
SUSE Linux Enterprise Server 15 SP6

System Analysis and
Tuning Guide

System Analysis and Tuning Guide
SUSE Linux Enterprise Server 15 SP6

This guide supports administrators in problem detection, resolution and optimization.

Publication Date: July 16, 2024

https://documentation.suse.com

Copyright © 2006–2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A

copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”.

https://documentation.suse.com

For SUSE trademarks, see https://www.suse.com/company/legal/ . All third-party trademarks are the property of their

respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks (*) denote third-

party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee

complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable for possible errors

or the consequences thereof.

https://www.suse.com/company/legal/

Contents

Preface xiii
1 Available documentation xiii

2 Improving the documentation xiii

3 Documentation conventions xiv

4 Support xvi

Support statement for SUSE Linux Enterprise Server xvii • Technology

previews xviii

I BASICS 1

1 General notes on system tuning 2
1.1 Be sure what problem to solve 2

1.2 Rule out common problems 3

1.3 Finding the bottleneck 4

1.4 Step-by-step tuning 4

II SYSTEM MONITORING 5

2 System monitoring utilities 6
2.1 Multi-purpose tools 7

vmstat 7 • dstat 10 • System activity information: sar 11

2.2 System information 15

Device load information: iostat 15 • Processor activity monitoring:

mpstat 16 • Processor frequency monitoring: turbostat 17 • Task

monitoring: pidstat 17 • Kernel ring buffer: dmesg 18 • List of open files:

lsof 18 • Kernel and udev event sequence viewer: udevadm monitor 19

iv System Analysis and Tuning Guide

2.3 Processes 19

Inter-process communication: ipcs 19 • Process list: ps 20 • Process

tree: pstree 22 • Table of processes: top 22 • IBM Z hypervisor monitor:

hyptop 23 • A top-like I/O monitor: iotop 25 • Modify a process's

niceness: nice and renice 26

2.4 Memory 27

Memory usage: free 27 • Detailed memory usage: /proc/

meminfo 27 • Process memory usage: smaps 31 • numaTOP 32

2.5 Networking 32

Basic network diagnostics: ip 32 • Show the network usage of processes:

nethogs 33 • Ethernet cards in detail: ethtool 34 • Show the network

status: ss 35

2.6 The /proc file system 36

procinfo 39 • System control parameters: /proc/sys/ 40

2.7 Hardware information 41

PCI resources: lspci 41 • USB devices: lsusb 42 • Monitoring and

tuning the thermal subsystem: tmon 42 • MCELog: machine check exceptions

(MCE) 43 • AMD64/Intel 64: dmidecode: DMI table decoder 44 • POWER:

list hardware 45

2.8 Files and file systems 45

Determine the file type: file 45 • File systems and their usage: mount, df and

du 46 • Additional information about ELF binaries 47 • File properties:

stat 47

2.9 User information 48

User accessing files: fuser 48 • Who is doing what: w 48

2.10 Time and date 49

Time measurement with time 49

2.11 Graph your data: RRDtool 50

How RRDtool works 50 • A practical example 51 • More

information 55

v System Analysis and Tuning Guide

3 System log files 56

3.1 System log files in /var/log/ 56

3.2 Viewing and parsing log files 58

3.3 Managing log files with logrotate 58

3.4 Monitoring log files with logwatch 60

3.5 Configuring mail forwarding for root 61

3.6 Forwarding log messages to a central syslog server 62

Set up the central syslog server 62 • Set up the client machines 64 • More

information 64

3.7 Using logger to make system log entries 65

III KERNEL MONITORING 66

4 SystemTap—filtering and analyzing system data 67
4.1 Conceptual overview 67

SystemTap scripts 67 • Tapsets 68 • Commands and

privileges 68 • Important files and directories 69

4.2 Installation and setup 69

4.3 Script syntax 71

Probe format 72 • SystemTap events (probe points) 72 • SystemTap

handlers (probe body) 74

4.4 Example script 78

4.5 User space probing 79

4.6 More information 79

5 Kernel probes 81

5.1 Supported architectures 81

5.2 Types of kernel probes 82

Kprobes 82 • Jprobes 82 • Return probe 82

vi System Analysis and Tuning Guide

5.3 Kprobes API 83

5.4 debugfs Interface 84

Listing registered kernel probes 84 • Globally enabling/disabling kernel

probes 84

5.5 More information 85

6 Hardware-based performance monitoring with
Perf 86

6.1 Hardware-based monitoring 86

6.2 Sampling and counting 86

6.3 Installing Perf 87

6.4 Perf subcommands 87

6.5 Counting particular types of event 88

6.6 Recording events specific to particular commands 89

6.7 More information 89

7 OProfile—system-wide profiler 91

7.1 Conceptual overview 91

7.2 Installation and requirements 91

7.3 Available OProfile utilities 92

7.4 Using OProfile 92

Creating a report 92 • Getting event configurations 93

7.5 Generating reports 95

7.6 More information 95

8 Dynamic debug—kernel debugging messages 97

8.1 Benefits of dynamic debugging 97

8.2 Checking the status of dynamic debug 97

vii System Analysis and Tuning Guide

8.3 Using dynamic debug 98

8.4 Viewing the dynamic debug messages 99

IV RESOURCE MANAGEMENT 100

9 General system resource management 101
9.1 Planning the installation 101

Partitioning 101 • Installation scope 102 • Default target 102

9.2 Disabling unnecessary services 102

9.3 File systems and disk access 103

File systems 104 • Time stamp update policy 104 • Prioritizing disk access

with ionice 105

10 Kernel control groups 106

10.1 Overview 106

Hybrid cgroup hierarchy 106

10.2 Resource accounting 107

10.3 Setting resource limits 107

10.4 Preventing fork bombs with TasksMax 107

Finding the current default TasksMax values 108 • Overriding the

DefaultTasksMax value 108 • Default TasksMax limit on users 109

10.5 I/O control with cgroups 110

Prerequisites 110 • Configuring control quantities 112 • I/O control behavior

and setting expectations 112 • Resource control in user sessions 113

10.6 More information 114

11 Automatic Non-Uniform Memory Access (NUMA)
balancing 115

11.1 Implementation 115

11.2 Configuration 116

11.3 Monitoring 117

viii System Analysis and Tuning Guide

11.4 Impact 117

12 Power management 120

12.1 Power management at CPU Level 120

C-states (processor operating states) 120 • P-states (processor performance

states) 121 • Turbo features 122

12.2 In-kernel governors 122

12.3 The cpupower tools 123

Viewing current settings with cpupower 124 • Viewing kernel idle statistics

with cpupower 124 • Monitoring kernel and hardware statistics with

cpupower 125 • Modifying current settings with cpupower 126

12.4 Special tuning options 127

Tuning options for P-states 127

12.5 Troubleshooting 127

12.6 More information 128

12.7 Monitoring power consumption with powerTOP 128

V KERNEL TUNING 132

13 Tuning I/O performance 133
13.1 Switching I/O scheduling 133

13.2 Available I/O elevators with blk-mq I/O path 134

MQ-DEADLINE 134 • NONE 135 • BFQ (Budget Fair

Queueing) 135 • KYBER 137

13.3 I/O barrier tuning 137

14 Tuning the task scheduler 139

14.1 Introduction 139

Preemption 139 • Timeslice 140 • Process priority 140

14.2 Process classification 140

ix System Analysis and Tuning Guide

14.3 Completely Fair Scheduler 141

How CFS works 141 • Grouping processes 142 • Kernel configuration

options 142 • Terminology 142 • Changing real-time attributes of processes

with chrt 143 • Runtime tuning with sysctl 144 • Debugging interface and

scheduler statistics 148

14.4 More information 150

15 Tuning the memory management subsystem 151

15.1 Memory usage 151

Anonymous memory 152 • Pagecache 152 • Buffercache 152 • Buffer

heads 152 • Writeback 152 • Readahead 153 • VFS caches 153

15.2 Reducing memory usage 153

Reducing malloc (anonymous) usage 153 • Reducing kernel memory

overheads 154 • Memory controller (memory cgroups) 154

15.3 Virtual memory manager (VM) tunable parameters 154

Reclaim ratios 154 • Writeback parameters 156 • Timing differences

of I/O writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise

11 157 • Readahead parameters 158 • Transparent HugePage

parameters 159 • khugepaged parameters 160 • Further VM

parameters 160

15.4 Monitoring VM behavior 161

16 Tuning the network 163

16.1 Configurable kernel socket buffers 163

16.2 Detecting network bottlenecks and analyzing network traffic 165

16.3 Netfilter 165

16.4 Improving the network performance with receive packet steering

(RPS) 165

x System Analysis and Tuning Guide

17 Tuning SUSE Linux Enterprise for SAP 168

17.1 Tuning SLE Systems with sapconf 5 168

Verifying sapconf setup 169 • Enabling and disabling sapconf and viewing its

status 170 • Configuring sapconf5 171 • Removing sapconf 172 • For

more information 172 • Using tuned together with sapconf 172

VI HANDLING SYSTEM DUMPS 173

18 Tracing tools 174
18.1 Tracing system calls with strace 174

18.2 Tracing library calls with ltrace 178

18.3 Debugging and profiling with Valgrind 179

Installation 179 • Supported architectures 179 • General

information 180 • Default options 181 • How Valgrind

works 181 • Messages 182 • Error messages 183

18.4 More information 184

19 Kexec and Kdump 185

19.1 Introduction 185

19.2 Required packages 185

19.3 Kexec internals 186

19.4 Calculating crashkernel allocation size 187

19.5 Basic Kexec usage 191

19.6 How to configure Kexec for routine reboots 192

19.7 Basic Kdump configuration 192

Manual Kdump configuration 193 • YaST configuration 194 • Kdump over

SSH 196

19.8 Analyzing the crash dump 197

Kernel binary formats 198

19.9 Advanced Kdump configuration 201

xi System Analysis and Tuning Guide

19.10 More information 202

20 Using systemd-coredump to debug application
crashes 204

20.1 Use and configuration 204

VII SYNCHRONIZED CLOCKS WITH PRECISION TIME PROTOCOL 207

21 Precision Time Protocol 208
21.1 Introduction to PTP 208

PTP Linux implementation 208

21.2 Using PTP 209

Network driver and hardware support 209 • Using ptp4l 210 • ptp4l

configuration file 211 • Delay measurement 211 • PTP management client:

pmc 212

21.3 Synchronizing the clocks with phc2sys 213

Verifying time synchronization 214

21.4 Examples of configurations 215

21.5 PTP and NTP 216

NTP to PTP synchronization 216 • Configuring PTP-NTP bridge 216

A GNU licenses 218

xii System Analysis and Tuning Guide

Preface

1 Available documentation

Online documentation

Our documentation is available online at https://documentation.suse.com . Browse or download

the documentation in various formats.

Note: Latest updates
The latest updates are usually available in the English-language version of this

documentation.

SUSE Knowledgebase

If you run into an issue, check out the Technical Information Documents (TIDs) that are

available online at https://www.suse.com/support/kb/ . Search the SUSE Knowledgebase for

known solutions driven by customer need.

Release notes

For release notes, see https://www.suse.com/releasenotes/ .

In your system

For offline use, the release notes are also available under /usr/share/doc/release-notes

on your system. The documentation for individual packages is available at /usr/share/doc/

packages .

Many commands are also described in their manual pages. To view them, run man , followed by a

specific command name. If the man command is not installed on your system, install it with sudo
zypper install man .

2 Improving the documentation

Your feedback and contributions to this documentation are welcome. The following channels for giving

feedback are available:

Service requests and support

For services and support options available for your product, see https://www.suse.com/support/ .

xiii Available documentation SLES 15 SP6

https://documentation.suse.com
https://www.suse.com/support/kb/
https://www.suse.com/releasenotes/
https://www.suse.com/support/

To open a service request, you need a SUSE subscription registered at SUSE Customer Center. Go

to https://scc.suse.com/support/requests , log in, and click Create New.

Bug reports

Report issues with the documentation at https://bugzilla.suse.com/ .

To simplify this process, click the Report an issue icon next to a headline in the HTML version

of this document. This preselects the right product and category in Bugzilla and adds a link to the

current section. You can start typing your bug report right away.

A Bugzilla account is required.

Contributions

To contribute to this documentation, click the Edit source document icon next to a headline in the

HTML version of this document. This will take you to the source code on GitHub, where you can

open a pull request.

A GitHub account is required.

Note: Edit source document only available for English
The Edit source document icons are only available for the English version of each document.

For all other languages, use the Report an issue icons instead.

For more information about the documentation environment used for this documentation, see the

repository's README.

Mail

You can also report errors and send feedback concerning the documentation to doc-

team@suse.com . Include the document title, the product version, and the publication date of the

document. Additionally, include the relevant section number and title (or provide the URL) and

provide a concise description of the problem.

3 Documentation conventions

The following notices and typographic conventions are used in this document:

/etc/passwd : Directory names and file names

PLACEHOLDER : Replace PLACEHOLDER with the actual value

xiv Documentation conventions SLES 15 SP6

https://scc.suse.com/support/requests
https://bugzilla.suse.com/

PATH : An environment variable

ls , --help : Commands, options, and parameters

user : The name of a user or group

package_name : The name of a software package

Alt , Alt – F1 : A key to press or a key combination. Keys are shown in uppercase as on a

keyboard.

File, File Save As: menu items, buttons

AMD/Intel This paragraph is only relevant for the AMD64/Intel 64 architectures. The arrows mark

the beginning and the end of the text block.

IBM Z, POWER This paragraph is only relevant for the architectures IBM Z and POWER . The arrows

mark the beginning and the end of the text block.

Chapter 1, “Example chapter”: A cross-reference to another chapter in this guide.

Commands that must be run with root privileges. You can also prefix these commands with the

sudo command to run them as a non-privileged user:

command
> sudo command

Commands that can be run by non-privileged users:

> command

Commands can be split into two or multiple lines by a backslash character (\) at the end of a line.

The backslash informs the shell that the command invocation will continue after the end of the line:

> echo a b \
c d

A code block that shows both the command (preceded by a prompt) and the respective output

returned by the shell:

> command
output

Notices

xv Documentation conventions SLES 15 SP6

Warning: Warning notice
Vital information you must be aware of before proceeding. Warns you about security issues,

potential loss of data, damage to hardware, or physical hazards.

Important: Important notice
Important information you should be aware of before proceeding.

Note: Note notice
Additional information, for example about differences in software versions.

Tip: Tip notice
Helpful information, like a guideline or a piece of practical advice.

Compact Notices

Additional information, for example about differences in software versions.

Helpful information, like a guideline or a piece of practical advice.

4 Support

Find the support statement for SUSE Linux Enterprise Server and general information about technology

previews below. For details about the product lifecycle, see https://www.suse.com/lifecycle .

If you are entitled to support, find details on how to collect information for a support ticket at https://

documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html .

xvi Support SLES 15 SP6

https://www.suse.com/lifecycle
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html

4.1 Support statement for SUSE Linux Enterprise Server

To receive support, you need an appropriate subscription with SUSE. To view the specific support offers

available to you, go to https://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1

Problem determination, which means technical support designed to provide compatibility

information, usage support, ongoing maintenance, information gathering and basic troubleshooting

using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce customer

problems, isolate a problem area and provide a resolution for problems not resolved by Level 1 or

prepare for Level 3.

L3

Problem resolution, which means technical support designed to resolve problems by engaging

engineering to resolve product defects which have been identified by Level 2 Support.

For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 support for all

packages, except for the following:

Technology previews.

Sound, graphics, fonts, and artwork.

Packages that require an additional customer contract.

Some packages shipped as part of the module Workstation Extension are L2-supported only.

Packages with names ending in -devel (containing header files and similar developer resources)

will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged and not

recompiled.

xvii Support statement for SUSE Linux Enterprise Server SLES 15 SP6

https://www.suse.com/support/

4.2 Technology previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses into

upcoming innovations. Technology previews are included for your convenience to give you a chance to test

new technologies within your environment. We would appreciate your feedback. If you test a technology

preview, please contact your SUSE representative and let them know about your experience and use cases.

Your input is helpful for future development.

Technology previews have the following limitations:

Technology previews are still in development. Therefore, they may be functionally incomplete,

unstable, or otherwise not suitable for production use.

Technology previews are not supported.

Technology previews may only be available for specific hardware architectures.

Details and functionality of technology previews are subject to change. As a result, upgrading to

subsequent releases of a technology preview may be impossible and require a fresh installation.

SUSE may discover that a preview does not meet customer or market needs, or does not comply

with enterprise standards. Technology previews can be removed from a product at any time. SUSE

does not commit to providing a supported version of such technologies in the future.

For an overview of technology previews shipped with your product, see the release notes at https://

www.suse.com/releasenotes .

xviii Technology previews SLES 15 SP6

https://www.suse.com/releasenotes
https://www.suse.com/releasenotes

I Basics

1 General notes on system tuning 2

1 General notes on system tuning

This manual discusses how to find the reasons for performance problems and provides means

to solve these problems. Before you start tuning your system, you should make sure you have

ruled out common problems and have found the cause for the problem. You should also have

a detailed plan on how to tune the system, because applying random tuning tips does not help

and could make things worse.

PROCEDURE 1.1: GENERAL APPROACH WHEN TUNING A SYSTEM

1. Specify the problem that needs to be solved.

2. In case the degradation is new, identify any recent changes to the system.

3. Identify why the issue is considered a performance problem.

4. Specify a metric that can be used to analyze performance. This metric could for example be latency,

throughput, the maximum number of users that are simultaneously logged in, or the maximum

number of active users.

5. Measure current performance using the metric from the previous step.

6. Identify the subsystems where the application is spending the most time.

7.
a. Monitor the system and/or the application.

b. Analyze the data, categorize where time is being spent.

8. Tune the subsystem identified in the previous step.

9. Remeasure the current performance without monitoring using the same metric as before.

10. If performance is still not acceptable, start over with Step 3.

1.1 Be sure what problem to solve

Before starting to tuning a system, try to describe the problem as exactly as possible. A statement like “The

system is slow!” is not a helpful problem description. For example, it could make a difference whether the

system speed needs to be generally improved, or only at peak times.

2 Be sure what problem to solve SLES 15 SP6

Furthermore, make sure you can apply a measurement to your problem, otherwise you cannot verify if the

tuning was a success or not. You should always be able to compare “before” and “after”. Which metrics to

use depends on the scenario or application you are looking into. For example, relevant Web server metrics

could be expressed in terms of the following:

Latency

The time to deliver a page

Throughput

Number of pages served per second or megabytes transferred per second

Active users

The maximum number of users that can download pages while still receiving pages within an

acceptable latency

1.2 Rule out common problems

A performance problem often is caused by network or hardware problems, bugs or configuration issues.

Make sure to rule out problems such as the ones listed below before attempting to tune your system:

Check the output of the systemd journal (see Book “Administration Guide”, Chapter 21

“journalctl: query the systemd journal”) for unusual entries.

Check (using top or ps) whether a certain process misbehaves by eating up unusual amounts of

CPU time or memory.

Check for network problems by inspecting /proc/net/dev .

In case of I/O problems with physical disks, make sure it is not caused by hardware problems (check

the disk with the smartmontools) or by a full disk.

Ensure that background jobs are scheduled to be carried out in times the server load is low. Those

jobs should also run with low priority (set via nice).

If the machine runs several services using the same resources, consider moving services to another

server.

Last, make sure your software is up-to-date.

3 Rule out common problems SLES 15 SP6

1.3 Finding the bottleneck

Finding the bottleneck is the hardest part when tuning a system. SUSE Linux Enterprise Server offers

many tools to help you with this task. See Part II, “System monitoring” for detailed information on general

system monitoring applications and log file analysis. If the problem requires a long-time in-depth analysis,

the Linux kernel offers means to perform such analysis. See Part III, “Kernel monitoring” for coverage.

Once you have collected the data, it needs to be analyzed. First, inspect if the server's hardware (memory,

CPU, bus) and its I/O capacities (disk, network) are sufficient. If these basic conditions are met, the system

can benefit from tuning.

1.4 Step-by-step tuning

Make sure to carefully plan the tuning itself. It is of vital importance to only do one step at a time. Only by

doing so can you measure whether the change made an improvement or even had a negative impact. Each

tuning activity should be measured over a sufficient time period to ensure you can do an analysis based

on significant data. If you cannot measure a positive effect, do not make the change permanent. Chances

are that it can have a negative effect in the future.

4 Finding the bottleneck SLES 15 SP6

II System monitoring

2 System monitoring utilities 6

3 System log files 56

2 System monitoring utilities

There are programs, tools and utilities which you can use to examine the status of your

system. This chapter introduces a few of them and describes their most important and

frequently used parameters.

Note: Gathering and Analyzing System Information with
supportconfig
Apart from the utilities presented in the following, SUSE Linux Enterprise Server also contains

supportconfig , a tool to create reports about the system such as: current kernel version,

hardware, installed packages, partition setup and much more. These reports are used to provide

the SUSE support with needed information in case a support ticket is created. However, they can

also be analyzed for known issues to help resolve problems faster. For this purpose, SUSE Linux

Enterprise Server provides both an appliance and a command line tool for Supportconfig Analysis

(SCA). See Book “Administration Guide”, Chapter 47 “Gathering system information for support”

for details.

For each of the described commands, examples of the relevant outputs are presented. In the examples,

the first line is the command itself (after the tux > or root #). Omissions are indicated with square

brackets ([...]) and long lines are wrapped where necessary. Line breaks for long lines are indicated

by a backslash (\).

> command -x -y
output line 1
output line 2
output line 3 is annoyingly long, so long that \
 we need to break it
output line 4
[...]
output line 98
output line 99

The descriptions have been kept short so that we can include as many utilities as possible. Further

information for all the commands can be found in the manual pages. Most of the commands also understand

the parameter --help , which produces a brief list of possible parameters.

6 SLES 15 SP6

2.1 Multi-purpose tools

While most Linux system monitoring tools monitor only a single aspect of the system, there are a few

tools with a broader scope. To get an overview and find out which part of the system to examine further,

use these tools first.

2.1.1 vmstat

vmstat collects information about processes, memory, I/O, interrupts and CPUs:

vmstat [options] [delay [count]]

When called without values for delay and count, it displays average values since the last reboot. When

called with a value for delay (in seconds), it displays values for the given period (two seconds in the

examples below). The value for count specifies the number of updates vmstat should perform. If not

specified, it runs until manually stopped.

EXAMPLE 2.1: vmstat OUTPUT ON A LIGHTLY USED MACHINE

> vmstat 2
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
 r b swpd free buff cache si so bi bo in cs us sy id wa st
 1 0 44264 81520 424 935736 0 0 12 25 27 34 1 0 98 0 0
 0 0 44264 81552 424 935736 0 0 0 0 38 25 0 0 100 0 0
 0 0 44264 81520 424 935732 0 0 0 0 23 15 0 0 100 0 0
 0 0 44264 81520 424 935732 0 0 0 0 36 24 0 0 100 0 0
 0 0 44264 81552 424 935732 0 0 0 0 51 38 0 0 100 0 0

EXAMPLE 2.2: vmstat OUTPUT ON A HEAVILY USED MACHINE (CPU BOUND)

> vmstat 2
procs -----------memory----------- ---swap-- -----io---- -system-- -----cpu------
 r b swpd free buff cache si so bi bo in cs us sy id wa st
32 1 26236 459640 110240 6312648 0 0 9944 2 4552 6597 95 5 0 0 0
23 1 26236 396728 110336 6136224 0 0 9588 0 4468 6273 94 6 0 0 0
35 0 26236 554920 110508 6166508 0 0 7684 27992 4474 4700 95 5 0 0 0
28 0 26236 518184 110516 6039996 0 0 10830 4 4446 4670 94 6 0 0 0
21 5 26236 716468 110684 6074872 0 0 8734 20534 4512 4061 96 4 0 0 0

Tip: First line of output
The first line of the vmstat output always displays average values since the last reboot.

7 Multi-purpose tools SLES 15 SP6

The columns show the following:

r

Shows the number of processes in a runnable state. These processes are either executing or waiting

for a free CPU slot. If the number of processes in this column is constantly higher than the number

of CPUs available, this may be an indication of insufficient CPU power.

b

Shows the number of processes waiting for a resource other than a CPU. A high number in this

column may indicate an I/O problem (network or disk).

swpd

The amount of swap space (KB) currently used.

free

The amount of unused memory (KB).

inact

Recently unused memory that can be reclaimed. This column is only visible when calling vmstat
with the parameter -a (recommended).

active

Recently used memory that normally does not get reclaimed. This column is only visible when

calling vmstat with the parameter -a (recommended).

buff

File buffer cache (KB) in RAM that contains file system metadata. This column is not visible when

calling vmstat with the parameter -a .

cache

Page cache (KB) in RAM with the actual contents of files. This column is not visible when calling

vmstat with the parameter -a .

si / so

Amount of data (KB) that is moved from swap to RAM (si) or from RAM to swap (so) per second.

High so values over a long period of time may indicate that an application is leaking memory and

the leaked memory is being swapped out. High si values over a long period of time could mean

that an application that was inactive for a long time is now active again. Combined high si and

so values for prolonged periods of time are evidence of swap thrashing and may indicate that more

RAM needs to be installed in the system because there is not enough memory to hold the working

set size.

8 vmstat SLES 15 SP6

bi

Number of blocks per second received from a block device (for example, a disk read). Swapping also

impacts the values shown here. The block size may vary between file systems but can be determined

using the stat utility. If throughput data is required then iostat may be used.

bo

Number of blocks per second sent to a block device (for example, a disk write). Swapping also

impacts the values shown here.

in

Interrupts per second. A high value may indicate a high I/O level (network and/or disk), but could

also be triggered for other reasons such as inter-processor interrupts triggered by another activity.

Make sure to also check /proc/interrupts to identify the source of interrupts.

cs

Number of context switches per second. This is the number of times that the kernel replaces

executable code of one program in memory with that of another program.

us

Percentage of CPU usage executing application code.

sy

Percentage of CPU usage executing kernel code.

id

Percentage of CPU time spent idling. If this value is zero over a longer time, your CPUs are working

to full capacity. This is not necessarily a bad sign—rather refer to the values in columns r and b to

determine if your machine is equipped with sufficient CPU power.

wa

If "wa" time is non-zero, it indicates throughput lost because of waiting for I/O. This may be

inevitable, for example, if a file is being read for the first time, background writeback cannot keep

up, and so on. It can also be an indicator for a hardware bottleneck (network or hard disk). Lastly,

it can indicate a potential for tuning the virtual memory manager (refer to Chapter 15, Tuning the

memory management subsystem).

st

Percentage of CPU time stolen from a virtual machine.

See vmstat --help for more options.

9 vmstat SLES 15 SP6

2.1.2 dstat

dstat is a replacement for tools such as vmstat , iostat , netstat , or ifstat . dstat displays

information about the system resources in real time. For example, you can compare disk usage in

combination with interrupts from the IDE controller, or compare network bandwidth with the disk

throughput (in the same interval).

By default, its output is presented in readable tables. Alternatively, CSV output can be produced which

is suitable as a spreadsheet import format.

It is written in Python and can be enhanced with plug-ins.

This is the general syntax:

dstat [-afv] [OPTIONS..] [DELAY [COUNT]]

All options and parameters are optional. Without any parameter, dstat displays statistics about CPU (-

c , --cpu), disk (-d , --disk), network (-n , --net), paging (-g , --page), and the interrupts and

context switches of the system (-y , --sys); it refreshes the output every second ad infinitum:

dstat
You did not select any stats, using -cdngy by default.
----total-cpu-usage---- -dsk/total- -net/total- ---paging-- ---system--
usr sys idl wai hiq siq| read writ| recv send| in out | int csw
 0 0 100 0 0 0| 15k 44k| 0 0 | 0 82B| 148 194
 0 0 100 0 0 0| 0 0 |5430B 170B| 0 0 | 163 187
 0 0 100 0 0 0| 0 0 |6363B 842B| 0 0 | 196 185

-a , --all

equal to -cdngy (default)

-f , --full

expand -C , -D , -I , -N and -S discovery lists

-v , --vmstat

equal to -pmgdsc , -D total

DELAY

delay in seconds between each update

COUNT

the number of updates to display before exiting

The default delay is 1 and the count is unspecified (unlimited).

10 dstat SLES 15 SP6

For more information, see the man page of dstat and its Web page at http://dag.wieers.com/home-made/

dstat/ .

2.1.3 System activity information: sar

sar can generate extensive reports on almost all important system activities, among them CPU, memory,

IRQ usage, I/O, and networking. It can also generate reports in real time. The sar command gathers data

from the /proc file system.

Note: sysstat package
The sar command is a part of the sysstat package. Install it with YaST, or with the zypper
in sysstat command. sysstat.service does not start by default, and must be enabled and

started with the following command:

> sudo systemctl enable --now sysstat

2.1.3.1 Generating reports with sar

To generate reports in real time, call sar with an interval (seconds) and a count. To generate reports from

files specify a file name with the option -f instead of interval and count. If file name, interval and count

are not specified, sar attempts to generate a report from /var/log/sa/saDD , where DD stands for the

current day. This is the default location to where sadc (the system activity data collector) writes its data.

Query multiple files with multiple -f options.

sar 2 10 # real time report, 10 times every 2 seconds
sar -f ~/reports/sar_2014_07_17 # queries file sar_2014_07_17
sar # queries file from today in /var/log/sa/
cd /var/log/sa && \
sar -f sa01 -f sa02 # queries files /var/log/sa/0[12]

Find examples for useful sar calls and their interpretation below. For detailed information on the meaning

of each column, refer to the man (1) of sar .

11 System activity information: sar SLES 15 SP6

http://dag.wieers.com/home-made/dstat/
http://dag.wieers.com/home-made/dstat/

Note: sysstat reporting when the service stops
When the sysstat service is stopped (for example, during reboot or shutdown), the tool still

collects last-minute statistics by automatically running the /usr/lib64/sa/sa1 -S ALL 1 1
command. The collected binary data is stored in the system activity data file.

2.1.3.1.1 CPU usage report: sar

When called with no options, sar shows a basic report about CPU usage. On multi-processor machines,

results for all CPUs are summarized. Use the option -P ALL to also see statistics for individual CPUs.

sar 10 5
Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (2 CPU)

17:51:29 CPU %user %nice %system %iowait %steal %idle
17:51:39 all 57,93 0,00 9,58 1,01 0,00 31,47
17:51:49 all 32,71 0,00 3,79 0,05 0,00 63,45
17:51:59 all 47,23 0,00 3,66 0,00 0,00 49,11
17:52:09 all 53,33 0,00 4,88 0,05 0,00 41,74
17:52:19 all 56,98 0,00 5,65 0,10 0,00 37,27
Average: all 49,62 0,00 5,51 0,24 0,00 44,62

%iowait displays the percentage of time that the CPU was idle while waiting for an I/O request. If this

value is much higher than zero over a long period of time, there is a bottleneck in the I/O system (network

or hard disk). If the %idle value is zero over a long period of time, your CPU is working at capacity.

2.1.3.1.2 Memory usage report: sar -r

Generate an overall picture of the system memory (RAM) by using the option -r :

sar -r 10 5
Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (2 CPU)

17:55:27 kbmemfree kbmemused %memused kbbuffers kbcached kbcommit %commit kbactive kbinact kbdirty
17:55:37 104232 1834624 94.62 20 627340 2677656 66.24 802052 828024 1744
17:55:47 98584 1840272 94.92 20 624536 2693936 66.65 808872 826932 2012
17:55:57 87088 1851768 95.51 20 605288 2706392 66.95 827260 821304 1588
17:56:07 86268 1852588 95.55 20 599240 2739224 67.77 829764 820888 3036
17:56:17 104260 1834596 94.62 20 599864 2730688 67.56 811284 821584 3164
Average: 96086 1842770 95.04 20 611254 2709579 67.03 815846 823746 2309

The columns kbcommit and %commit show an approximation of the maximum amount of memory (RAM

and swap) that the current workload could need. While kbcommit displays the absolute number in kilobytes,

%commit displays a percentage.

12 System activity information: sar SLES 15 SP6

2.1.3.1.3 Paging statistics report: sar -B

Use the option -B to display the kernel paging statistics.

sar -B 10 5
Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (2 CPU)

18:23:01 pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff
18:23:11 366.80 11.60 542.50 1.10 4354.80 0.00 0.00 0.00 0.00
18:23:21 0.00 333.30 1522.40 0.00 18132.40 0.00 0.00 0.00 0.00
18:23:31 47.20 127.40 1048.30 0.10 11887.30 0.00 0.00 0.00 0.00
18:23:41 46.40 2.50 336.10 0.10 7945.00 0.00 0.00 0.00 0.00
18:23:51 0.00 583.70 2037.20 0.00 17731.90 0.00 0.00 0.00 0.00
Average: 92.08 211.70 1097.30 0.26 12010.28 0.00 0.00 0.00 0.00

The majflt/s (major faults per second) column shows how many pages are loaded from disk into memory.

The source of the faults may be file accesses or faults. At times, many major faults are normal. For example,

during application start-up time. If major faults are experienced for the entire lifetime of the application it

may be an indication that there is insufficient main memory, particularly if combined with large amounts

of direct scanning (pgscand/s).

The %vmeff column shows the number of pages scanned (pgscand/s) in relation to the ones being reused

from the main memory cache or the swap cache (pgsteal/s). It is a measurement of the efficiency of page

reclaim. Healthy values are either near 100 (every inactive page swapped out is being reused) or 0 (no

pages have been scanned). The value should not drop below 30.

2.1.3.1.4 Block device statistics report: sar -d

Use the option -d to display the block device (hard disk, optical drive, USB storage device, etc.). Make

sure to use the additional option -p (pretty-print) to make the DEV column readable.

sar -d -p 10 5
 Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (2 CPU)

18:46:09 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:19 sda 1.70 33.60 0.00 19.76 0.00 0.47 0.47 0.08
18:46:19 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:19 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:29 sda 8.60 114.40 518.10 73.55 0.06 7.12 0.93 0.80
18:46:29 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:29 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:39 sda 40.50 3800.80 454.90 105.08 0.36 8.86 0.69 2.80
18:46:39 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18:46:39 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:49 sda 1.40 0.00 204.90 146.36 0.00 0.29 0.29 0.04
18:46:49 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 System activity information: sar SLES 15 SP6

18:46:49 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
18:46:59 sda 3.30 0.00 503.80 152.67 0.03 8.12 1.70 0.56
18:46:59 sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average: DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
Average: sda 11.10 789.76 336.34 101.45 0.09 8.07 0.77 0.86
Average: sr0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Compare the Average values for tps, rd_sec/s, and wr_sec/s of all disks. Constantly high values in the

svctm and %util columns could be an indication that I/O subsystem is a bottleneck.

If the machine uses multiple disks, then it is best if I/O is interleaved evenly between disks of equal speed

and capacity. It is necessary to take into account whether the storage has multiple tiers. Furthermore, if

there are multiple paths to storage, then consider the extent of link saturation when balancing how storage

is used.

2.1.3.1.5 Network statistics reports: sar -n KEYWORD

The option -n lets you generate multiple network related reports. Specify one of the following keywords

along with the -n :

DEV: Generates a statistic report for all network devices

EDEV: Generates an error statistics report for all network devices

NFS: Generates a statistic report for an NFS client

NFSD: Generates a statistic report for an NFS server

SOCK: Generates a statistic report on sockets

ALL: Generates all network statistic reports

2.1.3.2 Visualizing sar data

sar reports are not always easy to parse for humans. kSar, a Java application visualizing your sar data,

creates easy-to-read graphs. It can even generate PDF reports. kSar takes data generated in real time, and

past data from a file. kSar is licensed under the BSD license and is available from https://sourceforge.net/

projects/ksar/ .

14 System activity information: sar SLES 15 SP6

https://sourceforge.net/projects/ksar/
https://sourceforge.net/projects/ksar/

2.2 System information

2.2.1 Device load information: iostat

To monitor the system device load, use iostat . It generates reports that can be useful for better balancing

the load between physical disks attached to your system.

To be able to use iostat , install the package sysstat .

The first iostat report shows statistics collected since the system was booted. Subsequent reports cover

the time since the previous report.

> iostat
Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (4 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 17.68 4.49 4.24 0.29 0.00 73.31

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sdb 2.02 36.74 45.73 3544894 4412392
sda 1.05 5.12 13.47 493753 1300276
sdc 0.02 0.14 0.00 13641 37

Invoking iostat in this way helps you find out whether throughput is different from your expectation,

but not why. Such questions can be better answered by an extended report which can be generated by

invoking iostat -x . Extended reports additionally include, for example, information on average queue

sizes and average wait times. It may also be easier to evaluate the data if idle block devices are excluded

using the -z switch. Find definitions for each of the displayed column titles in the man page of iostat
(man 1 iostat).

You can also specify that a certain device should be monitored at specified intervals. For example, to

generate five reports at three-second intervals for the device sda , use:

> iostat -p sda 3 5

To show statistics of network file systems (NFS), there are two similar utilities:

nfsiostat-sysstat is included with the package sysstat .

nfsiostat is included with the package nfs-client .

15 System information SLES 15 SP6

Note: Using iostat in multipath setups
The iostat command might not show all controllers that are listed by nvme list-subsys .

By default, iostat filters out all block devices with no I/O. To make iostat show all devices,

use the following command:

> iostat -p ALL

2.2.2 Processor activity monitoring: mpstat

The utility mpstat examines activities of each available processor. If your system has one processor

only, the global average statistics are reported.

The timing arguments work the same way as with the iostat command. Entering mpstat 2 5 prints

five reports for all processors in two-second intervals.

mpstat 2 5
Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (2 CPU)

13:51:10 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
13:51:12 all 8,27 0,00 0,50 0,00 0,00 0,00 0,00 0,00 0,00 91,23
13:51:14 all 46,62 0,00 3,01 0,00 0,00 0,25 0,00 0,00 0,00 50,13
13:51:16 all 54,71 0,00 3,82 0,00 0,00 0,51 0,00 0,00 0,00 40,97
13:51:18 all 78,77 0,00 5,12 0,00 0,00 0,77 0,00 0,00 0,00 15,35
13:51:20 all 51,65 0,00 4,30 0,00 0,00 0,51 0,00 0,00 0,00 43,54
Average: all 47,85 0,00 3,34 0,00 0,00 0,40 0,00 0,00 0,00 48,41

From the mpstat data, you can see:

The ratio between the %usr and %sys. For example, a ratio of 10:1 indicates the workload is primarily

running application code, and analysis should focus on the application. A ratio of 1:10 indicates

the workload is primarily kernel-bound, and tuning the kernel is worth considering. Alternatively,

determine why the application is kernel-bound and see if that can be alleviated.

Whether there is a subset of CPUs that are nearly fully utilized even if the system is lightly loaded

overall. Few hot CPUs can indicate that the workload is not parallelized and could benefit from

executing on a machine with a smaller number of faster processors.

16 Processor activity monitoring: mpstat SLES 15 SP6

2.2.3 Processor frequency monitoring: turbostat

turbostat shows frequencies, load, temperature, and power of AMD64/Intel 64 processors. It can

operate in two modes: If called with a command, the command process is forked and statistics are

displayed upon command completion. When run without a command, it displays updated statistics every

five seconds. turbostat requires the kernel module msr to be loaded.

> sudo turbostat find /etc -type d -exec true {} \;
0.546880 sec
 CPU Avg_MHz Busy% Bzy_MHz TSC_MHz
 - 416 28.43 1465 3215
 0 631 37.29 1691 3215
 1 416 27.14 1534 3215
 2 270 24.30 1113 3215
 3 406 26.57 1530 3214
 4 505 32.46 1556 3214
 5 270 22.79 1184 3214

The output depends on the CPU type and may vary. To display more details such as temperature and power,

use the --debug option. For more command line options and an explanation of the field descriptions,

refer to man 8 turbostat .

2.2.4 Task monitoring: pidstat

If you need to see what load a particular task applies to your system, use pidstat command. It prints

activity of every selected task or all tasks managed by Linux kernel if no task is specified. You can also

set the number of reports to be displayed and the time interval between them.

For example, pidstat -C firefox 2 3 prints the load statistic for tasks whose command name includes

the string “firefox”. There are three reports printed at two second intervals.

pidstat -C firefox 2 3
Linux 6.4.0-150600.9-default (jupiter) 03/11/2024 _x86_64_ (2 CPU)

14:09:11 UID PID %usr %system %guest %CPU CPU Command
14:09:13 1000 387 22,77 0,99 0,00 23,76 1 firefox

14:09:13 UID PID %usr %system %guest %CPU CPU Command
14:09:15 1000 387 46,50 3,00 0,00 49,50 1 firefox

14:09:15 UID PID %usr %system %guest %CPU CPU Command
14:09:17 1000 387 60,50 7,00 0,00 67,50 1 firefox

17 Processor frequency monitoring: turbostat SLES 15 SP6

Average: UID PID %usr %system %guest %CPU CPU Command
Average: 1000 387 43,19 3,65 0,00 46,84 - firefox

Similarly, pidstat -d can be used to estimate how much I/O tasks are doing, whether they are sleeping

on that I/O and how many clock ticks the task was stalled.

2.2.5 Kernel ring buffer: dmesg

The Linux kernel keeps certain messages in a ring buffer. To view these messages, enter the command

dmesg -T .

Older events are logged in the systemd journal. See Book “Administration Guide”, Chapter 21

“journalctl: query the systemd journal” for more information on the journal.

2.2.6 List of open files: lsof

To view a list of all the files open for the process with process ID PID , use -p . For example, to view

all the files used by the current shell, enter:

lsof -p $$
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 8842 root cwd DIR 0,32 222 6772 /root
bash 8842 root rtd DIR 0,32 166 256 /
bash 8842 root txt REG 0,32 656584 31066 /bin/bash
bash 8842 root mem REG 0,32 1978832 22993 /lib64/libc-2.19.so
[...]
bash 8842 root 2u CHR 136,2 0t0 5 /dev/pts/2
bash 8842 root 255u CHR 136,2 0t0 5 /dev/pts/2

The special shell variable $$, whose value is the process ID of the shell, has been used.

When used with -i , lsof lists currently open Internet files as well:

lsof -i
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
wickedd-d 917 root 8u IPv4 16627 0t0 UDP *:bootpc
wickedd-d 918 root 8u IPv6 20752 0t0 UDP [fe80::5054:ff:fe72:5ead]:dhcpv6-client
sshd 3152 root 3u IPv4 18618 0t0 TCP *:ssh (LISTEN)
sshd 3152 root 4u IPv6 18620 0t0 TCP *:ssh (LISTEN)
master 4746 root 13u IPv4 20588 0t0 TCP localhost:smtp (LISTEN)
master 4746 root 14u IPv6 20589 0t0 TCP localhost:smtp (LISTEN)
sshd 8837 root 5u IPv4 293709 0t0 TCP jupiter.suse.de:ssh->venus.suse.de:33619 (ESTABLISHED)
sshd 8837 root 9u IPv6 294830 0t0 TCP localhost:x11 (LISTEN)
sshd 8837 root 10u IPv4 294831 0t0 TCP localhost:x11 (LISTEN)

18 Kernel ring buffer: dmesg SLES 15 SP6

2.2.7 Kernel and udev event sequence viewer: udevadm monitor
udevadm monitor listens to the kernel uevents and events sent out by a udev rule and prints the device

path (DEVPATH) of the event to the console. This is a sequence of events while connecting a USB memory

stick:

Note: Monitoring udev events
Only root user is allowed to monitor udev events by running the udevadm command.

UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2
UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UEVENT[1138806687] add@/class/scsi_host/host4
UEVENT[1138806687] add@/class/usb_device/usbdev4.10
UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2
UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UDEV [1138806687] add@/class/scsi_host/host4
UDEV [1138806687] add@/class/usb_device/usbdev4.10
UEVENT[1138806692] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UEVENT[1138806692] add@/block/sdb
UEVENT[1138806692] add@/class/scsi_generic/sg1
UEVENT[1138806692] add@/class/scsi_device/4:0:0:0
UDEV [1138806693] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UDEV [1138806693] add@/class/scsi_generic/sg1
UDEV [1138806693] add@/class/scsi_device/4:0:0:0
UDEV [1138806693] add@/block/sdb
UEVENT[1138806694] add@/block/sdb/sdb1
UDEV [1138806694] add@/block/sdb/sdb1
UEVENT[1138806694] mount@/block/sdb/sdb1
UEVENT[1138806697] umount@/block/sdb/sdb1

2.3 Processes

2.3.1 Inter-process communication: ipcs
The command ipcs produces a list of the IPC resources currently in use:

ipcs
------ Message Queues --------
key msqid owner perms used-bytes messages

19 Kernel and udev event sequence viewer: udevadm monitor SLES 15 SP6

------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 65536 tux 600 524288 2 dest
0x00000000 98305 tux 600 4194304 2 dest
0x00000000 884738 root 600 524288 2 dest
0x00000000 786435 tux 600 4194304 2 dest
0x00000000 12058628 tux 600 524288 2 dest
0x00000000 917509 root 600 524288 2 dest
0x00000000 12353542 tux 600 196608 2 dest
0x00000000 12451847 tux 600 524288 2 dest
0x00000000 11567114 root 600 262144 1 dest
0x00000000 10911763 tux 600 2097152 2 dest
0x00000000 11665429 root 600 2336768 2 dest
0x00000000 11698198 root 600 196608 2 dest
0x00000000 11730967 root 600 524288 2 dest

------ Semaphore Arrays --------
key semid owner perms nsems
0xa12e0919 32768 tux 666 2

2.3.2 Process list: ps

The command ps produces a list of processes. Most parameters must be written without a minus sign.

Refer to ps --help for a brief help or to the man page for extensive help.

To list all processes with user and command line information, use ps axu :

> ps axu
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.3 34376 4608 ? Ss Jul24 0:02 /usr/lib/systemd/systemd
root 2 0.0 0.0 0 0 ? S Jul24 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Jul24 0:00 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Jul24 0:00 [kworker/0:0H]
root 6 0.0 0.0 0 0 ? S Jul24 0:00 [kworker/u2:0]
root 7 0.0 0.0 0 0 ? S Jul24 0:00 [migration/0]
[...]
tux 12583 0.0 0.1 185980 2720 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-mtp-volume-monitor
tux 12587 0.0 0.1 198132 3044 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-gphoto2-volume-monitor
tux 12591 0.0 0.1 181940 2700 ? Sl 10:12 0:00 /usr/lib/gvfs/gvfs-goa-volume-monitor
tux 12594 8.1 10.6 1418216 163564 ? Sl 10:12 0:03 /usr/bin/gnome-shell
tux 12600 0.0 0.3 393448 5972 ? Sl 10:12 0:00 /usr/lib/gnome-settings-daemon-3.0/gsd-
printer
tux 12625 0.0 0.6 227776 10112 ? Sl 10:12 0:00 /usr/lib/gnome-control-center-search-
provider
tux 12626 0.5 1.5 890972 23540 ? Sl 10:12 0:00 /usr/bin/nautilus --no-default-window
[...]

To check how many sshd processes are running, use the option -p together with the command pidof ,

which lists the process IDs of the given processes.

20 Process list: ps SLES 15 SP6

> ps -p $(pidof sshd)
 PID TTY STAT TIME COMMAND
 1545 ? Ss 0:00 /usr/sbin/sshd -D
 4608 ? Ss 0:00 sshd: root@pts/0

The process list can be formatted according to your needs. The option L returns a list of all keywords.

Enter the following command to issue a list of all processes sorted by memory usage:

> ps ax --format pid,rss,cmd --sort rss
 PID RSS CMD
 PID RSS CMD
 2 0 [kthreadd]
 3 0 [ksoftirqd/0]
 4 0 [kworker/0:0]
 5 0 [kworker/0:0H]
 6 0 [kworker/u2:0]
 7 0 [migration/0]
 8 0 [rcu_bh]
[...]
12518 22996 /usr/lib/gnome-settings-daemon-3.0/gnome-settings-daemon
12626 23540 /usr/bin/nautilus --no-default-window
12305 32188 /usr/bin/Xorg :0 -background none -verbose
12594 164900 /usr/bin/gnome-shell

USEFUL ps CALLS

ps aux --sort COLUMN

Sort the output by COLUMN . Replace COLUMN with

pmem for physical memory ratio

pcpu for CPU ratio

rss for resident set size (non-swapped physical memory)

ps axo pid,%cpu,rss,vsz,args,wchan

Shows every process, their PID, CPU usage ratio, memory size (resident and virtual), name, and

their syscall.

ps axfo pid,args

Show a process tree.

21 Process list: ps SLES 15 SP6

2.3.3 Process tree: pstree
The command pstree produces a list of processes in the form of a tree:

> pstree
systemd---accounts-daemon---{gdbus}
 | |-{gmain}
 |-at-spi-bus-laun---dbus-daemon
 | |-{dconf worker}
 | |-{gdbus}
 | |-{gmain}
 |-at-spi2-registr---{gdbus}
 |-cron
 |-2*[dbus-daemon]
 |-dbus-launch
 |-dconf-service---{gdbus}
 | |-{gmain}
 |-gconfd-2
 |-gdm---gdm-simple-slav---Xorg
 | | |-gdm-session-wor---gnome-session---gnome-setti+
 | | | | |-gnome-shell+++
 | | | | |-{dconf work+
 | | | | |-{gdbus}
 | | | | |-{gmain}
 | | | |-{gdbus}
 | | | |-{gmain}
 | | |-{gdbus}
 | | |-{gmain}
 | |-{gdbus}
 | |-{gmain}
[...]

The parameter -p adds the process ID to a given name. To have the command lines displayed as well,

use the -a parameter:

2.3.4 Table of processes: top
The command top (an abbreviation of “table of processes”) displays a list of processes that is refreshed

every two seconds. To stop the program, press Q . The parameter -n 1 stops the program after a single

display of the process list. The following is an example output of the command top -n 1 :

> top -n 1
Tasks: 128 total, 1 running, 127 sleeping, 0 stopped, 0 zombie
%Cpu(s): 2.4 us, 1.2 sy, 0.0 ni, 96.3 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem: 1535508 total, 699948 used, 835560 free, 880 buffers

22 Process tree: pstree SLES 15 SP6

KiB Swap: 1541116 total, 0 used, 1541116 free. 377000 cached Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 1 root 20 0 116292 4660 2028 S 0.000 0.303 0:04.45 systemd
 2 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kthreadd
 3 root 20 0 0 0 0 S 0.000 0.000 0:00.07 ksoftirqd+
 5 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kworker/0+
 6 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kworker/u+
 7 root rt 0 0 0 0 S 0.000 0.000 0:00.00 migration+
 8 root 20 0 0 0 0 S 0.000 0.000 0:00.00 rcu_bh
 9 root 20 0 0 0 0 S 0.000 0.000 0:00.24 rcu_sched
 10 root rt 0 0 0 0 S 0.000 0.000 0:00.01 watchdog/0
 11 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 khelper
 12 root 20 0 0 0 0 S 0.000 0.000 0:00.00 kdevtmpfs
 13 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 netns
 14 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 writeback
 15 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kintegrit+
 16 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 bioset
 17 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 crypto
 18 root 0 -20 0 0 0 S 0.000 0.000 0:00.00 kblockd

By default the output is sorted by CPU usage (column %CPU, shortcut Shift – P). Use the following

key combinations to change the sort field:

Shift – M : Resident Memory (RES)

Shift – N : Process ID (PID)

Shift – T : Time (TIME+)

To use any other field for sorting, press F and select a field from the list. To toggle the sort order, Use

Shift – R .

The parameter -U UID monitors only the processes associated with a particular user. Replace UID with

the user ID of the user. Use top -U $(id -u) to show processes of the current user

2.3.5 IBM Z hypervisor monitor: hyptop
hyptop provides a dynamic real-time view of an IBM Z hypervisor environment, using the kernel

infrastructure through debugfs. It works with either the z/VM or the LPAR hypervisor. Depending on the

available data it, for example, shows CPU and memory consumption of active LPARs or z/VM guests. It

provides a curses based user interface similar to the top command. hyptop provides two windows:

sys_list: Lists systems that the current hypervisor is running

sys: Shows one system in more detail

23 IBM Z hypervisor monitor: hyptop SLES 15 SP6

You can run hyptop in interactive mode (default) or in batch mode with the -b option. Help in the

interactive mode is available by pressing ? after hyptop is started.

Output for the sys_list window under LPAR:

12:30:48 | CPU-T: IFL(18) CP(3) UN(3) ?=help
system #cpu cpu mgm Cpu+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
H05LP30 10 461.14 10.18 1547:41 8:15 11:05:59
H05LP33 4 133.73 7.57 220:53 6:12 11:05:54
H05LP50 4 99.26 0.01 146:24 0:12 10:04:24
H05LP02 1 99.09 0.00 269:57 0:00 11:05:58
TRX2CFA 1 2.14 0.03 3:24 0:04 11:06:01
H05LP13 6 1.36 0.34 4:23 0:54 11:05:56
TRX1 19 1.22 0.14 13:57 0:22 11:06:01
TRX2 20 1.16 0.11 26:05 0:25 11:06:00
H05LP55 2 0.00 0.00 0:22 0:00 11:05:52
H05LP56 3 0.00 0.00 0:00 0:00 11:05:52
 413 823.39 23.86 3159:57 38:08 11:06:01

Output for the "sys_list" window under z/VM:

12:32:21 | CPU-T: UN(16) ?=help
system #cpu cpu Cpu+ online memuse memmax wcur
(str) (#) (%) (hm) (dhm) (GiB) (GiB) (#)
T6360004 6 100.31 959:47 53:05:20 1.56 2.00 100
T6360005 2 0.44 1:11 3:02:26 0.42 0.50 100
T6360014 2 0.27 0:45 10:18:41 0.54 0.75 100
DTCVSW1 1 0.00 0:00 53:16:42 0.01 0.03 100
T6360002 6 0.00 166:26 40:19:18 1.87 2.00 100
OPERATOR 1 0.00 0:00 53:16:42 0.00 0.03 100
T6360008 2 0.00 0:37 30:22:55 0.32 0.75 100
T6360003 6 0.00 3700:57 53:03:09 4.00 4.00 100
NSLCF1 1 0.00 0:02 53:16:41 0.03 0.25 500
EREP 1 0.00 0:00 53:16:42 0.00 0.03 100
PERFSVM 1 0.00 0:53 2:21:12 0.04 0.06 0
TCPIP 1 0.00 0:01 53:16:42 0.01 0.12 3000
DATAMOVE 1 0.00 0:05 53:16:42 0.00 0.03 100
DIRMAINT 1 0.00 0:04 53:16:42 0.01 0.03 100
DTCVSW2 1 0.00 0:00 53:16:42 0.01 0.03 100
RACFVM 1 0.00 0:00 53:16:42 0.01 0.02 100
 75 101.57 5239:47 53:16:42 15.46 22.50 3000

Output for the sys window under LPAR:

14:08:41 | H05LP30 | CPU-T: IFL(18) CP(3) UN(3) ? = help
cpuid type cpu mgm visual.
(#) (str) (%) (%) (vis)

24 IBM Z hypervisor monitor: hyptop SLES 15 SP6

0 IFL 96.91 1.96 |## |
1 IFL 81.82 1.46 |##################################### |
2 IFL 88.00 2.43 |## |
3 IFL 92.27 1.29 |## |
4 IFL 83.32 1.05 |##################################### |
5 IFL 92.46 2.59 |## |
6 IFL 0.00 0.00 | |
7 IFL 0.00 0.00 | |
8 IFL 0.00 0.00 | |
9 IFL 0.00 0.00 | |
 534.79 10.78

Output for the sys window under z/VM:

15:46:57 | T6360003 | CPU-T: UN(16) ? = help
cpuid cpu visual
(#) (%) (vis)
0 548.72 |### |
 548.72

2.3.6 A top-like I/O monitor: iotop
The iotop utility displays a table of I/O usage by processes or threads.

Note: Installing iotop
iotop is not installed by default. You need to install it manually with zypper in iotop as

root .

iotop displays columns for the I/O bandwidth read and written by each process during the sampling

period. It also displays the percentage of time the process spent while swapping in and while waiting on

I/O. For each process, its I/O priority (class/level) is shown. In addition, the total I/O bandwidth read and

written during the sampling period is displayed at the top of the interface.

The ← and → keys change the sorting.

R reverses the sort order.

O toggles between showing all processes and threads (default view) and showing only those doing

I/O. (This function is similar to adding --only on command line.)

P toggles between showing threads (default view) and processes. (This function is similar to --

only .)

25 A top-like I/O monitor: iotop SLES 15 SP6

A toggles between showing the current I/O bandwidth (default view) and accumulated I/O

operations since iotop was started. (This function is similar to --accumulated .)

I lets you change the priority of a thread or a process's threads.

Q quits iotop .

Pressing any other key forces a refresh.

Following is an example output of the command iotop --only , while find and emacs are running:

iotop --only
Total DISK READ: 50.61 K/s | Total DISK WRITE: 11.68 K/s
 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
 3416 be/4 tux 50.61 K/s 0.00 B/s 0.00 % 4.05 % find /
 275 be/3 root 0.00 B/s 3.89 K/s 0.00 % 2.34 % [jbd2/sda2-8]
 5055 be/4 tux 0.00 B/s 3.89 K/s 0.00 % 0.04 % emacs

iotop can be also used in a batch mode (-b) and its output stored in a file for later analysis. For a

complete set of options, see the manual page (man 8 iotop).

2.3.7 Modify a process's niceness: nice and renice
The kernel determines which processes require more CPU time than others by the process's nice level, also

called niceness. The higher the “nice” level of a process is, the less CPU time it takes from other processes.

Nice levels range from -20 (the least “nice” level) to 19. Negative values can only be set by root .

Adjusting the niceness level is useful when running a non time-critical process that lasts long and uses large

amounts of CPU time. For example, compiling a kernel on a system that also performs other tasks. Making

such a process “nicer” ensures that the other tasks, for example, a Web server, have a higher priority.

Calling nice without any parameters prints the current niceness:

> nice
0

Running nice COMMAND increments the current nice level for the given command by 10. Using nice
-n LEVEL COMMAND lets you specify a new niceness relative to the current one.

To change the niceness of a running process, use renice PRIORITY -p PROCESS_ID , for example:

> renice +5 3266

To restore the niceness of all processes owned by a specific user, use the option -u USER . Process groups

are reniced by the option -g PROCESS_GROUP_ID .

26 Modify a process's niceness: nice and renice SLES 15 SP6

2.4 Memory

2.4.1 Memory usage: free

The utility free examines RAM and swap usage. Details of both free and used memory and swap areas

are shown:

> free
 total used free shared buffers cached
Mem: 32900500 32703448 197052 0 255668 5787364
-/+ buffers/cache: 26660416 6240084
Swap: 2046972 304680 1742292

The options -b , -k , -m , -g show the output in bytes, KB, MB, or GB, respectively. The parameter

-s delay ensures that the display is refreshed every DELAY seconds. For example, free -s 1.5
produces an update every 1.5 seconds.

2.4.2 Detailed memory usage: /proc/meminfo

Use /proc/meminfo to get more detailed information on memory usage than with free . In fact, free
uses a certain amount of data from this file. See an example output from a 64-bit system below, which

differs slightly on 32-bit systems because of different memory management:

MemTotal: 1942636 kB
MemFree: 1294352 kB
MemAvailable: 1458744 kB
Buffers: 876 kB
Cached: 278476 kB
SwapCached: 0 kB
Active: 368328 kB
Inactive: 199368 kB
Active(anon): 288968 kB
Inactive(anon): 10568 kB
Active(file): 79360 kB
Inactive(file): 188800 kB
Unevictable: 80 kB
Mlocked: 80 kB
SwapTotal: 2103292 kB
SwapFree: 2103292 kB
Dirty: 44 kB
Writeback: 0 kB

27 Memory SLES 15 SP6

AnonPages: 288592 kB
Mapped: 70444 kB
Shmem: 11192 kB
Slab: 40916 kB
SReclaimable: 17712 kB
SUnreclaim: 23204 kB
KernelStack: 2000 kB
PageTables: 10996 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 3074608 kB
Committed_AS: 1407208 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 145996 kB
VmallocChunk: 34359588844 kB
HardwareCorrupted: 0 kB
AnonHugePages: 86016 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 79744 kB
DirectMap2M: 2017280 kB

These entries stand for the following:

MemTotal

Total amount of RAM.

MemFree

Amount of unused RAM.

MemAvailable

Estimate of how much memory is available for starting new applications without swapping.

Buffers

File buffer cache in RAM containing file system metadata.

Cached

Page cache in RAM. This excludes buffer cache and swap cache, but includes Shmem memory.

SwapCached

Page cache for swapped-out memory.

28 Detailed memory usage: /proc/meminfo SLES 15 SP6

Active, Active(anon), Active(file)

Recently used memory that is not reclaimed unless necessary or on explicit request. Active is the

sum of Active(anon) and Active(file):

Active(anon) tracks swap-backed memory. This includes private and shared anonymous

mappings and private file pages after copy-on-write.

Active(file) tracks other file system backed memory.

Inactive, Inactive(anon), Inactive(file)

Less recently used memory that is generally reclaimed first. Inactive is the sum of Inactive(anon)

and Inactive(file):

Inactive(anon) tracks swap backed memory. This includes private and shared anonymous

mappings and private file pages after copy-on-write.

Inactive(file) tracks other file system backed memory.

Unevictable

Amount of memory that cannot be reclaimed (for example, because it is Mlocked or used as a RAM

disk).

Mlocked

Amount of memory that is backed by the mlock system call. mlock allows processes to define

which part of physical RAM their virtual memory should be mapped to. However, mlock does not

guarantee this placement.

SwapTotal

Amount of swap space.

SwapFree

Amount of unused swap space.

Dirty

Amount of memory waiting to be written to disk, because it contains changes compared to the

backing storage. Dirty data can be explicitly synchronized either by the application or by the kernel

after a short delay. A large amount of dirty data may take considerable time to write to disk resulting

in stalls. The total amount of dirty data that can exist at any time can be controlled with the sysctl
parameters vm.dirty_ratio or vm.dirty_bytes (refer to Section 15.1.5, “Writeback” for more

details).

29 Detailed memory usage: /proc/meminfo SLES 15 SP6

Writeback

Amount of memory that is currently being written to disk.

Mapped

Memory claimed with the mmap system call.

Shmem

Memory shared between groups of processes, such as IPC data, tmpfs data, and shared anonymous

memory.

Slab

Memory allocation for internal data structures of the kernel.

SReclaimable

Slab section that can be reclaimed, such as caches (inode, dentry, etc.).

SUnreclaim

Slab section that cannot be reclaimed.

KernelStack

Amount of kernel space memory used by applications (through system calls).

PageTables

Amount of memory dedicated to page tables of all processes.

NFS_Unstable

NFS pages that have already been sent to the server, but are not yet committed there.

Bounce

Memory used for bounce buffers of block devices.

WritebackTmp

Memory used by FUSE for temporary writeback buffers.

CommitLimit

Amount of memory available to the system based on the overcommit ratio setting. This is only

enforced if strict overcommit accounting is enabled.

Committed_AS

An approximation of the total amount of memory (RAM and swap) that the current workload would

need in the worst case.

VmallocTotal

Amount of allocated kernel virtual address space.

30 Detailed memory usage: /proc/meminfo SLES 15 SP6

VmallocUsed

Amount of used kernel virtual address space.

VmallocChunk

The largest contiguous block of available kernel virtual address space.

HardwareCorrupted

Amount of failed memory (can only be detected when using ECC RAM).

AnonHugePages

Anonymous hugepages that are mapped into user space page tables. These are allocated transparently

for processes without being specifically requested, therefore they are also known as transparent

hugepages (THP).

HugePages_Total

Number of preallocated hugepages for use by SHM_HUGETLB and MAP_HUGETLB or through the

hugetlbfs file system, as defined in /proc/sys/vm/nr_hugepages .

HugePages_Free

Number of hugepages available.

HugePages_Rsvd

Number of hugepages that are committed.

HugePages_Surp

Number of hugepages available beyond HugePages_Total (“surplus”), as defined in /proc/sys/

vm/nr_overcommit_hugepages .

Hugepagesize

Size of a hugepage—on AMD64/Intel 64 the default is 2048 KB.

DirectMap4k etc.

Amount of kernel memory that is mapped to pages with a given size (in the example: 4 kB).

2.4.3 Process memory usage: smaps

Exactly determining how much memory a certain process is consuming is not possible with standard tools

like top or ps . Use the smaps subsystem, introduced in kernel 2.6.14, if you need exact data. It can be

found at /proc/PID/smaps and shows you the number of clean and dirty memory pages the process

with the ID PID is using at that time. It differentiates between shared and private memory, so you can see

31 Process memory usage: smaps SLES 15 SP6

how much memory the process is using without including memory shared with other processes. For more

information see /usr/src/linux/Documentation/filesystems/proc.txt (requires the package

kernel-source to be installed).

smaps is expensive to read. Therefore it is not recommended to monitor it regularly, but only when closely

monitoring a certain process.

2.4.4 numaTOP

numaTOP is a tool for NUMA (Non-uniform Memory Access) systems. The tool helps to identify NUMA-

related performance bottlenecks by providing real-time analysis of a NUMA system.

Generally speaking, numaTOP allows you to identify and investigate processes and threads with poor

locality (that is poor ratio of local versus remote memory usage) by analyzing the number of Remote

Memory Accesses (RMA), the number of Local Memory Accesses (LMA), and the RMA/LMA ratio.

numaTOP is supported on PowerPC and the following Intel Xeon processors: 5500-series, 6500/7500-

series, 5600-series, E7-x8xx-series, and E5-16xx/24xx/26xx/46xx-series.

numaTOP is available in the official software repositories, and you can install the tool using the sudo
zypper in numatop command. To launch numaTOP, run the numatop command. To get an overview

of numaTOP functionality and usage, use the man numatop command.

2.5 Networking

Tip: Traffic shaping
In case the network bandwidth is lower than expected, you should first check if any traffic shaping

rules are active for your network segment.

2.5.1 Basic network diagnostics: ip

ip is a powerful tool to set up and control network interfaces. You can also use it to quickly view basic

statistics about network interfaces of the system. For example, whether the interface is up or how many

errors, dropped packets, or packet collisions there are.

32 numaTOP SLES 15 SP6

If you run ip with no additional parameter, it displays a help output. To list all network interfaces, enter

ip addr show (or abbreviated as ip a). ip addr show up lists only running network interfaces.

ip -s link show DEVICE lists statistics for the specified interface only:

ip -s link show br0
6: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT
 link/ether 00:19:d1:72:d4:30 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 6346104756 9265517 0 10860 0 0
 TX: bytes packets errors dropped carrier collsns
 3996204683 3655523 0 0 0 0

ip can also show interfaces (link), routing tables (route), and much more—refer to man 8 ip for

details.

ip route
default via 192.168.2.1 dev eth1
192.168.2.0/24 dev eth0 proto kernel scope link src 192.168.2.100
192.168.2.0/24 dev eth1 proto kernel scope link src 192.168.2.101
192.168.2.0/24 dev eth2 proto kernel scope link src 192.168.2.102

ip link
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen
 1000
 link/ether 52:54:00:44:30:51 brd ff:ff:ff:ff:ff:ff
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen
 1000
 link/ether 52:54:00:a3:c1:fb brd ff:ff:ff:ff:ff:ff
4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen
 1000
 link/ether 52:54:00:32:a4:09 brd ff:ff:ff:ff:ff:ff

2.5.2 Show the network usage of processes: nethogs

In certain cases, for example, if the network traffic suddenly becomes too high, it is desirable to quickly

find out which applications are causing the traffic. nethogs , a tool with a design similar to top , shows

incoming and outgoing traffic for all relevant processes:

PID USER PROGRAM DEV SENT RECEIVED
27145 root zypper eth0 5.719 391.749 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30015 0.102 2.326 KB/sec
26635 tux /usr/lib64/firefox/firefox eth0 0.026 0.026 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.021 KB/sec

33 Show the network usage of processes: nethogs SLES 15 SP6

? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.018 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30015 0.000 0.018 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.017 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.000 0.017 KB/sec
? root ..0:113:80c0:8080:10:160:0:100:30045 0.069 0.000 KB/sec
? root unknown TCP 0.000 0.000 KB/sec

TOTAL 5.916 394.192 KB/sec

Like in top , nethogs features interactive commands:

M : cycle between display modes (kb/s, kb, b, mb)

R : sort by RECEIVED

S : sort by SENT

Q : quit

2.5.3 Ethernet cards in detail: ethtool

ethtool can display and change detailed aspects of your Ethernet network device. By default it prints

the current setting of the specified device.

ethtool eth0
Settings for eth0:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
[...]
 Link detected: yes

The following table shows ethtool options that you can use to query the device for specific information:

TABLE 2.1: LIST OF QUERY OPTIONS OF ethtool

ethtool option it queries the device for

-a pause parameter information

34 Ethernet cards in detail: ethtool SLES 15 SP6

ethtool option it queries the device for

-c interrupt coalescing information

-g Rx/Tx (receive/transmit) ring parameter

information

-i associated driver information

-k offload information

-S NIC and driver-specific statistics

2.5.4 Show the network status: ss

ss is a tool to dump socket statistics and replaces the netstat command. To list all connections use

ss without parameters:

ss
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
u_str ESTAB 0 0 * 14082 * 14083
u_str ESTAB 0 0 * 18582 * 18583
u_str ESTAB 0 0 * 19449 * 19450
u_str ESTAB 0 0 @/tmp/dbus-gmUUwXABPV 18784 * 18783
u_str ESTAB 0 0 /var/run/dbus/system_bus_socket 19383 * 19382
u_str ESTAB 0 0 @/tmp/dbus-gmUUwXABPV 18617 * 18616
u_str ESTAB 0 0 @/tmp/dbus-58TPPDv8qv 19352 * 19351
u_str ESTAB 0 0 * 17658 * 17657
u_str ESTAB 0 0 * 17693 * 17694
[..]

To show all network ports currently open, use the following command:

ss -l
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
nl UNCONN 0 0 rtnl:4195117 *
nl UNCONN 0 0 rtnl:wickedd-auto4/811 *
nl UNCONN 0 0 rtnl:wickedd-dhcp4/813 *
nl UNCONN 0 0 rtnl:4195121 *
nl UNCONN 0 0 rtnl:4195115 *
nl UNCONN 0 0 rtnl:wickedd-dhcp6/814 *
nl UNCONN 0 0 rtnl:kernel *
nl UNCONN 0 0 rtnl:wickedd/817 *

35 Show the network status: ss SLES 15 SP6

nl UNCONN 0 0 rtnl:4195118 *
nl UNCONN 0 0 rtnl:nscd/706 *
nl UNCONN 4352 0 tcpdiag:ss/2381 *
[...]

When displaying network connections, you can specify the socket type to display: TCP (-t) or UDP (-

u) for example. The -p option shows the PID and name of the program to which each socket belongs.

The following example lists all TCP connections and the programs using these connections. The -a option

make sure all established connections (listening and non-listening) are shown. The -p option shows the

PID and name of the program to which each socket belongs.

ss -t -a -p
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 *:ssh *:* users:(("sshd",1551,3))
LISTEN 0 100 127.0.0.1:smtp *:* users:(("master",1704,13))
ESTAB 0 132 10.120.65.198:ssh 10.120.4.150:55715 users:(("sshd",2103,5))
LISTEN 0 128 :::ssh :::* users:(("sshd",1551,4))
LISTEN 0 100 ::1:smtp :::* users:(("master",1704,14))

2.6 The /proc file system

The /proc file system is a pseudo file system in which the kernel reserves important information in the

form of virtual files. For example, display the CPU type with this command:

> cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 30
model name : Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
stepping : 5
microcode : 0x6
cpu MHz : 1197.000
cache size : 8192 KB
physical id : 0
siblings : 4
core id : 0
cpu cores : 4
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 11
wp : yes

36 The /proc file system SLES 15 SP6

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat
 pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx rdtscp lm constant_tsc
 arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni dtes64 monitor
 ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm sse4_1 sse4_2 popcnt lahf_lm ida dtherm
 tpr_shadow vnmi flexpriority ept vpid
bogomips : 5333.85
clflush size : 64
cache_alignment : 64
address sizes : 36 bits physical, 48 bits virtual
power management:
[...]

Tip: Detailed processor information
Detailed information about the processor on the AMD64/Intel 64 architecture is also available by

running x86info .

Query the allocation and use of interrupts with the following command:

> cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
 0: 121 0 0 0 IO-APIC-edge timer
 8: 0 0 0 1 IO-APIC-edge rtc0
 9: 0 0 0 0 IO-APIC-fasteoi acpi
 16: 0 11933 0 0 IO-APIC-fasteoi ehci_hcd:+
 18: 0 0 0 0 IO-APIC-fasteoi i801_smbus
 19: 0 117978 0 0 IO-APIC-fasteoi ata_piix,+
 22: 0 0 3275185 0 IO-APIC-fasteoi enp5s1
 23: 417927 0 0 0 IO-APIC-fasteoi ehci_hcd:+
 40: 2727916 0 0 0 HPET_MSI-edge hpet2
 41: 0 2749134 0 0 HPET_MSI-edge hpet3
 42: 0 0 2759148 0 HPET_MSI-edge hpet4
 43: 0 0 0 2678206 HPET_MSI-edge hpet5
 45: 0 0 0 0 PCI-MSI-edge aerdrv, P+
 46: 0 0 0 0 PCI-MSI-edge PCIe PME,+
 47: 0 0 0 0 PCI-MSI-edge PCIe PME,+
 48: 0 0 0 0 PCI-MSI-edge PCIe PME,+
 49: 0 0 0 387 PCI-MSI-edge snd_hda_i+
 50: 933117 0 0 0 PCI-MSI-edge nvidia
NMI: 2102 2023 2031 1920 Non-maskable interrupts
LOC: 92 71 57 41 Local timer interrupts
SPU: 0 0 0 0 Spurious interrupts
PMI: 2102 2023 2031 1920 Performance monitoring int+
IWI: 47331 45725 52464 46775 IRQ work interrupts
RTR: 2 0 0 0 APIC ICR read retries

37 The /proc file system SLES 15 SP6

RES: 472911 396463 339792 323820 Rescheduling interrupts
CAL: 48389 47345 54113 50478 Function call interrupts
TLB: 28410 26804 24389 26157 TLB shootdowns
TRM: 0 0 0 0 Thermal event interrupts
THR: 0 0 0 0 Threshold APIC interrupts
MCE: 0 0 0 0 Machine check exceptions
MCP: 40 40 40 40 Machine check polls
ERR: 0
MIS: 0

The address assignment of executables and libraries is contained in the maps file:

> cat /proc/self/maps
08048000-0804c000 r-xp 00000000 03:03 17753 /bin/cat
0804c000-0804d000 rw-p 00004000 03:03 17753 /bin/cat
0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]
b7d27000-b7d5a000 r--p 00000000 03:03 11867 /usr/lib/locale/en_GB.utf8/
b7d5a000-b7e32000 r--p 00000000 03:03 11868 /usr/lib/locale/en_GB.utf8/
b7e32000-b7e33000 rw-p b7e32000 00:00 0
b7e33000-b7f45000 r-xp 00000000 03:03 8837 /lib/libc-2.3.6.so
b7f45000-b7f46000 r--p 00112000 03:03 8837 /lib/libc-2.3.6.so
b7f46000-b7f48000 rw-p 00113000 03:03 8837 /lib/libc-2.3.6.so
b7f48000-b7f4c000 rw-p b7f48000 00:00 0
b7f52000-b7f53000 r--p 00000000 03:03 11842 /usr/lib/locale/en_GB.utf8/
[...]
b7f5b000-b7f61000 r--s 00000000 03:03 9109 /usr/lib/gconv/gconv-module
b7f61000-b7f62000 r--p 00000000 03:03 9720 /usr/lib/locale/en_GB.utf8/
b7f62000-b7f76000 r-xp 00000000 03:03 8828 /lib/ld-2.3.6.so
b7f76000-b7f78000 rw-p 00013000 03:03 8828 /lib/ld-2.3.6.so
bfd61000-bfd76000 rw-p bfd61000 00:00 0 [stack]
ffffe000-fffff000 ---p 00000000 00:00 0 [vdso]

A lot more information can be obtained from the /proc file system. Some important files and their

contents are:

/proc/devices

Available devices

/proc/modules

Kernel modules loaded

/proc/cmdline

Kernel command line

/proc/meminfo

Detailed information about memory usage

38 The /proc file system SLES 15 SP6

/proc/config.gz

gzip -compressed configuration file of the kernel currently running

/proc/ PID/

Find information about processes currently running in the /proc/ NNN directories, where NNN is

the process ID (PID) of the relevant process. Every process can find its own characteristics in /

proc/self/ .

Further information is available in the text file /usr/src/linux/Documentation/filesystems/

proc.txt (this file is available when the package kernel-source is installed).

2.6.1 procinfo

Important information from the /proc file system is summarized by the command procinfo :

> procinfo
Linux 3.11.10-17-desktop (geeko@buildhost) (gcc 4.8.1 20130909) #1 4CPU
 [jupiter.example.com]

Memory: Total Used Free Shared Buffers Cached
Mem: 8181908 8000632 181276 0 85472 2850872
Swap: 10481660 1576 10480084

Bootup: Mon Jul 28 09:54:13 2014 Load average: 1.61 0.85 0.74 2/904 25949

user : 1:54:41.84 12.7% page in : 2107312 disk 1: 52212r 20199w
nice : 0:00:00.46 0.0% page out: 1714461 disk 2: 19387r 10928w
system: 0:25:38.00 2.8% page act: 466673 disk 3: 548r 10w
IOwait: 0:04:16.45 0.4% page dea: 272297
hw irq: 0:00:00.42 0.0% page flt: 105754526
sw irq: 0:01:26.48 0.1% swap in : 0
idle : 12:14:43.65 81.5% swap out: 394
guest : 0:02:18.59 0.2%
uptime: 3:45:22.24 context : 99809844

irq 0: 121 timer irq 41: 3238224 hpet3
irq 8: 1 rtc0 irq 42: 3251898 hpet4
irq 9: 0 acpi irq 43: 3156368 hpet5
irq 16: 14589 ehci_hcd:usb1 irq 45: 0 aerdrv, PCIe PME
irq 18: 0 i801_smbus irq 46: 0 PCIe PME, pciehp
irq 19: 124861 ata_piix, ata_piix, f irq 47: 0 PCIe PME, pciehp
irq 22: 3742817 enp5s1 irq 48: 0 PCIe PME, pciehp
irq 23: 479248 ehci_hcd:usb2 irq 49: 387 snd_hda_intel

39 procinfo SLES 15 SP6

irq 40: 3216894 hpet2 irq 50: 1088673 nvidia

To see all the information, use the parameter -a . The parameter -nN produces updates of the information

every N seconds. In this case, stop the program by pressing Q .

By default, the cumulative values are displayed. The parameter -d produces the differential values.

procinfo -dn5 displays the values that have changed in the last five seconds:

2.6.2 System control parameters: /proc/sys/

System control parameters are used to modify the Linux kernel parameters at runtime. They reside in /

proc/sys/ and can be viewed and modified with the sysctl command. To list all parameters, run

sysctl -a . A single parameter can be listed with sysctl PARAMETER_NAME .

Parameters are grouped into categories and can be listed with sysctl CATEGORY or by listing the

contents of the respective directories. The most important categories are listed below. The links to further

readings require the installation of the package kernel-source .

sysctl dev (/proc/sys/dev/)

Device-specific information.

sysctl fs (/proc/sys/fs/)

Used file handles, quotas, and other file system-oriented parameters. For details see /usr/src/

linux/Documentation/sysctl/fs.txt .

sysctl kernel (/proc/sys/kernel/)

Information about the task scheduler, system shared memory, and other kernel-related parameters.

For details see /usr/src/linux/Documentation/sysctl/kernel.txt

sysctl net (/proc/sys/net/)

Information about network bridges, and general network parameters (mainly the ipv4/

subdirectory). For details see /usr/src/linux/Documentation/sysctl/net.txt

sysctl vm (/proc/sys/vm/)

Entries in this path relate to information about the virtual memory, swapping, and caching. For

details see /usr/src/linux/Documentation/sysctl/vm.txt

To set or change a parameter for the current session, use the command sysctl -w PARAMETER = VALUE .

To permanently change a setting, add a line PARAMETER = VALUE to /etc/sysctl.conf .

40 System control parameters: /proc/sys/ SLES 15 SP6

2.7 Hardware information

2.7.1 PCI resources: lspci

Note: Accessing PCI configuration.
Most operating systems require root user privileges to grant access to the computer's PCI

configuration.

The command lspci lists the PCI resources:

lspci
00:00.0 Host bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \
 DRAM Controller/Host-Hub Interface (rev 01)
00:01.0 PCI bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \
 Host-to-AGP Bridge (rev 01)
00:1d.0 USB Controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 01)
00:1d.1 USB Controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #2 (rev 01)
00:1d.2 USB Controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) USB UHCI Controller #3 (rev 01)
00:1d.7 USB Controller: Intel Corporation 82801DB/DBM \
 (ICH4/ICH4-M) USB2 EHCI Controller (rev 01)
00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 81)
00:1f.0 ISA bridge: Intel Corporation 82801DB/DBL (ICH4/ICH4-L) \
 LPC Interface Bridge (rev 01)
00:1f.1 IDE interface: Intel Corporation 82801DB (ICH4) IDE \
 Controller (rev 01)
00:1f.3 SMBus: Intel Corporation 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) \
 SMBus Controller (rev 01)
00:1f.5 Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM \
 (ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 01)
01:00.0 VGA compatible controller: Matrox Graphics, Inc. G400/G450 (rev 85)
02:08.0 Ethernet controller: Intel Corporation 82801DB PRO/100 VE (LOM) \
 Ethernet Controller (rev 81)

Using -v results in a more detailed listing:

lspci -v
[...]
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet \

41 Hardware information SLES 15 SP6

Controller (rev 02)
 Subsystem: Intel Corporation PRO/1000 MT Desktop Adapter
 Flags: bus master, 66MHz, medium devsel, latency 64, IRQ 19
 Memory at f0000000 (32-bit, non-prefetchable) [size=128K]
 I/O ports at d010 [size=8]
 Capabilities: [dc] Power Management version 2
 Capabilities: [e4] PCI-X non-bridge device
 Kernel driver in use: e1000
 Kernel modules: e1000

Information about device name resolution is obtained from the file /usr/share/pci.ids . PCI IDs not

listed in this file are marked “Unknown device.”

The parameter -vv produces all the information that could be queried by the program. To view the pure

numeric values, use the parameter -n .

2.7.2 USB devices: lsusb

The command lsusb lists all USB devices. With the option -v , print a more detailed list. The detailed

information is read from the directory /proc/bus/usb/ . The following is the output of lsusb with

these USB devices attached: hub, memory stick, hard disk and mouse.

lsusb
Bus 004 Device 007: ID 0ea0:2168 Ours Technology, Inc. Transcend JetFlash \
 2.0 / Astone USB Drive
Bus 004 Device 006: ID 04b4:6830 Cypress Semiconductor Corp. USB-2.0 IDE \
 Adapter
Bus 004 Device 005: ID 05e3:0605 Genesys Logic, Inc.
Bus 004 Device 001: ID 0000:0000
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000
Bus 001 Device 005: ID 046d:c012 Logitech, Inc. Optical Mouse
Bus 001 Device 001: ID 0000:0000

2.7.3 Monitoring and tuning the thermal subsystem: tmon

tmon is a tool to help visualize, tune, and test the complex thermal subsystem. When started without

parameters, tmon runs in monitoring mode:

┌──────THERMAL ZONES(SENSORS)──────────────────────────────┐
│Thermal Zones: acpitz00 │
│Trip Points: PC │

42 USB devices: lsusb SLES 15 SP6

└──┘
┌─────────── COOLING DEVICES ──────────────────────────────┐
│ID Cooling Dev Cur Max Thermal Zone Binding │
│00 Processor 0 3 ││││││││││││ │
│01 Processor 0 3 ││││││││││││ │
│02 Processor 0 3 ││││││││││││ │
│03 Processor 0 3 ││││││││││││ │
│04 intel_powerc -1 50 ││││││││││││ │
└──┘
┌──┐
│ 10 20 30 40 │
│acpitz 0:[8][>>>>>>>>>P9 C31 │
└──┘
┌────────────────── CONTROLS ──────────────────────────────┐
│PID gain: kp=0.36 ki=5.00 kd=0.19 Output 0.00 │
│Target Temp: 65.0C, Zone: 0, Control Device: None │
└──┘

Ctrl-c - Quit TAB - Tuning

For detailed information on how to interpret the data, how to log thermal data and how to use tmon to

test and tune cooling devices and sensors, refer to the man page: man 8 tmon . The package tmon is

not installed by default.

2.7.4 MCELog: machine check exceptions (MCE)

Note: Availability
This tool is only available on AMD64/Intel 64 systems.

The mcelog package logs and parses/translates Machine Check Exceptions (MCE) on hardware errors,

including I/O, CPU, and memory errors. Additionally, mcelog handles predictive bad page offlining and

automatic core offlining when cache errors happen. Formerly this was managed by a cron job executed

hourly. Now hardware errors are immediately processed by an mcelog daemon.

Note: Support for AMD scalable MCA
SUSE Linux Enterprise Server supports AMD's Scalable Machine Check Architecture (Scalable

MCA). Scalable MCA improves hardware error reporting in AMD Zen processors. It expands

information logged in MCA banks for improved error handling and better diagnosability.

43 MCELog: machine check exceptions (MCE) SLES 15 SP6

mcelog captures MCA messages (rasdaemon and dmesg also capture

MCA messages). See section 3.1, Machine Check Architecture of Processor

Programming Reference (PPR) for AMD Family 17h Model 01h, Revision

B1 Processors for detailed information, https://developer.amd.com/wordpress/

media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf .

mcelog is configured in /etc/mcelog/mcelog.conf . Configuration options are documented in man
mcelog , and at https://mcelog.org/ . The following example shows only changes to the default file:

daemon = yes
filter = yes
filter-memory-errors = yes
no-syslog = yes
logfile = /var/log/mcelog
run-credentials-user = root
run-credentials-group = nobody
client-group = root
socket-path = /var/run/mcelog-client

The mcelog service is not enabled by default. The service can either be enabled and started via the YaST

system services editor, or via command line:

systemctl enable mcelog
systemctl start mcelog

2.7.5 AMD64/Intel 64: dmidecode: DMI table decoder

dmidecode shows the machine's DMI table containing information such as serial numbers and BIOS

revisions of the hardware.

dmidecode
dmidecode 2.12
SMBIOS 2.5 present.
27 structures occupying 1298 bytes.
Table at 0x000EB250.

Handle 0x0000, DMI type 4, 35 bytes
Processor Information
 Socket Designation: J1PR
 Type: Central Processor
 Family: Other

44 AMD64/Intel 64: dmidecode: DMI table decoder SLES 15 SP6

https://developer.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf
https://developer.amd.com/wordpress/media/2017/11/54945_PPR_Family_17h_Models_00h-0Fh.pdf
https://mcelog.org/

 Manufacturer: Intel(R) Corporation
 ID: E5 06 01 00 FF FB EB BF
 Version: Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz
 Voltage: 1.1 V
 External Clock: 133 MHz
 Max Speed: 4000 MHz
 Current Speed: 2667 MHz
 Status: Populated, Enabled
 Upgrade: Other
 L1 Cache Handle: 0x0004
 L2 Cache Handle: 0x0003
 L3 Cache Handle: 0x0001
 Serial Number: Not Specified
 Asset Tag: Not Specified
 Part Number: Not Specified
[..]

2.7.6 POWER: list hardware

lshw extracts and displays the hardware configuration of the machine.

2.8 Files and file systems

For file system-specific information, refer to Book “Storage Administration Guide”.

2.8.1 Determine the file type: file

The command file determines the type of a file or a list of files by checking /usr/share/misc/

magic .

