in
{ } . Here, that is the printf function 4 . In this case, it prints hello world followed
by a new line 5 . Then, the script exits.

72 Probe format SLES 15 SP4

If your statement block holds several statements, SystemTap executes these statements in se-
quence—you do not need to insert special separators or terminators between multiple state-
ments. A statement block can also be nested within another statement blocks. Generally, state-
ment blocks in SystemTap scripts use the same syntax and semantics as in the C programming
language.

4.3.2 SystemTap events (probe points)

SystemTap supports several built-in events.

The general event syntax is a dotted-symbol sequence. This allows a breakdown of the event
namespace into parts. Each component identifier may be parameterized by a string or number
literal, with a syntax like a function call. A component may include a * character, to expand to
other matching probe points. A probe point may be followed by a ? character, to indicate that
it is optional, and that no error should result if it fails to expand. Alternately, a probe point may
be followed by a ! character to indicate that it is both optional and sufficient.

SystemTap supports multiple events per probe—they need to be separated by a comma (,). If
multiple events are specified in a single probe, SystemTap will execute the handler when any
of the specified events occur.

In general, events can be classified into the following categories:

Synchronous events: Occur when any process executes an instruction at a particular loca-
tion in kernel code. This gives other events a reference point (instruction address) from
which more contextual data may be available.
An example for a synchronous event is vfs.FILE_OPERATION : The entry to the FILE_OP-
ERATION event for Virtual File System (VFS). For example, in Section 4.2, “Installation and

setup”, read is the FILE_OPERATION event used for VFS.

Asynchronous events: Not tied to a particular instruction or location in code. This family
of probe points consists mainly of counters, timers, and similar constructs.
Examples for asynchronous events are: begin (start of a SystemTap session—when a Sys-
temTap script is run, end (end of a SystemTap session), or timer events. Timer events spec-
ify a handler to be executed periodically, like example timer.s(SECONDS) , or timer.m-
s(MILLISECONDS) .
When used together with other probes that collect information, timer events allow you to
print periodic updates and see how that information changes over time.

73 SystemTap events (probe points) SLES 15 SP4

EXAMPLE 4.2: PROBE WITH TIMER EVENT

For example, the following probe would print the text “hello world” every 4 seconds:

probe timer.s(4)
{
 printf("hello world\n")
}

For detailed information about supported events, refer to the stapprobes man page. The See
Also section of the man page also contains links to other man pages that discuss supported events
for specific subsystems and components.

4.3.3 SystemTap handlers (probe body)

Each SystemTap event is accompanied by a corresponding handler defined for that event, con-
sisting of a statement block.

4.3.3.1 Functions

If you need the same set of statements in multiple probes, you can place them in a function for
easy reuse. Functions are defined by the keyword function followed by a name. They take any
number of string or numeric arguments (by value) and may return a single string or number.

function FUNCTION_NAME(ARGUMENTS) {STATEMENTS}
probe EVENT {FUNCTION_NAME(ARGUMENTS)}

The statements in FUNCTION_NAME are executed when the probe for EVENT executes. The AR-
GUMENTS are optional values passed into the function.

Functions can be defined anywhere in the script. They may take any

One of the functions needed very often was already introduced in Example 4.1, “Simple SystemTap

script”: the printf function for printing data in a formatted way. When using the printf
function, you can specify how arguments should be printed by using a format string. The format
string is included in quotation marks and can contain further format specifiers, introduced by
a % character.

Which format strings to use depends on your list of arguments. Format strings can have mul-
tiple format specifiers—each matching a corresponding argument. Multiple arguments can be
separated by a comma.

74 SystemTap handlers (probe body) SLES 15 SP4

EXAMPLE 4.3: printf FUNCTION WITH FORMAT SPECIFIERS

printf (" 1 %s 2 (%d 3) open\n 4 ", execname(), pid())

1 Start of the format string, indicated by " .

2 String format specifier.

3 Integer format specifier.

4 End of the format string, indicated by " .

The example above prints the current executable name (execname()) as a string and the process
ID (pid()) as an integer in brackets. Then, a space, the word open and a line break follow:

[...]
vmware-guestd(2206) open
hald(2360) open
[...]

Apart from the two functions execname() and pid()) used in Example 4.3, “printf Function with

format specifiers”, a variety of other functions can be used as printf arguments.

Among the most commonly used SystemTap functions are the following:

tid()

ID of the current thread.

pid()

Process ID of the current thread.

uid()

ID of the current user.

cpu()

Current CPU number.

execname()

Name of the current process.

gettimeofday_s()

Number of seconds since Unix epoch (January 1, 1970).

ctime()

Convert time into a string.

pp()

String describing the probe point currently being handled.

75 SystemTap handlers (probe body) SLES 15 SP4

thread_indent()

Useful function for organizing print results. It (internally) stores an indentation counter for
each thread (tid()). The function takes one argument, an indentation delta, indicating
how many spaces to add or remove from the thread's indentation counter. It returns a string
with some generic trace data along with an appropriate number of indentation spaces.
The generic data returned includes a time stamp (number of microseconds since the initial
indentation for the thread), a process name, and the thread ID itself. This allows you to
identify what functions were called, who called them, and how long they took.
Call entries and exits often do not immediately precede each other (otherwise it would be
easy to match them). In between a rst call entry and its exit, usually other call entries and
exits are made. The indentation counter helps you match an entry with its corresponding
exit as it indents the next function call in case it is not the exit of the previous one.

For more information about supported SystemTap functions, refer to the stapfuncs man page.

4.3.3.2 Other basic constructs

Apart from functions, you can use other common constructs in SystemTap handlers, including
variables, conditional statements (like if / else , while loops, for loops, arrays or command
line arguments.

4.3.3.2.1 Variables

Variables may be defined anywhere in the script. To define one, simply choose a name and
assign a value from a function or expression to it:

foo = gettimeofday()

Then you can use the variable in an expression. From the type of values assigned to the variable,
SystemTap automatically infers the type of each identifier (string or number). Any inconsisten-
cies will be reported as errors. In the example above, foo would automatically be classified as
a number and could be printed via printf() with the integer format specifier (%d).

However, by default, variables are local to the probe they are used in: They are initialized, used
and disposed of at each handler evocation. To share variables between probes, declare them
global anywhere in the script. To do so, use the global keyword outside of the probes:

EXAMPLE 4.4: USING GLOBAL VARIABLES

global count_jiffies, count_ms

76 SystemTap handlers (probe body) SLES 15 SP4

probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
 hz=(1000*count_jiffies) / count_ms
 printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
 count_jiffies, count_ms, hz)
 exit ()
 }

This example script computes the CONFIG_HZ setting of the kernel by using timers that
count jies and milliseconds, then computing accordingly. (A jiy is the duration of one
tick of the system timer interrupt. It is not an absolute time interval unit, since its duration
depends on the clock interrupt frequency of the particular hardware platform). With the
global statement it is possible to use the variables count_jiffies and count_ms also
in the probe timer.ms(12345) . With ++ the value of a variable is incremented by 1 .

4.3.3.2.2 Conditional statements

There are several conditional statements that you can use in SystemTap scripts. The following
are probably the most common:

If/else statements

They are expressed in the following format:

if (CONDITION) 1 STATEMENT1 2

else 3 STATEMENT2 4

The if statement compares an integer-valued expression to zero. If the condition expres-
sion 1 is non-zero, the rst statement 2 is executed. If the condition expression is zero,
the second statement 4 is executed. The else clause (3 and 4) is optional. Both 2 and

4 can also be statement blocks.

While loops

They are expressed in the following format:

while (CONDITION) 1 STATEMENT 2

As long as condition is non-zero, the statement 2 is executed. 2 can also be a statement
block. It must change a value so condition will eventually be zero.

77 SystemTap handlers (probe body) SLES 15 SP4

For loops

They are a shortcut for while loops and are expressed in the following format:

for (INITIALIZATION 1 ; CONDITIONAL 2 ; INCREMENT 3) statement

The expression specified in 1 is used to initialize a counter for the number of loop iter-
ations and is executed before execution of the loop starts. The execution of the loop con-
tinues until the loop condition 2 is false. (This expression is checked at the beginning of
each loop iteration). The expression specified in 3 is used to increment the loop counter.
It is executed at the end of each loop iteration.

Conditional operators

The following operators can be used in conditional statements:

==: Is equal to

!=: Is not equal to

>=: Is greater than or equal to

<=: Is less than or equal to

4.4 Example script
If you have installed the systemtap-docs package, you can nd several useful SystemTap
example scripts in /usr/share/doc/packages/systemtap/examples .

This section describes a rather simple example script in more detail: /usr/share/doc/pack-
ages/systemtap/examples/network/tcp_connections.stp .

EXAMPLE 4.5: MONITORING INCOMING TCP CONNECTIONS WITH tcp_connections.stp

#! /usr/bin/env stap

probe begin {
 printf("%6s %16s %6s %6s %16s\n",
 "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
 kernel.function("inet_csk_accept").return? {
 sock = $return
 if (sock != 0)

78 Example script SLES 15 SP4

 printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
 inet_get_local_port(sock), inet_get_ip_source(sock))
}

This SystemTap script monitors the incoming TCP connections and helps to identify unautho-
rized or unwanted network access requests in real time. It shows the following information for
each new incoming TCP connection accepted by the computer:

User ID (UID)

Command accepting the connection (CMD)

Process ID of the command (PID)

Port used by the connection (PORT)

IP address from which the TCP connection originated (IP_SOUCE)

To run the script, execute

stap /usr/share/doc/packages/systemtap/examples/network/tcp_connections.stp

and follow the output on the screen. To manually stop the script, press Ctrl – C .

4.5 User space probing
For debugging user space applications (like DTrace can do), SUSE Linux Enterprise Server 15
SP4 supports user space probing with SystemTap: Custom probe points can be inserted in any
user space application. Thus, SystemTap lets you use both kernel space and user space probes
to debug the behavior of the whole system.

To get the required utrace infrastructure and the uprobes kernel module for user space probing,
you need to install the kernel-trace package in addition to the packages listed in Section 4.2,

“Installation and setup”.

utrace implements a framework for controlling user space tasks. It provides an interface that
can be used by various tracing “engines”, implemented as loadable kernel modules. The engines
register callback functions for specific events, then attach to whichever thread they want to
trace. As the callbacks are made from “safe” places in the kernel, this allows for great leeway
in the kinds of processing the functions can do. Various events can be watched via utrace, for
example, system call entry and exit, fork(), signals being sent to the task, etc. More details about
the utrace infrastructure are available at https://sourceware.org/systemtap/wiki/utrace .

79 User space probing SLES 15 SP4

https://sourceware.org/systemtap/wiki/utrace

SystemTap includes support for probing the entry into and return from a function in user space
processes, probing predefined markers in user space code, and monitoring user-process events.

To check if the currently running kernel provides the needed utrace support, use the following
command:

> sudo grep CONFIG_UTRACE /boot/config-`uname -r`

For more details about user space probing, refer to https://sourceware.org/systemtap/System-

Tap_Beginners_Guide/userspace-probing.html .

4.6 More information
This chapter only provides a short SystemTap overview. Refer to the following links for more
information about SystemTap:

https://sourceware.org/systemtap/

SystemTap project home page.

https://sourceware.org/systemtap/wiki/

Huge collection of useful information about SystemTap, ranging from detailed user and de-
veloper documentation to reviews and comparisons with other tools, or Frequently Asked
Questions and tips. Also contains collections of SystemTap scripts, examples and usage
stories and lists recent talks and papers about SystemTap.

https://sourceware.org/systemtap/documentation.html

Features a SystemTap Tutorial, a SystemTap Beginner's Guide, a Tapset Developer's Guide, and
a SystemTap Language Reference in PDF and HTML format. Also lists the relevant man pages.

You can also nd the SystemTap language reference and SystemTap tutorial in your installed
system under /usr/share/doc/packages/systemtap . Example SystemTap scripts are avail-
able from the example subdirectory.

80 More information SLES 15 SP4

https://sourceware.org/systemtap/SystemTap_Beginners_Guide/userspace-probing.html
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/userspace-probing.html
https://sourceware.org/systemtap/
https://sourceware.org/systemtap/wiki/
https://sourceware.org/systemtap/documentation.html

5 Kernel probes

Kernel probes are a set of tools to collect Linux kernel debugging and performance information.
Developers and system administrators usually use them either to debug the kernel, or to nd
system performance bottlenecks. The reported data can then be used to tune the system for
better performance.

You can insert these probes into any kernel routine, and specify a handler to be invoked after a
particular break-point is hit. The main advantage of kernel probes is that you no longer need to
rebuild the kernel and reboot the system after you make changes in a probe.

To use kernel probes, you typically need to write or obtain a specific kernel module. Such mod-
ules include both the init and the exit function. The init function (such as register_kprobe())
registers one or more probes, while the exit function unregisters them. The registration func-
tion defines where the probe will be inserted and which handler will be called after the probe
is hit. To register or unregister a group of probes at one time, you can use relevant regis-
ter_<PROBE_TYPE>probes() or unregister_<PROBE_TYPE>probes() functions.

Debugging and status messages are typically reported with the printk kernel routine. printk
is a kernel space equivalent of a user space printf routine. For more information on printk ,
see Logging kernel messages (https://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8) . Normally,
you can view these messages by inspecting the output of the systemd journal (see Book “Admin-

istration Guide”, Chapter 21 “journalctl: Query the systemd journal”). For more information on
log les, see Chapter 3, System log files.

5.1 Supported architectures
Kernel probes are fully implemented on the following architectures:

x86

AMD64/Intel 64

Arm

POWER

Kernel probes are partially implemented on the following architectures:

IA64 (does not support probes on instruction slot1)

sparc64 (return probes not yet implemented)

81 Supported architectures SLES 15 SP4

https://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8

5.2 Types of kernel probes
There are three types of kernel probes: Kprobes, Jprobes, and Kretprobes. Kretprobes are some-
times called return probes. You can nd source code examples of all three type of probes
in the Linux kernel. See the directory /usr/src/linux/samples/kprobes/ (package ker-
nel-source).

5.2.1 Kprobes

Kprobes can be attached to any instruction in the Linux kernel. When Kprobes is registered, it
inserts a break-point at the rst byte of the probed instruction. When the processor hits this
break-point, the processor registers are saved, and the processing passes to Kprobes. First, a pre-
handler is executed, then the probed instruction is stepped, and, finally a post-handler is executed.
The control is then passed to the instruction following the probe point.

5.2.2 Jprobes

Jprobes is implemented through the Kprobes mechanism. It is inserted on a function's entry
point and allows direct access to the arguments of the function which is being probed. Its handler
routine must have the same argument list and return value as the probed function. To end it,
call the jprobe_return() function.

When a jprobe is hit, the processor registers are saved, and the instruction pointer is directed
to the jprobe handler routine. The control then passes to the handler with the same register
contents as the function being probed. Finally, the handler calls the jprobe_return() function,
and switches the control back to the control function.

In general, you can insert multiple probes on one function. Jprobe is, however, limited to only
one instance per function.

5.2.3 Return probe

Return probes are also implemented through Kprobes. When the register_kretprobe() func-
tion is called, a kprobe is attached to the entry of the probed function. After hitting the probe,
the kernel probes mechanism saves the probed function return address and calls a user-defined
return handler. The control is then passed back to the probed function.

82 Types of kernel probes SLES 15 SP4

Before you call register_kretprobe() , you need to set a maxactive argument, which spec-
ifies how many instances of the function can be probed at the same time. If set too low, you
will miss a certain number of probes.

5.3 Kprobes API

The programming interface of Kprobes consists of functions which are used to register and un-
register all used kernel probes, and associated probe handlers. For a more detailed description of
these functions and their arguments, see the information sources in Section 5.5, “More information”.

register_kprobe()

Inserts a break-point on a specified address. When the break-point is hit, the pre_handler
and post_handler are called.

register_jprobe()

Inserts a break-point in the specified address. The address needs to be the address of the
rst instruction of the probed function. When the break-point is hit, the specified handler
is run. The handler should have the same argument list and return type as the probed.

register_kretprobe()

Inserts a return probe for the specified function. When the probed function returns, a
specified handler is run. This function returns 0 on success, or a negative error number
on failure.

unregister_kprobe() , unregister_jprobe() , unregister_kretprobe()

Removes the specified probe. You can use it any time after the probe has been registered.

register_kprobes() , register_jprobes() , register_kretprobes()

Inserts each of the probes in the specified array.

unregister_kprobes() , unregister_jprobes() , unregister_kretprobes()

Removes each of the probes in the specified array.

disable_kprobe() , disable_jprobe() , disable_kretprobe()

Disables the specified probe temporarily.

enable_kprobe() , enable_jprobe() , enable_kretprobe()

Temporarily enables disabled probes.

83 Kprobes API SLES 15 SP4

5.4 debugfs Interface

In recent Linux kernels, the Kprobes instrumentation uses the kernel's debugfs interface. It can
list all registered probes and globally switch all probes on or o.

5.4.1 Listing registered kernel probes

The list of all currently registered probes is in the /sys/kernel/debug/kprobes/list le.

saturn.example.com:~ # cat /sys/kernel/debug/kprobes/list
c015d71a k vfs_read+0x0 [DISABLED]
c011a316 j do_fork+0x0
c03dedc5 r tcp_v4_rcv+0x0

The rst column lists the address in the kernel where the probe is inserted. The second column
prints the type of the probe: k for kprobe, j for jprobe, and r for return probe. The third column
specifies the symbol, offset and optional module name of the probe. The following optional
columns include the status information of the probe. If the probe is inserted on a virtual address
which is not valid anymore, it is marked with [GONE] . If the probe is temporarily disabled, it
is marked with [DISABLED] .

5.4.2 Globally enabling/disabling kernel probes

The /sys/kernel/debug/kprobes/enabled le represents a switch with which you can glob-
ally and forcibly turn on or o all the registered kernel probes. To turn them o, simply enter

echo "0" > /sys/kernel/debug/kprobes/enabled

on the command line as root . To turn them on again, enter

echo "1" > /sys/kernel/debug/kprobes/enabled

Note that this way you do not change the status of the probes. If a probe is temporarily disabled,
it will not be enabled automatically but will remain in the [DISABLED] state after entering the
latter command.

84 debugfs Interface SLES 15 SP4

5.5 More information
To learn more about kernel probes, look at the following sources of information:

Thorough but more technically oriented information about kernel probes is in /usr/src/
linux/Documentation/trace/kprobes.txt (package kenrel-source).

Examples of all three types of probes (together with related Makefile) are in the /usr/
src/linux/samples/kprobes/ directory (package kernel-source).

In-depth information about Linux kernel modules and printk kernel routine can be
found at The Linux Kernel Module Programming Guide (https://tldp.org/LDP/lkmpg/2.6/html/

lkmpg.html)

85 More information SLES 15 SP4

https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html

6 Hardware-based performance monitoring with Perf

Perf is an interface to access the performance monitoring unit (PMU) of a proces-
sor and to record and display software events such as page faults. It supports sys-
tem-wide, per-thread, and KVM virtualization guest monitoring.

You can store resulting information in a report. This report contains information about, for
example, instruction pointers or what code a thread was executing.

Perf consists of two parts:

Code integrated into the Linux kernel that is responsible for instructing the hardware.

The perf user space utility that allows you to use the kernel code and helps you analyze
gathered data.

6.1 Hardware-based monitoring
Performance monitoring means collecting information related to how an application or system
performs. This information can be obtained either through software-based means or from the
CPU or chipset. Perf integrates both of these methods.

Many modern processors contain a performance monitoring unit (PMU). The design and func-
tionality of a PMU is CPU-specific. For example, the number of registers, counters and features
supported will vary by CPU implementation.

Each PMU model consists of a set of registers: the performance monitor configuration (PMC)
and the performance monitor data (PMD). Both can be read, but only PMCs are writable. These
registers store configuration information and data.

6.2 Sampling and counting
Perf supports several profiling modes:

Counting. Count the number of occurrences of an event.

Event-based sampling. A less exact way of counting: A sample is recorded whenever a
certain threshold number of events has occurred.

86 Hardware-based monitoring SLES 15 SP4

Time-based sampling. A less exact way of counting: A sample is recorded in a defined
frequency.

Instruction-based sampling (AMD64 only). The processor follows instructions appearing
in a given interval and samples which events they produce. This allows following up on
individual instructions and seeing which of them is critical to performance.

6.3 Installing Perf
The Perf kernel code is already included with the default kernel. To be able to use the user space
utility, install the package perf .

6.4 Perf subcommands
To gather the required information, the perf tool has several subcommands. This section gives
an overview of the most often used commands.

To see help in the form of a man page for any of the subcommands, use either perf help SUB-

COMMAND or man perf- SUBCOMMAND .

perf stat

Start a program and create a statistical overview that is displayed after the program quits.
perf stat is used to count events.

perf record

Start a program and create a report with performance counter information. The report is
stored as perf.data in the current directory. perf record is used to sample events.

perf report

Display a report that was previously created with perf record .

perf annotate

Display a report le and an annotated version of the executed code. If debug symbols are
installed, you will also see the source code displayed.

perf list

List event types that Perf can report with the current kernel and with your CPU. You can
filter event types by category—for example, to see hardware events only, use perf list
hw .

87 Installing Perf SLES 15 SP4

The man page for perf_event_open has short descriptions for the most important
events. For example, to nd a description of the event branch-misses , search for
BRANCH_MISSES (note the spelling differences):

> man perf_event_open | grep -A5 BRANCH_MISSES

Sometimes, events may be ambiguous. Note that the lowercase hardware event names are
not the name of raw hardware events but instead the name of aliases created by Perf. These
aliases map to differently named but similarly defined hardware events on each supported
processor.
For example, the cpu-cycles event is mapped to the hardware event UNHALT-

ED_CORE_CYCLES on Intel processors. On AMD processors, however, it is mapped to the
hardware event CPU_CLK_UNHALTED .
Perf also allows measuring raw events specific to your hardware. To look up their descrip-
tions, see the Architecture Software Developer's Manual of your CPU vendor. The relevant
documents for AMD64/Intel 64 processors are linked to in Section 6.7, “More information”.

perf top

Display system activity as it happens.

perf trace

This command behaves similarly to strace . With this subcommand, you can see which
system calls are executed by a particular thread or process and which signals it receives.

6.5 Counting particular types of event
To count the number of occurrences of an event, such as those displayed by perf list , use:

perf stat -e EVENT -a

To count multiple types of events at once, list them separated by commas. For example, to count
cpu-cycles and instructions , use:

perf stat -e cpu-cycles,instructions -a

To stop the session, press Ctrl – C .

You can also count the number of occurrences of an event within a particular time:

perf stat -e EVENT -a -- sleep TIME

Replace TIME by a value in seconds.

88 Counting particular types of event SLES 15 SP4

6.6 Recording events specific to particular commands
There are various ways to sample events specific to a particular command:

To create a report for a newly invoked command, use:

perf record COMMAND

Then, use the started process normally. When you quit the process, the Perf session will
also stop.

To create a report for the entire system while a newly invoked command is running, use:

perf record -a COMMAND

Then, use the started process normally. When you quit the process, the Perf session will
also stop.

To create a report for an already running process, use:

perf record -p PID

Replace PID with a process ID. To stop the session, press Ctrl – C .

Now you can view the gathered data (perf.data) using:

> perf report

This will open a pseudo-graphical interface. To receive help, press H . To quit, press Q .

If you prefer a graphical interface, try the GTK+ interface of Perf:

> perf report --gtk

However, note that the GTK+ interface is very limited in functionality.

6.7 More information
This chapter only provides a short overview. Refer to the following links for more information:

https://perf.wiki.kernel.org/index.php/Main_Page

The project home page. It also features a tutorial on using perf .

89 Recording events specific to particular commands SLES 15 SP4

https://perf.wiki.kernel.org/index.php/Main_Page

http://www.brendangregg.com/perf.html

Unofficial page with many one-line examples of how to use perf .

http://web.eece.maine.edu/~vweaver/projects/perf_events/

Unofficial page with several resources, mostly relating to the Linux kernel code of Perf and
its API. This page includes, for example, a CPU compatibility table and a programming
guide.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3b-part-2-manual.pdf

The Intel Architectures Software Developer's Manual, Volume 3B.

https://support.amd.com/TechDocs/24593.pdf

The AMD Architecture Programmer's Manual, Volume 2.

Chapter 7, OProfile—system-wide profiler

Consult this chapter for other performance optimizations.

90 More information SLES 15 SP4

http://www.brendangregg.com/perf.html
http://web.eece.maine.edu/~vweaver/projects/perf_events/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://support.amd.com/TechDocs/24593.pdf

7 OProfile—system-wide profiler

OProfile is a profiler for dynamic program analysis. It investigates the behavior of
a running program and gathers information. This information can be viewed and
gives hints for further optimization.

It is not necessary to recompile or use wrapper libraries to use OProfile. Not even a
kernel patch is needed. Usually, when profiling an application, a small overhead is
expected, depending on the workload and sampling frequency.

7.1 Conceptual overview

OProfile consists of a kernel driver and a daemon for collecting data. It uses the hardware
performance counters provided on many processors. OProfile is capable of profiling all code
including the kernel, kernel modules, kernel interrupt handlers, system shared libraries, and
other applications.

Modern processors support profiling through the hardware by performance counters. Depending
on the processor, there can be many counters and each of these can be programmed with an
event to count. Each counter has a value which determines how often a sample is taken. The
lower the value, the more often it is used.

During the post-processing step, all information is collected and instruction addresses are
mapped to a function name.

7.2 Installation and requirements

To use OProfile, install the oprofile package. OProfile works on AMD64/Intel 64, IBM Z, and
POWER processors.

It is useful to install the *-debuginfo package for the respective application you want to profile.
If you want to profile the kernel, you need the debuginfo package as well.

91 Conceptual overview SLES 15 SP4

7.3 Available OProfile utilities
OProfile contains several utilities to handle the profiling process and its profiled data. The fol-
lowing list is a short summary of programs used in this chapter:

opannotate

Outputs annotated source or assembly listings mixed with profile information. An anno-
tated report can be used in combination with addr2line to identify the source le and
line where hotspots potentially exist. See man addr2line for more information.

operf

Profiler tool. After profiling stops, the data that is by default stored in CUR_DIR/opro-
file_data/samples/current can be processed by opreport , for example.

ophelp

Lists available events with short descriptions.

opimport

Converts sample database les from a foreign binary format to the native format.

opreport

Generates reports from profiled data.

7.4 Using OProfile
With OProfile, you can profile both the kernel and applications. When profiling the kernel, tell
OProfile where to nd the vmlinuz* le. Use the --vmlinux option and point it to vmlinuz*
(usually in /boot). If you need to profile kernel modules, OProfile does this by default. However,
make sure you read http://oprofile.sourceforge.net/doc/kernel-profiling.html .

Applications usually do not need to profile the kernel, therefore you should use the --no-
vmlinux option to reduce the amount of information.

7.4.1 Creating a report

Starting the daemon, collecting data, stopping the daemon, and creating a report for the appli-
cation COMMAND .

1. Open a shell and log in as root .

92 Available OProfile utilities SLES 15 SP4

http://oprofile.sourceforge.net/doc/kernel-profiling.html

2. Decide if you want to profile with or without the Linux kernel:

a. Profile with the Linux kernel. Execute the following commands, because operf can
only work with uncompressed images:

> cp /boot/vmlinux-`uname -r`.gz /tmp
> gunzip /tmp/vmlinux*.gz
> operf--vmlinux=/tmp/vmlinux* COMMAND

b. Profile without the Linux kernel. Use the following command:

operf --no-vmlinux COMMAND

To see which functions call other functions in the output, additionally use the --
callgraph option and set a maximum DEPTH :

operf --no-vmlinux --callgraph
DEPTH COMMAND

3. operf writes its data to CUR_DIR/oprofile_data/samples/current . After the operf
command is finished (or is aborted by Ctrl – C), the data can be analyzed with oreport :

opreport
Overflow stats not available
CPU: CPU with timer interrupt, speed 0 MHz (estimated)
Profiling through timer interrupt
 TIMER:0|
 samples| %|

 84877 98.3226 no-vmlinux
...

