
SUSE OpenStack Cloud 8

Planning an Installation
with Cloud Lifecycle
Manager

Planning an Installation with Cloud Lifecycle Manager
SUSE OpenStack Cloud 8

Publication Date: 09/08/2022

SUSE LLC
1800 South Novell Place
Provo, UT 84606
USA

https://documentation.suse.com

Copyright © 2006– 2022 SUSE LLC and contributors. All rights reserved.

https://documentation.suse.com

Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 Li-

cense : http://creativecommons.org/licenses/by/3.0/legalcode

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the

property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its

affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does

not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be

held liable for possible errors or the consequences thereof.

http://creativecommons.org/licenses/by/3.0/legalcode
http://www.suse.com/company/legal/

Contents

I PLANNING 1

1 Registering SLES 2
1.1 Registering SLES during the Installation 2

1.2 Registering SLES from the Installed System 3

Registering from the Installed System 3

1.3 Registering SLES during Automated Deployment 4

2 Hardware and Software Support Matrix 5

2.1 OpenStack Version Information 5

2.2 Supported Hardware Configurations 5

2.3 Support for Core and Non-Core OpenStack Features 5

2.4 Cloud Scaling 9

2.5 Supported Software 9

2.6 Notes About Performance 10

2.7 KVM Guest OS Support 10

2.8 ESX Guest OS Support 11

2.9 Ironic Guest OS Support 11

3 Recommended Hardware Minimums for the Example
Configurations 12

3.1 Recommended Hardware Minimums for an Entry-scale KVM 12

3.2 Recommended Hardware Minimums for an Entry-scale ESX KVM
Model 14

3.3 Recommended Hardware Minimums for an Entry-scale ESX, KVM with
Dedicated Cluster for Metering, Monitoring, and Logging 17

iv Planning an Installation with Cloud Lifecycle Manager

3.4 Recommended Hardware Minimums for an Ironic Flat Network
Model 20

3.5 Recommended Hardware Minimums for an Entry-scale Swift
Model 22

4 High Availability 27

4.1 High Availability Concepts Overview 27

4.2 Highly Available Cloud Infrastructure 27

4.3 High Availability of Controllers 28

4.4 High Availability Routing - Centralized 30

4.5 High Availability Routing - Distributed 31

4.6 Availability Zones 32

4.7 Compute with KVM 33

4.8 Nova Availability Zones 33

4.9 Compute with ESX Hypervisor 33

4.10 Cinder Availability Zones 33

4.11 Object Storage with Swift 33

4.12 Highly Available Cloud Applications and Workloads 34

4.13 What is not Highly Available? 35

4.14 More Information 36

II CLOUD LIFECYCLE MANAGER OVERVIEW 37

5 Input Model 38
5.1 Introduction to the Input Model 38

5.2 Concepts 38

Cloud 40 • Control Planes 41 • Services 42 • Server

Roles 42 • Disk Model 43 • Memory

v Planning an Installation with Cloud Lifecycle Manager

Model 44 • CPU Model 45 • Servers 45 • Server

Groups 45 • Networking 47 • Configuration Data 52

6 Configuration Objects 53

6.1 Cloud Configuration 53

6.2 Control Plane 54

Clusters 57 • Resources 59 • Multiple Control Planes 62 • Load

Balancer Definitions in Control Planes 63

6.3 Load Balancers 63

6.4 Regions 65

6.5 Servers 65

6.6 Server Groups 68

6.7 Server Roles 70

6.8 Disk Models 71

Volume Groups 72 • Device Groups 74

6.9 Memory Models 75

Huge Pages 76

6.10 CPU Models 77

CPU Assignments 77 • CPU Usage 78 • Components and Roles in the

CPU Model 78

6.11 Interface Models 79

network-interfaces 81 • fcoe-interfaces 83 • dpdk-devices 84

6.12 NIC Mappings 85

6.13 Network Groups 88

Load Balancer Definitions in Network Groups 92 • Network

Tags 93 • MTU (Maximum Transmission Unit) 96

6.14 Networks 97

6.15 Firewall Rules 99

Rule 100

vi Planning an Installation with Cloud Lifecycle Manager

6.16 Configuration Data 100

Neutron network-tags 102 • Neutron Configuration Data 103 • Octavia

Configuration Data 106 • Ironic Configuration Data 106 • Swift

Configuration Data 107

6.17 Pass Through 108

7 Other Topics 109

7.1 Services and Service Components 109

7.2 Name Generation 112

7.3 Persisted Data 114

Persisted Server Allocations 115 • Persisted Address Allocations 117

7.4 Server Allocation 118

7.5 Server Network Selection 118

7.6 Network Route Validation 119

7.7 Configuring Neutron Provider VLANs 123

7.8 Standalone Cloud Lifecycle Manager 125

8 Configuration Processor Information Files 126

8.1 address_info.yml 127

8.2 firewall_info.yml 129

8.3 route_info.yml 129

8.4 server_info.yml 130

8.5 service_info.yml 131

8.6 control_plane_topology.yml 132

8.7 network_topology.yml 134

8.8 region_topology.yml 135

8.9 service_topology.yml 135

vii Planning an Installation with Cloud Lifecycle Manager

8.10 private_data_metadata_ccp.yml 136

8.11 password_change.yml 138

8.12 explain.txt 138

8.13 CloudDiagram.txt 140

8.14 HTML Representation 140

9 Example Configurations 142

9.1 SUSE OpenStack Cloud Example Configurations 142

9.2 Alternative Configurations 143

9.3 KVM Examples 144

Entry-Scale Cloud 144 • Entry Scale Cloud with Metering and Monitoring

Services 145 • Single-Region Mid-Size Model 147

9.4 ESX Examples 150

Single-Region Entry-Scale Cloud with a Mix of KVM and ESX

Hypervisors 150 • Single-Region Entry-Scale Cloud with Metering and

Monitoring Services, and a Mix of KVM and ESX Hypervisors 152

9.5 Swift Examples 155

Entry-scale Swift Model 155

9.6 Ironic Examples 160

Entry-Scale Cloud with Ironic Flat Network 160 • Entry-Scale Cloud with Ironic

Multi-Tenancy 162

10 Modifying Example Configurations for Compute
Nodes 165

10.1 SLES Compute Nodes 165

11 Modifying Example Configurations for Object Storage
using Swift 168

11.1 Object Storage using Swift Overview 168

What is the Object Storage (Swift) Service? 168 • Object Storage (Swift)

Services 169

viii Planning an Installation with Cloud Lifecycle Manager

11.2 Allocating Proxy, Account, and Container (PAC) Servers for Object
Storage 169

To Allocate Swift PAC servers 170

11.3 Allocating Object Servers 170

To Allocate a Swift Object Server 171

11.4 Creating Roles for Swift Nodes 171

11.5 Allocating Disk Drives for Object Storage 172

Making Changes to a Swift Disk Model 173

11.6 Swift Requirements for Device Group Drives 177

11.7 Creating a Swift Proxy, Account, and Container (PAC) Cluster 177

Steps to Create a Swift Proxy, Account, and Container (PAC)

Cluster 177 • Service Components 178

11.8 Creating Object Server Resource Nodes 179

11.9 Understanding Swift Network and Service Requirements 180

11.10 Understanding Swift Ring Specifications 181

Ring Specifications in the Input Model 181 • Replication Ring

Parameters 183 • Erasure Coded Rings 184 • Selecting a Partition

Power 186

11.11 Designing Storage Policies 188

Specifying Storage Policies 189

11.12 Designing Swift Zones 191

Using Server Groups to Specify Swift Zones 192 • Specifying Swift Zones at

Ring Level 194

11.13 Customizing Swift Service Configuration Files 195

Configuring Swift Container Rate Limit 195 • Configuring Swift Account Server

Logging Level 196 • For More Information 197

12 Alternative Configurations 198

12.1 Using a Dedicated Cloud Lifecycle Manager Node 198

Specifying a dedicated Cloud Lifecycle Manager in your input model 199

ix Planning an Installation with Cloud Lifecycle Manager

12.2 Configuring SUSE OpenStack Cloud without DVR 203

12.3 Configuring SUSE OpenStack Cloud with Provider VLANs and Physical
Routers Only 204

12.4 Considerations When Installing Two Systems on One Subnet 205

x Planning an Installation with Cloud Lifecycle Manager

I Planning

1 Registering SLES 2

2 Hardware and Software Support Matrix 5

3 Recommended Hardware Minimums for the Example Configura-
tions 12

4 High Availability 27

1 Registering SLES

To get technical support and product updates, you need to register and activate your SUSE
product with the SUSE Customer Center. It is recommended to register during the installation,
since this will enable you to install the system with the latest updates and patches available.
However, if you are offline or want to skip the registration step, you can register at any time
later from the installed system.

Note
In case your organization does not provide a local registration server, registering SLES
requires a SUSE account. In case you do not have a SUSE account yet, go to the SUSE
Customer Center home page (https://scc.suse.com/) to create one.

1.1 Registering SLES during the Installation

To register your system, provide the E-mail address associated with the SUSE account you or
your organization uses to manage subscriptions. In case you do not have a SUSE account yet,
go to the SUSE Customer Center home page (https://scc.suse.com/) to create one.

Enter the Registration Code you received with your copy of SUSE Linux Enterprise Server. Pro-
ceed with Next to start the registration process.

By default the system is registered with the SUSE Customer Center. However, if your organiza-
tion provides local registration servers you can either choose one form the list of auto-detected
servers or provide the URL at Register System via local SMT Server . Proceed with Next.

During the registration, the online update repositories will be added to your installation setup.
When finished, you can choose whether to install the latest available package versions from the
update repositories. This ensures that SUSE Linux Enterprise Server is installed with the latest
security updates available. If you choose No, all packages will be installed from the installation
media. Proceed with Next.

If the system was successfully registered during installation, YaST will disable repositories from
local installation media such as CD/DVD or ash disks when the installation has been completed.
This prevents problems if the installation source is no longer available and ensures that you
always get the latest updates from the online repositories.

2 Registering SLES during the Installation SUSE OpenStack Cloud 8

https://scc.suse.com/
https://scc.suse.com/

1.2 Registering SLES from the Installed System

1.2.1 Registering from the Installed System

If you have skipped the registration during the installation or want to re-register your system,
you can register the system at any time using the YaST module Product Registration or the com-
mand line tool SUSEConnect .

Registering with YaST

To register the system start YaST Software Product Registration. Provide the E-mail address
associated with the SUSE account you or your organization uses to manage subscriptions. In
case you do not have a SUSE account yet, go to the SUSE Customer Center homepage (https://

scc.suse.com/) to create one.

Enter the Registration Code you received with your copy of SUSE Linux Enterprise Server. Pro-
ceed with Next to start the registration process.

By default the system is registered with the SUSE Customer Center. However, if your organiza-
tion provides local registration servers you can either choose one form the list of auto-detected
servers or provide the URl at Register System via local SMT Server. Proceed with Next.

Registering with SUSEConnect

To register from the command line, use the command

tux > sudo SUSEConnect -r REGISTRATION_CODE -e EMAIL_ADDRESS

Replace REGISTRATION_CODE with the Registration Code you received with your copy of SUSE
Linux Enterprise Server. Replace EMAIL_ADDRESS with the E-mail address associated with the
SUSE account you or your organization uses to manage subscriptions. To register with a local
registration server, also provide the URL to the server:

tux > sudo SUSEConnect -r REGISTRATION_CODE -e EMAIL_ADDRESS \
--url "https://suse_register.example.com/"

3 Registering SLES from the Installed System SUSE OpenStack Cloud 8

https://scc.suse.com/
https://scc.suse.com/

1.3 Registering SLES during Automated Deployment
If you deploy your instances automatically using AutoYaST, you can register the system dur-
ing the installation by providing the respective information in the AutoYaST control le. Re-
fer to https://documentation.suse.com/sles/12-SP5/single-html/SLES-autoyast/#CreateProfile-Reg-

ister for details.

4 Registering SLES during Automated Deployment SUSE OpenStack Cloud 8

https://documentation.suse.com/sles/12-SP5/single-html/SLES-autoyast/#CreateProfile-Register
https://documentation.suse.com/sles/12-SP5/single-html/SLES-autoyast/#CreateProfile-Register

2 Hardware and Software Support Matrix

This document lists the details about the supported hardware and software for SUSE OpenStack
Cloud 8

2.1 OpenStack Version Information
SUSE OpenStack Cloud 8 services have been updated to the OpenStack Pike (https://www.open-

stack.org/software/pike) release.

2.2 Supported Hardware Configurations
SUSE OpenStack Cloud 8 supports hardware that is certified for SLES through the YES cer-
tification program. You will nd a database of certified hardware at https://www.suse.com/

yessearch/ .

2.3 Support for Core and Non-Core OpenStack
Features

OpenStack
Service

Packages Supported OpenStack
Service

Packages Supported

Aodh No No Barbican Yes Yes

Ceilometer Yes Yes Cinder Yes Yes

Designate Yes Yes Freezer Yes Yes

Glance Yes Yes Heat Yes Yes

Horizon Yes Yes Ironic Yes Yes

Keystone Yes Yes Magnum Yes Yes

Manila Yes Yes Monasca Yes Yes

5 OpenStack Version Information SUSE OpenStack Cloud 8

https://www.openstack.org/software/pike
https://www.openstack.org/software/pike
https://www.suse.com/yessearch/
https://www.suse.com/yessearch/

Monasca-
Ceilometer

Yes Yes Neutron Yes Yes

Neutron(L-
BaaSv2)

Yes Yes Neu-
tron(VP-
NaaS)

Yes Yes

Neu-
tron(FWaaS)

Yes Yes Nova Yes Yes

Octavia Yes Yes Swift Yes Yes

Nova

Supported Not Supported

SLES KVM Hypervisor Xen hypervisor

VMware ESX Hypervisor Hyper-V

Non-x86 Architectures

Neutron

Supported Not Supported

Tenant networks

IPv6

SR-IOV

PCI-PT

DPDK

Distributed Virtual Router (DVR) with any of
the following:

IPv6

BGP/Fast Path Exit

L2 gateway

SNAT HA

VMware ESX Hypervisor QoS

Glance Supported Features

6 Support for Core and Non-Core OpenStack Features SUSE OpenStack Cloud 8

Swift and Ceph backends

Cinder

Supported Not Supported

Encrypted & private volumes VSA

Incremental backup, backup attached vol-
ume, encrypted volume backup, backup
snapshots

Swift

Supported Not Supported

Erasure coding Geographically distributed clusters

Dispersion report

Swift zones

Keystone

Supported Not Supported

Domains Web SSO

Fernet tokens Multi-Factor authentication

LDAP integration Federation Keystone to Keystone

Hierarchical multi-tenancy

Barbican Supported Features

Encryption for the following:

Cinder

Hardware security model

7 Support for Core and Non-Core OpenStack Features SUSE OpenStack Cloud 8

Encrypted data volumes

LBaaS

Symmetric keys

Storage keys

CADF format auditing events

Ceilometer

Supported Not Supported

Keystone v3 support Gnocchi

Glance v2 API IPMI and SNMP

Ceilometer Event APIs

Ceilometer Compute Agent

Heat Features Not Supported

Multi-region stack

Ironic

Supported Not Supported

Drivers

Agent_ilo

Agent_ipmitool

PXE_ilo

PXE_ipmitool

UEFI secure

Booting methods

Power

8 Support for Core and Non-Core OpenStack Features SUSE OpenStack Cloud 8

Supported Not Supported

Compute

Networking

Images

Freezer

Supported Not Supported

Backup of Control Plane data Backup of tenant VMs, volumes, les, direc-
tories and databases

Backup Lifecycle Manager

Backup of audit logs

Backup of centralized logging les

2.4 Cloud Scaling
In SUSE OpenStack Cloud 8 a total of 200 total compute nodes in a single region (Region0)
across any of the following hypervisors is supported:

VMware ESX

SLES/KVM

You can distribute the compute nodes in any number of deployments as long as the total is no
more than 200. Example: 100 ESX + 100 KVM or 50 ESX + 150 KVM.

SUSE OpenStack Cloud 8 supports a total of 8000 virtual machines across a total of 200 compute
nodes.

2.5 Supported Software
Supported ESXi versions

9 Cloud Scaling SUSE OpenStack Cloud 8

SUSE OpenStack Cloud 8 currently supports the following ESXi versions:

ESXi version 6.0

ESXi version 6.0 (Update 1b)

ESXi version 6.5

The following are the requirements for your vCenter server:

Software: vCenter (It is recommended to run the same server version as the ESXi hosts.)

License Requirements: vSphere Enterprise Plus license

2.6 Notes About Performance

We have the following recommendations to ensure good performance of your cloud environ-
ment:

On the control plane nodes, you will want good I/O performance. Your array controllers
must have cache controllers and we advise against the use of RAID-5.

On compute nodes, the I/O performance will influence the virtual machine start-up per-
formance. We also recommend the use of cache controllers in your storage arrays.

If you are using dedicated object storage (Swift) nodes, in particular the account, container,
and object servers, we recommend that your storage arrays have cache controllers.

For best performance on, set the servers power management setting in the iLO to OS Con-
trol Mode. This power mode setting is only available on servers that include the HP Power
Regulator.

2.7 KVM Guest OS Support

For a list of the supported VM guests, see https://documentation.suse.com/sles/12-SP5/sin-

gle-html/SLES-virtualization/#virt-support-guests

10 Notes About Performance SUSE OpenStack Cloud 8

https://documentation.suse.com/sles/12-SP5/single-html/SLES-virtualization/#virt-support-guests
https://documentation.suse.com/sles/12-SP5/single-html/SLES-virtualization/#virt-support-guests

2.8 ESX Guest OS Support
For ESX, refer to the VMware Compatibility Guide (https://www.vmware.com/resources/compatibil-

ity/search.php?

deviceCategory=software&details=1&releases=273,274,338&productNames=15&page=1&dis-

play_interval=500&sortColumn=Partner&sortOrder=Asc&testConfig=16) . The information for
SUSE OpenStack Cloud is below the search form.

2.9 Ironic Guest OS Support
A Verified Guest OS has been tested by SUSE and appears to function properly as a bare metal
instance on SUSE OpenStack Cloud 8.

A Certified Guest OS has been officially tested by the operating system vendor, or by SUSE
under the vendor's authorized program, and will be supported by the operating system vendor
as a bare metal instance on SUSE OpenStack Cloud 8.

Ironic Guest Operating Sys-
tem

Verified Certified

SUSE Linux Enterprise Server
12 SP3

Yes Yes

11 ESX Guest OS Support SUSE OpenStack Cloud 8

https://www.vmware.com/resources/compatibility/search.php?deviceCategory=software&details=1&releases=273,274,338&productNames=15&page=1&display_interval=500&sortColumn=Partner&sortOrder=Asc&testConfig=16
https://www.vmware.com/resources/compatibility/search.php?deviceCategory=software&details=1&releases=273,274,338&productNames=15&page=1&display_interval=500&sortColumn=Partner&sortOrder=Asc&testConfig=16
https://www.vmware.com/resources/compatibility/search.php?deviceCategory=software&details=1&releases=273,274,338&productNames=15&page=1&display_interval=500&sortColumn=Partner&sortOrder=Asc&testConfig=16
https://www.vmware.com/resources/compatibility/search.php?deviceCategory=software&details=1&releases=273,274,338&productNames=15&page=1&display_interval=500&sortColumn=Partner&sortOrder=Asc&testConfig=16

3 Recommended Hardware Minimums for the Exam-
ple Configurations

3.1 Recommended Hardware Minimums for an Entry-
scale KVM
These recommended minimums are based on example configurations included with the instal-
lation models (see Chapter 9, Example Configurations). They are suitable only for demo environ-
ments. For production systems you will want to consider your capacity and performance re-
quirements when making decisions about your hardware.

Note
The disk requirements detailed below can be met with logical drives, logical volumes, or
external storage such as a 3PAR array.

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Dedicated
Cloud Life-
cycle Man-
ager (op-
tional)

Lifecy-
cle-manag-
er

1 300 GB 8 GB 1 x 10 Gbit/
s with PXE
Support

8 CPU (64-
bit) cores
total (Intel
x86_64)

Control
Plane

Controller 3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing

128 GB 2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

12 Recommended Hardware Minimums for an Entry-scale KVM SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

sys-
tem
drive

2 x
600
GB
(mini-
mum)
- Data
drive

Fast
disks
or
SSDs
are
rec-
om-
mend-
ed.

Compute Compute 1-3 2 x 600 GB
(minimum)

32 GB
(memory
must be
sized based
on the vir-
tual ma-
chine in-
stances
hosted on
the Com-
pute node)

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (In-
tel x86_64)
with hard-
ware virtu-
alization
support.
The CPU
cores must
be sized

13 Recommended Hardware Minimums for an Entry-scale KVM SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

based on
the VM in-
stances
hosted by
the Com-
pute node.

For more details about the supported network requirements, see Chapter 9, Example Configurations.

3.2 Recommended Hardware Minimums for an Entry-
scale ESX KVM Model

These recommended minimums are based on example configurations included with the instal-
lation models (see Chapter 9, Example Configurations). They are suitable only for demo environ-
ments. For production systems you will want to consider your capacity and performance re-
quirements when making decisions about your hardware.

SUSE OpenStack Cloud currently supports the following ESXi versions:

ESXi version 6.0

ESXi version 6.0 (Update 1b)

ESXi version 6.5

The following are the requirements for your vCenter server:

Software: vCenter (It is recommended to run the same server version as the ESXi hosts.)