> file /usr/bin/file
/usr/bin/file: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), \
 for GNU/Linux 2.6.4, dynamically linked (uses shared libs), stripped

The parameter -f LIST specifies a file with a list of file names to examine. The -z allows file to

look inside compressed files:

> file /usr/share/man/man1/file.1.gz
/usr/share/man/man1/file.1.gz: gzip compressed data, from Unix, max compression
> file -z /usr/share/man/man1/file.1.gz

45 POWER: list hardware SLES 15 SP6

/usr/share/man/man1/file.1.gz: troff or preprocessor input text \
 (gzip compressed data, from Unix, max compression)

The parameter -i outputs a mime type string rather than the traditional description.

> file -i /usr/share/misc/magic
/usr/share/misc/magic: text/plain charset=utf-8

2.8.2 File systems and their usage: mount, df and du

The command mount shows which file system (device and type) is mounted at which mount point:

mount
/dev/sda2 on / type ext4 (rw,acl,user_xattr)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
debugfs on /sys/kernel/debug type debugfs (rw)
devtmpfs on /dev type devtmpfs (rw,mode=0755)
tmpfs on /dev/shm type tmpfs (rw,mode=1777)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sda3 on /home type ext3 (rw)
securityfs on /sys/kernel/security type securityfs (rw)
fusectl on /sys/fs/fuse/connections type fusectl (rw)
gvfs-fuse-daemon on /home/tux/.gvfs type fuse.gvfs-fuse-daemon \
(rw,nosuid,nodev,user=tux)

Obtain information about total usage of the file systems with the command df . The parameter -h (or

--human-readable) transforms the output into a form understandable for common users.

> df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda2 20G 5,9G 13G 32% /
devtmpfs 1,6G 236K 1,6G 1% /dev
tmpfs 1,6G 668K 1,6G 1% /dev/shm
/dev/sda3 208G 40G 159G 20% /home

Display the total size of all the files in a given directory and its subdirectories with the command du . The

parameter -s suppresses the output of detailed information and gives only a total for each argument. -

h again transforms the output into a human-readable form:

> du -sh /opt
192M /opt

46 File systems and their usage: mount, df and du SLES 15 SP6

2.8.3 Additional information about ELF binaries

Read the content of binaries with the readelf utility. This even works with ELF files that were built

for other hardware architectures:

> readelf --file-header /bin/ls
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1
 Entry point address: 0x402540
 Start of program headers: 64 (bytes into file)
 Start of section headers: 95720 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 9
 Size of section headers: 64 (bytes)
 Number of section headers: 32
 Section header string table index: 31

2.8.4 File properties: stat

The command stat displays file properties:

> stat /etc/profile
 File: `/etc/profile'
 Size: 9662 Blocks: 24 IO Block: 4096 regular file
Device: 802h/2050d Inode: 132349 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-20 07:51:17.000000000 +0100
Modify: 2009-01-08 19:21:14.000000000 +0100
Change: 2009-03-18 12:55:31.000000000 +0100

The parameter --file-system produces details of the properties of the file system in which the specified

file is located:

> stat /etc/profile --file-system

47 Additional information about ELF binaries SLES 15 SP6

 File: "/etc/profile"
 ID: d4fb76e70b4d1746 Namelen: 255 Type: ext2/ext3
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 2581445 Free: 1717327 Available: 1586197
Inodes: Total: 655776 Free: 490312

2.9 User information

2.9.1 User accessing files: fuser

It can be useful to determine what processes or users are currently accessing certain files. Suppose, for

example, you want to unmount a file system mounted at /mnt . umount returns "device is busy." The

command fuser can then be used to determine what processes are accessing the device:

> fuser -v /mnt/*

 USER PID ACCESS COMMAND
/mnt/notes.txt tux 26597 f.... less

Following termination of the less process, which was running on another terminal, the file system can

successfully be unmounted. When used with -k option, fuser stops processes accessing the file as well.

2.9.2 Who is doing what: w

With the command w , find out who is logged in to the system and what each user is doing. For example:

> w
 16:00:59 up 1 day, 2:41, 3 users, load average: 0.00, 0.01, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
tux :0 console Wed13 ?xdm? 8:15 0.03s /usr/lib/gdm/gd
tux console :0 Wed13 26:41m 0.00s 0.03s /usr/lib/gdm/gd
tux pts/0 :0 Wed13 20:11 0.10s 2.89s /usr/lib/gnome-

If any users of other systems have logged in remotely, the parameter -f shows the computers from which

they have established the connection.

48 User information SLES 15 SP6

2.10 Time and date

2.10.1 Time measurement with time

Determine the time spent by commands with the time utility. This utility is available in two versions: as

a Bash built-in and as a program (/usr/bin/time).

> time find . > /dev/null

real 0m4.051s 1

user 0m0.042s 2

sys 0m0.205s 3

1 The real time that elapsed from the command's start-up until it finished.

2 CPU time of the user as reported by the times system call.

3 CPU time of the system as reported by the times system call.

The output of /usr/bin/time is much more detailed. It is recommended to run it with the -v switch

to produce human-readable output.

/usr/bin/time -v find . > /dev/null
 Command being timed: "find ."
 User time (seconds): 0.24
 System time (seconds): 2.08
 Percent of CPU this job got: 25%
 Elapsed (wall clock) time (h:mm:ss or m:ss): 0:09.03
 Average shared text size (kbytes): 0
 Average unshared data size (kbytes): 0
 Average stack size (kbytes): 0
 Average total size (kbytes): 0
 Maximum resident set size (kbytes): 2516
 Average resident set size (kbytes): 0
 Major (requiring I/O) page faults: 0
 Minor (reclaiming a frame) page faults: 1564
 Voluntary context switches: 36660
 Involuntary context switches: 496
 Swaps: 0
 File system inputs: 0
 File system outputs: 0
 Socket messages sent: 0
 Socket messages received: 0
 Signals delivered: 0
 Page size (bytes): 4096

49 Time and date SLES 15 SP6

 Exit status: 0

2.11 Graph your data: RRDtool

There are a lot of data in the world around you, which can be easily measured in time. For example,

changes in the temperature, or the number of data sent or received by your computer's network interface.

RRDtool can help you store and visualize such data in detailed and customizable graphs.

RRDtool is available for most Unix platforms and Linux distributions. SUSE® Linux Enterprise Server

ships RRDtool as well. Install it either with YaST or by entering

zypper install rrdtool in the command line as root .

Tip: Bindings
There are Perl, Python, Ruby, and PHP bindings available for RRDtool, so that you can write your

own monitoring scripts in your preferred scripting language.

2.11.1 How RRDtool works

RRDtool is an abbreviation of Round Robin Database tool. Round Robin is a method for manipulating with

a constant amount of data. It uses the principle of a circular buffer, where there is no end nor beginning to

the data row which is being read. RRDtool uses Round Robin Databases to store and read its data.

As mentioned above, RRDtool is designed to work with data that change in time. The ideal case is a sensor

which repeatedly reads measured data (like temperature, speed etc.) in constant periods of time, and then

exports them in a given format. Such data is perfectly ready for RRDtool, and it is easy to process them

and create the desired output.

Sometimes it is not possible to obtain the data automatically and regularly. Their format needs to be pre-

processed before it is supplied to RRDtool, and often you need to manipulate RRDtool even manually.

The following is a simple example of basic RRDtool usage. It illustrates all three important phases of the

usual RRDtool workflow: creating a database, updating measured values, and viewing the output.

50 Graph your data: RRDtool SLES 15 SP6

2.11.2 A practical example

Suppose we want to collect and view information about the memory usage in the Linux system as it

changes in time. To make the example more vivid, we measure the currently free memory over a period

of 40 seconds in 4-second intervals. Three applications that generally consume a lot of system memory

are started and closed: the Firefox Web browser, the Evolution e-mail client, and the Eclipse development

framework.

2.11.2.1 Collecting data

RRDtool is frequently used to measure and visualize network traffic. In such case, the Simple Network

Management Protocol (SNMP) is used. This protocol can query network devices for relevant values of

their internal counters. Exactly these values are to be stored with RRDtool. For more information on

SNMP, see http://www.net-snmp.org/ .

Our situation is different—we need to obtain the data manually. A helper script free_mem.sh repetitively

reads the current state of free memory and writes it to the standard output.

> cat free_mem.sh
INTERVAL=4
for steps in {1..10}
do
 DATE=`date +%s`
 FREEMEM=`free -b | grep "Mem" | awk '{ print $4 }'`
 sleep $INTERVAL
 echo "rrdtool update free_mem.rrd $DATE:$FREEMEM"
done

The time interval is set to 4 seconds, and is implemented with the sleep command.

RRDtool accepts time information in a special format - so called Unix time. It is defined as

the number of seconds since the midnight of January 1, 1970 (UTC). For example, 1272907114

represents 2010-05-03 17:18:34.

The free memory information is reported in bytes with free -b . Prefer to supply basic units (bytes)

instead of multiple units (like kilobytes).

The line with the echo ... command contains the future name of the database file

(free_mem.rrd), and together creates a command line for updating RRDtool values.

After running free_mem.sh , you see an output similar to this:

> sh free_mem.sh

51 A practical example SLES 15 SP6

http://www.net-snmp.org/

rrdtool update free_mem.rrd 1272974835:1182994432
rrdtool update free_mem.rrd 1272974839:1162817536
rrdtool update free_mem.rrd 1272974843:1096269824
rrdtool update free_mem.rrd 1272974847:1034219520
rrdtool update free_mem.rrd 1272974851:909438976
rrdtool update free_mem.rrd 1272974855:832454656
rrdtool update free_mem.rrd 1272974859:829120512
rrdtool update free_mem.rrd 1272974863:1180377088
rrdtool update free_mem.rrd 1272974867:1179369472
rrdtool update free_mem.rrd 1272974871:1181806592

It is convenient to redirect the command's output to a file with

sh free_mem.sh > free_mem_updates.log

to simplify its future execution.

2.11.2.2 Creating the database

Create the initial Robin Round database for our example with the following command:

> rrdtool create free_mem.rrd --start 1272974834 --step=4 \
DS:memory:GAUGE:600:U:U RRA:AVERAGE:0.5:1:24

POINTS TO NOTICE

This command creates a file called free_mem.rrd for storing our measured values in a Round

Robin type database.

The --start option specifies the time (in Unix time) when the first value is added to the database.

In this example, it is one less than the first time value of the free_mem.sh output (1272974835).

The --step specifies the time interval in seconds with which the measured data is supplied to the

database.

The DS:memory:GAUGE:600:U:U part introduces a new data source for the database. It is called

memory, its type is gauge, the maximum number between two updates is 600 seconds, and the

minimal and maximal value in the measured range are unknown (U).

RRA:AVERAGE:0.5:1:24 creates Round Robin archive (RRA) whose stored data is processed

with the consolidation functions (CF) that calculates the average of data points. 3 arguments of the

consolidation function are appended to the end of the line.

If no error message is displayed, then free_mem.rrd database is created in the current directory:

> ls -l free_mem.rrd

52 A practical example SLES 15 SP6

-rw-r--r-- 1 tux users 776 May 5 12:50 free_mem.rrd

2.11.2.3 Updating database values

After the database is created, you need to fill it with the measured data. In Section 2.11.2.1, “Collecting

data”, we already prepared the file free_mem_updates.log which consists of rrdtool update
commands. These commands do the update of database values for us.

> sh free_mem_updates.log; ls -l free_mem.rrd
-rw-r--r-- 1 tux users 776 May 5 13:29 free_mem.rrd

As you can see, the size of free_mem.rrd remained the same even after updating its data.

2.11.2.4 Viewing measured values

We have already measured the values, created the database, and stored the measured value in it. Now we

can play with the database, and retrieve or view its values.

To retrieve all the values from our database, enter the following on the command line:

> rrdtool fetch free_mem.rrd AVERAGE --start 1272974830 \
--end 1272974871
 memory
1272974832: nan
1272974836: 1.1729059840e+09
1272974840: 1.1461806080e+09
1272974844: 1.0807572480e+09
1272974848: 1.0030243840e+09
1272974852: 8.9019289600e+08
1272974856: 8.3162112000e+08
1272974860: 9.1693465600e+08
1272974864: 1.1801251840e+09
1272974868: 1.1799787520e+09
1272974872: nan

POINTS TO NOTICE

AVERAGE fetches the average value points from the database, because only one data source is

defined (Section 2.11.2.2, “Creating the database”) with AVERAGE processing and no other function

is available.

The first line of the output prints the name of the data source as defined in Section 2.11.2.2, “Creating

the database”.

53 A practical example SLES 15 SP6

The left results column represents individual points in time, while the right one represents

corresponding measured average values in scientific notation.

The nan in the last line stands for “not a number”.

Now a graph representing the values stored in the database is drawn:

> rrdtool graph free_mem.png \
--start 1272974830 \
--end 1272974871 \
--step=4 \
DEF:free_memory=free_mem.rrd:memory:AVERAGE \
LINE2:free_memory#FF0000 \
--vertical-label "GB" \
--title "Free System Memory in Time" \
--zoom 1.5 \
--x-grid SECOND:1:SECOND:4:SECOND:10:0:%X

POINTS TO NOTICE

free_mem.png is the file name of the graph to be created.

--start and --end limit the time range within which the graph is drawn.

--step specifies the time resolution (in seconds) of the graph.

The DEF:... part is a data definition called free_memory. Its data is read from the free_mem.rrd

database and its data source called memory. The average value points are calculated, because no

others were defined in Section 2.11.2.2, “Creating the database”.

The LINE... part specifies properties of the line to be drawn into the graph. It is 2 pixels wide, its

data come from the free_memory definition, and its color is red.

--vertical-label sets the label to be printed along the y axis, and --title sets the main label

for the whole graph.

--zoom specifies the zoom factor for the graph. This value must be greater than zero.

--x-grid specifies how to draw grid lines and their labels into the graph. Our example places

them every second, while major grid lines are placed every 4 seconds. Labels are placed every 10

seconds under the major grid lines.

54 A practical example SLES 15 SP6

FIGURE 2.1: EXAMPLE GRAPH CREATED WITH RRDTOOL

2.11.3 More information

RRDtool is a complex tool with a lot of subcommands and command-line options. Some are easy to

understand, but to make them produce the results you want and fine-tune them according to your liking

may require a lot of effort.

Apart from RRDtool's man page (man 1 rrdtool) which gives you only basic information, you

should have a look at the RRDtool home page (https://oss.oetiker.ch/rrdtool/) . There is a detailed

documentation (https://oss.oetiker.ch/rrdtool/doc/index.en.html) of the rrdtool command and all its

sub-commands. There are also several tutorials (https://oss.oetiker.ch/rrdtool/tut/index.en.html) to help

you understand the common RRDtool workflow.

If you are interested in monitoring network traffic, have a look at MRTG (Multi Router Traffic Grapher)

(https://oss.oetiker.ch/mrtg/) . MRTG can graph the activity of many network devices. It can use

RRDtool.

55 More information SLES 15 SP6

https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/doc/index.en.html
https://oss.oetiker.ch/rrdtool/tut/index.en.html
https://oss.oetiker.ch/mrtg/
https://oss.oetiker.ch/mrtg/

3 System log files

System log file analysis is one of the most important tasks when analyzing the system. In fact, looking at the

system log files should be the first thing to do when maintaining or troubleshooting a system. SUSE Linux

Enterprise Server automatically logs almost everything that happens on the system in detail. Since the

move to systemd , kernel messages and messages of system services registered with systemd are logged

in systemd journal (see Book “Administration Guide”, Chapter 21 “journalctl: query the systemd

journal”). Other log files (mainly those of system applications) are written in plain text and can be easily

read using an editor or pager. It is also possible to parse them using scripts. This allows you to filter their

content.

3.1 System log files in /var/log/
System log files are always located under the /var/log directory. The following list presents an

overview of all system log files from SUSE Linux Enterprise Server present after a default installation.

Depending on your installation scope, /var/log also contains log files from other services and

applications not listed here. Some files and directories described below are “placeholders” and are only

used, when the corresponding application is installed. Most log files are only visible for the user root .

apparmor/

AppArmor log files. For more information about AppArmor, see Book “Security and Hardening

Guide”.

audit/

Logs from the audit framework. See Book “Security and Hardening Guide” for details.

ConsoleKit/

Logs of the ConsoleKit daemon (daemon for tracking what users are logged in and how they

interact with the computer).

cups/

Access and error logs of the Common Unix Printing System (cups).

firewall

Firewall logs.

gdm/

Log files from the GNOME display manager.

56 System log files in /var/log/ SLES 15 SP6

krb5/

Log files from the Kerberos network authentication system.

lastlog

A database containing information on the last login of each user. Use the command lastlog to

view. See man 8 lastlog for more information.

localmessages

Log messages of certain boot scripts, for example, the log of the DHCP client.

mail*

Mail server (postfix , sendmail) logs.

messages

This is the default place where all kernel and system log messages go and should be the first place

(along with /var/log/warn) to look at in case of problems.

NetworkManager

NetworkManager log files.

news/

Log messages from a news server.

chrony/

Logs from the Network Time Protocol daemon (chrony).

pk_backend_zypp*

PackageKit (with libzypp back-end) log files.

samba/

Log files from Samba, the Windows SMB/CIFS file server.

warn

Log of all system warnings and errors. This should be the first place (along with the output of the

systemd journal) to look in case of problems.

wtmp

Database of all login/logout activities, and remote connections. Use the command last to view.

See man 1 last for more information.

Xorg.NUMBER.log

X.Org start-up log file. Refer to these files in case you have problems starting X.Org.

57 System log files in /var/log/ SLES 15 SP6

The NUMBER in the file name is the display number. For example, the default Xorg.0.log is the

log for display number 0 , and Xorg.1.log is the log for display number 1 . Copies from previous

X.Org starts are named as Xorg.NUMBER.log.old .

Note
The X.Org log files are available in the /var/log/ directory only if you start an X.Org

session as root . If you start an X.Org session as any other user, you can locate the log files

in the ~/.local/share/xorg/ directory.

YaST2/

All YaST log files.

zypp/

libzypp log files. Refer to these files for the package installation history.

zypper.log

Logs from the command line installer zypper .

3.2 Viewing and parsing log files

To view log files, you can use any text editor. There is also a simple YaST module for viewing the system

log available in the YaST control center under Miscellaneous System Log.

For viewing log files in a text console, use the commands less or more . Use head and tail to view

the beginning or end of a log file. To view entries appended to a log file in real-time use tail -f . For

information about how to use these tools, see their man pages.

To search for strings or regular expressions in log files use grep . awk is useful for parsing and rewriting

log files.

3.3 Managing log files with logrotate
Log files under /var/log grow on a daily basis and quickly become large. logrotate is a tool that

helps you manage log files and their growth. It allows automatic rotation, removal, compression, and

mailing of log files. Log files can be handled periodically (daily, weekly, or monthly) or when exceeding

a particular size.

58 Viewing and parsing log files SLES 15 SP6

logrotate is run daily by systemd , and thus modifies log files only once a day. However, exceptions

occur when a log file is modified because of its size, if logrotate is run multiple times a day, or if

--force is enabled. Use /var/lib/misc/logrotate.status to find out when a particular file was

last rotated.

The main configuration file of logrotate is /etc/logrotate.conf . System packages and

programs that produce log files (for example, apache2) put their own configuration files in the

/etc/logrotate.d/ directory. The content of /etc/logrotate.d/ is included via /etc/

logrotate.conf .

EXAMPLE 3.1: EXAMPLE FOR /etc/logrotate.conf

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

uncomment this if you want your log files compressed
#compress

comment these to switch compression to use gzip or another
compression scheme
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

Important: Avoid permission conflicts
The create option pays heed to the modes and ownership of files specified in /etc/

permissions* . If you modify these settings, make sure no conflicts arise.

59 Managing log files with logrotate SLES 15 SP6

3.4 Monitoring log files with logwatch
logwatch is a customizable, pluggable log-monitoring script. It parses system logs, extracts the

important information and presents them in a human readable manner. To use logwatch , install the

logwatch package.

logwatch can either be used at the command line to generate on-the-fly reports, or via cron to regularly

create custom reports. Reports can either be printed on the screen, saved to a file, or be mailed to a specified

address. The latter is especially useful when automatically generating reports via cron .

On the command line, you can tell logwatch for which service and time span to generate a report and

how much detail should be included:

Detailed report on all kernel messages from yesterday
logwatch --service kernel --detail High --range Yesterday --print

Low detail report on all sshd events recorded (incl. archived logs)
logwatch --service sshd --detail Low --range All --archives --print

Mail a report on all smartd messages from May 5th to May 7th to root@localhost
logwatch --service smartd --range 'between 5/5/2005 and 5/7/2005' \
--mailto root@localhost --print

The --range option has got a complex syntax—see logwatch --range help for details. A list of

all services that can be queried is available with the following command:

> ls /usr/share/logwatch/default.conf/services/ | sed 's/\.conf//g'

logwatch can be customized to great detail. However, the default configuration should be sufficient. The

default configuration files are located under /usr/share/logwatch/default.conf/ . Never change

them because they would get overwritten again with the next update. Rather place custom configuration in

/etc/logwatch/conf/ (you may use the default configuration file as a template, though). A detailed

HOWTO on customizing logwatch is available at /usr/share/doc/packages/logwatch/HOWTO-

Customize-LogWatch . The following configuration files exist:

logwatch.conf

The main configuration file. The default version is extensively commented. Each configuration

option can be overwritten on the command line.

ignore.conf

Filter for all lines that should globally be ignored by logwatch .

services/*.conf

The service directory holds configuration files for each service you can generate a report for.

60 Monitoring log files with logwatch SLES 15 SP6

logfiles/*.conf

Specifications on which log files should be parsed for each service.

3.5 Configuring mail forwarding for root
System daemons, cron jobs, systemd timers, and other applications can generate messages and send

them to the root user of the system. By default, each user account owns a local mailbox and will be

notified about new mail messages upon login.

These messages can contain security relevant reports and incidents that require a quick response by the

system administrator. To get notified about these messages in a timely fashion, it is strongly recommended

to forward these mails to a dedicated remote e-mail account that is regularly checked.

PROCEDURE 3.1: CONFIGURE MAIL FORWARDING FOR THE root USER

To forward mail for the root user, perform the following steps:

1. Install the yast2-mail package:

zypper in yast2-mail

2. Run the interactive YaST mail configuration:

yast mail

3. Choose Permanent as Connection type and proceed with Next.

4. Enter the address of the Outgoing mail server. If necessary, configure Authentication. It is strongly

recommended to Enforce TLS encryption to prevent potentially sensitive system data from being

sent unencrypted over the network. Proceed with Next.

5. Enter the e-mail address to Forward root's mail to and Finish the configuration.

Important: Do not accept remote SMTP connections
Do not enable Accept remote SMTP connections, otherwise the local machine will act as a

mail relay.

6. Send a message to test whether mail forwarding works correctly:

> mail root
subject: test

61 Configuring mail forwarding for root SLES 15 SP6

test
.

7. Use the mailq command to verify that the test message has been sent. Upon success, the queue

should be empty. The message should be received by the dedicated mail address configured

previously.

Depending on the number of managed machines and the number of persons who need to be informed about

system events, different e-mail address models can be established:

Collect messages from different systems in an e-mail account that is only accessed by a single person.

Collect messages from different systems in a group e-mail account (aliases or mailing list) that can

be accessed by all relevant persons.

Create separate e-mail accounts for each system.

It is crucial that administrators regularly check the related e-mail accounts. To facilitate this effort and

identify important events, avoid sending unnecessary information. Configure applications to only send

relevant information.

3.6 Forwarding log messages to a central syslog server

System log data can be forwarded from individual systems to a central syslog server on the network. This

allows administrators to get an overview of events on all hosts, and prevents attackers that succeed in

taking over a system from manipulating system logs to cover their tracks.

Setting up a central syslog server consists of two parts. First you configure the central log server, then

the clients for remote logging.

3.6.1 Set up the central syslog server

PROCEDURE 3.2: CONFIGURE THE CENTRAL rsyslog SERVER

To set up a central syslog server, perform the following steps:

1. Edit the configuration file /etc/rsyslog.d/remote.conf .

2. Uncomment the following lines in the UDP Syslog Server or TCP Syslog Server section

of the configuration file. Assign an IP address and port for rsyslogd .

62 Forwarding log messages to a central syslog server SLES 15 SP6

TCP example:

$ModLoad imtcp.so
$UDPServerAddress IP 1

$InputTCPServerRun PORT 2

UDP example:

$ModLoad imudp.so
$UDPServerAddress IP 1

$UDPServerRun PORT 2

1 IP address of the interface for rsyslogd to listen on. If no address is given, the daemon

listens on all interfaces.

2 Port for rsyslogd to listen on. Select a privileged port below 1024. The default is 514.

Important: TCP versus UDP protocol
Traditionally syslog uses the UDP protocol to transmit log messages over the network. This

involves less overhead, but lacks reliability. Log messages can get lost under high load.

The TCP protocol is more reliable and should be preferred over UDP.

Note: UDPServerAddress with TCP
The $UDPServerAddress configuration parameter in the TCP example is no error.

Despite its name it is used for both TCP and UDP.

3. Save the file.

4. Restart the rsyslog service:

> sudo systemctl restart rsyslog.service

5. Open the respective port in the firewall. For firewalld with TCP on port 514 run:

> sudo firewall-cmd --add-port 514/tcp --permanent
> sudo firewall-cmd --reload

You have now configured the central syslog server. Next, configure clients for remote logging.

63 Set up the central syslog server SLES 15 SP6

3.6.2 Set up the client machines

PROCEDURE 3.3: CONFIGURE A RSYSLOG INSTANCE FOR REMOTE LOGGING

To configure a machine for remote logging to a central syslog server, perform the following steps:

1. Edit the configuration file /etc/rsyslog.d/remote.conf .

2. Uncomment the appropriate line (TCP or UDP) and replace remote-host with the address of the

central syslog server set up in Section 3.6.1, “Set up the central syslog server”.

TCP example:

Remote Logging using TCP for reliable delivery
remote host is: name/ip:port, e.g. 192.168.0.1:514, port optional
. @@remote-host

UDP example:

Remote Logging using UDP
remote host is: name/ip:port, e.g. 192.168.0.1:514, port optional
. @remote-host

3. Save the file.

4. Restart the rsyslog service:

> sudo systemctl restart rsyslog.service

5. Verify the proper function of the syslog forwarding:

> logger "hello world"

The log message hello world should now appear on the central syslog server.

You have now configured a system for remote logging to your central syslog server. Repeat this procedure

for all systems that should log remotely.

3.6.3 More information

This basic setup does not include encryption and is only suitable for trusted internal networks. TLS

encryption is strongly recommended, but requires a certificate infrastructure.

In this configuration, all messages from remote hosts are treated the same on the central syslog server.

Consider filtering messages into separate files by remote host or classify them by message category.

64 Set up the client machines SLES 15 SP6

For more information about encryption, filtering, and other advanced topics, consult the RSyslog

documentation at https://www.rsyslog.com/doc/master/index.html#manual .

3.7 Using logger to make system log entries

logger is a tool for making entries in the system log. It provides a shell command interface to the rsyslogd

system log module. For example, the following line outputs its message in /var/log/messages or

directly in the journal (if no logging facility is running):

> logger -t Test "This message comes from $USER"

Depending on the current user and host name, the log contains a line similar to this:

Sep 28 13:09:31 venus Test: This message comes from tux

65 Using logger to make system log entries SLES 15 SP6

https://www.rsyslog.com/doc/master/index.html#manual

III Kernel monitoring

4 SystemTap—filtering and analyzing system data 67

5 Kernel probes 81

6 Hardware-based performance monitoring with Perf 86

7 OProfile—system-wide profiler 91

8 Dynamic debug—kernel debugging messages 97

4 SystemTap—filtering and analyzing system data

SystemTap provides a command line interface and a scripting language to examine the activities of

a running Linux system, particularly the kernel, in fine detail. SystemTap scripts are written in the

SystemTap scripting language, are then compiled to C-code kernel modules and inserted into the kernel.

The scripts can be designed to extract, filter and summarize data, thus allowing the diagnosis of complex

performance problems or functional problems. SystemTap provides information similar to the output of

tools like netstat , ps , top , and iostat . However, more filtering and analysis options can be used

for the collected information.

4.1 Conceptual overview

Each time you run a SystemTap script, a SystemTap session is started. Several passes are done on the

script before it is allowed to run. Then, the script is compiled into a kernel module and loaded. If the script

has been executed before and no system components have changed (for example, different compiler or

kernel versions, library paths, or script contents), SystemTap does not compile the script again. Instead, it

uses the *.c and *.ko data stored in the SystemTap cache (~/.systemtap).

The module is unloaded when the tap has finished running. For an example, see the test run in Section 4.2,

“Installation and setup” and the respective explanation.

4.1.1 SystemTap scripts

SystemTap usage is based on SystemTap scripts (*.stp). They tell SystemTap which type of information

to collect, and what to do once that information is collected. The scripts are written in the SystemTap

scripting language that is similar to AWK and C. For the language definition, see https://sourceware.org/

systemtap/langref.pdf . A lot of useful example scripts are available from https://www.sourceware.org/

systemtap/examples/ .

The essential idea behind a SystemTap script is to name events , and to give them handlers . When

SystemTap runs the script, it monitors for certain events. When an event occurs, the Linux kernel runs the

handler as a sub-routine, then resumes. Thus, events serve as the triggers for handlers to run. Handlers can

record specified data and print it in a certain manner.

The SystemTap language only uses a few data types (integers, strings, and associative arrays of these), and

full control structures (blocks, conditionals, loops, functions). It has a lightweight punctuation (semicolons

are optional) and does not need detailed declarations (types are inferred and checked automatically).

67 Conceptual overview SLES 15 SP6

https://sourceware.org/systemtap/langref.pdf
https://sourceware.org/systemtap/langref.pdf
https://www.sourceware.org/systemtap/examples/
https://www.sourceware.org/systemtap/examples/

For more information about SystemTap scripts and their syntax, refer to Section 4.3, “Script syntax” and to

the stapprobes and stapfuncs man pages, that are available with the systemtap-docs package.

4.1.2 Tapsets

Tapsets are a library of pre-written probes and functions that can be used in SystemTap scripts. When a

user runs a SystemTap script, SystemTap checks the script's probe events and handlers against the tapset

library. SystemTap then loads the corresponding probes and functions before translating the script to C.

Like SystemTap scripts themselves, tapsets use the file name extension *.stp .

However, unlike SystemTap scripts, tapsets are not meant for direct execution. They constitute the library

from which other scripts can pull definitions. Thus, the tapset library is an abstraction layer designed to

make it easier for users to define events and functions. Tapsets provide aliases for functions that users

could want to specify as an event. Knowing the proper alias is often easier than remembering specific

kernel functions that may vary between kernel versions.

4.1.3 Commands and privileges

The main commands associated with SystemTap are stap and staprun . To execute them, you either

need root privileges or must be a member of the stapdev or stapusr group.

stap

SystemTap front-end. Runs a SystemTap script (either from file, or from standard input). It translates

the script into C code, compiles it, and loads the resulting kernel module into a running Linux kernel.

Then, the requested system trace or probe functions are performed.

staprun

SystemTap back-end. Loads and unloads kernel modules produced by the SystemTap front-end.

For a list of options for each command, use --help . For details, refer to the stap and the staprun
man pages.

To avoid giving root access to users solely to enable them to work with SystemTap, use one of the

following SystemTap groups. They are not available by default on SUSE Linux Enterprise Server, but

you can create the groups and modify the access rights accordingly. Also, adjust the permissions of the

staprun command if the security implications are appropriate for your environment.

68 Tapsets SLES 15 SP6

stapdev

Members of this group can run SystemTap scripts with stap , or run SystemTap instrumentation

modules with staprun . As running stap involves compiling scripts into kernel modules and

loading them into the kernel, members of this group still have effective root access.

stapusr

Members of this group are only allowed to run SystemTap instrumentation modules with

staprun . In addition, they can only run those modules from /lib/modules/KERNEL_VERSION/

systemtap/ . This directory must be owned by root and must only be writable for the root user.

4.1.4 Important files and directories

The following list gives an overview of the SystemTap main files and directories.

/lib/modules/KERNEL_VERSION/systemtap/

Holds the SystemTap instrumentation modules.

/usr/share/systemtap/tapset/

Holds the standard library of tapsets.

/usr/share/doc/packages/systemtap/examples

Holds several example SystemTap scripts for different purposes. Only available if the systemtap-

docs package is installed.

~/.systemtap/cache

Data directory for cached SystemTap files.

/tmp/stap*

Temporary directory for SystemTap files, including translated C code and kernel object.

4.2 Installation and setup

As SystemTap needs information about the kernel, some additional kernel-related packages must be

installed. For each kernel you want to probe with SystemTap, you need to install a set of the following

packages. This set should exactly match the kernel version and flavor (indicated by * in the overview

below).

69 Important files and directories SLES 15 SP6

Important: Repository for packages with debugging information
If you subscribed your system for online updates, you can find “debuginfo” packages in the *-

Debuginfo-Updates online installation repository relevant for SUSE Linux Enterprise Server

15 SP6. Use YaST to enable the repository.

For the classic SystemTap setup, install the following packages (using either YaST or zypper).

systemtap

systemtap-server

systemtap-docs (optional)

kernel-*-base

kernel-*-debuginfo

kernel-*-devel

kernel-source-*

gcc

To get access to the man pages and to a helpful collection of example SystemTap scripts for different

purposes, additionally install the systemtap-docs package.

To check if all packages are correctly installed on the machine and if SystemTap is ready to use, execute

the following command as root .

stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'

It probes the currently used kernel by running a script and returning an output. If the output is similar to

the following, SystemTap is successfully deployed and ready to use:

Pass 1 : parsed user script and 59 library script(s) in 80usr/0sys/214real ms.
Pass 2 : analyzed script: 1 probe(s), 11 function(s), 2 embed(s), 1 global(s) in
 140usr/20sys/412real ms.
Pass 3 : translated to C into
 "/tmp/stapDwEk76/stap_1856e21ea1c246da85ad8c66b4338349_4970.c" in 160usr/0sys/408real ms.
Pass 4 : compiled C into "stap_1856e21ea1c246da85ad8c66b4338349_4970.ko" in
 2030usr/360sys/10182real ms.
Pass 5 : starting run.
 read performed
Pass 5 : run completed in 10usr/20sys/257real ms.

70 Installation and setup SLES 15 SP6

1 Checks the script against the existing tapset library in /usr/share/systemtap/tapset/ for any

tapsets used. Tapsets are scripts that form a library of pre-written probes and functions that can be

used in SystemTap scripts.

2 Examines the script for its components.

3 Translates the script to C. Runs the system C compiler to create a kernel module from it. Both

the resulting C code (*.c) and the kernel module (*.ko) are stored in the SystemTap cache,

~/.systemtap .

4 Loads the module and enables all the probes (events and handlers) in the script by hooking into the

kernel. The event being probed is a Virtual File System (VFS) read. As the event occurs on any

processor, a valid handler is executed (prints the text read performed) and closed with no errors.

5 After the SystemTap session is terminated, the probes are disabled, and the kernel module is

unloaded.

In case any error messages appear during the test, check the output for hints about any missing packages

and make sure they are installed correctly. Rebooting and loading the appropriate kernel may also be

needed.

4.3 Script syntax

SystemTap scripts consist of the following two components:

SystemTap events (probe points)

Name the kernel events at the associated handler should be executed. Examples for events are

entering or exiting a certain function, a timer expiring, or starting or terminating a session.

SystemTap handlers (probe body)

Series of script language statements that specify the work to be done whenever a certain event occurs.

This normally includes extracting data from the event context, storing them into internal variables,

or printing results.

An event and its corresponding handler is collectively called a probe . SystemTap events are also called

probe points . A probe's handler is also called a probe body .

Comments can be inserted anywhere in the SystemTap script in different styles: using either # , /* */ ,

or // as marker.

71 Script syntax SLES 15 SP6

4.3.1 Probe format

A SystemTap script can have multiple probes. They must be written in the following format:

probe EVENT {STATEMENTS}

Each probe has a corresponding statement block. This statement block must be enclosed in { } and

contains the statements to be executed per event.

EXAMPLE 4.1: SIMPLE SYSTEMTAP SCRIPT

The following example shows a simple SystemTap script.

probe 1 begin 2

{ 3

 printf 4 ("hello world\n") 5

 exit () 6

} 7

1 Start of the probe.

2 Event begin (the start of the SystemTap session).

3 Start of the handler definition, indicated by { .

4 First function defined in the handler: the printf function.

5 String to be printed by the printf function, followed by a line break (/n).

6 Second function defined in the handler: the exit() function. Note that the SystemTap script

will continue to run until the exit() function executes. If you want to stop the execution of

the script before, stop it manually by pressing Ctrl – C .

7 End of the handler definition, indicated by } .

The event begin 2 (the start of the SystemTap session) triggers the handler enclosed in { } .

Here, that is the printf function 4 . In this case, it prints hello world followed by a new line

5 . Then, the script exits.

If your statement block holds several statements, SystemTap executes these statements in sequence—you

do not need to insert special separators or terminators between multiple statements. A statement block can

also be nested within another statement blocks. Generally, statement blocks in SystemTap scripts use the

same syntax and semantics as in the C programming language.

4.3.2 SystemTap events (probe points)

SystemTap supports several built-in events.

72 Probe format SLES 15 SP6

The general event syntax is a dotted-symbol sequence. This allows a breakdown of the event namespace

into parts. Each component identifier may be parameterized by a string or number literal, with a syntax

like a function call. A component may include a * character, to expand to other matching probe points.

A probe point may be followed by a ? character, to indicate that it is optional, and that no error should

result if it fails to expand. Alternately, a probe point may be followed by a ! character to indicate that

it is both optional and sufficient.

SystemTap supports multiple events per probe—they need to be separated by a comma (,). If multiple

events are specified in a single probe, SystemTap will execute the handler when any of the specified events

occur.

The events can be classified into the following categories:

Synchronous events: Occur when any process executes an instruction at a particular location in

kernel code. This gives other events a reference point (instruction address) from which more

contextual data may be available.

An example for a synchronous event is vfs.FILE_OPERATION : The entry to the

FILE_OPERATION event for Virtual File System (VFS). For example, in Section 4.2, “Installation

and setup”, read is the FILE_OPERATION event used for VFS.

Asynchronous events: Not tied to a particular instruction or location in code. This family of probe

points consists mainly of counters, timers, and similar constructs.

Examples for asynchronous events are: begin (start of a SystemTap session—when a SystemTap

script is run, end (end of a SystemTap session), or timer events. Timer events specify a handler to

be executed periodically, like example timer.s(SECONDS) , or timer.ms(MILLISECONDS) .

When used together with other probes that collect information, timer events allow you to print

periodic updates and see how that information changes over time.

EXAMPLE 4.2: PROBE WITH TIMER EVENT

For example, the following probe would print the text “hello world” every 4 seconds:

probe timer.s(4)
{
 printf("hello world\n")
}

For detailed information about supported events, refer to the stapprobes man page. The See Also section

of the man page also contains links to other man pages that discuss supported events for specific subsystems

and components.

73 SystemTap events (probe points) SLES 15 SP6

4.3.3 SystemTap handlers (probe body)

Each SystemTap event is accompanied by a corresponding handler defined for that event, consisting of

a statement block.

4.3.3.1 Functions

If you need the same set of statements in multiple probes, you can place them in a function for easy reuse.

Functions are defined by the keyword function followed by a name. They take any number of string or

numeric arguments (by value) and may return a single string or number.

function FUNCTION_NAME(ARGUMENTS) {STATEMENTS}
probe EVENT {FUNCTION_NAME(ARGUMENTS)}

The statements in FUNCTION_NAME are executed when the probe for EVENT executes. The ARGUMENTS

are optional values passed into the function.

Functions can be defined anywhere in the script. They may take any

One of the functions frequently needed is already introduced in Example 4.1, “Simple SystemTap script”:

the printf function for printing data in a formatted way. When using the printf function, you can

specify how arguments should be printed by using a format string. The format string is included in

quotation marks and can contain further format specifiers, introduced by a % character.

Which format strings to use depends on your list of arguments. Format strings can have multiple format

specifiers—each matching a corresponding argument. Multiple arguments can be separated by a comma.

EXAMPLE 4.3: printf FUNCTION WITH FORMAT SPECIFIERS

printf (" 1 %s 2 (%d 3) open\n 4 ", execname(), pid())

1 Start of the format string, indicated by " .

2 String format specifier.

3 Integer format specifier.

4 End of the format string, indicated by " .

The example above prints the current executable name (execname()) as a string and the process ID

(pid()) as an integer in brackets. Then, a space, the word open and a line break follow:

[...]
vmware-guestd(2206) open
held(2360) open

74 SystemTap handlers (probe body) SLES 15 SP6

[...]

Apart from the two functions execname() and pid()) used in Example 4.3, “printf Function with

format specifiers”, a variety of other functions can be used as printf arguments.

Among the most commonly used SystemTap functions are the following:

tid()

ID of the current thread.

pid()

Process ID of the current thread.

uid()

ID of the current user.

cpu()

Current CPU number.

execname()

Name of the current process.

gettimeofday_s()

Number of seconds since Unix epoch (January 1, 1970).

ctime()

Convert time into a string.

pp()

String describing the probe point currently being handled.

thread_indent()

Useful function for organizing print results. It (internally) stores an indentation counter for each

thread (tid()). The function takes one argument, an indentation delta, indicating how many spaces

to add or remove from the thread's indentation counter. It returns a string with some generic trace

data along with an appropriate number of indentation spaces. The generic data returned includes a

time stamp (number of microseconds since the initial indentation for the thread), a process name,

and the thread ID itself. This allows you to identify what functions were called, who called them,

and how long they took.

Call entries and exits often do not immediately precede each other (otherwise it would be easy to

match them). In between a first call entry and its exit, usually other call entries and exits are made.

The indentation counter helps you match an entry with its corresponding exit as it indents the next

function call in case it is not the exit of the previous one.

75 SystemTap handlers (probe body) SLES 15 SP6

For more information about supported SystemTap functions, refer to the stapfuncs man page.

4.3.3.2 Other basic constructs

Apart from functions, you can use other common constructs in SystemTap handlers, including variables,

conditional statements (like if / else , while loops, for loops, arrays or command line arguments.

4.3.3.2.1 Variables

Variables may be defined anywhere in the script. To define one, simply choose a name and assign a value

from a function or expression to it:

foo = gettimeofday()

Then you can use the variable in an expression. From the type of values assigned to the variable, SystemTap

automatically infers the type of each identifier (string or number). Any inconsistencies will be reported

as errors. In the example above, foo would automatically be classified as a number and could be printed

via printf() with the integer format specifier (%d).

However, by default the variables are local to the probe containing them. They are initialized, used and

disposed of at each handler evocation. To share variables between probes, declare them global anywhere

in the script. To do so, use the global keyword outside of the probes:

EXAMPLE 4.4: USING GLOBAL VARIABLES

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
 hz=(1000*count_jiffies) / count_ms
 printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
 count_jiffies, count_ms, hz)
 exit ()
 }

This example script computes the CONFIG_HZ setting of the kernel by using timers that count

jiffies and milliseconds, then computing accordingly. (A jiffy is the duration of one tick of the

system timer interrupt. It is not an absolute time interval unit, since its duration depends on the clock

interrupt frequency of the particular hardware platform). With the global statement it is possible

to use the variables count_jiffies and count_ms also in the probe timer.ms(12345) . With

++ the value of a variable is incremented by 1 .

76 SystemTap handlers (probe body) SLES 15 SP6

4.3.3.2.2 Conditional statements

There are several conditional statements that you can use in SystemTap scripts. The most common

conditional statements are the following:

If/else statements

They are expressed in the following format:

if (CONDITION) 1 STATEMENT1 2

else 3 STATEMENT2 4

The if statement compares an integer-valued expression to zero. If the condition expression 1 is

non-zero, the first statement 2 is executed. If the condition expression is zero, the second statement

4 is executed. The else clause (3 and 4) is optional. Both 2 and 4 can also be statement

blocks.