7.4.2 Getting event configurations

The general procedure for event configuration is as follows:

1. Use rst the events CPU-CLK_UNHALTED and INST_RETIRED to nd optimization oppor-
tunities.

2. Use specific events to nd bottlenecks. To list them, use the command perf list .

93 Getting event configurations SLES 15 SP4

If you need to profile certain events, rst check the available events supported by your processor
with the ophelp command (example output generated from Intel Core i5 CPU):

ophelp
oprofile: available events for CPU type "Intel Architectural Perfmon"

See Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3B (Document 253669) Chapter 18 for architectural perfmon events
This is a limited set of fallback events because oprofile does not know your CPU
CPU_CLK_UNHALTED: (counter: all))
 Clock cycles when not halted (min count: 6000)
INST_RETIRED: (counter: all))
 number of instructions retired (min count: 6000)
LLC_MISSES: (counter: all))
 Last level cache demand requests from this core that missed the LLC (min count:
 6000)
 Unit masks (default 0x41)

 0x41: No unit mask
LLC_REFS: (counter: all))
 Last level cache demand requests from this core (min count: 6000)
 Unit masks (default 0x4f)

 0x4f: No unit mask
BR_MISS_PRED_RETIRED: (counter: all))
 number of mispredicted branches retired (precise) (min count: 500)

Specify the performance counter events with the option --event . Multiple options are possible.
This option needs an event name (from ophelp) and a sample rate, for example:

operf --events CPU_CLK_UNHALTED:100000

Warning: Setting sampling rates with CPU_CLK_UNHALTED
Setting low sampling rates can seriously impair the system performance while high sam-
ple rates can disrupt the system to such a high degree that the data is useless. It is recom-
mended to tune the performance metric for being monitored with and without OProfile
and to experimentally determine the minimum sample rate that disrupts the performance
the least.

94 Getting event configurations SLES 15 SP4

7.5 Generating reports
Before generating a report, make sure the operf has stopped. Unless you have provided an out-
put directory with --session-dir , operf has written its data to CUR_DIR /oprofile_data/sam-
ples/current, and the reporting tools opreport and opannotate will look there by default.

Calling opreport without any options gives a complete summary. With an executable as an
argument, retrieve profile data only from this executable. If you analyze applications written in
C++, use the --demangle smart option.

The opannotate generates output with annotations from source code. Run it with the following
options:

opannotate --source \
 --base-dirs=BASEDIR \
 --search-dirs=SEARCHDIR \
 --output-dir=annotated/ \
 /lib/libfoo.so

The option --base-dir contains a comma separated list of paths which is stripped from debug
source les. These paths were searched prior to looking in --search-dirs . The --search-
dirs option is also a comma separated list of directories to search for source les.

Note: Inaccuracies in annotated source
Because of compiler optimization, code can disappear and appear in a different place.
Use the information in http://oprofile.sourceforge.net/doc/debug-info.html to fully un-
derstand its implications.

7.6 More information
This chapter only provides a short overview. Refer to the following links for more information:

http://oprofile.sourceforge.net

The project home page.

Manpages

Details descriptions about the options of the different tools.

/usr/share/doc/packages/oprofile/oprofile.html

Contains the OProfile manual.

95 Generating reports SLES 15 SP4

http://oprofile.sourceforge.net/doc/debug-info.html
http://oprofile.sourceforge.net

http://developer.intel.com/

Architecture reference for Intel processors.

https://

www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangre-

f_arch_overview.html

Architecture reference for PowerPC64 processors in IBM iSeries, pSeries, and Blade server
systems.

96 More information SLES 15 SP4

http://developer.intel.com/
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_arch_overview.html
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_arch_overview.html
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_arch_overview.html

8 Dynamic debug—kernel debugging messages

Dynamic debug is a powerful debugging feature in the Linux kernel that allows you
to enable and disable debugging messages at runtime without the need to recompile
the kernel or reboot the system.

You can use dynamic debugging in several situations, such as:

Troubleshooting kernel issues

Developing drivers for new hardware

Tracing and auditing security events

8.1 Benefits of dynamic debugging
Certain benefits of dynamic debugging are listed below:

Real-time debugging

Dynamic debugging enables debugging messages without requiring a system reboot. This
real-time capability is crucial for diagnosing issues in production environments.

Selective debugging

You can enable debugging messages for specific parts of the kernel or even individual
modules, allowing you to focus on relevant information.

Performance tuning

Use dynamic debugging to monitor and optimize kernel performance by selectively en-
abling or disabling debugging messages based on the current analysis requirements.

8.2 Checking the status of dynamic debug
For supported kernel versions that are installed by default, dynamic debug is already built-in.
To check the status of dynamic debug, run the following command as the root user:

zcat /proc/config.gz | grep CONFIG_DYNAMIC_DEBUG

If dynamic debug is compiled into the kernel, you should see an output similar to the following:

CONFIG_DYNAMIC_DEBUG=y

97 Benefits of dynamic debugging SLES 15 SP4

CONFIG_DYNAMIC_DEBUG_CORE=y

8.3 Using dynamic debug
To enable specific debug messages or logs within the running kernel, you can use the echo
command and write to the /sys/kernel/debug/dynamic_debug/control le.

The following examples illustrate certain simple uses of dynamic debug:

Note
Dynamic debug relies on specific debugging macros, such as pr_debug , embedded in the
kernel code. These macros are used by kernel developers to insert debugging messages
into the code.

The examples in this section assume that the pr_debug macro works correctly because
dynamic debug is allowed for the running kernel.

Enabling debug messages for a specific kernel source code file

To enable the debug messages for a specific kernel source code le, use the following
example:

echo "file FILE_NAME.c +p" > /sys/kernel/debug/dynamic_debug/control

Enabling debug messages for a specific kernel module

To enable debug messages for a specific kernel module, use the following example:

echo "module MODULE_NAME +p" > /sys/kernel/debug/dynamic_debug/control

Disabling debug messages

To disable previously enabled debugging messages for a specific kernel source code le or
a kernel module, run the echo command with the -p option. For example:

echo "file FILE_NAME.c -p" > /sys/kernel/debug/dynamic_debug/control

echo "module MODULE_NAME -p" > /sys/kernel/debug/dynamic_debug/control

For detailed information about dynamic debug and its use cases, refer to its official documenta-

tion (https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html) .

98 Using dynamic debug SLES 15 SP4

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html

8.4 Viewing the dynamic debug messages
You can view the dynamic debug messages that were generated based on the configurations you
enabled, by running dmesg and filtering the output with grep . For example:

dmesg | grep -i "FILE_NAME.c"

Optionally, to continuously monitor the system messages as they are generated, you can use the
tail command with the -f option:

tail -f /var/log/messages

99 Viewing the dynamic debug messages SLES 15 SP4

IV Resource management

9 General system resource management 101

10 Kernel control groups 106

11 Automatic Non-Uniform Memory Access (NUMA) balancing 115

12 Power management 120

9 General system resource management

Tuning the system is not only about optimizing the kernel or getting the most out of
your application, it begins with setting up a lean and fast system. The way you set
up your partitions and le systems can influence the server's speed. The number of
active services and the way routine tasks are scheduled also affects performance.

9.1 Planning the installation

A carefully planned installation ensures that the system is set up exactly as you need it for
the given purpose. It also saves considerable time when ne tuning the system. All changes
suggested in this section can be made in the Installation Settings step during the installation. See
Book “Deployment Guide”, Chapter 8 “Installation steps”, Section 8.15 “Installation settings” for details.

9.1.1 Partitioning

Depending on the server's range of applications and the hardware layout, the partitioning
scheme can influence the machine's performance (although to a lesser extent only). It is beyond
the scope of this manual to suggest different partitioning schemes for particular workloads.
However, the following rules will positively affect performance. They do not apply when using
an external storage system.

Make sure there always is some free space available on the disk, since a full disk delivers
inferior performance

Disperse simultaneous read and write access onto different disks by, for example:

using separate disks for the operating system, data, and log les

placing a mail server's spool directory on a separate disk

distributing the user directories of a home server between different disks

101 Planning the installation SLES 15 SP4

9.1.2 Installation scope

The installation scope has no direct influence on the machine's performance, but a carefully
chosen scope of packages has advantages. It is recommended to install the minimum of packages
needed to run the server. A system with a minimum set of packages is easier to maintain and
has fewer potential security issues. Furthermore, a tailor made installation scope also ensures
that no unnecessary services are started by default.

SUSE Linux Enterprise Server lets you customize the installation scope on the Installation Sum-
mary screen. By default, you can select or remove preconfigured patterns for specific tasks, but
it is also possible to start the YaST Software Manager for a ne-grained package-based selection.

One or more of the following default patterns may not be needed in all cases:

GNOME desktop environment

Servers rarely need a full desktop environment. In case a graphical environment is needed,
a more economical solution such as IceWM can be sufficient.

X Window System

When solely administrating the server and its applications via command line, consider not
installing this pattern. However, keep in mind that it is needed to run GUI applications
from a remote machine. If your application is managed by a GUI or if you prefer the GUI
version of YaST, keep this pattern.

Print server

This pattern is only needed if you want to print from the machine.

9.1.3 Default target

A running X Window System consumes many resources and is rarely needed on a server. It is
strongly recommended to start the system in target multi-user.target . You will still be able
to remotely start graphical applications.

9.2 Disabling unnecessary services
The default installation starts several services (the number varies with the installation scope).
Since each service consumes resources, it is recommended to disable the ones not needed. Run
YaST System Services Manager to start the services management module.

102 Installation scope SLES 15 SP4

If you are using the graphical version of YaST, you can click the column headlines to sort the
list of services. Use this to get an overview of which services are currently running. Use the
Start/Stop button to disable the service for the running session. To permanently disable it, use
the Enable/Disable button.

The following list shows services that are started by default after the installation of SUSE Linux
Enterprise Server. Check which of the components you need, and disable the others:

alsasound

Loads the Advanced Linux Sound System.

auditd

A daemon for the Audit system (see Book “Security and Hardening Guide” for details). Disable
this if you do not use Audit.

bluez-coldplug

Handles cold plugging of Bluetooth dongles.

cups

A printer daemon.

java.binfmt_misc

Enables the execution of *.class or *.jar Java programs.

nfs

Services needed to mount NFS.

smbfs

Services needed to mount SMB/CIFS le systems from a Windows* server.

splash / splash_early

Shows the splash screen on start-up.

9.3 File systems and disk access
Hard disks are the slowest components in a computer system and therefore often the cause for
a bottleneck. Using the le system that best suits your workload helps to improve performance.
Using special mount options or prioritizing a process's I/O priority are further means to speed
up the system.

103 File systems and disk access SLES 15 SP4

9.3.1 File systems

SUSE Linux Enterprise Server ships with several le systems, including Btrfs, Ext4, Ext3, Ext2,
and XFS. Each le system has its own advantages and disadvantages. Refer to Book “Storage

Administration Guide”, Chapter 1 “Overview of file systems in Linux” for detailed information.

9.3.1.1 NFS

NFS (Version 3) tuning is covered in detail in the NFS Howto at http://nfs.sourceforge.net/nfs-

howto/ . The rst thing to experiment with when mounting NFS shares is increasing the read
write blocksize to 32768 by using the mount options wsize and rsize .

9.3.2 Time stamp update policy

Each le and directory in a le system has three time stamps associated with it: a time when the
le was last read called access time, a time when the le data was last modified called modification
time, and a time when the le metadata was last modified called change time. Keeping access
time always up to date has significant performance overhead since every read-only access will
incur a write operation. Thus by default every le system updates access time only if current
le access time is older than a day or if it is older than le modification or change time. This
feature is called relative access time and the corresponding mount option is relatime . Updates
of access time can be completely disabled using the noatime mount option, however you need
to verify your applications do not use it. This can be true for le and Web servers or for network
storage. If the default relative access time update policy is not suitable for your applications,
use the strictatime mount option.

Some le systems (for example Ext4) also support lazy time stamp updates. When this feature is
enabled using the lazytime mount option, updates of all time stamps happen in memory but
they are not written to disk. That happens only in response to fsync or sync system calls, when
the le information is written due to another reason such as le size update, when time stamps
are older than 24 hours, or when cached le information needs to be evicted from memory.

To update mount options used for a le system, either edit /etc/fstab directly, or use the
Fstab Options dialog when editing or adding a partition with the YaST Partitioner.

104 File systems SLES 15 SP4

http://nfs.sourceforge.net/nfs-howto/
http://nfs.sourceforge.net/nfs-howto/

9.3.3 Prioritizing disk access with ionice

The ionice command lets you prioritize disk access for single processes. This enables you to
give less I/O priority to background processes with heavy disk access that are not time-critical,
such as backup jobs. ionice also lets you raise the I/O priority for a specific process to make
sure this process always has immediate access to the disk. The caveat of this feature is that
standard writes are cached in the page cache and are written back to persistent storage only
later by an independent kernel process. Thus the I/O priority setting generally does not apply
for these writes. Also be aware that I/O class and priority setting are obeyed only by BFQ I/O
scheduler for blk-mq I/O path (refer to Section 13.2, “Available I/O elevators with blk-mq I/O path”).
You can set the following three scheduling classes:

Idle

A process from the idle scheduling class is only granted disk access when no other process
has asked for disk I/O.

Best effort

The default scheduling class used for any process that has not asked for a specific I/O
priority. Priority within this class can be adjusted to a level from 0 to 7 (with 0 being the
highest priority). Programs running at the same best-effort priority are served in a round-
robin fashion. Some kernel versions treat priority within the best-effort class differently—
for details, refer to the ionice(1) man page.

Real-time

Processes in this class are always granted disk access rst. Fine-tune the priority level
from 0 to 7 (with 0 being the highest priority). Use with care, since it can starve other
processes.

For more details and the exact command syntax refer to the ionice(1) man page. If you need
more reliable control over bandwidth available to each application, use Kernel Control Groups
as described in Chapter 10, Kernel control groups.

105 Prioritizing disk access with ionice SLES 15 SP4

10 Kernel control groups

Kernel Control Groups (“cgroups”) are a kernel feature for assigning and limiting
hardware and system resources for processes. Processes can also be organized in a
hierarchical tree structure.

10.1 Overview
Every process is assigned exactly one administrative cgroup. cgroups are ordered in a hierarchi-
cal tree structure. You can set resource limitations, such as CPU, memory, disk I/O, or network
bandwidth usage, for single processes or for whole branches of the hierarchy tree.

On SUSE Linux Enterprise Server, systemd uses cgroups to organize all processes in groups,
which systemd calls slices. systemd also provides an interface for setting cgroup properties.

The command systemd-cgls displays the hierarchy tree.

The kernel cgroup API comes in two variants, v1 and v2. Additionally, there can be multiple
cgroup hierarchies exposing different APIs. From the numerous possible combinations, there
are two practical choices:

hybrid: v2 hierarchy without controllers, and the controllers are on v1 hierarchies

unified: v2 hierarchy with controllers

The current default mode is hybrid (as of SLE SP3). This provides backwards compatibility for
applications that need it. The following features are available only with the unified v2 hierarchy:

memory controller: reclaim protection (aka memory.low), memory.high, PSI (pressure stall
information)

io controller: writeback control, new control policies

controller delegation to non-privileged users (rootless containers)

freezer support in systemd

simpler handling of the single hierararchy

You may set only one mode.

106 Overview SLES 15 SP4

To enable the unified control group hierarchy, append systemd.unified_cgroup_hierar-
chy=1 as a kernel command line parameter to the GRUB 2 boot loader. (Refer to Book “Admin-

istration Guide”, Chapter 18 “The boot loader GRUB 2” for more details about configuring GRUB 2.)

10.2 Resource accounting

Organizing processes into different cgroups can be used to obtain per-cgroup resource consump-
tion data.

The accounting has relatively small but non-zero overhead, whose impact depends on the work-
load. Activating accounting for one unit will also implicitly activate it for all units in the same
slice, and for all its parent slices, and the units contained in them.

The accounting can be set on a per-unit basis with directives such as MemoryAccounting= or
globally for all units in /etc/systemd/system.conf with the directive DefaultMemoryAc-
counting= . Refer to man systemd.resource-control for the exhaustive list of possible di-
rectives.

10.3 Setting resource limits

Note: Implicit resource consumption
Be aware that resource consumption implicitly depends on the environment where your
workload executes (for example, size of data structures in libraries/kernel, forking be-
havior of utilities, computational efficiency). Hence it is recommended to (re)calibrate
your limits should the environment change.

Limitations to cgroups can be set with the systemctl set-property command. The syntax is:

systemctl set-property [--runtime] NAME PROPERTY1=VALUE [PROPERTY2=VALUE]

The configured value is applied immediately. Optionally, use the --runtime option, so that the
new values do not persist after reboot.

Replace NAME with a systemd service, scope, or slice name.

For a complete list of properties and more details, see man systemd.resource-control .

107 Resource accounting SLES 15 SP4

10.4 Preventing fork bombs with TasksMax
systemd supports configuring task count limits both for each individual leaf unit, or aggregated
on slices. Upstream systemd ships with defaults that limit the number of tasks in each unit
(15% of the kernel global limit, run /usr/sbin/sysctl kernel.pid_max to see the total limit).
Each user's slice is limited to 33% of the kernel limit. However, this is different for SLE.

10.4.1 Finding the current default TasksMax values

It became apparent, in practice, that there is not a single default that applies to all use cases.
SUSE Linux Enterprise Server ships with two custom configurations that override the upstream
defaults for system units and for user slices, and sets them both to infinity . /usr/lib/sys-
temd/system.conf.d/__25-defaults-SLE.conf contains these lines:

[Manager]
DefaultTasksMax=infinity

/usr/lib/systemd/system/user-.slice.d/25-defaults-SLE.conf contains these lines:

[Slice]
TasksMax=infinity

Use systemctl to verify the DefaultTasksMax value:

> systemctl show --property DefaultTasksMax
DefaultTasksMax=infinity

infinity means having no limit. It is not a requirement to change the default, but setting some
limits may help to prevent system crashes from runaway processes.

10.4.2 Overriding the DefaultTasksMax value

Change the global DefaultTasksMax value by creating a new override le, /etc/sys-

temd/system.conf.d/90-system-tasksmax.conf , and write the following lines to set a new
default limit of 256 tasks per system unit:

[Manager]
DefaultTasksMax=256

Load the new setting, then verify that it changed:

> sudo systemctl daemon-reload

108 Preventing fork bombs with TasksMax SLES 15 SP4

> systemctl show --property DefaultTasksMax
DefaultTasksMax=256

Adjust this default value to suit your needs. You can set different limits on individual services
as needed. This example is for MariaDB. First check the current active value:

> systemctl status mariadb.service
 ● mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; disabled; vendor preset>
 Active: active (running) since Tue 2020-05-26 14:15:03 PDT; 27min ago
 Docs: man:mysqld(8)
 https://mariadb.com/kb/en/library/systemd/
 Main PID: 11845 (mysqld)
 Status: "Taking your SQL requests now..."
 Tasks: 30 (limit: 256)
 CGroup: /system.slice/mariadb.service
 └─11845 /usr/sbin/mysqld --defaults-file=/etc/my.cnf --user=mysql

The Tasks line shows that MariaDB currently has 30 tasks running, and has an upper limit of
the default 256, which is inadequate for a database. The following example demonstrates how
to raise MariaDB's limit to 8192.

> sudo systemctl set-property mariadb.service TasksMax=8192
> systemctl status mariadb.service
● mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; disabled; vendor preset:
 disab>
 Drop-In: /etc/systemd/system/mariadb.service.d
 └─50-TasksMax.conf
 Active: active (running) since Tue 2020-06-02 17:57:48 PDT; 7min ago
 Docs: man:mysqld(8)
 https://mariadb.com/kb/en/library/systemd/
 Process: 3446 ExecStartPre=/usr/lib/mysql/mysql-systemd-helper upgrade (code=exited,
 sta>
 Process: 3440 ExecStartPre=/usr/lib/mysql/mysql-systemd-helper install (code=exited,
 sta>
 Main PID: 3452 (mysqld)
 Status: "Taking your SQL requests now..."
 Tasks: 30 (limit: 8192)
 CGroup: /system.slice/mariadb.service
 └─3452 /usr/sbin/mysqld --defaults-file=/etc/my.cnf --user=mysql

systemctl set-property applies the new limit and creates a drop-in le for persis-
tence, /etc/systemd/system/mariadb.service.d/50-TasksMax.conf , that contains only
the changes you want to apply to the existing unit le. The value does not have to be 8192, but
should be whatever limit is appropriate for your workloads.

109 Overriding the DefaultTasksMax value SLES 15 SP4

10.4.3 Default TasksMax limit on users

The default limit on users should be fairly high, because user sessions need more resources.
Set your own default for any user by creating a new le, for example /etc/systemd/sys-
tem/user-.slice.d/40-user-taskmask.conf . The following example sets a default of 16284:

[Slice]
TasksMax=16284

Note: Numeric prefixes reference
See https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-systemd.htm-

l#sec-boot-systemd-custom-drop-in to learn what numeric prefixes are expected for
drop-in les.

Then reload systemd to load the new value, and verify the change:

> sudo systemctl daemon-reload
> systemctl show --property TasksMax user-1000.slice
TasksMax=16284

How do you know what values to use? This varies according to your workloads, system re-
sources, and other resource configurations. When your TasksMax value is too low, you will see
error messages such as Failed to fork (Resources temporarily unavailable), Can't create thread to
handle new connection, and Error: Function call 'fork' failed with error code 11, 'Resource temporarily
unavailable'.

For more information on configuring system resources in systemd, see systemd.resource-con-
trol (5) .

10.5 I/O control with cgroups

This section introduces using the Linux kernel's block I/O controller to prioritize or throttle I/O
operations. This leverages the means provided by systemd to configure cgroups, and discusses
probable pitfalls when dealing with proportional I/O control.

110 Default TasksMax limit on users SLES 15 SP4

https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-systemd.html#sec-boot-systemd-custom-drop-in
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-systemd.html#sec-boot-systemd-custom-drop-in

10.5.1 Prerequisites

The following subsections describe steps that you must take in advance when you design and
configure your system, since those aspects cannot be changed during runtime.

10.5.1.1 File system

You should use a cgroup-writeback-aware le system (otherwise writeback charging is not pos-
sible). The recommended SLES le systems added support in the following upstream releases:

Btrfs (v4.3)

Ext4 (v4.3)

XFS (v5.3)

As of SUSE Linux Enterprise Server 15 SP3, any of the named le systems can be used.

10.5.1.2 Unified cgroup hierarchy

To properly account writeback I/O, it is necessary to have equal I/O and memory controller
cgroup hierarchies, and to use the cgroup v2 I/O controller. Together, this means that one has to
use the unified cgroup hierarchy. This has to be requested explicitly in SLES by passing a kernel
command line option, systemd.unified_cgroup_hierarchy=1 .

10.5.1.3 Block I/O scheduler

The throttling policy is implemented higher in the stack, therefore it does not require any addi-
tional adjustments. The proportional I/O control policies have two different implementations:
the BFQ controller, and the cost-based model. We describe the BFQ controller here. In order to
exert its proportional implementation for a particular device, we must make sure that BFQ is
the chosen scheduler. Check the current scheduler:

> cat /sys/class/block/sda/queue/scheduler
mq-deadline kyber bfq [none]

Switch the scheduler to BFQ:

 # echo bfq > /sys/class/block/sda/queue/scheduler

111 Prerequisites SLES 15 SP4

You must specify the disk device (not a partition). The optimal way to set this attribute is a
udev rule specific to the device (note that SLES ships udev rules that already enable BFQ for
rotational disk drives).

10.5.1.4 Cgroup hierarchy layout

Normally, all tasks reside in the root cgroup and they compete against each other. When the
tasks are distributed into the cgroup tree the competition occurs between sibling cgroups only.
This applies to the proportional I/O control; the throttling hierarchically aggregates throughput
of all descendants (see the following diagram).

r
`- a IOWeight=100
 `- [c] IOWeight=300
 `- d IOWeight=100
`- [b] IOWeight=200

I/O is originating only from cgroups c and b. Even though c has a higher weight, it will be
treated with lower priority because it is level-competing with b.

10.5.2 Configuring control quantities

You can apply the values to (long running) services permanently.

> sudo systemctl set-property fast.service IOWeight=400
> sudo systemctl set-property slow.service IOWeight=50
> sudo systemctl set-property throttled.service IOReadBandwidthMax="/dev/sda 1M"

Alternatively, you can apply I/O control to individual commands, for example:

> sudo systemd-run --scope -p IOWeight=400 high_prioritized_command
> sudo systemd-run --scope -p IOWeight=50 low_prioritized_command
> sudo systemd-run --scope -p IOReadBandwidthMax="/dev/sda 1M" dd if=/dev/sda of=/dev/
null bs=1M count=10

10.5.3 I/O control behavior and setting expectations

The following list items describe I/O control behavior, and what you should expect under various
conditions.

112 Configuring control quantities SLES 15 SP4

I/O control works best for direct I/O operations (bypassing page cache), the situations
where the actual I/O is decoupled from the caller (typically writeback via page cache)
may manifest variously. For example, delayed I/O control or even no observed I/O control
(consider little bursts or competing workloads that happen to never "meet", submitting I/
O at the same time, and saturating the bandwidth). For these reasons, the resulting ratio
of I/O throughputs does not strictly follow the ratio of configured weights.

systemd performs scaling of configured weights (to adjust for narrower BFQ weight range),
hence the resulting throughput ratios also differ.

The writeback activity depends on the amount of dirty pages, besides the global sysctl
knobs (vm.dirty_background_ratio and vm.dirty_ratio)). Memory limits of individ-
ual cgroups come into play when the dirty limits are distributed among cgroups, and this
in turn may affect I/O intensity of affected cgroups.

Not all storages are equal. The I/O control happens at the I/O scheduler layer, which
has ramifications for setups with devices stacked on these that do no actual scheduling.
Consider device mapper logical volumes spanning multiple physical devices, MD RAID, or
even Btrfs RAID. I/O control over such setups may be challenging.

There is no separate setting for proportional I/O control of reads and writes.

Proportional I/O control is only one of the policies that can interact with each other (but
responsible resource design perhaps avoids that).

The I/O device bandwidth is not the only shared resource on the I/O path. Global le
system structures are involved, which is relevant when I/O control is meant to guarantee
certain bandwidth; it will not, and it may even lead to priority inversion (prioritized cgroup
waiting for a transaction of slower cgroup).

So far, we have been discussing only explicit I/O of le system data, but swap-in and
swap-out can also be controlled. Although if such a need arises, it usually points out to
improperly provisioned memory (or memory limits).

113 I/O control behavior and setting expectations SLES 15 SP4

10.6 More information

Kernel documentation (package kernel-source): les in /usr/src/linux/Docu-

mentation/admin-guide/cgroup-v1 and le /usr/src/linux/Documentation/ad-

min-guide/cgroup-v2.rst .

man systemd.resource-control

https://lwn.net/Articles/604609/ —Brown, Neil: Control Groups Series (2014, 7 parts).

https://lwn.net/Articles/243795/ —Corbet, Jonathan: Controlling memory use in contain-
ers (2007).

https://lwn.net/Articles/236038/ —Corbet, Jonathan: Process containers (2007).

114 More information SLES 15 SP4

https://lwn.net/Articles/604609/
https://lwn.net/Articles/243795/
https://lwn.net/Articles/236038/

11 Automatic Non-Uniform Memory Access (NUMA)
balancing

There are physical limitations to hardware that are encountered when many CPUs
and lots of memory are required. In this chapter, the important limitation is that
there is limited communication bandwidth between the CPUs and the memory. One
architecture modification that was introduced to address this is Non-Uniform Mem-
ory Access (NUMA).

In this configuration, there are multiple nodes. Each of the nodes contains a subset
of all CPUs and memory. The access speed to main memory is determined by the lo-
cation of the memory relative to the CPU. The performance of a workload depends
on the application threads accessing data that is local to the CPU the thread is exe-
cuting on. Automatic NUMA Balancing migrates data on demand to memory nodes
that are local to the CPU accessing that data. Depending on the workload, this can
dramatically boost performance when using NUMA hardware.

11.1 Implementation

Automatic NUMA balancing happens in three basic steps:

1. A task scanner periodically scans a portion of a task's address space and marks the memory
to force a page fault when the data is next accessed.

2. The next access to the data will result in a NUMA Hinting Fault. Based on this fault, the
data can be migrated to a memory node associated with the task accessing the memory.