License Requirements: vSphere Enterprise Plus license

14

Recommended Hardware Minimums for an Entry-scale ESX KVM Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Dedicated
Cloud Life-
cycle Man-
ager (op-
tional)

Lifecy-
cle-manag-
er

1 300 GB 8 GB 1 x 10 Gbit/
s with PXE
Support

8 CPU (64-
bit) cores
total (Intel
x86_64)

Control
Plane

Controller 3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing
sys-
tem
drive

2 x
600
GB
(mini-
mum)
- Data
drive

Fast
disks
or
SSDs
are
rec-

128 GB 2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

15

Recommended Hardware Minimums for an Entry-scale ESX KVM Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

om-
mend-
ed.

Compute
(ESXi hy-
pervisor)

2 2 x 1
TB (mini-
mum,
shared
across all
nodes)

128 GB
(minimum)

2 x 10 Gbit/
s +1 NIC
(for DC ac-
cess)

16 CPU
(64-bit)
cores to-
tal (Intel
x86_64)

Compute
(KVM hy-
pervisor)

kvm-
compute

1-3 2 x 600 GB
(minimum)

32 GB
(memory
must be
sized based
on the vir-
tual ma-
chine in-
stances
hosted on
the Com-
pute node)

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (In-
tel x86_64)
with hard-
ware virtu-
alization
support.
The CPU
cores must
be sized
based on
the VM in-
stances
hosted by
the Com-
pute node.

16

Recommended Hardware Minimums for an Entry-scale ESX KVM Model SUSE OpenStack

Cloud 8

3.3 Recommended Hardware Minimums for an Entry-
scale ESX, KVM with Dedicated Cluster for Metering,
Monitoring, and Logging
These recommended minimums are based on example configurations included with the instal-
lation models (see Chapter 9, Example Configurations). They are suitable only for demo environ-
ments. For production systems you will want to consider your capacity and performance re-
quirements when making decisions about your hardware.

SUSE OpenStack Cloud currently supports the following ESXi versions:

ESXi version 6.0

ESXi version 6.0 (Update 1b)

ESXi version 6.5

The following are the requirements for your vCenter server:

Software: vCenter (It is recommended to run the same server version as the ESXi hosts.)

License Requirements: vSphere Enterprise Plus license

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Dedicated
Cloud Life-
cycle Man-
ager (op-
tional)

Lifecy-
cle-manag-
er

1 300 GB 8 GB 1 x 10 Gbit/
s with PXE
Support

8 CPU (64-
bit) cores
total (Intel
x86_64)

Control
Plane

Core-API
Controller

2 1 x
600
GB
(mini-
mum)
- op-
erat-

128 GB 2 x 10 Gbit/
s with PXE
Support

24 CPU
(64-bit)
cores to-
tal (Intel
x86_64)

17

Recommended Hardware Minimums for an Entry-scale ESX, KVM with Dedicated Cluster for

Metering, Monitoring, and Logging SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

ing
sys-
tem
drive

2 x
300
GB
(mini-
mum)
-
Swift
drive

DBMQ
Cluster

3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing
sys-
tem
drive

1 x
300
GB
(mini-
mum)
-

96 GB 2 x 10 Gbit/
s with PXE
Support

24 CPU
(64-bit)
cores to-
tal (Intel
x86_64)

18

Recommended Hardware Minimums for an Entry-scale ESX, KVM with Dedicated Cluster for

Metering, Monitoring, and Logging SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Mari-
aDB
drive

Metering
Mon/Log
Cluster

3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing
sys-
tem
drive

128 GB 2 x 10
Gbit/s with
one PXE en-
abled port

24 CPU
(64-bit)
cores to-
tal (Intel
x86_64)

Compute
(ESXi hy-
pervisor)

2 (mini-
mum)

2 X 1
TB (mini-
mum,
shared
across all
nodes)

64 GB
(memory
must be
sized based
on the vir-
tual ma-
chine in-
stances
hosted on
the Com-
pute node)

2 x 10 Gbit/
s +1 NIC
(for Data
Center ac-
cess)

16 CPU
(64-bit)
cores to-
tal (Intel
x86_64)

Compute
(KVM hy-
pervisor)

kvm-
compute

1-3 2 X 600 GB
(minimum)

32 GB
(memory
must be
sized based
on the vir-

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (In-
tel x86_64)
with hard-

19

Recommended Hardware Minimums for an Entry-scale ESX, KVM with Dedicated Cluster for

Metering, Monitoring, and Logging SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

tual ma-
chine in-
stances
hosted on
the Com-
pute node)

ware virtu-
alization
support.
The CPU
cores must
be sized
based on
the VM in-
stances
hosted by
the Com-
pute node.

3.4 Recommended Hardware Minimums for an Ironic
Flat Network Model
When using the agent_ilo driver, you should ensure that the most recent iLO controller
rmware is installed. A recommended minimum for the iLO4 controller is version 2.30.

The recommended minimum hardware requirements are based on the Chapter 9, Example Con-

figurations included with the base installation and are suitable only for demo environments.
For production systems you will want to consider your capacity and performance requirements
when making decisions about your hardware.

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Dedicated
Cloud Life-
cycle Man-

Lifecy-
cle-manag-
er

1 300 GB 8 GB 1 x 10 Gbit/
s with PXE
Support

8 CPU (64-
bit) cores
total (Intel
x86_64)

20

Recommended Hardware Minimums for an Ironic Flat Network Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

ager (op-
tional)

Control
Plane

Controller 3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing
sys-
tem
drive

2 x
600
GB
(mini-
mum)
- Data
drive

Fast
disks
or
SSDs
are
rec-
om-
mend-
ed.

128 GB 2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

21

Recommended Hardware Minimums for an Ironic Flat Network Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Compute Compute 1 1 x 600 GB
(minimum)

16 GB 2 x 10
Gbit/s with
one PXE en-
abled port

16 CPU
(64-bit)
cores to-
tal (Intel
x86_64)

For more details about the supported network requirements, see Chapter 9, Example Configurations.

3.5 Recommended Hardware Minimums for an Entry-
scale Swift Model
These recommended minimums are based on the included Chapter 9, Example Configurations in-
cluded with the base installation and are suitable only for demo environments. For production
systems you will want to consider your capacity and performance requirements when making
decisions about your hardware.

The entry-scale-swift example runs the Swift proxy, account and container services on the
three controller servers. However, it is possible to extend the model to include the Swift proxy,
account and container services on dedicated servers (typically referred to as the Swift proxy
servers). If you are using this model, we have included the recommended Swift proxy servers
specs in the table below.

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Dedicated
Cloud Life-
cycle Man-
ager (op-
tional)

Lifecy-
cle-manag-
er

1 300 GB 8 GB 1 x 10 Gbit/
s with PXE
Support

8 CPU (64-
bit) cores
total (Intel
x86_64)

22

Recommended Hardware Minimums for an Entry-scale Swift Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Control
Plane

Controller 3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing
sys-
tem
drive

2 x
600
GB
(mini-
mum)
-
Swift
ac-
count/con-
tainer
data
drive

Fast
disks
or
SSDs
are
rec-

128 GB 2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

23

Recommended Hardware Minimums for an Entry-scale Swift Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

om-
mend-
ed.

Swift Ob-
ject

swobj 3 If using x3
replication
only:

1 x
600
GB
(mini-
mum,
see
con-
sider-
ations
at
bot-
tom
of
page
for
more
de-
tails)

If using
Erasure
Codes on-
ly or a mix
of x3 repli-

32 GB
(see consid-
erations at
bottom of
page for
more de-
tails)

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

24

Recommended Hardware Minimums for an Entry-scale Swift Model SUSE OpenStack

Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

cation and
Erasure
Codes:

6 x
600
GB
(mini-
mum,
see
con-
sider-
ations
at
bot-
tom
of
page
for
more
de-
tails)

Swift
Proxy, Ac-
count, and
Container

swpac 3 2 x 600
GB (mini-
mum, see
considera-
tions at bot-
tom of page
for more
details)

64 GB
(see consid-
erations at
bottom of
page for
more de-
tails)

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

25

Recommended Hardware Minimums for an Entry-scale Swift Model SUSE OpenStack

Cloud 8

Note
The disk speeds (RPM) chosen should be consistent within the same ring or storage policy.
It is best to not use disks with mixed disk speeds within the same Swift ring.

Considerations for your Swift object and proxy, account, container servers RAM and disk
capacity needs

Swift can have a diverse number of hardware configurations. For example, a Swift object server
may have just a few disks (minimum of 6 for erasure codes) or up to 70 and beyond. The
memory requirement needs to be increased as more disks are added. The general rule of thumb
for memory needed is 0.5 GB per TB of storage. For example, a system with 24 hard drives at
8TB each, giving a total capacity of 192TB, should use 96GB of RAM. However, this does not
work well for a system with a small number of small hard drives or a very large number of very
large drives. So, if after calculating the memory given this guideline, if the answer is less than
32GB then go with 32GB of memory minimum and if the answer is over 256GB then use 256GB
maximum, no need to use more memory than that.

When considering the capacity needs for the Swift proxy, account, and container (PAC) servers,
you should calculate 2% of the total raw storage size of your object servers to specify the storage
required for the PAC servers. So, for example, if you were using the example we provided earlier
and you had an object server setup of 24 hard drives with 8TB each for a total of 192TB and you
had a total of 6 object servers, that would give a raw total of 1152TB. So you would take 2% of
that, which is 23TB, and ensure that much storage capacity was available on your Swift proxy,
account, and container (PAC) server cluster. If you had a cluster of three Swift PAC servers, that
would be ~8TB each.

Another general rule of thumb is that if you are expecting to have more than a million objects
in a container then you should consider using SSDs on the Swift PAC servers rather than HDDs.

26

Recommended Hardware Minimums for an Entry-scale Swift Model SUSE OpenStack

Cloud 8

4 High Availability

This chapter covers High Availability concepts overview and cloud infrastructure.

4.1 High Availability Concepts Overview
A highly available (HA) cloud ensures that a minimum level of cloud resources are always
available on request, which results in uninterrupted operations for users.

In order to achieve this high availability of infrastructure and workloads, we define the scope of
HA to be limited to protecting these only against single points of failure (SPOF). Single points
of failure include:

Hardware SPOFs: Hardware failures can take the form of server failures, memory going
bad, power failures, hypervisors crashing, hard disks dying, NIC cards breaking, switch
ports failing, network cables loosening, and so forth.

Software SPOFs: Server processes can crash due to software defects, out-of-memory con-
ditions, operating system kernel panic, and so forth.

By design, SUSE OpenStack Cloud strives to create a system architecture resilient to SPOFs, and
does not attempt to automatically protect the system against multiple cascading levels of failures;
such cascading failures will result in an unpredictable state. The cloud operator is encouraged
to recover and restore any failed component as soon as the rst level of failure occurs.

4.2 Highly Available Cloud Infrastructure
The highly available cloud infrastructure consists of the following:

High Availability of Controllers

Availability Zones

Compute with KVM

Nova Availability Zones

Compute with ESX

Object Storage with Swift

27 High Availability Concepts Overview SUSE OpenStack Cloud 8

4.3 High Availability of Controllers

The SUSE OpenStack Cloud installer deploys highly available configurations of OpenStack cloud
services, resilient against single points of failure.

The high availability of the controller components comes in two main forms.

Many services are stateless and multiple instances are run across the control plane in ac-
tive-active mode. The API services (nova-api, cinder-api, etc.) are accessed through the
HA proxy load balancer whereas the internal services (nova-scheduler, cinder-scheduler,
etc.), are accessed through the message broker. These services use the database cluster to
persist any data.

Note
The HA proxy load balancer is also run in active-active mode and keepalived (used
for Virtual IP (VIP) Management) is run in active-active mode, with only one
keepalived instance holding the VIP at any one point in time.

The high availability of the message queue service and the database service is achieved by
running these in a clustered mode across the three nodes of the control plane: RabbitMQ
cluster with Mirrored Queues and MariaDB Galera cluster.

28 High Availability of Controllers SUSE OpenStack Cloud 8

FIGURE 4.1: HA ARCHITECTURE

The above diagram illustrates the HA architecture with the focus on VIP management and load
balancing. It only shows a subset of active-active API instances and does not show examples of
other services such as nova-scheduler, cinder-scheduler, etc.

In the above diagram, requests from an OpenStack client to the API services are sent to VIP and
port combination; for example, 192.0.2.26:8774 for a Nova request. The load balancer listens for
requests on that VIP and port. When it receives a request, it selects one of the controller nodes
configured for handling Nova requests, in this particular case, and then forwards the request to
the IP of the selected controller node on the same port.

The nova-api service, which is listening for requests on the IP of its host machine, then receives
the request and deals with it accordingly. The database service is also accessed through the load
balancer. RabbitMQ, on the other hand, is not currently accessed through VIP/HA proxy as the
clients are configured with the set of nodes in the RabbitMQ cluster and failover between cluster
nodes is automatically handled by the clients.

29 High Availability of Controllers SUSE OpenStack Cloud 8

4.4 High Availability Routing - Centralized
Incorporating High Availability into a system involves implementing redundancies in the com-
ponent that is being made highly available. In Centralized Virtual Router (CVR), that element is
the Layer 3 agent (L3 agent). By making L3 agent highly available, upon failure all HA routers
are migrated from the primary L3 agent to a secondary L3 agent. The implementation efficiency
of an HA subsystem is measured by the number of packets that are lost when the secondary L3
agent is made the master.

In SUSE OpenStack Cloud, the primary and secondary L3 agents run continuously, and failover
involves a rapid switchover of mastership to the secondary agent (IEFT RFC 5798). The failover
essentially involves a switchover from an already running master to an already running slave.
This substantially reduces the latency of the HA. The mechanism used by the master and the slave
to implement a failover is implemented using Linux’s pacemaker HA resource manager. This
CRM (Cluster resource manager) uses VRRP (Virtual Router Redundancy Protocol) to implement
the HA mechanism. VRRP is a industry standard protocol and defined in RFC 5798.

FIGURE 4.2: LAYER-3 HA

L3 HA uses of VRRP comes with several benefits.

The primary benefit is that the failover mechanism does not involve interprocess communica-
tion overhead. Such overhead would be in the order of 10s of seconds. By not using an RPC
mechanism to invoke the secondary agent to assume the primary agents role enables VRRP to
achieve failover within 1-2 seconds.

In VRRP, the primary and secondary routers are all active. As the routers are running, it is a
matter of making the router aware of its primary/master status. This switchover takes less than
2 seconds instead of 60+ seconds it would have taken to start a backup router and failover.

30 High Availability Routing - Centralized SUSE OpenStack Cloud 8

The failover depends upon a heartbeat link between the primary and secondary. That link in
SUSE OpenStack Cloud uses keepalived package of the pacemaker resource manager. The heart-
beats are sent at a 2 second intervals between the primary and secondary. As per the VRRP
protocol, if the secondary does not hear from the master after 3 intervals, it assumes the function
of the primary.

Further, all the routable IP addresses, that is the VIPs (virtual IPs) are assigned to the primary
agent.

4.5 High Availability Routing - Distributed

The OpenStack Distributed Virtual Router (DVR) function delivers HA through its distributed
architecture. The one centralized function remaining is source network address translation
(SNAT), where high availability is provided by DVR SNAT HA.

DVR SNAT HA is enabled on a per router basis and requires that two or more L3 agents capable
of providing SNAT services be running on the system. If a minimum number of L3 agents is
configured to 1 or lower, the neutron server will fail to start and a log message will be created.
The L3 Agents must be running on a control-plane node, L3 agents running on a compute node
do not provide SNAT services.

31 High Availability Routing - Distributed SUSE OpenStack Cloud 8

4.6 Availability Zones

FIGURE 4.3: AVAILABILITY ZONES

While planning your OpenStack deployment, you should decide on how to zone various types
of nodes - such as compute, block storage, and object storage. For example, you may decide to
place all servers in the same rack in the same zone. For larger deployments, you may plan more
elaborate redundancy schemes for redundant power, network ISP connection, and even physical
firewalling between zones (this aspect is outside the scope of this document).

SUSE OpenStack Cloud offers APIs, CLIs and Horizon UIs for the administrator to define and
user to consume, availability zones for Nova, Cinder and Swift services. This section outlines
the process to deploy specific types of nodes to specific physical servers, and makes a statement
of available support for these types of availability zones in the current release.

Note
By default, SUSE OpenStack Cloud is deployed in a single availability zone upon in-
stallation. Multiple availability zones can be configured by an administrator post-in-
stall, if required. Refer to OpenStack Docs:Scaling your environment (https://docs.open-

stack.org/openstack-ansible/pike/admin/maintenance-tasks/scale-environment.html)

32 Availability Zones SUSE OpenStack Cloud 8

https://docs.openstack.org/openstack-ansible/pike/admin/maintenance-tasks/scale-environment.html
https://docs.openstack.org/openstack-ansible/pike/admin/maintenance-tasks/scale-environment.html

4.7 Compute with KVM

You can deploy your KVM nova-compute nodes either during initial installation or by adding
compute nodes post initial installation.

While adding compute nodes post initial installation, you can specify the target physical servers
for deploying the compute nodes.

Learn more about adding compute nodes in Book “Operations Guide”, Chapter 13 “System Mainte-

nance”, Section 13.1 “Planned System Maintenance”, Section 13.1.3 “Planned Compute Maintenance”, Sec-

tion 13.1.3.4 “Adding Compute Node”.

4.8 Nova Availability Zones

Nova host aggregates and Nova availability zones can be used to segregate Nova compute nodes
across different failure zones.

4.9 Compute with ESX Hypervisor

Compute nodes deployed on ESX Hypervisor can be made highly available using the HA feature
of VMware ESX Clusters. For more information on VMware HA, please refer to your VMware
ESX documentation.

4.10 Cinder Availability Zones

Cinder availability zones are not supported for general consumption in the current release.

4.11 Object Storage with Swift

High availability in Swift is achieved at two levels.

Control Plane

33 Compute with KVM SUSE OpenStack Cloud 8

The Swift API is served by multiple Swift proxy nodes. Client requests are directed to all Swift
proxy nodes by the HA Proxy load balancer in round-robin fashion. The HA Proxy load balancer
regularly checks the node is responding, so that if it fails, traffic is directed to the remaining
nodes. The Swift service will continue to operate and respond to client requests as long as at
least one Swift proxy server is running.

If a Swift proxy node fails in the middle of a transaction, the transaction fails. However it is
standard practice for Swift clients to retry operations. This is transparent to applications that
use the python-swiftclient library.

The entry-scale example cloud models contain three Swift proxy nodes. However, it is possible
to add additional clusters with additional Swift proxy nodes to handle a larger workload or to
provide additional resiliency.

Data

Multiple replicas of all data is stored. This happens for account, container and object data. The
example cloud models recommend a replica count of three. However, you may change this to
a higher value if needed.

When Swift stores different replicas of the same item on disk, it ensures that as far as possible,
each replica is stored in a different zone, server or drive. This means that if a single server of
disk drives fails, there should be two copies of the item on other servers or disk drives.

If a disk drive is failed, Swift will continue to store three replicas. The replicas that would
normally be stored on the failed drive are “handed o” to another drive on the system. When
the failed drive is replaced, the data on that drive is reconstructed by the replication process.
The replication process re-creates the “missing” replicas by copying them to the drive using
one of the other remaining replicas. While this is happening, Swift can continue to store and
retrieve data.

4.12 Highly Available Cloud Applications and
Workloads

Projects writing applications to be deployed in the cloud must be aware of the cloud architecture
and potential points of failure and architect their applications accordingly for high availability.

Some guidelines for consideration:

1. Assume intermittent failures and plan for retries

34 Highly Available Cloud Applications and Workloads SUSE OpenStack Cloud 8

OpenStack Service APIs: invocations can fail - you should carefully evaluate the
response of each invocation, and retry in case of failures.

Compute: VMs can die - monitor and restart them

Network: Network calls can fail - retry should be successful

Storage: Storage connection can hiccup - retry should be successful

2. Build redundancy into your application tiers

Replicate VMs containing stateless services such as Web application tier or Web ser-
vice API tier and put them behind load balancers (you must implement your own
HA Proxy type load balancer in your application VMs until SUSE OpenStack Cloud
delivers the LBaaS service).

Boot the replicated VMs into different Nova availability zones.

If your VM stores state information on its local disk (Ephemeral Storage), and you
cannot afford to lose it, then boot the VM o a Cinder volume.

Take periodic snapshots of the VM which will back it up to Swift through Glance.

Your data on ephemeral may get corrupted (but not your backup data in Swift and
not your data on Cinder volumes).

Take regular snapshots of Cinder volumes and also back up Cinder volumes or your
data exports into Swift.

3. Instead of rolling your own highly available stateful services, use readily available SUSE
OpenStack Cloud platform services such as Designate, the DNS service.

4.13 What is not Highly Available?
Cloud Lifecycle Manager

The Cloud Lifecycle Manager in SUSE OpenStack Cloud is not highly available. The Cloud
Lifecycle Manager state/data are all maintained in a filesystem and are backed up by the
Freezer service. In case of Cloud Lifecycle Manager failure, the state/data can be recovered
from the backup.

Control Plane

35 What is not Highly Available? SUSE OpenStack Cloud 8

High availability (HA) is supported for the Network Services LBaaS and FWaaS. HA is not
supported for VPNaaS.

Nova-consoleauth

Nova-consoleauth is a singleton service, it can only run on a single node at a time. While
nova-consoleauth is not high availability, some work has been done to provide the ability
to switch nova-consoleauth to another controller node in case of a failure.

Cinder Volume and Backup Services

Cinder Volume and Backup Services are not high availability and started on one controller
node at a time. More information on Cinder Volume and Backup Services can be found in
Book “Operations Guide”, Chapter 7 “Managing Block Storage”, Section 7.1 “Managing Block Storage

using Cinder”, Section 7.1.3 “Managing Cinder Volume and Backup Services”.

Keystone Cron Jobs

The Keystone cron job is a singleton service, which can only run on a single node at a
time. A manual setup process for this job will be required in case of a node failure. More
information on enabling the cron job for Keystone on the other nodes can be found in
Book “Operations Guide”, Chapter 4 “Managing Identity”, Section 4.12 “Identity Service Notes and

Limitations”, Section 4.12.4 “System cron jobs need setup”.