While loops

They are expressed in the following format:

while (CONDITION) 1 STATEMENT 2

While condition is non-zero, the statement 2 is executed. 2 can also be a statement block. It

must change a value so condition will eventually be zero.

For loops

They are a shortcut for while loops and are expressed in the following format:

for (INITIALIZATION 1 ; CONDITIONAL 2 ; INCREMENT 3) statement

The expression specified in 1 is used to initialize a counter for the number of loop iterations and

is executed before execution of the loop starts. The execution of the loop continues until the loop

condition 2 is false. (This expression is checked at the beginning of each loop iteration). The

expression specified in 3 is used to increment the loop counter. It is executed at the end of each

loop iteration.

Conditional operators

The following operators can be used in conditional statements:

==: Is equal to

!=: Is not equal to

>=: Is greater than or equal to

77 SystemTap handlers (probe body) SLES 15 SP6

<=: Is less than or equal to

4.4 Example script

If you have installed the systemtap-docs package, you can find several useful SystemTap example

scripts in /usr/share/doc/packages/systemtap/examples .

This section describes a rather simple example script in more detail: /usr/share/doc/packages/

systemtap/examples/network/tcp_connections.stp .

EXAMPLE 4.5: MONITORING INCOMING TCP CONNECTIONS WITH tcp_connections.stp

#! /usr/bin/env stap

probe begin {
 printf("%6s %16s %6s %6s %16s\n",
 "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
 kernel.function("inet_csk_accept").return? {
 sock = $return
 if (sock != 0)
 printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
 inet_get_local_port(sock), inet_get_ip_source(sock))
}

This SystemTap script monitors the incoming TCP connections and helps to identify unauthorized or

unwanted network access requests in real time. It shows the following information for each new incoming

TCP connection accepted by the computer:

User ID (UID)

Command accepting the connection (CMD)

Process ID of the command (PID)

Port used by the connection (PORT)

IP address from which the TCP connection originated (IP_SOURCE)

To run the script, execute

78 Example script SLES 15 SP6

stap /usr/share/doc/packages/systemtap/examples/network/tcp_connections.stp

and follow the output on the screen. To manually stop the script, press Ctrl – C .

4.5 User space probing

For debugging user space applications (like DTrace can do), SUSE Linux Enterprise Server 15 SP6

supports user space probing with SystemTap. Custom probe points can be inserted in any user space

application. Thus, SystemTap lets you use both kernel space and user space probes to debug the behavior

of the whole system.

To get the required utrace infrastructure and the uprobes kernel module for user space probing, you need

to install the kernel-trace package in addition to the packages listed in Section 4.2, “Installation and

setup”.

utrace implements a framework for controlling user space tasks. It provides an interface that can be

used by various tracing “engines”, implemented as loadable kernel modules. The engines register callback

functions for specific events, then attach to whichever thread they want to trace. As the callbacks are made

from “safe” places in the kernel, this allows for great leeway in the kinds of processing the functions can

do. Several events can be watched via utrace. For example, you can observe events such as system call

entry and exit, fork(), and signals being sent to the task. More details about the utrace infrastructure are

available at https://sourceware.org/systemtap/wiki/utrace .

SystemTap includes support for probing the entry into and return from a function in user space processes,

probing predefined markers in user space code, and monitoring user-process events.

To check if the currently running kernel provides the needed utrace support, use the following command:

> sudo grep CONFIG_UTRACE /boot/config-`uname -r`

For more details about user space probing, refer to https://sourceware.org/systemtap/

SystemTap_Beginners_Guide/userspace-probing.html .

4.6 More information

This chapter only provides a short SystemTap overview. Refer to the following links for more information

about SystemTap:

https://sourceware.org/systemtap/

SystemTap project home page.

79 User space probing SLES 15 SP6

https://sourceware.org/systemtap/wiki/utrace
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/userspace-probing.html
https://sourceware.org/systemtap/SystemTap_Beginners_Guide/userspace-probing.html
https://sourceware.org/systemtap/

https://sourceware.org/systemtap/wiki/

A large collection of useful information about SystemTap, ranging from detailed user and developer

documentation to reviews and comparisons with other tools, or Frequently Asked Questions and

tips. Also contains collections of SystemTap scripts, examples and usage stories and lists recent

talks and papers about SystemTap.

https://sourceware.org/systemtap/documentation.html

Features a SystemTap Tutorial, a SystemTap Beginner's Guide, a Tapset Developer's Guide, and a

SystemTap Language Reference in PDF and HTML format. Also lists the relevant man pages.

You can also find the SystemTap language reference and SystemTap tutorial in your installed system

under /usr/share/doc/packages/systemtap . Example SystemTap scripts are available from the

example subdirectory.

80 More information SLES 15 SP6

https://sourceware.org/systemtap/wiki/
https://sourceware.org/systemtap/documentation.html

5 Kernel probes

Kernel probes are a set of tools to collect Linux kernel debugging and performance information.

Developers and system administrators use them either to debug the kernel, or to find system performance

bottlenecks. The reported data can then be used to tune the system for better performance.

You can insert these probes into any kernel routine, and specify a handler to be invoked after a particular

break-point is hit. The main advantage of kernel probes is that you no longer need to rebuild the kernel

and reboot the system after you make changes in a probe.

To use kernel probes, you typically need to write or obtain a specific kernel module. Such modules

include both the init and the exit function. The init function (such as register_kprobe()) registers

one or more probes, while the exit function unregisters them. The registration function defines where

the probe is inserted and which handler is called after the probe is hit. To register or unregister

a group of probes at one time, you can use relevant register_<PROBE_TYPE>probes() or

unregister_<PROBE_TYPE>probes() functions.

Debugging and status messages are typically reported with the printk kernel routine. printk is a

kernel space equivalent of a user space printf routine. For more information on printk , see Logging

kernel messages (https://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8) . Normally, you can view these

messages by inspecting the output of the systemd journal (see Book “Administration Guide”, Chapter 21

“journalctl: query the systemd journal”). For more information on log files, see Chapter 3, System

log files.

5.1 Supported architectures

Kernel probes are fully implemented on the following architectures:

x86

AMD64/Intel 64

Arm

POWER

Kernel probes are partially implemented on the following architectures:

IA64 (does not support probes on instruction slot1)

sparc64 (return probes not yet implemented)

81 Supported architectures SLES 15 SP6

https://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8
https://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8

5.2 Types of kernel probes

There are three types of kernel probes: Kprobes, Jprobes, and Kretprobes. Kretprobes are sometimes called

return probes. You can find source code examples of all three type of probes in the Linux kernel. See the

directory /usr/src/linux/samples/kprobes/ (package kernel-source).

5.2.1 Kprobes

Kprobes can be attached to any instruction in the Linux kernel. When Kprobes is registered, it inserts

a break-point at the first byte of the probed instruction. When the processor hits this break-point, the

processor registers are saved, and the processing passes to Kprobes. First, a pre-handler is executed, then

the probed instruction is stepped, and, finally a post-handler is executed. The control is then passed to the

instruction following the probe point.

5.2.2 Jprobes

Jprobes is implemented through the Kprobes mechanism. It is inserted on a function's entry point and

allows direct access to the arguments of the function which is being probed. Its handler routine must have

the same argument list and return value as the probed function. To end it, call the jprobe_return()

function.

When a jprobe is hit, the processor registers are saved, and the instruction pointer is directed to the jprobe

handler routine. The control then passes to the handler with the same register contents as the function

being probed. Finally, the handler calls the jprobe_return() function, and switches the control back

to the control function.

Generally, you can insert multiple probes on one function. Jprobe is, however, limited to only one instance

per function.

5.2.3 Return probe

Return probes are also implemented through Kprobes. When the register_kretprobe() function is

called, a kprobe is attached to the entry of the probed function. After hitting the probe, the kernel probes

mechanism saves the probed function return address and calls a user-defined return handler. The control

is then passed back to the probed function.

82 Types of kernel probes SLES 15 SP6

Before you call register_kretprobe() , you need to set a maxactive argument, which specifies

how many instances of the function can be probed at the same time. If set too low, a certain number of

probes is missed.

5.3 Kprobes API

The programming interface of Kprobes consists of functions which are used to register and unregister all

used kernel probes, and associated probe handlers. For a more detailed description of these functions and

their arguments, see the information sources in Section 5.5, “More information”.

register_kprobe()

Inserts a break-point on a specified address. When the break-point is hit, the pre_handler and

post_handler are called.

register_jprobe()

Inserts a break-point in the specified address. The address needs to be the address of the first

instruction of the probed function. When the break-point is hit, the specified handler is run. The

handler should have the same argument list and return type as the probed.

register_kretprobe()

Inserts a return probe for the specified function. When the probed function returns, a specified

handler is run. This function returns 0 on success, or a negative error number on failure.

unregister_kprobe() , unregister_jprobe() , unregister_kretprobe()

Removes the specified probe. You can use it any time after the probe has been registered.

register_kprobes() , register_jprobes() , register_kretprobes()

Inserts each of the probes in the specified array.

unregister_kprobes() , unregister_jprobes() , unregister_kretprobes()

Removes each of the probes in the specified array.

disable_kprobe() , disable_jprobe() , disable_kretprobe()

Disables the specified probe temporarily.

enable_kprobe() , enable_jprobe() , enable_kretprobe()

Temporarily enables disabled probes.

83 Kprobes API SLES 15 SP6

5.4 debugfs Interface

In recent Linux kernels, the Kprobes instrumentation uses the kernel's debugfs interface. It can list all

registered probes and globally switch all probes on or off.

5.4.1 Listing registered kernel probes

The list of all currently registered probes is in the /sys/kernel/debug/kprobes/list file.

saturn.example.com:~ # cat /sys/kernel/debug/kprobes/list
c015d71a k vfs_read+0x0 [DISABLED]
c011a316 j do_fork+0x0
c03dedc5 r tcp_v4_rcv+0x0

The first column lists the address in the kernel where the probe is inserted. The second column prints the

type of the probe: k for kprobe, j for jprobe, and r for return probe. The third column specifies the

symbol, offset and optional module name of the probe. The following optional columns include the status

information of the probe. If the probe is inserted on a virtual address which is not valid anymore, it is

marked with [GONE] . If the probe is temporarily disabled, it is marked with [DISABLED] .

5.4.2 Globally enabling/disabling kernel probes

The /sys/kernel/debug/kprobes/enabled file represents a switch with which you can globally

and forcibly turn on or off all the registered kernel probes. To turn them off, simply enter

echo "0" > /sys/kernel/debug/kprobes/enabled

on the command line as root . To turn them on again, enter

echo "1" > /sys/kernel/debug/kprobes/enabled

With such operations, you do not change the status of the probes. If a probe is temporarily disabled, it is

not enabled automatically but remains in the [DISABLED] state after entering the latter command.

84 debugfs Interface SLES 15 SP6

5.5 More information

To learn more about kernel probes, look at the following sources of information:

Thorough but more technically oriented information about kernel probes is in /usr/src/linux/

Documentation/trace/kprobes.txt (package kernel-source).

Examples of all three types of probes (together with related Makefile) are in the /usr/src/

linux/samples/kprobes/ directory (package kernel-source).

In-depth information about Linux kernel modules and printk kernel routine can be found at The

Linux Kernel Module Programming Guide (https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html)

85 More information SLES 15 SP6

https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
https://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html

6 Hardware-based performance monitoring with Perf

Perf is an interface to access the performance monitoring unit (PMU) of a processor and to

record and display software events such as page faults. It supports system-wide, per-thread,

and KVM virtualization guest monitoring.

You can store resulting information in a report. This report contains information about, for example,

instruction pointers or what code a thread was executing.

Perf consists of two parts:

Code integrated into the Linux kernel that instructs the hardware.

The perf user space utility that allows you to use the kernel code and helps you analyze gathered

data.

6.1 Hardware-based monitoring

Performance monitoring means collecting information related to how an application or system performs.

This information can be obtained either through software-based means or from the CPU or chipset. Perf

integrates both of these methods.

Many modern processors contain a performance monitoring unit (PMU). The design and functionality of

a PMU is CPU-specific. For example, the number of registers, counters and features supported varies by

CPU implementation.

Each PMU model consists of a set of registers: the performance monitor configuration (PMC) and the

performance monitor data (PMD). Both can be read, but only PMCs are writable. These registers store

configuration information and data.

6.2 Sampling and counting

Perf supports several profiling modes:

Counting. Count the number of occurrences of an event.

Event-based sampling. A less exact way of counting: A sample is recorded whenever a certain

threshold number of events has occurred.

86 Hardware-based monitoring SLES 15 SP6

Time-based sampling. A less exact way of counting: A sample is recorded in a defined frequency.

Instruction-based sampling (AMD64 only). The processor follows instructions appearing in a

given interval and samples which events they produce. This allows following up on individual

instructions and seeing which of them is critical to performance.

6.3 Installing Perf

The Perf kernel code is already included with the default kernel. To be able to use the user space utility,

install the package perf .

6.4 Perf subcommands

To gather the required information, the perf tool has several subcommands. This section gives an

overview of the most often used commands.

To see help in the form of a man page for any of the subcommands, use either perf help SUBCOMMAND

or man perf- SUBCOMMAND .

perf stat

Start a program and create a statistical overview that is displayed after the program quits. perf
stat is used to count events.

perf record

Start a program and create a report with performance counter information. The report is stored as

perf.data in the current directory. perf record is used to sample events.

perf report

Display a report that was previously created with perf record .

perf annotate

Display a report file and an annotated version of the executed code. If debug symbols are installed,

the source code is also displayed.

perf list

List event types that Perf can report with the current kernel and with your CPU. You can filter event

types by category. For example, to see hardware events only, use perf list hw .

87 Installing Perf SLES 15 SP6

The man page for perf_event_open has short descriptions for the most important events. For

example, to find a description of the event branch-misses , search for BRANCH_MISSES (note

the spelling differences):

> man perf_event_open | grep -A5 BRANCH_MISSES

Sometimes, events may be ambiguous. The lowercase hardware event names are not the names of

raw hardware events but instead the names of aliases created by Perf. These aliases map to differently

named but similarly defined hardware events on each supported processor.

For example, the cpu-cycles event is mapped to the hardware event UNHALTED_CORE_CYCLES

on Intel processors. On AMD processors, however, it is mapped to the hardware event

CPU_CLK_UNHALTED .

Perf also allows measuring raw events specific to your hardware. To look up their descriptions, see

the Architecture Software Developer's Manual of your CPU vendor. The relevant documents for

AMD64/Intel 64 processors are linked to in Section 6.7, “More information”.

perf top

Display system activity as it happens.

perf trace

This command behaves similarly to strace . With this subcommand, you can see which system

calls are executed by a particular thread or process and which signals it receives.

6.5 Counting particular types of event

To count the number of occurrences of an event, such as those displayed by perf list , use:

perf stat -e EVENT -a

To count multiple types of events at once, list them separated by commas. For example, to count cpu-

cycles and instructions , use:

perf stat -e cpu-cycles,instructions -a

To stop the session, press Ctrl – C .

You can also count the number of occurrences of an event within a particular time:

perf stat -e EVENT -a -- sleep TIME

Replace TIME by a value in seconds.

88 Counting particular types of event SLES 15 SP6

6.6 Recording events specific to particular commands

There are several ways to sample events specific to a particular command:

To create a report for a newly invoked command, use:

perf record COMMAND

Then, use the started process normally. When you quit the process, the Perf session also stops.

To create a report for the entire system while a newly invoked command is running, use:

perf record -a COMMAND

Then, use the started process normally. When you quit the process, the Perf session also stops.

To create a report for an already running process, use:

perf record -p PID

Replace PID with a process ID. To stop the session, press Ctrl – C .

Now you can view the gathered data (perf.data) using:

> perf report

This opens a pseudo-graphical interface. To receive help, press H . To quit, press Q .

If you prefer a graphical interface, try the GTK+ interface of Perf:

> perf report --gtk

However, the GTK+ interface is limited in functionality.

6.7 More information

This chapter only provides a short overview. Refer to the following links for more information:

https://perf.wiki.kernel.org/index.php/Main_Page

The project home page. It also features a tutorial on using perf .

https://www.brendangregg.com/perf.html

Unofficial page with many one-line examples of how to use perf .

89 Recording events specific to particular commands SLES 15 SP6

https://perf.wiki.kernel.org/index.php/Main_Page
https://www.brendangregg.com/perf.html

https://web.eece.maine.edu/~vweaver/projects/perf_events/

Unofficial page with several resources, primarily relating to the Linux kernel code of Perf and its

API. This page includes, for example, a CPU compatibility table and a programming guide.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3b-part-2-manual.pdf

The Intel Architectures Software Developer's Manual, Volume 3B.

https://support.amd.com/TechDocs/24593.pdf

The AMD Architecture Programmer's Manual, Volume 2.

Chapter 7, OProfile—system-wide profiler

Consult this chapter for other performance optimizations.

90 More information SLES 15 SP6

https://web.eece.maine.edu/~vweaver/projects/perf_events/
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://support.amd.com/TechDocs/24593.pdf

7 OProfile—system-wide profiler

OProfile is a profiler for dynamic program analysis. It investigates the behavior of a running

program and gathers information. This information can be viewed and gives hints for further

optimization.

It is not necessary to recompile or use wrapper libraries to use OProfile. Not even a kernel

patch is needed. When profiling an application, you can expect a small overhead, depending

on the workload and sampling frequency.

7.1 Conceptual overview

OProfile consists of a kernel driver and a daemon for collecting data. It uses the hardware performance

counters provided on many processors. OProfile is capable of profiling all code including the kernel, kernel

modules, kernel interrupt handlers, system shared libraries, and other applications.

Modern processors support profiling through the hardware by performance counters. Depending on the

processor, there can be many counters and each of these can be programmed with an event to count. Each

counter has a value which determines how often a sample is taken. The lower the value, the more often

it is used.

During the post-processing step, all information is collected and instruction addresses are mapped to a

function name.

7.2 Installation and requirements

To use OProfile, install the oprofile package. OProfile works on AMD64/Intel 64, IBM Z, and POWER

processors.

It is useful to install the *-debuginfo package for the respective application you want to profile. To

profile the kernel, you need the debuginfo package as well.

91 Conceptual overview SLES 15 SP6

7.3 Available OProfile utilities

OProfile contains several utilities to handle the profiling process and its profiled data. The following list

is a short summary of programs used in this chapter:

opannotate

Outputs annotated source or assembly listings mixed with profile information. An annotated report

can be used in combination with addr2line to identify the source file and line where hotspots

potentially exist. See man addr2line for more information.

operf

Profiler tool. After profiling stops, the data that is by default stored in CUR_DIR/oprofile_data/

samples/current can be processed by opreport , for example.

ophelp

Lists available events with short descriptions.

opimport

Converts sample database files from a foreign binary format to the format specific to the platform.

opreport

Generates reports from profiled data.

7.4 Using OProfile

With OProfile, you can profile both the kernel and applications. When profiling the kernel, tell OProfile

where to find the vmlinuz* file. Use the --vmlinux option and point it to vmlinuz* (generally

available in /boot). If you need to profile kernel modules, OProfile does this by default. However, make

sure you read https://oprofile.sourceforge.net/doc/kernel-profiling.html .

Most applications do not need to profile the kernel, therefore you should use the --no-vmlinux option

to reduce the amount of information.

7.4.1 Creating a report

Starting the daemon, collecting data, stopping the daemon, and creating a report for the application

COMMAND .

92 Available OProfile utilities SLES 15 SP6

https://oprofile.sourceforge.net/doc/kernel-profiling.html

1. Open a shell and log in as root .

2. Decide whether to profile with or without the Linux kernel:

a. Profile with the Linux kernel. Execute the following commands, because operf can only

work with uncompressed images:

> cp /boot/vmlinux-`uname -r`.gz /tmp
> gunzip /tmp/vmlinux*.gz
> operf--vmlinux=/tmp/vmlinux* COMMAND

b. Profile without the Linux kernel. Use the following command:

operf --no-vmlinux COMMAND

To see which functions call other functions in the output, additionally use the --callgraph

option and set a maximum DEPTH :

operf --no-vmlinux --callgraph
DEPTH COMMAND

3. operf writes its data to CUR_DIR/oprofile_data/samples/current . After the operf

command is finished (or is aborted by Ctrl – C), the data can be analyzed with oreport :

opreport
Overflow stats not available
CPU: CPU with timer interrupt, speed 0 MHz (estimated)
Profiling through timer interrupt
 TIMER:0|
 samples| %|

 84877 98.3226 no-vmlinux
...

7.4.2 Getting event configurations

The general procedure for event configuration is as follows:

1. Use first the events CPU-CLK_UNHALTED and INST_RETIRED to find optimization opportunities.

2. Use specific events to find bottlenecks. To list them, use the command perf list .

93 Getting event configurations SLES 15 SP6

If you need to profile certain events, first check the available events supported by your processor with the

ophelp command (example output generated from Intel Core i5 CPU):

ophelp
oprofile: available events for CPU type "Intel Architectural Perfmon"

See Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3B (Document 253669) Chapter 18 for architectural perfmon events
This is a limited set of fallback events because oprofile does not know your CPU
CPU_CLK_UNHALTED: (counter: all))
 Clock cycles when not halted (min count: 6000)
INST_RETIRED: (counter: all))
 number of instructions retired (min count: 6000)
LLC_MISSES: (counter: all))
 Last level cache demand requests from this core that missed the LLC (min count:
 6000)
 Unit masks (default 0x41)

 0x41: No unit mask
LLC_REFS: (counter: all))
 Last level cache demand requests from this core (min count: 6000)
 Unit masks (default 0x4f)

 0x4f: No unit mask
BR_MISS_PRED_RETIRED: (counter: all))
 number of mispredicted branches retired (precise) (min count: 500)

Specify the performance counter events with the option --event . Multiple options are possible. This

option needs an event name (from ophelp) and a sample rate, for example:

operf --events CPU_CLK_UNHALTED:100000

Warning: Setting sampling rates with CPU_CLK_UNHALTED
Setting low sampling rates can seriously impair the system performance while high sample rates

can disrupt the system to such a high degree that the data is useless. It is recommended to tune

the performance metric for being monitored with and without OProfile and to experimentally

determine the minimum sample rate that disrupts the performance the least.

94 Getting event configurations SLES 15 SP6

7.5 Generating reports

Before generating a report, make sure the operf has stopped. Unless you have provided an output

directory with --session-dir , operf has written its data to CUR_DIR /oprofile_data/samples/current,

and the reporting tools opreport and opannotate look there by default.

Calling opreport without any options gives a complete summary. With an executable as an argument,

retrieve profile data only from this executable. If you analyze applications written in C++, use the --

demangle smart option.

The opannotate generates output with annotations from source code. Run it with the following options:

opannotate --source \
 --base-dirs=BASEDIR \
 --search-dirs=SEARCHDIR \
 --output-dir=annotated/ \
 /lib/libfoo.so

The option --base-dir contains a comma-separated list of paths which is stripped from debug source

files. These paths are searched before looking in --search-dirs . The --search-dirs option is also

a comma-separated list of directories to search for source files.

Note: Inaccuracies in annotated source
Because of compiler optimization, code can disappear and appear in a different place. Use

the information in https://oprofile.sourceforge.net/doc/debug-info.html to fully understand its

implications.

7.6 More information

This chapter only provides a short overview. Refer to the following links for more information:

https://oprofile.sourceforge.net

The project home page.

Manpages

Details descriptions about the options of the different tools.

/usr/share/doc/packages/oprofile/oprofile.html

Contains the OProfile manual.

95 Generating reports SLES 15 SP6

https://oprofile.sourceforge.net/doc/debug-info.html
https://oprofile.sourceforge.net

https://developer.intel.com/

Architecture reference for Intel processors.

https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/

idalangref_arch_overview.html

Architecture reference for PowerPC64 processors in IBM iSeries, pSeries, and Blade server systems.

96 More information SLES 15 SP6

https://developer.intel.com/
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_arch_overview.html
https://www.ibm.com/support/knowledgecenter/ssw_aix_71/assembler/idalangref_arch_overview.html

8 Dynamic debug—kernel debugging messages

Dynamic debug is a powerful debugging feature in the Linux kernel that allows you to

enable and disable debugging messages at runtime without the need to recompile the kernel

or reboot the system.

You can use dynamic debugging in several situations, such as:

Troubleshooting kernel issues

Developing drivers for new hardware

Tracing and auditing security events

8.1 Benefits of dynamic debugging

Certain benefits of dynamic debugging are listed below:

Real-time debugging

Dynamic debugging enables debugging messages without requiring a system reboot. This real-time

capability is crucial for diagnosing issues in production environments.

Selective debugging

You can enable debugging messages for specific parts of the kernel or even individual modules,

allowing you to focus on relevant information.

Performance tuning

Use dynamic debugging to monitor and optimize kernel performance by selectively enabling or

disabling debugging messages based on the current analysis requirements.

8.2 Checking the status of dynamic debug

For supported kernel versions that are installed by default, dynamic debug is already built in. To check

the status of dynamic debug, run the following command as the root user:

zcat /proc/config.gz | grep CONFIG_DYNAMIC_DEBUG

97 Benefits of dynamic debugging SLES 15 SP6

If dynamic debug is compiled into the kernel, you should see an output similar to the following:

CONFIG_DYNAMIC_DEBUG=y
CONFIG_DYNAMIC_DEBUG_CORE=y

8.3 Using dynamic debug

To enable specific debug messages or logs within the running kernel, you can use the echo command

and write to the /sys/kernel/debug/dynamic_debug/control file.

The following examples illustrate certain simple uses of dynamic debug:

Note
Dynamic debug relies on specific debugging macros, such as pr_debug , embedded in the kernel

code. These macros are used by kernel developers to insert debugging messages into the code.

The examples in this section assume that the pr_debug macro works correctly because dynamic

debug is allowed for the running kernel.

Enabling debug messages for a specific kernel source code file

To enable the debug messages for a specific kernel source code file, use the following example:

echo "file FILE_NAME.c +p" > /sys/kernel/debug/dynamic_debug/control

Enabling debug messages for a specific kernel module

To enable debug messages for a specific kernel module, use the following example:

echo "module MODULE_NAME +p" > /sys/kernel/debug/dynamic_debug/control

Disabling debug messages

To disable previously enabled debugging messages for a specific kernel source code file or a kernel

module, run the echo command with the -p option. For example:

echo "file FILE_NAME.c -p" > /sys/kernel/debug/dynamic_debug/control

echo "module MODULE_NAME -p" > /sys/kernel/debug/dynamic_debug/control

For detailed information about dynamic debug and its use cases, refer to its official documentation (https://

www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html) .

98 Using dynamic debug SLES 15 SP6

https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html
https://www.kernel.org/doc/html/latest/admin-guide/dynamic-debug-howto.html

8.4 Viewing the dynamic debug messages

You can view the dynamic debug messages that were generated based on the configurations you enabled,

by running dmesg and filtering the output with grep . For example:

dmesg | grep -i "FILE_NAME.c"

Optionally, to continuously monitor the system messages as they are generated, you can use the tail
command with the -f option:

tail -f /var/log/messages

99 Viewing the dynamic debug messages SLES 15 SP6

IV Resource management

9 General system resource management 101

10 Kernel control groups 106

11 Automatic Non-Uniform Memory Access (NUMA) balancing 115

12 Power management 120

9 General system resource management

Tuning the system is not only about optimizing the kernel or getting the most out of your

application, it begins with setting up a lean and fast system. The way you set up your

partitions and file systems can influence the server's speed. The number of active services

and the way routine tasks are scheduled also affects performance.

9.1 Planning the installation

A carefully planned installation ensures that the system is set up exactly as you need it for the given

purpose. It also saves considerable time when fine tuning the system. All changes suggested in this

section can be made in the Installation Settings step during the installation. See Book “Deployment Guide”,

Chapter 9 “Installation steps”, Section 9.15 “Installation settings” for details.

9.1.1 Partitioning

Depending on the server's range of applications and the hardware layout, the partitioning scheme can

influence the machine's performance (although to a lesser extent only). It is beyond the scope of this

manual to suggest different partitioning schemes for particular workloads. However, the following rules

positively affect performance. They do not apply when using an external storage system.

Make sure there is always a certain amount of free space available on the disk, since a full disk

delivers inferior performance.

Disperse simultaneous read and write access onto different disks by, for example:

using separate disks for the operating system, data, and log files

placing a mail server's spool directory on a separate disk

distributing the user directories of a home server between different disks

101 Planning the installation SLES 15 SP6

9.1.2 Installation scope

The installation scope has no direct influence on the machine's performance, but a carefully chosen scope

of packages has advantages. It is recommended to install the minimum of packages needed to run the

server. A system with a minimum set of packages is easier to maintain and has fewer potential security

issues. Furthermore, a tailor made installation scope also ensures that no unnecessary services are started

by default.

SUSE Linux Enterprise Server lets you customize the installation scope on the Installation Summary

screen. By default, you can select or remove preconfigured patterns for specific tasks, but it is also possible

to start the YaST Software Manager for a fine-grained package-based selection.

One or more of the following default patterns may not be needed in all cases:

GNOME desktop environment

Servers rarely need a full desktop environment. In case a graphical environment is needed, a more

economical solution such as IceWM can be sufficient.

X Window System

When solely administrating the server and its applications via command line, consider not installing

this pattern. However, keep in mind that it is needed to run GUI applications from a remote machine.

If your application is managed by a GUI or if you prefer the GUI version of YaST, keep this pattern.

Print server

This pattern is only needed to print from the machine.

9.1.3 Default target

A running X Window System consumes many resources and is rarely needed on a server. It is strongly

recommended to start the system in target multi-user.target . You can still remotely start graphical

applications.

9.2 Disabling unnecessary services

The default installation starts several services (the number varies with the installation scope).

Since each service consumes resources, it is recommended to disable the ones not needed. Run

YaST System Services Manager to start the services management module.

102 Installation scope SLES 15 SP6

If you are using the graphical version of YaST, you can click the column headlines to sort the list of

services. Use this to get an overview of which services are currently running. Use the Start/Stop button to

disable the service for the running session. To permanently disable it, use the Enable/Disable button.

The following list shows services that are started by default after the installation of SUSE Linux Enterprise

Server. Check which of the components you need, and disable the others:

alsasound

Loads the Advanced Linux Sound System.

auditd

A daemon for the Audit system (see Book “Security and Hardening Guide” for details). Disable this

if you do not use Audit.

bluez-coldplug

Handles cold plugging of Bluetooth dongles.

cups

A printer daemon.

java.binfmt_misc

Enables the execution of *.class or *.jar Java programs.

nfs

Services needed to mount NFS.

smbfs

Services needed to mount SMB/CIFS file systems from a Windows* server.

splash / splash_early

Shows the splash screen on start-up.

9.3 File systems and disk access

Hard disks are the slowest components in a computer system and therefore often the cause for a bottleneck.

Using the file system that best suits your workload helps to improve performance. Using special mount

options or prioritizing a process's I/O priority are further means to speed up the system.

103 File systems and disk access SLES 15 SP6

9.3.1 File systems

SUSE Linux Enterprise Server ships with several file systems, including Btrfs, Ext4, Ext3, Ext2, and XFS.

Each file system has its own advantages and disadvantages. Refer to Book “Storage Administration Guide”,

Chapter 1 “Overview of file systems in Linux” for detailed information.

9.3.1.1 NFS

NFS (Version 3) tuning is covered in detail in the NFS Howto at https://nfs.sourceforge.net/nfs-howto/ .

When mounting NFS shares, start with the experiment of increasing the size of the read-write blocks to

32768 , by using the mount options wsize and rsize .

9.3.2 Time stamp update policy

Each file and directory in a file system has three time stamps associated with it: a time when the file

was last read called access time, a time when the file data was last modified called modification time,

and a time when the file metadata was last modified called change time. Keeping access time always up

to date has significant performance overhead since every read-only access incurs a write operation. By

default, every file system updates access time only if current file access time is older than a day, or older

than file modification or change time. This feature is called relative access time and the corresponding

mount option is relatime . Updates of access time can be disabled using the noatime mount option.

However, you need to verify your applications do not use it. This can be true for file and Web servers or

for network storage. If the default relative access time update policy is not suitable for your applications,

use the strictatime mount option.

Some file systems (for example Ext4) also support lazy time stamp updates. When this feature is enabled

using the lazytime mount option, updates of all time stamps happen in memory but they are not written

to disk. That happens only in response to fsync or sync system calls, when the file information is

written due to another reason such as file size update, when time stamps are older than 24 hours, or when

cached file information needs to be evicted from memory.

To update mount options used for a file system, either edit /etc/fstab directly, or use the Fstab Options

dialog when editing or adding a partition with the YaST Partitioner.

104 File systems SLES 15 SP6

https://nfs.sourceforge.net/nfs-howto/

9.3.3 Prioritizing disk access with ionice

The ionice command lets you prioritize disk access for single processes. This enables you to give less

I/O priority to background processes with heavy disk access that are not time-critical, such as backup

jobs. ionice also lets you raise the I/O priority for a specific process to make sure this process always

has immediate access to the disk. The caveat of this feature is that standard writes are cached in the page

cache and are written back to persistent storage only later by an independent kernel process. Thus the I/O

priority setting generally does not apply for these writes. Also be aware that I/O class and priority setting

are obeyed only by BFQ I/O scheduler for blk-mq I/O path (refer to Section 13.2, “Available I/O elevators

with blk-mq I/O path”). You can set the following three scheduling classes:

Idle

A process from the idle scheduling class is only granted disk access when no other process has asked

for disk I/O.

Best effort

The default scheduling class used for any process that has not asked for a specific I/O priority.

Priority within this class can be adjusted to a level from 0 to 7 (with 0 being the highest priority).

Programs running at the same best-effort priority are served in a round-robin fashion. Some kernel

versions treat priority within the best-effort class differently—for details, refer to the ionice(1)

man page.

Real-time

Processes in this class are always granted disk access first. Fine-tune the priority level from 0 to 7

(with 0 being the highest priority). Use with care, since it can starve other processes.

For more details and the exact command syntax refer to the ionice(1) man page. If you need more

reliable control over bandwidth available to each application, use Kernel Control Groups as described in

Chapter 10, Kernel control groups.

105 Prioritizing disk access with ionice SLES 15 SP6

10 Kernel control groups

Kernel Control Groups (“cgroups”) are a kernel feature for assigning and limiting hardware

and system resources for processes. Processes can also be organized in a hierarchical tree

structure.

10.1 Overview

Every process is assigned exactly one administrative cgroup. cgroups are ordered in a hierarchical tree

structure. You can set resource limitations, such as CPU, memory, disk I/O or network bandwidth usage,

for single processes or for whole branches of the hierarchy tree.

On SUSE Linux Enterprise Server, systemd uses cgroups to organize all processes in groups, which

systemd calls slices. systemd also provides an interface for setting cgroup properties.

The command systemd-cgls displays the hierarchy tree.

The kernel cgroup API comes in two variants—v1 and v2. Additionally, there can be multiple cgroup

hierarchies exposing different APIs. From many possible combinations, there are two practical choices:

unified: v2 hierarchy with controllers

hybrid: v2 hierarchy without controllers, and the controllers are on v1 hierarchies (deprecated)

The default mode is unified. There is a hybrid mode that provides backward compatibility for applications

that need it.

You may set only one mode.

10.1.1 Hybrid cgroup hierarchy

Note: Deprecation notice
cgroup v1 has been deprecated, and might be removed in a future release.

To enable the hybrid control group hierarchy, append systemd.unified_cgroup_hierarchy=0 as a

kernel command-line parameter to the GRUB 2 boot loader. For more details about configuring GRUB 2,

refer to Book “Administration Guide”, Chapter 18 “The boot loader GRUB 2”.

106 Overview SLES 15 SP6

10.2 Resource accounting

Organizing processes into different cgroups can be used to obtain per-cgroup resource consumption data.

The accounting has comparatively small but non-zero overhead, whose impact depends on the workload.

Activating accounting for one unit also implicitly activates it for all units in the same slice, and for all its

parent slices, and the units contained in them.

The accounting can be set on a per-unit basis with directives such as MemoryAccounting= or globally for

all units in /etc/systemd/system.conf with the directive DefaultMemoryAccounting= . Refer to

man systemd.resource-control for the exhaustive list of possible directives.

10.3 Setting resource limits

Note: Implicit resource consumption
Be aware that resource consumption implicitly depends on the environment where your workload

executes (for example, size of data structures in libraries/kernel, forking behavior of utilities,

computational efficiency). Hence it is recommended to (re)calibrate your limits should the

environment change.

Limitations to cgroups can be set with the systemctl set-property command. The syntax is:

systemctl set-property [--runtime] NAME PROPERTY1=VALUE [PROPERTY2=VALUE]

The configured value is applied immediately. Optionally, use the --runtime option, so that the new

values do not persist after reboot.

Replace NAME with a systemd service, scope, or slice name.

For a complete list of properties and more details, see man systemd.resource-control .

10.4 Preventing fork bombs with TasksMax
systemd supports configuring task count limits both for each individual leaf unit, or aggregated on slices.

Upstream systemd ships with defaults that limit the number of tasks in each unit (15% of the kernel

global limit, run /usr/sbin/sysctl kernel.pid_max to see the total limit). Each user's slice is

limited to 33% of the kernel limit. However, this is different for SUSE Linux Enterprise Server.

107 Resource accounting SLES 15 SP6

10.4.1 Finding the current default TasksMax values

It became apparent, in practice, that there is not a single default that applies to all use cases. SUSE Linux

Enterprise Server ships with two custom configurations that override the upstream defaults for system units

and for user slices, and sets them both to infinity . /usr/lib/systemd/system.conf.d/__25-

defaults-SLE.conf contains these lines:

[Manager]
DefaultTasksMax=infinity

/usr/lib/systemd/system/user-.slice.d/25-defaults-SLE.conf contains these lines:

[Slice]
TasksMax=infinity

Use systemctl to verify the DefaultTasksMax value:

> systemctl show --property DefaultTasksMax
DefaultTasksMax=infinity

infinity means having no limit. It is not a requirement to change the default, but setting certain limits

may help to prevent system crashes from runaway processes.

10.4.2 Overriding the DefaultTasksMax value

Change the global DefaultTasksMax value by creating a new override file, /etc/systemd/

system.conf.d/90-system-tasksmax.conf , and write the following lines to set a new default limit

of 256 tasks per system unit:

[Manager]
DefaultTasksMax=256

Load the new setting, then verify that it changed:

> sudo systemctl daemon-reload
> systemctl show --property DefaultTasksMax
DefaultTasksMax=256

Adjust this default value to suit your needs. You can set different limits on individual services as needed.

This example is for MariaDB. First check the current active value:

> systemctl status mariadb.service
 ● mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; disabled; vendor preset>
 Active: active (running) since Tue 2020-05-26 14:15:03 PDT; 27min ago

108 Finding the current default TasksMax values SLES 15 SP6

 Docs: man:mysqld(8)
 https://mariadb.com/kb/en/library/systemd/
 Main PID: 11845 (mysqld)
 Status: "Taking your SQL requests now..."
 Tasks: 30 (limit: 256)
 CGroup: /system.slice/mariadb.service
 └─11845 /usr/sbin/mysqld --defaults-file=/etc/my.cnf --user=mysql

The Tasks line shows that MariaDB currently has 30 tasks running, and has an upper limit of the default

256, which is inadequate for a database. The following example demonstrates how to raise MariaDB's

limit to 8192.

> sudo systemctl set-property mariadb.service TasksMax=8192
> systemctl status mariadb.service
● mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; disabled; vendor preset:
 disab>
 Drop-In: /etc/systemd/system/mariadb.service.d
 └─50-TasksMax.conf
 Active: active (running) since Tue 2020-06-02 17:57:48 PDT; 7min ago
 Docs: man:mysqld(8)
 https://mariadb.com/kb/en/library/systemd/
 Process: 3446 ExecStartPre=/usr/lib/mysql/mysql-systemd-helper upgrade (code=exited,
 sta>
 Process: 3440 ExecStartPre=/usr/lib/mysql/mysql-systemd-helper install (code=exited,
 sta>
 Main PID: 3452 (mysqld)
 Status: "Taking your SQL requests now..."
 Tasks: 30 (limit: 8192)
 CGroup: /system.slice/mariadb.service
 └─3452 /usr/sbin/mysqld --defaults-file=/etc/my.cnf --user=mysql

systemctl set-property applies the new limit and creates a drop-in file for persistence, /etc/

systemd/system/mariadb.service.d/50-TasksMax.conf , that contains only the changes you

want to apply to the existing unit file. The value does not have to be 8192, but should be whatever limit

is appropriate for your workloads.

10.4.3 Default TasksMax limit on users

The default limit on users should be high, because user sessions need more resources. Set your own default

for any user by creating a new file, for example /etc/systemd/system/user-.slice.d/40-user-

taskmask.conf . The following example sets a default of 16284:

[Slice]

109 Default TasksMax limit on users SLES 15 SP6

TasksMax=16284

Note: Numeric prefixes reference
See Book “Administration Guide”, Chapter 19 “The systemd daemon”, Section 19.5.3 “Creating

drop-in files manually” to learn what numeric prefixes are expected for drop-in files.

Then reload systemd to load the new value, and verify the change:

> sudo systemctl daemon-reload
> systemctl show --property TasksMax user-1000.slice
TasksMax=16284

How do you know what values to use? This varies according to your workloads, system resources, and

other resource configurations. When your TasksMax value is too low, you may see error messages such

as Failed to fork (Resources temporarily unavailable), Can't create thread to handle new connection, and

Error: Function call 'fork' failed with error code 11, 'Resource temporarily unavailable'.

For more information on configuring system resources in systemd, see systemd.resource-control

(5) .

10.5 I/O control with cgroups

This section introduces using the Linux kernel's block I/O controller to prioritize or throttle I/O operations.

This leverages the means provided by systemd to configure cgroups, and discusses probable pitfalls when

dealing with proportional I/O control.

10.5.1 Prerequisites

The following subsections describe steps that you must take in advance when you design and configure

your system, since those aspects cannot be changed during runtime.

110 I/O control with cgroups SLES 15 SP6

10.5.1.1 File system

You should use a cgroup-writeback-aware file system (otherwise writeback charging is not possible).

The recommended SUSE Linux Enterprise Server file systems added support in the following upstream

releases:

Btrfs (v4.3)

Ext4 (v4.3)

XFS (v5.3)

As of SUSE Linux Enterprise Server 15 SP3, any of the named file systems can be used.

10.5.1.2 Block I/O scheduler

The throttling policy is implemented higher in the stack, therefore it does not require any additional

adjustments. The proportional I/O control policies have two different implementations: the BFQ controller,

and the cost-based model. We describe the BFQ controller here. To exert its proportional implementation

for a particular device, we must make sure that BFQ is the chosen scheduler. Check the current scheduler:

> cat /sys/class/block/sda/queue/scheduler
mq-deadline kyber bfq [none]

Switch the scheduler to BFQ:

 # echo bfq > /sys/class/block/sda/queue/scheduler

You must specify the disk device (not a partition). The optimal way to set this attribute is a udev rule

specific to the device. SUSE Linux Enterprise Server ships udev rules that already enable BFQ for

rotational disk drives.

10.5.1.3 Cgroup hierarchy layout

Normally, all tasks reside in the root cgroup and they compete against each other. When the tasks are

distributed into the cgroup tree the competition occurs between sibling cgroups only. This applies to the

proportional I/O control; the throttling hierarchically aggregates throughput of all descendants (see the

following diagram).

r
`- a IOWeight=100

111 Prerequisites SLES 15 SP6

 `- [c] IOWeight=300
 `- d IOWeight=100
`- [b] IOWeight=200

I/O is originating only from cgroups c and b. Even though c has a higher weight, it is treated with lower

priority because it is level-competing with b.

10.5.2 Configuring control quantities

You can apply the values to (long running) services permanently.