3. To keep a task, the CPU it is using and the memory it is accessing together, the scheduler
groups tasks that share data.

The unmapping of data and page fault handling incurs overhead. However, commonly the over-
head will be offset by threads accessing data associated with the CPU.

115 Implementation SLES 15 SP4

11.2 Configuration
Static configuration has been the recommended way of tuning workloads on NUMA hardware
for some time. To do this, memory policies can be set with numactl , taskset or cpusets .
NUMA-aware applications can use special APIs. In cases where the static policies have already
been created, automatic NUMA balancing should be disabled as the data access should already
be local.

numactl --hardware will show the memory configuration of the machine and whether it
supports NUMA or not. This is example output from a 4-node machine.

> numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36 40 44
node 0 size: 16068 MB
node 0 free: 15909 MB
node 1 cpus: 1 5 9 13 17 21 25 29 33 37 41 45
node 1 size: 16157 MB
node 1 free: 15948 MB
node 2 cpus: 2 6 10 14 18 22 26 30 34 38 42 46
node 2 size: 16157 MB
node 2 free: 15981 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39 43 47
node 3 size: 16157 MB
node 3 free: 16028 MB
node distances:
node 0 1 2 3
 0: 10 20 20 20
 1: 20 10 20 20
 2: 20 20 10 20
 3: 20 20 20 10

Automatic NUMA balancing can be enabled or disabled for the current session by writing 1
or 0 to /proc/sys/kernel/numa_balancing which will enable or disable the feature respec-
tively. To permanently enable or disable it, use the kernel command line option numa_balanc-
ing=[enable|disable] .

If Automatic NUMA Balancing is enabled, the task scanner behavior can be configured. The task
scanner balances the overhead of Automatic NUMA Balancing with the amount of time it takes
to identify the best placement of data.

numa_balancing_scan_delay_ms

The amount of CPU time a thread must consume before its data is scanned. This prevents
creating overhead because of short-lived processes.

116 Configuration SLES 15 SP4

numa_balancing_scan_period_min_ms and numa_balancing_scan_period_max_ms

Controls how frequently a task's data is scanned. Depending on the locality of the faults
the scan rate will increase or decrease. These settings control the min and max scan rates.

numa_balancing_scan_size_mb

Controls how much address space is scanned when the task scanner is active.

11.3 Monitoring

The most important task is to assign metrics to your workload and measure the performance
with Automatic NUMA Balancing enabled and disabled to measure the impact. Profiling tools
can be used to monitor local and remote memory accesses if the CPU supports such monitoring.
Automatic NUMA Balancing activity can be monitored via the following parameters in /proc/
vmstat :

numa_pte_updates

The amount of base pages that were marked for NUMA hinting faults.

numa_huge_pte_updates

The amount of transparent huge pages that were marked for NUMA hinting faults. In
combination with numa_pte_updates the total address space that was marked can be
calculated.

numa_hint_faults

Records how many NUMA hinting faults were trapped.

numa_hint_faults_local

Shows how many of the hinting faults were to local nodes. In combination with numa_hin-
t_faults , the percentage of local versus remote faults can be calculated. A high percent-
age of local hinting faults indicates that the workload is closer to being converged.

numa_pages_migrated

Records how many pages were migrated because they were misplaced. As migration is
a copying operation, it contributes the largest part of the overhead created by NUMA
balancing.

117 Monitoring SLES 15 SP4

11.4 Impact
The following illustrates a simple test case of a 4-node NUMA machine running the SpecJBB
2005 using a single instance of the JVM with no static tuning around memory policies. Note,
however, that the impact for each workload will vary and that this example is based on a pre-
release version of SUSE Linux Enterprise Server 12.

 Balancing disabled Balancing enabled
TPut 1 26629.00 (0.00%) 26507.00 (-0.46%)
TPut 2 55841.00 (0.00%) 53592.00 (-4.03%)
TPut 3 86078.00 (0.00%) 86443.00 (0.42%)
TPut 4 116764.00 (0.00%) 113272.00 (-2.99%)
TPut 5 143916.00 (0.00%) 141581.00 (-1.62%)
TPut 6 166854.00 (0.00%) 166706.00 (-0.09%)
TPut 7 195992.00 (0.00%) 192481.00 (-1.79%)
TPut 8 222045.00 (0.00%) 227143.00 (2.30%)
TPut 9 248872.00 (0.00%) 250123.00 (0.50%)
TPut 10 270934.00 (0.00%) 279314.00 (3.09%)
TPut 11 297217.00 (0.00%) 301878.00 (1.57%)
TPut 12 311021.00 (0.00%) 326048.00 (4.83%)
TPut 13 324145.00 (0.00%) 346855.00 (7.01%)
TPut 14 345973.00 (0.00%) 378741.00 (9.47%)
TPut 15 354199.00 (0.00%) 394268.00 (11.31%)
TPut 16 378016.00 (0.00%) 426782.00 (12.90%)
TPut 17 392553.00 (0.00%) 437772.00 (11.52%)
TPut 18 396630.00 (0.00%) 456715.00 (15.15%)
TPut 19 399114.00 (0.00%) 484020.00 (21.27%)
TPut 20 413907.00 (0.00%) 493618.00 (19.26%)
TPut 21 413173.00 (0.00%) 510386.00 (23.53%)
TPut 22 420256.00 (0.00%) 521016.00 (23.98%)
TPut 23 425581.00 (0.00%) 536214.00 (26.00%)
TPut 24 429052.00 (0.00%) 532469.00 (24.10%)
TPut 25 426127.00 (0.00%) 526548.00 (23.57%)
TPut 26 422428.00 (0.00%) 531994.00 (25.94%)
TPut 27 424378.00 (0.00%) 488340.00 (15.07%)
TPut 28 419338.00 (0.00%) 543016.00 (29.49%)
TPut 29 403347.00 (0.00%) 529178.00 (31.20%)
TPut 30 408681.00 (0.00%) 510621.00 (24.94%)
TPut 31 406496.00 (0.00%) 499781.00 (22.95%)
TPut 32 404931.00 (0.00%) 502313.00 (24.05%)
TPut 33 397353.00 (0.00%) 522418.00 (31.47%)
TPut 34 382271.00 (0.00%) 491989.00 (28.70%)
TPut 35 388965.00 (0.00%) 493012.00 (26.75%)
TPut 36 374702.00 (0.00%) 502677.00 (34.15%)
TPut 37 367578.00 (0.00%) 500588.00 (36.19%)
TPut 38 367121.00 (0.00%) 496977.00 (35.37%)

118 Impact SLES 15 SP4

TPut 39 355956.00 (0.00%) 489430.00 (37.50%)
TPut 40 350855.00 (0.00%) 487802.00 (39.03%)
TPut 41 345001.00 (0.00%) 468021.00 (35.66%)
TPut 42 336177.00 (0.00%) 462260.00 (37.50%)
TPut 43 329169.00 (0.00%) 467906.00 (42.15%)
TPut 44 329475.00 (0.00%) 470784.00 (42.89%)
TPut 45 323845.00 (0.00%) 450739.00 (39.18%)
TPut 46 323878.00 (0.00%) 435457.00 (34.45%)
TPut 47 310524.00 (0.00%) 403914.00 (30.07%)
TPut 48 311843.00 (0.00%) 459017.00 (47.19%)

 Balancing Disabled Balancing Enabled
 Expctd Warehouse 48.00 (0.00%) 48.00 (0.00%)
 Expctd Peak Bops 310524.00 (0.00%) 403914.00 (30.07%)
 Actual Warehouse 25.00 (0.00%) 29.00 (16.00%)
 Actual Peak Bops 429052.00 (0.00%) 543016.00 (26.56%)
 SpecJBB Bops 6364.00 (0.00%) 9368.00 (47.20%)
 SpecJBB Bops/JVM 6364.00 (0.00%) 9368.00 (47.20%)

Automatic NUMA Balancing simplifies tuning workloads for high performance on NUMA ma-
chines. Where possible, it is still recommended to statically tune the workload to partition it
within each node. However, in all other cases, automatic NUMA balancing should boost perfor-
mance.

119 Impact SLES 15 SP4

12 Power management

Power management aims at reducing operating costs for energy and cooling systems
while at the same time keeping the performance of a system at a level that match-
es the current requirements. Thus, power management is always a matter of bal-
ancing the actual performance needs and power saving options for a system. Power
management can be implemented and used at different levels of the system. A set of
specifications for power management functions of devices and the operating system
interface to them has been defined in the Advanced Configuration and Power Inter-
face (ACPI). As power savings in server environments can primarily be achieved at
the processor level, this chapter introduces some main concepts and highlights some
tools for analyzing and influencing relevant parameters.

12.1 Power management at CPU Level
At the CPU level, you can control power usage in various ways. For example by using
idling power states (C-states), changing CPU frequency (P-states), and throttling the CPU (T-
states). The following sections give a short introduction to each approach and its significance
for power savings. Detailed specifications can be found at https://uefi.org/sites/default/files/re-

sources/ACPI_Spec_6_4_Jan22.pdf .

12.1.1 C-states (processor operating states)

Modern processors have several power saving modes called C-states . They reflect the capa-
bility of an idle processor to turn o unused components to save power.

When a processor is in the C0 state, it is executing instructions. A processor running in any other
C-state is idle. The higher the C number, the deeper the CPU sleep mode: more components are
shut down to save power. Deeper sleep states can save large amounts of energy. Their downside
is that they introduce latency. This means, it takes more time for the CPU to go back to C0 .
Depending on workload (threads waking up, triggering CPU usage and then going back to sleep
again for a short period of time) and hardware (for example, interrupt activity of a network
device), disabling the deepest sleep states can significantly increase overall performance. For
details on how to do so, refer to Section 12.3.2, “Viewing kernel idle statistics with cpupower”.

120 Power management at CPU Level SLES 15 SP4

https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf

Some states also have submodes with different power saving latency levels. Which C-states and
submodes are supported depends on the respective processor. However, C1 is always available.

Table 12.1, “C-states” gives an overview of the most common C-states.

TABLE 12.1: C-STATES

Mode Definition

C0 Operational state. CPU fully turned on.

C1 First idle state. Stops CPU main internal
clocks via software. Bus interface unit and
APIC are kept running at full speed.

C2 Stops CPU main internal clocks via hard-
ware. State in which the processor main-
tains all software-visible states, but may take
longer to wake up through interrupts.

C3 Stops all CPU internal clocks. The processor
does not need to keep its cache coherent, but
maintains other states. Some processors have
variations of the C3 state that differ in how
long it takes to wake the processor through
interrupts.

To avoid needless power consumption, it is recommended to test your workloads with deep sleep
states enabled versus deep sleep states disabled. For more information, refer to Section 12.3.2,

“Viewing kernel idle statistics with cpupower” or the cpupower-idle-set(1) man page.

12.1.2 P-states (processor performance states)

While a processor operates (in C0 state), it can be in one of several CPU performance states (P-
states) . Whereas C-states are idle states (all but C0), P-states are operational states that
relate to CPU frequency and voltage.

The higher the P-state, the lower the frequency and voltage at which the processor runs. The
number of P-states is processor-specific and the implementation differs across the various types.
However, P0 is always the highest-performance state (except for Section 12.1.3, “Turbo features”).

121 P-states (processor performance states) SLES 15 SP4

Higher P-state numbers represent slower processor speeds and lower power consumption. For
example, a processor in P3 state runs more slowly and uses less power than a processor running
in the P1 state. To operate at any P-state, the processor must be in the C0 state, which means
that it is working and not idling. The CPU P-states are also defined in the ACPI specification,
see http://www.acpi.info/spec.htm .

C-states and P-states can vary independently of one another.

12.1.3 Turbo features

Turbo features allow to dynamically overtick active CPU cores while other cores are in deep
sleep states. This increases the performance of active threads while still complying with Thermal
Design Power (TDP) limits.

However, the conditions under which a CPU core can use turbo frequencies are architecture-spe-
cific. Learn how to evaluate the efficiency of those new features in Section 12.3, “The cpupower

tools”.

12.2 In-kernel governors
The in-kernel governors belong to the Linux kernel CPUfreq infrastructure and can be used to
dynamically scale processor frequencies at runtime. You can think of the governors as a sort
of preconfigured power scheme for the CPU. The CPUfreq governors use P-states to change
frequencies and lower power consumption. The dynamic governors can switch between CPU
frequencies, based on CPU usage, to allow for power savings while not sacrificing performance.

The following governors are available with the CPUfreq subsystem:

Performance governor

The CPU frequency is statically set to the highest possible for maximum performance.
Consequently, saving power is not the focus of this governor.
See also Section 12.4.1, “Tuning options for P-states”.

Powersave governor

The CPU frequency is statically set to the lowest possible. This can have severe impact on
the performance, as the system will never rise above this frequency no matter how busy
the processors are. An important exception is the intel_pstate which defaults to the
powersave mode. This is due to a hardware-specific decision but functionally it operates
similarly to the on-demand governor.

122 Turbo features SLES 15 SP4

http://www.acpi.info/spec.htm

However, using this governor often does not lead to the expected power savings as the
highest savings can usually be achieved at idle through entering C-states. With the pow-
ersave governor, processes run at the lowest frequency and thus take longer to finish. This
means it takes longer until the system can go into an idle C-state.
Tuning options: The range of minimum frequencies available to the governor can be ad-
justed (for example, with the cpupower command line tool).

On-demand governor

The kernel implementation of a dynamic CPU frequency policy: The governor monitors the
processor usage. When it exceeds a certain threshold, the governor will set the frequency
to the highest available. If the usage is less than the threshold, the next lowest frequency
is used. If the system continues to be underemployed, the frequency is again reduced until
the lowest available frequency is set.

Important: Drivers and in-kernel governors
Not all drivers use the in-kernel governors to dynamically scale power frequency at run-
time. For example, the intel_pstate driver adjusts power frequency itself. Use the
cpupower frequency-info command to nd out which driver your system uses.

12.3 The cpupower tools

The cpupower tools are designed to give an overview of all CPU power-related parameters that
are supported on a given machine, including turbo (or boost) states. Use the tool set to view
and modify settings of the kernel-related CPUfreq and cpuidle systems and other settings not
related to frequency scaling or idle states. The integrated monitoring framework can access both
kernel-related parameters and hardware statistics. Therefore, it is ideally suited for performance
benchmarks. It also helps you to identify the dependencies between turbo and idle states.

After installing the cpupower package, view the available cpupower subcommands with
cpupower --help . Access the general man page with man cpupower , and the man pages of
the subcommands with man cpupower-SUBCOMMAND .

123 The cpupower tools SLES 15 SP4

12.3.1 Viewing current settings with cpupower
The cpupower frequency-info command shows the statistics of the cpufreq driver used in
the kernel. Additionally, it shows if turbo (boost) states are supported and enabled in the BIOS.
Run without any options, it shows an output similar to the following:

EXAMPLE 12.1: EXAMPLE OUTPUT OF cpupower frequency-info

cpupower frequency-info
analyzing CPU 0:
 driver: intel_pstate
 CPUs which run at the same hardware frequency: 0
 CPUs which need to have their frequency coordinated by software: 0
 maximum transition latency: 0.97 ms.
 hardware limits: 1.20 GHz - 3.80 GHz
 available cpufreq governors: performance, powersave
 current policy: frequency should be within 1.20 GHz and 3.80 GHz.
 The governor "powersave" may decide which speed to use
 within this range.
 current CPU frequency is 3.40 GHz (asserted by call to hardware).
 boost state support:
 Supported: yes
 Active: yes
 3500 MHz max turbo 4 active cores
 3600 MHz max turbo 3 active cores
 3600 MHz max turbo 2 active cores
 3800 MHz max turbo 1 active cores

To get the current values for all CPUs, use cpupower -c all frequency-info .

12.3.2 Viewing kernel idle statistics with cpupower
The idle-info subcommand shows the statistics of the cpuidle driver used in the kernel. It
works on all architectures that use the cpuidle kernel framework.

EXAMPLE 12.2: EXAMPLE OUTPUT OF cpupower idle-info

cpupower idle-info
CPUidle driver: intel_idle
CPUidle governor: menu

Analyzing CPU 0:
Number of idle states: 6
Available idle states: POLL C1-SNB C1E-SNB C3-SNB C6-SNB C7-SNB
POLL:
Flags/Description: CPUIDLE CORE POLL IDLE

124 Viewing current settings with cpupower SLES 15 SP4

Latency: 0
Usage: 163128
Duration: 17585669
C1-SNB:
Flags/Description: MWAIT 0x00
Latency: 2
Usage: 16170005
Duration: 697658910
C1E-SNB:
Flags/Description: MWAIT 0x01
Latency: 10
Usage: 4421617
Duration: 757797385
C3-SNB:
Flags/Description: MWAIT 0x10
Latency: 80
Usage: 2135929
Duration: 735042875
C6-SNB:
Flags/Description: MWAIT 0x20
Latency: 104
Usage: 53268
Duration: 229366052
C7-SNB:
Flags/Description: MWAIT 0x30
Latency: 109
Usage: 62593595
Duration: 324631233978

After finding out which processor idle states are supported with cpupower idle-info , indi-
vidual states can be disabled using the cpupower idle-set command. Typically one wants to
disable the deepest sleep state, for example:

cpupower idle-set -d 5

Or, for disabling all CPUs with latencies equal to or higher than 80 :

cpupower idle-set -D 80

12.3.3 Monitoring kernel and hardware statistics with cpupower

Use the monitor subcommand to report processor topology, and monitor frequency and idle
power state statistics over a certain period of time. The default interval is 1 second, but it
can be changed with the -i . Independent processor sleep states and frequency counters are

125 Monitoring kernel and hardware statistics with cpupower SLES 15 SP4

implemented in the tool—some retrieved from kernel statistics, others reading out hardware
registers. The available monitors depend on the underlying hardware and the system. List them
with cpupower monitor -l . For a description of the individual monitors, refer to the cpupow-
er-monitor man page.

The monitor subcommand allows you to execute performance benchmarks. To compare kernel
statistics with hardware statistics for specific workloads, concatenate the respective command,
for example:

cpupower monitor db_test.sh

EXAMPLE 12.3: EXAMPLE cpupower monitor OUTPUT

cpupower monitor
|Mperf || Idle_Stats
 1 2
CPU | C0 | Cx | Freq || POLL | C1 | C2 | C3
 0| 3.71| 96.29| 2833|| 0.00| 0.00| 0.02| 96.32
 1| 100.0| -0.00| 2833|| 0.00| 0.00| 0.00| 0.00
 2| 9.06| 90.94| 1983|| 0.00| 7.69| 6.98| 76.45
 3| 7.43| 92.57| 2039|| 0.00| 2.60| 12.62| 77.52

1 Mperf shows the average frequency of a CPU, including boost frequencies, over time.
Additionally, it shows the percentage of time the CPU has been active (C0) or in any
sleep state (Cx). As the turbo states are managed by the BIOS, it is impossible to get
the frequency values at a given instant. On modern processors with turbo features
the Mperf monitor is the only way to nd out about the frequency a certain CPU has
been running in.

2 Idle_Stats shows the statistics of the cpuidle kernel subsystem. The kernel updates
these values every time an idle state is entered or left. Therefore there can be some
inaccuracy when cores are in an idle state for some time when the measure starts
or ends.

Apart from the (general) monitors in the example above, other architecture-specific mon-
itors are available. For detailed information, refer to the cpupower-monitor man page.

By comparing the values of the individual monitors, you can nd correlations and dependen-
cies and evaluate how well the power saving mechanism works for a certain workload. In Exam-

ple 12.3 you can see that CPU 0 is idle (the value of Cx is near 100%), but runs at a very high
frequency. This is because the CPUs 0 and 1 have the same frequency values which means that
there is a dependency between them.

126 Monitoring kernel and hardware statistics with cpupower SLES 15 SP4

12.3.4 Modifying current settings with cpupower

You can use cpupower frequency-set command as root to modify current settings. It allows
you to set values for the minimum or maximum CPU frequency the governor may select or to
create a new governor. With the -c option, you can also specify for which of the processors the
settings should be modified. That makes it easy to use a consistent policy across all processors
without adjusting the settings for each processor individually. For more details and the available
options, see the man page cpupower-frequency-set or run cpupower frequency-set --
help .

12.4 Special tuning options

The following sections highlight important settings.

12.4.1 Tuning options for P-states

The CPUfreq subsystem offers several tuning options for P-states: You can switch between the
different governors, influence minimum or maximum CPU frequency to be used or change in-
dividual governor parameters.

To switch to another governor at runtime, use cpupower frequency-set with the -g option.
For example, running the following command (as root) will activate the performance governor:

cpupower frequency-set -g performance

To set values for the minimum or maximum CPU frequency the governor may select, use the
-d or -u option, respectively.

127 Modifying current settings with cpupower SLES 15 SP4

12.5 Troubleshooting

BIOS options enabled?

To use C-states or P-states, check your BIOS options:

To use C-states, make sure to enable CPU C State or similar options to benefit from
power savings at idle.

To use P-states and the CPUfreq governors, make sure to enable Processor Per-
formance States options or similar.

Even if P-states and C-states are available, it is possible that the platform rmware is
managing CPU frequencies which may be sub-optimal. For example, if pcc-cpufreq
is loaded then the OS is only giving hints to the rmware, which is free to ignore
the hints. This can be addressed by selecting "OS Management" or similar for CPU
frequency managed in the BIOS. After reboot, an alternative driver will be used but
the performance impact should be carefully measured.

In case of a CPU upgrade, make sure to upgrade your BIOS, too. The BIOS needs to know
the new CPU and its frequency stepping to pass this information on to the operating system.

Log file information?

Check the systemd journal (see Book “Administration Guide”, Chapter 21 “journalctl: Query

the systemd journal”) for any output regarding the CPUfreq subsystem. Only severe errors
are reported there.
If you suspect problems with the CPUfreq subsystem on your machine, you can also enable
additional debug output. To do so, either use cpufreq.debug=7 as boot parameter or
execute the following command as root :

echo 7 > /sys/module/cpufreq/parameters/debug

This will cause CPUfreq to log more information to dmesg on state transitions, which is
useful for diagnosis. But as this additional output of kernel messages can be rather com-
prehensive, use it only if you are fairly sure that a problem exists.

128 Troubleshooting SLES 15 SP4

12.6 More information
Platforms with a Baseboard Management Controller (BMC) may have additional power manage-
ment configuration options accessible via the service processor. These configurations are ven-
dor specific and therefore not subject of this guide. For more information, refer to the manuals
provided by your vendor.

12.7 Monitoring power consumption with powerTOP
powerTOP helps to identify the causes of unnecessary high power consumption. This is especially
useful for laptops, where minimizing power consumption is more important. It supports both
Intel and AMD processors. Install it in the usual way:

> sudo zypper in powertop

powerTOP combines various sources of information (analysis of programs, device drivers, kernel
options, number and sources of interrupts waking up processors from sleep states) and provides
several ways of viewing them. You can launch it in interactive mode, which runs in an ncurses
session (see Figure 12.1, “powerTOP in interactive mode”):

> sudo powertop

FIGURE 12.1: POWERTOP IN INTERACTIVE MODE

powerTOP supports exporting reports to HTML and CSV. The following example generates a
single report of a 240-second run:

> sudo powertop --iteration=1 --time=240 --html=POWERREPORT.HTML

It can be useful to run separate reports over time. The following example runs powerTOP 10
times for 20 seconds each time, and creates a separate HTML report for each run:

> sudo powertop --iteration=10 --time=20 --html=POWERREPORT.HTML

129 More information SLES 15 SP4

This creates 10 time-stamped reports:

powerreport-20200108-104512.html
powerreport-20200108-104451.html
powerreport-20200108-104431.html
[...]

An HTML report looks like Figure 12.2, “HTML powerTOP report”:

FIGURE 12.2: HTML POWERTOP REPORT

The Tuning tab of the HTML reports, and the Tunables tab in the interactive mode, both provide
commands for testing the various power settings. The HTML report prints the commands, which
you can copy to a root command line for testing, for example echo '0' > '/proc/sys/
kernel/nmi_watchdog' . The ncurses mode provides a simple toggle between Good and Bad .
Good runs a command to enable power saving, and Bad turns o power saving. Enable all
powerTOP settings with one command:

> sudo powertop --auto-tune

None of these changes survive a reboot. To make any changes permanent, use sysctl , udev , or
systemd to run your selected commands at boot. powerTOP includes a systemd service le, /
usr/lib/systemd/system/powertop.service . This starts powerTOP with the --auto-tune
option:

ExecStart=/usr/sbin/powertop --auto-tune

Test this carefully before launching the systemd service, to see if it gives the results that you
want. You probably do not want USB keyboards and mice to go into powersave modes because
it is a nuisance to continually wake them up, and there may be other devices you want left
alone. For easier testing and configuration editing, extract the commands from an HTML report
with awk :

> awk -F '</?td ?>' '/tune/ { print $4 }' POWERREPORT.HTML

130 Monitoring power consumption with powerTOP SLES 15 SP4

In calibrate mode, powerTOP sets up several runs that use different idle settings for backlight,
CPU, Wi-Fi, USB devices, and disks, and helps to identify optimal brightness settings on battery
power:

> sudo powertop --calibrate

You may call a le that creates a workload for more accurate calibration:

> sudo powertop --calibrate --workload=FILENAME --html=POWERREPORT.HTML

For more information, see:

The powerTOP project page at https://01.org/powertop

Section 2.6.2, “System control parameters: /proc/sys/”

Book “Administration Guide”, Chapter 19 “The systemd daemon”

Book “Administration Guide”, Chapter 29 “Dynamic kernel device management with udev”

131 Monitoring power consumption with powerTOP SLES 15 SP4

https://01.org/powertop

V Kernel tuning

13 Tuning I/O performance 133

14 Tuning the task scheduler 139

15 Tuning the memory management subsystem 152

16 Tuning the network 165

17 Tuning SUSE Linux Enterprise for SAP 170

13 Tuning I/O performance

I/O scheduling controls how input/output operations will be submitted to storage. SUSE Lin-
ux Enterprise Server offers various I/O algorithms—called elevators—suiting different work-
loads. Elevators can help to reduce seek operations and can prioritize I/O requests.

Choosing the best suited I/O elevator not only depends on the workload, but on the hardware,
too. Single ATA disk systems, SSDs, RAID arrays, or network storage systems, for example, each
require different tuning strategies.

13.1 Switching I/O scheduling
SUSE Linux Enterprise Server picks a default I/O scheduler at boot-time, which can be changed
on the y per block device. This makes it possible to set different algorithms, for example, for
the device hosting the system partition and the device hosting a database.

The default I/O scheduler is chosen for each device based on whether the device reports to
be rotational disk or not. For rotational disks, the BFQ I/O scheduler is picked. Other devices
default to MQ-DEADLINE or NONE .

To change the elevator for a specific device in the running system, run the following command:

> sudo echo SCHEDULER > /sys/block/DEVICE/queue/scheduler

Here, SCHEDULER is one of bfq , none , kyber , or mq-deadline . DEVICE is the block de-
vice (sda for example). Note that this change will not persist during reboot. For permanent
I/O scheduler change for a particular device, copy /usr/lib/udev/rules.d/60-io-sched-
uler.rules to /etc/udev/rules.d/60-io-scheduler.rules , and edit the latter le to suit
your needs.

Note: Default scheduler on IBM Z
On IBM Z, the default I/O scheduler for a storage device is set by the device driver.

Note: elevator boot parameter removed
The elevator boot parameter has been removed. The blk-mq I/O path replaces cfq, and
does not include the elevator boot parameter.

133 Switching I/O scheduling SLES 15 SP4

13.2 Available I/O elevators with blk-mq I/O path
Below is a list of elevators available on SUSE Linux Enterprise Server for devices that use the
blk-mq I/O path. If an elevator has tunable parameters, they can be set with the command:

echo VALUE > /sys/block/DEVICE/queue/iosched/TUNABLE

In the command above, VALUE is the desired value for the TUNABLE and DEVICE is the block
device.

To nd out what elevators are available for a device (sda for example), run the following
command (the currently selected scheduler is listed in brackets):

> cat /sys/block/sda/queue/scheduler
[mq-deadline] kyber bfq none

Note: Scheduler options when switching from Legacy Block to
blk-mq I/O path
When switching from legacy block to blk-mq I/O path for a device, the none option is
roughly comparable to noop , mq-deadline is comparable to deadline , and bfq is
comparable to cfq .