4.14 More Information

OpenStack High-availability Guide (https://docs.openstack.org/ha-guide/)

12-Factor Apps (http://12factor.net/)

36 More Information SUSE OpenStack Cloud 8

https://docs.openstack.org/ha-guide/
http://12factor.net/

II Cloud Lifecycle Manager Overview

5 Input Model 38

6 Configuration Objects 53

7 Other Topics 109

8 Configuration Processor Information Files 126

9 Example Configurations 142

10 Modifying Example Configurations for Compute Nodes 165

11 Modifying Example Configurations for Object Storage using Swift 168

12 Alternative Configurations 198

5 Input Model

5.1 Introduction to the Input Model
This document describes how SUSE OpenStack Cloud input models can be used to define and
configure the cloud.

SUSE OpenStack Cloud ships with a set of example input models that can be used as starting
points for defining a custom cloud. An input model allows you, the cloud administrator, to
describe the cloud configuration in terms of:

Which OpenStack services run on which server nodes

How individual servers are configured in terms of disk and network adapters

The overall network configuration of the cloud

Network traffic separation

CIDR and VLAN assignments

The input model is consumed by the configuration processor which parses and validates the
input model and outputs the effective configuration that will be deployed to each server that
makes up your cloud.

The document is structured as follows:

Concepts - This explains the ideas behind the declarative model approach used in SUSE
OpenStack Cloud 8 and the core concepts used in describing that model

Input Model - This section provides a description of each of the configuration entities in
the input model

Core Examples - In this section we provide samples and definitions of some of the more
important configuration entities

5.2 Concepts
An SUSE OpenStack Cloud 8 cloud is defined by a declarative model that is described in a
series of configuration objects. These configuration objects are represented in YAML les which
together constitute the various example configurations provided as templates with this release.

38 Introduction to the Input Model SUSE OpenStack Cloud 8

These examples can be used nearly unchanged, with the exception of necessary changes to IP
addresses and other site and hardware-specific identifiers. Alternatively, the examples may be
customized to meet site requirements.

The following diagram shows the set of configuration objects and their relationships. All objects
have a name that you may set to be something meaningful for your context. In the examples
these names are provided in capital letters as a convention. These names have no significance to
SUSE OpenStack Cloud, rather it is the relationships between them that define the configuration.

The configuration processor reads and validates the input model described in the YAML les
discussed above, combines it with the service definitions provided by SUSE OpenStack Cloud
and any persisted state information about the current deployment to produce a set of Ansible
variables that can be used to deploy the cloud. It also produces a set of information les that
provide details about the configuration.

The relationship between the le systems on the SUSE OpenStack Cloud deployment server and
the configuration processor is shown in the following diagram. Below the line are the directories
that you, the cloud administrator, edit to declare the cloud configuration. Above the line are
the directories that are internal to the Cloud Lifecycle Manager such as Ansible playbooks and
variables.

39 Concepts SUSE OpenStack Cloud 8

The input model is read from the ~/openstack/my_cloud/definition directory. Although the
supplied examples use separate les for each type of object in the model, the names and layout
of the les have no significance to the configuration processor, it simply reads all of the .yml
les in this directory. Cloud administrators are therefore free to use whatever structure is best
for their context. For example, you may decide to maintain separate les or sub-directories for
each physical rack of servers.

As mentioned, the examples use the conventional upper casing for object names, but these strings
are used only to define the relationship between objects. They have no specific significance to
the configuration processor.

5.2.1 Cloud

The Cloud definition includes a few top-level configuration values such as the name of the cloud,
the host prefix, details of external services (NTP, DNS, SMTP) and the firewall settings.

The location of the cloud configuration le also tells the configuration processor where to look
for the les that define all of the other objects in the input model.

40 Cloud SUSE OpenStack Cloud 8

5.2.2 Control Planes

A control-plane runs one or more services distributed across clusters and resource groups.

A control-plane uses servers with a particular server-role.

A control-plane provides the operating environment for a set of services; normally consisting of a
set of shared services (MariaDB, RabbitMQ, HA Proxy, Apache, etc.), OpenStack control services
(API, schedulers, etc.) and the resources they are managing (compute, storage, etc.).

A simple cloud may have a single control-plane which runs all of the services. A more complex
cloud may have multiple control-planes to allow for more than one instance of some services.
Services that need to consume (use) another service (such as Neutron consuming MariaDB,
Nova consuming Neutron) always use the service within the same control-plane. In addition a
control-plane can describe which services can be consumed from other control-planes. It is one
of the functions of the configuration processor to resolve these relationships and make sure that
each consumer/service is provided with the configuration details to connect to the appropriate
provider/service.

Each control-plane is structured as clusters and resources. The clusters are typically used to host
the OpenStack services that manage the cloud such as API servers, database servers, Neutron
agents, and Swift proxies, while the resources are used to host the scale-out OpenStack services
such as Nova-Compute or Swift-Object services. This is a representation convenience rather than
a strict rule, for example it is possible to run the Swift-Object service in the management cluster
in a smaller-scale cloud that is not designed for scale-out object serving.

A cluster can contain one or more servers and you can have one or more clusters depending on
the capacity and scalability needs of the cloud that you are building. Spreading services across
multiple clusters provides greater scalability, but it requires a greater number of physical servers.
A common pattern for a large cloud is to run high data volume services such as monitoring and
logging in a separate cluster. A cloud with a high object storage requirement will typically also
run the Swift service in its own cluster.

Clusters in this context are a mechanism for grouping service components in physical servers,
but all instances of a component in a control-plane work collectively. For example, if HA Proxy
is configured to run on multiple clusters within the same control-plane then all of those instances
will work as a single instance of the ha-proxy service.

Both clusters and resources define the type (via a list of server-roles) and number of servers (min
and max or count) they require.

The control-plane can also define a list of failure-zones (server-groups) from which to allocate
servers.

41 Control Planes SUSE OpenStack Cloud 8

5.2.2.1 Control Planes and Regions

A region in OpenStack terms is a collection of URLs that together provide a consistent set of
services (Nova, Neutron, Swift, etc). Regions are represented in the Keystone identity service
catalog. In SUSE OpenStack Cloud, multiple regions are not supported. Only Region0 is valid.

In a simple single control-plane cloud, there is no need for a separate region definition and the
control-plane itself can define the region name.

5.2.3 Services

A control-plane runs one or more services.

A service is the collection of service-components that provide a particular feature; for example,
Nova provides the compute service and consists of the following service-components: nova-api,
nova-scheduler, nova-conductor, nova-novncproxy, and nova-compute. Some services, like the
authentication/identity service Keystone, only consist of a single service-component.

To define your cloud, all you need to know about a service are the names of the service-compo-
nents. The details of the services themselves and how they interact with each other is captured
in service definition les provided by SUSE OpenStack Cloud.

When specifying your SUSE OpenStack Cloud cloud you have to decide where components will
run and how they connect to the networks. For example, should they all run in one control-plane
sharing common services or be distributed across multiple control-planes to provide separate
instances of some services? The SUSE OpenStack Cloud supplied examples provide solutions for
some typical configurations.

Where services run is defined in the control-plane. How they connect to networks is defined in
the network-groups.

5.2.4 Server Roles

Clusters and resources use servers with a particular set of server-roles.

You are going to be running the services on physical servers, and you are going to need a way
to specify which type of servers you want to use where. This is defined via the server-role. Each
server-role describes how to configure the physical aspects of a server to fulfill the needs of
a particular role. You will generally use a different role whenever the servers are physically

42 Services SUSE OpenStack Cloud 8

different (have different disks or network interfaces) or if you want to use some specific servers
in a particular role (for example to choose which of a set of identical servers are to be used in
the control plane).

Each server-role has a relationship to four other entities:

The disk-model specifies how to configure and use a server's local storage and it specifies
disk sizing information for virtual machine servers. The disk model is described in the
next section.

The interface-model describes how a server's network interfaces are to be configured and
used. This is covered in more details in the networking section.

An optional memory-model specifies how to configure and use huge pages. The memo-
ry-model specifies memory sizing information for virtual machine servers.

An optional cpu-model specifies how the CPUs will be used by Nova and by DPDK. The
cpu-model specifies CPU sizing information for virtual machine servers.

5.2.5 Disk Model

Each physical disk device is associated with a device-group or a volume-group.

Device-groups are consumed by services.

Volume-groups are divided into logical-volumes.

Logical-volumes are mounted as le systems or consumed by services.

Disk-models define how local storage is to be configured and presented to services. Disk-models
are identified by a name, which you will specify. The SUSE OpenStack Cloud examples provide
some typical configurations. As this is an area that varies with respect to the services that are
hosted on a server and the number of disks available, it is impossible to cover all possible
permutations you may need to express via modifications to the examples.

Within a disk-model, disk devices are assigned to either a device-group or a volume-group.

43 Disk Model SUSE OpenStack Cloud 8

A device-group is a set of one or more disks that are to be consumed directly by a service. For
example, a set of disks to be used by Swift. The device-group identifies the list of disk devices,
the service, and a few service-specific attributes that tell the service about the intended use (for
example, in the case of Swift this is the ring names). When a device is assigned to a device-group,
the associated service is responsible for the management of the disks. This management includes
the creation and mounting of le systems. (Swift can provide additional data integrity when it
has full control over the le systems and mount points.)

A volume-group is used to present disk devices in a LVM volume group. It also contains details of
the logical volumes to be created including the le system type and mount point. Logical volume
sizes are expressed as a percentage of the total capacity of the volume group. A logical-volume
can also be consumed by a service in the same way as a device-group. This allows services to
manage their own devices on configurations that have limited numbers of disk drives.

Disk models also provide disk sizing information for virtual machine servers.

5.2.6 Memory Model

Memory models define how the memory of a server should be configured to meet the needs of a
particular role. It allows a number of HugePages to be defined at both the server and numa-node
level.

44 Memory Model SUSE OpenStack Cloud 8

Memory models also provide memory sizing information for virtual machine servers.

Memory models are optional - it is valid to have a server role without a memory model.

5.2.7 CPU Model

CPU models define how CPUs of a server will be used. The model allows CPUs to be assigned for
use by components such as Nova (for VMs) and Open vSwitch (for DPDK). It also allows those
CPUs to be isolated from the general kernel SMP balancing and scheduling algorithms.

CPU models also provide CPU sizing information for virtual machine servers.

CPU models are optional - it is valid to have a server role without a cpu model.

5.2.8 Servers

Servers have a server-role which determines how they will be used in the cloud.

Servers (in the input model) enumerate the resources available for your cloud. In addition, in
this definition le you can either provide SUSE OpenStack Cloud with all of the details it needs
to PXE boot and install an operating system onto the server, or, if you prefer to use your own
operating system installation tooling you can simply provide the details needed to be able to
SSH into the servers and start the deployment.

The address specified for the server will be the one used by SUSE OpenStack Cloud for lifecycle
management and must be part of a network which is in the input model. If you are using SUSE
OpenStack Cloud to install the operating system this network must be an untagged VLAN. The
rst server must be installed manually from the SUSE OpenStack Cloud ISO and this server must
be included in the input model as well.

In addition to the network details used to install or connect to the server, each server defines
what its server-role is and to which server-group it belongs.

5.2.9 Server Groups

A server is associated with a server-group.

A control-plane can use server-groups as failure zones for server allocation.

A server-group may be associated with a list of networks.

A server-group can contain other server-groups.

45 CPU Model SUSE OpenStack Cloud 8

The practice of locating physical servers in a number of racks or enclosures in a data center is
common. Such racks generally provide a degree of physical isolation that allows for separate
power and/or network connectivity.

In the SUSE OpenStack Cloud model we support this configuration by allowing you to define a
hierarchy of server-groups. Each server is associated with one server-group, normally at the bottom
of the hierarchy.

Server-groups are an optional part of the input model - if you do not define any, then all servers
and networks will be allocated as if they are part of the same server-group.

5.2.9.1 Server Groups and Failure Zones

A control-plane defines a list of server-groups as the failure zones from which it wants to use
servers. All servers in a server-group listed as a failure zone in the control-plane and any serv-
er-groups they contain are considered part of that failure zone for allocation purposes. The fol-
lowing example shows how three levels of server-groups can be used to model a failure zone
consisting of multiple racks, each of which in turn contains a number of servers.

46 Server Groups SUSE OpenStack Cloud 8

When allocating servers, the configuration processor will traverse down the hierarchy of serv-
er-groups listed as failure zones until it can nd an available server with the required server-role.
If the allocation policy is defined to be strict, it will allocate servers equally across each of the
failure zones. A cluster or resource-group can also independently specify the failure zones it wants
to use if needed.

5.2.9.2 Server Groups and Networks

Each L3 network in a cloud must be associated with all or some of the servers, typically following
a physical pattern (such as having separate networks for each rack or set of racks). This is also
represented in the SUSE OpenStack Cloud model via server-groups, each group lists zero or more
networks to which servers associated with server-groups at or below this point in the hierarchy
are connected.

When the configuration processor needs to resolve the specific network a server should be con-
figured to use, it traverses up the hierarchy of server-groups, starting with the group the server
is directly associated with, until it nds a server-group that lists a network in the required net-
work group.

The level in the server-group hierarchy at which a network is associated will depend on the
span of connectivity it must provide. In the above example there might be networks in some
network-groups which are per rack (that is Rack 1 and Rack 2 list different networks from the same
network-group) and networks in a different network-group that span failure zones (the network
used to provide floating IP addresses to virtual machines for example).

5.2.10 Networking

In addition to the mapping of services to specific clusters and resources we must also be able to
define how the services connect to one or more networks.

In a simple cloud there may be a single L3 network but more typically there are functional and
physical layers of network separation that need to be expressed.

Functional network separation provides different networks for different types of traffic; for ex-
ample, it is common practice in even small clouds to separate the External APIs that users will
use to access the cloud and the external IP addresses that users will use to access their virtual
machines. In more complex clouds it is common to also separate out virtual networking between
virtual machines, block storage traffic, and volume traffic onto their own sets of networks. In
the input model, this level of separation is represented by network-groups.

47 Networking SUSE OpenStack Cloud 8

Physical separation is required when there are separate L3 network segments providing the same
type of traffic; for example, where each rack uses a different subnet. This level of separation is
represented in the input model by the networks within each network-group.

5.2.10.1 Network Groups

Service endpoints attach to networks in a specific network-group.

Network-groups can define routes to other networks.

Network-groups encapsulate the configuration for services via network-tags

A network-group defines the traffic separation model and all of the properties that are common
to the set of L3 networks that carry each type of traffic. They define where services are attached
to the network model and the routing within that model.

In terms of service connectivity, all that has to be captured in the network-groups definition are
the same service-component names that are used when defining control-planes. SUSE OpenStack
Cloud also allows a default attachment to be used to specify "all service-components" that are
not explicitly connected to another network-group. So, for example, to isolate Swift traffic, the
swift-account, swift-container, and swift-object service components are attached to an "Object"
network-group and all other services are connected to "MANAGEMENT" network-group via the
default relationship.

Note
The name of the "MANAGEMENT" network-group cannot be changed. It must be upper
case. Every SUSE OpenStack Cloud requires this network group in order to be valid.

The details of how each service connects, such as what port it uses, if it should be behind a load
balancer, if and how it should be registered in Keystone, and so forth, are defined in the service
definition les provided by SUSE OpenStack Cloud.

In any configuration with multiple networks, controlling the routing is a major consideration.
In SUSE OpenStack Cloud, routing is controlled at the network-group level. First, all networks
are configured to provide the route to any other networks in the same network-group. In addi-
tion, a network-group may be configured to provide the route any other networks in the same
network-group; for example, if the internal APIs are in a dedicated network-group (a common
configuration in a complex network because a network group with load balancers cannot be seg-

48 Networking SUSE OpenStack Cloud 8

mented) then other network-groups may need to include a route to the internal API network-group
so that services can access the internal API endpoints. Routes may also be required to define
how to access an external storage network or to define a general default route.

As part of the SUSE OpenStack Cloud deployment, networks are configured to act as the default
route for all traffic that was received via that network (so that response packets always return
via the network the request came from).

Note that SUSE OpenStack Cloud will configure the routing rules on the servers it deploys and
will validate that the routes between services exist in the model, but ensuring that gateways can
provide the required routes is the responsibility of your network configuration. The configura-
tion processor provides information about the routes it is expecting to be configured.

For a detailed description of how the configuration processor validates routes, refer to Section 7.6,

“Network Route Validation”.

5.2.10.1.1 Load Balancers

Load-balancers provide a specific type of routing and are defined as a relationship between the
virtual IP address (VIP) on a network in one network group and a set of service endpoints (which
may be on networks in the same or a different network-group).

As each load-balancer is defined providing a virtual IP on a network-group, it follows that those
network-groups can each only have one network associated to them.

The load-balancer definition includes a list of service-components and endpoint roles it will pro-
vide a virtual IP for. This model allows service-specific load-balancers to be defined on different
network-groups. A "default" value is used to express "all service-components" which require a
virtual IP address and are not explicitly configured in another load-balancer configuration. The
details of how the load-balancer should be configured for each service, such as which ports to
use, how to check for service liveness, etc., are provided in the SUSE OpenStack Cloud supplied
service definition les.

Where there are multiple instances of a service (for example, in a cloud with multiple con-
trol-planes), each control-plane needs its own set of virtual IP address and different values for
some properties such as the external name and security certificate. To accommodate this in SUSE
OpenStack Cloud 8, load-balancers are defined as part of the control-plane, with the network
groups defining just which load-balancers are attached to them.

Load balancers are always implemented by an ha-proxy service in the same control-plane as
the services.

49 Networking SUSE OpenStack Cloud 8

5.2.10.1.2 Separation of Public, Admin, and Internal Endpoints

The list of endpoint roles for a load-balancer make it possible to configure separate load-balancers
for public and internal access to services, and the configuration processor uses this information
to both ensure the correct registrations in Keystone and to make sure the internal traffic is
routed to the correct endpoint. SUSE OpenStack Cloud services are configured to only connect
to other services via internal virtual IP addresses and endpoints, allowing the name and security
certificate of public endpoints to be controlled by the customer and set to values that may not
be resolvable/accessible from the servers making up the cloud.

Note that each load-balancer defined in the input model will be allocated a separate virtual IP
address even when the load-balancers are part of the same network-group. Because of the need to
be able to separate both public and internal access, SUSE OpenStack Cloud will not allow a single
load-balancer to provide both public and internal access. Load-balancers in this context are logical
entities (sets of rules to transfer traffic from a virtual IP address to one or more endpoints).

The following diagram shows a possible configuration in which the hostname associated with
the public URL has been configured to resolve to a firewall controlling external access to the
cloud. Within the cloud, SUSE OpenStack Cloud services are configured to use the internal URL
to access a separate virtual IP address.

50 Networking SUSE OpenStack Cloud 8

5.2.10.1.3 Network Tags

Network tags are defined by some SUSE OpenStack Cloud service-components and are used to
convey information between the network model and the service, allowing the dependent aspects
of the service to be automatically configured.

Network tags also convey requirements a service may have for aspects of the server network
configuration, for example, that a bridge is required on the corresponding network device on a
server where that service-component is installed.

See Section 6.13.2, “Network Tags” for more information on specific tags and their usage.

5.2.10.2 Networks

A network is part of a network-group.

Networks are fairly simple definitions. Each network defines the details of its VLAN, optional
address details (CIDR, start and end address, gateway address), and which network-group it is
a member of.

5.2.10.3 Interface Model

A server-role identifies an interface-model that describes how its network interfaces are to be configured
and used.

Network groups are mapped onto specific network interfaces via an interface-model, which de-
scribes the network devices that need to be created (bonds, ovs-bridges, etc.) and their proper-
ties.

An interface-model acts like a template; it can define how some or all of the network-groups are to
be mapped for a particular combination of physical NICs. However, it is the service-components
on each server that determine which network-groups are required and hence which interfaces and
networks will be configured. This means that interface-models can be shared between different
server-roles. For example, an API role and a database role may share an interface model even
though they may have different disk models and they will require a different subset of the
network-groups.

Within an interface-model, physical ports are identified by a device name, which in turn is re-
solved to a physical port on a server basis via a nic-mapping. To allow different physical servers
to share an interface-model, the nic-mapping is defined as a property of each server.

51 Networking SUSE OpenStack Cloud 8

The interface-model can also used to describe how network devices are to be configured for
use with DPDK, SR-IOV, and PCI Passthrough.

5.2.10.4 NIC Mapping

When a server has more than a single physical network port, a nic-mapping is required to unam-
biguously identify each port. Standard Linux mapping of ports to interface names at the time of
initial discovery (for example, eth0 , eth1 , eth2 , ...) is not uniformly consistent from server
to server, so a mapping of PCI bus address to interface name is instead.

NIC mappings are also used to specify the device type for interfaces that are to be used for SR-
IOV or PCI Passthrough. Each SUSE OpenStack Cloud release includes the data for the supported
device types.

5.2.10.5 Firewall Configuration

The configuration processor uses the details it has about which networks and ports service-com-
ponents use to create a set of firewall rules for each server. The model allows additional user-
defined rules on a per network-group basis.

5.2.11 Configuration Data

Configuration Data is used to provide settings which have to be applied in a specific context, or
where the data needs to be verified against or merged with other values in the input model.

For example, when defining a Neutron provider network to be used by Octavia, the network
needs to be included in the routing configuration generated by the Configuration Processor.

52 Configuration Data SUSE OpenStack Cloud 8

6 Configuration Objects

6.1 Cloud Configuration

The top-level cloud configuration le, cloudConfig.yml , defines some global values for SUSE
OpenStack Cloud, as described in the table below.