> sudo systemctl set-property fast.service IOWeight=400
> sudo systemctl set-property slow.service IOWeight=50
> sudo systemctl set-property throttled.service IOReadBandwidthMax="/dev/sda 1M"

Alternatively, you can apply I/O control to individual commands, for example:

> sudo systemd-run --scope -p IOWeight=400 high_prioritized_command
> sudo systemd-run --scope -p IOWeight=50 low_prioritized_command
> sudo systemd-run --scope -p IOReadBandwidthMax="/dev/sda 1M" dd if=/dev/sda of=/dev/
null bs=1M count=10

10.5.3 I/O control behavior and setting expectations

The following list items describe I/O control behavior, and what you should expect under different

conditions.

I/O control works best for direct I/O operations (bypassing page cache), the situations where

the actual I/O is decoupled from the caller (typically writeback via page cache) may manifest

variously. For example, delayed I/O control or even no observed I/O control (consider little bursts or

competing workloads that happen to never “meet,” submitting I/O at the same time, and saturating

the bandwidth). For these reasons, the resulting ratio of I/O throughputs does not strictly follow the

ratio of configured weights.

systemd performs scaling of configured weights (to adjust for narrower BFQ weight range), hence

the resulting throughput ratios also differ.

The writeback activity depends on the amount of dirty pages, besides the global sysctl knobs

(vm.dirty_background_ratio and vm.dirty_ratio)). Memory limits of individual cgroups

come into play when the dirty limits are distributed among cgroups, and this in turn may affect I/

O intensity of affected cgroups.

112 Configuring control quantities SLES 15 SP6

Not all storages are equal. The I/O control happens at the I/O scheduler layer, which has ramifications

for setups with devices stacked on these that do no actual scheduling. Consider device mapper logical

volumes spanning multiple physical devices, MD RAID, or even Btrfs RAID. I/O control over such

setups may be challenging.

There is no separate setting for proportional I/O control of reads and writes.

Proportional I/O control is only one of the policies that can interact with each other (but responsible

resource design perhaps avoids that).

The I/O device bandwidth is not the only shared resource on the I/O path. Global file system

structures are involved, which is relevant when I/O control is meant to guarantee certain bandwidth;

it does not, and it may even lead to priority inversion (prioritized cgroup waiting for a transaction

of slower cgroup).

So far, we have been discussing only explicit I/O of file system data, but swap-in and swap-out can

also be controlled. Although if such a need arises, it points out to improperly provisioned memory

(or memory limits).

10.5.4 Resource control in user sessions

In order to apply cgroup resource control within user sessions, controllers must be delegated user instances

of systemd . SUSE Linux Enterprise Server ships systemd default configuration that delegates no

controllers.

You can use drop-in files to change the set of delegated controllers. For instance, /etc/

systemd/system/user@.service.d/60-delegate.conf adds controllers to all users, while

/etc/systemd/system/user@uid.service.d/60-delegate.conf adds controllers only to a

particular user. The content of the file should be like the following:

[Service]
Delegate=pids memory

Both the systemd instance and the affected user instance must be notified to reload the new configuration.

> sudo systemctl daemon-reload
> systemctl --user daemon-reexec

Alternatively, the affected user may log out and log in instead of applying the second line to restart their

user instance.

113 Resource control in user sessions SLES 15 SP6

10.6 More information

Kernel documentation (package kernel-source): files in /usr/src/linux/

Documentation/admin-guide/cgroup-v1 and file /usr/src/linux/Documentation/

admin-guide/cgroup-v2.rst .

man systemd.resource-control

https://lwn.net/Articles/604609/ —Brown, Neil: Control Groups Series (2014, 7 parts).

https://lwn.net/Articles/243795/ —Corbet, Jonathan: Controlling memory use in containers (2007).

https://lwn.net/Articles/236038/ —Corbet, Jonathan: Process containers (2007).

114 More information SLES 15 SP6

https://lwn.net/Articles/604609/
https://lwn.net/Articles/243795/
https://lwn.net/Articles/236038/

11 Automatic Non-Uniform Memory Access (NUMA)
balancing

There are physical limitations to hardware that are encountered when many CPUs and

lots of memory are required. In this chapter, the important limitation is that there is

limited communication bandwidth between the CPUs and the memory. One architecture

modification that was introduced to address this is Non-Uniform Memory Access (NUMA).

In this configuration, there are multiple nodes. Each of the nodes contains a subset of all

CPUs and memory. The access speed to main memory is determined by the location of the

memory relative to the CPU. The performance of a workload depends on the application

threads accessing data that is local to the CPU the thread is executing on. Automatic NUMA

Balancing migrates data on demand to memory nodes that are local to the CPU accessing

that data. Depending on the workload, this can dramatically boost performance when using

NUMA hardware.

11.1 Implementation

Automatic NUMA balancing happens in three basic steps:

1. A task scanner periodically scans a portion of a task's address space and marks the memory to force

a page fault when the data is next accessed.

2. The next access to the data results in a NUMA Hinting Fault. Based on this fault, the data can be

migrated to a memory node associated with the task accessing the memory.

3. To keep a task, the CPU it is using and the memory it is accessing together, the scheduler groups

tasks that share data.

The unmapping of data and page fault handling incurs overhead. However, commonly the overhead is

offset by threads accessing data associated with the CPU.

115 Implementation SLES 15 SP6

11.2 Configuration

Static configuration has been the recommended way of tuning workloads on NUMA hardware. To do this,

memory policies can be set with numactl , taskset or cpusets . NUMA-aware applications can use

special APIs. In cases where the static policies have already been created, automatic NUMA balancing

should be disabled as the data access should already be local.

numactl --hardware shows the memory configuration of the machine and whether it supports NUMA

or not. This is example output from a 4-node machine.

> numactl --hardware
available: 4 nodes (0-3)
node 0 cpus: 0 4 8 12 16 20 24 28 32 36 40 44
node 0 size: 16068 MB
node 0 free: 15909 MB
node 1 cpus: 1 5 9 13 17 21 25 29 33 37 41 45
node 1 size: 16157 MB
node 1 free: 15948 MB
node 2 cpus: 2 6 10 14 18 22 26 30 34 38 42 46
node 2 size: 16157 MB
node 2 free: 15981 MB
node 3 cpus: 3 7 11 15 19 23 27 31 35 39 43 47
node 3 size: 16157 MB
node 3 free: 16028 MB
node distances:
node 0 1 2 3
 0: 10 20 20 20
 1: 20 10 20 20
 2: 20 20 10 20
 3: 20 20 20 10

Automatic NUMA balancing can be enabled or disabled for the current session by writing 1 or 0

to /proc/sys/kernel/numa_balancing which enables or disables the feature respectively. To

permanently enable or disable it, use the kernel command line option numa_balancing=[enable|

disable] .

If Automatic NUMA Balancing is enabled, the task scanner behavior can be configured. The task scanner

balances the overhead of Automatic NUMA Balancing with the amount of time it takes to identify the

best placement of data.

numa_balancing_scan_delay_ms

The amount of CPU time a thread must consume before its data is scanned. This prevents creating

overhead because of short-lived processes.

116 Configuration SLES 15 SP6

numa_balancing_scan_period_min_ms and numa_balancing_scan_period_max_ms

Controls how frequently a task's data is scanned. Depending on the locality of the faults, the scan

rate increases or decreases. These settings control the min and max scan rates.

numa_balancing_scan_size_mb

Controls how much address space is scanned when the task scanner is active.

11.3 Monitoring

The most important task is to assign metrics to your workload and measure the performance with

Automatic NUMA Balancing enabled and disabled to measure the impact. Profiling tools can be used

to monitor local and remote memory accesses if the CPU supports such monitoring. Automatic NUMA

Balancing activity can be monitored via the following parameters in /proc/vmstat :

numa_pte_updates

The amount of base pages that were marked for NUMA hinting faults.

numa_huge_pte_updates

The amount of transparent huge pages that were marked for NUMA hinting faults. In combination

with numa_pte_updates the total address space that was marked can be calculated.

numa_hint_faults

Records how many NUMA hinting faults were trapped.

numa_hint_faults_local

Shows how many of the hinting faults were to local nodes. In combination with

numa_hint_faults , the percentage of local versus remote faults can be calculated. A high

percentage of local hinting faults indicates that the workload is closer to being converged.

numa_pages_migrated

Records how many pages were migrated because they were misplaced. As migration is a copying

operation, it contributes the largest part of the overhead created by NUMA balancing.

11.4 Impact

The following illustrates a simple test case of a 4-node NUMA machine running the SpecJBB 2005 using

a single instance of the JVM with no static tuning around memory policies. However, the impact for each

workload varies and this example is based on a pre-release version of SUSE Linux Enterprise Server 12.

117 Monitoring SLES 15 SP6

 Balancing disabled Balancing enabled
TPut 1 26629.00 (0.00%) 26507.00 (-0.46%)
TPut 2 55841.00 (0.00%) 53592.00 (-4.03%)
TPut 3 86078.00 (0.00%) 86443.00 (0.42%)
TPut 4 116764.00 (0.00%) 113272.00 (-2.99%)
TPut 5 143916.00 (0.00%) 141581.00 (-1.62%)
TPut 6 166854.00 (0.00%) 166706.00 (-0.09%)
TPut 7 195992.00 (0.00%) 192481.00 (-1.79%)
TPut 8 222045.00 (0.00%) 227143.00 (2.30%)
TPut 9 248872.00 (0.00%) 250123.00 (0.50%)
TPut 10 270934.00 (0.00%) 279314.00 (3.09%)
TPut 11 297217.00 (0.00%) 301878.00 (1.57%)
TPut 12 311021.00 (0.00%) 326048.00 (4.83%)
TPut 13 324145.00 (0.00%) 346855.00 (7.01%)
TPut 14 345973.00 (0.00%) 378741.00 (9.47%)
TPut 15 354199.00 (0.00%) 394268.00 (11.31%)
TPut 16 378016.00 (0.00%) 426782.00 (12.90%)
TPut 17 392553.00 (0.00%) 437772.00 (11.52%)
TPut 18 396630.00 (0.00%) 456715.00 (15.15%)
TPut 19 399114.00 (0.00%) 484020.00 (21.27%)
TPut 20 413907.00 (0.00%) 493618.00 (19.26%)
TPut 21 413173.00 (0.00%) 510386.00 (23.53%)
TPut 22 420256.00 (0.00%) 521016.00 (23.98%)
TPut 23 425581.00 (0.00%) 536214.00 (26.00%)
TPut 24 429052.00 (0.00%) 532469.00 (24.10%)
TPut 25 426127.00 (0.00%) 526548.00 (23.57%)
TPut 26 422428.00 (0.00%) 531994.00 (25.94%)
TPut 27 424378.00 (0.00%) 488340.00 (15.07%)
TPut 28 419338.00 (0.00%) 543016.00 (29.49%)
TPut 29 403347.00 (0.00%) 529178.00 (31.20%)
TPut 30 408681.00 (0.00%) 510621.00 (24.94%)
TPut 31 406496.00 (0.00%) 499781.00 (22.95%)
TPut 32 404931.00 (0.00%) 502313.00 (24.05%)
TPut 33 397353.00 (0.00%) 522418.00 (31.47%)
TPut 34 382271.00 (0.00%) 491989.00 (28.70%)
TPut 35 388965.00 (0.00%) 493012.00 (26.75%)
TPut 36 374702.00 (0.00%) 502677.00 (34.15%)
TPut 37 367578.00 (0.00%) 500588.00 (36.19%)
TPut 38 367121.00 (0.00%) 496977.00 (35.37%)
TPut 39 355956.00 (0.00%) 489430.00 (37.50%)
TPut 40 350855.00 (0.00%) 487802.00 (39.03%)
TPut 41 345001.00 (0.00%) 468021.00 (35.66%)
TPut 42 336177.00 (0.00%) 462260.00 (37.50%)
TPut 43 329169.00 (0.00%) 467906.00 (42.15%)
TPut 44 329475.00 (0.00%) 470784.00 (42.89%)
TPut 45 323845.00 (0.00%) 450739.00 (39.18%)
TPut 46 323878.00 (0.00%) 435457.00 (34.45%)

118 Impact SLES 15 SP6

TPut 47 310524.00 (0.00%) 403914.00 (30.07%)
TPut 48 311843.00 (0.00%) 459017.00 (47.19%)

 Balancing Disabled Balancing Enabled
 Expctd Warehouse 48.00 (0.00%) 48.00 (0.00%)
 Expctd Peak Bops 310524.00 (0.00%) 403914.00 (30.07%)
 Actual Warehouse 25.00 (0.00%) 29.00 (16.00%)
 Actual Peak Bops 429052.00 (0.00%) 543016.00 (26.56%)
 SpecJBB Bops 6364.00 (0.00%) 9368.00 (47.20%)
 SpecJBB Bops/JVM 6364.00 (0.00%) 9368.00 (47.20%)

Automatic NUMA Balancing simplifies tuning workloads for high performance on NUMA machines.

Where possible, it is still recommended to statically tune the workload to partition it within each node.

However, in all other cases, automatic NUMA balancing should boost performance.

119 Impact SLES 15 SP6

12 Power management

Power management aims at reducing operating costs for energy and cooling systems

while at the same time keeping the performance of a system at a level that matches the

current requirements. Thus, power management is always a matter of balancing the actual

performance needs and power saving options for a system. Power management can be

implemented and used at different levels of the system. A set of specifications for power

management functions of devices and the operating system interface to them has been

defined in the Advanced Configuration and Power Interface (ACPI). As power savings

in server environments can primarily be achieved at the processor level, this chapter

introduces the main concepts and highlights a few tools for analyzing and influencing

relevant parameters.

12.1 Power management at CPU Level

At the CPU level, you can control power usage in several ways. For example, by using idling power states

(C-states), changing CPU frequency (P-states), and throttling the CPU (T-states). The following sections

give a short introduction to each approach and its significance for power savings. Detailed specifications

can be found at https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf .

12.1.1 C-states (processor operating states)

Modern processors have several power saving modes called C-states . They reflect the capability of an

idle processor to turn off unused components to save power.

When a processor is in the C0 state, it is executing instructions. A processor running in any other C-state

is idle. The higher the C number, the deeper the CPU sleep mode: more components are shut down to save

power. Deeper sleep states can save large amounts of energy. Their downside is that they introduce latency.

This means, it takes more time for the CPU to go back to C0 . Depending on workload (threads waking

up, triggering CPU usage and then going back to sleep again for a short period of time) and hardware (for

example, interrupt activity of a network device), disabling the deepest sleep states can increase overall

performance. For details on how to do so, refer to Section 12.3.2, “Viewing kernel idle statistics with

cpupower”.

120 Power management at CPU Level SLES 15 SP6

https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf

Some states also have submodes with different power saving latency levels. Which C-states and submodes

are supported depends on the respective processor. However, C1 is always available.

Table 12.1, “C-states” gives an overview of the most common C-states.

TABLE 12.1: C-STATES

Mode Definition

C0 Operational state. CPU fully turned on.

C1 First idle state. Stops CPU main internal clocks

via software. Bus interface unit and APIC are

kept running at full speed.

C2 Stops CPU main internal clocks via hardware.

State in which the processor maintains all

software-visible states, but may take longer to

wake up through interrupts.

C3 Stops all CPU internal clocks. The processor does

not need to keep its cache coherent, but maintains

other states. Some processors have variations of

the C3 state that differ in how long it takes to

wake the processor through interrupts.

To avoid needless power consumption, it is recommended to test your workloads with deep sleep states

enabled versus deep sleep states disabled. For more information, refer to Section 12.3.2, “Viewing kernel

idle statistics with cpupower” or the cpupower-idle-set(1) man page.

12.1.2 P-states (processor performance states)

While a processor operates (in C0 state), it can be in one of several CPU performance states (P-states) .

Whereas C-states are idle states (all but C0), P-states are operational states that relate to CPU frequency

and voltage.

The higher the P-state, the lower the frequency and voltage at which the processor runs. The number

of P-states is processor-specific and the implementation differs across the different types. However, P0

is always the highest-performance state (except for Section 12.1.3, “Turbo features”). Higher P-state

121 P-states (processor performance states) SLES 15 SP6

numbers represent slower processor speeds and lower power consumption. For example, a processor in

P3 state runs more slowly and uses less power than a processor running in the P1 state. To operate at

any P-state, the processor must be in the C0 state, which means that it is working and not idling. The

CPU P-states are also defined in the ACPI specification, see https://uefi.org/sites/default/files/resources/

ACPI_Spec_6_5_Aug29.pdf .

C-states and P-states can vary independently of one another.

12.1.3 Turbo features

Turbo features allow to dynamically overtick active CPU cores while other cores are in deep sleep

states. This increases the performance of active threads while still complying with Thermal Design Power

(TDP) limits.

However, the conditions under which a CPU core can use turbo frequencies are architecture-specific.

Learn how to evaluate the efficiency of those new features in Section 12.3, “The cpupower tools”.

12.2 In-kernel governors

The in-kernel governors belong to the Linux kernel CPUfreq infrastructure and can be used to dynamically

scale processor frequencies at runtime. You can think of the governors as a sort of preconfigured power

scheme for the CPU. The CPUfreq governors use P-states to change frequencies and lower power

consumption. The dynamic governors can switch between CPU frequencies, based on CPU usage, to allow

for power savings while not sacrificing performance.

The following governors are available with the CPUfreq subsystem:

Performance governor

The CPU frequency is statically set to the highest possible for maximum performance. Consequently,

saving power is not the focus of this governor.

See also Section 12.4.1, “Tuning options for P-states”.

Powersave governor

The CPU frequency is statically set to the lowest possible. This can have severe impact on the

performance, as the system never rises above this frequency no matter how busy the processors are.

An important exception is the intel_pstate which defaults to the powersave mode. This is due

to a hardware-specific decision but functionally it operates similarly to the on-demand governor.

122 Turbo features SLES 15 SP6

https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_5_Aug29.pdf

However, using this governor often does not lead to the expected power savings as the highest

savings can be achieved at idle through entering C-states. With the powersave governor, processes

run at the lowest frequency and thus take longer to finish. This means it takes longer until the system

can go into an idle C-state.

Tuning options: The range of minimum frequencies available to the governor can be adjusted (for

example, with the cpupower command line tool).

On-demand governor

The kernel implementation of a dynamic CPU frequency policy: The governor monitors the

processor usage. When it exceeds a certain threshold, the governor sets the frequency to the highest

available. If the usage is less than the threshold, the next lowest frequency is used. If the system

continues to be underemployed, the frequency is again reduced until the lowest available frequency

is set.

Important: Drivers and in-kernel governors
Not all drivers use the in-kernel governors to dynamically scale power frequency at runtime.

For example, the intel_pstate driver adjusts power frequency itself. Use the cpupower
frequency-info command to find out which driver your system uses.

12.3 The cpupower tools

The cpupower tools are designed to give an overview of all CPU power-related parameters that are

supported on a given machine, including turbo (or boost) states. Use the toolset to view and modify settings

of the kernel-related CPUfreq and cpuidle systems and other settings not related to frequency scaling or

idle states. The integrated monitoring framework can access both kernel-related parameters and hardware

statistics. Therefore, it is ideally suited for performance benchmarks. It also helps you to identify the

dependencies between turbo and idle states.

After installing the cpupower package, view the available cpupower subcommands with

cpupower --help . Access the general man page with man cpupower , and the man pages of the

subcommands with man cpupower-SUBCOMMAND .

123 The cpupower tools SLES 15 SP6

12.3.1 Viewing current settings with cpupower
The cpupower frequency-info command shows the statistics of the cpufreq driver used in the kernel.

Additionally, it shows if turbo (boost) states are supported and enabled in the BIOS. Run without any

options, it shows an output similar to the following:

EXAMPLE 12.1: EXAMPLE OUTPUT OF cpupower frequency-info

cpupower frequency-info
analyzing CPU 0:
 driver: intel_pstate
 CPUs which run at the same hardware frequency: 0
 CPUs which need to have their frequency coordinated by software: 0
 maximum transition latency: 0.97 ms.
 hardware limits: 1.20 GHz - 3.80 GHz
 available cpufreq governors: performance, powersave
 current policy: frequency should be within 1.20 GHz and 3.80 GHz.
 The governor "powersave" may decide which speed to use
 within this range.
 current CPU frequency is 3.40 GHz (asserted by call to hardware).
 boost state support:
 Supported: yes
 Active: yes
 3500 MHz max turbo 4 active cores
 3600 MHz max turbo 3 active cores
 3600 MHz max turbo 2 active cores
 3800 MHz max turbo 1 active cores

To get the current values for all CPUs, use cpupower -c all frequency-info .

12.3.2 Viewing kernel idle statistics with cpupower
The idle-info subcommand shows the statistics of the cpuidle driver used in the kernel. It works on

all architectures that use the cpuidle kernel framework.

EXAMPLE 12.2: EXAMPLE OUTPUT OF cpupower idle-info

cpupower idle-info
CPUidle driver: intel_idle
CPUidle governor: menu

Analyzing CPU 0:
Number of idle states: 6
Available idle states: POLL C1-SNB C1E-SNB C3-SNB C6-SNB C7-SNB
POLL:
Flags/Description: CPUIDLE CORE POLL IDLE

124 Viewing current settings with cpupower SLES 15 SP6

Latency: 0
Usage: 163128
Duration: 17585669
C1-SNB:
Flags/Description: MWAIT 0x00
Latency: 2
Usage: 16170005
Duration: 697658910
C1E-SNB:
Flags/Description: MWAIT 0x01
Latency: 10
Usage: 4421617
Duration: 757797385
C3-SNB:
Flags/Description: MWAIT 0x10
Latency: 80
Usage: 2135929
Duration: 735042875
C6-SNB:
Flags/Description: MWAIT 0x20
Latency: 104
Usage: 53268
Duration: 229366052
C7-SNB:
Flags/Description: MWAIT 0x30
Latency: 109
Usage: 62593595
Duration: 324631233978

After finding out which processor idle states are supported with cpupower idle-info , individual states

can be disabled using the cpupower idle-set command. Typically one wants to disable the deepest

sleep state, for example:

cpupower idle-set -d 5

Or, for disabling all CPUs with latencies equal to or higher than 80 :

cpupower idle-set -D 80

12.3.3 Monitoring kernel and hardware statistics with cpupower

Use the monitor subcommand to report processor topology, and monitor frequency and idle power

state statistics over a certain period of time. The default interval is 1 second, but it can be changed with

the -i . Independent processor sleep states and frequency counters are implemented in the tool—some

125 Monitoring kernel and hardware statistics with cpupower SLES 15 SP6

retrieved from kernel statistics, others reading out hardware registers. The available monitors depend on

the underlying hardware and the system. List them with cpupower monitor -l . For a description of

the individual monitors, refer to the cpupower-monitor man page.

The monitor subcommand allows you to execute performance benchmarks. To compare kernel statistics

with hardware statistics for specific workloads, concatenate the respective command, for example:

cpupower monitor db_test.sh

EXAMPLE 12.3: EXAMPLE cpupower monitor OUTPUT

cpupower monitor
|Mperf || Idle_Stats
 1 2
CPU | C0 | Cx | Freq || POLL | C1 | C2 | C3
 0| 3.71| 96.29| 2833|| 0.00| 0.00| 0.02| 96.32
 1| 100.0| -0.00| 2833|| 0.00| 0.00| 0.00| 0.00
 2| 9.06| 90.94| 1983|| 0.00| 7.69| 6.98| 76.45
 3| 7.43| 92.57| 2039|| 0.00| 2.60| 12.62| 77.52

1 Mperf shows the average frequency of a CPU, including boost frequencies, over time.

Additionally, it shows the percentage of time the CPU has been active (C0) or in any sleep

state (Cx). As the turbo states are managed by the BIOS, it is impossible to get the frequency

values at a given instant. On modern processors with turbo features the Mperf monitor is the

only way to find out about the frequency a certain CPU has been running in.

2 Idle_Stats shows the statistics of the cpuidle kernel subsystem. The kernel updates these values

every time an idle state is entered or left. Therefore, there can be a few inaccuracies when

cores are in an idle state for some time when the measure starts or ends.

Apart from the (general) monitors in the example above, other architecture-specific monitors are

available. For detailed information, refer to the cpupower-monitor man page.

By comparing the values of the individual monitors, you can find correlations and dependencies and

evaluate how well the power saving mechanism works for a certain workload. In Example 12.3 you can

see that CPU 0 is idle (the value of Cx is near 100%), but runs at a high frequency. This is because the

CPUs 0 and 1 have the same frequency values which means that there is a dependency between them.

12.3.4 Modifying current settings with cpupower
You can use cpupower frequency-set command as root to modify current settings. It allows you

to set values for the minimum or maximum CPU frequency the governor may select or to create a new

governor. With the -c option, you can also specify for which of the processors the settings should be

126 Modifying current settings with cpupower SLES 15 SP6

modified. That makes it easy to use a consistent policy across all processors without adjusting the settings

for each processor individually. For more details and the available options, see the man page cpupower-

frequency-set or run cpupower frequency-set --help .

12.4 Special tuning options

The following sections highlight important settings.

12.4.1 Tuning options for P-states

The CPUfreq subsystem offers several tuning options for P-states: You can switch between the different

governors, influence minimum or maximum CPU frequency to be used or change individual governor

parameters.

To switch to another governor at runtime, use cpupower frequency-set with the -g option. For

example, running the following command (as root) will activate the performance governor:

cpupower frequency-set -g performance

To set values for the minimum or maximum CPU frequency the governor may select, use the -d or -

u option, respectively.

12.5 Troubleshooting

BIOS options enabled?

To use C-states or P-states, check your BIOS options:

To use C-states, make sure to enable CPU C State or similar options to benefit from power

savings at idle.

To use P-states and the CPUfreq governors, make sure to enable Processor Performance

States options or similar.

Even if P-states and C-states are available, it is possible that the platform firmware is managing

CPU frequencies which may be sub-optimal. For example, if pcc-cpufreq is loaded then

the OS is only giving hints to the firmware, which is free to ignore the hints. This can be

127 Special tuning options SLES 15 SP6

addressed by selecting "OS Management" or similar for CPU frequency managed in the BIOS.

After reboot, an alternative driver will be used but the performance impact should be carefully

measured.

In case of a CPU upgrade, make sure to upgrade your BIOS, too. The BIOS needs to know the new

CPU and its frequency stepping to pass this information on to the operating system.

Log file information?

Check the systemd journal (see Book “Administration Guide”, Chapter 21 “journalctl: query the

systemd journal”) for any output regarding the CPUfreq subsystem. Only severe errors are reported

there.

If you suspect problems with the CPUfreq subsystem on your machine, you can also enable

additional debug output. To do so, either use cpufreq.debug=7 as boot parameter or execute the

following command as root :

echo 7 > /sys/module/cpufreq/parameters/debug

This will cause CPUfreq to log more information to dmesg on state transitions, which is useful for

diagnosis. But as this additional output of kernel messages can be rather comprehensive, use it only

if you are sure that a problem exists.

12.6 More information

Platforms with a Baseboard Management Controller (BMC) may have additional power management

configuration options accessible via the service processor. These configurations are vendor specific and

therefore not subject of this guide. For more information, refer to the manuals provided by your vendor.

12.7 Monitoring power consumption with powerTOP

powerTOP helps to identify the causes of unnecessary high power consumption. This is especially useful

for laptops, where minimizing power consumption is more important. It supports both Intel and AMD

processors. Install it in the usual way:

> sudo zypper in powertop

128 More information SLES 15 SP6

powerTOP combines several sources of information (analysis of programs, device drivers, kernel options,

number and sources of interrupts waking up processors from sleep states) and provides several ways of

viewing them. You can launch it in interactive mode, which runs in an ncurses session (see Figure 12.1,

“powerTOP in interactive mode”):

> sudo powertop

FIGURE 12.1: POWERTOP IN INTERACTIVE MODE

powerTOP supports exporting reports to HTML and CSV. The following example generates a single report

of a 240-second run:

> sudo powertop --iteration=1 --time=240 --html=POWERREPORT.HTML

It can be useful to run separate reports over time. The following example runs powerTOP 10 times for 20

seconds each time, and creates a separate HTML report for each run:

> sudo powertop --iteration=10 --time=20 --html=POWERREPORT.HTML

This creates 10 time-stamped reports:

powerreport-20200108-104512.html
powerreport-20200108-104451.html
powerreport-20200108-104431.html
[...]

129 Monitoring power consumption with powerTOP SLES 15 SP6

An HTML report looks like Figure 12.2, “HTML powerTOP report”:

FIGURE 12.2: HTML POWERTOP REPORT

The Tuning tab of the HTML reports, and the Tunables tab in the interactive mode, both provide commands

for testing the various power settings. The HTML report prints the commands, which you can copy to a

root command line for testing, for example echo '0' > '/proc/sys/kernel/nmi_watchdog' . The

ncurses mode provides a simple toggle between Good and Bad . Good runs a command to enable power

saving, and Bad turns off power saving. Enable all powerTOP settings with one command:

> sudo powertop --auto-tune

None of these changes survive a reboot. To make any changes permanent, use sysctl , udev , or

systemd to run your selected commands at boot. powerTOP includes a systemd service file, /usr/

lib/systemd/system/powertop.service . This starts powerTOP with the --auto-tune option:

ExecStart=/usr/sbin/powertop --auto-tune

Test this carefully before launching the systemd service, to see if it gives the results that you want. You

should not use USB keyboards, and mice should not enter power save mode to avoid constantly waking

them up and disturbing other devices. For easier testing and configuration editing, extract the commands

from an HTML report with awk :

> awk -F '</?td ?>' '/tune/ { print $4 }' POWERREPORT.HTML

In calibrate mode, powerTOP sets up several runs that use different idle settings for backlight, CPU, Wi-

Fi, USB devices, and disks, and helps to identify optimal brightness settings on battery power:

> sudo powertop --calibrate

You may call a file that creates a workload for more accurate calibration:

> sudo powertop --calibrate --workload=FILENAME --html=POWERREPORT.HTML

130 Monitoring power consumption with powerTOP SLES 15 SP6

For more information, see:

The powerTOP project page at https://01.org/powertop

Section 2.6.2, “System control parameters: /proc/sys/”

Book “Administration Guide”, Chapter 19 “The systemd daemon”

Book “Administration Guide”, Chapter 29 “Dynamic kernel device management with udev”

131 Monitoring power consumption with powerTOP SLES 15 SP6

https://01.org/powertop

V Kernel tuning

13 Tuning I/O performance 133

14 Tuning the task scheduler 139

15 Tuning the memory management subsystem 151

16 Tuning the network 163

17 Tuning SUSE Linux Enterprise for SAP 168

13 Tuning I/O performance

I/O scheduling controls how input/output operations are submitted to storage. SUSE Linux Enterprise

Server offers several I/O algorithms—called elevators—suiting different workloads. Elevators can

help to reduce seek operations and can prioritize I/O requests.

Choosing the best suited I/O elevator not only depends on the workload but on the hardware too. For

example, single ATA disk systems, SSDs, RAID arrays, or network storage systems each require different

tuning strategies.

13.1 Switching I/O scheduling

SUSE Linux Enterprise Server picks a default I/O scheduler at boot-time, which can be changed on the

fly per block device. This makes it possible to set different algorithms, for example, for the device hosting

the system partition and the device hosting a database.

The default I/O scheduler is chosen for each device based on whether the device reports to be rotational

disk or not. For rotational disks, the BFQ I/O scheduler is picked. Other devices default to MQ-DEADLINE

or NONE .

To change the elevator for a specific device in the running system, run the following command:

> sudo echo SCHEDULER > /sys/block/DEVICE/queue/scheduler

Here, SCHEDULER is one of bfq , none , kyber , or mq-deadline . DEVICE is the block device

(sda for example). This change does not persist during reboot. For permanent I/O scheduler change

for a particular device, copy /usr/lib/udev/rules.d/60-io-scheduler.rules to /etc/udev/

rules.d/60-io-scheduler.rules , and edit the latter file to suit your needs.

Note: Default scheduler on IBM Z
On IBM Z, the default I/O scheduler for a storage device is set by the device driver.

Note: elevator boot parameter removed
The elevator boot parameter has been removed. The blk-mq I/O path replaces cfq and does not

include the elevator boot parameter.

133 Switching I/O scheduling SLES 15 SP6

13.2 Available I/O elevators with blk-mq I/O path

Below is a list of elevators available on SUSE Linux Enterprise Server for devices that use the blk-mq I/

O path. If an elevator has tunable parameters, they can be set with the command:

echo VALUE > /sys/block/DEVICE/queue/iosched/TUNABLE

In the command above, VALUE is the desired value for the TUNABLE and DEVICE is the block device.

To find out what elevators are available for a device (sda for example), run the following command (the

currently selected scheduler is listed in brackets):

> cat /sys/block/sda/queue/scheduler
[mq-deadline] kyber bfq none

Note: Scheduler options when switching from Legacy Block to blk-
mq I/O path
When switching from legacy block to blk-mq I/O path for a device, the none option is roughly

comparable to noop , mq-deadline is comparable to deadline , and bfq is comparable to

cfq .

13.2.1 MQ-DEADLINE

MQ-DEADLINE is a latency-oriented I/O scheduler. MQ-DEADLINE has the following tunable parameters:

TABLE 13.1: MQ-DEADLINE TUNABLE PARAMETERS

File Description

writes_starved Controls how many times reads are preferred over writes. A value

of 3 means that three read operations can be done before writes and

reads are dispatched on the same selection criteria.

Default is 3 .

read_expire Sets the deadline (current time plus the read_expire value) for

read operations in milliseconds.

Default is 500 .

134 Available I/O elevators with blk-mq I/O path SLES 15 SP6

File Description

write_expire Sets the deadline (current time plus the write_expire value) for

write operations in milliseconds.

Default is 5000 .

front_merges Enables (1) or disables (0) attempts to front merge requests.

Default is 1 .

fifo_batch Sets the maximum number of requests per batch (deadline expiration

is only checked for batches). This parameter allows to balance

between latency and throughput. When set to 1 (that is, one request

per batch), it results in “first come, first served” behavior and lowest

latency, with higher values increasing the throughput.

Default is 16 .

13.2.2 NONE

When NONE is selected as I/O elevator option for blk-mq, no I/O scheduler is used, and I/O requests are

passed down to the device without further I/O scheduling interaction.

NONE is the default for NVM Express devices. With no overhead compared to other I/O elevator options,

it is considered the fastest way of passing down I/O requests on multiple queues to such devices.

There are no tunable parameters for NONE .

13.2.3 BFQ (Budget Fair Queueing)

BFQ is a fairness-oriented scheduler. It is described as "a proportional-share storage-I/O scheduling

algorithm based on the slice-by-slice service scheme of CFQ. But BFQ assigns budgets,

measured in number of sectors, to processes instead of time slices." (Source: linux-4.12/block/bfq-

iosched.c (https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9ff1a2a9bb129ef4f6c/block/

bfq-iosched.c#L31))

BFQ allows to assign I/O priorities to tasks which are taken into account during scheduling decisions (see

Section 9.3.3, “Prioritizing disk access with ionice”).

135 NONE SLES 15 SP6

https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9ff1a2a9bb129ef4f6c/block/bfq-iosched.c#L31
https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9ff1a2a9bb129ef4f6c/block/bfq-iosched.c#L31
https://github.com/torvalds/linux/blob/6f7da290413ba713f0cdd9ff1a2a9bb129ef4f6c/block/bfq-iosched.c#L31

BFQ scheduler has the following tunable parameters:

TABLE 13.2: BFQ TUNABLE PARAMETERS

File Description

slice_idle Value in milliseconds specifies how long to idle, waiting for next

request on an empty queue.

Default is 8 .

slice_idle_us Same as slice_idle but in microseconds.

Default is 8000 .

low_latency Enables (1) or disables (0) BFQ 's low latency mode. This mode

prioritizes certain applications (for example, if interactive) such that

they observe lower latency.

Default is 1 .

back_seek_max Maximum value (in Kbytes) for backward seeking.

Default is 16384 .

back_seek_penalty Used to compute the cost of backward seeking.

Default is 2 .

fifo_expire_async Value (in milliseconds) is used to set the timeout of asynchronous

requests.

Default is 250 .

fifo_expire_sync Value in milliseconds specifies the timeout of synchronous requests.

Default is 125 .

timeout_sync Maximum time in milliseconds that a task (queue) is serviced after it

has been selected.

Default is 124 .

max_budget Limit for number of sectors that are served at maximum within

timeout_sync . If set to 0 BFQ internally calculates a value based

on timeout_sync and an estimated peak rate.

136 BFQ (Budget Fair Queueing) SLES 15 SP6

File Description

Default is 0 (set to auto-tuning).

strict_guarantees Enables (1) or disables (0) BFQ specific queue handling required to

give stricter bandwidth sharing guarantees under certain conditions.

Default is 0 .

13.2.4 KYBER

KYBER is a latency-oriented I/O scheduler. It makes it possible to set target latencies for reads and

synchronous writes and throttles I/O requests in order to try to meet these target latencies.

TABLE 13.3: KYBER TUNABLE PARAMETERS

File Description

read_lat_nsec Sets the target latency for read operations in nanoseconds.

Default is 2000000 .

write_lat_nsec Sets the target latency for write operations in nanoseconds.

Default is 10000000 .

13.3 I/O barrier tuning

Certain file systems (for example, Ext3 or Ext4) send write barriers to disk after fsync or during transaction

commits. Write barriers enforce proper ordering of writes, making volatile disk write caches safe to use

(with performance penalty). If your disks are battery-backed in one way or another, disabling barriers can

safely improve performance.

Important: nobarrier is deprecated in XFS
The nobarrier option is deprecated for XFS and is not a valid mount option in SUSE Linux

Enterprise 15 SP2 and upward. Any XFS mount command that explicitly specifies the flag may

fail to mount the file system. To prevent this from happening, make sure that no scripts or fstab

entries contain the nobarrier option.

137 KYBER SLES 15 SP6

Sending write barriers can be disabled using the nobarrier mount option.

Warning: Disabling barriers can lead to data loss
Disabling barriers when disks cannot guarantee caches are properly written in case of power failure

can lead to severe file system corruption and data loss.

138 I/O barrier tuning SLES 15 SP6

14 Tuning the task scheduler

Modern operating systems, such as SUSE® Linux Enterprise Server, normally run many tasks at the same

time. For example, you can be searching in a text file while receiving an e-mail and copying a big file to

an external hard disk. These simple tasks require many additional processes to be run by the system. To

provide each task with its required system resources, the Linux kernel needs a tool to distribute available

system resources to individual tasks. And this is exactly what the task scheduler does.

The following sections explain the most important terms related to a process scheduling. They also

introduce information about the task scheduler policy, scheduling algorithm, description of the task

scheduler used by SUSE Linux Enterprise Server, and references to other sources of relevant information.

14.1 Introduction

The Linux kernel controls the way that tasks (or processes) are managed on the system. The task scheduler,

sometimes called process scheduler, is the part of the kernel that decides which task to run next. It is

responsible for the optimal use of system resources to guarantee that multiple tasks are being executed

simultaneously. This makes it a core component of any multitasking operating system.

14.1.1 Preemption

The theory behind task scheduling is simple. If there are runnable processes in a system, at least one

process must always be running. If there are more runnable processes than processors in a system, not all

the processes can be running all the time.

Therefore, certain processes need to be stopped temporarily, or suspended, so that others can be running

again. The scheduler decides what process in the queue runs next.

As already mentioned, Linux, like all other Unix variants, is a multitasking operating system. That means

that several tasks can be running at the same time. Linux provides a so called preemptive multitasking,

where the scheduler decides when a process is suspended. This forced suspension is called preemption.

All Unix flavors have been providing preemptive multitasking since the beginning.

139 Introduction SLES 15 SP6

14.1.2 Timeslice

The time period for which a process runs before it is preempted is defined in advance. It is called a timeslice

of a process and represents the amount of processor time that is provided to each process. By assigning

timeslices, the scheduler makes global decisions for the running system, and prevents individual processes

from taking control of the processor resources.

14.1.3 Process priority

The scheduler evaluates processes based on their priority. To calculate the current priority of a process,

the task scheduler uses complex algorithms. As a result, each process is given a value according to which

it is “allowed” to run on a processor.

14.2 Process classification

Processes are classified according to their purpose and behavior. Although the borderline is not always

distinct, generally two criteria are used to sort them. These criteria are independent and do not exclude

each other.

One approach is to classify a process either I/O-bound or processor-bound.

I/O-bound

I/O stands for Input/Output devices, such as keyboards, mice, or optical and hard disks. I/O-bound

processes spend most of the time submitting and waiting for requests. They are run frequently, but

at short time intervals, not to block other processes waiting for I/O requests.

processor-bound

Processor-bound tasks use their time to execute a code, and run until they are preempted by the

scheduler. They do not block processes waiting for I/O requests, and, therefore, can be run less

frequently but for longer time intervals.

Another approach is to divide processes by type into interactive, batch, and real-time processes.

140 Timeslice SLES 15 SP6

Interactive processes spend a lot of time waiting for I/O requests, such as keyboard or mouse

operations. The scheduler must wake up such processes quickly on user request, or the user finds

the environment unresponsive. The typical delay is approximately 100 ms. Office applications, text

editors or image manipulation programs represent typical interactive processes.

Batch processes often run in the background and do not need to be responsive. They receive lower

priority from the scheduler. Multimedia converters, database search engines, or log files analyzers

are typical examples of batch processes.

Real-time processes must never be blocked by low-priority processes, and the scheduler guarantees

a short response time to them. Applications for editing multimedia content are a good example here.

14.3 Completely Fair Scheduler
Since the Linux kernel version 2.6.23, a new approach has been taken to the scheduling of runnable

processes. Completely Fair Scheduler (CFS) became the default Linux kernel scheduler. Since then,

important changes and improvements have been made. The information in this chapter applies to SUSE

Linux Enterprise Server with kernel version 2.6.32 and higher (including 3.x kernels). The scheduler

environment was divided into several parts, and three main new features were introduced:

Modular scheduler core

The core of the scheduler was enhanced with scheduling classes. These classes are modular and

represent scheduling policies.

Completely Fair Scheduler

Introduced in kernel 2.6.23 and extended in 2.6.24, CFS tries to assure that each process obtains its

“fair” share of the processor time.

Group scheduling

For example, if you split processes into groups according to which user is running them, CFS tries

to provide each of these groups with the same amount of processor time.

As a result, CFS brings optimized scheduling for both servers and desktops.

14.3.1 How CFS works

CFS tries to guarantee a fair approach to each runnable task. To find the most balanced way of task

scheduling, it uses the concept of red-black tree. A red-black tree is a type of self-balancing data search

tree which provides inserting and removing entries in a reasonable way so that it remains well balanced.

141 Completely Fair Scheduler SLES 15 SP6

When CFS schedules a task it accumulates “virtual runtime” or vruntime. The next task picked to run is

always the task with the minimum accumulated vruntime so far. By balancing the red-black tree when

tasks are inserted into the run queue (a planned time line of processes to be executed next), the task with

the minimum vruntime is always the first entry in the red-black tree.

The amount of vruntime a task accrues is related to its priority. High priority tasks gain vruntime at a

slower rate than low priority tasks, which results in high priority tasks being picked to run on the processor

more often.

14.3.2 Grouping processes

Since the Linux kernel version 2.6.24, CFS can be tuned to be fair to groups rather than to tasks only.

Runnable tasks are then grouped to form entities, and CFS tries to be fair to these entities instead of

individual runnable tasks. The scheduler also tries to be fair to individual tasks within these entities.

The kernel scheduler lets you group runnable tasks using control groups. For more information, see

Chapter 10, Kernel control groups.

14.3.3 Kernel configuration options

Basic aspects of the task scheduler behavior can be set through the kernel configuration options. Setting

these options is part of the kernel compilation process. Because kernel compilation process is a complex

task and out of this document's scope, refer to relevant source of information.

Warning: Kernel compilation
If you run SUSE Linux Enterprise Server on a kernel that was not shipped with it, for example on

a self-compiled kernel, you lose the entire support entitlement.

14.3.4 Terminology

Documents regarding task scheduling policy often use several technical terms which you need to know to

understand the information correctly. A few of them are as follows:

Latency

Delay between the time a process is scheduled to run and the actual process execution.