13.2.1 MQ-DEADLINE

MQ-DEADLINE is a latency-oriented I/O scheduler. MQ-DEADLINE has the following tunable pa-
rameters:

TABLE 13.1: MQ-DEADLINE TUNABLE PARAMETERS

File Description

writes_starved Controls how many times reads are preferred over writes. A
value of 3 means that three read operations can be done be-
fore writes and reads are dispatched on the same selection cri-
teria.

Default is 3 .

read_expire Sets the deadline (current time plus the read_expire value)
for read operations in milliseconds.

134 Available I/O elevators with blk-mq I/O path SLES 15 SP4

File Description

Default is 500 .

write_expire Sets the deadline (current time plus the write_expire value)
for write operations in milliseconds.

Default is 5000 .

front_merges Enables (1) or disables (0) attempts to front merge requests.

Default is 1 .

fifo_batch Sets the maximum number of requests per batch (deadline ex-
piration is only checked for batches). This parameter allows to
balance between latency and throughput. When set to 1 (that
is, one request per batch), it results in "rst come, rst served"
behavior and usually lowest latency. Higher values usually in-
crease throughput.

Default is 16 .

13.2.2 NONE

When NONE is selected as I/O elevator option for blk-mq, no I/O scheduler is used, and I/O
requests are passed down to the device without further I/O scheduling interaction.

NONE is the default for NVM Express devices. With no overhead compared to other I/O elevator
options, it is considered the fastest way of passing down I/O requests on multiple queues to
such devices.

There are no tunable parameters for NONE .

13.2.3 BFQ (Budget Fair Queueing)

BFQ is a fairness-oriented scheduler. It is described as "a proportional-share storage-I/
O scheduling algorithm based on the slice-by-slice service scheme of CFQ. But BFQ as-
signs budgets, measured in number of sectors, to processes instead of time slices." (Source:
linux-4.12/block/bfq-iosched.c (https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9f-

f1a2a9bb129ef4f6c/block/bfq-iosched.c#L31))

135 NONE SLES 15 SP4

https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9ff1a2a9bb129ef4f6c/block/bfq-iosched.c#L31
https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9ff1a2a9bb129ef4f6c/block/bfq-iosched.c#L31

BFQ allows to assign I/O priorities to tasks which are taken into account during scheduling
decisions (see Section 9.3.3, “Prioritizing disk access with ionice”).

BFQ scheduler has the following tunable parameters:

TABLE 13.2: BFQ TUNABLE PARAMETERS

File Description

slice_idle Value in milliseconds specifies how long to idle, waiting for
next request on an empty queue.

Default is 8 .

slice_idle_us Same as slice_idle but in microseconds.

Default is 8000 .

low_latency Enables (1) or disables (0) BFQ 's low latency mode. This mode
prioritizes certain applications (for example, if interactive)
such that they observe lower latency.

Default is 1 .

back_seek_max Maximum value (in Kbytes) for backward seeking.

Default is 16384 .

back_seek_penalty Used to compute the cost of backward seeking.

Default is 2 .

fifo_expire_async Value (in milliseconds) is used to set the timeout of asynchro-
nous requests.

Default is 250 .

fifo_expire_sync Value in milliseconds specifies the timeout of synchronous re-
quests.

Default is 125 .

timeout_sync Maximum time in milliseconds that a task (queue) is serviced
after it has been selected.

Default is 124 .

136 BFQ (Budget Fair Queueing) SLES 15 SP4

File Description

max_budget Limit for number of sectors that are served at maximum with-
in timeout_sync . If set to 0 BFQ internally calculates a value
based on timeout_sync and an estimated peak rate.

Default is 0 (set to auto-tuning).

strict_guarantees Enables (1) or disables (0) BFQ specific queue handling re-
quired to give stricter bandwidth sharing guarantees under
certain conditions.

Default is 0 .

13.2.4 KYBER

KYBER is a latency-oriented I/O scheduler. It makes it possible to set target latencies for reads
and synchronous writes and throttles I/O requests in order to try to meet these target latencies.

TABLE 13.3: KYBER TUNABLE PARAMETERS

File Description

read_lat_nsec Sets the target latency for read operations in nanoseconds.

Default is 2000000 .

write_lat_nsec Sets the target latency for write operations in nanoseconds.

Default is 10000000 .

13.3 I/O barrier tuning

Some le systems (for example, Ext3 or Ext4) send write barriers to disk after fsync or during
transaction commits. Write barriers enforce proper ordering of writes, making volatile disk write
caches safe to use (at some performance penalty). If your disks are battery-backed in one way
or another, disabling barriers can safely improve performance.

137 KYBER SLES 15 SP4

Important: nobarrier is deprecated in XFS
Note that the nobarrier option has been completely deprecated for XFS, and it is not
a valid mount option in SUSE Linux Enterprise 15 SP2 and upward. Any XFS mount
command that explicitly specifies the ag will fail to mount the le system. To prevent
this from happening, make sure that no scripts or fstab entries contain the nobarrier
option.

Sending write barriers can be disabled using the nobarrier mount option.

Warning: Disabling barriers can lead to data loss
Disabling barriers when disks cannot guarantee caches are properly written in case of
power failure can lead to severe le system corruption and data loss.

138 I/O barrier tuning SLES 15 SP4

14 Tuning the task scheduler

Modern operating systems, such as SUSE® Linux Enterprise Server, normally run many tasks
at the same time. For example, you can be searching in a text le while receiving an e-mail
and copying a big le to an external hard disk. These simple tasks require many additional
processes to be run by the system. To provide each task with its required system resources, the
Linux kernel needs a tool to distribute available system resources to individual tasks. And this
is exactly what the task scheduler does.

The following sections explain the most important terms related to a process scheduling. They
also introduce information about the task scheduler policy, scheduling algorithm, description
of the task scheduler used by SUSE Linux Enterprise Server, and references to other sources of
relevant information.

14.1 Introduction

The Linux kernel controls the way that tasks (or processes) are managed on the system. The task
scheduler, sometimes called process scheduler, is the part of the kernel that decides which task
to run next. It is responsible for the optimal use of system resources to guarantee that multiple
tasks are being executed simultaneously. This makes it a core component of any multitasking
operating system.

14.1.1 Preemption

The theory behind task scheduling is simple. If there are runnable processes in a system, at least
one process must always be running. If there are more runnable processes than processors in a
system, not all the processes can be running all the time.

Therefore, certain processes need to be stopped temporarily, or suspended, so that others can be
running again. The scheduler decides what process in the queue runs next.

As already mentioned, Linux, like all other Unix variants, is a multitasking operating system. That
means that several tasks can be running at the same time. Linux provides a so called preemptive
multitasking, where the scheduler decides when a process is suspended. This forced suspension
is called preemption. All Unix flavors have been providing preemptive multitasking since the
beginning.

139 Introduction SLES 15 SP4

14.1.2 Timeslice

The time period for which a process runs before it is preempted is defined in advance. It is called
a timeslice of a process and represents the amount of processor time that is provided to each
process. By assigning timeslices, the scheduler makes global decisions for the running system,
and prevents individual processes from taking control of the processor resources.

14.1.3 Process priority

The scheduler evaluates processes based on their priority. To calculate the current priority of a
process, the task scheduler uses complex algorithms. As a result, each process is given a value
according to which it is “allowed” to run on a processor.

14.2 Process classification

Processes are classified according to their purpose and behavior. Although the borderline is not
always distinct, generally two criteria are used to sort them. These criteria are independent and
do not exclude each other.

One approach is to classify a process either I/O-bound or processor-bound.

I/O-bound

I/O stands for Input/Output devices, such as keyboards, mice, or optical and hard disks.
I/O-bound processes spend most of the time submitting and waiting for requests. They are
run frequently, but at short time intervals, not to block other processes waiting for I/O
requests.

processor-bound

Processor-bound tasks use their time to execute a code, and run until they are preempted
by the scheduler. They do not block processes waiting for I/O requests, and, therefore, can
be run less frequently but for longer time intervals.

Another approach is to divide processes by type into interactive, batch, and real-time processes.

140 Timeslice SLES 15 SP4

Interactive processes spend a lot of time waiting for I/O requests, such as keyboard or
mouse operations. The scheduler must wake up such processes quickly on user request,
or the user nds the environment unresponsive. The typical delay is approximately 100
ms. Office applications, text editors or image manipulation programs represent typical
interactive processes.

Batch processes often run in the background and do not need to be responsive. They receive
lower priority from the scheduler. Multimedia converters, database search engines, or log
les analyzers are typical examples of batch processes.

Real-time processes must never be blocked by low-priority processes, and the scheduler
guarantees a short response time to them. Applications for editing multimedia content are
a good example here.

14.3 Completely Fair Scheduler

Since the Linux kernel version 2.6.23, a new approach has been taken to the scheduling of
runnable processes. Completely Fair Scheduler (CFS) became the default Linux kernel scheduler.
Since then, important changes and improvements have been made. The information in this
chapter applies to SUSE Linux Enterprise Server with kernel version 2.6.32 and higher (including
3.x kernels). The scheduler environment was divided into several parts, and three main new
features were introduced:

Modular scheduler core

The core of the scheduler was enhanced with scheduling classes. These classes are modular
and represent scheduling policies.

Completely Fair Scheduler

Introduced in kernel 2.6.23 and extended in 2.6.24, CFS tries to assure that each process
obtains its “fair” share of the processor time.

Group scheduling

For example, if you split processes into groups according to which user is running them,
CFS tries to provide each of these groups with the same amount of processor time.

As a result, CFS brings optimized scheduling for both servers and desktops.

141 Completely Fair Scheduler SLES 15 SP4

14.3.1 How CFS works

CFS tries to guarantee a fair approach to each runnable task. To nd the most balanced way of
task scheduling, it uses the concept of red-black tree. A red-black tree is a type of self-balancing
data search tree which provides inserting and removing entries in a reasonable way so that it
remains well balanced.

When CFS schedules a task it accumulates “virtual runtime” or vruntime. The next task picked
to run is always the task with the minimum accumulated vruntime so far. By balancing the red-
black tree when tasks are inserted into the run queue (a planned time line of processes to be
executed next), the task with the minimum vruntime is always the rst entry in the red-black
tree.

The amount of vruntime a task accrues is related to its priority. High priority tasks gain vruntime
at a slower rate than low priority tasks, which results in high priority tasks being picked to run
on the processor more often.

14.3.2 Grouping processes

Since the Linux kernel version 2.6.24, CFS can be tuned to be fair to groups rather than to tasks
only. Runnable tasks are then grouped to form entities, and CFS tries to be fair to these entities
instead of individual runnable tasks. The scheduler also tries to be fair to individual tasks within
these entities.

The kernel scheduler lets you group runnable tasks using control groups. For more information,
see Chapter 10, Kernel control groups.

14.3.3 Kernel configuration options

Basic aspects of the task scheduler behavior can be set through the kernel configuration op-
tions. Setting these options is part of the kernel compilation process. Because kernel compilation
process is a complex task and out of this document's scope, refer to relevant source of informa-
tion.

Warning: Kernel compilation
If you run SUSE Linux Enterprise Server on a kernel that was not shipped with it, for
example on a self-compiled kernel, you lose the entire support entitlement.

142 How CFS works SLES 15 SP4

14.3.4 Terminology

Documents regarding task scheduling policy often use several technical terms which you need
to know to understand the information correctly. A few of them are as follows:

Latency

Delay between the time a process is scheduled to run and the actual process execution.

Granularity

The relation between granularity and latency can be expressed by the following equation:

gran = (lat / rtasks) - (lat / rtasks / rtasks)

where gran stands for granularity, lat stand for latency, and rtasks is the number of running
tasks.

14.3.4.1 Scheduling policies

The Linux kernel supports the following scheduling policies:

SCHED_FIFO

Scheduling policy designed for special time-critical applications. It uses the First In-First
Out scheduling algorithm.

SCHED_BATCH

Scheduling policy designed for CPU-intensive tasks.

SCHED_IDLE

Scheduling policy intended for very low-priority tasks.

SCHED_OTHER

Default Linux time-sharing scheduling policy used by most of the processes.

SCHED_RR

Similar to SCHED_FIFO , but uses the Round Robin scheduling algorithm.

14.3.5 Changing real-time attributes of processes with chrt
The chrt command sets or retrieves the real-time scheduling attributes of a running process,
or runs a command with the specified attributes. You can get or retrieve both the scheduling
policy and priority of a process.

143 Terminology SLES 15 SP4

In the following examples, a process whose PID is 16244 is used.

To retrieve the real-time attributes of an existing task:

chrt -p 16244
pid 16244's current scheduling policy: SCHED_OTHER
pid 16244's current scheduling priority: 0

Before setting a new scheduling policy on the process, you need to nd out the minimum and
maximum valid priorities for each scheduling algorithm:

chrt -m
SCHED_SCHED_OTHER min/max priority : 0/0
SCHED_SCHED_FIFO min/max priority : 1/99
SCHED_SCHED_RR min/max priority : 1/99
SCHED_SCHED_BATCH min/max priority : 0/0
SCHED_SCHED_IDLE min/max priority : 0/0

In the above example, SCHED_OTHER, SCHED_BATCH, SCHED_IDLE polices only allow for pri-
ority 0, while that of SCHED_FIFO and SCHED_RR can range from 1 to 99.

To set SCHED_BATCH scheduling policy:

chrt -b -p 0 16244
pid 16244's current scheduling policy: SCHED_BATCH
pid 16244's current scheduling priority: 0

For more information on chrt , see its man page (man 1 chrt).

14.3.6 Runtime tuning with sysctl

The sysctl interface for examining and changing kernel parameters at runtime introduces
important variables, using which you can change the default behavior of the task scheduler.
The syntax of the sysctl is simple, and all the following commands must be entered on the
command line as root .

To read a value from a kernel variable, enter

sysctl VARIABLE

To assign a value, enter

sysctl VARIABLE=VALUE

144 Runtime tuning with sysctl SLES 15 SP4

To get a list of all scheduler-related variables, run the sysctl command, and use grep to filter
the output:

sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_cfs_bandwidth_slice_us = 5000
kernel.sched_child_runs_first = 0
kernel.sched_compat_yield = 0
kernel.sched_latency_ns = 24000000
kernel.sched_migration_cost_ns = 500000
kernel.sched_min_granularity_ns = 8000000
kernel.sched_nr_migrate = 32
kernel.sched_rr_timeslice_ms = 25
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_schedstats = 0
kernel.sched_shares_window_ns = 10000000
kernel.sched_time_avg_ms = 1000
kernel.sched_tunable_scaling = 1
kernel.sched_wakeup_granularity_ns = 10000000

Variables ending with “_ns” and “_us” accept values in nanoseconds and microseconds, respec-
tively.

A list of the most important task scheduler sysctl tuning variables (located at /proc/sys/
kernel/) with a short description follows:

sched_cfs_bandwidth_slice_us

When CFS bandwidth control is in use, this parameter controls the amount of runtime
(bandwidth) transferred to a run queue from the task's control group bandwidth pool.
Small values allow the global bandwidth to be shared in a ne-grained manner among
tasks, larger values reduce transfer overhead. See https://www.kernel.org/doc/Documenta-

tion/scheduler/sched-bwc.txt .

sched_child_runs_first

A freshly forked child runs before the parent continues execution. Setting this parameter
to 1 is beneficial for an application in which the child performs an execution after fork.

sched_compat_yield

Enables the aggressive CPU yielding behavior of the old O(1) scheduler by moving the
relinquishing task to the end of the runnable queue (right-most position in the red-black
tree). Applications that depend on the sched_yield(2) syscall behavior may see perfor-
mance improvements by giving other processes a chance to run when there are highly

145 Runtime tuning with sysctl SLES 15 SP4

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

contended resources (such as locks). Given that this call occurs in context switching, mis-
using the call can hurt the workload. Use it only when you see a drop in performance.
The default value is 0 .

sched_migration_cost_ns

Amount of time after the last execution that a task is considered to be “cache hot” in mi-
gration decisions. A “hot” task has fewer chances of migration to another CPU, so increas-
ing this variable reduces task migrations. The default value is 500000 (ns).
If the CPU idle time is higher than expected when there are runnable processes, try reduc-
ing this value. If tasks bounce between CPUs or nodes too often, try increasing it.

sched_latency_ns

Targeted preemption latency for CPU bound tasks. Increasing this variable increases a CPU
bound task's timeslice. A task's timeslice is its weighted fair share of the scheduling period:
timeslice = scheduling period * (task's weight/total weight of tasks in the run queue)
The task's weight depends on the task's nice level and the scheduling policy. Minimum
task weight for a SCHED_OTHER task is 15, corresponding to nice 19. The maximum task
weight is 88761, corresponding to nice -20.
Timeslices become smaller as the load increases. When the number of runnable
tasks exceeds sched_latency_ns / sched_min_granularity_ns , the slice becomes num-
ber_of_running_tasks * sched_min_granularity_ns . Before that, the slice is equal to
sched_latency_ns .
This value also specifies the maximum amount of time during which a sleeping task is
considered to be running for entitlement calculations. Increasing this variable increases
the amount of time a waking task may consume before being preempted, thus increasing
scheduler latency for CPU bound tasks. The default value is 6000000 (ns).

sched_min_granularity_ns

Minimal preemption granularity for CPU bound tasks. See sched_latency_ns for details.
The default value is 4000000 (ns).

sched_wakeup_granularity_ns

The wake-up preemption granularity. Increasing this variable reduces wake-up preemp-
tion, reducing disturbance of compute bound tasks. Lowering it improves wake-up latency
and throughput for latency critical tasks, particularly when a short duty cycle load com-
ponent must compete with CPU bound components. The default value is 2500000 (ns).

146 Runtime tuning with sysctl SLES 15 SP4

Warning: Setting the right wake-up granularity value
Settings larger than half of sched_latency_ns result in no wake-up preemption.
Short duty cycle tasks cannot compete with CPU hogs effectively.

sched_rr_timeslice_ms

Quantum that SCHED_RR tasks are allowed to run before they are preempted and put to
the end of the task list.

sched_rt_period_us

Period over which real-time task bandwidth enforcement is measured. The default value
is 1000000 (µs).

sched_rt_runtime_us

Quantum allocated to real-time tasks during sched_rt_period_us. Setting to -1 disables RT
bandwidth enforcement. By default, RT tasks may consume 95%CPU/sec, thus leaving
5%CPU/sec or 0.05 s to be used by SCHED_OTHER tasks. The default value is 950000 (µs).

sched_nr_migrate

Controls how many tasks can be migrated across processors for load-balancing purposes.
Because balancing iterates the runqueue with interrupts disabled (softirq), it can incur
in irq-latency penalties for real-time tasks. Therefore, increasing this value may give a
performance boost to large SCHED_OTHER threads at the expense of increased irq-latencies
for real-time tasks. The default value is 32 .

sched_time_avg_ms

This parameter sets the period over which the time spent running real-time tasks is aver-
aged. That average assists CFS in making load-balancing decisions and gives an indication
of how busy a CPU is with high-priority real-time tasks.
The optimal setting for this parameter is highly workload dependent and depends, among
other things, on how frequently real-time tasks are running and for how long.

147 Runtime tuning with sysctl SLES 15 SP4

Warning: A few scheduler parameters have been moved to
debugfs
If the default Linux kernel version of your operating system is 5.13 or later (can be checked
using the command rpm -q kernel-default), you might notice the messages in the
kernel logs that are similar to the following example:

[20.485624] The sched.sched_min_granularity_ns sysctl was moved to debugfs in
 kernel 5.13 for CPU scheduler debugging only. This sysctl will be removed in a
 future SLE release.
[20.485632] The sched.sched_wakeup_granularity_ns sysctl was moved to debugfs in
 kernel 5.13 for CPU scheduler debugging only. This sysctl will be removed in a
 future SLE release.

This happens because six scheduler parameters have been moved from /proc/sys/ker-
nel/sched_* to /sys/kernel/debug/sched/* . The affected scheduler parameters are
as follows:

sched_latency_ns

sched_migration_cost_ns

sched_min_granularity_ns

sched_nr_migrate

sched_tunable_scaling

sched_wakeup_granularity_n

For temporary convenience, the sysctl for these scheduler parameters still exists in
SUSE Linux Enterprise Server. However, due to planned changes in the CPU scheduler
implementation, there is no guarantee that either the sysctl or the debugfs options
will exist in a future release of SUSE Linux Enterprise Server.

If any of your current system tuning configurations depend on these six scheduler para-
meters, we strongly recommend that you nd an alternate method of achieving your ob-
jective and stop depending on them for production workloads.

148 Runtime tuning with sysctl SLES 15 SP4

14.3.7 Debugging interface and scheduler statistics

CFS comes with a new improved debugging interface, and provides runtime statistics informa-
tion. Relevant les were added to the /proc le system, which can be examined simply with
the cat or less command. A list of the related /proc les follows with their short description:

/proc/sched_debug

Contains the current values of all tunable variables (see Section 14.3.6, “Runtime tuning with

sysctl”) that affect the task scheduler behavior, CFS statistics, and information about
the run queues (CFS, RT and deadline) on all available processors. A summary of the
task running on each processor is also shown, with the task name and PID, along with
scheduler specific statistics. The rst being the tree-key column, it indicates the task's
virtual runtime, and its name comes from the kernel sorting all runnable tasks by this
key in a red-black tree. The switches column indicates the total number of switches
(involuntary or not), and the prio refers to the process priority. The wait-time value
indicates the amount of time the task waited to be scheduled. Finally both sum-exec and
sum-sleep account for the total amount of time (in nanoseconds) the task was running
on the processor or asleep, respectively.

cat /proc/sched_debug
Sched Debug Version: v0.11, 4.4.21-64-default #1
ktime : 23533900.395978
sched_clk : 23543587.726648
cpu_clk : 23533900.396165
jiffies : 4300775771
sched_clock_stable : 0

sysctl_sched
 .sysctl_sched_latency : 6.000000
 .sysctl_sched_min_granularity : 2.000000
 .sysctl_sched_wakeup_granularity : 2.500000
 .sysctl_sched_child_runs_first : 0
 .sysctl_sched_features : 154871
 .sysctl_sched_tunable_scaling : 1 (logaritmic)

cpu#0, 2666.762 MHz
 .nr_running : 1
 .load : 1024
 .nr_switches : 1918946
[...]

cfs_rq[0]:/
 .exec_clock : 170176.383770

149 Debugging interface and scheduler statistics SLES 15 SP4

 .MIN_vruntime : 0.000001
 .min_vruntime : 347375.854324
 .max_vruntime : 0.000001
[...]

rt_rq[0]:/
 .rt_nr_running : 0
 .rt_throttled : 0
 .rt_time : 0.000000
 .rt_runtime : 950.000000

dl_rq[0]:
 .dl_nr_running : 0

 task PID tree-key switches prio wait-time [...]
--
R cc1 63477 98876.717832 197 120 0.000000 ...

/proc/schedstat

Displays statistics relevant to the current run queue. Also domain-specific statistics for
SMP systems are displayed for all connected processors. Because the output format is not
user-friendly, read the contents of /usr/src/linux/Documentation/scheduler/sched-
stats.txt for more information.

/proc/PID/sched

Displays scheduling information on the process with id PID .

cat /proc/$(pidof gdm)/sched
gdm (744, #threads: 3)

se.exec_start : 8888.758381
se.vruntime : 6062.853815
se.sum_exec_runtime : 7.836043
se.statistics.wait_start : 0.000000
se.statistics.sleep_start : 8888.758381
se.statistics.block_start : 0.000000
se.statistics.sleep_max : 1965.987638
[...]
se.avg.decay_count : 8477
policy : 0
prio : 120
clock-delta : 128
mm->numa_scan_seq : 0
numa_migrations, 0
numa_faults_memory, 0, 0, 1, 0, -1
numa_faults_memory, 1, 0, 0, 0, -1

150 Debugging interface and scheduler statistics SLES 15 SP4

14.4 More information
To get a compact knowledge about Linux kernel task scheduling, you need to explore several
information sources. Here are some:

For task scheduler System Calls description, see the relevant manual page (for example
man 2 sched_setaffinity).

A useful lecture on Linux scheduler policy and algorithm is available in https://www.in-

f.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf .

A good overview of Linux process scheduling is given in Linux Kernel Development by
Robert Love (ISBN-10: 0-672-32512-8). See https://www.informit.com/articles/article.as-

px?p=101760 .

A comprehensive overview of the Linux kernel internals is given in Understanding the Linux
Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).

Technical information about task scheduler is covered in les under /usr/src/lin-
ux/Documentation/scheduler .

151 More information SLES 15 SP4

https://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
https://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
https://www.informit.com/articles/article.aspx?p=101760
https://www.informit.com/articles/article.aspx?p=101760

15 Tuning the memory management subsystem

To understand and tune the memory management behavior of the kernel, it is important to rst
have an overview of how it works and cooperates with other subsystems.

The memory management subsystem, also called the virtual memory manager, will subsequently
be called “VM”. The role of the VM is to manage the allocation of physical memory (RAM)
for the entire kernel and user programs. It is also responsible for providing a virtual memory
environment for user processes (managed via POSIX APIs with Linux extensions). Finally, the
VM is responsible for freeing up RAM when there is a shortage, either by trimming caches or
swapping out “anonymous” memory.

The most important thing to understand when examining and tuning VM is how its caches
are managed. The basic goal of the VM's caches is to minimize the cost of I/O as generated
by swapping and le system operations (including network le systems). This is achieved by
avoiding I/O completely, or by submitting I/O in better patterns.

Free memory will be used and lled up by these caches as required. The more memory is avail-
able for caches and anonymous memory, the more effectively caches and swapping will oper-
ate. However, if a memory shortage is encountered, caches will be trimmed or memory will
be swapped out.

For a particular workload, the rst thing that can be done to improve performance is to increase
memory and reduce the frequency that memory must be trimmed or swapped. The second thing
is to change the way caches are managed by changing kernel parameters.

Finally, the workload itself should be examined and tuned as well. If an application is allowed
to run more processes or threads, effectiveness of VM caches can be reduced, if each process is
operating in its own area of the le system. Memory overheads are also increased. If applications
allocate their own buers or caches, larger caches will mean that less memory is available for
VM caches. However, more processes and threads can mean more opportunity to overlap and
pipeline I/O, and may take better advantage of multiple cores. Experimentation will be required
for the best results.

15.1 Memory usage

Memory allocations in general can be characterized as “pinned” (also known as “unre-
claimable”), “reclaimable” or “swappable”.

152 Memory usage SLES 15 SP4

15.1.1 Anonymous memory

Anonymous memory tends to be program heap and stack memory (for example, >malloc()).
It is reclaimable, except in special cases such as mlock or if there is no available swap space.
Anonymous memory must be written to swap before it can be reclaimed. Swap I/O (both swap-
ping in and swapping out pages) tends to be less efficient than pagecache I/O, because of allo-
cation and access patterns.

15.1.2 Pagecache

A cache of le data. When a le is read from disk or network, the contents are stored in page-
cache. No disk or network access is required, if the contents are up-to-date in pagecache. tmpfs
and shared memory segments count toward pagecache.

When a le is written to, the new data is stored in pagecache before being written back to a
disk or the network (making it a write-back cache). When a page has new data not written back
yet, it is called “dirty”. Pages not classified as dirty are “clean”. Clean pagecache pages can be
reclaimed if there is a memory shortage by simply freeing them. Dirty pages must rst be made
clean before being reclaimed.

15.1.3 Buffercache

This is a type of pagecache for block devices (for example, /dev/sda). A le system typically uses
the buffercache when accessing its on-disk metadata structures such as inode tables, allocation
bitmaps, and so forth. Buffercache can be reclaimed similarly to pagecache.

15.1.4 Buffer heads

Buer heads are small auxiliary structures that tend to be allocated upon pagecache access. They
can generally be reclaimed easily when the pagecache or buffercache pages are clean.

15.1.5 Writeback

As applications write to les, the pagecache becomes dirty and the buffercache may be-
come dirty. When the amount of dirty memory reaches a specified number of pages in bytes
(vm.dirty_background_bytes), or when the amount of dirty memory reaches a specific ratio to total

153 Anonymous memory SLES 15 SP4

memory (vm.dirty_background_ratio), or when the pages have been dirty for longer than a speci-
fied amount of time (vm.dirty_expire_centisecs), the kernel begins writeback of pages starting with
les that had the pages dirtied rst. The background bytes and ratios are mutually exclusive
and setting one will overwrite the other. Flusher threads perform writeback in the background
and allow applications to continue running. If the I/O cannot keep up with applications dirtying
pagecache, and dirty data reaches a critical setting (vm.dirty_bytes or vm.dirty_ratio), then appli-
cations begin to be throttled to prevent dirty data exceeding this threshold.