The snippet below shows the start of the control plane definition le.

 product:
 version: 2

 cloud:
 name: entry-scale-kvm

 hostname-data:
 host-prefix: ardana
 member-prefix: -m

 ntp-servers:
 - "ntp-server1"

 # dns resolving configuration for your site
 dns-settings:
 nameservers:
 - name-server1

 firewall-settings:
 enable: true
 # log dropped packets
 logging: true

 audit-settings:
 audit-dir: /var/audit
 default: disabled
 enabled-services:
 - keystone

Key Value Description

name An administrator-defined name for the cloud

53 Cloud Configuration SUSE OpenStack Cloud 8

Key Value Description

hostname-data
(optional)

Provides control over some parts of the generated names (see)

Consists of two values:

host-prefix - default is to use the cloud name (above)

member-prefix - default is "-m"

ntp-servers (op-
tional)

A list of external NTP servers your cloud has access to. If specified by
name then the names need to be resolvable via the external DNS name-
servers you specify in the next section. All servers running the "ntp-serv-
er" component will be configured to use these external NTP servers.

dns-settings (op-
tional)

DNS configuration data that will be applied to all servers. See example
configuration for a full list of values.

smtp-settings
(optional)

SMTP client configuration data that will be applied to all servers. See ex-
ample configurations for a full list of values.

firewall-settings
(optional)

Used to enable/disable the firewall feature and to enable/disable logging
of dropped packets.

The default is to have the firewall enabled.

audit-settings
(optional)

Used to enable/disable the production of audit data from services.

The default is to have audit disabled for all services.

6.2 Control Plane
The snippet below shows the start of the control plane definition le.

 product:
 version: 2

 control-planes:
 - name: control-plane-1
 control-plane-prefix: cp1
 region-name: region0
 failure-zones:

54 Control Plane SUSE OpenStack Cloud 8

 - AZ1
 - AZ2
 - AZ3
 configuration-data:
 - NEUTRON-CONFIG-CP1
 - OCTAVIA-CONFIG-CP1
 common-service-components:
 - logging-producer
 - monasca-agent
 - freezer-agent
 - stunnel
 - lifecycle-manager-target
 clusters:
 - name: cluster1
 cluster-prefix: c1
 server-role: CONTROLLER-ROLE
 member-count: 3
 allocation-policy: strict
 service-components:
 - lifecycle-manager
 - ntp-server
 - swift-ring-builder
 - mysql
 - ip-cluster
 ...

 resources:
 - name: compute
 resource-prefix: comp
 server-role: COMPUTE-ROLE
 allocation-policy: any
 min-count: 0
 service-components:
 - ntp-client
 - nova-compute
 - nova-compute-kvm
 - neutron-l3-agent
 ...

Key Value Description

name This name identifies the control plane. This
value is used to persist server allocations
Section 7.3, “Persisted Data” and cannot be
changed once servers have been allocated.

55 Control Plane SUSE OpenStack Cloud 8

Key Value Description

control-plane-prefix (optional) The control-plane-prefix is used as part of
the hostname (see Section 7.2, “Name Gener-

ation”). If not specified, the control plane
name is used.

region-name This name identifies the Keystone region
within which services in the control plane
will be registered. In SUSE OpenStack Cloud,
multiple regions are not supported. Only Re-
gion0 is valid.

For clouds consisting of multiple control
planes, this attribute should be omitted and
the regions object should be used to set the
region name (Region0).

uses (optional) Identifies the services this control will con-
sume from other control planes (see Sec-

tion 6.2.3, “Multiple Control Planes”).

load-balancers (optional) A list of load balancer definitions for this
control plane (see Section 6.2.4, “Load Balancer

Definitions in Control Planes”).

For a multi control-plane cloud load bal-
ancers must be defined in each control-plane.
For a single control-plane cloud they may be
defined either in the control plane or as part
of a network group.

common-service-components (optional) This lists a set of service components that
run on all servers in the control plane (clus-
ters and resource pools).

failure-zones (optional) A list of server-group names that servers for
this control plane will be allocated from. If
no failure-zones are specified, only servers

56 Control Plane SUSE OpenStack Cloud 8

Key Value Description

not associated with a server-group will be
used. (See Section 5.2.9.1, “Server Groups

and Failure Zones” for a description of serv-
er-groups as failure zones.)

configuration-data (optional) A list of configuration data settings to be
used for services in this control plane (see
Section 5.2.11, “Configuration Data”).

clusters A list of clusters for this control plane (see
Section 6.2.1, “ Clusters”).

resources A list of resource groups for this control
plane (see Section 6.2.2, “Resources”).

6.2.1 Clusters

Key Value Description

name Cluster and resource names must be unique
within a control plane. This value is used
to persist server allocations (see Section 7.3,

“Persisted Data”) and cannot be changed once
servers have been allocated.

cluster-prefix (optional) The cluster prefix is used in the hostname
(see Section 7.2, “Name Generation”). If not sup-
plied then the cluster name is used.

server-role This can either be a string (for a single role)
or a list of roles. Only servers matching one
of the specified server-roles will be allocated
to this cluster. (see Section 5.2.4, “Server Roles”

for a description of server roles)

57 Clusters SUSE OpenStack Cloud 8

Key Value Description

service-components The list of service-components to be deployed
on the servers allocated for the cluster. (The
common-service-components for the control
plane are also deployed.)

member-count

min-count

max-count

(all optional)

Defines the number of servers to add to the
cluster.

The number of servers that can be supported
in a cluster depends on the services it is run-
ning. For example MariaDB and RabbitMQ
can only be deployed on clusters on 1 (non-
HA) or 3 (HA) servers. Other services may
support different sizes of cluster.

If min-count is specified, then at least that
number of servers will be allocated to the
cluster. If min-count is not specified it de-
faults to a value of 1.

If max-count is specified, then the cluster
will be limited to that number of servers. If
max-count is not specified then all servers
matching the required role and failure-zones
will be allocated to the cluster.

Specifying member-count is equivalent to
specifying min-count and max-count with the
same value.

failure-zones (optional) A list of server-groups that servers will be al-
located from. If specified, it overrides the list
of values specified for the control-plane. If
not specified, the control-plane value is used.
(see Section 5.2.9.1, “Server Groups and Failure

Zones” for a description of server groups as
failure zones).

58 Clusters SUSE OpenStack Cloud 8

Key Value Description

allocation-policy (optional) Defines how failure zones will be used when
allocating servers.

strict: Server allocations will be distributed
across all specified failure zones. (if max-
count is not a whole number, an exact multi-
ple of the number of zones, then some zones
may provide one more server than other
zones)

any: Server allocations will be made from
any combination of failure zones.

The default allocation-policy for a cluster is
strict.

configuration-data (optional) A list of configuration-data settings that will
be applied to the services in this cluster. The
values for each service will be combined
with any values defined as part of the con-
figuration-data list for the control-plane. If a
value is specified by settings in both lists, the
value defined here takes precedence.

6.2.2 Resources

Key Value Description

name The name of this group of resources. Clus-
ter names and resource-node names must be
unique within a control plane. Additionally,
clusters and resources cannot share names
within a control-plane.

59 Resources SUSE OpenStack Cloud 8

Key Value Description

This value is used to persist server alloca-
tions (see Section 7.3, “Persisted Data”) and
cannot be changed once servers have been
allocated.

resource-prefix The resource-prefix is used in the name gen-
eration. (see Section 7.2, “Name Generation”)

server-role This can either be a string (for a single role)
or a list of roles. Only servers matching one
of the specified server-roles will be allocated to
this resource group. (see Section 5.2.4, “Server

Roles” for a description of server roles).

service-components The list of service-components to be deployed
on the servers in this resource group. (The
common-service-components for the control
plane are also deployed.)

member-count

min-count

max-count

(all optional)

Defines the number of servers to add to the
cluster.

The number of servers that can be supported
in a cluster depends on the services it is run-
ning. For example MariaDB and RabbitMQ
can only be deployed on clusters on 1 (non-
HA) or 3 (HA) servers. Other services may
support different sizes of cluster.

If min-count is specified, then at least that
number of servers will be allocated to the
cluster. If min-count is not specified it de-
faults to a value of 1.

60 Resources SUSE OpenStack Cloud 8

Key Value Description

If max-count is specified, then the cluster
will be limited to that number of servers. If
max-count is not specified then all servers
matching the required role and failure-zones
will be allocated to the cluster.

Specifying member-count is equivalent to
specifying min-count and max-count with the
same value.

failure-zones (optional) A list of server-groups that servers will be al-
located from. If specified, it overrides the list
of values specified for the control-plane. If not
specified, the control-plane value is used. (see
Section 5.2.9.1, “Server Groups and Failure Zones”

for a description of server groups as failure
zones).

allocation-policy (optional) Defines how failure zones will be used when
allocating servers.

strict: Server allocations will be distributed
across all specified failure zones. (if max-
count is not a whole number, an exact multi-
ple of the number of zones, then some zones
may provide one more server than other
zones)

any: Server allocations will be made from
any combination of failure zones.

The default allocation-policy for resources is
any.

configuration-data (optional) A list of configuration-data settings that will
be applied to the services in this cluster. The
values for each service will be combined with
any values defined as part of the configura-
tion-data list for the control-plane. If a value

61 Resources SUSE OpenStack Cloud 8

Key Value Description

is specified by settings in both lists, the value
defined here takes precedence.

6.2.3 Multiple Control Planes

The dependencies between service components (for example, Nova needs MariaDB and Key-
stone API) is defined as part of the service definitions provide by SUSE OpenStack Cloud, the
control-planes define how those dependencies will be met. For clouds consisting of multiple
control-planes, the relationship between services in different control planes is defined by a us-
es attribute in its control-plane object. Services will always use other services in the same
control-plane before looking to see if the required service can be provided from another con-
trol-plane. For example, a service component in control-plane cp-2 (for example, nova-api)
might use service components from control-plane cp-shared (for example, keystone-api).

control-planes:
 - name: cp-2
 uses:
 - from: cp-shared
 service-components:
 - any

Key Value Description

from The name of the control-plane providing ser-
vices which may be consumed by this con-
trol-plane.

service-components A list of service components from the specified
control-plane which may be consumed by ser-
vices in this control-plane. The reserved key-
word any indicates that any service compo-
nent from the specified control-plane may be
consumed by services in this control-plane.

62 Multiple Control Planes SUSE OpenStack Cloud 8

6.2.4 Load Balancer Definitions in Control Planes

Starting in SUSE OpenStack Cloud 8, a load-balancer may be defined within a control-plane
object, and referenced by name from a network-groups object. The following example shows
load balancer extlb defined in control-plane cp1 and referenced from the EXTERNAL-API
network group. See section Load balancers for a complete description of load balance attributes.

network-groups:
 - name: EXTERNAL-API
 load-balancers:
 - extlb

 control-planes:
 - name: cp1
 load-balancers:
 - provider: ip-cluster
 name: extlb
 external-name:
 tls-components:
 - default
 roles:
 - public
 cert-file: cp1-extlb-cert

6.3 Load Balancers
Load balancers may be defined as part of a network-group object, or as part of a control-plane
object. When a load-balancer is defined in a control-plane, it must be referenced by name only
from the associated network-group object.

For clouds consisting of multiple control planes, load balancers must be defined as part of a
control-plane object. This allows different load balancer configurations for each control plane.

In either case, a load-balancer definition has the following attributes:

load-balancers:
 - provider: ip-cluster
 name: extlb
 external-name:

 tls-components:
 - default
 roles:
 - public

63 Load Balancer Definitions in Control Planes SUSE OpenStack Cloud 8

 cert-file: cp1-extlb-cert

Key Value Description

name An administrator defined name for the load
balancer. This name is used to make the asso-
ciation from a network-group.

provider The service component that implements the
load balancer. Currently only ip-cluster

(ha-proxy) is supported. Future releases will
provide support for external load balancers.

roles The list of endpoint roles that this load bal-
ancer provides (see below). Valid roles are
public , internal , and admin . To ensure
separation of concerns, the role public can-
not be combined with any other role. See Load
Balancers for an example of how the role pro-
vides endpoint separation.

components (optional) The list of service-components for which the
load balancer provides a non-encrypted virtu-
al IP address for.

tls-components (optional) The list of service-components for which the
load balancer provides TLS-terminated virtual
IP addresses for.

external-name (optional) The name to be registered in Keystone for the
publicURL. If not specified, the virtual IP ad-
dress will be registered. Note that this val-
ue cannot be changed after the initial deploy-
ment.

cert-le (optional) The name of the certificate le to be used for
tls endpoints. If not specified, a le name will
be constructed using the format CP-NAME-
LB-NAME-cert , where CP-NAME is the con-

64 Load Balancers SUSE OpenStack Cloud 8

Key Value Description

trol-plane name and LB-NAME is the load-bal-
ancer name.

6.4 Regions
The regions configuration object is used to define how a set of services from one or more con-
trol-planes are mapped into Openstack regions (entries within the Keystone catalog). In SUSE
OpenStack Cloud, multiple regions are not supported. Only Region0 is valid.

Within each region a given service is provided by one control plane, but the set of services in
the region may be provided by multiple control planes.

Key Value Description

name The name of the region in the Keystone service
catalog.

includes A list of services to include in this region, bro-
ken down by the control planes providing the
services.

Key Value Description

control-plane A control-plane name.

services A list of service names. This list specifies the
services from this control-plane to be includ-
ed in this region. The reserved keyword all
may be used when all services from the con-
trol-plane are to be included.

6.5 Servers
The servers configuration object is used to list the available servers for deploying the cloud.

Optionally, it can be used as an input le to the operating system installation process, in which
case some additional elds (identified below) will be necessary.

65 Regions SUSE OpenStack Cloud 8

 product:
 version: 2

 baremetal:
 subnet: 192.168.10.0
 netmask: 255.255.255.0

 servers:
 - id: controller1
 ip-addr: 192.168.10.3
 role: CONTROLLER-ROLE
 server-group: RACK1
 nic-mapping: HP-DL360-4PORT
 mac-addr: b2:72:8d:ac:7c:6f
 ilo-ip: 192.168.9.3
 ilo-password: password
 ilo-user: admin

 - id: controller2
 ip-addr: 192.168.10.4
 role: CONTROLLER-ROLE
 server-group: RACK2
 nic-mapping: HP-DL360-4PORT
 mac-addr: 8a:8e:64:55:43:76
 ilo-ip: 192.168.9.4
 ilo-password: password
 ilo-user: admin

Key Value Description

id An administrator-defined identifier for the server. IDs must be unique and are
used to track server allocations. (see Section 7.3, “Persisted Data”).

ip-addr The IP address is used by the configuration processor to install and configure
the service components on this server.

This IP address must be within the range of a network defined in this model.

When the servers le is being used for operating system installation, this IP
address will be assigned to the node by the installation process, and the as-
sociated network must be an untagged VLAN.

hostname
(optional)

The value to use for the hostname of the server. If specified this will be used to
set the hostname value of the server which will in turn be reflected in systems

66 Servers SUSE OpenStack Cloud 8

Key Value Description

such as Nova, Monasca, etc. If not specified the hostname will be derived based
on where the server is used and the network defined to provide hostnames.

role Identifies the server-role of the server.

nic-mapping Name of the nic-mappings entry to apply to this server. (See Section 6.12, “NIC

Mappings”.)

server-group
(optional)

Identifies the server-groups entry that this server belongs to. (see Section 5.2.9,

“Server Groups”)

boot-from-
san (optional)

Must be set to true is the server needs to be configured to boot from SAN
storage. Default is False

fcoe-
interfaces
(optional)

A list of network devices that will be used for accessing FCoE storage. This
is only needed for devices that present as native FCoE, not devices such as
Emulex which present as a FC device.

ansible-op-
tions (option-
al)

A string of additional variables to be set when defining the server as a host in
Ansible. For example, ansible_ssh_port=5986

mac-addr (op-
tional)

Needed when the servers le is being used for operating system installation.
This identifies the MAC address on the server that will be used to network
install the operating system.

kopt-extras
(optional)

Provides additional command line arguments to be passed to the booting net-
work kernel. For example, vga=769 sets the video mode for the install to low
resolution which can be useful for remote console users.

ilo-ip (option-
al)

Needed when the servers le is being used for operating system installation.
This provides the IP address of the power management (for example, IPMI,
iLO) subsystem.

ilo-user (op-
tional)

Needed when the servers le is being used for operating system installation.
This provides the user name of the power management (for example, IPMI,
iLO) subsystem.

67 Servers SUSE OpenStack Cloud 8

Key Value Description

ilo-password
(optional)

Needed when the servers le is being used for operating system installation.
This provides the user password of the power management (for example, IPMI,
iLO) subsystem.

ilo-extras (op-
tional)

Needed when the servers le is being used for operating system installation.
Additional options to pass to ipmitool. For example, this may be required if
the servers require additional IPMI addressing parameters.

moonshot
(optional)

Provides the node identifier for HPE Moonshot servers, for example, c4n1
where c4 is the cartridge and n1 is node.

hypervisor-id
(optional)

This attribute serves two purposes: it indicates that this server is a virtual
machine (VM), and it specifies the server id of the Cloud Lifecycle Manager
hypervisor that will host the VM.

ardana-hy-
pervisor (op-
tional)

When set to True, this attribute identifies a server as a Cloud Lifecycle Manager
hypervisor. A Cloud Lifecycle Manager hypervisor is a server that may be used
to host other servers that are themselves virtual machines. Default value is
False .

6.6 Server Groups
The server-groups configuration object provides a mechanism for organizing servers and net-
works into a hierarchy that can be used for allocation and network resolution.

 product:
 version: 2

 - name: CLOUD
 server-groups:
 - AZ1
 - AZ2
 - AZ3
 networks:
 - EXTERNAL-API-NET
 - EXTERNAL-VM-NET
 - GUEST-NET
 - MANAGEMENT-NET

68 Server Groups SUSE OpenStack Cloud 8

 #
 # Create a group for each failure zone
 #
 - name: AZ1
 server-groups:
 - RACK1

 - name: AZ2
 server-groups:
 - RACK2

 - name: AZ3
 server-groups:
 - RACK3

 #
 # Create a group for each rack
 #
 - name: RACK1
 - name: RACK2
 - name: RACK3

Key Value Description

name An administrator-defined name for the server group. The name is used to link
server-groups together and to identify server-groups to be used as failure zones
in a control-plane. (see Section 6.2, “Control Plane”)

server-groups
(optional)

A list of server-group names that are nested below this group in the hierarchy.
Each server group can only be listed in one other server group (that is in a
strict tree topology).

networks (op-
tional)

A list of network names (see Section 5.2.10.2, “Networks”). See Section 5.2.9.2,

“Server Groups and Networks” for a description of how networks are matched to
servers via server groups.

69 Server Groups SUSE OpenStack Cloud 8

6.7 Server Roles
The server-roles configuration object is a list of the various server roles that you can use in your
cloud. Each server role is linked to other configuration objects:

Disk model (Section 6.8, “ Disk Models”)

Interface model (Section 6.11, “Interface Models”)

Memory model (Section 6.9, “Memory Models”)

CPU model (Section 6.10, “ CPU Models”)

Server roles are referenced in the servers (see Section 6.7, “Server Roles”) configuration object
above.

 product:
 version: 2

 server-roles:

 - name: CONTROLLER-ROLE
 interface-model: CONTROLLER-INTERFACES
 disk-model: CONTROLLER-DISKS

 - name: COMPUTE-ROLE
 interface-model: COMPUTE-INTERFACES
 disk-model: COMPUTE-DISKS
 memory-model: COMPUTE-MEMORY
 cpu-model: COMPUTE-CPU

Key Value Description

name An administrator-defined name for the role.

interface-model The name of the interface-model to be used
for this server-role.

Different server-roles can use the same inter-
face-model.

disk-model The name of the disk-model to use for this
server-role.

70 Server Roles SUSE OpenStack Cloud 8

Key Value Description

Different server-roles can use the same disk-
model.

memory-model (optional) The name of the memory-model to use for this
server-role.

Different server-roles can use the same mem-
ory-model.

cpu-model (optional) The name of the cpu-model to use for this
server-role.

Different server-roles can use the same cpu-
model.

6.8 Disk Models
The disk-models configuration object is used to specify how the directly attached disks on the
server should be configured. It can also identify which service or service component consumes
the disk, for example, Swift object server, and provide service-specific information associated
with the disk. It is also used to specify disk sizing information for virtual machine servers.

Disks can be used as raw devices or as logical volumes and the disk model provides a configu-
ration item for each.

If the operating system has been installed by the SUSE OpenStack Cloud installation process
then the root disk will already have been set up as a volume-group with a single logical-volume.
This logical-volume will have been created on a partition identified, symbolically, in the con-
figuration les as /dev/sda_root . This is due to the fact that different BIOS systems (UEFI,
Legacy) will result in different partition numbers on the root disk.

 product:
 version: 2

 disk-models:
 - name: SES-DISKS

 volume-groups:
 - ...

71 Disk Models SUSE OpenStack Cloud 8

 device-groups:
 - ...
 vm-size:
 ...

Key Value Description

name The name of the disk-model that is referenced
from one or more server-roles.

volume-groups A list of volume-groups to be configured
(see below). There must be at least one vol-
ume-group describing the root le system.

device-groups (optional) A list of device-groups (see below)

6.8.1 Volume Groups

The volume-groups configuration object is used to define volume groups and their constituent
logical volumes.

Note that volume-groups are not exact analogs of device-groups. A volume-group specifies a
set of physical volumes used to make up a volume-group that is then subdivided into multiple
logical volumes.