142 Grouping processes SLES 15 SP6

Granularity

The relation between granularity and latency can be expressed by the following equation:

gran = (lat / rtasks) - (lat / rtasks / rtasks)

where gran stands for granularity, lat stand for latency, and rtasks is the number of running tasks.

14.3.4.1 Scheduling policies

The Linux kernel supports the following scheduling policies:

SCHED_FIFO

Scheduling policy designed for special time-critical applications. It uses the First In-First Out

scheduling algorithm.

SCHED_BATCH

Scheduling policy designed for CPU-intensive tasks.

SCHED_IDLE

Scheduling policy intended for very low-priority tasks.

SCHED_OTHER

Default Linux time-sharing scheduling policy used by most of the processes.

SCHED_RR

Similar to SCHED_FIFO , but uses the Round Robin scheduling algorithm.

14.3.5 Changing real-time attributes of processes with chrt

The chrt command sets or retrieves the real-time scheduling attributes of a running process, or runs a

command with the specified attributes. You can get or retrieve both the scheduling policy and priority

of a process.

In the following examples, a process whose PID is 16244 is used.

To retrieve the real-time attributes of an existing task:

chrt -p 16244
pid 16244's current scheduling policy: SCHED_OTHER
pid 16244's current scheduling priority: 0

143 Changing real-time attributes of processes with chrt SLES 15 SP6

Before setting a new scheduling policy on the process, you need to find out the minimum and maximum

valid priorities for each scheduling algorithm:

chrt -m
SCHED_SCHED_OTHER min/max priority : 0/0
SCHED_SCHED_FIFO min/max priority : 1/99
SCHED_SCHED_RR min/max priority : 1/99
SCHED_SCHED_BATCH min/max priority : 0/0
SCHED_SCHED_IDLE min/max priority : 0/0

In the above example, SCHED_OTHER, SCHED_BATCH, SCHED_IDLE polices only allow for priority

0, while that of SCHED_FIFO and SCHED_RR can range from 1 to 99.

To set SCHED_BATCH scheduling policy:

chrt -b -p 0 16244
pid 16244's current scheduling policy: SCHED_BATCH
pid 16244's current scheduling priority: 0

For more information on chrt , see its man page (man 1 chrt).

14.3.6 Runtime tuning with sysctl
The sysctl interface for examining and changing kernel parameters at runtime introduces important

variables, using which you can change the default behavior of the task scheduler. The syntax of the

sysctl is simple, and all the following commands must be entered on the command line as root .

To read a value from a kernel variable, enter

sysctl VARIABLE

To assign a value, enter

sysctl VARIABLE=VALUE

To get a list of all scheduler-related variables, run the sysctl command, and use grep to filter the

output:

sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_cfs_bandwidth_slice_us = 5000
kernel.sched_child_runs_first = 0
kernel.sched_compat_yield = 0
kernel.sched_latency_ns = 24000000
kernel.sched_migration_cost_ns = 500000
kernel.sched_min_granularity_ns = 8000000
kernel.sched_nr_migrate = 32
kernel.sched_rr_timeslice_ms = 25

144 Runtime tuning with sysctl SLES 15 SP6

kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_schedstats = 0
kernel.sched_shares_window_ns = 10000000
kernel.sched_time_avg_ms = 1000
kernel.sched_tunable_scaling = 1
kernel.sched_wakeup_granularity_ns = 10000000

Variables ending with “_ns” and “_us” accept values in nanoseconds and microseconds, respectively.

A list of the most important task scheduler sysctl tuning variables (located at /proc/sys/kernel/)

with a short description follows:

sched_cfs_bandwidth_slice_us

When CFS bandwidth control is in use, this parameter controls the amount of runtime (bandwidth)

transferred to a run queue from the task's control group bandwidth pool. Small values allow the

global bandwidth to be shared in a fine-grained manner among tasks, larger values reduce transfer

overhead. See https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt .

sched_child_runs_first

A freshly forked child runs before the parent continues execution. Setting this parameter to 1 is

beneficial for an application in which the child performs an execution after fork.

sched_compat_yield

Enables the aggressive CPU yielding behavior of the old O(1) scheduler by moving the relinquishing

task to the end of the runnable queue (right-most position in the red-black tree). Applications that

depend on the sched_yield(2) syscall behavior may see performance improvements by giving

other processes a chance to run when there are highly contended resources (such as locks). Given

that this call occurs in context switching, misusing the call can hurt the workload. Use it only when

you see a drop in performance. The default value is 0 .

sched_migration_cost_ns

Amount of time after the last execution that a task is considered to be “cache hot” in migration

decisions. A “hot” task has fewer chances of migration to another CPU, so increasing this variable

reduces task migrations. The default value is 500000 (ns).

If the CPU idle time is higher than expected when there are runnable processes, try reducing this

value. If tasks bounce between CPUs or nodes too often, try increasing it.

sched_latency_ns

Targeted preemption latency for CPU bound tasks. Increasing this variable increases a CPU bound

task's timeslice. A task's timeslice is its weighted fair share of the scheduling period:

timeslice = scheduling period * (task's weight/total weight of tasks in the run queue)

145 Runtime tuning with sysctl SLES 15 SP6

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

The task's weight depends on the task's nice level and the scheduling policy. Minimum task weight

for a SCHED_OTHER task is 15, corresponding to nice 19. The maximum task weight is 88761,

corresponding to nice -20.

Timeslices become smaller as the load increases. When the number of runnable

tasks exceeds sched_latency_ns / sched_min_granularity_ns , the slice becomes

number_of_running_tasks * sched_min_granularity_ns . Before that, the slice is equal to

sched_latency_ns .

This value also specifies the maximum amount of time during which a sleeping task is considered

to be running for entitlement calculations. Increasing this variable increases the amount of time a

waking task may consume before being preempted, thus increasing scheduler latency for CPU bound

tasks. The default value is 6000000 (ns).

sched_min_granularity_ns

Minimal preemption granularity for CPU bound tasks. See sched_latency_ns for details. The

default value is 4000000 (ns).

sched_wakeup_granularity_ns

The wake-up preemption granularity. Increasing this variable reduces wake-up preemption, reducing

disturbance of compute bound tasks. Lowering it improves wake-up latency and throughput for

latency critical tasks, particularly when a short duty cycle load component must compete with CPU

bound components. The default value is 2500000 (ns).

Warning: Setting the right wake-up granularity value
Settings larger than half of sched_latency_ns result in no wake-up preemption. Short

duty cycle tasks cannot compete with CPU hogs effectively.

sched_rr_timeslice_ms

Quantum that SCHED_RR tasks are allowed to run before they are preempted and put to the end

of the task list.

sched_rt_period_us

Period over which real-time task bandwidth enforcement is measured. The default value is 1000000

(µs).

sched_rt_runtime_us

Quantum allocated to real-time tasks during sched_rt_period_us. Setting to -1 disables RT

bandwidth enforcement. By default, RT tasks may consume 95%CPU/sec, thus leaving 5%CPU/sec

or 0.05 s to be used by SCHED_OTHER tasks. The default value is 950000 (µs).

146 Runtime tuning with sysctl SLES 15 SP6

sched_nr_migrate

Controls how many tasks can be migrated across processors for load-balancing purposes. Because

balancing iterates the runqueue with interrupts disabled (softirq), it can incur in irq-latency penalties

for real-time tasks. Therefore, increasing this value may give a performance boost to large

SCHED_OTHER threads at the expense of increased irq-latencies for real-time tasks. The default

value is 32 .

sched_time_avg_ms

This parameter sets the period over which the time spent running real-time tasks is averaged. That

average assists CFS in making load-balancing decisions and gives an indication of how busy a CPU

is with high-priority real-time tasks.

The optimal setting for this parameter is highly workload dependent and depends, among other

things, on how frequently real-time tasks are running and for how long.

Warning: A few scheduler parameters have been moved to
debugfs
If the default Linux kernel version of your operating system is 5.13 or later (which can be checked

using the command rpm -q kernel-default), you might notice messages in the kernel logs

that are similar to the following example:

[20.485624] The sched.sched_min_granularity_ns sysctl was moved to debugfs in
 kernel 5.13 for CPU scheduler debugging only. This sysctl will be removed in a
 future SLE release.
[20.485632] The sched.sched_wakeup_granularity_ns sysctl was moved to debugfs in
 kernel 5.13 for CPU scheduler debugging only. This sysctl will be removed in a
 future SLE release.

This happens because six scheduler parameters have been moved from /proc/sys/kernel/

sched_* to /sys/kernel/debug/sched/* . The affected scheduler parameters are as follows:

sched_latency_ns

sched_migration_cost_ns

sched_min_granularity_ns

sched_nr_migrate

sched_tunable_scaling

sched_wakeup_granularity_n

147 Runtime tuning with sysctl SLES 15 SP6

For temporary convenience, the sysctl for these scheduler parameters still exists in SUSE Linux

Enterprise Server. However, due to planned changes in the CPU scheduler implementation, there

is no guarantee that either the sysctl or the debugfs options will exist in a future release of

SUSE Linux Enterprise Server.

If any of your current system tuning configurations depend on these six scheduler parameters,

we strongly recommend that you find an alternate method of achieving your objective and stop

depending on them for production workloads.

14.3.7 Debugging interface and scheduler statistics

CFS comes with a new improved debugging interface, and provides runtime statistics information.

Relevant files were added to the /proc file system, which can be examined simply with the cat or

less command. A list of the related /proc files follows with their short description:

/proc/sched_debug

Contains the current values of all tunable variables (see Section 14.3.6, “Runtime tuning with

sysctl”) that affect the task scheduler behavior, CFS statistics, and information about the run

queues (CFS, RT and deadline) on all available processors. A summary of the task running on each

processor is also shown, with the task name and PID, along with scheduler specific statistics. The

first being the tree-key column, it indicates the task's virtual runtime, and its name comes from

the kernel sorting all runnable tasks by this key in a red-black tree. The switches column indicates

the total number of switches (involuntary or not), and the prio refers to the process priority. The

wait-time value indicates the amount of time the task waited to be scheduled. Finally both sum-

exec and sum-sleep account for the total amount of time (in nanoseconds) the task was running

on the processor or asleep, respectively.

cat /proc/sched_debug
Sched Debug Version: v0.11, 6.4.0-150600.9-default #1
ktime : 23533900.395978
sched_clk : 23543587.726648
cpu_clk : 23533900.396165
jiffies : 4300775771
sched_clock_stable : 0

sysctl_sched
 .sysctl_sched_latency : 6.000000
 .sysctl_sched_min_granularity : 2.000000
 .sysctl_sched_wakeup_granularity : 2.500000

148 Debugging interface and scheduler statistics SLES 15 SP6

 .sysctl_sched_child_runs_first : 0
 .sysctl_sched_features : 154871
 .sysctl_sched_tunable_scaling : 1 (logarithmic)

cpu#0, 2666.762 MHz
 .nr_running : 1
 .load : 1024
 .nr_switches : 1918946
[...]

cfs_rq[0]:/
 .exec_clock : 170176.383770
 .MIN_vruntime : 0.000001
 .min_vruntime : 347375.854324
 .max_vruntime : 0.000001
[...]

rt_rq[0]:/
 .rt_nr_running : 0
 .rt_throttled : 0
 .rt_time : 0.000000
 .rt_runtime : 950.000000

dl_rq[0]:
 .dl_nr_running : 0

 task PID tree-key switches prio wait-time [...]
--
R cc1 63477 98876.717832 197 120 0.000000 ...

/proc/schedstat

Displays statistics relevant to the current run queue. Also domain-specific statistics for SMP systems

are displayed for all connected processors. Because the output format is not user-friendly, read

the contents of /usr/src/linux/Documentation/scheduler/sched-stats.txt for more

information.

/proc/PID/sched

Displays scheduling information on the process with id PID .

cat /proc/$(pidof gdm)/sched
gdm (744, #threads: 3)

se.exec_start : 8888.758381
se.vruntime : 6062.853815
se.sum_exec_runtime : 7.836043
se.statistics.wait_start : 0.000000

149 Debugging interface and scheduler statistics SLES 15 SP6

se.statistics.sleep_start : 8888.758381
se.statistics.block_start : 0.000000
se.statistics.sleep_max : 1965.987638
[...]
se.avg.decay_count : 8477
policy : 0
prio : 120
clock-delta : 128
mm->numa_scan_seq : 0
numa_migrations, 0
numa_faults_memory, 0, 0, 1, 0, -1
numa_faults_memory, 1, 0, 0, 0, -1

14.4 More information

To get a compact knowledge about Linux kernel task scheduling, you need to explore several information

sources. Here are some:

For task scheduler System Calls description, see the relevant manual page (for example man 2
sched_setaffinity).

A useful lecture on Linux scheduler policy and algorithm is available in https://www.inf.fu-berlin.de/

lehre/SS01/OS/Lectures/Lecture08.pdf .

A good overview of Linux process scheduling is given in Linux Kernel Development by Robert Love

(ISBN-10: 0-672-32512-8). See https://www.informit.com/articles/article.aspx?p=101760 .

A comprehensive overview of the Linux kernel internals is given in Understanding the Linux Kernel

by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).

Technical information about task scheduler is covered in files under /usr/src/linux/

Documentation/scheduler .

150 More information SLES 15 SP6

https://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
https://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
https://www.informit.com/articles/article.aspx?p=101760

15 Tuning the memory management subsystem

To understand and tune the memory management behavior of the kernel, it is important to first have an

overview of how it works and cooperates with other subsystems.

The memory management subsystem, also called the virtual memory manager, will subsequently be called

“VM”. The role of the VM is to manage the allocation of physical memory (RAM) for the entire kernel

and user programs. It is also responsible for providing a virtual memory environment for user processes

(managed via POSIX APIs with Linux extensions). Finally, the VM frees up RAM when there is a shortage,

either by trimming caches or swapping out “anonymous” memory.

The most important thing to understand when examining and tuning VM is how its caches are managed.

The basic goal of the VM's caches is to minimize the cost of I/O as generated by swapping and file system

operations (including network file systems). This is achieved by avoiding I/O or by submitting I/O in

better patterns.

Free memory is used and filled up by these caches as required. The more memory is available for caches

and anonymous memory, the more effectively the caches and swapping operate. However, if a memory

shortage is encountered, the caches are trimmed or the memory is swapped out.

For a particular workload, the first thing that can be done to improve performance is to increase memory

and reduce the frequency that memory must be trimmed or swapped. The second thing is to change the

way caches are managed by changing kernel parameters.

Finally, the workload itself should be examined and tuned as well. If an application is allowed to run more

processes or threads, effectiveness of VM caches can be reduced, if each process is operating in its own

area of the file system. Memory overheads are also increased. If applications allocate their own buffers or

caches, larger caches mean that less memory is available for VM caches. However, more processes and

threads can mean more opportunity to overlap and pipeline I/O, and may take better advantage of multiple

cores. Experimentation is required for the best results.

15.1 Memory usage

Memory allocations can be characterized as “pinned” (also known as “unreclaimable”), “reclaimable” or

“swappable”.

151 Memory usage SLES 15 SP6

15.1.1 Anonymous memory

Anonymous memory tends to be program heap and stack memory (for example, >malloc()). It is

reclaimable, except in special cases such as mlock or if there is no available swap space. Anonymous

memory must be written to swap before it can be reclaimed. Swap I/O (both swapping in and swapping

out pages) tends to be less efficient than pagecache I/O, because of allocation and access patterns.

15.1.2 Pagecache

A cache of file data. When a file is read from disk or network, the contents are stored in pagecache. No

disk or network access is required, if the contents are up-to-date in pagecache. tmpfs and shared memory

segments count toward pagecache.

When a file is written to, the new data is stored in pagecache before being written back to a disk or the

network (making it a write-back cache). When a page has new data not written back yet, it is called “dirty”.

Pages not classified as dirty are “clean”. Clean pagecache pages can be reclaimed if there is a memory

shortage by simply freeing them. Dirty pages must first be made clean before being reclaimed.

15.1.3 Buffercache

This is a type of pagecache for block devices (for example, /dev/sda). A file system typically uses the

buffercache when accessing its on-disk metadata structures such as inode tables, allocation bitmaps, and

so forth. Buffercache can be reclaimed similarly to pagecache.

15.1.4 Buffer heads

Buffer heads are small auxiliary structures that tend to be allocated upon pagecache access. They can

generally be reclaimed easily when the pagecache or buffercache pages are clean.

15.1.5 Writeback

As applications write to files, the pagecache becomes dirty and the buffercache may become dirty. When

the amount of dirty memory reaches a specified number of pages in bytes (vm.dirty_background_bytes), or

when the amount of dirty memory reaches a specific ratio to total memory (vm.dirty_background_ratio),

or when the pages have been dirty for longer than a specified amount of time (vm.dirty_expire_centisecs),

the kernel begins writeback of pages starting with files that had the pages dirtied first. The background

152 Anonymous memory SLES 15 SP6

bytes and ratios are mutually exclusive and setting one will overwrite the other. Flusher threads perform

writeback in the background and allow applications to continue running. If the I/O cannot keep up with

applications dirtying pagecache, and dirty data reaches a critical setting (vm.dirty_bytes or vm.dirty_ratio),

then applications begin to be throttled to prevent dirty data exceeding this threshold.

15.1.6 Readahead

The VM monitors file access patterns and may attempt to perform readahead. Readahead reads pages into

the pagecache from the file system that have not been requested yet. It is done to allow fewer, larger I/

O requests to be submitted (more efficient). And for I/O to be pipelined (I/O performed at the same time

as the application is running).

15.1.7 VFS caches

15.1.7.1 Inode cache

This is an in-memory cache of the inode structures for each file system. These contain attributes such as

the file size, permissions and ownership, and pointers to the file data.

15.1.7.2 Directory entry cache

This is an in-memory cache of the directory entries in the system. These contain a name (the name of a

file), the inode which it refers to, and children entries. This cache is used when traversing the directory

structure and accessing a file by name.

15.2 Reducing memory usage

15.2.1 Reducing malloc (anonymous) usage

Applications running on SUSE Linux Enterprise Server 15 SP6 can allocate more memory compared

to older releases. This is because of glibc changing its default behavior while allocating user

space memory. See https://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html for

explanation of these parameters.

153 Readahead SLES 15 SP6

https://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html

To restore behavior similar to older releases, M_MMAP_THRESHOLD should be set to 128*1024.

This can be done with mallopt() call from the application, or via setting MALLOC_MMAP_THRESHOLD_

environment variable before running the application.

15.2.2 Reducing kernel memory overheads

Kernel memory that is reclaimable (caches, described above) is trimmed automatically during memory

shortages. Most other kernel memory cannot be easily reduced but is a property of the workload given

to the kernel.

Reducing the requirements of the user space workload reduces the kernel memory usage (fewer processes,

fewer open files and sockets, etc.).

15.2.3 Memory controller (memory cgroups)

If the memory cgroups feature is not needed, it can be switched off by passing cgroup_disable=memory

on the kernel command line, reducing memory consumption of the kernel a bit. There is also a slight

performance benefit as there is a small amount of accounting overhead when memory cgroups are available

even if none are configured.

15.3 Virtual memory manager (VM) tunable parameters

When tuning the VM, it should be understood that certain changes take time to affect the workload and

take full effect. If the workload changes throughout the day, it may behave differently at different times.

A change that increases throughput under certain conditions may decrease it under other conditions.

15.3.1 Reclaim ratios

/proc/sys/vm/swappiness

This control is used to define how aggressively the kernel swaps out anonymous memory relative

to pagecache and other caches. Increasing the value increases the amount of swapping. The default

value is 60 .

Swap I/O tends to be much less efficient than other I/O. However, certain pagecache pages are

accessed much more frequently than less used anonymous memory. The right balance should be

found here.

154 Reducing kernel memory overheads SLES 15 SP6

If swap activity is observed during slowdowns, it may be worth reducing this parameter. If there is

a lot of I/O activity and the amount of pagecache in the system is rather small, or if there are large

dormant applications running, increasing this value can improve performance.

The more data is swapped out, the longer the system takes to swap data back in when it is needed.

/proc/sys/vm/vfs_cache_pressure

This variable controls the tendency of the kernel to reclaim the memory which is used for caching

of VFS caches, versus pagecache and swap. Increasing this value increases the rate at which VFS

caches are reclaimed.

It is difficult to know when this should be changed, other than by experimentation. The slabtop
command (part of the package procps) shows top memory objects used by the kernel. The vfs

caches are the "dentry" and the "*_inode_cache" objects. If these are consuming a large amount of

memory in relation to pagecache, it may be worth trying to increase pressure. Could also help to

reduce swapping. The default value is 100 .

/proc/sys/vm/min_free_kbytes

This controls the amount of memory that is kept free for use by special reserves including “atomic”

allocations (those which cannot wait for reclaim). This should not normally be lowered unless the

system is being carefully tuned for memory usage (normally useful for embedded rather than server

applications). If “page allocation failure” messages and stack traces are frequently seen in logs,

min_free_kbytes could be increased until the errors disappear. There is no need for concern if these

messages are infrequent. The default value depends on the amount of RAM.

/proc/sys/vm/watermark_scale_factor

Broadly speaking, free memory has high, low and min watermarks. When the low watermark is

reached then kswapd wakes to reclaim memory in the background. It stays awake until free memory

reaches the high watermark. Applications will stall and reclaim memory when the min watermark

is reached.

The watermark_scale_factor defines the amount of memory left in a node/system before

kswapd is woken up and how much memory needs to be free before kswapd goes back to sleep. The

unit is in fractions of 10,000. The default value of 10 means the distances between watermarks are

0.1% of the available memory in the node/system. The maximum value is 1000, or 10% of memory.

Workloads that frequently stall in direct reclaim, accounted by allocstall in /proc/vmstat ,

may benefit from altering this parameter. Similarly, if kswapd is sleeping prematurely, as accounted

for by kswapd_low_wmark_hit_quickly , then it may indicate that the number of pages kept

free to avoid stalls is too low.

155 Reclaim ratios SLES 15 SP6

15.3.2 Writeback parameters

One important change in writeback behavior since SUSE Linux Enterprise Server 10 is that modification

to file-backed mmap() memory is accounted immediately as dirty memory (and subject to writeback).

Whereas previously it would only be subject to writeback after it was unmapped, upon an msync() system

call, or under heavy memory pressure.

Some applications do not expect mmap modifications to be subject to such writeback behavior, and

performance can be reduced. Increasing writeback ratios and times can improve this type of slowdown.

/proc/sys/vm/dirty_background_ratio

This is the percentage of the total amount of free and reclaimable memory. When the amount of

dirty pagecache exceeds this percentage, writeback threads start writing back dirty memory. The

default value is 10 (%).

/proc/sys/vm/dirty_background_bytes

This contains the amount of dirty memory at which the background kernel flusher threads start

writeback. dirty_background_bytes is the counterpart of dirty_background_ratio . If

one of them is set, the other one will automatically be read as 0 .

/proc/sys/vm/dirty_ratio

Similar percentage value as for dirty_background_ratio . When this is exceeded, applications

that want to write to the pagecache are blocked and wait for kernel background flusher threads to

reduce the amount of dirty memory. The default value is 20 (%).

/proc/sys/vm/dirty_bytes

This file controls the same tunable as dirty_ratio however the amount of dirty memory is

in bytes as opposed to a percentage of reclaimable memory. Since both dirty_ratio and

dirty_bytes control the same tunable, if one of them is set, the other one is automatically read

as 0 . The minimum value allowed for dirty_bytes is two pages (in bytes); any value lower than

this limit is ignored and the old configuration will be retained.

/proc/sys/vm/dirty_expire_centisecs

The data which has been dirty in-memory for longer than this interval is written out next time a

flusher thread wakes up. Expiration is measured based on the modification time of a file's inode.

Therefore, multiple dirtied pages from the same file are all written when the interval is exceeded.

dirty_background_ratio and dirty_ratio together determine the pagecache writeback behavior.

If these values are increased, more dirty memory is kept in the system for a longer time. With more

dirty memory allowed in the system, the chance to improve throughput by avoiding writeback I/O and

156 Writeback parameters SLES 15 SP6

to submitting more optimal I/O patterns increases. However, more dirty memory can either harm latency

when memory needs to be reclaimed or at points of data integrity (“synchronization points”) when it needs

to be written back to disk.

15.3.3 Timing differences of I/O writes between SUSE Linux
Enterprise 12 and SUSE Linux Enterprise 11

The system is required to limit what percentage of the system's memory contains file-backed data that

needs writing to disk. This guarantees that the system can always allocate the necessary data structures

to complete I/O. The maximum amount of memory that can be dirty and requires writing at any time is

controlled by vm.dirty_ratio (/proc/sys/vm/dirty_ratio). The defaults are:

SLE-11-SP3: vm.dirty_ratio = 40
SLE-12: vm.dirty_ratio = 20

The primary advantage of using the lower ratio in SUSE Linux Enterprise 12 is that page reclamation

and allocation in low memory situations completes faster as there is a higher probability that old clean

pages are quickly found and discarded. The secondary advantage is that if all data on the system must be

synchronized, then the time to complete the operation on SUSE Linux Enterprise 12 is lower than SUSE

Linux Enterprise 11 SP3 by default. Most workloads will not notice this change as data is synchronized

with fsync() by the application or data is not dirtied quickly enough to hit the limits.

There are exceptions, and if your application is affected by this, it can manifest as an unexpected

stall during writes. To prove it is affected by dirty data rate limiting then monitor /proc/

PID_OF_APPLICATION/stack and it will be observed that the application spends significant time in

balance_dirty_pages_ratelimited . If this is observed and it is a problem, then increase the value

of vm.dirty_ratio to 40 to restore the SUSE Linux Enterprise 11 SP3 behavior.

Important
The overall I/O throughput is the same regardless of the setting. The only difference is the timing

of when the I/O is queued.

This is an example of using dd to asynchronously write 30% of memory to disk which would happen to

be affected by the change in vm.dirty_ratio :

MEMTOTAL_MBYTES=`free -m | grep Mem: | awk '{print $2}'`
sysctl vm.dirty_ratio=40

157

Timing differences of I/O writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise

11 SLES 15 SP6

dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
2507145216 bytes (2.5 GB) copied, 8.00153 s, 313 MB/s
sysctl vm.dirty_ratio=20
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
2507145216 bytes (2.5 GB) copied, 10.1593 s, 247 MB/s

The parameter affects the time it takes for the command to complete and the apparent write speed of the

device. With dirty_ratio=40 , more of the data is cached and written to disk in the background by the

kernel. The speed of I/O is identical in both cases. To demonstrate, this is the result when dd synchronizes

the data before exiting:

sysctl vm.dirty_ratio=40
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
 conv=fdatasync
2507145216 bytes (2.5 GB) copied, 21.0663 s, 119 MB/s
sysctl vm.dirty_ratio=20
dd if=/dev/zero of=zerofile ibs=1048576 count=$((MEMTOTAL_MBYTES*30/100))
 conv=fdatasync
2507145216 bytes (2.5 GB) copied, 21.7286 s, 115 MB/s

As observed, dirty_ratio had almost no impact here and is within the natural variability of a

command. Hence, dirty_ratio does not directly impact I/O performance but it may affect the apparent

performance of a workload that writes data asynchronously without synchronizing.

15.3.4 Readahead parameters

/sys/block/<bdev>/queue/read_ahead_kb

If one or more processes are sequentially reading a file, the kernel reads certain data in advance

(ahead) to reduce the amount of time that processes need to wait for data to be available. The actual

amount of data being read in advance is computed dynamically, based on the extent of sequentiality

of the I/O. This parameter sets the maximum amount of data that the kernel reads ahead for a

single file. If you observe that large sequential reads from a file are not fast enough, you can try

increasing this value. Increasing it too far may result in readahead thrashing where pagecache used

for readahead is reclaimed before it can be used, or slowdowns because of a large amount of useless

I/O. The default value is 512 (KB).

158 Readahead parameters SLES 15 SP6

15.3.5 Transparent HugePage parameters

Transparent HugePages (THP) provide a way to dynamically allocate huge pages either on‑demand by the

process or deferring the allocation until later via the khugepaged kernel thread. This method is distinct

from the use of hugetlbfs to manually manage their allocation and use. Workloads with contiguous

memory access patterns can benefit greatly from THP. A 1000-fold decrease in page faults can be observed

when running synthetic workloads with contiguous memory access patterns.

There are cases when THP may be undesirable. Workloads with sparse memory access patterns can

perform poorly with THP due to excessive memory usage. For example, 2 MB of memory may be used

at fault time instead of 4 KB for each fault and ultimately lead to premature page reclaim. On releases

older than SUSE Linux Enterprise 12 SP2, it was possible for an application to stall for long periods

of time trying to allocate a THP which frequently led to a recommendation of disabling THP. Such

recommendations should be re-evaluated for SUSE Linux Enterprise 12 SP3 and later releases.

The behavior of THP may be configured via the transparent_hugepage= kernel parameter or via

sysfs. For example, it may be disabled by adding the kernel parameter transparent_hugepage=never ,

rebuilding your grub2 configuration, and rebooting. Verify if THP is disabled with:

cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]

If disabled, the value never is shown in square brackets like in the example above. A value of always

mandatorily tries and uses THP at fault time but defers to khugepaged if the allocation fails. A value of

madvise will only allocate THP for address spaces explicitly specified by an application.

/sys/kernel/mm/transparent_hugepage/defrag

This parameter controls how much effort an application commits when allocating a THP. A value of

always is the default for SUSE Linux Enterprise 12 SP1 and earlier releases that supported THP. If

a THP is not available, the application tries to defragment memory. It potentially incurs large stalls

in an application if the memory is fragmented and a THP is not available.

A value of madvise means that THP allocation requests will only defragment if the application

explicitly requests it. This is the default for SUSE Linux Enterprise 12 SP2 and later releases.

defer is only available on SUSE Linux Enterprise 12 SP2 and later releases. If a THP is not

available, the application falls back to using small pages if a THP is not available. It wakes the

kswapd and kcompactd kernel threads to defragment memory in the background and a THP will

be allocated later by khugepaged .

The final option never uses small pages if a THP is unavailable but no other action will take place.

159 Transparent HugePage parameters SLES 15 SP6

15.3.6 khugepaged parameters

khugepaged is automatically started when transparent_hugepage is set to always or madvise ,

and it will be automatically shut down if it is set to never . Normally this runs at low frequency but the

behavior can be tuned.

/sys/kernel/mm/transparent_hugepage/khugepaged/defrag

A value of 0 will disable khugepaged even though THP may still be used at fault time. This may

be important for latency-sensitive applications that benefit from THP but cannot tolerate a stall if

khugepaged tries to update an application memory usage.

/sys/kernel/mm/transparent_hugepage/khugepaged/pages_to_scan

This parameter controls how many pages are scanned by khugepaged in a single pass. A scan

identifies small pages that can be reallocated as THP. Increasing this value will allocate THP in the

background faster at the cost of CPU usage.

/sys/kernel/mm/transparent_hugepage/khugepaged/scan_sleep_millisecs

khugepaged sleeps for a short interval specified by this parameter after each pass to limit how

much CPU usage is used. Reducing this value allocates THP in the background faster at the cost of

CPU usage. A value of 0 will force continual scanning.

/sys/kernel/mm/transparent_hugepage/khugepaged/alloc_sleep_millisecs

This parameter controls how long khugepaged will sleep in the event it fails to allocate a THP in

the background waiting for kswapd and kcompactd to take action.

The remaining parameters for khugepaged are rarely useful for performance tuning but are fully

documented in /usr/src/linux/Documentation/vm/transhuge.txt

15.3.7 Further VM parameters

For the complete list of the VM tunable parameters, see /usr/src/linux/Documentation/sysctl/

vm.txt (available after having installed the kernel-source package).

160 khugepaged parameters SLES 15 SP6

15.4 Monitoring VM behavior

Some simple tools that can help monitor VM behavior:

1. vmstat: This tool gives a good overview of what the VM is doing. See Section 2.1.1, “vmstat” for

details.

2. /proc/meminfo : This file gives a detailed breakdown of where memory is being used. See

Section 2.4.2, “Detailed memory usage: /proc/meminfo” for details.

3. slabtop : This tool provides detailed information about kernel slab memory usage. buffer_head,

dentry, inode_cache, ext3_inode_cache, etc. are the major caches. This command is available with

the package procps .

4. /proc/vmstat : This file gives a detailed breakdown of internal VM behavior. The information

contained within is implementation specific and may not always be available. Some information

is duplicated in /proc/meminfo and other information can be presented in a friendly fashion by

utilities. For maximum utility, this file needs to be monitored over time to observe rates of change.

The most important pieces of information that are hard to derive from other sources are as follows:

pgscan_kswapd_*, pgsteal_kswapd_*

These report respectively the number of pages scanned and reclaimed by kswapd since the

system started. The ratio between these values can be interpreted as the reclaim efficiency

with a low efficiency implying that the system is struggling to reclaim memory and may be

thrashing. Light activity here is generally not something to be concerned with.

pgscan_direct_*, pgsteal_direct_*

These report respectively the number of pages scanned and reclaimed by an application

directly. This is correlated with increases in the allocstall counter. This is more serious

than kswapd activity as these events indicate that processes are stalling. Heavy activity here

combined with kswapd and high rates of pgpgin , pgpout and/or high rates of pswapin

or pswpout are signs that a system is thrashing heavily.

More detailed information can be obtained using tracepoints.

thp_fault_alloc, thp_fault_fallback

These counters correspond to how many THPs were allocated directly by an application and

how many times a THP was not available and small pages were used. Generally a high fallback

rate is harmless unless the application is sensitive to TLB pressure.

161 Monitoring VM behavior SLES 15 SP6

thp_collapse_alloc, thp_collapse_alloc_failed

These counters correspond to how many THPs were allocated by khugepaged and how

many times a THP was not available and small pages were used. A high fallback rate implies

that the system is fragmented and THPs are not being used even when the memory usage by

applications would allow them. It is only a problem for applications that are sensitive to TLB

pressure.

compact_*_scanned, compact_stall, compact_fail, compact_success

These counters may increase when THP is enabled and the system is fragmented.

compact_stall is incremented when an application stalls allocating THP. The remaining

counters account for pages scanned, the number of defragmentation events that succeeded or

failed.

162 Monitoring VM behavior SLES 15 SP6

16 Tuning the network

The network subsystem is complex and its tuning highly depends on the system use scenario and on

external factors such as software clients or hardware components (switches, routers, or gateways) in your

network. The Linux kernel aims more at reliability and low latency than low overhead and high throughput.

Other settings can mean less security, but better performance.

16.1 Configurable kernel socket buffers

Most of modern networking is based on the TCP/IP protocol and a socket interface for communication;

for more information about TCP/IP, see Book “Administration Guide”, Chapter 23 “Basic networking”.

The Linux kernel handles data it receives or sends via the socket interface in socket buffers. These kernel

socket buffers are tunable.

Important: TCP autotuning
Since kernel version 2.6.17 full autotuning with 4 MB maximum buffer size exists. This means

that manual tuning does not improve networking performance considerably. It is often the best not

to touch the following variables, or, at least, to check the outcome of tuning efforts carefully.

If you update from an older kernel, it is recommended to remove manual TCP tunings in favor of

the autotuning feature.

The special files in the /proc file system can modify the size and behavior of kernel socket buffers;

for general information about the /proc file system, see Section 2.6, “The /proc file system”. Find

networking related files in:

/proc/sys/net/core
/proc/sys/net/ipv4
/proc/sys/net/ipv6

General net variables are explained in the kernel documentation (linux/Documentation/sysctl/

net.txt). Special ipv4 variables are explained in linux/Documentation/networking/ip-

sysctl.txt and linux/Documentation/networking/ipvs-sysctl.txt .

In the /proc file system, for example, it is possible to either set the Maximum Socket Receive Buffer

and Maximum Socket Send Buffer for all protocols, or both these options for the TCP protocol only (in

ipv4) and thus overriding the setting for all protocols (in core).

163 Configurable kernel socket buffers SLES 15 SP6

/proc/sys/net/ipv4/tcp_moderate_rcvbuf

If /proc/sys/net/ipv4/tcp_moderate_rcvbuf is set to 1 , autotuning is active and buffer

size is adjusted dynamically.

/proc/sys/net/ipv4/tcp_rmem

The three values setting the minimum, initial, and maximum size of the Memory Receive Buffer per

connection. They define the actual memory usage, not only TCP window size.

/proc/sys/net/ipv4/tcp_wmem

The same as tcp_rmem , but for Memory Send Buffer per connection.

/proc/sys/net/core/rmem_max

Set to limit the maximum receive buffer size that applications can request.

/proc/sys/net/core/wmem_max

Set to limit the maximum send buffer size that applications can request.

Via /proc it is possible to disable TCP features that you do not need (all TCP features are switched on

by default). For example, check the following files:

/proc/sys/net/ipv4/tcp_timestamps

TCP time stamps are defined in RFC1323.

/proc/sys/net/ipv4/tcp_window_scaling

TCP window scaling is also defined in RFC1323.

/proc/sys/net/ipv4/tcp_sack

Select acknowledgments (SACKS).

Use sysctl to read or write variables of the /proc file system. sysctl is preferable to cat (for

reading) and echo (for writing), because it also reads settings from /etc/sysctl.conf and, thus, those

settings survive reboots reliably. With sysctl you can read all variables and their values easily; as root

use the following command to list TCP related settings:

> sudo sysctl -a | grep tcp

Note: Side effects of tuning network variables
Tuning network variables can affect other system resources such as CPU or memory use.

164 Configurable kernel socket buffers SLES 15 SP6

16.2 Detecting network bottlenecks and analyzing
network traffic

Before starting with network tuning, it is important to isolate network bottlenecks and network traffic

patterns. There are certain tools that can help you with detecting those bottlenecks.

The following tools can help analyzing your network traffic: netstat , tcpdump , and wireshark .

Wireshark is a network traffic analyzer.

16.3 Netfilter

The Linux firewall and masquerading features are provided by the Netfilter kernel modules. This is a

highly configurable rule based framework. If a rule matches a packet, Netfilter accepts or denies it or takes

special action (“target”) as defined by rules such as address translation.

There are many properties Netfilter can take into account. Thus, the more rules are defined, the longer

packet processing may last. Also advanced connection tracking could be rather expensive and, thus,

slowing down overall networking.

When the kernel queue becomes full, all new packets are dropped, causing existing connections to

fail. The 'fail-open' feature allows a user to temporarily disable the packet inspection and maintain

the connectivity under heavy network traffic. For reference, see https://home.regit.org/netfilter-en/using-

nfqueue-and-libnetfilter_queue/ .

For more information, see the home page of the Netfilter and iptables project, https://www.netfilter.org .

16.4 Improving the network performance with receive
packet steering (RPS)

Modern network interface devices can move so many packets that the host can become the limiting factor

for achieving maximum performance. To keep up, the system must be able to distribute the work across

multiple CPU cores.

Some modern network interfaces can help distribute the work to multiple CPU cores through the

implementation of multiple transmission and multiple receive queues in hardware. However, others are

only equipped with a single queue and the driver must deal with all incoming packets in a single, serialized

165 Detecting network bottlenecks and analyzing network traffic SLES 15 SP6

https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/
https://home.regit.org/netfilter-en/using-nfqueue-and-libnetfilter_queue/
https://www.netfilter.org

stream. To work around this issue, the operating system must “parallelize” the stream to distribute the

work across multiple CPUs. On SUSE Linux Enterprise Server this is done via Receive Packet Steering

(RPS). RPS can also be used in virtual environments.

RPS creates a unique hash for each data stream using IP addresses and port numbers. The use of this

hash ensures that packets for the same data stream are sent to the same CPU, which helps to increase

performance.

RPS is configured per network device receive queue and interface. The configuration file names match

the following scheme:

/sys/class/net/<device>/queues/<rx-queue>/rps_cpus

<device> stands for the network device, such as eth0 , eth1 . <rx-queue> stands for the receive

queue, such as rx-0 , rx-1 .

If the network interface hardware only supports a single receive queue, only rx-0 exists. If it supports

multiple receive queues, there is an rx- N directory for each receive queue.

These configuration files contain a comma-delimited list of CPU bitmaps. By default, all bits are set to

0 . With this setting, RPS is disabled and therefore the CPU that handles the interrupt also processes the

packet queue.

To enable RPS and enable specific CPUs to process packets for the receive queue of the interface, set the

value of their positions in the bitmap to 1 . For example, to enable CPUs 0-3 to process packets for the first

receive queue for eth0, set the bit positions 0-3 to 1 in binary: 00001111 . This representation then needs

to be converted to hex—which results in F in this case. Set this hex value with the following command:

> sudo echo "f" > /sys/class/net/eth0/queues/rx-0/rps_cpus

If you wanted to enable CPUs 8-15:

1111 1111 0000 0000 (binary)
15 15 0 0 (decimal)
F F 0 0 (hex)

The command to set the hex value of ff00 would be:

> sudo echo "ff00" > /sys/class/net/eth0/queues/rx-0/rps_cpus

On NUMA machines, best performance can be achieved by configuring RPS to use the CPUs on the same

NUMA node as the interrupt for the interface's receive queue.

166 Improving the network performance with receive packet steering (RPS) SLES 15 SP6

On non-NUMA machines, all CPUs can be used. If the interrupt rate is high, excluding the CPU handling

the network interface can boost performance. The CPU being used for the network interface can be

determined from /proc/interrupts . For example:

> sudo cat /proc/interrupts
 CPU0 CPU1 CPU2 CPU3
...
 51: 113915241 0 0 0 Phys-fasteoi eth0
...

In this case, CPU 0 is the only CPU processing interrupts for eth0 , since only CPU0 contains a non-

zero value.

On x86 and AMD64/Intel 64 platforms, irqbalance can be used to distribute hardware interrupts across

CPUs. See man 1 irqbalance for more details.

167 Improving the network performance with receive packet steering (RPS) SLES 15 SP6

17 Tuning SUSE Linux Enterprise for SAP

This chapter presents information about preparing and tuning SUSE Linux Enterprise Server to work

optimally with SAP applications with sapconf . sapconf is for SUSE Linux Enterprise systems that

install SAP applications. Customers who have SUSE Linux Enterprise Server for SAP Applications should

use saptune .

Note: The sapconf command has been removed
In SUSE Linux Enterprise Server and SUSE Linux Enterprise Server 11 and 12, the sapconf
command was included in the package with the same name.

For SUSE Linux Enterprise Server and SUSE Linux Enterprise Server 15, this has been changed:

The command sapconf has been removed from the sapconf package. The package contains a

systemd service only. There is no sapconf command line tool anymore, no sapconf / tuned

profiles, and no tuned .

17.1 Tuning SLE Systems with sapconf 5

The package sapconf is available in SUSE Linux Enterprise Server and SUSE Linux Enterprise Server

for SAP Applications. It sets recommended parameters for the following types of SAP applications: SAP

NetWeaver, SAP HANA, and SAP HANA-based applications.

OVERVIEW OF sapconf5 IN SUSE® LINUX ENTERPRISE SERVER 12

sapconf 5 (without tuned)

sapconf-netweaver (sapconf profile as a replacement for tuned profile)

sapconf-hana (sapconf profile as a replacement for tuned profile)

sapconf-bobj (sapconf profile as a replacement for tuned profile)

sapconf-ase (sapconf profile as a replacement for tuned profile)

OVERVIEW OF sapconf5 IN SUSE® LINUX ENTERPRISE SERVER 15

sapconf 5 (without tuned)

no profiles anymore

168 Tuning SLE Systems with sapconf 5 SLES 15 SP6

If you previously made changes to the system tuning, those changes may be overwritten by sapconf .

sapconf 5 ships a systemd service which applies the tuning and ensures that related services are

running.

To use sapconf , make sure that the package sapconf is installed on your system.

Note: No profiles in SUSE Linux Enterprise Server and SUSE
Linux Enterprise Server 15 SP6
In SUSE Linux Enterprise Server and SUSE Linux Enterprise Server 15, sapconf no longer

supports profiles.