15.1.6 Readahead

The VM monitors le access patterns and may attempt to perform readahead. Readahead reads
pages into the pagecache from the le system that have not been requested yet. It is done to
allow fewer, larger I/O requests to be submitted (more efficient). And for I/O to be pipelined
(I/O performed at the same time as the application is running).

15.1.7 VFS caches

15.1.7.1 Inode cache

This is an in-memory cache of the inode structures for each le system. These contain attributes
such as the le size, permissions and ownership, and pointers to the le data.

15.1.7.2 Directory entry cache

This is an in-memory cache of the directory entries in the system. These contain a name (the
name of a le), the inode which it refers to, and children entries. This cache is used when
traversing the directory structure and accessing a le by name.

154 Readahead SLES 15 SP4

15.2 Reducing memory usage

15.2.1 Reducing malloc (anonymous) usage

Applications running on SUSE Linux Enterprise Server 15 SP4 can allocate more memory com-
pared to older releases. This is because of glibc changing its default behavior while allocating
user space memory. See http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameter-

s.html for explanation of these parameters.

To restore behavior similar to older releases, M_MMAP_THRESHOLD should be set to
128*1024. This can be done with mallopt() call from the application, or via setting MAL-
LOC_MMAP_THRESHOLD_ environment variable before running the application.

15.2.2 Reducing kernel memory overheads

Kernel memory that is reclaimable (caches, described above) will be trimmed automatically
during memory shortages. Most other kernel memory cannot be easily reduced but is a property
of the workload given to the kernel.

Reducing the requirements of the user space workload will reduce the kernel memory usage
(fewer processes, fewer open les and sockets, etc.)

15.2.3 Memory controller (memory cgroups)

If the memory cgroups feature is not needed, it can be switched o by passing cgroup_dis-
able=memory on the kernel command line, reducing memory consumption of the kernel a bit.
There is also a slight performance benefit as there is a small amount of accounting overhead
when memory cgroups are available even if none are configured.

155 Reducing memory usage SLES 15 SP4

http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html
http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html

15.3 Virtual memory manager (VM) tunable
parameters

When tuning the VM it should be understood that some changes will take time to affect the
workload and take full effect. If the workload changes throughout the day, it may behave very
differently at different times. A change that increases throughput under some conditions may
decrease it under other conditions.

15.3.1 Reclaim ratios

/proc/sys/vm/swappiness

This control is used to define how aggressively the kernel swaps out anonymous memo-
ry relative to pagecache and other caches. Increasing the value increases the amount of
swapping. The default value is 60 .
Swap I/O tends to be much less efficient than other I/O. However, some pagecache pages
will be accessed much more frequently than less used anonymous memory. The right bal-
ance should be found here.
If swap activity is observed during slowdowns, it may be worth reducing this parameter.
If there is a lot of I/O activity and the amount of pagecache in the system is rather small,
or if there are large dormant applications running, increasing this value might improve
performance.
Note that the more data is swapped out, the longer the system will take to swap data back
in when it is needed.

/proc/sys/vm/vfs_cache_pressure

This variable controls the tendency of the kernel to reclaim the memory which is used for
caching of VFS caches, versus pagecache and swap. Increasing this value increases the rate
at which VFS caches are reclaimed.
It is difficult to know when this should be changed, other than by experimentation. The
slabtop command (part of the package procps) shows top memory objects used by
the kernel. The vfs caches are the "dentry" and the "*_inode_cache" objects. If these are
consuming a large amount of memory in relation to pagecache, it may be worth trying to
increase pressure. Could also help to reduce swapping. The default value is 100 .

156 Virtual memory manager (VM) tunable parameters SLES 15 SP4

/proc/sys/vm/min_free_kbytes

This controls the amount of memory that is kept free for use by special reserves including
“atomic” allocations (those which cannot wait for reclaim). This should not normally be
lowered unless the system is being very carefully tuned for memory usage (normally useful
for embedded rather than server applications). If “page allocation failure” messages and
stack traces are frequently seen in logs, min_free_kbytes could be increased until the errors
disappear. There is no need for concern, if these messages are very infrequent. The default
value depends on the amount of RAM.

/proc/sys/vm/watermark_scale_factor

Broadly speaking, free memory has high, low and min watermarks. When the low water-
mark is reached then kswapd wakes to reclaim memory in the background. It stays awake
until free memory reaches the high watermark. Applications will stall and reclaim memory
when the min watermark is reached.
The watermark_scale_factor defines the amount of memory left in a node/system be-
fore kswapd is woken up and how much memory needs to be free before kswapd goes back
to sleep. The unit is in fractions of 10,000. The default value of 10 means the distances
between watermarks are 0.1% of the available memory in the node/system. The maximum
value is 1000, or 10% of memory.
Workloads that frequently stall in direct reclaim, accounted by allocstall in /proc/
vmstat , may benefit from altering this parameter. Similarly, if kswapd is sleeping prema-
turely, as accounted for by kswapd_low_wmark_hit_quickly , then it may indicate that
the number of pages kept free to avoid stalls is too low.

15.3.2 Writeback parameters

One important change in writeback behavior since SUSE Linux Enterprise Server 10 is that
modification to le-backed mmap() memory is accounted immediately as dirty memory (and
subject to writeback). Whereas previously it would only be subject to writeback after it was
unmapped, upon an msync() system call, or under heavy memory pressure.

Some applications do not expect mmap modifications to be subject to such writeback behavior,
and performance can be reduced. Increasing writeback ratios and times can improve this type
of slowdown.

157 Writeback parameters SLES 15 SP4

/proc/sys/vm/dirty_background_ratio

This is the percentage of the total amount of free and reclaimable memory. When the
amount of dirty pagecache exceeds this percentage, writeback threads start writing back
dirty memory. The default value is 10 (%).

/proc/sys/vm/dirty_background_bytes

This contains the amount of dirty memory at which the background kernel flusher threads
will start writeback. dirty_background_bytes is the counterpart of dirty_back-

ground_ratio . If one of them is set, the other one will automatically be read as 0 .

/proc/sys/vm/dirty_ratio

Similar percentage value as for dirty_background_ratio . When this is exceeded, appli-
cations that want to write to the pagecache are blocked and wait for kernel background
flusher threads to reduce the amount of dirty memory. The default value is 20 (%).

/proc/sys/vm/dirty_bytes

This le controls the same tunable as dirty_ratio however the amount of dirty memory
is in bytes as opposed to a percentage of reclaimable memory. Since both dirty_ratio
and dirty_bytes control the same tunable, if one of them is set, the other one will auto-
matically be read as 0 . The minimum value allowed for dirty_bytes is two pages (in
bytes); any value lower than this limit will be ignored and the old configuration will be
retained.

/proc/sys/vm/dirty_expire_centisecs

Data which has been dirty in-memory for longer than this interval will be written out next
time a flusher thread wakes up. Expiration is measured based on the modification time
of a le's inode. Therefore, multiple dirtied pages from the same le will all be written
when the interval is exceeded.

dirty_background_ratio and dirty_ratio together determine the pagecache writeback be-
havior. If these values are increased, more dirty memory is kept in the system for a longer
time. With more dirty memory allowed in the system, the chance to improve throughput by
avoiding writeback I/O and to submitting more optimal I/O patterns increases. However, more
dirty memory can either harm latency when memory needs to be reclaimed or at points of data
integrity (“synchronization points”) when it needs to be written back to disk.

158 Writeback parameters SLES 15 SP4

15.3.3 Timing differences of I/O writes between SUSE Linux
Enterprise 12 and SUSE Linux Enterprise 11

The system is required to limit what percentage of the system's memory contains le-backed
data that needs writing to disk. This guarantees that the system can always allocate the neces-
sary data structures to complete I/O. The maximum amount of memory that can be dirty and
requires writing at any time is controlled by vm.dirty_ratio (/proc/sys/vm/dirty_ratio).
The defaults are:

SLE-11-SP3: vm.dirty_ratio = 40
SLE-12: vm.dirty_ratio = 20

The primary advantage of using the lower ratio in SUSE Linux Enterprise 12 is that page recla-
mation and allocation in low memory situations completes faster as there is a higher probability
that old clean pages will be quickly found and discarded. The secondary advantage is that if
all data on the system must be synchronized, then the time to complete the operation on SUSE
Linux Enterprise 12 will be lower than SUSE Linux Enterprise 11 SP3 by default. Most workloads
will not notice this change as data is synchronized with fsync() by the application or data is
not dirtied quickly enough to hit the limits.

There are exceptions and if your application is affected by this, it will manifest as an unex-
pected stall during writes. To prove it is affected by dirty data rate limiting then monitor /
proc/PID_OF_APPLICATION/stack and it will be observed that the application spends signifi-
cant time in balance_dirty_pages_ratelimited . If this is observed and it is a problem, then
increase the value of vm.dirty_ratio to 40 to restore the SUSE Linux Enterprise 11 SP3 be-
havior.

It is important to note that the overall I/O throughput is the same regardless of the setting. The
only difference is the timing of when the I/O is queued.

This is an example of using dd to asynchronously write 30% of memory to disk which would
happen to be affected by the change in vm.dirty_ratio :

MEMTOTAL_MBYTES=`free -m | grep Mem: | awk '{print $2}'`
sysctl vm.dirty_ratio=40
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
2507145216 bytes (2.5 GB) copied, 8.00153 s, 313 MB/s
sysctl vm.dirty_ratio=20
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
2507145216 bytes (2.5 GB) copied, 10.1593 s, 247 MB/s

159

Timing differences of I/O writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise

11 SLES 15 SP4

Note that the parameter affects the time it takes for the command to complete and the apparent
write speed of the device. With dirty_ratio=40 , more of the data is cached and written to disk
in the background by the kernel. It is very important to note that the speed of I/O is identical
in both cases. To demonstrate, this is the result when dd synchronizes the data before exiting:

sysctl vm.dirty_ratio=40
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
 conv=fdatasync
2507145216 bytes (2.5 GB) copied, 21.0663 s, 119 MB/s
sysctl vm.dirty_ratio=20
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
 conv=fdatasync
2507145216 bytes (2.5 GB) copied, 21.7286 s, 115 MB/s

Note that dirty_ratio had almost no impact here and is within the natural variability of a
command. Hence, dirty_ratio does not directly impact I/O performance but it may affect the
apparent performance of a workload that writes data asynchronously without synchronizing.

15.3.4 Readahead parameters

/sys/block/<bdev>/queue/read_ahead_kb

If one or more processes are sequentially reading a le, the kernel reads some data in
advance (ahead) to reduce the amount of time that processes need to wait for data to be
available. The actual amount of data being read in advance is computed dynamically, based
on how much "sequential" the I/O seems to be. This parameter sets the maximum amount
of data that the kernel reads ahead for a single le. If you observe that large sequential
reads from a le are not fast enough, you can try increasing this value. Increasing it too
far may result in readahead thrashing where pagecache used for readahead is reclaimed
before it can be used, or slowdowns because of a large amount of useless I/O. The default
value is 512 (KB).

15.3.5 Transparent HugePage parameters

Transparent HugePages (THP) provide a way to dynamically allocate huge pages either on‑de-
mand by the process or deferring the allocation until later via the khugepaged kernel thread.
This method is distinct from the use of hugetlbfs to manually manage their allocation and

160 Readahead parameters SLES 15 SP4

use. Workloads with contiguous memory access patterns can benefit greatly from THP. A 1000-
fold decrease in page faults can be observed when running synthetic workloads with contiguous
memory access patterns.

There are cases when THP may be undesirable. Workloads with sparse memory access patterns
can perform poorly with THP due to excessive memory usage. For example, 2 MB of memory may
be used at fault time instead of 4 KB for each fault and ultimately lead to premature page reclaim.
On releases older than SUSE Linux Enterprise 12 SP2, it was possible for an application to stall
for long periods of time trying to allocate a THP which frequently led to a recommendation
of disabling THP. Such recommendations should be re-evaluated for SUSE Linux Enterprise 12
SP3 and later releases.

The behavior of THP may be configured via the transparent_hugepage= kernel parameter
or via sysfs. For example, it may be disabled by adding the kernel parameter transparen-
t_hugepage=never , rebuilding your grub2 configuration, and rebooting. Verify if THP is dis-
abled with:

cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

If disabled, the value never is shown in square brackets like in the example above. A value of
always will always try and use THP at fault time but defer to khugepaged if the allocation
fails. A value of madvise will only allocate THP for address spaces explicitly specified by an
application.

/sys/kernel/mm/transparent_hugepage/defrag

This parameter controls how much effort an application commits when allocating a THP.
A value of always is the default for SUSE Linux Enterprise 12 SP1 and earlier releases
that supported THP. If a THP is not available, the application tries to defragment memory.
It potentially incurs large stalls in an application if the memory is fragmented and a THP
is not available.
A value of madvise means that THP allocation requests will only defragment if the ap-
plication explicitly requests it. This is the default for SUSE Linux Enterprise 12 SP2 and
later releases.
defer is only available on SUSE Linux Enterprise 12 SP2 and later releases. If a THP is
not available, the application will fall back to using small pages if a THP is not available.
It will wake the kswapd and kcompactd kernel threads to defragment memory in the
background and a THP will be allocated later by khugepaged .
The final option never will use small pages if a THP is unavailable but no other action
will take place.

161 Transparent HugePage parameters SLES 15 SP4

15.3.6 khugepaged parameters

khugepaged will be automatically started when transparent_hugepage is set to always or
madvise , and it will be automatically shut down if it is set to never . Normally this runs at low
frequency but the behavior can be tuned.

/sys/kernel/mm/transparent_hugepage/khugepaged/defrag

A value of 0 will disable khugepaged even though THP may still be used at fault time.
This may be important for latency-sensitive applications that benefit from THP but cannot
tolerate a stall if khugepaged tries to update an application memory usage.

/sys/kernel/mm/transparent_hugepage/khugepaged/pages_to_scan

This parameter controls how many pages are scanned by khugepaged in a single pass.
A scan identifies small pages that can be reallocated as THP. Increasing this value will
allocate THP in the background faster at the cost of CPU usage.

/sys/kernel/mm/transparent_hugepage/khugepaged/scan_sleep_millisecs

khugepaged sleeps for a short interval specified by this parameter after each pass to limit
how much CPU usage is used. Reducing this value will allocate THP in the background
faster at the cost of CPU usage. A value of 0 will force continual scanning.

/sys/kernel/mm/transparent_hugepage/khugepaged/alloc_sleep_millisecs

This parameter controls how long khugepaged will sleep in the event it fails to allocate a
THP in the background waiting for kswapd and kcompactd to take action.

The remaining parameters for khugepaged are rarely useful for performance tuning but are
fully documented in /usr/src/linux/Documentation/vm/transhuge.txt

15.3.7 Further VM parameters

For the complete list of the VM tunable parameters, see /usr/src/linux/Documenta-

tion/sysctl/vm.txt (available after having installed the kernel-source package).

162 khugepaged parameters SLES 15 SP4

15.4 Monitoring VM behavior

Some simple tools that can help monitor VM behavior:

1. vmstat: This tool gives a good overview of what the VM is doing. See Section 2.1.1, “vmstat”

for details.

2. /proc/meminfo : This le gives a detailed breakdown of where memory is being used. See
Section 2.4.2, “Detailed memory usage: /proc/meminfo” for details.

3. slabtop : This tool provides detailed information about kernel slab memory usage.
buer_head, dentry, inode_cache, ext3_inode_cache, etc. are the major caches. This com-
mand is available with the package procps .

4. /proc/vmstat : This le gives a detailed breakdown of internal VM behavior. The infor-
mation contained within is implementation specific and may not always be available. Some
information is duplicated in /proc/meminfo and other information can be presented in
a friendly fashion by utilities. For maximum utility, this le needs to be monitored over
time to observe rates of change. The most important pieces of information that are hard
to derive from other sources are as follows:

pgscan_kswapd_*, pgsteal_kswapd_*

These report respectively the number of pages scanned and reclaimed by kswapd
since the system started. The ratio between these values can be interpreted as the
reclaim efficiency with a low efficiency implying that the system is struggling to
reclaim memory and may be thrashing. Light activity here is generally not something
to be concerned with.

pgscan_direct_*, pgsteal_direct_*

These report respectively the number of pages scanned and reclaimed by an applica-
tion directly. This is correlated with increases in the allocstall counter. This is
more serious than kswapd activity as these events indicate that processes are stalling.
Heavy activity here combined with kswapd and high rates of pgpgin , pgpout and/
or high rates of pswapin or pswpout are signs that a system is thrashing heavily.
More detailed information can be obtained using tracepoints.

163 Monitoring VM behavior SLES 15 SP4

thp_fault_alloc, thp_fault_fallback

These counters correspond to how many THPs were allocated directly by an appli-
cation and how many times a THP was not available and small pages were used.
Generally a high fallback rate is harmless unless the application is very sensitive to
TLB pressure.

thp_collapse_alloc, thp_collapse_alloc_failed

These counters correspond to how many THPs were allocated by khugepaged and
how many times a THP was not available and small pages were used. A high fallback
rate implies that the system is fragmented and THPs are not being used even when the
memory usage by applications would allow them. It is only a problem for applications
that are sensitive to TLB pressure.

compact_*_scanned, compact_stall, compact_fail, compact_success

These counters may increase when THP is enabled and the system is fragmented.
compact_stall is incremented when an application stalls allocating THP. The re-
maining counters account for pages scanned, the number of defragmentation events
that succeeded or failed.

164 Monitoring VM behavior SLES 15 SP4

16 Tuning the network

The network subsystem is complex and its tuning highly depends on the system use scenario
and on external factors such as software clients or hardware components (switches, routers, or
gateways) in your network. The Linux kernel aims more at reliability and low latency than low
overhead and high throughput. Other settings can mean less security, but better performance.

16.1 Configurable kernel socket buffers
Networking is largely based on the TCP/IP protocol and a socket interface for communication;
for more information about TCP/IP, see Book “Administration Guide”, Chapter 23 “Basic networking”.
The Linux kernel handles data it receives or sends via the socket interface in socket buers.
These kernel socket buers are tunable.

Important: TCP autotuning
Since kernel version 2.6.17 full autotuning with 4 MB maximum buer size exists. This
means that manual tuning usually will not improve networking performance consider-
ably. It is often the best not to touch the following variables, or, at least, to check the
outcome of tuning efforts carefully.

If you update from an older kernel, it is recommended to remove manual TCP tunings
in favor of the autotuning feature.

The special les in the /proc le system can modify the size and behavior of kernel socket
buers; for general information about the /proc le system, see Section 2.6, “The /proc file

system”. Find networking related les in:

/proc/sys/net/core
/proc/sys/net/ipv4
/proc/sys/net/ipv6

General net variables are explained in the kernel documentation (linux/Documenta-
tion/sysctl/net.txt). Special ipv4 variables are explained in linux/Documentation/net-
working/ip-sysctl.txt and linux/Documentation/networking/ipvs-sysctl.txt .

In the /proc le system, for example, it is possible to either set the Maximum Socket Receive
Buer and Maximum Socket Send Buer for all protocols, or both these options for the TCP
protocol only (in ipv4) and thus overriding the setting for all protocols (in core).

165 Configurable kernel socket buffers SLES 15 SP4

/proc/sys/net/ipv4/tcp_moderate_rcvbuf

If /proc/sys/net/ipv4/tcp_moderate_rcvbuf is set to 1 , autotuning is active and
buer size is adjusted dynamically.

/proc/sys/net/ipv4/tcp_rmem

The three values setting the minimum, initial, and maximum size of the Memory Receive
Buer per connection. They define the actual memory usage, not only TCP window size.

/proc/sys/net/ipv4/tcp_wmem

The same as tcp_rmem , but for Memory Send Buer per connection.

/proc/sys/net/core/rmem_max

Set to limit the maximum receive buer size that applications can request.

/proc/sys/net/core/wmem_max

Set to limit the maximum send buer size that applications can request.

Via /proc it is possible to disable TCP features that you do not need (all TCP features are
switched on by default). For example, check the following les:

/proc/sys/net/ipv4/tcp_timestamps

TCP time stamps are defined in RFC1323.

/proc/sys/net/ipv4/tcp_window_scaling

TCP window scaling is also defined in RFC1323.

/proc/sys/net/ipv4/tcp_sack

Select acknowledgments (SACKS).

Use sysctl to read or write variables of the /proc le system. sysctl is preferable to cat
(for reading) and echo (for writing), because it also reads settings from /etc/sysctl.conf
and, thus, those settings survive reboots reliably. With sysctl you can read all variables and
their values easily; as root use the following command to list TCP related settings:

> sudo sysctl -a | grep tcp

Note: Side effects of tuning network variables
Tuning network variables can affect other system resources such as CPU or memory use.

166 Configurable kernel socket buffers SLES 15 SP4

16.2 Detecting network bottlenecks and analyzing
network traffic

Before starting with network tuning, it is important to isolate network bottlenecks and network
traffic patterns. There are some tools that can help you with detecting those bottlenecks.

The following tools can help analyzing your network traffic: netstat , tcpdump , and wire-
shark . Wireshark is a network traffic analyzer.

16.3 Netfilter

The Linux firewall and masquerading features are provided by the Netfilter kernel modules. This
is a highly configurable rule based framework. If a rule matches a packet, Netfilter accepts or
denies it or takes special action (“target”) as defined by rules such as address translation.

There are quite a lot of properties Netfilter can take into account. Thus, the more rules are
defined, the longer packet processing may last. Also advanced connection tracking could be
rather expensive and, thus, slowing down overall networking.

When the kernel queue becomes full, all new packets are dropped, causing existing connec-
tions to fail. The 'fail-open' feature allows a user to temporarily disable the packet inspection
and maintain the connectivity under heavy network traffic. For reference, see https://home.re-

git.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/ .

For more information, see the home page of the Netfilter and iptables project, http://www.net-

filter.org

16.4 Improving the network performance with
receive packet steering (RPS)

Modern network interface devices can move so many packets that the host can become the
limiting factor for achieving maximum performance. To keep up, the system must be able to
distribute the work across multiple CPU cores.

Some modern network interfaces can help distribute the work to multiple CPU cores through the
implementation of multiple transmission and multiple receive queues in hardware. However,
others are only equipped with a single queue and the driver must deal with all incoming packets

167 Detecting network bottlenecks and analyzing network traffic SLES 15 SP4

https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/
https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/
http://www.netfilter.org
http://www.netfilter.org

in a single, serialized stream. To work around this issue, the operating system must "parallelize"
the stream to distribute the work across multiple CPUs. On SUSE Linux Enterprise Server this is
done via Receive Packet Steering (RPS). RPS can also be used in virtual environments.

RPS creates a unique hash for each data stream using IP addresses and port numbers. The use of
this hash ensures that packets for the same data stream are sent to the same CPU, which helps
to increase performance.

RPS is configured per network device receive queue and interface. The configuration le names
match the following scheme:

/sys/class/net/<device>/queues/<rx-queue>/rps_cpus

<device> stands for the network device, such as eth0 , eth1 . <rx-queue> stands for the
receive queue, such as rx-0 , rx-1 .

If the network interface hardware only supports a single receive queue, only rx-0 will exist. If
it supports multiple receive queues, there will be an rx- N directory for each receive queue.

These configuration les contain a comma-delimited list of CPU bitmaps. By default, all bits are
set to 0 . With this setting RPS is disabled and therefore the CPU that handles the interrupt will
also process the packet queue.

To enable RPS and enable specific CPUs to process packets for the receive queue of the interface,
set the value of their positions in the bitmap to 1 . For example, to enable CPUs 0-3 to process
packets for the rst receive queue for eth0, set the bit positions 0-3 to 1 in binary: 00001111 .
This representation then needs to be converted to hex—which results in F in this case. Set this
hex value with the following command:

> sudo echo "f" > /sys/class/net/eth0/queues/rx-0/rps_cpus

If you wanted to enable CPUs 8-15:

1111 1111 0000 0000 (binary)
15 15 0 0 (decimal)
F F 0 0 (hex)

The command to set the hex value of ff00 would be:

> sudo echo "ff00" > /sys/class/net/eth0/queues/rx-0/rps_cpus

On NUMA machines, best performance can be achieved by configuring RPS to use the CPUs on
the same NUMA node as the interrupt for the interface's receive queue.

168 Improving the network performance with receive packet steering (RPS) SLES 15 SP4

On non-NUMA machines, all CPUs can be used. If the interrupt rate is very high, excluding the
CPU handling the network interface can boost performance. The CPU being used for the network
interface can be determined from /proc/interrupts . For example:

> sudo cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
...
 51: 113915241 0 0 0 Phys-fasteoi eth0
...

In this case, CPU 0 is the only CPU processing interrupts for eth0 , since only CPU0 contains
a non-zero value.

On x86 and AMD64/Intel 64 platforms, irqbalance can be used to distribute hardware inter-
rupts across CPUs. See man 1 irqbalance for more details.

169 Improving the network performance with receive packet steering (RPS) SLES 15 SP4

17 Tuning SUSE Linux Enterprise for SAP

This chapter presents information about preparing and tuning SUSE Linux Enterprise Server to
work optimally with SAP applications with sapconf . sapconf is for SUSE Linux Enterprise
systems that install SAP applications. Customers who have SUSE Linux Enterprise Server for
SAP Applications should use saptune .

Note: The sapconf command has been removed
In SUSE Linux Enterprise Server and SUSE Linux Enterprise Server 11 and 12, the sap-
conf command was included in the package with the same name.

For SUSE Linux Enterprise Server and SUSE Linux Enterprise Server 15, this has been
changed: The command sapconf has been removed from the sapconf package. The
package contains a systemd service only. There is no sapconf command line tool any-
more, no sapconf / tuned profiles, and no tuned .

17.1 Tuning SLE Systems with sapconf 5
The package sapconf is available in SUSE Linux Enterprise Server and SUSE Linux Enterprise
Server for SAP Applications. It sets recommended parameters for the following types of SAP
applications: SAP NetWeaver, SAP HANA, and SAP HANA-based applications.

OVERVIEW OF sapconf5 IN SUSE® LINUX ENTERPRISE SERVER 12

sapconf 5 (without tuned)

sapconf-netweaver (sapconf profile as a replacement for tuned profile)

sapconf-hana (sapconf profile as a replacement for tuned profile)

sapconf-bobj (sapconf profile as a replacement for tuned profile)

sapconf-ase (sapconf profile as a replacement for tuned profile)

OVERVIEW OF sapconf5 IN SUSE® LINUX ENTERPRISE SERVER 15

sapconf 5 (without tuned)

no profiles anymore

170 Tuning SLE Systems with sapconf 5 SLES 15 SP4

Note that if you previously made changes to the system tuning, those changes may be overwrit-
ten by sapconf .

sapconf 5 ships a systemd service which applies the tuning and ensures that related services
are running.

To use sapconf , make sure that the package sapconf is installed on your system.

Note: No profiles in SUSE Linux Enterprise Server and SUSE
Linux Enterprise Server 15 SP4
In SUSE Linux Enterprise Server and SUSE Linux Enterprise Server 15, sapconf no longer
supports profiles.

17.1.1 Verifying sapconf setup

With sapconf 5.0.2 and up, the check tool sapconf_check is available, which verifies the
correct setup of sapconf . For example:

sapconf_check
This is sapconf_check v1.0.
It verifies if sapconf is set up correctly and will give advice to do so.
Please keep in mind:
{{ - This tool does not check, if the tuning itself works correctly.}}
{{ - Follow the hints from top to down to minimize side effects.}}
Checking sapconf
================
[OK] sapconf package has version 5.0.2
[OK] saptune.service is inactive
[OK] saptune.service is disabled
[WARN] tuned.service is enabled/active with profile 'virtual-guest -> Sapconf does not
 require tuned! Run 'systemctl stop tuned.service', if not needed otherwise.
[FAIL] sapconf.service is inactive -> Run 'systemctl start sapconf.service' to activate
 the tuning now.
[FAIL] sapconf.service is disabled -> Run 'systemctl enable sapconf.service' to activate
 sapconf at boot.1 warning(s) have been found.
2 error(s) have been found.
Sapconf will not work properly!