The SUSE OpenStack Cloud operating system installation automatically creates a volume-group
name "ardana-vg" on the rst drive in the system. It creates a "root" logical volume there. The
volume-group can be expanded by adding more physical-volumes (see examples). In addition,
it is possible to create more logical-volumes on this volume-group to provide dedicated capacity
for different services or le system mounts.

 volume-groups:
 - name: ardana-vg
 physical-volumes:
 - /dev/sda_root

 logical-volumes:
 - name: root
 size: 35%
 fstype: ext4
 mount: /

72 Volume Groups SUSE OpenStack Cloud 8

 - name: log
 size: 50%
 mount: /var/log
 fstype: ext4
 mkfs-opts: -O large_file

 - ...

 - name: vg-comp
 physical-volumes:
 - /dev/sdb
 logical-volumes:
 - name: compute
 size: 95%
 mount: /var/lib/nova
 fstype: ext4
 mkfs-opts: -O large_file

Key Value Descriptions

name The name that will be assigned to the vol-
ume-group

physical-volumes A list of physical disks that make up the vol-
ume group.

As installed by the SUSE OpenStack Cloud
operating system install process, the volume
group "ardana-vg" will use a large partition
(sda_root) on the rst disk. This can be ex-
panded by adding additional disk(s).

logical-volumes A list of logical volume devices to create from
the above named volume group.

name The name to assign to the logical volume.

size The size, expressed as a percentage of the en-
tire volume group capacity, to assign to the
logical volume.

fstype (optional) The le system type to create on the logical
volume. If none specified, the volume is not
formatted.

73 Volume Groups SUSE OpenStack Cloud 8

Key Value Descriptions

mkfs-opts (optional) Options, for example, -O large_file to pass
to the mkfs command.

mode (optional) The mode changes the root le system mode
bits, which can be either a symbolic represen-
tation or an octal number representing the bit
pattern for the new mode bits.

mount (optional) Mount point for the le system.

consumer attributes (optional, consumer de-
pendent)

These will vary according to the service con-
suming the device group. The examples sec-
tion provides sample content for the different
services.

Important
Multipath storage should be listed as the corresponding /dev/mapper/mpathX

6.8.2 Device Groups

The device-groups configuration object provides the mechanism to make the whole of a physical
disk available to a service.

Key Value Descriptions

name An administrator-defined name for the device
group.

devices A list of named devices to be assigned to this
group. There must be at least one device in
the group.

Multipath storage should be listed as the cor-
responding /dev/mapper/mpathXf

74 Device Groups SUSE OpenStack Cloud 8

Key Value Descriptions

consumer Identifies the name of one of the storage
services (for example, one of the following:
Swift, Cinder, etc.) that will consume the
disks in this device group.

consumer attributes These will vary according to the service con-
suming the device group. The examples sec-
tion provides sample content for the different
services.

6.9 Memory Models
The memory-models configuration object describes details of the optional configuration of Huge
Pages. It also describes the amount of memory to be allocated for virtual machine servers.

The memory-model allows the number of pages of a particular size to be configured at the server
level or at the numa-node level.

The following example would configure:

ve 2 MB pages in each of numa nodes 0 and 1

three 1 GB pages (distributed across all numa nodes)

six 2 MB pages (distributed across all numa nodes)

memory-models:
 - name: COMPUTE-MEMORY-NUMA
 default-huge-page-size: 2M
 huge-pages:
 - size: 2M
 count: 5
 numa-node: 0
 - size: 2M
 count: 5
 numa-node: 1
 - size: 1G
 count: 3
 - size: 2M
 count: 6

75 Memory Models SUSE OpenStack Cloud 8

 - name: VIRTUAL-CONTROLLER-MEMORY
 vm-size:
 ram: 6G

Key Value Description

name The name of the memory-model that is refer-
enced from one or more server-roles.

default-huge-page-size (optional) The default page size that will be used is
specified when allocating huge pages.

If not specified, the default is set by the oper-
ating system.

huge-pages A list of huge page definitions (see below).

6.9.1 Huge Pages

Key Value Description

size The page size in kilobytes, megabytes, or gi-
gabytes specified as nX where:

n

is an integer greater than zero

X

is one of "K", "M" or "G"

count The number of pages of this size to create
(must be greater than zero).

numa-node (optional) If specified the pages will be created in the
memory associated with this numa node.

If not specified the pages are distributed
across numa nodes by the operating system.

76 Huge Pages SUSE OpenStack Cloud 8

6.10 CPU Models
The cpu-models configuration object describes how CPUs are assigned for use by service com-
ponents such as Nova (for VMs) and Open vSwitch (for DPDK), and whether or not those CPUs
are isolated from the general kernel SMP balancing and scheduling algorithms. It also describes
the number of vCPUs for virtual machine servers.

 product:
 version: 2

 cpu-models:
 - name: COMPUTE-CPU
 assignments:
 - components:
 - nova-compute-kvm
 cpu:
 - processor-ids: 0-1,3,5-7
 role: vm
 - components:
 - openvswitch
 cpu:
 - processor-ids: 4,12
 isolate: False
 role: eal
 - processor-ids: 2,10
 role: pmd
 - name: VIRTUAL-CONTROLLER-CPU
 vm-size:
 vcpus: 4

cpu-models

Key Value Description

name An administrator-defined name for the cpu
model.

assignments A list of CPU assignments .

6.10.1 CPU Assignments

assignments

77 CPU Models SUSE OpenStack Cloud 8

Key Value Description

components A list of components to which the CPUs will
be assigned.

cpu A list of CPU usage objects (see Section 6.10.2,

“CPU Usage” below).

6.10.2 CPU Usage

cpu

Key Value Description

processor-ids A list of CPU IDs as seen by the operating system.

isolate (optional) A Boolean value which indicates if the CPUs are to be isolated from the
general kernel SMP balancing and scheduling algorithms. The specified
processor IDs will be configured in the Linux kernel isolcpus parameter.

The default value is True.

role A role within the component for which the CPUs will be used.

6.10.3 Components and Roles in the CPU Model

Component Role Description

nova-compute-kvm vm The specified processor IDs will be configured in
the Nova vcpu_pin_set option.

eal The specified processor IDs will be configured in
the Open vSwitch DPDK EAL -c (coremask) op-
tion. Refer to the DPDK documentation for details.

openvswitch

pmd The specified processor IDs will be configured in
the Open vSwitch pmd-cpu-mask option. Refer
to the Open vSwitch documentation and the ovs-
vswitchd.conf.db man page for details.

78 CPU Usage SUSE OpenStack Cloud 8

6.11 Interface Models
The interface-models configuration object describes how network interfaces are bonded and
the mapping of network groups onto interfaces. Interface devices are identified by name and
mapped to a particular physical port by the nic-mapping (see Section 5.2.10.4, “NIC Mapping”).

 product:
 version: 2

 interface-models:
 - name: INTERFACE_SET_CONTROLLER
 network-interfaces:
 - name: BONDED_INTERFACE
 device:
 name: bond0
 bond-data:
 provider: linux
 devices:
 - name: hed3
 - name: hed4
 options:
 mode: active-backup
 miimon: 200
 primary: hed3
 network-groups:
 - EXTERNAL_API
 - EXTERNAL_VM
 - GUEST

 - name: UNBONDED_INTERFACE
 device:
 name: hed0
 network-groups:
 - MGMT

 fcoe-interfaces:
 - name: FCOE_DEVICES
 devices:
 - eth7
 - eth8

 - name: INTERFACE_SET_DPDK
 network-interfaces:

79 Interface Models SUSE OpenStack Cloud 8

 - name: BONDED_DPDK_INTERFACE
 device:
 name: bond0
 bond-data:
 provider: openvswitch
 devices:
 - name: dpdk0
 - name: dpdk1
 options:
 mode: active-backup
 network-groups:
 - GUEST
 - name: UNBONDED_DPDK_INTERFACE
 device:
 name: dpdk2
 network-groups:
 - PHYSNET2
 dpdk-devices:
 - devices:
 - name: dpdk0
 - name: dpdk1
 - name: dpdk2
 driver: igb_uio
 components:
 - openvswitch
 eal-options:
 - name: socket-mem
 value: 1024,0
 - name: n
 value: 2
 component-options:
 - name: n-dpdk-rxqs
 value: 64

Key Value Description

name An administrator-defined name for the inter-
face model.

network-interfaces A list of network interface definitions.

80 Interface Models SUSE OpenStack Cloud 8

Key Value Description

fcoe-interfaces (optional): Section 6.11.2, “fcoe-

interfaces”
A list of network interfaces that will be used
for Fibre Channel over Ethernet (FCoE).
This is only needed for devices that present
as a native FCoE device, not cards such as
Emulex which present FCoE as a FC device.

dpdk-devices (optional) A list of DPDK device definitions.

Important
The devices must be “raw” device names, not names controlled via a nic-mapping.

6.11.1 network-interfaces

The network-interfaces configuration object has the following attributes:

Key Value Description

name An administrator-defined name for the inter-
face

device A dictionary containing the network device
name (as seen on the associated server) and
associated properties (see Section 6.11.1.1,

“network-interfaces device” for details).

network-groups (optional if forced-net-
work-groups is defined)

A list of one or more network-groups (see Sec-

tion 6.13, “Network Groups”) containing networks
(see Section 6.14, “Networks”) that can be ac-
cessed via this interface. Networks in these
groups will only be configured if there is
at least one service-component on the serv-
er which matches the list of component-end-
points defined in the network-group.

81 network-interfaces SUSE OpenStack Cloud 8

Key Value Description

forced-network-groups (optional if net-
work-groups is defined)

A list of one or more network-groups (see Sec-

tion 6.13, “Network Groups”) containing networks
(see Section 6.14, “Networks”) that can be ac-
cessed via this interface. Networks in these
groups are always configured on the server.

passthrough-network-groups (optional) A list of one or more network-groups (see
Section 6.13, “Network Groups”) containing net-
works (see Section 6.14, “Networks”) that can
be accessed by servers running as virtual ma-
chines on an Cloud Lifecycle Manager hyper-
visor server. Networks in these groups are not
configured on the Cloud Lifecycle Manager
hypervisor server unless they also are speci-
fied in the network-groups or forced-net-
work-groups attributes.

6.11.1.1 network-interfaces device

network-interfaces device

The network-interfaces device configuration object has the following attributes:

Key Value Description

name When configuring a bond, this is used as the
bond device name - the names of the devices
to be bonded are specified in the bond-data
section.

If the interface is not bonded, this must be
the name of the device specified by the nic-
mapping (see NIC Mapping).

82 network-interfaces SUSE OpenStack Cloud 8

Key Value Description

vf-count (optional) Indicates that the interface is to be used for
SR-IOV. The value is the number of virtual
functions to be created. The associated de-
vice specified by the nic-mapping must have
a valid nice-device-type.

vf-count cannot be specified on bonded inter-
faces

Interfaces used for SR-IOV must be associ-
ated with a network with tagged-vlan:
false .

sriov-only (optional) Only valid when vf-count is specified. If set
to true then the interface is to be used for
virtual functions only and the physical func-
tion will not be used.

The default value is False.

pci-pt (optional) If set to true then the interface is used for
PCI passthrough.

The default value is False.

6.11.2 fcoe-interfaces

The fcoe-interfaces configuration object has the following attributes:

Key Value Description

name An administrator-defined name for the group
of FCOE interfaces

devices A list of network devices that will be config-
ured for FCOE

83 fcoe-interfaces SUSE OpenStack Cloud 8

Key Value Description

Entries in this must be the name of a de-
vice specified by the nic-mapping (see Sec-

tion 6.12, “NIC Mappings”).

6.11.3 dpdk-devices

The dpdk-devices configuration object has the following attributes:

Key Value Descriptions

devices A list of network devices to be configured for
DPDK. See Section 6.11.3.1, “ dpdk-devices de-

vices”.

eal-options A list of key-value pairs that may be used to
set DPDK Environmental Abstraction Layer
(EAL) options. Refer to the DPDK documen-
tation for details.

Note that the cpu-model should be used to
specify the processor IDs to be used by EAL
for this component. The EAL coremask (-c)
option will be set automatically based on the
information in the cpu-model, and so should
not be specified here. See Section 6.10, “ CPU

Models”.

component-options A list of key-value pairs that may be used to
set component-specific configuration options.

84 dpdk-devices SUSE OpenStack Cloud 8

6.11.3.1 dpdk-devices devices

The devices configuration object within dpdk-devices has the following attributes:

Key Value Descriptions

name The name of a network device to be used with
DPDK. The device names must be the logi-
cal-name specified by the nic-mapping (see
Section 6.12, “NIC Mappings”).

driver (optional) Defines the userspace I/O driver to be used
for network devices where the native device
driver does not provide userspace I/O capa-
bilities.

The default value is igb_uio .

6.11.3.2 DPDK component-options for the openvswitch component

The following options are supported for use with the openvswitch component:

Name Value Descriptions

n-dpdk-rxqs Number of rx queues for each DPDK inter-
face. Refer to the Open vSwitch documenta-
tion and the ovs-vswitchd.conf.db man
page for details.

Note that the cpu-model should be used to define the CPU affinity of the Open vSwitch PMD
(Poll Mode Driver) threads. The Open vSwitch pmd-cpu-mask option will be set automatically
based on the information in the cpu-model. See Section 6.10, “ CPU Models”.

6.12 NIC Mappings
The nic-mappings configuration object is used to ensure that the network device name used by
the operating system always maps to the same physical device. A nic-mapping is associated to a
server in the server definition le. Devices should be named hedN to avoid name clashes with

85 NIC Mappings SUSE OpenStack Cloud 8

any other devices configured during the operating system install as well as any interfaces that
are not being managed by SUSE OpenStack Cloud, ensuring that all devices on a baremetal
machine are specified in the le. An excerpt from nic_mappings.yml illustrates:

 product:
 version: 2

 nic-mappings:

 - name: HP-DL360-4PORT
 physical-ports:
 - logical-name: hed1
 type: simple-port
 bus-address: "0000:07:00.0"

 - logical-name: hed2
 type: simple-port
 bus-address: "0000:08:00.0"
 nic-device-type: '8086:10fb'

 - logical-name: hed3
 type: multi-port
 bus-address: "0000:09:00.0"
 port-attributes:
 port-num: 0

 - logical-name: hed4
 type: multi-port
 bus-address: "0000:09:00.0"
 port-attributes:
 port-num: 1

Each entry in the nic-mappings list has the following attributes:

Key Value Description

name An administrator-defined name for the map-
ping. This name may be used in a server def-
inition (see Section 6.5, “Servers”) to apply the
mapping to that server.

physical-ports A list containing device name to address map-
ping information.

86 NIC Mappings SUSE OpenStack Cloud 8

Each entry in the physical-ports list has the following attributes:

Key Value Description

logical-name The network device name that will be associ-
ated with the device at the specified bus-ad-
dress. The logical-name specified here can be
used as a device name in network interface
model definitions. (See Section 6.11, “Interface

Models”.)

type The type of port. SUSE OpenStack Cloud 8
supports "simple-port" and "multi-port". Use
"simple-port" if your device has a unique bus-
address. Use "multi-port" if your hardware
requires a "port-num" attribute to identify a
single port on a multi-port device. An exam-
ples of such a device is:

Mellanox Technologies MT26438 [Con-
nectX VPI PCIe 2.0 5GT/s - IB QDR /
10GigE Virtualization+]

bus-address PCI bus address of the port. Enclose the bus
address in quotation marks so yaml does not
misinterpret the embedded colon (:) char-
acters. See Book “Installing with Cloud Lifecy-

cle Manager”, Chapter 2 “Pre-Installation Check-

list” for details on how to determine this value.

port-attributes (required if type is mul-

ti-port)
Provides a list of attributes for the physical
port. The current implementation supports on-
ly one attribute, "port-num". Multi-port de-
vices share a bus-address. Use the "port-num"
attribute to identify which physical port on
the multi-port device to map. See Book “In-

stalling with Cloud Lifecycle Manager”, Chapter 2

87 NIC Mappings SUSE OpenStack Cloud 8

Key Value Description

“Pre-Installation Checklist” for details on how to
determine this value.

nic-device-type (optional) Specifies the PCI vendor ID and device ID
of the port in the format of VENDOR_ID:DE-
VICE_ID , for example, 8086:10fb .

6.13 Network Groups
Network-groups define the overall network topology, including where service-components con-
nect, what load balancers are to be deployed, which connections use TLS, and network routing.
They also provide the data needed to map Neutron's network configuration to the physical net-
working.

Note
The name of the "MANAGEMENT" network-group cannot be changed. It must be upper
case. Every SUSE OpenStack Cloud requires this network group in order to be valid.

 product:
 version: 2

 network-groups:

 - name: EXTERNAL-API
 hostname-suffix: extapi

 load-balancers:
 - provider: ip-cluster
 name: extlb
 external-name:

 tls-components:
 - default
 roles:
 - public
 cert-file: my-public-entry-scale-kvm-cert

88 Network Groups SUSE OpenStack Cloud 8

 - name: EXTERNAL-VM
 tags:
 - neutron.l3_agent.external_network_bridge

 - name: GUEST
 hostname-suffix: guest
 tags:
 - neutron.networks.vxlan

 - name: MANAGEMENT
 hostname-suffix: mgmt
 hostname: true

 component-endpoints:
 - default

 routes:
 - default

 load-balancers:
 - provider: ip-cluster
 name: lb
 components:
 - default
 roles:
 - internal
 - admin

 tags:
 - neutron.networks.vlan:
 provider-physical-network: physnet1

Key Value Description

name An administrator-defined name for the net-
work group. The name is used to make refer-
ences from other parts of the input model.

component-endpoints (optional) The list of service-components that will bind to
or need direct access to networks in this net-
work-group.

hostname (optional) If set to true, the name of the address asso-
ciated with a network in this group will be
used to set the hostname of the server.

89 Network Groups SUSE OpenStack Cloud 8

Key Value Description

hostname-suffix (optional) If supplied, this string will be used in the
name generation (see Section 7.2, “Name Gener-

ation”). If not specified, the name of the net-
work-group will be used.

load-balancers (optional) A list of load balancers to be configured on
networks in this network-group. Because
load balances need a virtual IP address, any
network group that contains a load balancer
can only have one network associated with
it.

For clouds consisting of a single control
plane, a load balancer may be fully defined
within a network-group object. See Load
balancer definitions in network groups.

Starting in SUSE OpenStack Cloud 8, a load
balancer may be defined within a con-
trol-plane object and referenced by name
from a network-group object. See Sec-

tion 6.13.1, “Load Balancer Definitions in Network

Groups” in control planes.

routes (optional) A list of network-groups that networks in this
group provide access to via their gateway.
This can include the value default to de-
fine the default route.

A network group with no services attached
to it can be used to define routes to external
networks.

The name of a Neutron provide network
defined via configuration-data (see Sec-

tion 6.16.2.1, “neutron-provider-networks”) can
also be included in this list.

90 Network Groups SUSE OpenStack Cloud 8

Key Value Description

tags (optional) A list of network tags. Tags provide the link-
age between the physical network configura-
tion and the Neutron network configuration.

Starting in SUSE OpenStack Cloud 8, net-
work tags may be defined as part of a Neu-
tron configuration-data object rather
than as part of a network-group object (see
Section 6.16.2, “Neutron Configuration Data”).

mtu (optional) Specifies the MTU value required for net-
works in this network group If not specified
a default value of 1500 is used.

See Section 6.13.3, “MTU (Maximum Transmis-

sion Unit)” on how MTU settings are applied
to interfaces when there are multiple tagged
networks on the same interface.

Important
hostnamemust be set to true for one, and only one, of your network groups.

A load balancer definition has the following attributes:

Key Value Description

name An administrator-defined name for the load
balancer.

provider The service component that implements the
load balancer. Currently only ip-cluster

(ha-proxy) is supported. Future releases will
provide support for external load balancers.

roles The list of endpoint roles that this load bal-
ancer provides (see below). Valid roles are
"public", "internal", and "admin'. To ensure

91 Network Groups SUSE OpenStack Cloud 8

Key Value Description

separation of concerns, the role "public" can-
not be combined with any other role. See Sec-

tion 5.2.10.1.1, “Load Balancers” for an example
of how the role provides endpoint separation.

components (optional) The list of service-components for which the
load balancer provides a non-encrypted virtu-
al IP address for.

tls-components (optional) The list of service-components for which the
load balancer provides TLS-terminated virtu-
al IP addresses for. In SUSE OpenStack Cloud,
TLS is supported both for internal and public
endpoints.

external-name (optional) The name to be registered in Keystone for the
publicURL. If not specified, the virtual IP ad-
dress will be registered. Note that this val-
ue cannot be changed after the initial deploy-
ment.

cert-le (optional) The name of the certificate le to be used for
TLS endpoints.

6.13.1 Load Balancer Definitions in Network Groups

In a cloud consisting of a single control-plane, a load-balancer may be fully defined within a
network-groups object as shown in the examples above. See section Section 6.3, “Load Balancers”

for a complete description of load balancer attributes.

Starting in SUSE OpenStack Cloud 8, a load-balancer may be defined within a con-
trol-plane object in which case the network-group provides just a list of load balancer names
as shown below. See section Section 6.3, “Load Balancers” definitions in control planes.

network-groups:

 - name: EXTERNAL-API
 hostname-suffix: extapi

92 Load Balancer Definitions in Network Groups SUSE OpenStack Cloud 8

 load-balancers:
 - lb-cp1
 - lb-cp2

The same load balancer name can be used in multiple control-planes to make the above list
simpler.

6.13.2 Network Tags

SUSE OpenStack Cloud supports a small number of network tags which may be used to convey
information between the input model and the service components (currently only Neutron uses
network tags). A network tag consists minimally of a tag name; but some network tags have
additional attributes.

TABLE 6.1: NEUTRON.NETWORKS.VXLAN

Tag Value Description

neutron.networks.vxlan This tag causes Neutron to be configured to
use VxLAN as the underlay for tenant net-
works. The associated network group will
carry the VxLAN traffic.

tenant-vxlan-id-range (optional) Used to specify the VxLAN identifier range in
the format “ MIN-ID : MAX-ID ”. The default
range is “1001:65535”. Enclose the range
in quotation marks. Multiple ranges can be
specified as a comma-separated list.