17.1.1 Verifying sapconf setup

With sapconf 5.0.2 and up, the check tool sapconf_check is available, which verifies the correct

setup of sapconf . For example:

sapconf_check
This is sapconf_check v1.0.
It verifies if sapconf is set up correctly and will give advice to do so.
Please keep in mind:
{{ - This tool does not check, if the tuning itself works correctly.}}
{{ - Follow the hints from top to down to minimize side effects.}}
Checking sapconf
================
[OK] sapconf package has version 5.0.2
[OK] saptune.service is inactive
[OK] saptune.service is disabled
[WARN] tuned.service is enabled/active with profile 'virtual-guest -> Sapconf does not
 require tuned! Run 'systemctl stop tuned.service', if not needed otherwise.
[FAIL] sapconf.service is inactive -> Run 'systemctl start sapconf.service' to activate
 the tuning now.
[FAIL] sapconf.service is disabled -> Run 'systemctl enable sapconf.service' to activate
 sapconf at boot.1 warning(s) have been found.
2 error(s) have been found.
Sapconf will not work properly!

If sapconf_check finds problems, it gives hints on how to resolve the issue. The tool does not verify

whether the system has been tuned correctly. It only checks that sapconf is set up correctly and has

been started.

169 Verifying sapconf setup SLES 15 SP6

17.1.2 Enabling and disabling sapconf and viewing its status

After the installation of sapconf , the sapconf service is enabled.

You can inspect or change the status of sapconf as described in the following:

To see the status of the service sapconf :

systemctl status sapconf

The service should be displayed as active (exited).

To start the service sapconf :

systemctl start sapconf

Should sapconf be disabled, enable and start it with:

systemctl enable --now sapconf

To stop the service sapconf :

systemctl stop sapconf

This command disables most of the optimizations immediately. The only exceptions from this rule

are options that require a system reboot to enable/disable.

To disable sapconf , use:

systemctl disable sapconf

If you have not specifically enabled any of the services that sapconf depends on, this also disables

most tuning parameters and all services used by sapconf .

Tip: Additional services that sapconf relies on
Besides the sapconf service, it also relies on the following two services:

sysstat which collects data on system activity.

uuidd which generates time-based UUIDs that are guaranteed to be unique even in settings

where many processor cores are involved. This is necessary for SAP applications.

170 Enabling and disabling sapconf and viewing its status SLES 15 SP6

17.1.3 Configuring sapconf5

Generally, the default configuration of sapconf already uses the parameter values recommended by

SAP. However, if you have special needs, you can configure the tool to better suit those.

All parameters of sapconf can be found in the file /etc/sysconfig/sapconf . The file can be edited

directly. All parameters in this file are explained by comments and references to SAP Notes, which can

be viewed at https://launchpad.support.sap.com/ .

When sapconf is updated, all customized parameters from this file are preserved as much as possible.

However, sometimes parameters cannot be transferred cleanly to the new configuration file. Therefore,

after updating it is advisable to check the difference between the previous custom configuration, which

during the update is moved to /etc/sysconfig/sapconf.rpmsave , and the new version at /etc/

sysconfig/sapconf .

Log messages related to this file are written to /var/log/sapconf.log .

When editing either of these files, you can find that certain values are commented by a # character at

the beginning of the line. This means that while the parameter is relevant for tuning, there is no suitable

default for it.

Conversely, you can add # characters to the beginning of the line to comment specific parameters.

However, you should avoid this practice, as it can lead to sapconf not properly applying the profile.

To apply the edited configuration, restart sapconf :

systemctl restart sapconf

Confirming that a certain parameter value was applied correctly works differently for different parameters.

Hence, the following serves as an example only:

EXAMPLE 17.1: CHECKING PARAMETERS

To confirm that the setting for TCP_SLOW_START was applied, do the following:

View the log file of sapconf to see whether it applied the value. Within /var/log/

sapconf.log , check for a line containing this text:

Change net.ipv4.tcp_slow_start_after_idle from 1 to 0

171 Configuring sapconf5 SLES 15 SP6

https://launchpad.support.sap.com/

Alternatively, the parameter may have already been set correctly before sapconf was

started. In this case, sapconf does not change its value:

Leaving net.ipv4.tcp_slow_start_after_idle unchanged at 1

The underlying option behind TCP_SLOW_START can be manually configured at /proc/

sys/net.ipv4.tcp_slow_start_after_idle . To check its actual current value, use:

sysctl net.ipv4.tcp_slow_start_after_idle

17.1.4 Removing sapconf
To remove sapconf from a system, uninstall its package with:

zypper rm sapconf

When doing this, dependencies of sapconf remain installed. However, the service sysstat goes into

a disabled state. If it is still relevant to you, make sure to enable it again.

17.1.5 For more information

The following man pages provide additional information about sapconf :

Detailed description of all tuning parameters set by sapconf : man 5 sapconf

Information about configuring and customizing the sapconf profile: man 7 sapconf

Also see the blog series detailing the updated version of sapconf at https://www.suse.com/c/a-new-

sapconf-is-available/ .

17.1.6 Using tuned together with sapconf
With version 5, sapconf does not rely on tuned anymore. This means both tools can be used

independently. sapconf prints a warning in its log if the tuned service is started.

Important: Using tuned and sapconf together
If you are going to use tuned and sapconf simultaneously, ensure that both tools do not

configure the same system parameters.

172 Removing sapconf SLES 15 SP6

https://www.suse.com/c/a-new-sapconf-is-available/
https://www.suse.com/c/a-new-sapconf-is-available/

VI Handling system dumps

18 Tracing tools 174

19 Kexec and Kdump 185

20 Using systemd-coredump to debug application crashes 204

18 Tracing tools

SUSE Linux Enterprise Server comes with several tools that help you obtain useful information about

your system. You can use the information for different purposes. For example, to debug and find problems

in your program, to discover places causing performance drops, or to trace a running process to find out

what system resources it uses. Most of the tools are part of the installation media. In certain cases, they

need to be installed from the SUSE Software Development Kit, which is a separate download.

Note: Tracing and impact on performance
While a running process is being monitored for system or library calls, the performance of the

process is heavily reduced. You are advised to use tracing tools only for the time you need to

collect the data.

18.1 Tracing system calls with strace

The strace command traces system calls of a process and signals received by the process. strace can

either run a new command and trace its system calls, or you can attach strace to an already running

command. Each line of the command's output contains the system call name, followed by its arguments

in parentheses and its return value.

To run a new command and start tracing its system calls, enter the command to be monitored as you

normally do, and add strace at the beginning of the command line:

> strace ls
execve("/bin/ls", ["ls"], [/* 52 vars */]) = 0
brk(0) = 0x618000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
 = 0x7f9848667000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
 = 0x7f9848666000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT \
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=200411, ...}) = 0
mmap(NULL, 200411, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f9848635000
close(3) = 0
open("/lib64/librt.so.1", O_RDONLY) = 3
[...]
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

174 Tracing system calls with strace SLES 15 SP6

= 0x7fd780f79000
write(1, "Desktop\nDocuments\nbin\ninst-sys\n", 31Desktop
Documents
bin
inst-sys
) = 31
close(1) = 0
munmap(0x7fd780f79000, 4096) = 0
close(2) = 0
exit_group(0) = ?

To attach strace to an already running process, you need to specify the -p with the process ID (PID)

of the process that you want to monitor:

> strace -p `pidof cron`
 Process 1261 attached
 restart_syscall(<... resuming interrupted call ...>) = 0
 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0
 select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)
 socket(PF_LOCAL, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 5
 connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/nscd/socket"}, 110) = 0
 sendto(5, "\2\0\0\0\0\0\0\0\5\0\0\0root\0", 17, MSG_NOSIGNAL, NULL, 0) = 17
 poll([{fd=5, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=5, revents=POLLIN|
POLLHUP}])
 read(5, "\2\0\0\0\1\0\0\0\5\0\0\0\2\0\0\0\0\0\0\0\0\0\0\0\5\0\0\0\6\0\0\0"..., 36) = 36
 read(5, "root\0x\0root\0/root\0/bin/bash\0", 28) = 28
 close(5) = 0
 rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0
 rt_sigaction(SIGCHLD, NULL, {0x7f772b9ea890, [], SA_RESTORER|SA_RESTART,
 0x7f772adf7880}, 8) = 0
 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
 nanosleep({60, 0}, 0x7fff87d8c580) = 0
 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0
 select(5, [4], NULL, NULL, {0, 0}) = 0 (Timeout)
 socket(PF_LOCAL, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0) = 5
 connect(5, {sa_family=AF_LOCAL, sun_path="/var/run/nscd/socket"}, 110) = 0
 sendto(5, "\2\0\0\0\0\0\0\0\5\0\0\0root\0", 17, MSG_NOSIGNAL, NULL, 0) = 17
 poll([{fd=5, events=POLLIN|POLLERR|POLLHUP}], 1, 5000) = 1 ([{fd=5, revents=POLLIN|
POLLHUP}])
 read(5, "\2\0\0\0\1\0\0\0\5\0\0\0\2\0\0\0\0\0\0\0\0\0\0\0\5\0\0\0\6\0\0\0"..., 36) = 36
 read(5, "root\0x\0root\0/root\0/bin/bash\0", 28) = 28
 close(5)
 [...]

The -e option understands several sub-options and arguments. For example, to trace all attempts to open

or write to a particular file, use the following:

> strace -e trace=open,write ls ~

175 Tracing system calls with strace SLES 15 SP6

open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib64/librt.so.1", O_RDONLY) = 3
open("/lib64/libselinux.so.1", O_RDONLY) = 3
open("/lib64/libacl.so.1", O_RDONLY) = 3
open("/lib64/libc.so.6", O_RDONLY) = 3
open("/lib64/libpthread.so.0", O_RDONLY) = 3
[...]
open("/usr/lib/locale/cs_CZ.utf8/LC_CTYPE", O_RDONLY) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
write(1, "addressbook.db.bak\nbin\ncxoffice\n"..., 311) = 311

To trace only network related system calls, use -e trace=network :

> strace -e trace=network -p 26520
Process 26520 attached - interrupt to quit
socket(PF_NETLINK, SOCK_RAW, 0) = 50
bind(50, {sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 0
getsockname(50, {sa_family=AF_NETLINK, pid=26520, groups=00000000}, \
[12]) = 0
sendto(50, "\24\0\0\0\26\0\1\3~p\315K\0\0\0\0\0\0\0\0", 20, 0,
{sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 20
[...]

The -c calculates the time the kernel spent on each system call:

> strace -c find /etc -name xorg.conf
/etc/X11/xorg.conf
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 32.38 0.000181 181 1 execve
 22.00 0.000123 0 576 getdents64
 19.50 0.000109 0 917 31 open
 19.14 0.000107 0 888 close
 4.11 0.000023 2 10 mprotect
 0.00 0.000000 0 1 write
[...]
 0.00 0.000000 0 1 getrlimit
 0.00 0.000000 0 1 arch_prctl
 0.00 0.000000 0 3 1 futex
 0.00 0.000000 0 1 set_tid_address
 0.00 0.000000 0 4 fadvise64
 0.00 0.000000 0 1 set_robust_list
------ ----------- ----------- --------- --------- ----------------
100.00 0.000559 3633 33 total

To trace all child processes of a process, use -f :

> strace -f systemctl status apache2.service

176 Tracing system calls with strace SLES 15 SP6

execve("/usr/bin/systemctl", ["systemctl", "status", "apache2.service"], \
 0x7ffea44a3318 /* 56 vars */) = 0
brk(NULL) = 0x5560f664a000
[...]
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f98c58a5000
mmap(NULL, 4420544, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
 0x7f98c524a000
mprotect(0x7f98c53f4000, 2097152, PROT_NONE) = 0
[...]
[pid 9130] read(0, "\342\227\217 apache2.service - The Apache"..., 8192) = 165
[pid 9130] read(0, "", 8027) = 0
● apache2.service - The Apache Webserver227\217 apache2.service - Th"..., 193
 Loaded: loaded (/usr/lib/systemd/system/apache2.service; disabled; vendor preset:
 disabled)
 Active: inactive (dead)
) = 193
[pid 9130] ioctl(3, SNDCTL_TMR_STOP or TCSETSW, {B38400 opost isig icanon echo ...}) = 0
[pid 9130] exit_group(0) = ?
[pid 9130] +++ exited with 0 +++
<... waitid resumed>{si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=9130, \
 si_uid=0, si_status=0, si_utime=0, si_stime=0}, WEXITED, NULL) = 0
--- SIGCHLD {si_signo=SIGCHLD, si_code=CLD_EXITED, si_pid=9130, si_uid=0, \
 si_status=0, si_utime=0, si_stime=0} ---
exit_group(3) = ?
+++ exited with 3 +++

If you need to analyze the output of strace and the output messages are too long to be inspected directly

in the console window, use -o . In that case, unnecessary messages, such as information about attaching

and detaching processes, are suppressed. You can also suppress these messages (normally printed on the

standard output) with -q . To add time stamps at the beginning of each line with a system call, use -t :

> strace -t -o strace_sleep.txt sleep 1; more strace_sleep.txt
08:44:06 execve("/bin/sleep", ["sleep", "1"], [/* 81 vars */]) = 0
08:44:06 brk(0) = 0x606000
08:44:06 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, \
-1, 0) = 0x7f8e78cc5000
[...]
08:44:06 close(3) = 0
08:44:06 nanosleep({1, 0}, NULL) = 0
08:44:07 close(1) = 0
08:44:07 close(2) = 0
08:44:07 exit_group(0) = ?

The behavior and output format of strace can be controlled. For more information, see the relevant manual

page (man 1 strace).

177 Tracing system calls with strace SLES 15 SP6

18.2 Tracing library calls with ltrace

ltrace traces dynamic library calls of a process. It is used in a similar way to strace , and most of

their parameters have a similar or identical meaning. By default, ltrace uses /etc/ltrace.conf

or ~/.ltrace.conf configuration files. You can, however, specify an alternative one with the -F

CONFIG_FILE option.

In addition to library calls, ltrace with the -S option can trace system calls as well:

> ltrace -S -o ltrace_find.txt find /etc -name \
xorg.conf; more ltrace_find.txt
SYS_brk(NULL) = 0x00628000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea1000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea0000
[...]
fnmatch("xorg.conf", "xorg.conf", 0) = 0
free(0x0062db80) = <void>
__errno_location() = 0x7f1327e5d698
__ctype_get_mb_cur_max(0x7fff25227af0, 8192, 0x62e020, -1, 0) = 6
__ctype_get_mb_cur_max(0x7fff25227af0, 18, 0x7f1327e5d6f0, 0x7fff25227af0,
0x62e031) = 6
__fprintf_chk(0x7f1327821780, 1, 0x420cf7, 0x7fff25227af0, 0x62e031
<unfinished ...>
SYS_fstat(1, 0x7fff25227230) = 0
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327e72000
SYS_write(1, "/etc/X11/xorg.conf\n", 19) = 19
[...]

You can change the type of traced events with the -e option. The following example prints library calls

related to fnmatch and strlen functions:

> ltrace -e fnmatch,strlen find /etc -name xorg.conf
[...]
fnmatch("xorg.conf", "xorg.conf", 0) = 0
strlen("Xresources") = 10
strlen("Xresources") = 10
strlen("Xresources") = 10
fnmatch("xorg.conf", "Xresources", 0) = 1
strlen("xorg.conf.install") = 17
[...]

To display only the symbols included in a specific library, use -l /path/to/library :

> ltrace -l /lib64/librt.so.1 sleep 1
clock_gettime(1, 0x7fff4b5c34d0, 0, 0, 0) = 0

178 Tracing library calls with ltrace SLES 15 SP6

clock_gettime(1, 0x7fff4b5c34c0, 0xffffffffff600180, -1, 0) = 0
+++ exited (status 0) +++

You can make the output more readable by indenting each nested call by the specified number of space

with the -n NUM_OF_SPACES .

18.3 Debugging and profiling with Valgrind

Valgrind is a set of tools to debug and profile your programs so that they can run both faster and

with fewer errors. Valgrind can detect problems related to memory management and threading, or can

also serve as a framework for building new debugging tools. It is well known that this tool can incur

high overhead, causing, for example, higher runtimes or changing the normal program behavior under

concurrent workloads based on timing.

18.3.1 Installation

Valgrind is not shipped with standard SUSE Linux Enterprise Server distribution. To install it on your

system, you need to obtain SUSE Software Development Kit, and either install it and run

zypper install VALGRIND

or browse through the SUSE Software Development Kit directory tree, locate the Valgrind package and

install it with

rpm -i valgrind- VERSION_ARCHITECTURE .rpm

The SDK is a module for SUSE Linux Enterprise and is available via an online channel from the SUSE

Customer Center. Refer to Article “Modules and Extensions Quick Start” for details.

18.3.2 Supported architectures

SUSE Linux Enterprise Server supports Valgrind on the following architectures:

AMD64/Intel 64

POWER

IBM Z

179 Debugging and profiling with Valgrind SLES 15 SP6

18.3.3 General information

The main advantage of Valgrind is that it works with existing compiled executables. You do not need to

recompile or modify your programs to use it. Run Valgrind like this:

valgrind VALGRIND_OPTIONS your-prog YOUR-PROGRAM-OPTIONS

Valgrind consists of several tools, and each provides specific functionality. Information in this section is

general and valid regardless of the used tool. The most important configuration option is --tool . This

option tells Valgrind which tool to run. If you omit this option, memcheck is selected by default. For

example, to run find ~ -name .bashrc with Valgrind's memcheck tools, enter the following in the

command line:

valgrind --tool =memcheck find ~ -name .bashrc

A list of standard Valgrind tools with a brief description follows:

memcheck

Detects memory errors. It helps you tune your programs to behave correctly.

cachegrind

Profiles cache prediction. It helps you tune your programs to run faster.

callgrind

Works in a similar way to cachegrind but also gathers additional cache-profiling information.

exp-drd

Detects thread errors. It helps you tune your multi-threaded programs to behave correctly.

helgrind

Another thread error detector. Similar to exp-drd but uses different techniques for problem

analysis.

massif

A heap profiler. Heap is an area of memory used for dynamic memory allocation. This tool helps

you tune your program to use less memory.

lackey

An example tool showing instrumentation basics.

180 General information SLES 15 SP6

18.3.4 Default options

Valgrind can read options at start-up. There are three places which Valgrind checks:

1. The file .valgrindrc in the home directory of the user who runs Valgrind.

2. The environment variable $VALGRIND_OPTS

3. The file .valgrindrc in the current directory where Valgrind is run from.

These resources are parsed exactly in this order, while later given options take precedence over earlier

processed options. Options specific to a particular Valgrind tool must be prefixed with the tool name

and a colon. For example, if you want cachegrind to always write profile data to the /tmp/

cachegrind_PID.log , add the following line to the .valgrindrc file in your home directory:

--cachegrind:cachegrind-out-file=/tmp/cachegrind_%p.log

18.3.5 How Valgrind works

Valgrind takes control of your executable before it starts. It reads debugging information from the

executable and related shared libraries. The executable's code is redirected to the selected Valgrind tool,

and the tool adds its own code to handle its debugging. Then the code is handed back to the Valgrind core

and the execution continues.

For example, memcheck adds its code, which checks every memory access. As a consequence, the

program runs much slower than in the native execution environment.

Valgrind simulates every instruction of your program. Therefore, it not only checks the code of your

program, but also all related libraries (including the C library), libraries used for graphical environment,

and so on. If you try to detect errors with Valgrind, it also detects errors in associated libraries (like C, X11,

or Gtk libraries). Because you do not need all these errors frequently, Valgrind can selectively suppress

these error messages to suppression files. The --gen-suppressions=yes tells Valgrind to report these

suppressions which you can copy to a file.

You should supply a real executable (machine code) as a Valgrind argument. If your application is run, for

example, from a shell or Perl script, you can by mistake get error reports related to /bin/sh (or /usr/
bin/perl). In such cases, you can use --trace-children=yes to work around this issue. However,

using the executable itself avoids any confusion over this issue.

181 Default options SLES 15 SP6

18.3.6 Messages

During its runtime, Valgrind reports messages with detailed errors and important events. The following

example explains the messages:

> valgrind --tool=memcheck find ~ -name .bashrc
[...]
==6558== Conditional jump or move depends on uninitialised value(s)
==6558== at 0x400AE79: _dl_relocate_object (in /lib64/ld-2.11.1.so)
==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)
[...]
==6558== Conditional jump or move depends on uninitialised value(s)
==6558== at 0x400AE82: _dl_relocate_object (in /lib64/ld-2.11.1.so)
==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)
[...]
==6558== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==6558== malloc/free: in use at exit: 2,228 bytes in 8 blocks.
==6558== malloc/free: 235 allocs, 227 frees, 489,675 bytes allocated.
==6558== For counts of detected errors, rerun with: -v
==6558== searching for pointers to 8 not-freed blocks.
==6558== checked 122,584 bytes.
==6558==
==6558== LEAK SUMMARY:
==6558== definitely lost: 0 bytes in 0 blocks.
==6558== possibly lost: 0 bytes in 0 blocks.
==6558== still reachable: 2,228 bytes in 8 blocks.
==6558== suppressed: 0 bytes in 0 blocks.
==6558== Rerun with --leak-check=full to see details of leaked memory.

The ==6558== introduces Valgrind's messages and contains the process ID number (PID). You can easily

distinguish Valgrind's messages from the output of the program itself, and decide which messages belong

to a particular process.

To make Valgrind's messages more detailed, use -v or even -v -v .

You can make Valgrind send its messages to three different places:

1. By default, Valgrind sends its messages to the file descriptor 2, which is the standard error

output. You can tell Valgrind to send its messages to any other file descriptor with the --log-

fd=FILE_DESCRIPTOR_NUMBER option.

2. The second, and a more useful way, is to send Valgrind's messages to a file with --log-

file=FILENAME . This option accepts several variables, for example, %p gets replaced with the

PID of the currently profiled process. This way you can send messages to different files based on

their PID. %q{env_var} is replaced with the value of the related env_var environment variable.

182 Messages SLES 15 SP6

The following example checks for possible memory errors during the Apache Web server restart,

while following children processes and writing detailed Valgrind's messages to separate files

distinguished by the current process PID:

> valgrind -v --tool=memcheck --trace-children=yes \
--log-file=valgrind_pid_%p.log systemctl restart apache2.service

This process created 52 log files in the testing system, and took 75 seconds instead of the usual 7

seconds needed to run sudo systemctl restart apache2.service without Valgrind, which

is approximately 10 times more.

> ls -1 valgrind_pid_*log
valgrind_pid_11780.log
valgrind_pid_11782.log
valgrind_pid_11783.log
[...]
valgrind_pid_11860.log
valgrind_pid_11862.log
valgrind_pid_11863.log

3. You may also prefer to send the Valgrind's messages over the network. You need to specify the

aa.bb.cc.dd IP address and port_num port number of the network socket with the --log-

socket=AA.BB.CC.DD:PORT_NUM option. If you omit the port number, 1500 is used.

It is useless to send Valgrind's messages to a network socket if no application is capable of receiving

them on the remote machine. That is why valgrind-listener , a simple listener, is shipped

together with Valgrind. It accepts connections on the specified port and copies everything it receives

to the standard output.

18.3.7 Error messages

Valgrind remembers all error messages, and if it detects a new error, the error is compared against old

error messages. This way Valgrind checks for duplicate error messages. In case of a duplicate error, it is

recorded but no message is shown. This mechanism prevents you from being overwhelmed by millions

of duplicate errors.

The -v option adds a summary of all reports (sorted by their total count) to the end of the Valgrind's

execution output. Moreover, Valgrind stops collecting errors if it detects either 1000 different errors, or

10 000 000 errors in total. To suppress this limit and see all error messages, use --error-limit=no .

Certain errors cause other errors. Therefore, fix errors in the same order as they appear and re-check the

program continuously.

183 Error messages SLES 15 SP6

18.4 More information

For a complete list of options related to the described tracing tools, see the corresponding man page

(man 1 strace , man 1 ltrace , and man 1 valgrind).

To describe advanced usage of Valgrind is beyond the scope of this document. It is well

documented, see Valgrind User Manual (https://valgrind.org/docs/manual/manual.html) . These

pages are indispensable if you need more advanced information on Valgrind or the usage and purpose

of its standard tools.

184 More information SLES 15 SP6

https://valgrind.org/docs/manual/manual.html

19 Kexec and Kdump

Kexec is a tool to boot to another kernel from the currently running one. You can perform faster system

reboots without any hardware initialization. You can also prepare the system to boot to another kernel if

the system crashes.

19.1 Introduction

With Kexec, you can replace the running kernel with another one without a hard reboot. The tool is useful

for several reasons:

Faster system rebooting

If you need to reboot the system frequently, Kexec can save you significant time.

Avoiding unreliable firmware and hardware

Computer hardware is complex and serious problems may occur during the system start-up. You

cannot always replace unreliable hardware immediately. Kexec boots the kernel to a controlled

environment with the hardware already initialized. The risk of unsuccessful system start is then

minimized.

Saving the dump of a crashed kernel

Kexec preserves the contents of the physical memory. After the production kernel fails, the capture

kernel (an additional kernel running in a reserved memory range) saves the state of the failed kernel.

The saved image can help you with the subsequent analysis.

Booting without GRUB 2 configuration

When the system boots a kernel with Kexec, it skips the boot loader stage. The normal booting

procedure can fail because of an error in the boot loader configuration. With Kexec, you do not

depend on a working boot loader configuration.

19.2 Required packages

To use Kexec on SUSE® Linux Enterprise Server to speed up reboots or avoid potential hardware

problems, make sure that the package kexec-tools is installed. It contains a script called kexec-
bootloader , which reads the boot loader configuration and runs Kexec using the same kernel options

as the normal boot loader.

185 Introduction SLES 15 SP6

To set up an environment that helps you obtain debug information in case of a kernel crash, make sure

that the package makedumpfile is installed.

The preferred method of using Kdump in SUSE Linux Enterprise Server is through the YaST Kdump

module. To use the YaST module, make sure that the package yast2-kdump is installed.

19.3 Kexec internals

The most important component of Kexec is the /sbin/kexec command. You can load a kernel with

Kexec in two different ways:

Load the kernel to the address space of a production kernel for a regular reboot:

kexec -l KERNEL_IMAGE

You can later boot to this kernel with kexec -e .

Load the kernel to a reserved area of memory:

kexec -p KERNEL_IMAGE

This kernel is booted automatically when the system crashes.

To boot another kernel and preserve the data of the production kernel when the system crashes, you need

to reserve a dedicated area of the system memory. The production kernel never loads to this area because

it must be always available. It is used for the capture kernel so that the memory pages of the production

kernel can be preserved.

To reserve the area, append the option crashkernel to the boot command line of the production kernel.

To determine the necessary values for crashkernel , follow the instructions in Section 19.4, “Calculating

crashkernel allocation size”.

This is not a parameter of the capture kernel. The capture kernel does not use Kexec.

The capture kernel is loaded to the reserved area and waits for the kernel to crash. Then, Kdump tries to

invoke the capture kernel because the production kernel is no longer reliable at this stage. This means that

even Kdump can fail.

To load the capture kernel, you need to include the kernel boot parameters. In most cases, the initial

RAM file system is used for booting. You can specify it with --initrd = FILENAME . With --

append = CMDLINE , you append options to the command line of the kernel to boot.

186 Kexec internals SLES 15 SP6

It is required to include the command line of the production kernel. You can simply copy the command

line with --append = "$(cat /proc/cmdline)" or add more options with --append = "$(cat /

proc/cmdline) more_options" .

For example, to load the /boot/vmlinuz-6.4.0-150600.9-default kernel image with the

command line of the currently running production kernel and the /boot/initrd file, run the following

command:

kexec -l /boot/vmlinuz-6.4.0-150600.9-default \
 --append="$(cat /proc/cmdline)" --initrd=/boot/initrd

You can always unload the previously loaded kernel. To unload a kernel that was loaded with the -l

option, use the kexec -u command. To unload a crash kernel loaded with the -p option, use kexec
-p -u command.

19.4 Calculating crashkernel allocation size

To use Kexec with a capture kernel and to use Kdump in any way, RAM needs to be allocated for the

capture kernel. The allocation size depends on the expected hardware configuration of the computer,

therefore you need to specify it.

The allocation size also depends on the hardware architecture of your computer. Make sure to follow the

procedure intended for your system architecture.

PROCEDURE 19.1: ALLOCATION SIZE ON AMD64/INTEL 64

1. To find out the base value for the computer, run the following command:

kdumptool calibrate
Total: 49074
Low: 72
High: 180
MinLow: 72
MaxLow: 3085
MinHigh: 0
MaxHigh: 45824

All values are given in megabytes.

2. Take note of the values of Low and High .

187 Calculating crashkernel allocation size SLES 15 SP6

Note: Significance of Low and High values
On AMD64/Intel 64 computers, the High value stands for the memory reservation for all

available memory. The Low value stands for the memory reservation in the DMA32 zone,

that is, all the memory up to the 4 GB mark.

SIZE_LOW is the amount of memory required by 32-bit-only devices. The kernel allocates

64M for DMA32 bounce buffers. If your server does not have any 32-bit-only devices,

everything should work with the default allocation of 72M for SIZE_LOW . A possible

exception to this is on NUMA machines, which may make it appear that more Low memory

is needed. The Kdump kernel may be booted with numa=off to make sure normal kernel

allocations do not use Low memory.

3. Adapt the High value from the previous step for the number of LUN kernel paths (paths to storage

devices) attached to the computer. A sensible value in megabytes can be calculated using this

formula:

SIZE_HIGH = RECOMMENDATION + (LUNs / 2)

The following parameters are used in this formula:

SIZE_HIGH. The resulting value for High .

RECOMMENDATION. The value recommended by kdumptool calibrate for High .

LUNs. The maximum number of LUN kernel paths that you expect to ever create on the

computer. Exclude multipath devices from this number, as these are ignored. To get the

current number of LUNs available on your system, run the following command:

> cat /proc/scsi/scsi | grep Lun | wc -l

4. If the drivers for your device make many reservations in the DMA32 zone, the Low value also

needs to be adjusted. However, there is no simple formula to calculate these. Finding the right size

can therefore be a process of trial and error.

For the beginning, use the Low value recommended by kdumptool calibrate .

5. The values now need to be set in the correct location.

188 Calculating crashkernel allocation size SLES 15 SP6

If you are changing the kernel command line directly

Append the following kernel option to your boot loader configuration:

crashkernel=SIZE_HIGH,high crashkernel=SIZE_LOW,low

Replace the placeholders SIZE_HIGH and SIZE_LOW with the appropriate value from the

previous steps and append the letter M (for megabytes).

As an example, the following is valid:

crashkernel=36M,high crashkernel=72M,low

If you are using the YaST GUI:

Set Kdump Low Memory to the determined Low value.

Set Kdump High Memory to the determined High value.

If you are using the YaST command line interface:

Use the following command:

yast kdump startup enable alloc_mem=LOW,HIGH

Replace LOW with the determined Low value. Replace HIGH with the determined HIGH

value.

PROCEDURE 19.2: ALLOCATION SIZE ON POWER AND IBM Z

1. To find out the basis value for the computer, run the following in a terminal:

kdumptool calibrate

This command returns a list of values. All values are given in megabytes.

2. Write down the value of Low .

3. Adapt the Low value from the previous step for the number of LUN kernel paths (paths to storage

devices) attached to the computer. A sensible value in megabytes can be calculated using this

formula:

SIZE_LOW = RECOMMENDATION + (LUNs / 2)

189 Calculating crashkernel allocation size SLES 15 SP6

The following parameters are used in this formula:

SIZE_LOW. The resulting value for Low .

RECOMMENDATION. The value recommended by kdumptool calibrate for Low .

LUNs. The maximum number of LUN kernel paths that you expect to ever create on the

computer. Exclude multipath devices from this number, as these are ignored.

4. The values now need to be set in the correct location.

If you are working on the command line

Append the following kernel option to your boot loader configuration:

crashkernel=SIZE_LOW

Replace the placeholder SIZE_LOW with the appropriate value from the previous step and

append the letter M (for megabytes).

As an example, the following is valid:

crashkernel=108M

If you are working in YaST

Set Kdump Memory to the determined Low value.

Tip: Excluding unused and inactive CCW devices on IBM Z
Depending on the number of available devices the calculated amount of memory specified by the

crashkernel kernel parameter may not be sufficient. Instead of increasing the value, you may

alternatively limit the amount of devices visible to the kernel. This lowers the required amount of

memory for the crashkernel setting.

1. To ignore devices you can run the cio_ignore tool to generate an appropriate stanza to

ignore all devices, except the ones currently active or in use.

> sudo cio_ignore -u -k
cio_ignore=all,!da5d,!f500-f502

When you run cio_ignore -u -k , the blocklist becomes active and replaces any existing

blocklist immediately. Unused devices are not being purged, so they still appear in the

channel subsystem. But adding new channel devices (via CP ATTACH under z/VM or

190 Calculating crashkernel allocation size SLES 15 SP6

dynamic I/O configuration change in LPAR) treats them as blocked. To prevent this, preserve

the original setting by running sudo cio_ignore -l first and reverting to that state after

running cio_ignore -u -k . As an alternative, add the generated stanza to the regular

kernel boot parameters.

2. Now add the cio_ignore kernel parameter with the stanza from above to

KDUMP_CMDLINE_APPEND in /etc/sysconfig/kdump , for example:

KDUMP_COMMANDLINE_APPEND="cio_ignore=all,!da5d,!f500-f502"

3. Activate the setting by restarting kdump :

systemctl restart kdump.service

19.5 Basic Kexec usage

To use Kexec, ensure the respective service is enabled and running:

Make sure the Kexec service is loaded at system start:

> sudo systemctl enable kexec-load.service

Make sure the Kexec service is running:

> sudo systemctl start kexec-load.service

To verify if your Kexec environment works properly, try rebooting into a new Kernel with Kexec. Make

sure no users are currently logged in and no important services are running on the system. Then run the

following command:

systemctl kexec

The new kernel previously loaded to the address space of the older kernel rewrites it and takes control

immediately. It displays the usual start-up messages. When the new kernel boots, it skips all hardware and

firmware checks. Make sure no warning messages appear.

191 Basic Kexec usage SLES 15 SP6

Tip: Using Kexec with the reboot command
To make reboot use Kexec rather than performing a regular reboot, run the following command:

ln -s /usr/lib/systemd/system/kexec.target /etc/systemd/system/reboot.target

You can revert this at any time by deleting etc/systemd/system/reboot.target .

19.6 How to configure Kexec for routine reboots

Kexec is often used for frequent reboots. For example, if it takes a long time to run through the hardware

detection routines or if the start-up is not reliable.

The firmware and the boot loader are not used when the system reboots with Kexec. Any changes you

make to the boot loader configuration are ignored until the computer performs a hard reboot.

19.7 Basic Kdump configuration

You can use Kdump to save kernel dumps. If the kernel crashes, it is useful to copy the memory image

of the crashed environment to the file system. You can then debug the dump file to find the cause of the

kernel crash. This is called “core dump”.

Kdump works similarly to Kexec (see Chapter 19, Kexec and Kdump). The capture kernel is executed

after the running production kernel crashes. The difference is that Kexec replaces the production kernel

with the capture kernel. With Kdump, you still have access to the memory space of the crashed production

kernel. You can save the memory snapshot of the crashed kernel in the environment of the Kdump kernel.

Tip: Dumps over network
In environments with limited local storage, you need to set up kernel dumps over the network.

Kdump supports configuring the specified network interface and bringing it up via initrd . Both

LAN and VLAN interfaces are supported. Specify the network interface and the mode (DHCP

or static) either with YaST, or using the KDUMP_NETCONFIG option in the /etc/sysconfig/

kdump file.

192 How to configure Kexec for routine reboots SLES 15 SP6

Important: Target file system for Kdump must be mounted during
configuration
When configuring Kdump, you can specify a location to which the dumped images are saved

(default: /var/crash). This location must be mounted when configuring Kdump, otherwise the

configuration fails.

19.7.1 Manual Kdump configuration

Kdump reads its configuration from the /etc/sysconfig/kdump file. To make sure that Kdump works

on your system, its default configuration is sufficient. To use Kdump with the default settings, follow

these steps:

1. Determine the amount of memory needed for Kdump by following the instructions in Section 19.4,

“Calculating crashkernel allocation size”. Make sure to set the kernel parameter crashkernel .

2. Reboot the computer.

3. Enable the Kdump service:

systemctl enable kdump

4. You can edit the options in /etc/sysconfig/kdump . Reading the comments helps you

understand the meaning of individual options.

5. Execute the init script once with sudo systemctl start kdump , or reboot the system.

After configuring Kdump with the default values, check if it works as expected. Make sure that no users

are currently logged in and no important services are running on your system. Then follow these steps:

1. Switch to the rescue target with systemctl isolate rescue.target

2. Restart the Kdump service:

systemctl start kdump

3. Unmount all the disk file systems except the root file system with:

umount -a

193 Manual Kdump configuration SLES 15 SP6

4. Remount the root file system in read-only mode:

mount -o remount,ro /

5. Invoke a “kernel panic” with the procfs interface to Magic SysRq keys:

echo c > /proc/sysrq-trigger

Important: Size of kernel dumps
The KDUMP_KEEP_OLD_DUMPS option controls the number of preserved kernel dumps (default is

5). Without compression, the size of the dump can take up to the size of the physical memory or

RAM. Make sure you have sufficient space on the /var partition.

The capture kernel boots and the crashed kernel memory snapshot is saved to the file system. The save path

is given by the KDUMP_SAVEDIR option and it defaults to /var/crash . If KDUMP_IMMEDIATE_REBOOT

is set to yes , the system automatically reboots the production kernel. Log in and check that the dump

has been created under /var/crash .

19.7.2 YaST configuration

To configure Kdump with YaST, you need to install the yast2-kdump package. Then either start the

Kernel Kdump module in the System category of YaST Control Center, or enter yast2 kdump in the

command line as root .

FIGURE 19.1: YAST KDUMP MODULE: START-UP PAGE

194 YaST configuration SLES 15 SP6

In the Start-Up window, select Enable Kdump.

The values for Kdump Memory are automatically generated the first time you open the window. However,

that does not mean that they are always sufficient. To set the right values, follow the instructions in

Section 19.4, “Calculating crashkernel allocation size”.

Important: After hardware changes, set Kdump memory values
again
If you have set up Kdump on a computer and later decide to change the amount of RAM or hard

disks available to it, YaST continues to display and use outdated memory values.

To work around this, determine the necessary memory again, as described in Section 19.4,

“Calculating crashkernel allocation size”. Then set it manually in YaST.

Click Dump Filtering in the left pane, and check what pages to include in the dump. You do not need to

include the following memory content to be able to debug kernel problems:

Pages filled with zero

Cache pages

User data pages

Free pages

In the Dump Target window, select the type of the dump target and the URL where you want to save

the dump. If you selected a network protocol, such as FTP or SSH, you need to enter relevant access

information as well.

Tip: Sharing the dump directory with other applications
It is possible to specify a path for saving Kdump dumps where other applications also save their

dumps. When cleaning its old dump files, Kdump safely ignores other applications' dump files.

Fill the Email Notification window information if you want Kdump to inform you about its events via e-

mail and confirm your changes with OK after fine tuning Kdump in the Expert Settings window. Kdump

is now configured.

195 YaST configuration SLES 15 SP6

19.7.3 Kdump over SSH

Dump files usually contain sensitive data which should be protected from unauthorized disclosure. To

allow transmission of such data over an insecure network, Kdump can save dump files to a remote machine

using the SSH protocol.

1. The target host identity must be known to Kdump. This is needed to ensure that sensitive data

is never sent to an imposter. When Kdump generates a new initrd , it runs ssh-keygen -F
TARGET_HOST to query the target host's identity. This works only if TARGET_HOST public key is

already known. An easy way to achieve that is to make an SSH connection to TARGET_HOST as

root on the Kdump host.

2. Kdump must be able to authenticate to the target machine. Only public key authentication is

currently available. By default, Kdump uses root 's private key, but it is advisable to make a

separate key for Kdump. This can be done with ssh-keygen :

a. # ssh-keygen -f ~/.ssh/kdump_key

b. Press Enter when prompted for passphrase (that is, do not use any passphrase).

c. Open /etc/sysconfig/kdump and set KDUMP_SSH_IDENTITY to kdump_key . You can

use full path to the file if it is not placed under ~/.ssh .

3. Set up the Kdump SSH key to authorize logins to the remote host.

ssh-copy-id -i ~/.ssh/kdump_key TARGET_HOST

4. Set up KDUMP_SAVEDIR . There are two options:

Secure File Transfer Protocol (SFTP)

SFTP is the preferred method for transmitting files over SSH. The target host must enable the

SFTP subsystem (SUSE Linux Enterprise Server default). Example:

KDUMP_SAVEDIR=sftp://TARGET_HOST/path/to/dumps

Secure Shell protocol (SSH)

Some other distributions use SSH to run certain commands on the target host. SUSE Linux

Enterprise Server can also use this method. The Kdump user on the target host must have a

login shell that can execute these commands: mkdir , dd and mv . Example:

KDUMP_SAVEDIR=ssh://TARGET_HOST/path/to/dumps

196 Kdump over SSH SLES 15 SP6

5. Restart the Kdump service to use the new configuration.

19.8 Analyzing the crash dump

After you obtain the dump, it is time to analyze it. There are several options.

The original tool to analyze the dumps is GDB. You can even use it in the latest environments, although

it has several disadvantages and limitations:

GDB was not specifically designed to debug kernel dumps.

GDB does not support ELF64 binaries on 32-bit platforms.

GDB does not understand other formats than ELF dumps (it cannot debug compressed dumps).

That is why the crash utility was implemented. It analyzes crash dumps and debugs the running system

as well. It provides functionality specific to debugging the Linux kernel and is much more suitable for

advanced debugging.

To debug the Linux kernel, install its debugging information package, too. Check if the package is installed

on your system with:

> zypper se kernel | grep debug

Important: Repository for packages with debugging information
If you subscribed your system for online updates, you can find “debuginfo” packages in the *-

Debuginfo-Updates online installation repository relevant for SUSE Linux Enterprise Server

15 SP6. Use YaST to enable the repository.

To open the captured dump in crash on the machine that produced the dump, use a command like this:

crash /boot/vmlinux-6.4.0-150600.9-default.gz \
/var/crash/2024-04-23-11\:17/vmcore

The first parameter represents the kernel image. The second parameter is the dump file captured by Kdump.

You can find this file under /var/crash by default.

197 Analyzing the crash dump SLES 15 SP6

Tip: Getting basic information from a kernel crash dump
SUSE Linux Enterprise Server ships with the utility kdumpid (included in a package with the

same name) for identifying unknown kernel dumps. It can be used to extract basic information such

as architecture and kernel release. It supports lkcd, diskdump, Kdump files and ELF dumps. When

called with the -v switch it tries to extract additional information such as machine type, kernel

banner string and kernel configuration flavor.

19.8.1 Kernel binary formats

The Linux kernel comes in Executable and Linkable Format (ELF). This file is called vmlinux and is

directly generated in the compilation process. Not all boot loaders support ELF binaries, especially on

the AMD64/Intel 64 architecture. The following solutions exist on different architectures supported by

SUSE® Linux Enterprise Server.

19.8.1.1 AMD64/Intel 64

Kernel packages for AMD64/Intel 64 from SUSE contain two kernel files: vmlinuz and vmlinux.gz .

vmlinuz . This is the file executed by the boot loader.

The Linux kernel consists of two parts: the kernel itself (vmlinux) and the setup code run by

the boot loader. These two parts are linked together to create vmlinuz (note the distinction: z

compared to x).

In the kernel source tree, the file is called bzImage .

vmlinux.gz . This is a compressed ELF image that can be used by crash and GDB. The ELF

image is never used by the boot loader itself on AMD64/Intel 64. Therefore, only a compressed

version is shipped.

19.8.1.2 POWER

The yaboot boot loader on POWER also supports loading ELF images, but not compressed ones. In the

POWER kernel package, there is an ELF Linux kernel file vmlinux . Considering crash , this is the

easiest architecture.

If you decide to analyze the dump on another machine, you must check both the architecture of the

computer and the files necessary for debugging.