If sapconf_check nds problems, it will give hints on how to resolve the issue. The tool will
not verify whether the system has been tuned correctly. It only checks that sapconf is set up
correctly and has been started.

171 Verifying sapconf setup SLES 15 SP4

17.1.2 Enabling and disabling sapconf and viewing its status

After the installation of sapconf , the sapconf service is enabled.

You can inspect or change the status of sapconf as described in the following:

To see the status of the service sapconf :

systemctl status sapconf

The service should be displayed as active (exited).

To start the service sapconf :

systemctl start sapconf

Should sapconf be disabled, enable and start it with:

systemctl enable --now sapconf

To stop the service sapconf :

systemctl stop sapconf

This command will disable the vast majority of optimizations immediately. The only ex-
ceptions from this rule are options that require a system reboot to enable/disable.

To disable sapconf , use:

systemctl disable sapconf

If you have not specifically enabled any of the services that sapconf depends on yourself,
this will also disable most tuning parameters and all services used by sapconf .

Tip: Additional services that sapconf relies on
In addition to the sapconf service it also relies on the following two services:

sysstat which collects data on system activity.

uuidd which generates time-based UUIDs that are guaranteed to be unique even
in settings where many processor cores are involved. This is necessary for SAP ap-
plications.

172 Enabling and disabling sapconf and viewing its status SLES 15 SP4

17.1.3 Configuring sapconf5

In general, the default configuration of sapconf already uses the parameter values recommend-
ed by SAP. However, if you have special needs, you can configure the tool to better suit those.

All parameters of sapconf can be found in the le /etc/sysconfig/sapconf . The le can be
edited directly. All parameters in this le are explained by means of comments and references
to SAP Notes, which can be viewed at https://launchpad.support.sap.com/ .

When sapconf is updated, all customized parameters from this le will be preserved as much as
possible. However, sometimes parameters cannot be transferred cleanly to the new configuration
le. Therefore, after updating it is advisable to check the difference between the previous custom
configuration, which during the update is moved to /etc/sysconfig/sapconf.rpmsave , and
the new version at /etc/sysconfig/sapconf .

Log messages related to this le are written to /var/log/sapconf.log .

When editing either of these les, you will nd that some values are commented by means of
a # character at the beginning of the line. This means that while the parameter is relevant for
tuning, there is no suitable default for it.

Conversely, you can add # characters to the beginning of the line to comment specific parame-
ters. However, you should avoid this practice, as it can lead to sapconf not properly applying
the profile.

To apply edited configuration, restart sapconf :

systemctl restart sapconf

Confirming that a certain parameter value was applied correctly works differently for different
parameters. Hence, the following serves as an example only:

EXAMPLE 17.1: CHECKING PARAMETERS

To confirm that the setting for TCP_SLOW_START was applied, do the following:

View the log le of sapconf to see whether it applied the value. Within /var/log/
sapconf.log , check for a line containing this text:

Change net.ipv4.tcp_slow_start_after_idle from 1 to 0

173 Configuring sapconf5 SLES 15 SP4

https://launchpad.support.sap.com/

Alternatively, the parameter may have already been set correctly before sapconf
was started. In this case, sapconf will not change its value:

Leaving net.ipv4.tcp_slow_start_after_idle unchanged at 1

The underlying option behind TCP_SLOW_START can be manually configured at
/proc/sys/net.ipv4.tcp_slow_start_after_idle . To check its actual current
value, use:

sysctl net.ipv4.tcp_slow_start_after_idle

17.1.4 Removing sapconf

To remove sapconf from a system, uninstall its package with:

zypper rm sapconf

Note that when doing this, dependencies of sapconf will remain installed. However, the service
sysstat will go into a disabled state. If it is still relevant to you, make sure to enable it again.

17.1.5 For more information

The following man pages provide additional information about sapconf :

Detailed description of all tuning parameters set by sapconf : man 5 sapconf

Information about configuring and customizing the sapconf profile: man 7 sapconf

Also see the blog series detailing the updated version of sapconf at https://www.suse.com/c/

a-new-sapconf-is-available/ .

17.1.6 Using tuned together with sapconf

With version 5, sapconf does not rely on tuned anymore. This means both tools can be used
independently. sapconf will print a warning in its log if the tuned service is started.

174 Removing sapconf SLES 15 SP4

https://www.suse.com/c/a-new-sapconf-is-available/
https://www.suse.com/c/a-new-sapconf-is-available/

Important: Using tuned and sapconf together
If you are going to use tuned and sapconf simultaneously, be very careful, that both
tools do not configure the same system parameters.

175 Using tuned together with sapconf SLES 15 SP4

VI Handling system dumps

18 Tracing tools 177

19 Kexec and Kdump 188

20 Using systemd-coredump to debug application crashes 208

18 Tracing tools

SUSE Linux Enterprise Server comes with several tools that help you obtain useful information
about your system. You can use the information for various purposes, for example, to debug
and nd problems in your program, to discover places causing performance drops, or to trace
a running process to nd out what system resources it uses. Most of the tools are part of the
installation media. In some cases, they need to be installed from the SUSE Software Development
Kit, which is a separate download.

Note: Tracing and impact on performance
While a running process is being monitored for system or library calls, the performance
of the process is heavily reduced. You are advised to use tracing tools only for the time
you need to collect the data.

18.1 Tracing system calls with strace
The strace command traces system calls of a process and signals received by the process.
strace can either run a new command and trace its system calls, or you can attach strace
to an already running command. Each line of the command's output contains the system call
name, followed by its arguments in parentheses and its return value.

To run a new command and start tracing its system calls, enter the command to be monitored
as you normally do, and add strace at the beginning of the command line:

> strace ls
execve("/bin/ls", ["ls"], [/* 52 vars */]) = 0
brk(0) = 0x618000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
 = 0x7f9848667000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
 = 0x7f9848666000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT \
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=200411, ...}) = 0
mmap(NULL, 200411, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f9848635000
close(3) = 0
open("/lib64/librt.so.1", O_RDONLY) = 3

177 Tracing system calls with strace SLES 15 SP4

[...]
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7fd780f79000
write(1, "Desktop\nDocuments\nbin\ninst-sys\n", 31Desktop
Documents
bin
inst-sys
) = 31
close(1) = 0
munmap(0x7fd780f79000, 4096) = 0
close(2) = 0
exit_group(0) = ?

To attach strace to an already running process, you need to specify the -p with the process
ID (PID) of the process that you want to monitor:

> strace -p `pidof cron`
 Process 1261 attached
 restart_syscall(<... resuming interrupted call ...>) = 0
 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0
 select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)
 socket(PF_LOCAL, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 5
 connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/nscd/socket"}, 110) = 0
 sendto(5, "\2\0\0\0\0\0\0\0\5\0\0\0root\0", 17, MSG_NOSIGNAL, NULL, 0) = 17
 poll([{fd=5, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=5, revents=POLLIN|
POLLHUP}])
 read(5, "\2\0\0\0\1\0\0\0\5\0\0\0\2\0\0\0\0\0\0\0\0\0\0\0\5\0\0\0\6\0\0\0"..., 36) = 36
 read(5, "root\0x\0root\0/root\0/bin/bash\0", 28) = 28
 close(5) = 0
 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
 rt_sigaction(SIGCHLD, NULL, {0x7f772b9ea890, [], SA_RESTORER|SA_RESTART,
 0x7f772adf7880}, 8) = 0
 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
 nanosleep({60, 0}, 0x7fff87d8c580) = 0
 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0
 select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)
 socket(PF_LOCAL, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 5
 connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/nscd/socket"}, 110) = 0
 sendto(5, "\2\0\0\0\0\0\0\0\5\0\0\0root\0", 17, MSG_NOSIGNAL, NULL, 0) = 17
 poll([{fd=5, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=5, revents=POLLIN|
POLLHUP}])
 read(5, "\2\0\0\0\1\0\0\0\5\0\0\0\2\0\0\0\0\0\0\0\0\0\0\0\5\0\0\0\6\0\0\0"..., 36) = 36
 read(5, "root\0x\0root\0/root\0/bin/bash\0", 28) = 28
 close(5)
 [...]

178 Tracing system calls with strace SLES 15 SP4

The -e option understands several sub-options and arguments. For example, to trace all at-
tempts to open or write to a particular le, use the following:

> strace -e trace=open,write ls ~
open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib64/librt.so.1", O_RDONLY) = 3
open("/lib64/libselinux.so.1", O_RDONLY) = 3
open("/lib64/libacl.so.1", O_RDONLY) = 3
open("/lib64/libc.so.6", O_RDONLY) = 3
open("/lib64/libpthread.so.0", O_RDONLY) = 3
[...]
open("/usr/lib/locale/cs_CZ.utf8/LC_CTYPE", O_RDONLY) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
write(1, "addressbook.db.bak\nbin\ncxoffice\n"..., 311) = 311

To trace only network related system calls, use -e trace=network :

> strace -e trace=network -p 26520
Process 26520 attached - interrupt to quit
socket(PF_NETLINK, SOCK_RAW, 0) = 50
bind(50, {sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 0
getsockname(50, {sa_family=AF_NETLINK, pid=26520, groups=00000000}, \
[12]) = 0
sendto(50, "\24\0\0\0\26\0\1\3~p\315K\0\0\0\0\0\0\0\0", 20, 0,
{sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 20
[...]

The -c calculates the time the kernel spent on each system call:

> strace -c find /etc -name xorg.conf
/etc/X11/xorg.conf
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 32.38 0.000181 181 1 execve
 22.00 0.000123 0 576 getdents64
 19.50 0.000109 0 917 31 open
 19.14 0.000107 0 888 close
 4.11 0.000023 2 10 mprotect
 0.00 0.000000 0 1 write
[...]
 0.00 0.000000 0 1 getrlimit
 0.00 0.000000 0 1 arch_prctl
 0.00 0.000000 0 3 1 futex
 0.00 0.000000 0 1 set_tid_address
 0.00 0.000000 0 4 fadvise64
 0.00 0.000000 0 1 set_robust_list
------ ----------- ----------- --------- --------- ----------------

179 Tracing system calls with strace SLES 15 SP4

100.00 0.000559 3633 33 total

To trace all child processes of a process, use -f :

> strace -f systemctl status apache2.service
execve("/usr/bin/systemctl", ["systemctl", "status", "apache2.service"], \
 0x7ffea44a3318 /* 56 vars */) = 0
brk(NULL) = 0x5560f664a000
[...]
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f98c58a5000
mmap(NULL, 4420544, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
 0x7f98c524a000
mprotect(0x7f98c53f4000, 2097152, PROT_NONE) = 0
[...]
[pid 9130] read(0, "\342\227\217 apache2.service - The Apache"..., 8192) = 165
[pid 9130] read(0, "", 8027) = 0
● apache2.service - The Apache Webserver227\217 apache2.service - Th"..., 193
 Loaded: loaded (/usr/lib/systemd/system/apache2.service; disabled; vendor preset:
 disabled)
 Active: inactive (dead)
) = 193
[pid 9130] ioctl(3, SNDCTL_TMR_STOP or TCSETSW, {B38400 opost isig icanon echo ...}) = 0
[pid 9130] exit_group(0) = ?
[pid 9130] +++ exited with 0 +++
<... waitid resumed>{si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=9130, \
 si_uid=0, si_status=0, si_utime=0, si_stime=0}, WEXITED, NULL) = 0
--- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=9130, si_uid=0, \
 si_status=0, si_utime=0, si_stime=0} ---
exit_group(3) = ?
+++ exited with 3 +++

If you need to analyze the output of strace and the output messages are too long to be inspected
directly in the console window, use -o . In that case, unnecessary messages, such as information
about attaching and detaching processes, are suppressed. You can also suppress these messages
(normally printed on the standard output) with -q . To add time stamps at the beginning of
each line with a system call, use -t :

> strace -t -o strace_sleep.txt sleep 1; more strace_sleep.txt
08:44:06 execve("/bin/sleep", ["sleep", "1"], [/* 81 vars */]) = 0
08:44:06 brk(0) = 0x606000
08:44:06 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, \
-1, 0) = 0x7f8e78cc5000
[...]
08:44:06 close(3) = 0
08:44:06 nanosleep({1, 0}, NULL) = 0
08:44:07 close(1) = 0
08:44:07 close(2) = 0

180 Tracing system calls with strace SLES 15 SP4

08:44:07 exit_group(0) = ?

The behavior and output format of strace can be largely controlled. For more information, see
the relevant manual page (man 1 strace).

18.2 Tracing library calls with ltrace
ltrace traces dynamic library calls of a process. It is used in a similar way to strace , and most
of their parameters have a very similar or identical meaning. By default, ltrace uses /etc/
ltrace.conf or ~/.ltrace.conf configuration les. You can, however, specify an alternative
one with the -F CONFIG_FILE option.

In addition to library calls, ltrace with the -S option can trace system calls as well:

> ltrace -S -o ltrace_find.txt find /etc -name \
xorg.conf; more ltrace_find.txt
SYS_brk(NULL) = 0x00628000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea1000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea0000
[...]
fnmatch("xorg.conf", "xorg.conf", 0) = 0
free(0x0062db80) = <void>
__errno_location() = 0x7f1327e5d698
__ctype_get_mb_cur_max(0x7fff25227af0, 8192, 0x62e020, -1, 0) = 6
__ctype_get_mb_cur_max(0x7fff25227af0, 18, 0x7f1327e5d6f0, 0x7fff25227af0,
0x62e031) = 6
__fprintf_chk(0x7f1327821780, 1, 0x420cf7, 0x7fff25227af0, 0x62e031
<unfinished ...>
SYS_fstat(1, 0x7fff25227230) = 0
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327e72000
SYS_write(1, "/etc/X11/xorg.conf\n", 19) = 19
[...]

You can change the type of traced events with the -e option. The following example prints
library calls related to fnmatch and strlen functions:

> ltrace -e fnmatch,strlen find /etc -name xorg.conf
[...]
fnmatch("xorg.conf", "xorg.conf", 0) = 0
strlen("Xresources") = 10
strlen("Xresources") = 10
strlen("Xresources") = 10
fnmatch("xorg.conf", "Xresources", 0) = 1
strlen("xorg.conf.install") = 17
[...]

181 Tracing library calls with ltrace SLES 15 SP4

To display only the symbols included in a specific library, use -l /path/to/library :

> ltrace -l /lib64/librt.so.1 sleep 1
clock_gettime(1, 0x7fff4b5c34d0, 0, 0, 0) = 0
clock_gettime(1, 0x7fff4b5c34c0, 0xffffffffff600180, -1, 0) = 0
+++ exited (status 0) +++

You can make the output more readable by indenting each nested call by the specified number
of space with the -n NUM_OF_SPACES .

18.3 Debugging and profiling with Valgrind
Valgrind is a set of tools to debug and profile your programs so that they can run both faster and
with fewer errors. Valgrind can detect problems related to memory management and threading,
or can also serve as a framework for building new debugging tools. It is well known that this
tool can incur high overhead, causing, for example, higher runtimes or changing the normal
program behavior under concurrent workloads based on timing.

18.3.1 Installation

Valgrind is not shipped with standard SUSE Linux Enterprise Server distribution. To install it on
your system, you need to obtain SUSE Software Development Kit, and either install it and run

zypper install VALGRIND

or browse through the SUSE Software Development Kit directory tree, locate the Valgrind pack-
age and install it with

rpm -i valgrind- VERSION_ARCHITECTURE .rpm

The SDK is a module for SUSE Linux Enterprise and is available via an online channel from the
SUSE Customer Center. Refer to Article “Modules and Extensions Quick Start” for details.

18.3.2 Supported architectures

SUSE Linux Enterprise Server supports Valgrind on the following architectures:

AMD64/Intel 64

POWER

IBM Z

182 Debugging and profiling with Valgrind SLES 15 SP4

18.3.3 General information

The main advantage of Valgrind is that it works with existing compiled executables. You do not
need to recompile or modify your programs to use it. Run Valgrind like this:

valgrind VALGRIND_OPTIONS your-prog YOUR-PROGRAM-OPTIONS

Valgrind consists of several tools, and each provides specific functionality. Information in this
section is general and valid regardless of the used tool. The most important configuration option
is --tool . This option tells Valgrind which tool to run. If you omit this option, memcheck is
selected by default. For example, to run find ~ -name .bashrc with Valgrind's memcheck tools,
enter the following in the command line:

valgrind --tool=memcheck nd ~ -name .bashrc

A list of standard Valgrind tools with a brief description follows:

memcheck

Detects memory errors. It helps you tune your programs to behave correctly.

cachegrind

Profiles cache prediction. It helps you tune your programs to run faster.

callgrind

Works in a similar way to cachegrind but also gathers additional cache-profiling infor-
mation.

exp-drd

Detects thread errors. It helps you tune your multi-threaded programs to behave correctly.

helgrind

Another thread error detector. Similar to exp-drd but uses different techniques for prob-
lem analysis.

massif

A heap profiler. Heap is an area of memory used for dynamic memory allocation. This tool
helps you tune your program to use less memory.

lackey

An example tool showing instrumentation basics.

183 General information SLES 15 SP4

18.3.4 Default options

Valgrind can read options at start-up. There are three places which Valgrind checks:

1. The le .valgrindrc in the home directory of the user who runs Valgrind.

2. The environment variable $VALGRIND_OPTS

3. The le .valgrindrc in the current directory where Valgrind is run from.

These resources are parsed exactly in this order, while later given options take precedence over
earlier processed options. Options specific to a particular Valgrind tool must be prefixed with
the tool name and a colon. For example, if you want cachegrind to always write profile data to
the /tmp/cachegrind_PID.log , add the following line to the .valgrindrc le in your home
directory:

--cachegrind:cachegrind-out-file=/tmp/cachegrind_%p.log

18.3.5 How Valgrind works

Valgrind takes control of your executable before it starts. It reads debugging information from
the executable and related shared libraries. The executable's code is redirected to the selected
Valgrind tool, and the tool adds its own code to handle its debugging. Then the code is handed
back to the Valgrind core and the execution continues.

For example, memcheck adds its code, which checks every memory access. As a consequence,
the program runs much slower than in the native execution environment.

Valgrind simulates every instruction of your program. Therefore, it not only checks the code of
your program, but also all related libraries (including the C library), libraries used for graphi-
cal environment, and so on. If you try to detect errors with Valgrind, it also detects errors in
associated libraries (like C, X11, or Gtk libraries). Because you probably do not need these er-
rors, Valgrind can selectively, suppress these error messages to suppression les. The --gen-
suppressions=yes tells Valgrind to report these suppressions which you can copy to a le.

You should supply a real executable (machine code) as a Valgrind argument. If your application
is run, for example, from a shell or Perl script, you will by mistake get error reports related to
/bin/sh (or /usr/bin/perl). In such cases, you can use --trace-children=yes to work
around this issue. However, using the executable itself will avoid any confusion over this issue.

184 Default options SLES 15 SP4

18.3.6 Messages

During its runtime, Valgrind reports messages with detailed errors and important events. The
following example explains the messages:

> valgrind --tool=memcheck find ~ -name .bashrc
[...]
==6558== Conditional jump or move depends on uninitialised value(s)
==6558== at 0x400AE79: _dl_relocate_object (in /lib64/ld-2.11.1.so)
==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)
[...]
==6558== Conditional jump or move depends on uninitialised value(s)
==6558== at 0x400AE82: _dl_relocate_object (in /lib64/ld-2.11.1.so)
==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)
[...]
==6558== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==6558== malloc/free: in use at exit: 2,228 bytes in 8 blocks.
==6558== malloc/free: 235 allocs, 227 frees, 489,675 bytes allocated.
==6558== For counts of detected errors, rerun with: -v
==6558== searching for pointers to 8 not-freed blocks.
==6558== checked 122,584 bytes.
==6558==
==6558== LEAK SUMMARY:
==6558== definitely lost: 0 bytes in 0 blocks.
==6558== possibly lost: 0 bytes in 0 blocks.
==6558== still reachable: 2,228 bytes in 8 blocks.
==6558== suppressed: 0 bytes in 0 blocks.
==6558== Rerun with --leak-check=full to see details of leaked memory.

The ==6558== introduces Valgrind's messages and contains the process ID number (PID). You
can easily distinguish Valgrind's messages from the output of the program itself, and decide
which messages belong to a particular process.

To make Valgrind's messages more detailed, use -v or even -v -v .

You can make Valgrind send its messages to three different places:

1. By default, Valgrind sends its messages to the le descriptor 2, which is the standard error
output. You can tell Valgrind to send its messages to any other le descriptor with the --
log-fd=FILE_DESCRIPTOR_NUMBER option.

2. The second and probably more useful way is to send Valgrind's messages to a le with --
log-file=FILENAME . This option accepts several variables, for example, %p gets replaced
with the PID of the currently profiled process. This way you can send messages to different
les based on their PID. %q{env_var} is replaced with the value of the related env_var
environment variable.

185 Messages SLES 15 SP4

The following example checks for possible memory errors during the Apache Web server
restart, while following children processes and writing detailed Valgrind's messages to
separate les distinguished by the current process PID:

> valgrind -v --tool=memcheck --trace-children=yes \
--log-file=valgrind_pid_%p.log systemctl restart apache2.service

This process created 52 log les in the testing system, and took 75 seconds instead of the
usual 7 seconds needed to run sudo systemctl restart apache2.service without
Valgrind, which is approximately 10 times more.

> ls -1 valgrind_pid_*log
valgrind_pid_11780.log
valgrind_pid_11782.log
valgrind_pid_11783.log
[...]
valgrind_pid_11860.log
valgrind_pid_11862.log
valgrind_pid_11863.log

3. You may also prefer to send the Valgrind's messages over the network. You need to specify
the aa.bb.cc.dd IP address and port_num port number of the network socket with the
--log-socket=AA.BB.CC.DD:PORT_NUM option. If you omit the port number, 1500 will
be used.
It is useless to send Valgrind's messages to a network socket if no application is capable
of receiving them on the remote machine. That is why valgrind-listener , a simple
listener, is shipped together with Valgrind. It accepts connections on the specified port and
copies everything it receives to the standard output.

18.3.7 Error messages

Valgrind remembers all error messages, and if it detects a new error, the error is compared
against old error messages. This way Valgrind checks for duplicate error messages. In case of
a duplicate error, it is recorded but no message is shown. This mechanism prevents you from
being overwhelmed by millions of duplicate errors.

The -v option will add a summary of all reports (sorted by their total count) to the end of the
Valgrind's execution output. Moreover, Valgrind stops collecting errors if it detects either 1000
different errors, or 10 000 000 errors in total. If you want to suppress this limit and wish to see
all error messages, use --error-limit=no .

186 Error messages SLES 15 SP4

Some errors usually cause other ones. Therefore, x errors in the same order as they appear and
re-check the program continuously.

18.4 More information

For a complete list of options related to the described tracing tools, see the corresponding
man page (man 1 strace , man 1 ltrace , and man 1 valgrind).

To describe advanced usage of Valgrind is beyond the scope of this document. It is
very well documented, see Valgrind User Manual (http://valgrind.org/docs/manual/manu-

al.html) . These pages are indispensable if you need more advanced information on Val-
grind or the usage and purpose of its standard tools.

187 More information SLES 15 SP4

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

19 Kexec and Kdump

Kexec is a tool to boot to another kernel from the currently running one. You can perform faster
system reboots without any hardware initialization. You can also prepare the system to boot to
another kernel if the system crashes.

19.1 Introduction
With Kexec, you can replace the running kernel with another one without a hard reboot. The
tool is useful for several reasons:

Faster system rebooting
If you need to reboot the system frequently, Kexec can save you significant time.

Avoiding unreliable rmware and hardware
Computer hardware is complex and serious problems may occur during the system start-
up. You cannot always replace unreliable hardware immediately. Kexec boots the kernel
to a controlled environment with the hardware already initialized. The risk of unsuccessful
system start is then minimized.

Saving the dump of a crashed kernel
Kexec preserves the contents of the physical memory. After the production kernel fails, the
capture kernel (an additional kernel running in a reserved memory range) saves the state
of the failed kernel. The saved image can help you with the subsequent analysis.

Booting without GRUB 2 configuration
When the system boots a kernel with Kexec, it skips the boot loader stage. The normal
booting procedure can fail because of an error in the boot loader configuration. With Kexec,
you do not depend on a working boot loader configuration.

19.2 Required packages
To use Kexec on SUSE® Linux Enterprise Server to speed up reboots or avoid potential hardware
problems, make sure that the package kexec-tools is installed. It contains a script called
kexec-bootloader , which reads the boot loader configuration and runs Kexec using the same
kernel options as the normal boot loader.

188 Introduction SLES 15 SP4

To set up an environment that helps you obtain debug information in case of a kernel crash,
make sure that the package makedumpfile is installed.

The preferred method of using Kdump in SUSE Linux Enterprise Server is through the YaST
Kdump module. To use the YaST module, make sure that the package yast2-kdump is installed.

19.3 Kexec internals

The most important component of Kexec is the /sbin/kexec command. You can load a kernel
with Kexec in two different ways:

Load the kernel to the address space of a production kernel for a regular reboot:

kexec -l KERNEL_IMAGE

You can later boot to this kernel with kexec -e .

Load the kernel to a reserved area of memory:

kexec -p KERNEL_IMAGE

This kernel will be booted automatically when the system crashes.

If you want to boot another kernel and preserve the data of the production kernel when the
system crashes, you need to reserve a dedicated area of the system memory. The production
kernel never loads to this area because it must be always available. It is used for the capture
kernel so that the memory pages of the production kernel can be preserved.

To reserve the area, append the option crashkernel to the boot command line of the produc-
tion kernel. To determine the necessary values for crashkernel , follow the instructions in Sec-

tion 19.4, “Calculating crashkernel allocation size”.

Note that this is not a parameter of the capture kernel. The capture kernel does not use Kexec.

The capture kernel is loaded to the reserved area and waits for the kernel to crash. Then, Kdump
tries to invoke the capture kernel because the production kernel is no longer reliable at this
stage. This means that even Kdump can fail.

To load the capture kernel, you need to include the kernel boot parameters. Usually, the initial
RAM le system is used for booting. You can specify it with --initrd = FILENAME . With --
append = CMDLINE , you append options to the command line of the kernel to boot.

189 Kexec internals SLES 15 SP4

It is required to include the command line of the production kernel. You can simply copy the
command line with --append = "$(cat /proc/cmdline)" or add more options with --ap-
pend = "$(cat /proc/cmdline) more_options" .

For example, to load the /boot/vmlinuz-5.14.21-150500.53-default kernel image with the
command line of the currently running production kernel and the /boot/initrd le, run the
following command:

kexec -l /boot/vmlinuz-5.14.21-150500.53-default \
 --append="$(cat /proc/cmdline)" --initrd=/boot/initrd

You can always unload the previously loaded kernel. To unload a kernel that was loaded with
the -l option, use the kexec -u command. To unload a crash kernel loaded with the -p
option, use kexec -p -u command.

19.4 Calculating crashkernel allocation size

To use Kexec with a capture kernel and to use Kdump in any way, RAM needs to be allocated
for the capture kernel. The allocation size depends on the expected hardware configuration of
the computer, therefore you need to specify it.

The allocation size also depends on the hardware architecture of your computer. Make sure to
follow the procedure intended for your system architecture.

PROCEDURE 19.1: ALLOCATION SIZE ON AMD64/INTEL 64

1. To nd out the base value for the computer, run the following command:

kdumptool calibrate
Total: 49074
Low: 72
High: 180
MinLow: 72
MaxLow: 3085
MinHigh: 0
MaxHigh: 45824

All values are given in megabytes.

2. Take note of the values of Low and High .

190 Calculating crashkernel allocation size SLES 15 SP4

Note: Significance of Low and High values
On AMD64/Intel 64 computers, the High value stands for the memory reservation
for all available memory. The Low value stands for the memory reservation in the
DMA32 zone, that is, all the memory up to the 4 GB mark.

SIZE_LOW is the amount of memory required by 32-bit-only devices. The kernel
will allocate 64M for DMA32 bounce buers. If your server does not have any 32-
bit-only devices, everything should work with the default allocation of 72M for
SIZE_LOW . A possible exception to this is on NUMA machines, which may make it
appear that more Low memory is needed. The Kdump kernel may be booted with
numa=off to make sure normal kernel allocations do not use Low memory.