Example using the default ID range:

 tags:
 - neutron.networks.vxlan

Example using a user-defined ID range:

 tags:
 - neutron.networks.vxlan:
 tenant-vxlan-id-range: “1:20000”

Example using multiple user-defined ID range:

 tags:

93 Network Tags SUSE OpenStack Cloud 8

 - neutron.networks.vxlan:
 tenant-vxlan-id-range: “1:2000,3000:4000,5000:6000”

TABLE 6.2: NEUTRON.NETWORKS.VLAN

Tag Value Description

neutron.networks.vlan This tag causes Neutron to be configured
for provider VLAN networks, and optionally
to use VLAN as the underlay for tenant net-
works. The associated network group will
carry the VLAN traffic. This tag can be spec-
ified on multiple network groups. Howev-
er, this tag does not cause any Neutron net-
works to be created, that must be done in
Neutron after the cloud is deployed.

provider-physical-network The provider network name. This is the
name to be used in the Neutron API for the
provider:physical_network parameter of net-
work objects.

tenant-vlan-id-range (optional) This attribute causes Neutron to use VLAN
for tenant networks; omit this attribute if
you are using provider VLANs only. It speci-
fies the VLAN ID range for tenant networks,
in the format “ MIN-ID : MAX-ID ”. Enclose the
range in quotation marks. Multiple ranges
can be specified as a comma-separated list.

Example using a provider vlan only (may be used with tenant VxLAN):

 tags:
 - neutron.networks.vlan:
 provider-physical-network: physnet1

Example using a tenant and provider VLAN:

 tags:
 - neutron.networks.vlan:
 provider-physical-network: physnet1
 tenant-vlan-id-range: “30:50,100:200”

94 Network Tags SUSE OpenStack Cloud 8

TABLE 6.3: NEUTRON.NETWORKS.FLAT

Tag Value Description

neutron.networks.flat This tag causes Neutron to be configured for
provider at networks. The associated net-
work group will carry the traffic. This tag
can be specified on multiple network groups.
However, this tag does not cause any Neu-
tron networks to be created, that must be
done in Neutron after the cloud is deployed.

provider-physical-network The provider network name. This is the
name to be used in the Neutron API for the
provider:physical_network parameter of net-
work objects. When specified on multiple
network groups, the name must be unique
for each network group.

Example using a provider at network:

 tags:
 - neutron.networks.flat:
 provider-physical-network: flatnet1

TABLE 6.4: NEUTRON.L3_AGENT.EXTERNAL_NETWORK_BRIDGE

Tag Value Description

neutron.l3_agent.external_network_bridge This tag causes the Neutron L3 Agent to be
configured to use the associated network
group as the Neutron external network for
floating IP addresses. A CIDR should not
be defined for the associated physical net-
work, as that will cause addresses from that
network to be configured in the hypervisor.
When this tag is used, provider networks
cannot be used as external networks. Howev-
er, this tag does not cause a Neutron external
networks to be created, that must be done in
Neutron after the cloud is deployed.

95 Network Tags SUSE OpenStack Cloud 8

Example using neutron.l3_agent.external_network_bridge:

 tags:
 - neutron.l3_agent.external_network_bridge

6.13.3 MTU (Maximum Transmission Unit)

A network group may optionally specify an MTU for its networks to use. Because a network-in-
terface in the interface-model may have a mix of one untagged-vlan network group and one
or more tagged-vlan network groups, there are some special requirements when specifying an
MTU on a network group.

If the network group consists of untagged-vlan network(s) then its specified MTU must be greater
than or equal to the MTU of any tagged-vlan network groups which are co-located on the same
network-interface.

For example consider a network group with untagged VLANs, NET-GROUP-1, which is going to
share (via a Network Interface definition) a device (eth0) with two network groups with tagged
VLANs: NET-GROUP-2 (ID=201, MTU=1550) and NET-GROUP-3 (ID=301, MTU=9000).

The device (eth0) must have an MTU which is large enough to accommodate the VLAN in NET-
GROUP-3. Since NET-GROUP-1 has untagged VLANS it will also be using this device and so it
must also have an MTU of 9000, which results in the following configuration.

 +eth0 (9000) <------ this MTU comes from NET-GROUP-1
 | |
 | |----+ vlan201@eth0 (1550)
 \------+ vlan301@eth0 (9000)

Where an interface is used only by network groups with tagged VLANs the MTU of the device
or bond will be set to the highest MTU value in those groups.

For example if bond0 is configured to be used by three network groups: NET-GROUP-1
(ID=101, MTU=3000), NET-GROUP-2 (ID=201, MTU=1550) and NET-GROUP-3 (ID=301,
MTU=9000).

Then the resulting configuration would be:

 +bond0 (9000) <------ because of NET-GROUP-3
 | | |
 | | |--+vlan101@bond0 (3000)
 | |----+vlan201@bond0 (1550)
 |------+vlan301@bond0 (9000)

96 MTU (Maximum Transmission Unit) SUSE OpenStack Cloud 8

6.14 Networks

A network definition represents a physical L3 network used by the cloud infrastructure. Note
that these are different from the network definitions that are created/configured in Neutron,
although some of the networks may be used by Neutron.

 product:
 version: 2

 networks:
 - name: NET_EXTERNAL_VM
 vlanid: 102
 tagged-vlan: true
 network-group: EXTERNAL_VM

 - name: NET_GUEST
 vlanid: 103
 tagged-vlan: true
 cidr: 10.1.1.0/24
 gateway-ip: 10.1.1.1
 network-group: GUEST

 - name: NET_MGMT
 vlanid: 100
 tagged-vlan: false
 cidr: 10.2.1.0/24
 addresses:
 - 10.2.1.10-10.2.1.20
 - 10.2.1.24
 - 10.2.1.30-10.2.1.36
 gateway-ip: 10.2.1.1
 network-group: MGMT

Key Value Description

name The name of this network. The network name
may be used in a server-group definition (see
Section 6.6, “Server Groups”) to specify a partic-
ular network from within a network-group to
be associated with a set of servers.

network-group The name of the associated network group.

97 Networks SUSE OpenStack Cloud 8

Key Value Description

vlanid (optional) The IEEE 802.1Q VLAN Identifier, a value in
the range 1 through 4094. A vlanid must be
specified when tagged-vlan is true.

tagged-vlan (optional) May be set to true or false . If true, packets
for this network carry the vlanid in the packet
header; such packets are referred to as VLAN-
tagged frames in IEEE 1Q.

cidr (optional) The IP subnet associated with this network.

addresses (optional) A list of IP addresses or IP address
ranges (specified as START_AD-
DRESS_RANGE-END_ADDRESS_RANGE from
which server addresses may be allocated.
The default value is the rst host address
within the CIDR (for example, the .1 ad-
dress).

The addresses parameter provides more
flexibility than the start-address and
end-address parameters and so is the pre-
ferred means of specifying this data.

start-address (optional) (deprecated) An IP address within the CIDR which will be
used as the start of the range of IP address-
es from which server addresses may be allo-
cated. The default value is the rst host ad-
dress within the CIDR (for example, the .1
address).

end-address (optional) (deprecated) An IP address within the CIDR which will be
used as the end of the range of IP addresses
from which server addresses may be allocat-
ed. The default value is the last host address
within the CIDR (for example, the .254 ad-
dress of a /24). This parameter is deprecated

98 Networks SUSE OpenStack Cloud 8

Key Value Description

in favor of the new addresses parameter.
This parameter may be removed in a future
release.

gateway-ip (optional) The IP address of the gateway for this net-
work. Gateway addresses must be specified if
the associated network-group provides routes.

6.15 Firewall Rules
The configuration processor will automatically generate "allow" firewall rules for each server
based on the services deployed and block all other ports. The firewall rules in the input model
allow the customer to define additional rules for each network group.

Administrator-defined rules are applied after all rules generated by the Configuration Processor.

 product:
 version: 2

 firewall-rules:

 - name: PING
 network-groups:
 - MANAGEMENT
 - GUEST
 - EXTERNAL-API
 rules:
 # open ICMP echo request (ping)
 - type: allow
 remote-ip-prefix: 0.0.0.0/0
 # icmp type
 port-range-min: 8
 # icmp code
 port-range-max: 0
 protocol: icmp

Key Value Description

name An administrator-defined name for the group
of rules.

99 Firewall Rules SUSE OpenStack Cloud 8

Key Value Description

network-groups A list of network-group names that the rules
apply to. A value of "all" matches all net-
work-groups.

rules A list of rules. Rules are applied in the or-
der in which they appear in the list, apart
from the control provided by the "final" op-
tion (see above). The order between sets of
rules is indeterminate.

6.15.1 Rule

Each rule in the list takes the following parameters (which match the parameters of a Neutron
security group rule):

Key Value Description

type Must allow

remote-ip-prefix Range of remote addresses in CIDR format
that this rule applies to.

port-range-min

port-range-max

Defines the range of ports covered by the rule.
Note that if the protocol is icmp then port-
range-min is the ICMP type and port-range-
max is the ICMP code.

protocol Must be one of tcp , udp , or icmp .

6.16 Configuration Data
Configuration data allows values to be passed into the model to be used in the context of a
specific control plane or cluster. The content and format of the data is service specific.

 product:
 version: 2

100 Rule SUSE OpenStack Cloud 8

 configuration-data:
 - name: NEUTRON-CONFIG-CP1
 services:
 - neutron
 data:
 neutron_provider_networks:
 - name: OCTAVIA-MGMT-NET
 provider:
 - network_type: vlan
 physical_network: physnet1
 segmentation_id: 106
 cidr: 172.30.1.0/24
 no_gateway: True
 enable_dhcp: True
 allocation_pools:
 - start: 172.30.1.10
 end: 172.30.1.250
 host_routes:
 # route to MANAGEMENT-NET-1
 - destination: 192.168.245.0/24
 nexthop: 172.30.1.1

 neutron_external_networks:
 - name: ext-net
 cidr: 172.31.0.0/24
 gateway: 172.31.0.1
 provider:
 - network_type: vlan
 physical_network: physnet1
 segmentation_id: 107
 allocation_pools:
 - start: 172.31.0.2
 end: 172.31.0.254

 network-tags:
 - network-group: MANAGEMENT
 tags:
 - neutron.networks.vxlan
 - neutron.networks.vlan:
 provider-physical-network: physnet1
 - network-group: EXTERNAL-VM
 tags:
 - neutron.l3_agent.external_network_bridge

101 Configuration Data SUSE OpenStack Cloud 8

Key Value Description

name An administrator-defined name for the set of
configuration data.

services A list of services that the data applies to.
Note that these are service names (for ex-
ample, neutron , octavia , etc.) not ser-
vice-component names (neutron-server ,
octavia-api , etc.).

data A service specific data structure (see below).

network-tags (optional, Neutron-only) A list of network tags. Tags provide the link-
age between the physical network configura-
tion and the Neutron network configuration.

Starting in SUSE OpenStack Cloud 8, net-
work tags may be defined as part of a Neu-
tron configuration-data object rather
than as part of a network-group object.

6.16.1 Neutron network-tags

Key Value Description

network-group The name of the network-group with which
the tags are associated.

tags A list of network tags. Tags provide the link-
age between the physical network configura-
tion and the Neutron network configuration.
See section Network Tags.

102 Neutron network-tags SUSE OpenStack Cloud 8

6.16.2 Neutron Configuration Data

Key Value Description

neutron-provider-networks A list of provider networks that will be created
in Neutron.

neutron-external-networks A list of external networks that will be creat-
ed in Neutron. These networks will have the
“router:external” attribute set to True.

6.16.2.1 neutron-provider-networks

Key Value Description

name The name for this network in Neutron.

This name must be distinct from the names
of any Network Groups in the model to en-
able it to be included in the “routes” value of
a network group.

provider Details of network to be created

network_type

physical_network

segmentation_id

These values are passed as --provider: op-
tions to the Neutron net-create command

cidr The CIDR to use for the network. This is
passed to the Neutron subnet-create com-
mand.

shared (optional) A Boolean value that specifies if the network
can be shared.

103 Neutron Configuration Data SUSE OpenStack Cloud 8

Key Value Description

This value is passed to the Neutron net-
create command.

allocation_pools (optional) A list of start and end address pairs that limit
the set of IP addresses that can be allocated
for this network.

These values are passed to the Neutron sub-
net-create command.

host_routes (optional) A list of routes to be defined for the network.
Each route consists of a destination in
cidr format and a nexthop address.

These values are passed to the Neutron sub-
net-create command.

gateway_ip (optional) A gateway address for the network.

This value is passed to the Neutron sub-
net-create command.

no_gateway (optional) A Boolean value indicating that the gateway
should not be distributed on this network.

This is translated into the no-gateway op-
tion to the Neutron subnet-create com-
mand

enable_dhcp (optional) A Boolean value indicating that DHCP should
be enabled. The default if not specified is to
not enable DHCP.

This value is passed to the Neutron sub-
net-create command.

104 Neutron Configuration Data SUSE OpenStack Cloud 8

6.16.2.2 neutron-external-networks

Key Value Description

name The name for this network in Neutron.

This name must be distinct from the names
of any Network Groups in the model to en-
able it to be included in the “routes” value of
a network group.

provider (optional) The provider attributes are specified when
using Neutron provider networks as external
networks. Provider attributes should not be
specified when the external network is con-
figured with the neutron.l3_agent.exter-
nal_network_bridge .

Standard provider network attributes may be
specified:

network_type

physical_network

segmentation_id

These values are passed as --provider: op-
tions to the Neutron net-create command

cidr The CIDR to use for the network. This is
passed to the Neutron subnet-create com-
mand.

allocation_pools (optional) A list of start and end address pairs that limit
the set of IP addresses that can be allocated
for this network.

These values are passed to the Neutron sub-
net-create command.

gateway (optional) A gateway address for the network.

105 Neutron Configuration Data SUSE OpenStack Cloud 8

Key Value Description

This value is passed to the Neutron sub-
net-create command.

6.16.3 Octavia Configuration Data

 product:
 version: 2

 configuration-data:
 - name: OCTAVIA-CONFIG-CP1
 services:
 - octavia
 data:
 amp_network_name: OCTAVIA-MGMT-NET

Key Value Description

amp_network_name The name of the Neutron provider network
that Octavia will use for management access
to load balancers.

6.16.4 Ironic Configuration Data

 product:
 version: 2

 configuration-data:
 - name: IRONIC-CONFIG-CP1
 services:
 - ironic
 data:
 cleaning_network: guest-network
 enable_node_cleaning: true
 enable_oneview: false

 oneview_manager_url:
 oneview_username:

106 Octavia Configuration Data SUSE OpenStack Cloud 8

 oneview_encrypted_password:
 oneview_allow_insecure_connections:
 tls_cacert_file:
 enable_agent_drivers: true

Refer to the documentation on configuring Ironic for details of the above attributes.

6.16.5 Swift Configuration Data

 product:
 version: 2

 configuration-data:
 - name: SWIFT-CONFIG-CP1
 services:
 - swift
 data:
 control_plane_rings:
 swift-zones:
 - id: 1
 server-groups:
 - AZ1
 - id: 2
 server-groups:
 - AZ2
 - id: 3
 server-groups:
 - AZ3
 rings:
 - name: account
 display-name: Account Ring
 min-part-hours: 16
 partition-power: 12
 replication-policy:
 replica-count: 3

 - name: container
 display-name: Container Ring
 min-part-hours: 16
 partition-power: 12
 replication-policy:
 replica-count: 3

 - name: object-0
 display-name: General

107 Swift Configuration Data SUSE OpenStack Cloud 8

 default: yes
 min-part-hours: 16
 partition-power: 12
 replication-policy:
 replica-count: 3

Refer to the documentation on Section 11.10, “Understanding Swift Ring Specifications” for details of
the above attributes.

6.17 Pass Through
Through pass_through definitions, certain configuration values can be assigned and used.

product:
 version: 2

pass-through:
 global:
 esx_cloud: true
 servers:
 data:
 vmware:
 cert_check: false
 vcenter_cluster: Cluster1
 vcenter_id: BC9DED4E-1639-481D-B190-2B54A2BF5674
 vcenter_ip: 10.1.200.41
 vcenter_port: 443
 vcenter_username: administrator@vsphere.local
 id: 7d8c415b541ca9ecf9608b35b32261e6c0bf275a

Key Value Description

global These values will be used at the cloud level.

servers These values will be assigned to a specific
server(s) using the server-id.

108 Pass Through SUSE OpenStack Cloud 8

7 Other Topics

7.1 Services and Service Components

Type Service Service Components

Compute

Virtual Machine Provisioning nova nova-api
nova-compute
nova-compute-hyperv
nova-compute-ironic
nova-compute-kvm
nova-conductor
nova-console-auth
nova-esx-compute-proxy
nova-metadata
nova-novncproxy
nova-scheduler
nova-scheduler-ironic
nova-placement-api

Bare Metal Provisioning ironic ironic-api
ironic-conductor

Networking

Networking neutron infoblox-ipam-agent
neutron-dhcp-agent
neutron-l2gateway-agent
neutron-l3-agent
neutron-lbaas-agent
neutron-lbaasv2-agent
neutron-metadata-agent
neutron-ml2-plugin
neutron-openvswitch-agent
neutron-ovsvapp-agent
neutron-server
neutron-sriov-nic-agent
neutron-vpn-agent

Network Load Balancer octavia octavia-api
octavia-health-manager

109 Services and Service Components SUSE OpenStack Cloud 8

Type Service Service Components

Domain Name Service (DNS) designate designate-api
designate-central
designate-mdns
designate-mdns-external
designate-pool-manager
designate-zone-manager

Storage

Block Storage cinder cinder-api
cinder-backup
cinder-scheduler
cinder-volume

Object Storage swift swift-account
swift-common
swift-container
swift-object
swift-proxy
swift-ring-builder
swift-rsync

Image

Image Management glance glance-api
glance-registry

Security

Key Management barbican barbican-api
barbican-worker

Identity and Authentication keystone keystone-api

Orchestration

Orchestration heat heat-api
heat-api-cfn
heat-api-cloudwatch
heat-engine

Operations

110 Services and Service Components SUSE OpenStack Cloud 8

Type Service Service Components

Telemetry ceilometer ceilometer-agent-
notification
ceilometer-api
ceilometer-common
ceilometer-polling

Backup and Recovery freezer freezer-agent
freezer-api

Cloud Lifecycle Manager ardana ardana-ux-services
lifecycle-manager
lifecycle-manager-target

Dashboard horizon horizon

Centralized Logging logging logging-api
logging-producer
logging-rotate
logging-server

Monitoring monasca monasca-agent
monasca-api
monasca-dashboard
monasca-liveness-check
monasca-notifier
monasca-persister
monasca-threshold
monasca-transform

Operations Console operations ops-console-web

Openstack Functional Test
Suite

tempest tempest

Foundation

OpenStack Clients clients barbican-client
ceilometer-client
cinder-client
designate-client
glance-client
heat-client
ironic-client

111 Services and Service Components SUSE OpenStack Cloud 8

Type Service Service Components

keystone-client
monasca-client
neutron-client
nova-client
openstack-client
swift-client

Supporting Services foundation apache2
bind
bind-ext
influxdb
ip-cluster
kafka
memcached
mysql
ntp-client
ntp-server
openvswitch
powerdns
powerdns-ext
rabbitmq
spark
storm
cassandra
zookeeper

7.2 Name Generation
Names are generated by the configuration processor for all allocated IP addresses. A server
connected to multiple networks will have multiple names associated with it. One of these may
be assigned as the hostname for a server via the network-group configuration (see Section 6.12,

“NIC Mappings”). Names are generated from data taken from various parts of the input model as
described in the following sections.

Clusters

Names generated for servers in a cluster have the following form:

CLOUD-CONTROL-PLANE-CLUSTERMEMBER-PREFIXMEMBER_ID-NETWORK

112 Name Generation SUSE OpenStack Cloud 8

Example: ardana-cp1-core-m1-mgmt

Name Description

CLOUD Comes from the hostname-data section of the
cloud object (see Section 6.1, “Cloud Configura-

tion”)

CONTROL-PLANE is the control-plane prefix or name (see Sec-

tion 6.2, “Control Plane”)

CLUSTER is the cluster-prefix name (see Section 6.2.1, “

Clusters”)

member-prefix comes from the hostname-data section of the
cloud object (see Section 6.1, “Cloud Configura-

tion”)

member_id is the ordinal within the cluster, generated by
the configuration processor as servers are al-
located to the cluster

network comes from the hostname-suffix of the network
group to which the network belongs (see Sec-

tion 6.12, “NIC Mappings”).

Resource Nodes

Names generated for servers in a resource group have the following form:

CLOUD-CONTROL-PLANE-RESOURCE-PREFIXMEMBER_ID-NETWORK

Example: ardana-cp1-comp0001-mgmt

Name Description

CLOUD comes from the hostname-data section of the
cloud object (see Section 6.1, “Cloud Configura-

tion”).

CONTROL-PLANE is the control-plane prefix or name (see Sec-

tion 6.2, “Control Plane”).

113 Name Generation SUSE OpenStack Cloud 8

Name Description

RESOURCE-PREFIX is the resource-prefix value name (see Sec-

tion 6.2.2, “Resources”).

MEMBER_ID is the ordinal within the cluster, generated by
the configuration processor as servers are al-
located to the cluster, padded with leading ze-
roes to four digits.

NETWORK comes from the hostname-suffix of the network
group to which the network belongs to (see
Section 6.12, “NIC Mappings”)

7.3 Persisted Data

The configuration processor makes allocation decisions on servers and IP addresses which it
needs to remember between successive runs so that if new servers are added to the input model
they do not disrupt the previously deployed allocations.