198 Kernel binary formats SLES 15 SP6

You can analyze the dump on another computer only if it runs a Linux system of the same architecture.

To check the compatibility, use the command uname -i on both computers and compare the outputs.

If you are going to analyze the dump on another computer, you also need the appropriate files from the

kernel and kernel debug packages.

1. Put the kernel dump, the kernel image from /boot , and its associated debugging info file from /

usr/lib/debug/boot into a single empty directory.

2. Additionally, copy the kernel modules from /lib/modules/$(uname -r)/kernel/ and the

associated debug info files from /usr/lib/debug/lib/modules/$(uname -r)/kernel/

into a subdirectory named modules .

3. In the directory with the dump, the kernel image, its debug info file, and the modules subdirectory,

start the crash utility:

> crash VMLINUX-VERSION vmcore

Regardless of the computer on which you analyze the dump, the crash utility produces output similar to

this:

> crash /boot/vmlinux-6.4.0-150600.9-default.gz \
/var/crash/2024-04-23-11\:17/vmcore
crash 7.2.1
Copyright (C) 2002-2017 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006, 2010 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006, 2011, 2012 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005, 2011 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb (GDB) 7.6
Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-unknown-linux-gnu".

199 Kernel binary formats SLES 15 SP6

 KERNEL: /boot/vmlinux-6.4.0-150600.9-default.gz
 DEBUGINFO: /usr/lib/debug/boot/vmlinux-6.4.0-150600.9-default.debug
 DUMPFILE: /var/crash/2024-04-23-11:17/vmcore
 CPUS: 2
 DATE: Thu Apr 23 13:17:01 2024
 UPTIME: 00:10:41
LOAD AVERAGE: 0.01, 0.09, 0.09
 TASKS: 42
 NODENAME: eros
 RELEASE: 6.4.0-150600.9-default
 VERSION: #1 SMP 2024-03-31 14:50:44 +0200
 MACHINE: x86_64 (2999 Mhz)
 MEMORY: 16 GB
 PANIC: "SysRq : Trigger a crashdump"
 PID: 9446
 COMMAND: "bash"
 TASK: ffff88003a57c3c0 [THREAD_INFO: ffff880037168000]
 CPU: 1
 STATE: TASK_RUNNING (SYSRQ)
crash>

The command output prints first useful data: There were 42 tasks running at the moment of the kernel

crash. The cause of the crash was a SysRq trigger invoked by the task with PID 9446. It was a Bash process

because the echo that has been used is an internal command of the Bash shell.

The crash utility builds upon GDB and provides many additional commands. If you enter bt without

any parameters, the backtrace of the task running at the moment of the crash is printed:

crash> bt
PID: 9446 TASK: ffff88003a57c3c0 CPU: 1 COMMAND: "bash"
 #0 [ffff880037169db0] crash_kexec at ffffffff80268fd6
 #1 [ffff880037169e80] __handle_sysrq at ffffffff803d50ed
 #2 [ffff880037169ec0] write_sysrq_trigger at ffffffff802f6fc5
 #3 [ffff880037169ed0] proc_reg_write at ffffffff802f068b
 #4 [ffff880037169f10] vfs_write at ffffffff802b1aba
 #5 [ffff880037169f40] sys_write at ffffffff802b1c1f
 #6 [ffff880037169f80] system_call_fastpath at ffffffff8020bfbb
 RIP: 00007fa958991f60 RSP: 00007fff61330390 RFLAGS: 00010246
 RAX: 0000000000000001 RBX: ffffffff8020bfbb RCX: 0000000000000001
 RDX: 0000000000000002 RSI: 00007fa959284000 RDI: 0000000000000001
 RBP: 0000000000000002 R8: 00007fa9592516f0 R9: 00007fa958c209c0
 R10: 00007fa958c209c0 R11: 0000000000000246 R12: 00007fa958c1f780
 R13: 00007fa959284000 R14: 0000000000000002 R15: 00000000595569d0
 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b
crash>

200 Kernel binary formats SLES 15 SP6

Now it is clear what happened: The internal echo command of Bash shell sent a character to /

proc/sysrq-trigger . After the corresponding handler recognized this character, it invoked the

crash_kexec() function. This function called panic() and Kdump saved a dump.

In addition to the basic GDB commands and the extended version of bt , the crash utility defines other

commands related to the structure of the Linux kernel. These commands understand the internal data

structures of the Linux kernel and present their contents in a human readable format. For example, you can

list the tasks running at the moment of the crash with ps . With sym , you can list all the kernel symbols

with the corresponding addresses, or inquire an individual symbol for its value. With files , you can

display all the open file descriptors of a process. With kmem , you can display details about the kernel

memory usage. With vm , you can inspect the virtual memory of a process, even at the level of individual

page mappings. The list of useful commands is long, and many of these accept a wide range of options.

The commands that we mentioned reflect the functionality of the common Linux commands, such as ps
and lsof . To find out the exact sequence of events with the debugger, you need to know how to use GDB

and to have strong debugging skills. Both of these are out of the scope of this document. Additionally,

you need to understand the Linux kernel. Several useful reference information sources are given at the

end of this document.

19.9 Advanced Kdump configuration

The configuration for Kdump is stored in /etc/sysconfig/kdump . You can also use YaST to configure

it. Kdump configuration options are available under System Kernel Kdump in YaST Control Center. The

following Kdump options may be useful for you.

You can change the directory for the kernel dumps with the KDUMP_SAVEDIR option. Keep in mind that

the size of kernel dumps can be large. Kdump refuses to save the dump if the free disk space, subtracted

by the estimated dump size, drops below the value specified by the KDUMP_FREE_DISK_SIZE option.

KDUMP_SAVEDIR understands the URL format PROTOCOL://SPECIFICATION , where PROTOCOL

is one of file , ftp , sftp , nfs or cifs , and specification varies for each protocol. For

example, to save kernel dump on an FTP server, use the following URL as a template: ftp://

username:password@ftp.example.com:123/var/crash .

Kernel dumps are large and contain many pages that are not necessary for analysis. With

KDUMP_DUMPLEVEL option, you can omit such pages. The option understands numeric value between 0

and 31. If you specify 0 , the dump size is the largest. If you specify 31 , it produces the smallest dump.

For a complete table of possible values, see the manual page of kdump (man 7 kdump).

201 Advanced Kdump configuration SLES 15 SP6

Sometimes it is useful to make the size of the kernel dump smaller. For example, you can do so to

transfer the dump over the network or to save disk space in the dump directory. This can be done with

KDUMP_DUMPFORMAT set to compressed . The crash utility supports dynamic decompression of the

compressed dumps.

Important: Changes to the Kdump configuration file
After making changes to the /etc/sysconfig/kdump file, you need to run systemctl
restart kdump.service . Otherwise, the changes only take effect next time you reboot the

system.

19.10 More information

There is no single comprehensive reference to Kexec and Kdump usage. However, there are helpful

resources that deal with certain aspects:

For the Kexec utility usage, see the manual page of kexec (man 8 kexec).

IBM provides comprehensive documentation on how to use dump tools on the IBM Z architecture

at https://developer.ibm.com/technologies/linux/ .

You can find general information about Kexec at https://developer.ibm.com/technologies/linux/ .

For more details on Kdump specific to SUSE Linux Enterprise Server, see https://ftp.suse.com/pub/

people/tiwai/kdump-training/kdump-training.pdf .

An in-depth description of Kdump internals can be found at https://lse.sourceforge.net/kdump/

documentation/ols2oo5-kdump-paper.pdf .

For more details on crash dump analysis and debugging tools, use the following resources:

In addition to the info page of GDB (info gdb), there are printable guides at https://

sourceware.org/gdb/documentation/ .

The crash utility features a comprehensive online help. Use help COMMAND to display the online

help for command .

If you have the necessary Perl skills, you can use Alicia to make the debugging easier. This Perl-

based front-end to the crash utility can be found at https://alicia.sourceforge.net/ .

202 More information SLES 15 SP6

https://developer.ibm.com/technologies/linux/
https://developer.ibm.com/technologies/linux/
https://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
https://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
https://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
https://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
https://sourceware.org/gdb/documentation/
https://sourceware.org/gdb/documentation/
https://alicia.sourceforge.net/

If you prefer to use Python instead, you should install Pykdump. This package helps you control

GDB through Python scripts.

A comprehensive overview of the Linux kernel internals is given in Understanding the Linux Kernel

by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-00565-8).

203 More information SLES 15 SP6

20 Using systemd-coredump to debug application

crashes

systemd-coredump collects and displays core dumps, for analyzing application crashes. The core dump

contains an image of the process's memory at the time of termination. By default, when a process crashes

(or all processes belonging to an application), it stores the core dump in the /var/lib/systemd/

coredump file and logs the core dump to the systemd journal, including a backtrace if possible. You

also have the option to examine the dump file with other tools such as gdb or crash (see Section 19.8,

“Analyzing the crash dump”).

Core dumps stored in /var/lib/systemd/coredump are deleted after three days (see the d /var/

lib/systemd/coredump line in /usr/lib/tmpfiles.d/systemd.conf).

There is an option to not store core dumps, but to log only to the journal, which may be useful to minimize

the collection and storage of sensitive information.

20.1 Use and configuration

systemd-coredump is enabled and ready to run by default. The default configuration is in /etc/

systemd/coredump.conf :

[Coredump]
#Storage=external
#Compress=yes
#ProcessSizeMax=2G
#ExternalSizeMax=2G
#JournalSizeMax=767M
#MaxUse=
#KeepFree=

Size units are B, K, M, G, T, P, and E. ExternalSizeMax also supports a value of infinity .

The following example shows how to use Vim for simple testing, by creating a segfault to generate journal

entries and a core dump.

PROCEDURE 20.1: CREATING A CORE DUMP WITH VIM

1. Enable the debuginfo-pool and debuginfo-update repositories

2. Install vim-debuginfo

204 Use and configuration SLES 15 SP6

3. Launch vim testfile and type a few characters

4. Get the PID and generate a segfault:

> ps ax | grep vim
2345 pts/3 S+ 0:00 vim testfile

kill -s SIGSEGV 2345

Vim emits error messages:

Vim: Caught deadly signal SEGV
Vim: Finished.
Segmentation fault (core dumped)

5. List your core dumps, then examine them:

coredumpctl
TIME PID UID GID SIG PRESENT EXE
Wed 2019-11-12 11:56:47 PST 2345 1000 100 11 * /bin/vim

coredumpctl info
PID: 2345 (vim)
UID: 0 (root)
GID: 0 (root)
Signal: 11 (SEGV)
Timestamp: Wed 2019-11-12 11:58:05 PST
Command Line: vim testfile
Executable: /bin/vim
Control Group: /user.slice/user-1000.slice/session-1.scope
 Unit: session-1.scope
 Slice: user-1000.slice
 Session: 1
 Owner UID: 1000 (tux)
 Boot ID: b5c251b86ab34674a2222cef102c0c88
 Machine ID: b43c44a64696799b985cafd95dc1b698
 Hostname: linux-uoch
 Coredump: /var/lib/systemd/coredump/core.vim.0.b5c251b86ab34674a2222cef102
 Message: Process 2345 (vim) of user 0 dumped core.

 Stack trace of thread 2345:
 #0 0x00007f21dd87e2a7 kill (libc.so.6)
 #1 0x000000000050cb35 may_core_dump (vim)
 #2 0x00007f21ddbfec70 __restore_rt (libpthread.so.0)
 #3 0x00007f21dd92ea33 __select (libc.so.6)
 #4 0x000000000050b4e3 RealWaitForChar (vim)
 #5 0x000000000050b86b mch_inchar (vim)

205 Use and configuration SLES 15 SP6

[...]

When you have multiple core dumps, coredumpctl info displays all of them. Filter them by PID ,

COMM (command), or EXE (full path to the executable). For example, all core dumps for Vim:

coredumpctl info /bin/vim

See a single core dump by PID :

coredumpctl info 2345

Output the selected core to gdb :

coredumpctl gdb 2345

The asterisk in the PRESENT column indicates that a stored core dump is present. If the field is empty

there is no stored core dump, and coredumpctl retrieves crash information from the journal. You can

control this behavior in /etc/systemd/coredump.conf with the Storage option:

Storage=none—core dumps are logged in the journal, but not stored. This is useful to minimize

collecting and storing sensitive information, for example for General Data Protection Regulation

(GDPR) compliance.

Storage=external—cores are stored in /var/lib/systemd/coredump

Storage=journal—cores are stored in the systemd journal

A new instance of systemd-coredump is invoked for every core dump, so configuration changes are

applied with the next core dump, and there is no need to restart any services.

Core dumps are not preserved after a system restart. You may save them permanently with coredumpctl .

The following example filters by the PID and stores the core in vim.dump :

coredumpctl -o vim.dump dump 2345

See man systemd-coredump , man coredumpctl , man core , and man coredump.conf for

complete command and option listings.

206 Use and configuration SLES 15 SP6

VII Synchronized clocks with Precision

Time Protocol

21 Precision Time Protocol 208

21 Precision Time Protocol

For network environments, it is vital to keep the computer and other devices' clocks synchronized

and accurate. There are several solutions to achieve synchronicity and accuracy, for example, the

widely used Network Time Protocol (NTP) described in Book “Administration Guide”, Chapter 38 “Time

synchronization with NTP”.

The Precision Time Protocol (PTP) is a protocol capable of sub-microsecond accuracy, which is better

than what NTP achieves. PTP support is divided between the kernel and user space. The kernel in SUSE

Linux Enterprise Server includes support for PTP clocks, which are provided by network drivers.

21.1 Introduction to PTP

The clocks managed by PTP follow a master-slave hierarchy. The slaves are synchronized to their masters.

The hierarchy is updated by the best master clock (BMC) algorithm, which runs on every clock. The clock

with only one port can be either master or slave. Such a clock is called an ordinary clock (OC). A clock

with multiple ports can be master on one port and slave on another. Such a clock is called a boundary clock

(BC). The top-level master is called the grandmaster clock. The grandmaster clock can be synchronized

with a Global Positioning System (GPS). This way disparate networks can be synchronized with a high

degree of accuracy.

The hardware support is the main advantage of PTP. It is supported by several network switches and

network interface controllers (NIC). While it is possible to use non-PTP enabled hardware within the

network, having network components between all PTP clocks PTP hardware enabled achieves the best

possible accuracy.

21.1.1 PTP Linux implementation

On SUSE Linux Enterprise Server, the implementation of PTP is provided by the linuxptp package.

Install it with zypper install linuxptp . It includes the ptp4l and phc2sys programs for clock

synchronization. ptp4l implements the PTP boundary clock and ordinary clock. When hardware time

stamping is enabled, ptp4l synchronizes the PTP hardware clock to the master clock. With software time

stamping, it synchronizes the system clock to the master clock. phc2sys is needed only with hardware

time stamping to synchronize the system clock to the PTP hardware clock on the network interface card

(NIC).

208 Introduction to PTP SLES 15 SP6

21.2 Using PTP

21.2.1 Network driver and hardware support

PTP requires that the used kernel network driver supports either software or hardware time stamping.

Moreover, the NIC must support time stamping in the physical hardware. You can verify the driver and

NIC time stamping capabilities with ethtool :

> sudo ethtool -T eth0
Time stamping parameters for eth0:
Capabilities:
hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
 off (HWTSTAMP_TX_OFF)
 on (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
 none (HWTSTAMP_FILTER_NONE)
 all (HWTSTAMP_FILTER_ALL)

Software time stamping requires the following parameters:

SOF_TIMESTAMPING_SOFTWARE
SOF_TIMESTAMPING_TX_SOFTWARE
SOF_TIMESTAMPING_RX_SOFTWARE

Hardware time stamping requires the following parameters:

SOF_TIMESTAMPING_RAW_HARDWARE
SOF_TIMESTAMPING_TX_HARDWARE
SOF_TIMESTAMPING_RX_HARDWARE

209 Using PTP SLES 15 SP6

21.2.2 Using ptp4l

ptp4l uses hardware time stamping by default. As root , you need to specify the network interface

capable of hardware time stamping with the -i option. The -m tells ptp4l to print its output to the

standard output instead of the system's logging facility:

> sudo ptp4l -m -i eth0
selected eth0 as PTP clock
port 1: INITIALIZING to LISTENING on INITIALIZE
port 0: INITIALIZING to LISTENING on INITIALIZE
port 1: new foreign master 00a152.fffe.0b334d-1
selected best master clock 00a152.fffe.0b334d
port 1: LISTENING to UNCALIBRATED on RS_SLAVE
master offset -25937 s0 freq +0 path delay 12340
master offset -27887 s0 freq +0 path delay 14232
master offset -38802 s0 freq +0 path delay 13847
master offset -36205 s1 freq +0 path delay 10623
master offset -6975 s2 freq -30575 path delay 10286
port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
master offset -4284 s2 freq -30135 path delay 9892

The master offset value represents the measured offset from the master (in nanoseconds).

The s0 , s1 and s2 indicators show the different states of the clock servo: s0 is unlocked, s1 is clock

step, and s2 is locked. If the servo is in the locked state (s2), the clock is not stepped (only slowly

adjusted) if the pi_offset_const option is set to a negative value in the configuration file (see man
8 ptp4l for more information).

The freq value represents the frequency adjustment of the clock (in parts per billion, ppb).

The path delay value represents the estimated delay of the synchronization messages sent from the

master (in nanoseconds).

Port 0 is a Unix domain socket used for local PTP management. Port 1 is the eth0 interface.

INITIALIZING , LISTENING , UNCALIBRATED and SLAVE are examples of port states which change on

INITIALIZE , RS_SLAVE , and MASTER_CLOCK_SELECTED events. When the port state changes from

UNCALIBRATED to SLAVE , the computer has successfully synchronized with a PTP master clock.

You can enable software time stamping with the -S option.

> sudo ptp4l -m -S -i eth3

You can also run ptp4l as a service:

> sudo systemctl start ptp4l

210 Using ptp4l SLES 15 SP6

In this case, ptp4l reads its options from the /etc/sysconfig/ptp4l file. By default, this file tells

ptp4l to read the configuration options from /etc/ptp4l.conf . For more information on ptp4l
options and the configuration file settings, see man 8 ptp4l .

To enable the ptp4l service permanently, run the following:

> sudo systemctl enable ptp4l

To disable it, run

> sudo systemctl disable ptp4l

21.2.3 ptp4l configuration file

ptp4l can read its configuration from an optional configuration file. As no configuration file is used by

default, you need to specify it with -f .

> sudo ptp4l -f /etc/ptp4l.conf

The configuration file is divided into sections. The global section (indicated as [global]) sets the

program options, clock options and default port options. Other sections are port specific, and they override

the default port options. The name of the section is the name of the configured port—for example, [eth0] .

An empty port section can be used to replace the command line option.

[global]
verbose 1
time_stamping software
[eth0]

The example configuration file is an equivalent of the following command's options:

> sudo ptp4l -i eth0 -m -S

For a complete list of ptp4l configuration options, see man 8 ptp4l .

21.2.4 Delay measurement

ptp4l measures time delay in two different ways: peer-to-peer (P2P) or end-to-end (E2E).

P2P

This method is specified with -P .

211 ptp4l configuration file SLES 15 SP6

It reacts to changes in the network environment faster and is more accurate in measuring the delay.

It is only used in networks where each port exchanges PTP messages with one other port. P2P needs

to be supported by all hardware on the communication path.

E2E

This method is specified with -E . This is the default.

Automatic method selection

This method is specified with -A . The automatic option starts ptp4l in E2E mode, and changes

to P2P mode if a peer delay request is received.

Important: Common measurement method
All clocks on a single PTP communication path must use the same method to measure the time

delay. A warning is printed if either a peer delay request is received on a port using the E2E

mechanism, or an E2E delay request is received on a port using the P2P mechanism.

21.2.5 PTP management client: pmc

You can use the pmc client to obtain more detailed information about ptp41 . It reads from the standard

input—or from the command line—actions specified by name and management ID. Then it sends the

actions over the selected transport, and prints any received replies. There are three actions supported:

GET retrieves the specified information, SET updates the specified information, and CMD (or COMMAND)

initiates the specified event.

By default, the management commands are addressed to all ports. The TARGET command can be used

to select a particular clock and port for the subsequent messages. For a complete list of management IDs,

run pmc help .

> sudo pmc -u -b 0 'GET TIME_STATUS_NP'
sending: GET TIME_STATUS_NP
 90f2ca.fffe.20d7e9-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP
 master_offset 283
 ingress_time 1361569379345936841
 cumulativeScaledRateOffset +1.000000000
 scaledLastGmPhaseChange 0
 gmTimeBaseIndicator 0
 lastGmPhaseChange 0x0000'0000000000000000.0000
 gmPresent true
 gmIdentity 00b058.feef.0b448a

212 PTP management client: pmc SLES 15 SP6

The -b option specifies the boundary hops value in sent messages. Setting it to zero limits the boundary

to the local ptp4l instance. Increasing the value retrieves the messages also from PTP nodes that are

further from the local instance. The returned information may include:

stepsRemoved

The number of communication nodes to the grandmaster clock.

offsetFromMaster, master_offset

The last measured offset of the clock from the master clock (nanoseconds).

meanPathDelay

The estimated delay of the synchronization messages sent from the master clock (nanoseconds).

gmPresent

If true , the PTP clock is synchronized to the master clock; the local clock is not the grandmaster

clock.

gmIdentity

This is the grandmaster's identity.

For a complete list of pmc command line options, see man 8 pmc .

21.3 Synchronizing the clocks with phc2sys
Use phc2sys to synchronize the system clock to the PTP hardware clock (PHC) on the network card.

The system clock is considered a slave, while the network card a master. PHC itself is synchronized

with ptp4l (see Section 21.2, “Using PTP”). Use -s to specify the master clock by device or network

interface. Use -w to wait until ptp4l is in a synchronized state.

> sudo phc2sys -s eth0 -w

PTP operates in International Atomic Time (TAI), while the system clock uses Coordinated Universal

Time (UTC). If you do not specify -w to wait for ptp4l synchronization, you can specify the offset in

seconds between TAI and UTC with -O :

> sudo phc2sys -s eth0 -O -35

You can run phc2sys as a service as well:

> sudo systemctl start phc2sys

In this case, phc2sys reads its options from the /etc/sysconfig/phc2sys file. For more information

on phc2sys options, see man 8 phc2sys .

213 Synchronizing the clocks with phc2sys SLES 15 SP6

To enable the phc2sys service permanently, run the following:

> sudo systemctl enable phc2sys

To disable it, run

> sudo systemctl disable phc2sys

21.3.1 Verifying time synchronization

When PTP time synchronization is working properly and hardware time stamping is used, ptp4l and

phc2sys output messages with time offsets and frequency adjustments periodically to the system log.

An example of the ptp4l output:

ptp4l[351.358]: selected /dev/ptp0 as PTP clock
ptp4l[352.361]: port 1: INITIALIZING to LISTENING on INITIALIZE
ptp4l[352.361]: port 0: INITIALIZING to LISTENING on INITIALIZE
ptp4l[353.210]: port 1: new foreign master 00a069.eefe.0b442d-1
ptp4l[357.214]: selected best master clock 00a069.eefe.0b662d
ptp4l[357.214]: port 1: LISTENING to UNCALIBRATED on RS_SLAVE
ptp4l[359.224]: master offset 3304 s0 freq +0 path delay 9202
ptp4l[360.224]: master offset 3708 s1 freq -28492 path delay 9202
ptp4l[361.224]: master offset -3145 s2 freq -32637 path delay 9202
ptp4l[361.224]: port 1: UNCALIBRATED to SLAVE on MASTER_CLOCK_SELECTED
ptp4l[362.223]: master offset -145 s2 freq -30580 path delay 9202
ptp4l[363.223]: master offset 1043 s2 freq -28436 path delay 8972
[...]
ptp4l[371.235]: master offset 285 s2 freq -28511 path delay 9199
ptp4l[372.235]: master offset -78 s2 freq -28788 path delay 9204

An example of the phc2sys output:

phc2sys[616.617]: Waiting for ptp4l...
phc2sys[628.628]: phc offset 66341 s0 freq +0 delay 2729
phc2sys[629.628]: phc offset 64668 s1 freq -37690 delay 2726
[...]
phc2sys[646.630]: phc offset -333 s2 freq -37426 delay 2747
phc2sys[646.630]: phc offset 194 s2 freq -36999 delay 2749

ptp4l normally writes messages with high frequency. You can reduce the frequency with the

summary_interval directive. Its value is an exponent of the 2^N expression. For example, to reduce the

output to every 1024 (which is equal to 2^10) seconds, add the following line to the /etc/ptp4l.conf

file:

summary_interval 10

214 Verifying time synchronization SLES 15 SP6

You can also reduce the frequency of the phc2sys command's updates with the -u SUMMARY-UPDATES

option.

21.4 Examples of configurations

This section includes several examples of ptp4l configuration. The examples are not full configuration

files but rather a minimal list of changes to be made to the specific files. The string ethX stands for the

actual network interface name in your setup.

EXAMPLE 21.1: SLAVE CLOCK USING SOFTWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

No changes made to the distribution /etc/ptp4l.conf .

EXAMPLE 21.2: SLAVE CLOCK USING HARDWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

/etc/sysconfig/phc2sys :

OPTIONS=”-s ethX -w”

No changes made to the distribution /etc/ptp4l.conf .

EXAMPLE 21.3: MASTER CLOCK USING HARDWARE TIME STAMPING

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

/etc/sysconfig/phc2sys :

OPTIONS=”-s CLOCK_REALTIME -c ethX -w”

/etc/ptp4l.conf :

priority1 127

EXAMPLE 21.4: MASTER CLOCK USING SOFTWARE TIME STAMPING (NOT GENERALLY RECOMMENDED)

/etc/sysconfig/ptp4l :

OPTIONS=”-f /etc/ptp4l.conf -i ethX”

215 Examples of configurations SLES 15 SP6

/etc/ptp4l.conf :

priority1 127

21.5 PTP and NTP

NTP and PTP time synchronization tools can coexist, synchronizing time from one to another in both

directions.

21.5.1 NTP to PTP synchronization

When chronyd is used to synchronize the local system clock, you can configure the ptp4l to be the

grandmaster clock distributing the time from the local system clock via PTP. Include the priority1

option in /etc/ptp4l.conf :

[global]
priority1 127
[eth0]

Then run ptp4l :

> sudo ptp4l -f /etc/ptp4l.conf

When hardware time stamping is used, you need to synchronize the PTP hardware clock to the system

clock with phc2sys :

> sudo phc2sys -c eth0 -s CLOCK_REALTIME -w

21.5.2 Configuring PTP-NTP bridge

If a highly accurate PTP grandmaster is available in a network without switches or routers with PTP

support, a computer may operate as a PTP slave and a stratum-1 NTP server. Such a computer needs to

have two or more network interfaces, and be close to the grandmaster or have a direct connection to it.

This ensures highly accurate synchronization in the network.

Configure the ptp4l and phc2sys programs to use one network interface to synchronize the system

clock using PTP. Then configure chronyd to provide the system time using the other interface:

bindaddress 192.0.131.47

216 PTP and NTP SLES 15 SP6

hwtimestamp eth1
local stratum 1

Note: NTP and DHCP
When the DHCP client command dhclient receives a list of NTP servers, it adds them to NTP

configuration by default. To prevent this behavior, set

NETCONFIG_NTP_POLICY=""

in the /etc/sysconfig/network/config file.

217 Configuring PTP-NTP bridge SLES 15 SP6

A GNU licenses
This appendix contains the GNU Free

Documentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,

MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document

"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with

or without modifying it, either commercially or non-commercially. Secondarily, this License preserves

for the author and publisher a way to get credit for their work, while not being considered responsible

for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves

be free in the same sense. It complements the GNU General Public License, which is a copyleft license

designed for free software.

We have designed this License to use it for manuals for free software, because free software needs

free documentation: a free program should come with manuals providing the same freedoms that the

software does. But this License is not limited to software manuals; it can be used for any textual work,

regardless of subject matter or whether it is published as a printed book. We recommend this License

principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. Such a notice grants

a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated

herein. The "Document", below, refers to any such manual or work. Any member of the public is a

licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work

in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document's overall

subject (or to related matters) and contains nothing that could fall directly within that overall subject.

(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any

mathematics.) The relationship could be a matter of historical connection with the subject or with related

matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of

Invariant Sections, in the notice that says that the Document is released under this License. If a section

does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The

Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections

then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover

Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may

be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format

whose specification is available to the general public, that is suitable for revising the document

straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or

(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or

for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an

otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or

discourage subsequent modification by readers is not Transparent. An image format is not Transparent

if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input

format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming

simple HTML, PostScript or PDF designed for human modification. Examples of transparent image

formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and

edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools

are not generally available, and the machine-generated HTML, PostScript or PDF produced by some

word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed

to hold, legibly, the material this License requires to appear in the title page. For works in formats which

do not have any title page as such, "Title Page" means the text near the most prominent appearance of

the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here

XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",

"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document

means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference in

this License, but only as regards disclaiming warranties: any other implication that these Warranty

Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially,

provided that this License, the copyright notices, and the license notice saying this License applies to

the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of

this License. You may not use technical measures to obstruct or control the reading or further copying

of the copies you make or distribute. However, you may accept compensation in exchange for copies.

If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,

numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose

the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the

front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify

you as the publisher of these copies. The front cover must present the full title with all words of the

title equally prominent and visible. You may add other material on the covers in addition. Copying

with changes limited to the covers, as long as they preserve the title of the Document and satisfy these

conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed

(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either

include a machine-readable Transparent copy along with each Opaque copy, or state in or with each

Opaque copy a computer-network location from which the general network-using public has access

to download using public-standard network protocols a complete Transparent copy of the Document,

free of added material. If you use the latter option, you must take reasonably prudent steps, when you

begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus

accessible at the stated location until at least one year after the last time you distribute an Opaque copy

(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing

any large number of copies, to give them a chance to provide you with an updated version of the

Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and

3 above, provided that you release the Modified Version under precisely this License, with the Modified

Version filling the role of the Document, thus licensing distribution and modification of the Modified

Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they

release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

218 SLES 15 SP6

F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown

in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled "History" in the Document, create one stating the title,

year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the "History"

section. You may omit a network location for a work that was published at least four years

before the Document itself, or if the original publisher of the version it refers to gives

permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with

any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary

Sections and contain no material copied from the Document, you may at your option designate some

or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the

Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your

Modified Version by various parties--for example, statements of peer review or that the text has been

approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as

a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of

Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any

one entity. If the Document already includes a cover text for the same cover, previously added by you

or by arrangement made by the same entity you are acting on behalf of, you may not add another; but

you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their

names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms

defined in section 4 above for modified versions, provided that you include in the combination all of the

Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections

of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections

may be replaced with a single copy. If there are multiple Invariant Sections with the same name but

different contents, make the title of each such section unique by adding at the end of it, in parentheses,

the name of the original author or publisher of that section if known, or else a unique number. Make

the same adjustment to the section titles in the list of Invariant Sections in the license notice of the

combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents,

forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements",

and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,

and replace the individual copies of this License in the various documents with a single copy that is

included in the collection, provided that you follow the rules of this License for verbatim copying of

each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this

License, provided you insert a copy of this License into the extracted document, and follow this License

in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or

works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright

resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what

the individual works permit. When the Document is included in an aggregate, this License does not

apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the

Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on

covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the

Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole

aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document

under the terms of section 4. Replacing Invariant Sections with translations requires special permission

from their copyright holders, but you may include translations of some or all Invariant Sections in

addition to the original versions of these Invariant Sections. You may include a translation of this

License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you

also include the original English version of this License and the original versions of those notices and

disclaimers. In case of a disagreement between the translation and the original version of this License

or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for

under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void,

and will automatically terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses terminated so long as such

parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but may

differ in detail to address new problems or concerns. See https://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies that

a particular numbered version of this License "or any later version" applies to it, you have the option

of following the terms and conditions either of that specified version or of any later version that has

been published (not as a draft) by the Free Software Foundation. If the Document does not specify a

version number of this License, you may choose any version ever published (not as a draft) by the Free

Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.”

line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those

two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these

examples in parallel under your choice of free software license, such as the GNU General Public License,

to permit their use in free software.

219 SLES 15 SP6

https://www.gnu.org/copyleft/

	System Analysis and Tuning Guide
	Preface
	1. Available documentation
	2. Improving the documentation
	3. Documentation conventions
	4. Support
	4.1. Support statement for SUSE Linux Enterprise Server
	4.2. Technology previews

	Part I. Basics
	Chapter 1. General notes on system tuning
	1.1. Be sure what problem to solve
	1.2. Rule out common problems
	1.3. Finding the bottleneck
	1.4. Step-by-step tuning

	Part II. System monitoring
	Chapter 2. System monitoring utilities
	2.1. Multi-purpose tools
	2.1.1. vmstat
	2.1.2. dstat
	2.1.3. System activity information: sar
	2.1.3.1. Generating reports with sar
	2.1.3.1.1. CPU usage report: sar
	2.1.3.1.2. Memory usage report: sar -r
	2.1.3.1.3. Paging statistics report: sar -B
	2.1.3.1.4. Block device statistics report: sar -d
	2.1.3.1.5. Network statistics reports: sar -n KEYWORD

	2.1.3.2. Visualizing sar data

	2.2. System information
	2.2.1. Device load information: iostat
	2.2.2. Processor activity monitoring: mpstat
	2.2.3. Processor frequency monitoring: turbostat
	2.2.4. Task monitoring: pidstat
	2.2.5. Kernel ring buffer: dmesg
	2.2.6. List of open files: lsof
	2.2.7. Kernel and udev event sequence viewer: udevadm monitor

	2.3. Processes
	2.3.1. Inter-process communication: ipcs
	2.3.2. Process list: ps
	2.3.3. Process tree: pstree
	2.3.4. Table of processes: top
	2.3.5. IBM Z hypervisor monitor: hyptop
	2.3.6. A top-like I/O monitor: iotop
	2.3.7. Modify a process's niceness: nice and renice

	2.4. Memory
	2.4.1. Memory usage: free
	2.4.2. Detailed memory usage: /proc/meminfo
	2.4.3. Process memory usage: smaps
	2.4.4. numaTOP

	2.5. Networking
	2.5.1. Basic network diagnostics: ip
	2.5.2. Show the network usage of processes: nethogs
	2.5.3. Ethernet cards in detail: ethtool
	2.5.4. Show the network status: ss

	2.6. The /proc file system
	2.6.1. procinfo
	2.6.2. System control parameters: /proc/sys/

	2.7. Hardware information
	2.7.1. PCI resources: lspci
	2.7.2. USB devices: lsusb
	2.7.3. Monitoring and tuning the thermal subsystem: tmon
	2.7.4. MCELog: machine check exceptions (MCE)
	2.7.5. AMD64/Intel 64: dmidecode: DMI table decoder
	2.7.6. POWER: list hardware

	2.8. Files and file systems
	2.8.1. Determine the file type: file
	2.8.2. File systems and their usage: mount, df and du
	2.8.3. Additional information about ELF binaries
	2.8.4. File properties: stat

	2.9. User information
	2.9.1. User accessing files: fuser
	2.9.2. Who is doing what: w

	2.10. Time and date
	2.10.1. Time measurement with time

	2.11. Graph your data: RRDtool
	2.11.1. How RRDtool works
	2.11.2. A practical example
	2.11.2.1. Collecting data
	2.11.2.2. Creating the database
	2.11.2.3. Updating database values
	2.11.2.4. Viewing measured values

	2.11.3. More information

	Chapter 3. System log files
	3.1. System log files in /var/log/
	3.2. Viewing and parsing log files
	3.3. Managing log files with logrotate
	3.4. Monitoring log files with logwatch
	3.5. Configuring mail forwarding for root
	3.6. Forwarding log messages to a central syslog server
	3.6.1. Set up the central syslog server
	3.6.2. Set up the client machines
	3.6.3. More information

	3.7. Using logger to make system log entries

	Part III. Kernel monitoring
	Chapter 4. SystemTap—filtering and analyzing system data
	4.1. Conceptual overview
	4.1.1. SystemTap scripts
	4.1.2. Tapsets
	4.1.3. Commands and privileges
	4.1.4. Important files and directories

	4.2. Installation and setup
	4.3. Script syntax
	4.3.1. Probe format
	4.3.2. SystemTap events (probe points)
	4.3.3. SystemTap handlers (probe body)
	4.3.3.1. Functions
	4.3.3.2. Other basic constructs
	4.3.3.2.1. Variables
	4.3.3.2.2. Conditional statements

	4.4. Example script
	4.5. User space probing
	4.6. More information

	Chapter 5. Kernel probes
	5.1. Supported architectures
	5.2. Types of kernel probes
	5.2.1. Kprobes
	5.2.2. Jprobes
	5.2.3. Return probe

	5.3. Kprobes API
	5.4. debugfs Interface
	5.4.1. Listing registered kernel probes
	5.4.2. Globally enabling/disabling kernel probes

	5.5. More information

	Chapter 6. Hardware-based performance monitoring with Perf
	6.1. Hardware-based monitoring
	6.2. Sampling and counting
	6.3. Installing Perf
	6.4. Perf subcommands
	6.5. Counting particular types of event
	6.6. Recording events specific to particular commands
	6.7. More information

	Chapter 7. OProfile—system-wide profiler
	7.1. Conceptual overview
	7.2. Installation and requirements
	7.3. Available OProfile utilities
	7.4. Using OProfile
	7.4.1. Creating a report
	7.4.2. Getting event configurations

	7.5. Generating reports
	7.6. More information

	Chapter 8. Dynamic debug—kernel debugging messages
	8.1. Benefits of dynamic debugging
	8.2. Checking the status of dynamic debug
	8.3. Using dynamic debug
	8.4. Viewing the dynamic debug messages

	Part IV. Resource management
	Chapter 9. General system resource management
	9.1. Planning the installation
	9.1.1. Partitioning
	9.1.2. Installation scope
	9.1.3. Default target

	9.2. Disabling unnecessary services
	9.3. File systems and disk access
	9.3.1. File systems
	9.3.1.1. NFS

	9.3.2. Time stamp update policy
	9.3.3. Prioritizing disk access with ionice

	Chapter 10. Kernel control groups
	10.1. Overview
	10.1.1. Hybrid cgroup hierarchy

	10.2. Resource accounting
	10.3. Setting resource limits
	10.4. Preventing fork bombs with TasksMax
	10.4.1. Finding the current default TasksMax values
	10.4.2. Overriding the DefaultTasksMax value
	10.4.3. Default TasksMax limit on users

	10.5. I/O control with cgroups
	10.5.1. Prerequisites
	10.5.1.1. File system
	10.5.1.2. Block I/O scheduler
	10.5.1.3. Cgroup hierarchy layout

	10.5.2. Configuring control quantities
	10.5.3. I/O control behavior and setting expectations
	10.5.4. Resource control in user sessions

	10.6. More information

	Chapter 11. Automatic Non-Uniform Memory Access (NUMA) balancing
	11.1. Implementation
	11.2. Configuration
	11.3. Monitoring
	11.4. Impact

	Chapter 12. Power management
	12.1. Power management at CPU Level
	12.1.1. C-states (processor operating states)
	12.1.2. P-states (processor performance states)
	12.1.3. Turbo features

	12.2. In-kernel governors
	12.3. The cpupower tools
	12.3.1. Viewing current settings with cpupower
	12.3.2. Viewing kernel idle statistics with cpupower
	12.3.3. Monitoring kernel and hardware statistics with cpupower
	12.3.4. Modifying current settings with cpupower

	12.4. Special tuning options
	12.4.1. Tuning options for P-states

	12.5. Troubleshooting
	12.6. More information
	12.7. Monitoring power consumption with powerTOP

	Part V. Kernel tuning
	Chapter 13. Tuning I/O performance
	13.1. Switching I/O scheduling
	13.2. Available I/O elevators with blk-mq I/O path
	13.2.1. MQ-DEADLINE
	13.2.2. NONE
	13.2.3. BFQ (Budget Fair Queueing)
	13.2.4. KYBER

	13.3. I/O barrier tuning

	Chapter 14. Tuning the task scheduler
	14.1. Introduction
	14.1.1. Preemption
	14.1.2. Timeslice
	14.1.3. Process priority

	14.2. Process classification
	14.3. Completely Fair Scheduler
	14.3.1. How CFS works
	14.3.2. Grouping processes
	14.3.3. Kernel configuration options
	14.3.4. Terminology
	14.3.4.1. Scheduling policies

	14.3.5. Changing real-time attributes of processes with chrt
	14.3.6. Runtime tuning with sysctl
	14.3.7. Debugging interface and scheduler statistics

	14.4. More information

	Chapter 15. Tuning the memory management subsystem
	15.1. Memory usage
	15.1.1. Anonymous memory
	15.1.2. Pagecache
	15.1.3. Buffercache
	15.1.4. Buffer heads
	15.1.5. Writeback
	15.1.6. Readahead
	15.1.7. VFS caches
	15.1.7.1. Inode cache
	15.1.7.2. Directory entry cache

	15.2. Reducing memory usage
	15.2.1. Reducing malloc (anonymous) usage
	15.2.2. Reducing kernel memory overheads
	15.2.3. Memory controller (memory cgroups)

	15.3. Virtual memory manager (VM) tunable parameters
	15.3.1. Reclaim ratios
	15.3.2. Writeback parameters
	15.3.3. Timing differences of I/O writes between SUSE Linux Enterprise 12 and SUSE Linux Enterprise 11
	15.3.4. Readahead parameters
	15.3.5. Transparent HugePage parameters
	15.3.6. khugepaged parameters
	15.3.7. Further VM parameters

	15.4. Monitoring VM behavior

	Chapter 16. Tuning the network
	16.1. Configurable kernel socket buffers
	16.2. Detecting network bottlenecks and analyzing network traffic
	16.3. Netfilter
	16.4. Improving the network performance with receive packet steering (RPS)

	Chapter 17. Tuning SUSE Linux Enterprise for SAP
	17.1. Tuning SLE Systems with sapconf 5
	17.1.1. Verifying sapconf setup
	17.1.2. Enabling and disabling sapconf and viewing its status
	17.1.3. Configuring sapconf5
	17.1.4. Removing sapconf
	17.1.5. For more information
	17.1.6. Using tuned together with sapconf

	Part VI. Handling system dumps
	Chapter 18. Tracing tools
	18.1. Tracing system calls with strace
	18.2. Tracing library calls with ltrace
	18.3. Debugging and profiling with Valgrind
	18.3.1. Installation
	18.3.2. Supported architectures
	18.3.3. General information
	18.3.4. Default options
	18.3.5. How Valgrind works
	18.3.6. Messages
	18.3.7. Error messages

	18.4. More information

	Chapter 19. Kexec and Kdump
	19.1. Introduction
	19.2. Required packages
	19.3. Kexec internals
	19.4. Calculating crashkernel allocation size
	19.5. Basic Kexec usage
	19.6. How to configure Kexec for routine reboots
	19.7. Basic Kdump configuration
	19.7.1. Manual Kdump configuration
	19.7.2. YaST configuration
	19.7.3. Kdump over SSH

	19.8. Analyzing the crash dump
	19.8.1. Kernel binary formats
	19.8.1.1. AMD64/Intel 64
	19.8.1.2. POWER

	19.9. Advanced Kdump configuration
	19.10. More information

	Chapter 20. Using systemd-coredump to debug application crashes
	20.1. Use and configuration

	Part VII. Synchronized clocks with Precision Time Protocol
	Chapter 21. Precision Time Protocol
	21.1. Introduction to PTP
	21.1.1. PTP Linux implementation

	21.2. Using PTP
	21.2.1. Network driver and hardware support
	21.2.2. Using ptp4l
	21.2.3. ptp4l configuration file
	21.2.4. Delay measurement
	21.2.5. PTP management client: pmc

	21.3. Synchronizing the clocks with phc2sys
	21.3.1. Verifying time synchronization

	21.4. Examples of configurations
	21.5. PTP and NTP
	21.5.1. NTP to PTP synchronization
	21.5.2. Configuring PTP-NTP bridge

	Appendix A. GNU licenses
	A.1. GNU Free Documentation License