3. Adapt the High value from the previous step for the number of LUN kernel paths (paths to
storage devices) attached to the computer. A sensible value in megabytes can be calculated
using this formula:

SIZE_HIGH = RECOMMENDATION + (LUNs / 2)

The following parameters are used in this formula:

SIZE_HIGH. The resulting value for High .

RECOMMENDATION. The value recommended by kdumptool calibrate for High .

LUNs. The maximum number of LUN kernel paths that you expect to ever create
on the computer. Exclude multipath devices from this number, as these are ignored.
To get the current number of LUNs available on your system, run the following com-
mand:

> cat /proc/scsi/scsi | grep Lun | wc -l

4. If the drivers for your device make many reservations in the DMA32 zone, the Low value
also needs to be adjusted. However, there is no simple formula to calculate these. Finding
the right size can therefore be a process of trial and error.
For the beginning, use the Low value recommended by kdumptool calibrate .

5. The values now need to be set in the correct location.

191 Calculating crashkernel allocation size SLES 15 SP4

If you are changing the kernel command line directly

Append the following kernel option to your boot loader configuration:

crashkernel=SIZE_HIGH,high crashkernel=SIZE_LOW,low

Replace the placeholders SIZE_HIGH and SIZE_LOW with the appropriate value
from the previous steps and append the letter M (for megabytes).
As an example, the following is valid:

crashkernel=36M,high crashkernel=72M,low

If you are using the YaST GUI:

Set Kdump Low Memory to the determined Low value.
Set Kdump High Memory to the determined High value.

If you are using the YaST command line interface:

Use the following command:

yast kdump startup enable alloc_mem=LOW,HIGH

Replace LOW with the determined Low value. Replace HIGH with the determined
HIGH value.

PROCEDURE 19.2: ALLOCATION SIZE ON POWER AND IBM Z

1. To nd out the basis value for the computer, run the following in a terminal:

kdumptool calibrate

This command returns a list of values. All values are given in megabytes.

2. Write down the value of Low .

3. Adapt the Low value from the previous step for the number of LUN kernel paths (paths to
storage devices) attached to the computer. A sensible value in megabytes can be calculated
using this formula:

SIZE_LOW = RECOMMENDATION + (LUNs / 2)

192 Calculating crashkernel allocation size SLES 15 SP4

The following parameters are used in this formula:

SIZE_LOW. The resulting value for Low .

RECOMMENDATION. The value recommended by kdumptool calibrate for Low .

LUNs. The maximum number of LUN kernel paths that you expect to ever create on
the computer. Exclude multipath devices from this number, as these are ignored.

4. The values now need to be set in the correct location.

If you are working on the command line

Append the following kernel option to your boot loader configuration:

crashkernel=SIZE_LOW

Replace the placeholder SIZE_LOW with the appropriate value from the previous step
and append the letter M (for megabytes).
As an example, the following is valid:

crashkernel=108M

If you are working in YaST

Set Kdump Memory to the determined Low value.

Tip: Excluding unused and inactive CCW devices on IBM Z
Depending on the number of available devices the calculated amount of memory specified
by the crashkernel kernel parameter may not be sufficient. Instead of increasing the
value, you may alternatively limit the amount of devices visible to the kernel. This will
lower the required amount of memory for the "crashkernel" setting.

1. To ignore devices you can run the cio_ignore tool to generate an appropriate
stanza to ignore all devices, except the ones currently active or in use.

> sudo cio_ignore -u -k
cio_ignore=all,!da5d,!f500-f502

When you run cio_ignore -u -k , the blacklist will become active and replace
any existing blacklist immediately. Unused devices are not being purged, so they
still appear in the channel subsystem. But adding new channel devices (via CP AT-

193 Calculating crashkernel allocation size SLES 15 SP4

TACH under z/VM or dynamic I/O configuration change in LPAR) will treat them as
blacklisted. To prevent this, preserve the original setting by running sudo cio_ig-
nore -l rst and reverting to that state after running cio_ignore -u -k . As an
alternative, add the generated stanza to the regular kernel boot parameters.

2. Now add the cio_ignore kernel parameter with the stanza from above to
KDUMP_CMDLINE_APPEND in /etc/sysconfig/kdump , for example:

KDUMP_COMMANDLINE_APPEND="cio_ignore=all,!da5d,!f500-f502"

3. Activate the setting by restarting kdump :

systemctl restart kdump.service

19.5 Basic Kexec usage

To use Kexec, ensure the respective service is enabled and running:

Make sure the Kexec service is loaded at system start:

> sudo systemctl enable kexec-load.service

Make sure the Kexec service is running:

> sudo systemctl start kexec-load.service

To verify if your Kexec environment works properly, try rebooting into a new Kernel with Kexec.
Make sure no users are currently logged in and no important services are running on the system.
Then run the following command:

systemctl kexec

The new kernel previously loaded to the address space of the older kernel rewrites it and takes
control immediately. It displays the usual start-up messages. When the new kernel boots, it skips
all hardware and rmware checks. Make sure no warning messages appear.

194 Basic Kexec usage SLES 15 SP4

Tip: Using Kexec with the reboot command
To make reboot use Kexec rather than performing a regular reboot, run the following
command:

ln -s /usr/lib/systemd/system/kexec.target /etc/systemd/system/reboot.target

You can revert this at any time by deleting etc/systemd/system/reboot.target .

19.6 How to configure Kexec for routine reboots
Kexec is often used for frequent reboots. For example, if it takes a long time to run through the
hardware detection routines or if the start-up is not reliable.

Note that rmware and the boot loader are not used when the system reboots with Kexec. Any
changes you make to the boot loader configuration will be ignored until the computer performs
a hard reboot.

19.7 Basic Kdump configuration
You can use Kdump to save kernel dumps. If the kernel crashes, it is useful to copy the memory
image of the crashed environment to the le system. You can then debug the dump le to nd
the cause of the kernel crash. This is called “core dump”.

Kdump works similarly to Kexec (see Chapter 19, Kexec and Kdump). The capture kernel is executed
after the running production kernel crashes. The difference is that Kexec replaces the production
kernel with the capture kernel. With Kdump, you still have access to the memory space of the
crashed production kernel. You can save the memory snapshot of the crashed kernel in the
environment of the Kdump kernel.

Tip: Dumps over network
In environments with limited local storage, you need to set up kernel dumps over the
network. Kdump supports configuring the specified network interface and bringing it up
via initrd . Both LAN and VLAN interfaces are supported. Specify the network interface
and the mode (DHCP or static) either with YaST, or using the KDUMP_NETCONFIG option
in the /etc/sysconfig/kdump le.

195 How to configure Kexec for routine reboots SLES 15 SP4

Important: Target file system for Kdump must be mounted
during configuration
When configuring Kdump, you can specify a location to which the dumped images will be
saved (default: /var/crash). This location must be mounted when configuring Kdump,
otherwise the configuration will fail.

19.7.1 Manual Kdump configuration

Kdump reads its configuration from the /etc/sysconfig/kdump le. To make sure that Kdump
works on your system, its default configuration is sufficient. To use Kdump with the default
settings, follow these steps:

1. Determine the amount of memory needed for Kdump by following the instructions in
Section 19.4, “Calculating crashkernel allocation size”. Make sure to set the kernel parameter
crashkernel .

2. Reboot the computer.

3. Enable the Kdump service:

systemctl enable kdump

4. You can edit the options in /etc/sysconfig/kdump . Reading the comments will help you
understand the meaning of individual options.

5. Execute the init script once with sudo systemctl start kdump , or reboot the system.

After configuring Kdump with the default values, check if it works as expected. Make sure that
no users are currently logged in and no important services are running on your system. Then
follow these steps:

1. Switch to the rescue target with systemctl isolate rescue.target

2. Restart the Kdump service:

systemctl start kdump

3. Unmount all the disk le systems except the root le system with:

umount -a

196 Manual Kdump configuration SLES 15 SP4

4. Remount the root le system in read-only mode:

mount -o remount,ro /

5. Invoke a “kernel panic” with the procfs interface to Magic SysRq keys:

echo c > /proc/sysrq-trigger

Important: Size of kernel dumps
The KDUMP_KEEP_OLD_DUMPS option controls the number of preserved kernel dumps (de-
fault is 5). Without compression, the size of the dump can take up to the size of the phys-
ical RAM memory. Make sure you have sufficient space on the /var partition.

The capture kernel boots and the crashed kernel memory snapshot is saved to the le sys-
tem. The save path is given by the KDUMP_SAVEDIR option and it defaults to /var/crash . If
KDUMP_IMMEDIATE_REBOOT is set to yes , the system automatically reboots the production ker-
nel. Log in and check that the dump has been created under /var/crash .

19.7.1.1 Static IP configuration for Kdump

In case Kdump is configured to use a static IP configuration from a network device, you need to
add the network configuration to the KDUMP_COMMANDLINE_APPEND variable in /etc/syscon-
fig/kdump .

Important: Changes to the Kdump configuration file
After making changes to the /etc/sysconfig/kdump le, you need to run systemctl
restart kdump.service . Otherwise, the changes will only take effect next time you
reboot the system.

197 Manual Kdump configuration SLES 15 SP4

EXAMPLE 19.1: KDUMP: EXAMPLE CONFIGURATION USING A STATIC IP SETUP

The following setup has been configured:

eth0 has been configured with the static IP address 192.168.1.1/24

eth1 has been configured with the static IP address 10.50.50.100/20

The Kdump configuration in /etc/sysconfig/kdump looks like:

KDUMP_CPUS=1
KDUMP_IMMEDIATE_REBOOT=yes
KDUMP_SAVEDIR=ftp://anonymous@10.50.50.140/crashdump/
KDUMP_KEEP_OLD_DUMPS=5
KDUMP_FREE_DISK_SIZE=64
KDUMP_VERBOSE=3
KDUMP_DUMPLEVEL=31
KDUMP_DUMPFORMAT=lzo
KDUMP_CONTINUE_ON_ERROR=yes
KDUMP_NETCONFIG=eth1:static
KDUMP_NET_TIMEOUT=30

Using this configuration, Kdump fails to reach the network when trying to write the dump
to the FTP server. To solve this issue, add the network configuration to KDUMP_COMMAN-
DLINE_APPEND in /etc/sysconfig/kdump . The general pattern for this looks like the
following:

KDUMP_COMMANDLINE_APPEND='ip=CLIENT IP:SERVER IP:GATEWAY IP:NETMASK:CLIENT
 HOSTNAME:DEVICE:PROTOCOL'

For the example configuration this would result in:

KDUMP_COMMANDLINE_APPEND='ip=10.50.50.100:10.50.50.140:10.60.48.1:255.255.240.0:dump-
client:eth1:none'

19.7.2 YaST configuration

To configure Kdump with YaST, you need to install the yast2-kdump package. Then either start
the Kernel Kdump module in the System category of YaST Control Center, or enter yast2 kdump
in the command line as root .

198 YaST configuration SLES 15 SP4

FIGURE 19.1: YAST KDUMP MODULE: START-UP PAGE

In the Start-Up window, select Enable Kdump.

The values for Kdump Memory are automatically generated the rst time you open the window.
However, that does not mean that they are always sufficient. To set the right values, follow the
instructions in Section 19.4, “Calculating crashkernel allocation size”.

Important: After hardware changes, set Kdump memory values
again
If you have set up Kdump on a computer and later decide to change the amount of RAM or
hard disks available to it, YaST will continue to display and use outdated memory values.

To work around this, determine the necessary memory again, as described in Section 19.4,

“Calculating crashkernel allocation size”. Then set it manually in YaST.

Click Dump Filtering in the left pane, and check what pages to include in the dump. You do not
need to include the following memory content to be able to debug kernel problems:

Pages lled with zero

Cache pages

User data pages

Free pages

In the Dump Target window, select the type of the dump target and the URL where you want
to save the dump. If you selected a network protocol, such as FTP or SSH, you need to enter
relevant access information as well.

199 YaST configuration SLES 15 SP4

Tip: Sharing the dump directory with other applications
It is possible to specify a path for saving Kdump dumps where other applications also
save their dumps. When cleaning its old dump les, Kdump will safely ignore other ap-
plications' dump les.

Fill the Email Notification window information if you want Kdump to inform you about its events
via e-mail and confirm your changes with OK after ne tuning Kdump in the Expert Settings
window. Kdump is now configured.

19.7.3 Kdump over SSH

Dump les usually contain sensitive data which should be protected from unauthorized disclo-
sure. To allow transmission of such data over an insecure network, Kdump can save dump les
to a remote machine using the SSH protocol.

1. The target host identity must be known to Kdump. This is needed to ensure that sensi-
tive data is never sent to an imposter. When Kdump generates a new initrd , it runs
ssh-keygen -F TARGET_HOST to query the target host's identity. This works only if TAR-
GET_HOST public key is already known. An easy way to achieve that is to make an SSH
connection to TARGET_HOST as root on the Kdump host.

2. Kdump must be able to authenticate to the target machine. Only public key authentication
is currently available. By default, Kdump will use root 's private key, but it is advisable
to make a separate key for Kdump. This can be done with ssh-keygen :

a. # ssh-keygen -f ~/.ssh/kdump_key

b. Press Enter when prompted for passphrase (that is, do not use any passphrase).

c. Open /etc/sysconfig/kdump and set KDUMP_SSH_IDENTITY to kdump_key . You
can use full path to the le if it is not placed under ~/.ssh .

3. Set up the Kdump SSH key to authorize logins to the remote host.

ssh-copy-id -i ~/.ssh/kdump_key TARGET_HOST

200 Kdump over SSH SLES 15 SP4

4. Set up KDUMP_SAVEDIR . There are two options:

Secure File Transfer Protocol (SFTP)

SFTP is the preferred method for transmitting les over SSH. The target host must
enable the SFTP subsystem (SLE default). Example:

KDUMP_SAVEDIR=sftp://TARGET_HOST/path/to/dumps

Secure Shell protocol (SSH)

Some other distributions use SSH to run some commands on the target host. SUSE
Linux Enterprise Server can also use this method. The Kdump user on the target
host must have a login shell that can execute these commands: mkdir , dd and mv .
Example:

KDUMP_SAVEDIR=ssh://TARGET_HOST/path/to/dumps

5. Restart the Kdump service to use the new configuration.

19.8 Analyzing the crash dump

After you obtain the dump, it is time to analyze it. There are several options.

The original tool to analyze the dumps is GDB. You can even use it in the latest environments,
although it has several disadvantages and limitations:

GDB was not specifically designed to debug kernel dumps.

GDB does not support ELF64 binaries on 32-bit platforms.

GDB does not understand other formats than ELF dumps (it cannot debug compressed
dumps).

That is why the crash utility was implemented. It analyzes crash dumps and debugs the running
system as well. It provides functionality specific to debugging the Linux kernel and is much
more suitable for advanced debugging.

If you want to debug the Linux kernel, you need to install its debugging information package in
addition. Check if the package is installed on your system with:

> zypper se kernel | grep debug

201 Analyzing the crash dump SLES 15 SP4

Important: Repository for packages with debugging information
If you subscribed your system for online updates, you can nd “debuginfo” packages in the
*-Debuginfo-Updates online installation repository relevant for SUSE Linux Enterprise
Server 15 SP4. Use YaST to enable the repository.

To open the captured dump in crash on the machine that produced the dump, use a command
like this:

crash /boot/vmlinux-2.6.32.8-0.1-default.gz \
/var/crash/2010-04-23-11\:17/vmcore

The rst parameter represents the kernel image. The second parameter is the dump le captured
by Kdump. You can nd this le under /var/crash by default.

Tip: Getting basic information from a kernel crash dump
SUSE Linux Enterprise Server ships with the utility kdumpid (included in a package with
the same name) for identifying unknown kernel dumps. It can be used to extract basic
information such as architecture and kernel release. It supports lkcd, diskdump, Kdump
les and ELF dumps. When called with the -v switch it tries to extract additional infor-
mation such as machine type, kernel banner string and kernel configuration flavor.

19.8.1 Kernel binary formats

The Linux kernel comes in Executable and Linkable Format (ELF). This le is usually called
vmlinux and is directly generated in the compilation process. Not all boot loaders support
ELF binaries, especially on the AMD64/Intel 64 architecture. The following solutions exist on
different architectures supported by SUSE® Linux Enterprise Server.

19.8.1.1 AMD64/Intel 64

Kernel packages for AMD64/Intel 64 from SUSE contain two kernel les: vmlinuz and vmlin-
ux.gz .

vmlinuz . This is the le executed by the boot loader.

202 Kernel binary formats SLES 15 SP4

The Linux kernel consists of two parts: the kernel itself (vmlinux) and the setup code
run by the boot loader. These two parts are linked together to create vmlinuz (note the
distinction: z compared to x).
In the kernel source tree, the le is called bzImage .

vmlinux.gz . This is a compressed ELF image that can be used by crash and GDB. The
ELF image is never used by the boot loader itself on AMD64/Intel 64. Therefore, only a
compressed version is shipped.

19.8.1.2 POWER

The yaboot boot loader on POWER also supports loading ELF images, but not compressed ones.
In the POWER kernel package, there is an ELF Linux kernel le vmlinux . Considering crash ,
this is the easiest architecture.

If you decide to analyze the dump on another machine, you must check both the architecture
of the computer and the les necessary for debugging.

You can analyze the dump on another computer only if it runs a Linux system of the same
architecture. To check the compatibility, use the command uname -i on both computers and
compare the outputs.

If you are going to analyze the dump on another computer, you also need the appropriate les
from the kernel and kernel debug packages.

1. Put the kernel dump, the kernel image from /boot , and its associated debugging info le
from /usr/lib/debug/boot into a single empty directory.

2. Additionally, copy the kernel modules from /lib/modules/$(uname -r)/kernel/ and
the associated debug info les from /usr/lib/debug/lib/modules/$(uname -r)/ker-
nel/ into a subdirectory named modules .

3. In the directory with the dump, the kernel image, its debug info le, and the modules
subdirectory, start the crash utility:

> crash VMLINUX-VERSION vmcore

Regardless of the computer on which you analyze the dump, the crash utility will produce output
similar to this:

> crash /boot/vmlinux-5.3.18-8-default.gz \
/var/crash/2020-04-23-11\:17/vmcore

203 Kernel binary formats SLES 15 SP4

crash 7.2.1
Copyright (C) 2002-2017 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006, 2010 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006, 2011, 2012 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005, 2011 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb (GDB) 7.6
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-unknown-linux-gnu".

 KERNEL: /boot/vmlinux-5.3.18-8-default.gz
 DEBUGINFO: /usr/lib/debug/boot/vmlinux-5.3.18-8-default.debug
 DUMPFILE: /var/crash/2020-04-23-11:17/vmcore
 CPUS: 2
 DATE: Thu Apr 23 13:17:01 2020
 UPTIME: 00:10:41
LOAD AVERAGE: 0.01, 0.09, 0.09
 TASKS: 42
 NODENAME: eros
 RELEASE: 5.3.18-8-default
 VERSION: #1 SMP 2020-03-31 14:50:44 +0200
 MACHINE: x86_64 (2999 Mhz)
 MEMORY: 16 GB
 PANIC: "SysRq : Trigger a crashdump"
 PID: 9446
 COMMAND: "bash"
 TASK: ffff88003a57c3c0 [THREAD_INFO: ffff880037168000]
 CPU: 1
 STATE: TASK_RUNNING (SYSRQ)
crash>

The command output prints rst useful data: There were 42 tasks running at the moment of the
kernel crash. The cause of the crash was a SysRq trigger invoked by the task with PID 9446. It
was a Bash process because the echo that has been used is an internal command of the Bash
shell.

204 Kernel binary formats SLES 15 SP4

The crash utility builds upon GDB and provides many additional commands. If you enter bt
without any parameters, the backtrace of the task running at the moment of the crash is printed:

crash> bt
PID: 9446 TASK: ffff88003a57c3c0 CPU: 1 COMMAND: "bash"
 #0 [ffff880037169db0] crash_kexec at ffffffff80268fd6
 #1 [ffff880037169e80] __handle_sysrq at ffffffff803d50ed
 #2 [ffff880037169ec0] write_sysrq_trigger at ffffffff802f6fc5
 #3 [ffff880037169ed0] proc_reg_write at ffffffff802f068b
 #4 [ffff880037169f10] vfs_write at ffffffff802b1aba
 #5 [ffff880037169f40] sys_write at ffffffff802b1c1f
 #6 [ffff880037169f80] system_call_fastpath at ffffffff8020bfbb
 RIP: 00007fa958991f60 RSP: 00007fff61330390 RFLAGS: 00010246
 RAX: 0000000000000001 RBX: ffffffff8020bfbb RCX: 0000000000000001
 RDX: 0000000000000002 RSI: 00007fa959284000 RDI: 0000000000000001
 RBP: 0000000000000002 R8: 00007fa9592516f0 R9: 00007fa958c209c0
 R10: 00007fa958c209c0 R11: 0000000000000246 R12: 00007fa958c1f780
 R13: 00007fa959284000 R14: 0000000000000002 R15: 00000000595569d0
 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b
crash>

Now it is clear what happened: The internal echo command of Bash shell sent a character to
/proc/sysrq-trigger . After the corresponding handler recognized this character, it invoked
the crash_kexec() function. This function called panic() and Kdump saved a dump.

In addition to the basic GDB commands and the extended version of bt , the crash utility defines
other commands related to the structure of the Linux kernel. These commands understand the
internal data structures of the Linux kernel and present their contents in a human readable for-
mat. For example, you can list the tasks running at the moment of the crash with ps . With sym ,
you can list all the kernel symbols with the corresponding addresses, or inquire an individual
symbol for its value. With files , you can display all the open le descriptors of a process. With
kmem , you can display details about the kernel memory usage. With vm , you can inspect the
virtual memory of a process, even at the level of individual page mappings. The list of useful
commands is very long and many of these accept a wide range of options.

The commands that we mentioned reflect the functionality of the common Linux commands,
such as ps and lsof . To nd out the exact sequence of events with the debugger, you need to
know how to use GDB and to have strong debugging skills. Both of these are out of the scope of
this document. In addition, you need to understand the Linux kernel. Several useful reference
information sources are given at the end of this document.

205 Kernel binary formats SLES 15 SP4

19.9 Advanced Kdump configuration

The configuration for Kdump is stored in /etc/sysconfig/kdump . You can also use YaST to
configure it. Kdump configuration options are available under System Kernel Kdump in YaST
Control Center. The following Kdump options may be useful for you.

You can change the directory for the kernel dumps with the KDUMP_SAVEDIR option. Keep in
mind that the size of kernel dumps can be very large. Kdump will refuse to save the dump if
the free disk space, subtracted by the estimated dump size, drops below the value specified by
the KDUMP_FREE_DISK_SIZE option. Note that KDUMP_SAVEDIR understands the URL format
PROTOCOL://SPECIFICATION , where PROTOCOL is one of file , ftp , sftp , nfs or cifs , and
specification varies for each protocol. For example, to save kernel dump on an FTP server,
use the following URL as a template: ftp://username:password@ftp.example.com:123/var/
crash .

Kernel dumps are usually huge and contain many pages that are not necessary for analysis. With
KDUMP_DUMPLEVEL option, you can omit such pages. The option understands numeric value
between 0 and 31. If you specify 0 , the dump size will be largest. If you specify 31 , it will
produce the smallest dump. For a complete table of possible values, see the manual page of
kdump (man 7 kdump).

Sometimes it is very useful to make the size of the kernel dump smaller. For example, if you
want to transfer the dump over the network, or if you need to save some disk space in the dump
directory. This can be done with KDUMP_DUMPFORMAT set to compressed . The crash utility
supports dynamic decompression of the compressed dumps.

Important: Changes to the Kdump configuration file
After making changes to the /etc/sysconfig/kdump le, you need to run systemctl
restart kdump.service . Otherwise, the changes will only take effect next time you
reboot the system.

206 Advanced Kdump configuration SLES 15 SP4

19.10 More information
There is no single comprehensive reference to Kexec and Kdump usage. However, there are
helpful resources that deal with certain aspects:

For the Kexec utility usage, see the manual page of kexec (man 8 kexec).

IBM provides comprehensive documentation on how to use dump tools on the IBM Z ar-
chitecture at https://developer.ibm.com/technologies/linux/ .

You can nd general information about Kexec at https://developer.ibm.com/technolo-

gies/linux/ .

For more details on Kdump specific to SUSE Linux Enterprise Server, see http://ft-

p.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf .

An in-depth description of Kdump internals can be found at http://lse.source-

forge.net/kdump/documentation/ols2oo5-kdump-paper.pdf .

For more details on crash dump analysis and debugging tools, use the following resources:

In addition to the info page of GDB (info gdb), there are printable guides at https://

sourceware.org/gdb/documentation/ .

The crash utility features a comprehensive online help. Use help COMMAND to display the
online help for command .

If you have the necessary Perl skills, you can use Alicia to make the debugging easier. This
Perl-based front-end to the crash utility can be found at http://alicia.sourceforge.net/ .

If you prefer to use Python instead, you should install Pykdump. This package helps you
control GDB through Python scripts.

A very comprehensive overview of the Linux kernel internals is given in Understanding the
Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).

207 More information SLES 15 SP4

https://developer.ibm.com/technologies/linux/
https://developer.ibm.com/technologies/linux/
https://developer.ibm.com/technologies/linux/
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
https://sourceware.org/gdb/documentation/
https://sourceware.org/gdb/documentation/
http://alicia.sourceforge.net/

20 Using systemd-coredump to debug application
crashes

systemd-coredump collects and displays core dumps, for analyzing application crashes. The
core dump contains an image of the process's memory at the time of termination. When a process
crashes (or all processes belonging to an application), its default is to log the core dump to the
systemd journal, including a backtrace if possible, and to store the core dump in a le in /
var/lib/systemd/coredump . You also have the option to examine the dump le with other
tools such as gdb or crash (see Section 19.8, “Analyzing the crash dump”).

Core dumps stored in /var/lib/systemd/coredump are deleted after three days (see the d /
var/lib/systemd/coredump line in /usr/lib/tmpfiles.d/systemd.conf).

There is an option to not store core dumps, but to log only to the journal, which may be useful
to minimize the collection and storage of sensitive information.

20.1 Use and configuration
systemd-coredump is enabled and ready to run by default. The default configuration is in /
etc/systemd/coredump.conf :

[Coredump]
#Storage=external
#Compress=yes
#ProcessSizeMax=2G
#ExternalSizeMax=2G
#JournalSizeMax=767M
#MaxUse=
#KeepFree=

Size units are B, K, M, G, T, P, and E. ExternalSizeMax also supports a value of infinity .

The following example shows how to use Vim for simple testing, by creating a segfault to gen-
erate journal entries and a core dump.

PROCEDURE 20.1: CREATING A CORE DUMP WITH VIM

1. Enable the debuginfo-pool and debuginfo-update repositories

2. Install vim-debuginfo

208 Use and configuration SLES 15 SP4

3. Launch vim testfile and type a few characters

4. Get the PID and generate a segfault:

> ps ax | grep vim
2345 pts/3 S+ 0:00 vim testfile

kill -s SIGSEGV 2345

Vim will emit error messages:

Vim: Caught deadly signal SEGV
Vim: Finished.
Segmentation fault (core dumped)

5. List your core dumps, then examine them:

coredumpctl
TIME PID UID GID SIG PRESENT EXE
Wed 2019-11-12 11:56:47 PST 2345 1000 100 11 * /bin/vim

coredumpctl info
PID: 2345 (vim)
UID: 0 (root)
GID: 0 (root)
Signal: 11 (SEGV)
Timestamp: Wed 2019-11-12 11:58:05 PST
Command Line: vim testfile
Executable: /bin/vim
Control Group: /user.slice/user-1000.slice/session-1.scope
 Unit: session-1.scope
 Slice: user-1000.slice
 Session: 1
 Owner UID: 1000 (tux)
 Boot ID: b5c251b86ab34674a2222cef102c0c88
 Machine ID: b43c44a64696799b985cafd95dc1b698
 Hostname: linux-uoch
 Coredump: /var/lib/systemd/coredump/core.vim.0.b5c251b86ab34674a2222cef102
 Message: Process 2345 (vim) of user 0 dumped core.