To allow users to make multiple iterations of the input model before deployment SUSE OpenS-
tack Cloud will only persist data when the administrator confirms that they are about to de-
ploy the results via the "ready-deployment" operation. To understand this better, consider the
following example:

Imagine you have completed your SUSE OpenStack Cloud deployment with servers A, B, and C
and you want to add two new compute nodes by adding servers D and E to the input model.

When you add these to the input model and re-run the configuration processor it will read the
persisted data for A, B, and C and allocate D and E as new servers. The configuration processor
now has allocation data for A, B, C, D, and E -- which it keeps in a staging area (actually a
special branch in Git) until we get confirmation that the configuration processor has done what
you intended and you are ready to deploy the revised configuration.

If you notice that the role of E is wrong and it became a Swift node instead of a Nova node you
need to be able to change the input model and re-run the configuration processor. This is ne
because the allocations of D and E have not been confirmed, and so the configuration processor
will re-read the data about A, B, C and re-allocate D and E now to the correct clusters, updating
the persisted data in the staging area.

114 Persisted Data SUSE OpenStack Cloud 8

You can loop though this as many times as needed. Each time, the configuration processor is
processing the deltas to what is deployed, not the results of the previous run. When you are
ready to use the results of the configuration processor, you run ready-deployment.yml which
commits the data in the staging area into the persisted data. The next run of the configuration
processor will then start from the persisted data for A, B, C, D, and E.

7.3.1 Persisted Server Allocations

Server allocations are persisted by the administrator-defined server ID (see Section 6.5, “Servers”),
and include the control plane, cluster/resource name, and ordinal within the cluster or resource
group.

To guard against data loss, the configuration processor persists server allocations even when the
server ID no longer exists in the input model -- for example, if a server was removed accidentally
and the configuration processor allocated a new server to the same ordinal, then it would be
very difficult to recover from that situation.

The following example illustrates the behavior:

A cloud is deployed with four servers with IDs of A, B, C, and D that can all be used in a resource
group with min-size=0 and max-size=3 . At the end of this deployment they persisted state
is as follows:

ID Control
Plane

Resource
Group

Ordinal State Deployed As

A ccp compute 1 Allocated mycloud-ccp-
comp0001

B ccp compute 2 Allocated mycloud-ccp-
comp0002

C ccp compute 3 Allocated mycloud-ccp-
comp0003

D Available

(In this example server D has not been allocated because the group is at its max size, and there
are no other groups that required this server)

115 Persisted Server Allocations SUSE OpenStack Cloud 8

If server B is removed from the input model and the configuration processor is re-run, the state
is changed to:

ID Control
Plane

Resource
Group

Ordinal State Deployed As

A ccp compute 1 Allocated mycloud-ccp-
comp0001

B ccp compute 2 Deleted

C ccp compute 3 Allocated mycloud-ccp-
comp0003

D ccp compute 4 Allocated mycloud-ccp-
comp0004

The details associated with server B are still retained, but the configuration processor will not
generate any deployment data for this server. Server D has been added to the group to meet the
minimum size requirement but has been given a different ordinal and hence will get different
names and IP addresses than were given to server B.

If server B is added back into the input model the resulting state will be:

ID Control
Plane

Resource
Group

Ordinal State Deployed As

A ccp compute 1 Allocated mycloud-ccp-
comp0001

B ccp compute 2 Deleted

C ccp compute 3 Allocated mycloud-ccp-
comp0003

D ccp compute 4 Allocated mycloud-ccp-
comp0004

The configuration processor will issue a warning that server B cannot be returned to the compute
group because it would exceed the max-size constraint. However, because the configuration
processor knows that server B is associated with this group it will not allocate it to any other
group that could use it, since that might lead to data loss on that server.

116 Persisted Server Allocations SUSE OpenStack Cloud 8

If the max-size value of the group was increased, then server B would be allocated back to the
group, with its previous name and addresses (mycloud-cp1-compute0002).

Note that the configuration processor relies on the server ID to identify a physical server. If the ID
value of a server is changed the configuration processor will treat it as a new server. Conversely,
if a different physical server is added with the same ID as a deleted server the configuration
processor will assume that it is the original server being returned to the model.

You can force the removal of persisted data for servers that are no longer in the input model by
running the configuration processor with the remove_deleted_servers option, like below:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml \
-e remove_deleted_servers="y"

7.3.2 Persisted Address Allocations

The configuration processor persists IP address allocations by the generated name (see Section 7.2,

“Name Generation” for how names are generated). As with servers. once an address has been
allocated that address will remain allocated until the configuration processor is explicitly told
that it is no longer required. The configuration processor will generate warnings for addresses
that are persisted but no longer used.

You can remove persisted address allocations that are no longer used in the input model by
running the configuration processor with the free_unused_addresses option, like below:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml \
-e free_unused_addresses="y"

117 Persisted Address Allocations SUSE OpenStack Cloud 8

7.4 Server Allocation
The configuration processor allocates servers to a cluster or resource group in the following
sequence:

1. Any servers that are persisted with a state of "allocated" are rst returned to the cluster
or resource group. Such servers are always allocated even if this contradicts the cluster
size, failure-zones, or list of server roles since it is assumed that these servers are actively
deployed.

2. If the cluster or resource group is still below its minimum size, then any servers that are
persisted with a state of "deleted", but where the server is now listed in the input model
(that is, the server was removed but is now back), are added to the group providing they
meet the failure-zone and server-role criteria. If they do not meet the criteria then a warning
is given and the server remains in a deleted state (that is, it is still not allocated to any
other cluster or group). These servers are not part of the current deployment, and so you
must resolve any conflicts before they can be redeployed.

3. If the cluster or resource group is still below its minimum size, the configuration processor
will allocate additional servers that meet the failure-zone and server-role criteria. If the al-
location policy is set to "strict" then the failure zones of servers already in the cluster or
resource group are not considered until an equal number of servers has been allocated
from each zone.

7.5 Server Network Selection
Once the configuration processor has allocated a server to a cluster or resource group it uses the
information in the associated interface-model to determine which networks need to be configured.
It does this by:

1. Looking at the service-components that are to run on the server (from the control-plane
definition)

2. Looking to see which network-group each of those components is attached to (from the
network-groups definition)

3. Looking to see if there are any network-tags related to a service-component running on this
server, and if so, adding those network-groups to the list (also from the network-groups
definition)

118 Server Allocation SUSE OpenStack Cloud 8

4. Looking to see if there are any network-groups that the interface-model says should be forced
onto the server

5. It then searches the server-group hierarchy (as described in Section 5.2.9.2, “Server Groups

and Networks”) to nd a network in each of the network-groups it needs to attach to

If there is no network available to a server, either because the interface-model does not include
the required network-group, or there is no network from that group in the appropriate part of the
server-groups hierarchy, then the configuration processor will generate an error.

The configuration processor will also generate an error if the server address does not match any
of the networks it will be connected to.

7.6 Network Route Validation

Once the configuration processor has allocated all of the required servers and matched them
to the appropriate networks, it validates that all service-components have the required network
routes to other service-components.

It does this by using the data in the services section of the input model which provides details
of which service-components need to connect to each other. This data is not configurable by the
administrator; however, it is provided as part of the SUSE OpenStack Cloud release.

For each server, the configuration processor looks at the list of service-components it runs and
determines the network addresses of every other service-component it needs to connect to (de-
pending on the service, this might be a virtual IP address on a load balancer or a set of addresses
for the service).

If the target address is on a network that this server is connected to, then there is no routing
required. If the target address is on a different network, then the Configuration Processor looks
at each network the server is connected to and looks at the routes defined in the corresponding
network-group. If the network-group provides a route to the network-group of the target address,
then that route is considered valid.

Networks within the same network-group are always considered as routed to each other; net-
works from different network-groups must have an explicit entry in the routes stanza of the
network-group definition. Routes to a named network-group are always considered before a "de-
fault" route.

119 Network Route Validation SUSE OpenStack Cloud 8

A warning is given for any routes which are using the "default" route since it is possible that the
user did not intend to route this traffic. Such warning can be removed by adding the appropriate
network-group to the list of routes.

The configuration processor provides details of all routes between networks that it is expecting
to be configured in the info/route_info.yml le.

To illustrate how network routing is defined in the input model, consider the following example:

A compute server is configured to run nova-compute which requires access to the Neutron API
servers and a block storage service. The Neutron API servers have a virtual IP address provided
by a load balancer in the INTERNAL-API network-group and the storage service is connected
to the ISCSI network-group. Nova-compute itself is part of the set of components attached by
default to the MANAGEMENT network-group. The intention is to have virtual machines on the
compute server connect to the block storage via the ISCSI network.

The physical network is shown below:

The corresponding entries in the network-groups are:

 - name: INTERNAL-API
 hostname-suffix: intapi

 load-balancers:
 - provider: ip-cluster
 name: lb
 components:
 - default
 roles:
 - internal
 - admin

 - name: MANAGEMENT

120 Network Route Validation SUSE OpenStack Cloud 8

 hostname-suffix: mgmt
 hostname: true

 component-endpoints:
 - default

 routes:
 - INTERNAL-API
 - default

 - name: ISCSI
 hostname-suffix: iscsi

 component-endpoints:
 - storage service

And the interface-model for the compute server looks like this:

 - name: INTERFACE_SET_COMPUTE
 network-interfaces:
 - name: BOND0
 device:
 name: bond0
 bond-data:
 options:
 mode: active-backup
 miimon: 200
 primary: hed5
 provider: linux
 devices:
 - name: hed4
 - name: hed5
 network-groups:
 - MANAGEMENT
 - ISCSI

When validating the route from nova-compute to the Neutron API, the configuration processor
will detect that the target address is on a network in the INTERNAL-API network group, and
that the MANAGEMENT network (which is connected to the compute server) provides a route
to this network, and thus considers this route valid.

When validating the route from nova-compute to a storage service, the configuration processor
will detect that the target address is on a network in the ISCSInetwork group. However, because
there is no service component on the compute server connected to the ISCSI network (accord-
ing to the network-group definition) the ISCSI network will not have been configured on the
compute server (see Section 7.5, “Server Network Selection”. The configuration processor will detect

121 Network Route Validation SUSE OpenStack Cloud 8

that the MANAGEMENT network-group provides a "default" route and thus considers the route
as valid (it is, of course, valid to route ISCSI traffic). However, because this is using the default
route, a warning will be issued:

route-generator-2.0 WRN: Default routing used between networks
The following networks are using a 'default' route rule. To remove this warning
either add an explicit route in the source network group or force the network to
attach in the interface model used by the servers.
 MANAGEMENT-NET-RACK1 to ISCSI-NET
 ardana-ccp-comp0001
 MANAGEMENT-NET-RACK 2 to ISCSI-NET
 ardana-ccp-comp0002
 MANAGEMENT-NET-RACK 3 to SCSI-NET
 ardana-ccp-comp0003

To remove this warning, you can either add ISCSI to the list of routes in the MANAGEMENT
network group (routed ISCSI traffic is still a valid configuration) or force the compute server to
attach to the ISCSI network-group by adding it as a forced-network-group in the interface-model,
like this:

 - name: INTERFACE_SET_COMPUTE
 network-interfaces:
 - name: BOND0
 device:
 name: bond0
 bond-data:
 options:
 mode: active-backup
 miimon: 200
 primary: hed5
 provider: linux
 devices:
 - name: hed4
 - name: hed5
 network-groups:
 - MANAGEMENT
 forced-network-groups:
 - ISCSI

With the attachment to the ISCSI network group forced, the configuration processor will attach
the compute server to a network in that group and validate the route as either being direct or
between networks in the same network-group.

The generated route_info.yml le will include entries such as the following, showing the
routes that are still expected to be configured between networks in the MANAGEMENT network
group and the INTERNAL-API network group.

122 Network Route Validation SUSE OpenStack Cloud 8

 MANAGEMENT-NET-RACK1:
 INTERNAL-API-NET:
 default: false
 used_by:
 nova-compute:
 neutron-server:
 - ardana-ccp-comp0001
 MANAGEMENT-NET-RACK2:
 INTERNAL-API-NET:
 default: false
 used_by:
 nova-compute:
 neutron-server:
 - ardana-ccp-comp0003

7.7 Configuring Neutron Provider VLANs
Neutron provider VLANs are networks that map directly to an 802.1Q VLAN in the cloud
provider’s physical network infrastructure. There are four aspects to a provider VLAN configu-
ration:

Network infrastructure configuration (for example, the top-of-rack switch)

Server networking configuration (for compute nodes and Neutron network nodes)

Neutron configuration le settings

Creation of the corresponding network objects in Neutron

The physical network infrastructure must be configured to convey the provider VLAN traffic as
tagged VLANs to the cloud compute nodes and Neutron network nodes. Configuration of the
physical network infrastructure is outside the scope of the SUSE OpenStack Cloud 8 software.

SUSE OpenStack Cloud 8 automates the server networking configuration and the Neutron con-
figuration based on information in the cloud definition. To configure the system for provider
VLANs, specify the neutron.networks.vlan tag with a provider-physical-network at-
tribute on one or more network-groups as described in Section 6.13.2, “Network Tags”. For example
(some attributes omitted for brevity):

 network-groups:

 - name: NET_GROUP_A
 tags:

123 Configuring Neutron Provider VLANs SUSE OpenStack Cloud 8

 - neutron.networks.vlan:
 provider-physical-network: physnet1

 - name: NET_GROUP_B
 tags:
 - neutron.networks.vlan:
 provider-physical-network: physnet2

A network-group is associated with a server network interface via an interface-model as described
in Section 6.11, “Interface Models”. For example (some attributes omitted for brevity):

 interface-models:
 - name: INTERFACE_SET_X
 network-interfaces:
 - device:
 name: bond0
 network-groups:
 - NET_GROUP_A
 - device:
 name: hed3
 network-groups:
 - NET_GROUP_B

A network-group used for provider VLANs may contain only a single SUSE OpenStack Cloud
network, because that VLAN must span all compute nodes and any Neutron network nodes/
controllers (that is, it is a single L2 segment). The SUSE OpenStack Cloud network must be
defined with tagged-vlan: false , otherwise a Linux VLAN network interface will be created.
For example:

 networks:
 - name: NET_A
 tagged-vlan: false
 network-group: NET_GROUP_A
 - name: NET_B
 tagged-vlan: false
 network-group: NET_GROUP_B

When the cloud is deployed, SUSE OpenStack Cloud 8 will create the appropriate bridges on
the servers, and set the appropriate attributes in the Neutron configuration les (for example,
bridge_mappings).

After the cloud has been deployed, create Neutron network objects for each provider VLAN
using the Neutron CLI:

tux > sudo neutron net-create --provider:network_type vlan \

124 Configuring Neutron Provider VLANs SUSE OpenStack Cloud 8

--provider:physical_network PHYSNET1 --provider:segmentation_id 101 MYNET101

tux > sudo neutron net-create --provider:network_type vlan \
--provider:physical_network PHYSNET2 --provider:segmentation_id 234 MYNET234

7.8 Standalone Cloud Lifecycle Manager
All the example configurations use a “deployer-in-the-cloud” scenario where the rst controller
is also the deployer/Cloud Lifecycle Manager. If you want to use a standalone Cloud Lifecy-
cle Manager, you need to add the relevant details in control_plane.yml , servers.yml and
related configuration les. Detailed instructions are available at Section 12.1, “Using a Dedicated

Cloud Lifecycle Manager Node”.

125 Standalone Cloud Lifecycle Manager SUSE OpenStack Cloud 8

8 Configuration Processor Information Files

In addition to producing all of the data needed to deploy and configure the cloud, the configu-
ration processor also creates a number of information les that provide details of the resulting
configuration.

These les can be found in ~/openstack/my_cloud/info after the rst configuration processor
run. This directory is also rebuilt each time the Configuration Processor is run.

Most of the les are in YAML format, allowing them to be used in further automation tasks if
required.

File Provides details of

address_info.yml IP address assignments on each network. See
Section 8.1, “address_info.yml”

firewall_info.yml All ports that are open on each network by
the firewall configuration. Can be used if you
want to configure an additional firewall in
front of the API network, for example. See Sec-

tion 8.2, “firewall_info.yml”

route_info.yml Routes that need to be configured between
networks. See Section 8.3, “route_info.yml”

server_info.yml How servers have been allocated, including
their network configuration. Allows details of
a server to be found from its ID. See Section 8.4,

“server_info.yml”

service_info.yml Details of where components of each service
are deployed. See Section 8.5, “service_info.yml”

control_plane_topology.yml Details the structure of the cloud from the per-
spective of each control-plane. See Section 8.6,

“control_plane_topology.yml”

network_topology.yml Details the structure of the cloud from the per-
spective of each control-plane. See Section 8.7,

“network_topology.yml”

126 SUSE OpenStack Cloud 8

File Provides details of

region_topology.yml Details the structure of the cloud from the
perspective of each region. See Section 8.8, “re-

gion_topology.yml”

service_topology.yml Details the structure of the cloud from the per-
spective of each service. See Section 8.9, “ser-

vice_topology.yml”

private_data_metadata_ccp.yml Details the secrets that are generated by the
configuration processor – the names of the se-
crets, along with the service(s) that use each
secret and a list of the clusters on which
the service that consumes the secret is de-
ployed. See Section 8.10, “private_data_metada-

ta_ccp.yml”

password_change.yml Details the secrets that have been changed
by the configuration processor – informa-
tion for each secret is the same as for
private_data_metadata_ccp.yml . See Sec-

tion 8.11, “password_change.yml”

explain.txt An explanation of the decisions the config-
uration processor has made when allocating
servers and networks. See Section 8.12, “ex-

plain.txt”

CloudDiagram.txt A pictorial representation of the cloud. See
Section 8.13, “CloudDiagram.txt”

The examples are taken from the entry-scale-kvm example configuration.

8.1 address_info.yml
This le provides details of all the IP addresses allocated by the Configuration Processor:

 NETWORK GROUPS

127 address_info.yml SUSE OpenStack Cloud 8

 LIST OF NETWORKS
 IP ADDRESS
 LIST OF ALIASES

Example:

 EXTERNAL-API:
 EXTERNAL-API-NET:
 10.0.1.2:
 - ardana-cp1-c1-m1-extapi
 10.0.1.3:
 - ardana-cp1-c1-m2-extapi
 10.0.1.4:
 - ardana-cp1-c1-m3-extapi
 10.0.1.5:
 - ardana-cp1-vip-public-SWF-PRX-extapi
 - ardana-cp1-vip-public-FRE-API-extapi
 - ardana-cp1-vip-public-GLA-API-extapi
 - ardana-cp1-vip-public-HEA-ACW-extapi
 - ardana-cp1-vip-public-HEA-ACF-extapi
 - ardana-cp1-vip-public-NEU-SVR-extapi
 - ardana-cp1-vip-public-KEY-API-extapi
 - ardana-cp1-vip-public-MON-API-extapi
 - ardana-cp1-vip-public-HEA-API-extapi
 - ardana-cp1-vip-public-NOV-API-extapi
 - ardana-cp1-vip-public-CND-API-extapi
 - ardana-cp1-vip-public-CEI-API-extapi
 - ardana-cp1-vip-public-SHP-API-extapi
 - ardana-cp1-vip-public-OPS-WEB-extapi
 - ardana-cp1-vip-public-HZN-WEB-extapi
 - ardana-cp1-vip-public-NOV-VNC-extapi
 EXTERNAL-VM:
 EXTERNAL-VM-NET: {}
 GUEST:
 GUEST-NET:
 10.1.1.2:
 - ardana-cp1-c1-m1-guest
 10.1.1.3:
 - ardana-cp1-c1-m2-guest
 10.1.1.4:
 - ardana-cp1-c1-m3-guest
 10.1.1.5:
 - ardana-cp1-comp0001-guest
 MANAGEMENT:
 ...

128 address_info.yml SUSE OpenStack Cloud 8

8.2 firewall_info.yml
This le provides details of all the network ports that will be opened on the deployed cloud.
Data is ordered by network. If you want to configure an external firewall in front of the External
API network, then you would need to open the ports listed in that section.

 NETWORK NAME
 List of:
 PORT
 PROTOCOL
 LIST OF IP ADDRESSES
 LIST OF COMPONENTS

Example:

 EXTERNAL-API:
 - addresses:
 - 10.0.1.5
 components:
 - horizon
 port: '443'
 protocol: tcp
 - addresses:
 - 10.0.1.5
 components:
 - keystone-api
 port: '5000'
 protocol: tcp

Port 443 (tcp) is open on network EXTERNAL-API for address 10.0.1.5 because it is used by Horizon

Port 5000 (tcp) is open on network EXTERNAL-API for address 10.0.1.5 because it is used by Keystone
API

8.3 route_info.yml
This le provides details of routes between networks that need to be configured. Available routes
are defined in the input model as part of the network-groups data; this le shows which routes will
actually be used. SUSE OpenStack Cloud will reconfigure routing rules on the servers, you must
configure the corresponding routes within your physical network. Routes must be configured to
be symmetrical -- only the direction in which a connection is initiated is captured in this le.

Note that simple models may not require any routes, with all servers being attached to common
L3 networks. The following example is taken from the tech-preview/mid-scale-kvm example.

129 firewall_info.yml SUSE OpenStack Cloud 8

 SOURCE-NETWORK-NAME
 TARGET-NETWORK-NAME
 default: TRUE IF THIS IS THIS THE RESULT OF A "DEFAULT" ROUTE RULE
 used_by:
 SOURCE-SERVICE
 TARGET-SERVICE
 LIST OF HOSTS USING THIS ROUTE

Example:

MANAGEMENT-NET-RACK1:
 INTERNAL-API-NET:
 default: false
 used_by:
 ceilometer-client:
 ceilometer-api:
 - ardana-cp1-mtrmon-m1
 keystone-api:
 - ardana-cp1-mtrmon-m1
 MANAGEMENT-NET-RACK2:
 default: false
 used_by:
 cinder-backup:
 rabbitmq:
 - ardana-cp1-core-m1

A route is required from network MANAGEMENT-NET-RACK1 to network INTERNAL-API-NET
so that ceilometer-client can connect to ceilometer-api from server ardana-cp1-mtrmon-m1
and to keystone-api from the same server.