 Stack trace of thread 2345:
 #0 0x00007f21dd87e2a7 kill (libc.so.6)
 #1 0x000000000050cb35 may_core_dump (vim)
 #2 0x00007f21ddbfec70 __restore_rt (libpthread.so.0)
 #3 0x00007f21dd92ea33 __select (libc.so.6)
 #4 0x000000000050b4e3 RealWaitForChar (vim)
 #5 0x000000000050b86b mch_inchar (vim)

209 Use and configuration SLES 15 SP4

[...]

When you have multiple core dumps, coredumpctl info displays all of them. Filter them by
PID , COMM (command), or EXE (full path to the executable), for example, all core dumps for
Vim:

coredumpctl info /bin/vim

See a single core dump by PID :

coredumpctl info 2345

Output the selected core to gdb :

coredumpctl gdb 2345

The asterisk in the PRESENT column indicates that a stored core dump is present. If the eld
is empty there is no stored core dump, and coredumpctl retrieves crash information from the
journal. You can control this behavior in /etc/systemd/coredump.conf with the Storage
option:

Storage=none—core dumps are logged in the journal, but not stored. This is useful to
minimize collecting and storing sensitive information, for example for General Data Pro-
tection Regulation (GDPR) compliance.

Storage=external—cores are stored in /var/lib/systemd/coredump

Storage=journal—cores are stored in the systemd journal

A new instance of systemd-coredump is invoked for every core dump, so configuration changes
are applied with the next core dump, and there is no need to restart any services.

Core dumps are not preserved after a system restart. You may save them permanently with
coredumpctl . The following example filters by the PID and stores the core in vim.dump :

coredumpctl -o vim.dump dump 2345

See man systemd-coredump , man coredumpctl , man core , and man coredump.conf for
complete command and option listings.

210 Use and configuration SLES 15 SP4

VII Synchronized clocks with Precision
Time Protocol

21 Precision Time Protocol 212

21 Precision Time Protocol

For network environments, it is vital to keep the computer and other devices' clocks synchro-
nized and accurate. There are several solutions to achieve this, for example the widely used
Network Time Protocol (NTP) described in Book “Administration Guide”, Chapter 38 “Time synchro-

nization with NTP”.

The Precision Time Protocol (PTP) is a protocol capable of sub-microsecond accuracy, which
is better than what NTP achieves. PTP support is divided between the kernel and user space.
The kernel in SUSE Linux Enterprise Server includes support for PTP clocks, which are provided
by network drivers.

21.1 Introduction to PTP
The clocks managed by PTP follow a master-slave hierarchy. The slaves are synchronized to
their masters. The hierarchy is updated by the best master clock (BMC) algorithm, which runs on
every clock. The clock with only one port can be either master or slave. Such a clock is called an
ordinary clock (OC). A clock with multiple ports can be master on one port and slave on another.
Such a clock is called a boundary clock (BC). The top-level master is called the grandmaster clock.
The grandmaster clock can be synchronized with a Global Positioning System (GPS). This way
disparate networks can be synchronized with a high degree of accuracy.

The hardware support is the main advantage of PTP. It is supported by various network switches
and network interface controllers (NIC). While it is possible to use non-PTP enabled hardware
within the network, having network components between all PTP clocks PTP hardware enabled
achieves the best possible accuracy.

21.1.1 PTP Linux implementation

On SUSE Linux Enterprise Server, the implementation of PTP is provided by the linuxptp
package. Install it with zypper install linuxptp . It includes the ptp4l and phc2sys pro-
grams for clock synchronization. ptp4l implements the PTP boundary clock and ordinary clock.
When hardware time stamping is enabled, ptp4l synchronizes the PTP hardware clock to the
master clock. With software time stamping, it synchronizes the system clock to the master clock.
phc2sys is needed only with hardware time stamping to synchronize the system clock to the
PTP hardware clock on the network interface card (NIC).

212 Introduction to PTP SLES 15 SP4

21.2 Using PTP

21.2.1 Network driver and hardware support

PTP requires that the used kernel network driver supports either software or hardware time
stamping. Moreover, the NIC must support time stamping in the physical hardware. You can
verify the driver and NIC time stamping capabilities with ethtool :

> sudo ethtool -T eth0
Time stamping parameters for eth0:
Capabilities:
hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)

Software time stamping requires the following parameters:

SOF_TIMESTAMPING_SOFTWARE
SOF_TIMESTAMPING_TX_SOFTWARE
SOF_TIMESTAMPING_RX_SOFTWARE

Hardware time stamping requires the following parameters:

SOF_TIMESTAMPING_RAW_HARDWARE
SOF_TIMESTAMPING_TX_HARDWARE
SOF_TIMESTAMPING_RX_HARDWARE

213 Using PTP SLES 15 SP4

21.2.2 Using ptp4l
ptp4l uses hardware time stamping by default. As root , you need to specify the network
interface capable of hardware time stamping with the -i option. The -m tells ptp4l to print
its output to the standard output instead of the system's logging facility:

> sudo ptp4l -m -i eth0
selected eth0 as PTP clock
port 1: INITIALIZING to LISTENING on INITIALIZE
port 0: INITIALIZING to LISTENING on INITIALIZE
port 1: new foreign master 00a152.fffe.0b334d-1
selected best master clock 00a152.fffe.0b334d
port 1: LISTENING to UNCALIBRATED on RS_SLAVE
master offset -25937 s0 freq +0 path delay 12340
master offset -27887 s0 freq +0 path delay 14232
master offset -38802 s0 freq +0 path delay 13847
master offset -36205 s1 freq +0 path delay 10623
master offset -6975 s2 freq -30575 path delay 10286
port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
master offset -4284 s2 freq -30135 path delay 9892

The master offset value represents the measured offset from the master (in nanoseconds).

The s0 , s1 , s2 indicators show the different states of the clock servo: s0 is unlocked, s1
is clock step, and s2 is locked. If the servo is in the locked state (s2), the clock will not be
stepped (only slowly adjusted) if the pi_offset_const option is set to a negative value in the
configuration le (see man 8 ptp4l for more information).

The freq value represents the frequency adjustment of the clock (in parts per billion, ppb).

The path delay value represents the estimated delay of the synchronization messages sent
from the master (in nanoseconds).

Port 0 is a Unix domain socket used for local PTP management. Port 1 is the eth0 interface.

INITIALIZING , LISTENING , UNCALIBRATED and SLAVE are examples of port states which
change on INITIALIZE , RS_SLAVE , and MASTER_CLOCK_SELECTED events. When the port state
changes from UNCALIBRATED to SLAVE , the computer has successfully synchronized with a PTP
master clock.

You can enable software time stamping with the -S option.

> sudo ptp4l -m -S -i eth3

You can also run ptp4l as a service:

> sudo systemctl start ptp4l

214 Using ptp4l SLES 15 SP4

In this case, ptp4l reads its options from the /etc/sysconfig/ptp4l le. By default, this le
tells ptp4l to read the configuration options from /etc/ptp4l.conf . For more information
on ptp4l options and the configuration le settings, see man 8 ptp4l .

To enable the ptp4l service permanently, run the following:

> sudo systemctl enable ptp4l

To disable it, run

> sudo systemctl disable ptp4l

21.2.3 ptp4l configuration file

ptp4l can read its configuration from an optional configuration le. As no configuration le
is used by default, you need to specify it with -f .

> sudo ptp4l -f /etc/ptp4l.conf

The configuration le is divided into sections. The global section (indicated as [global]) sets
the program options, clock options and default port options. Other sections are port specific, and
they override the default port options. The name of the section is the name of the configured port
—for example, [eth0] . An empty port section can be used to replace the command line option.

[global]
verbose 1
time_stamping software
[eth0]

The example configuration le is an equivalent of the following command's options:

> sudo ptp4l -i eth0 -m -S

For a complete list of ptp4l configuration options, see man 8 ptp4l .

21.2.4 Delay measurement

ptp4l measures time delay in two different ways: peer-to-peer (P2P) or end-to-end (E2E).

P2P

This method is specified with -P .

215 ptp4l configuration file SLES 15 SP4

It reacts to changes in the network environment faster and is more accurate in measuring
the delay. It is only used in networks where each port exchanges PTP messages with one
other port. P2P needs to be supported by all hardware on the communication path.

E2E

This method is specified with -E . This is the default.

Automatic method selection

This method is specified with -A . The automatic option starts ptp4l in E2E mode, and
changes to P2P mode if a peer delay request is received.

Important: Common measurement method
All clocks on a single PTP communication path must use the same method to measure
the time delay. A warning will be printed if either a peer delay request is received on a
port using the E2E mechanism, or an E2E delay request is received on a port using the
P2P mechanism.

21.2.5 PTP management client: pmc

You can use the pmc client to obtain more detailed information about ptp41 . It reads from
the standard input—or from the command line—actions specified by name and management
ID. Then it sends the actions over the selected transport, and prints any received replies. There
are three actions supported: GET retrieves the specified information, SET updates the specified
information, and CMD (or COMMAND) initiates the specified event.

By default, the management commands are addressed to all ports. The TARGET command can
be used to select a particular clock and port for the subsequent messages. For a complete list
of management IDs, run pmc help .

> sudo pmc -u -b 0 'GET TIME_STATUS_NP'
sending: GET TIME_STATUS_NP
 90f2ca.fffe.20d7e9-0 seq 0 RESPONSE MANAGMENT TIME_STATUS_NP
 master_offset 283
 ingress_time 1361569379345936841
 cumulativeScaledRateOffset +1.000000000
 scaledLastGmPhaseChange 0
 gmTimeBaseIndicator 0
 lastGmPhaseChange 0x0000'0000000000000000.0000
 gmPresent true

216 PTP management client: pmc SLES 15 SP4

 gmIdentity 00b058.feef.0b448a

The -b option specifies the boundary hops value in sent messages. Setting it to zero limits the
boundary to the local ptp4l instance. Increasing the value will retrieve the messages also from
PTP nodes that are further from the local instance. The returned information may include:

stepsRemoved

The number of communication nodes to the grandmaster clock.

offsetFromMaster, master_offset

The last measured offset of the clock from the master clock (nanoseconds).

meanPathDelay

The estimated delay of the synchronization messages sent from the master clock (nanosec-
onds).

gmPresent

If true , the PTP clock is synchronized to the master clock; the local clock is not the
grandmaster clock.

gmIdentity

This is the grandmaster's identity.

For a complete list of pmc command line options, see man 8 pmc .

21.3 Synchronizing the clocks with phc2sys
Use phc2sys to synchronize the system clock to the PTP hardware clock (PHC) on the network
card. The system clock is considered a slave, while the network card a master. PHC itself is
synchronized with ptp4l (see Section 21.2, “Using PTP”). Use -s to specify the master clock by
device or network interface. Use -w to wait until ptp4l is in a synchronized state.

> sudo phc2sys -s eth0 -w

PTP operates in International Atomic Time (TAI), while the system clock uses Coordinated Universal
Time (UTC). If you do not specify -w to wait for ptp4l synchronization, you can specify the
offset in seconds between TAI and UTC with -O :

> sudo phc2sys -s eth0 -O -35

217 Synchronizing the clocks with phc2sys SLES 15 SP4

You can run phc2sys as a service as well:

> sudo systemctl start phc2sys

In this case, phc2sys reads its options from the /etc/sysconfig/phc2sys le. For more in-
formation on phc2sys options, see man 8 phc2sys .

To enable the phc2sys service permanently, run the following:

> sudo systemctl enable phc2sys

To disable it, run

> sudo systemctl disable phc2sys

21.3.1 Verifying time synchronization

When PTP time synchronization is working properly and hardware time stamping is used, ptp4l
and phc2sys output messages with time offsets and frequency adjustments periodically to the
system log.

An example of the ptp4l output:

ptp4l[351.358]: selected /dev/ptp0 as PTP clock
ptp4l[352.361]: port 1: INITIALIZING to LISTENING on INITIALIZE
ptp4l[352.361]: port 0: INITIALIZING to LISTENING on INITIALIZE
ptp4l[353.210]: port 1: new foreign master 00a069.eefe.0b442d-1
ptp4l[357.214]: selected best master clock 00a069.eefe.0b662d
ptp4l[357.214]: port 1: LISTENING to UNCALIBRATED on RS_SLAVE
ptp4l[359.224]: master offset 3304 s0 freq +0 path delay 9202
ptp4l[360.224]: master offset 3708 s1 freq -28492 path delay 9202
ptp4l[361.224]: master offset -3145 s2 freq -32637 path delay 9202
ptp4l[361.224]: port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
ptp4l[362.223]: master offset -145 s2 freq -30580 path delay 9202
ptp4l[363.223]: master offset 1043 s2 freq -28436 path delay 8972
[...]
ptp4l[371.235]: master offset 285 s2 freq -28511 path delay 9199
ptp4l[372.235]: master offset -78 s2 freq -28788 path delay 9204

An example of the phc2sys output:

phc2sys[616.617]: Waiting for ptp4l...
phc2sys[628.628]: phc offset 66341 s0 freq +0 delay 2729
phc2sys[629.628]: phc offset 64668 s1 freq -37690 delay 2726
[...]

218 Verifying time synchronization SLES 15 SP4

phc2sys[646.630]: phc offset -333 s2 freq -37426 delay 2747
phc2sys[646.630]: phc offset 194 s2 freq -36999 delay 2749

ptp4l normally writes messages very frequently. You can reduce the frequency with the sum-
mary_interval directive. Its value is an exponent of the 2^N expression. For example, to reduce
the output to every 1024 (which is equal to 2^10) seconds, add the following line to the /etc/
ptp4l.conf le:

summary_interval 10

You can also reduce the frequency of the phc2sys command's updates with the -u SUMMA-
RY-UPDATES option.

21.4 Examples of configurations
This section includes several examples of ptp4l configuration. The examples are not full con-
figuration les but rather a minimal list of changes to be made to the specific les. The string
ethX stands for the actual network interface name in your setup.

EXAMPLE 21.1: SLAVE CLOCK USING SOFTWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

No changes made to the distribution /etc/ptp4l.conf .

EXAMPLE 21.2: SLAVE CLOCK USING HARDWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

/etc/sysconfig/phc2sys :

OPTIONS=”-s ethX -w”

No changes made to the distribution /etc/ptp4l.conf .

EXAMPLE 21.3: MASTER CLOCK USING HARDWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

219 Examples of configurations SLES 15 SP4

/etc/sysconfig/phc2sys :

OPTIONS=”-s CLOCK_REALTIME -c ethX -w”

/etc/ptp4l.conf :

priority1 127

EXAMPLE 21.4: MASTER CLOCK USING SOFTWARE TIME STAMPING (NOT GENERALLY RECOMMENDED)

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

/etc/ptp4l.conf :

priority1 127

21.5 PTP and NTP
NTP and PTP time synchronization tools can coexist, synchronizing time from one to another
in both directions.

21.5.1 NTP to PTP synchronization

When chronyd is used to synchronize the local system clock, you can configure the ptp4l to
be the grandmaster clock distributing the time from the local system clock via PTP. Include the
priority1 option in /etc/ptp4l.conf :

[global]
priority1 127
[eth0]

Then run ptp4l :

> sudo ptp4l -f /etc/ptp4l.conf

When hardware time stamping is used, you need to synchronize the PTP hardware clock to the
system clock with phc2sys :

> sudo phc2sys -c eth0 -s CLOCK_REALTIME -w

220 PTP and NTP SLES 15 SP4

21.5.2 Configuring PTP-NTP bridge

If a highly accurate PTP grandmaster is available in a network without switches or routers
with PTP support, a computer may operate as a PTP slave and a stratum-1 NTP server. Such
a computer needs to have two or more network interfaces, and be close to the grandmaster or
have a direct connection to it. This will ensure highly accurate synchronization in the network.

Configure the ptp4l and phc2sys programs to use one network interface to synchronize the
system clock using PTP. Then configure chronyd to provide the system time using the other
interface:

bindaddress 192.0.131.47
hwtimestamp eth1
local stratum 1

Note: NTP and DHCP
When the DHCP client command dhclient receives a list of NTP servers, it adds them
to NTP configuration by default. To prevent this behavior, set

NETCONFIG_NTP_POLICY=""

in the /etc/sysconfig/network/config le.

221 Configuring PTP-NTP bridge SLES 15 SP4

A GNU licenses
This appendix contains the GNU Free Docu-
mentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

222 SLES 15 SP4

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

223 SLES 15 SP4

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See https://www.gnu.org/

copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

224 SLES 15 SP4

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

	System Analysis and Tuning Guide
	Preface
	1. Available documentation
	2. Improving the documentation
	3. Documentation conventions
	4. Support
	4.1. Support statement for SUSE Linux Enterprise Server
	4.2. Technology previews

	Part I. Basics
	Chapter 1. General notes on system tuning
	1.1. Be sure what problem to solve
	1.2. Rule out common problems
	1.3. Finding the bottleneck
	1.4. Step-by-step tuning

	Part II. System monitoring
	Chapter 2. System monitoring utilities
	2.1. Multi-purpose tools
	2.1.1. vmstat
	2.1.2. dstat
	2.1.3. System activity information: sar
	2.1.3.1. Generating reports with sar
	2.1.3.1.1. CPU usage report: sar
	2.1.3.1.2. Memory usage report: sar -r
	2.1.3.1.3. Paging statistics report: sar -B
	2.1.3.1.4. Block device statistics report: sar -d
	2.1.3.1.5. Network statistics reports: sar -n KEYWORD

	2.1.3.2. Visualizing sar data

	2.2. System information
	2.2.1. Device load information: iostat
	2.2.2. Processor activity monitoring: mpstat
	2.2.3. Processor frequency monitoring: turbostat
	2.2.4. Task monitoring: pidstat
	2.2.5. Kernel ring buffer: dmesg
	2.2.6. List of open files: lsof
	2.2.7. Kernel and udev event sequence viewer: udevadm monitor

	2.3. Processes
	2.3.1. Interprocess communication: ipcs
	2.3.2. Process list: ps
	2.3.3. Process tree: pstree
	2.3.4. Table of processes: top
	2.3.5. IBM Z hypervisor monitor: hyptop
	2.3.6. A top-like I/O monitor: iotop
	2.3.7. Modify a process's niceness: nice and renice

	2.4. Memory
	2.4.1. Memory usage: free
	2.4.2. Detailed memory usage: /proc/meminfo
	2.4.3. Process memory usage: smaps
	2.4.4. numaTOP

	2.5. Networking
	2.5.1. Basic network diagnostics: ip
	2.5.2. Show the network usage of processes: nethogs
	2.5.3. Ethernet cards in detail: ethtool
	2.5.4. Show the network status: ss

	2.6. The /proc file system
	2.6.1. procinfo
	2.6.2. System control parameters: /proc/sys/

	2.7. Hardware information
	2.7.1. PCI resources: lspci
	2.7.2. USB devices: lsusb
	2.7.3. Monitoring and tuning the thermal subsystem: tmon
	2.7.4. MCELog: machine check exceptions (MCE)
	2.7.5. AMD64/Intel 64: dmidecode: DMI table decoder
	2.7.6. POWER: list hardware

	2.8. Files and file systems
	2.8.1. Determine the file type: file
	2.8.2. File systems and their usage: mount, df and du
	2.8.3. Additional information about ELF binaries
	2.8.4. File properties: stat

	2.9. User information
	2.9.1. User accessing files: fuser
	2.9.2. Who is doing what: w

	2.10. Time and date
	2.10.1. Time measurement with time

	2.11. Graph your data: RRDtool
	2.11.1. How RRDtool works
	2.11.2. A practical example
	2.11.2.1. Collecting data
	2.11.2.2. Creating the database
	2.11.2.3. Updating database values
	2.11.2.4. Viewing measured values

	2.11.3. More information

	Chapter 3. System log files
	3.1. System log files in /var/log/
	3.2. Viewing and parsing log files
	3.3. Managing log files with logrotate
	3.4. Monitoring log files with logwatch
	3.5. Configuring mail forwarding for root
	3.6. Forwarding log messages to a central syslog server
	3.6.1. Set up the central syslog server
	3.6.2. Set up the client machines
	3.6.3. More information

	3.7. Using logger to make system log entries

	Part III. Kernel monitoring
	Chapter 4. SystemTap—filtering and analyzing system data
	4.1. Conceptual overview
	4.1.1. SystemTap scripts
	4.1.2. Tapsets
	4.1.3. Commands and privileges
	4.1.4. Important files and directories

	4.2. Installation and setup
	4.3. Script syntax
	4.3.1. Probe format
	4.3.2. SystemTap events (probe points)
	4.3.3. SystemTap handlers (probe body)
	4.3.3.1. Functions
	4.3.3.2. Other basic constructs
	4.3.3.2.1. Variables
	4.3.3.2.2. Conditional statements

	4.4. Example script
	4.5. User space probing
	4.6. More information

	Chapter 5. Kernel probes
	5.1. Supported architectures
	5.2. Types of kernel probes
	5.2.1. Kprobes
	5.2.2. Jprobes
	5.2.3. Return probe

	5.3. Kprobes API
	5.4. debugfs Interface
	5.4.1. Listing registered kernel probes
	5.4.2. Globally enabling/disabling kernel probes

	5.5. More information

	Chapter 6. Hardware-based performance monitoring with Perf
	6.1. Hardware-based monitoring
	6.2. Sampling and counting
	6.3. Installing Perf
	6.4. Perf subcommands
	6.5. Counting particular types of event
	6.6. Recording events specific to particular commands
	6.7. More information

	Chapter 7. OProfile—system-wide profiler
	7.1. Conceptual overview
	7.2. Installation and requirements
	7.3. Available OProfile utilities
	7.4. Using OProfile
	7.4.1. Creating a report
	7.4.2. Getting event configurations

	7.5. Generating reports
	7.6. More information

	Chapter 8. Dynamic debug—kernel debugging messages
	8.1. Benefits of dynamic debugging
	8.2. Checking the status of dynamic debug
	8.3. Using dynamic debug
	8.4. Viewing the dynamic debug messages

	Part IV. Resource management
	Chapter 9. General system resource management
	9.1. Planning the installation
	9.1.1. Partitioning
	9.1.2. Installation scope
	9.1.3. Default target

	9.2. Disabling unnecessary services
	9.3. File systems and disk access
	9.3.1. File systems
	9.3.1.1. NFS

	9.3.2. Time stamp update policy
	9.3.3. Prioritizing disk access with ionice

	Chapter 10. Kernel control groups
	10.1. Overview
	10.2. Resource accounting
	10.3. Setting resource limits
	10.4. Preventing fork bombs with TasksMax
	10.4.1. Finding the current default TasksMax values
	10.4.2. Overriding the DefaultTasksMax value
	10.4.3. Default TasksMax limit on users

	10.5. I/O control with cgroups
	10.5.1. Prerequisites
	10.5.1.1. File system
	10.5.1.2. Unified cgroup hierarchy
	10.5.1.3. Block I/O scheduler
	10.5.1.4. Cgroup hierarchy layout

	10.5.2. Configuring control quantities
	10.5.3. I/O control behavior and setting expectations

	10.6. More information

	Chapter 11. Automatic Non-Uniform Memory Access (NUMA) balancing
	11.1. Implementation
	11.2. Configuration
	11.3. Monitoring
	11.4. Impact

	Chapter 12. Power management
	12.1. Power management at CPU Level
	12.1.1. C-states (processor operating states)
	12.1.2. P-states (processor performance states)
	12.1.3. Turbo features

	12.2. In-kernel governors
	12.3. The cpupower tools
	12.3.1. Viewing current settings with cpupower
	12.3.2. Viewing kernel idle statistics with cpupower
	12.3.3. Monitoring kernel and hardware statistics with cpupower
	12.3.4. Modifying current settings with cpupower

	12.4. Special tuning options
	12.4.1. Tuning options for P-states

	12.5. Troubleshooting
	12.6. More information
	12.7. Monitoring power consumption with powerTOP

	Part V. Kernel tuning
	Chapter 13. Tuning I/O performance
	13.1. Switching I/O scheduling
	13.2. Available I/O elevators with blk-mq I/O path
	13.2.1. MQ-DEADLINE
	13.2.2. NONE
	13.2.3. BFQ (Budget Fair Queueing)
	13.2.4. KYBER

	13.3. I/O barrier tuning

	Chapter 14. Tuning the task scheduler
	14.1. Introduction
	14.1.1. Preemption
	14.1.2. Timeslice
	14.1.3. Process priority

	14.2. Process classification
	14.3. Completely Fair Scheduler
	14.3.1. How CFS works
	14.3.2. Grouping processes
	14.3.3. Kernel configuration options
	14.3.4. Terminology
	14.3.4.1. Scheduling policies

	14.3.5. Changing real-time attributes of processes with chrt
	14.3.6. Runtime tuning with sysctl
	14.3.7. Debugging interface and scheduler statistics

	14.4. More information

	Chapter 15. Tuning the memory management subsystem
	15.1. Memory usage
	15.1.1. Anonymous memory
	15.1.2. Pagecache
	15.1.3. Buffercache
	15.1.4. Buffer heads
	15.1.5. Writeback
	15.1.6. Readahead
	15.1.7. VFS caches
	15.1.7.1. Inode cache
	15.1.7.2. Directory entry cache

	15.2. Reducing memory usage
	15.2.1. Reducing malloc (anonymous) usage
	15.2.2. Reducing kernel memory overheads
	15.2.3. Memory controller (memory cgroups)

	15.3. Virtual memory manager (VM) tunable parameters
	15.3.1. Reclaim ratios
	15.3.2. Writeback parameters
	15.3.3. Timing differences of I/O writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise 11
	15.3.4. Readahead parameters
	15.3.5. Transparent HugePage parameters
	15.3.6. khugepaged parameters
	15.3.7. Further VM parameters

	15.4. Monitoring VM behavior

	Chapter 16. Tuning the network
	16.1. Configurable kernel socket buffers
	16.2. Detecting network bottlenecks and analyzing network traffic
	16.3. Netfilter
	16.4. Improving the network performance with receive packet steering (RPS)

	Chapter 17. Tuning SUSE Linux Enterprise for SAP
	17.1. Tuning SLE Systems with sapconf 5
	17.1.1. Verifying sapconf setup
	17.1.2. Enabling and disabling sapconf and viewing its status
	17.1.3. Configuring sapconf5
	17.1.4. Removing sapconf
	17.1.5. For more information
	17.1.6. Using tuned together with sapconf

	Part VI. Handling system dumps
	Chapter 18. Tracing tools
	18.1. Tracing system calls with strace
	18.2. Tracing library calls with ltrace
	18.3. Debugging and profiling with Valgrind
	18.3.1. Installation
	18.3.2. Supported architectures
	18.3.3. General information
	18.3.4. Default options
	18.3.5. How Valgrind works
	18.3.6. Messages
	18.3.7. Error messages

	18.4. More information

	Chapter 19. Kexec and Kdump
	19.1. Introduction
	19.2. Required packages
	19.3. Kexec internals
	19.4. Calculating crashkernel allocation size
	19.5. Basic Kexec usage
	19.6. How to configure Kexec for routine reboots
	19.7. Basic Kdump configuration
	19.7.1. Manual Kdump configuration
	19.7.1.1. Static IP configuration for Kdump

	19.7.2. YaST configuration
	19.7.3. Kdump over SSH

	19.8. Analyzing the crash dump
	19.8.1. Kernel binary formats
	19.8.1.1. AMD64/Intel 64
	19.8.1.2. POWER

	19.9. Advanced Kdump configuration
	19.10. More information

	Chapter 20. Using systemd-coredump to debug application crashes
	20.1. Use and configuration

	Part VII. Synchronized clocks with Precision Time Protocol
	Chapter 21. Precision Time Protocol
	21.1. Introduction to PTP
	21.1.1. PTP Linux implementation

	21.2. Using PTP
	21.2.1. Network driver and hardware support
	21.2.2. Using ptp4l
	21.2.3. ptp4l configuration file
	21.2.4. Delay measurement
	21.2.5. PTP management client: pmc

	21.3. Synchronizing the clocks with phc2sys
	21.3.1. Verifying time synchronization

	21.4. Examples of configurations
	21.5. PTP and NTP
	21.5.1. NTP to PTP synchronization
	21.5.2. Configuring PTP-NTP bridge

	Appendix A. GNU licenses
	A.1. GNU Free Documentation License