A route is required from network MANAGEMENT-NET-RACK1 to network MANAGE-
MENT-NET-RACK2 so that cinder-backup can connect to rabbitmq from server ardana-cp1-
core-m1

8.4 server_info.yml
This le provides details of how servers have been allocated by the Configuration Processor.
This provides the easiest way to nd where a specific physical server (identified by server-id)
is being used.

 SERVER-ID
 failure-zone: FAILURE ZONE THAT THE SERVER WAS ALLOCATED FROM
 hostname: HOSTNAME OF THE SERVER

130 server_info.yml SUSE OpenStack Cloud 8

 net_data: NETWORK CONFIGURATION
 state: "allocated" | "available"

Example:

 controller1:
 failure-zone: AZ1
 hostname: ardana-cp1-c1-m1-mgmt
 net_data:
 BOND0:
 EXTERNAL-API-NET:
 addr: 10.0.1.2
 tagged-vlan: true
 vlan-id: 101
 EXTERNAL-VM-NET:
 addr: null
 tagged-vlan: true
 vlan-id: 102
 GUEST-NET:
 addr: 10.1.1.2
 tagged-vlan: true
 vlan-id: 103
 MANAGEMENT-NET:
 addr: 192.168.10.3
 tagged-vlan: false
 vlan-id: 100
 state: allocated

8.5 service_info.yml
This le provides details of how services are distributed across the cloud.

 CONTROL-PLANE
 SERVICE
 SERVICE COMPONENT
 LIST OF HOSTS

Example:

 control-plane-1:
 neutron:
 neutron-client:
 - ardana-cp1-c1-m1-mgmt
 - ardana-cp1-c1-m2-mgmt
 - ardana-cp1-c1-m3-mgmt

131 service_info.yml SUSE OpenStack Cloud 8

 neutron-dhcp-agent:
 - ardana-cp1-c1-m1-mgmt
 - ardana-cp1-c1-m2-mgmt
 - ardana-cp1-c1-m3-mgmt
 neutron-l3-agent:
 - ardana-cp1-comp0001-mgmt
 neutron-lbaasv2-agent:
 - ardana-cp1-comp0001-mgmt
 ...

8.6 control_plane_topology.yml
This le provides details of the topology of the cloud from the perspective of each control plane:

control_planes:
 CONTROL-PLANE-NAME
 load-balancers:
 LOAD-BALANCER-NAME:
 address: IP ADDRESS OF VIP
 cert-file: NAME OF CERT FILE
 external-name: NAME TO USED FOR ENDPOINTS
 network: NAME OF THE NETWORK THIS LB IS CONNECTED TO
 network_group: NAME OF THE NETWORK GROUP THIS LB IS CONNECT TO
 provider: SERVICE COMPONENT PROVIDING THE LB
 roles: LIST OF ROLES OF THIS LB
 services:
 SERVICE-NAME:
 COMPONENT-NAME:
 aliases:
 ROLE: NAME IN /etc/hosts
 host-tls: BOOLEAN, TRUE IF CONNECTION FROM LB USES TLS
 hosts: LIST OF HOSTS FOR THIS SERVICE
 port: PORT USED FOR THIS COMPONENT
 vip-tls: BOOLEAN, TRUE IF THE VIP TERMINATES TLS
 clusters:
 CLUSTER-NAME
 failure-zones:
 FAILURE-ZONE-NAME:
 LIST OF HOSTS
 services:
 SERVICE NAME:
 components:
 LIST OF SERVICE COMPONENTS
 regions:
 LIST OF REGION NAMES

132 control_plane_topology.yml SUSE OpenStack Cloud 8

 resources:
 RESOURCE-NAME:
 AS FOR CLUSTERS ABOVE

Example:

 control_planes:
 control-plane-1:
 clusters:
 cluster1:
 failure_zones:
 AZ1:
 - ardana-cp1-c1-m1-mgmt
 AZ2:
 - ardana-cp1-c1-m2-mgmt
 AZ3:
 - ardana-cp1-c1-m3-mgmt
 services:
 barbican:
 components:
 - barbican-api
 - barbican-worker
 regions:
 - region1
 …
 load-balancers:
 extlb:
 address: 10.0.1.5
 cert-file: my-public-entry-scale-kvm-cert
 external-name: ''
 network: EXTERNAL-API-NET
 network-group: EXTERNAL-API
 provider: ip-cluster
 roles:
 - public
 services:
 barbican:
 barbican-api:
 aliases:
 public: ardana-cp1-vip-public-KEYMGR-API-extapi
 host-tls: true
 hosts:
 - ardana-cp1-c1-m1-mgmt
 - ardana-cp1-c1-m2-mgmt
 - ardana-cp1-c1-m3-mgmt
 port: '9311'
 vip-tls: true

133 control_plane_topology.yml SUSE OpenStack Cloud 8

8.7 network_topology.yml
This le provides details of the topology of the cloud from the perspective of each net-
work_group:

network-groups:
 NETWORK-GROUP-NAME:
 NETWORK-NAME:
 control-planes:
 CONTROL-PLANE-NAME:
 clusters:
 CLUSTER-NAME:
 servers:
 ARDANA-SERVER-NAME: ip address
 vips:
 IP ADDRESS: load balancer name
 resources:
 RESOURCE-GROUP-NAME:
 servers:
 ARDANA-SERVER-NAME: ip address

Example:

 network_groups:
 EXTERNAL-API:
 EXTERNAL-API-NET:
 control_planes:
 control-plane-1:
 clusters:
 cluster1:
 servers:
 ardana-cp1-c1-m1: 10.0.1.2
 ardana-cp1-c1-m2: 10.0.1.3
 ardana-cp1-c1-m3: 10.0.1.4
 vips:
 10.0.1.5: extlb
 EXTERNAL-VM:
 EXTERNAL-VM-NET:
 control_planes:
 control-plane-1:
 clusters:
 cluster1:
 servers:
 ardana-cp1-c1-m1: null
 ardana-cp1-c1-m2: null
 ardana-cp1-c1-m3: null
 resources:

134 network_topology.yml SUSE OpenStack Cloud 8

 compute:
 servers:
 ardana-cp1-comp0001: null

8.8 region_topology.yml
This le provides details of the topology of the cloud from the perspective of each region. In
SUSE OpenStack Cloud, multiple regions are not supported. Only Region0 is valid.

regions:
 REGION-NAME:
 control-planes:
 CONTROL-PLANE-NAME:
 services:
 SERVICE-NAME:
 LIST OF SERVICE COMPONENTS

Example:

regions:
 region0:
 control-planes:
 control-plane-1:
 services:
 barbican:
 - barbican-api
 - barbican-worker
 ceilometer:
 - ceilometer-common
 - ceilometer-agent-notification
 - ceilometer-api
 - ceilometer-polling
 cinder:
 - cinder-api
 - cinder-volume
 - cinder-scheduler
 - cinder-backup

8.9 service_topology.yml
This le provides details of the topology of the cloud from the perspective of each service:

services:

135 region_topology.yml SUSE OpenStack Cloud 8

 SERVICE-NAME:
 components:
 COMPONENT-NAME:
 control-planes:
 CONTROL-PLANE-NAME:
 clusters:
 CLUSTER-NAME:
 LIST OF SERVERS
 resources:
 RESOURCE-GROUP-NAME:
 LIST OF SERVERS
 regions:
 LIST OF REGIONS

Example:

services:
 freezer:
 components:
 freezer-agent:
 control_planes:
 control-plane-1:
 clusters:
 cluster1:
 - ardana-cp1-c1-m1-mgmt
 - ardana-cp1-c1-m2-mgmt
 - ardana-cp1-c1-m3-mgmt
 regions:
 - region1
 resources:
 compute:
 - ardana-cp1-comp0001-mgmt
 regions:
 - region1

8.10 private_data_metadata_ccp.yml
This le provide details of the secrets that are generated by the configuration processor. The
details include:

The names of each secret

Metadata about each secret. This is a list where each element contains details about each
component service that uses the secret.

136 private_data_metadata_ccp.yml SUSE OpenStack Cloud 8

The component service that uses the secret, and if applicable the service that this
component "consumes" when using the secret

The list of clusters on which the component service is deployed

The control plane cp on which the services are deployed

A version number (the model version number)

 SECRET
 METADATA
 LIST OF METADATA
 CLUSTERS
 LIST OF CLUSTERS
 COMPONENT
 CONSUMES
 CONTROL-PLANE
 VERSION

For example:

barbican_admin_password:
 metadata:
 - clusters:
 - cluster1
 component: barbican-api
 cp: ccp
 version: '2.0'
keystone_swift_password:
 metadata:
 - clusters:
 - cluster1
 component: swift-proxy
 consumes: keystone-api
 cp: ccp
 version: '2.0'
metadata_proxy_shared_secret:
 metadata:
 - clusters:
 - cluster1
 component: nova-metadata
 cp: ccp
 - clusters:
 - cluster1
 - compute
 component: neutron-metadata-agent
 cp: ccp

137 private_data_metadata_ccp.yml SUSE OpenStack Cloud 8

 version: '2.0'
 …

8.11 password_change.yml
This le provides details equivalent to those in private_data_metadata_ccp.yml for passwords
which have been changed from their original values, using the procedure outlined in the SUSE
OpenStack Cloud documentation

8.12 explain.txt
This le provides details of the server allocation and network configuration decisions the con-
figuration processor has made. The sequence of information recorded is:

Any service components that are automatically added

Allocation of servers to clusters and resource groups

Resolution of the network configuration for each server

Resolution of the network configuration of each load balancer

Example:

 Add required services to control plane control-plane-1
 ==
 control-plane-1: Added nova-metadata required by nova-api
 control-plane-1: Added swift-common required by swift-proxy
 control-plane-1: Added swift-rsync required by swift-account

 Allocate Servers for control plane control-plane-1
 ==

 cluster: cluster1

 Persisted allocation for server 'controller1' (AZ1)
 Persisted allocation for server 'controller2' (AZ2)
 Searching for server with role ['CONTROLLER-ROLE'] in zones: set(['AZ3'])
 Allocated server 'controller3' (AZ3)

 resource: compute

 Persisted allocation for server 'compute1' (AZ1)
 Searching for server with role ['COMPUTE-ROLE'] in zones: set(['AZ1', 'AZ2', 'AZ3'])

138 password_change.yml SUSE OpenStack Cloud 8

 Resolve Networks for Servers
 ============================
 server: ardana-cp1-c1-m1

 add EXTERNAL-API for component ip-cluster
 add MANAGEMENT for component ip-cluster
 add MANAGEMENT for lifecycle-manager (default)
 add MANAGEMENT for ntp-server (default)
 ...
 add MANAGEMENT for swift-rsync (default)
 add GUEST for tag neutron.networks.vxlan (neutron-openvswitch-agent)
 add EXTERNAL-VM for tag neutron.l3_agent.external_network_bridge (neutron-vpn-agent)
 Using persisted address 10.0.1.2 for server ardana-cp1-c1-m1 on network EXTERNAL-API-
NET
 Using address 192.168.10.3 for server ardana-cp1-c1-m1 on network MANAGEMENT-NET
 Using persisted address 10.1.1.2 for server ardana-cp1-c1-m1 on network GUEST-NET

 …
 Define load balancers
 =====================

 Load balancer: extlb

 Using persisted address 10.0.1.5 for vip extlb ardana-cp1-vip-extlb-extapi on network
 EXTERNAL-API-NET
 Add nova-api for roles ['public'] due to 'default'
 Add glance-api for roles ['public'] due to 'default'
 ...

 Map load balancers to providers
 ===============================

 Network EXTERNAL-API-NET

 10.0.1.5: ip-cluster nova-api roles: ['public'] vip-port: 8774 host-port: 8774
 10.0.1.5: ip-cluster glance-api roles: ['public'] vip-port: 9292 host-port: 9292
 10.0.1.5: ip-cluster keystone-api roles: ['public'] vip-port: 5000 host-port: 5000
 10.0.1.5: ip-cluster swift-proxy roles: ['public'] vip-port: 8080 host-port: 8080
 10.0.1.5: ip-cluster monasca-api roles: ['public'] vip-port: 8070 host-port: 8070
 10.0.1.5: ip-cluster heat-api-cfn roles: ['public'] vip-port: 8000 host-port: 8000
 10.0.1.5: ip-cluster ops-console-web roles: ['public'] vip-port: 9095 host-port: 9095
 10.0.1.5: ip-cluster heat-api roles: ['public'] vip-port: 8004 host-port: 8004
 10.0.1.5: ip-cluster nova-novncproxy roles: ['public'] vip-port: 6080 host-port: 6080
 10.0.1.5: ip-cluster neutron-server roles: ['public'] vip-port: 9696 host-port: 9696
 10.0.1.5: ip-cluster heat-api-cloudwatch roles: ['public'] vip-port: 8003 host-port:
 8003
 10.0.1.5: ip-cluster ceilometer-api roles: ['public'] vip-port: 8777 host-port: 8777
 10.0.1.5: ip-cluster freezer-api roles: ['public'] vip-port: 9090 host-port: 9090
 10.0.1.5: ip-cluster horizon roles: ['public'] vip-port: 443 host-port: 80
 10.0.1.5: ip-cluster cinder-api roles: ['public'] vip-port: 8776 host-port: 8776

139 explain.txt SUSE OpenStack Cloud 8

8.13 CloudDiagram.txt

This le provides a pictorial representation of the cloud. Although this le is still produced, it
is superseded by the HTML output described in the following section.

8.14 HTML Representation

An HTML representation of the cloud can be found in ~/openstack/my_cloud/html after the
rst Configuration Processor run. This directory is also rebuilt each time the Configuration
Processor is run. These les combine the data in the input model with allocation decisions made
by the Configuration processor to allow the configured cloud to be viewed from a number of
different perspectives.

Most of the entries on the HTML pages provide either links to other parts of the HTML output
or additional details via hover text.

140 CloudDiagram.txt SUSE OpenStack Cloud 8

141 HTML Representation SUSE OpenStack Cloud 8

9 Example Configurations

The SUSE OpenStack Cloud 8 system ships with a collection of pre-qualified example configu-
rations. These are designed to help you to get up and running quickly with a minimum number
of configuration changes.

The SUSE OpenStack Cloud input model allows a wide variety of configuration parameters that
can, at rst glance, appear daunting. The example configurations are designed to simplify this
process by providing pre-built and pre-qualified examples that need only a minimum number
of modifications to get started.

9.1 SUSE OpenStack Cloud Example Configurations
This section briey describes the various example configurations and their capabilities. It also
describes in detail, for the entry-scale-kvm example, how you can adapt the input model to work
in your environment.

The following pre-qualified examples are shipped with SUSE OpenStack Cloud 8:

Name Location

Section 9.3.1, “Entry-Scale Cloud” ~/openstack/examples/entry-scale-kvm

Section 9.3.2, “Entry Scale Cloud with Metering and

Monitoring Services”

~/openstack/examples/entry-scale-kvm-

mml

Section 9.4.1, “Single-Region Entry-Scale Cloud with

a Mix of KVM and ESX Hypervisors”

~/openstack/examples/entry-scale-esx-

kvm

Section 9.4.2, “Single-Region Entry-Scale Cloud with

Metering and Monitoring Services, and a Mix of

KVM and ESX Hypervisors”

~/openstack/examples/entry-scale-esx-

kvm-mml

Section 9.5.1, “Entry-scale Swift Model” ~/openstack/examples/entry-scale-

swift

Section 9.6.1, “Entry-Scale Cloud with Ironic Flat

Network”

~/openstack/examples/entry-scale-

ironic-flat-network

Section 9.6.2, “Entry-Scale Cloud with Ironic Mul-

ti-Tenancy”

~/openstack/examples/entry-scale-

ironic-multi-tenancy

142 SUSE OpenStack Cloud Example Configurations SUSE OpenStack Cloud 8

Name Location

Section 9.3.3, “Single-Region Mid-Size Model” ~/openstack/examples/mid-scale-kvm

The entry-scale systems are designed to provide an entry-level solution that can be scaled from
a small number of nodes to a moderately high node count (approximately 100 compute nodes,
for example).

In the mid-scale model, the cloud control plane is subdivided into a number of dedicated service
clusters to provide more processing power for individual control plane elements. This enables a
greater number of resources to be supported (compute nodes, Swift object servers). This model
also shows how a segmented network can be expressed in the SUSE OpenStack Cloud model.

9.2 Alternative Configurations

In SUSE OpenStack Cloud 8 there are alternative configurations that we recommend for specific
purposes and this section we will outline them.

Section 12.1, “Using a Dedicated Cloud Lifecycle Manager Node”

Section 12.2, “Configuring SUSE OpenStack Cloud without DVR”

Section 12.3, “Configuring SUSE OpenStack Cloud with Provider VLANs and Physical Routers Only”

Section 12.4, “Considerations When Installing Two Systems on One Subnet”

The Ironic multi-tenancy feature uses Neutron to manage the tenant networks. The interaction
between Neutron and the physical switch is facilitated by Neutron's Modular Layer 2 (ML2)
plugin. The Neutron ML2 plugin supports drivers to interact with various networks, as each
vendor may have their own extensions. Those drivers are referred to as Neutron ML2 mechanism
drivers, or simply mechanism drivers.

The Ironic multi-tenancy feature has been validated using OpenStack genericswitch mechanism
driver. However, if the given physical switch requires a different mechanism driver, you must
update the input model accordingly. To update the input model with a custom ML2 mechanism
driver, specify the relevant information in the multi_tenancy_switch_config: section of the
data/ironic/ironic_config.yml le.

143 Alternative Configurations SUSE OpenStack Cloud 8

9.3 KVM Examples

9.3.1 Entry-Scale Cloud

This example deploys an entry-scale cloud.

Control Plane

Cluster1 3 nodes of type CONTROLLER-ROLE run the core OpenStack services, such as
Keystone, Nova API, Glance API, Neutron API, Horizon, and Heat API.

Cloud Lifecycle Manager

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.yml le.

Resource Nodes

Compute One node of type COMPUTE-ROLE runs Nova Compute and associated ser-
vices.

Object Storage Minimal Swift resources are provided by the control plane.

Additional resource nodes can be added to the configuration.

Networking

This example requires the following networks:

IPMI network connected to the lifecycle-manager and the IPMI ports of all servers.

Nodes require a pair of bonded NICs which are used by the following networks:

External API The network for making requests to the cloud.

External VM This network provides access to VMs via floating IP addresses.

Cloud Management This network is used for all internal traffic between the cloud
services. It is also used to install and configure the nodes. The network needs to be
on an untagged VLAN.

Guest The network that carries traffic between VMs on private networks within the
cloud.

144 KVM Examples SUSE OpenStack Cloud 8

The EXTERNAL API network must be reachable from the EXTERNAL VM network for VMs
to be able to make API calls to the cloud.
An example set of networks is defined in data/networks.yml . The le needs to be mod-
ified to reflect your environment.
The example uses the devices hed3 and hed4 as a bonded network interface for all ser-
vices. The name given to a network interface by the system is configured in the le da-
ta/net_interfaces.yml . That le needs to be edited to match your system.

Local Storage

All servers should present a single OS disk, protected by a RAID controller. This disk needs
to be at least 512 GB in capacity. In addition the example configures one additional disk
depending on the role of the server:

Controllers /dev/sdb and /dev/sdc are configured to be used by Swift.

Compute Servers /dev/sdb is configured as an additional Volume Group to be used
for VM storage

Additional disks can be configured for any of these roles by editing the corresponding
data/disks_*.yml le

9.3.2 Entry Scale Cloud with Metering and Monitoring Services

This example deploys an entry-scale cloud that provides metering and monitoring services and
runs the database and messaging services in their own cluster.

Control Plane

Cluster1 2 nodes of type CONTROLLER-ROLE run the core OpenStack services, such
as Keystone, Nova API, Glance API, Neutron API, Horizon, and Heat API.

Cluster2 3 nodes of type MTRMON-ROLE , run the OpenStack services for metering and
monitoring (for example, Ceilometer, Monasca and Logging).

Cluster3 3 nodes of type DBMQ-ROLE that run clustered database and RabbitMQ
services to support the cloud infrastructure. 3 nodes are required for high availability.

Cloud Lifecycle Manager

145 Entry Scale Cloud with Metering and Monitoring Services SUSE OpenStack Cloud 8

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.ymlle.

Resource Nodes

Compute 1 node of type COMPUTE-ROLE runs Nova Compute and associated services.

Object Storage Minimal Swift resources are provided by the control plane.

Additional resource nodes can be added to the configuration.

Networking

This example requires the following networks:

IPMI network connected to the lifecycle-manager and the IPMI ports of all servers.

Nodes require a pair of bonded NICs which are used by the following networks:

External API The network for making requests to the cloud.

External VM The network that provides access to VMs via floating IP addresses.

Cloud Management This is the network that is used for all internal traffic between
the cloud services. It is also used to install and configure the nodes. The network
needs to be on an untagged VLAN.

Guest The network that carries traffic between VMs on private networks within the
cloud.

The EXTERNAL API network must be reachable from the EXTERNAL VM network for VMs
to be able to make API calls to the cloud.
An example set of networks is defined in data/networks.yml . The le needs to be mod-
ified to reflect your environment.
The example uses the devices hed3 and hed4 as a bonded network interface for all ser-
vices. The name given to a network interface by the system is configured in the le da-
ta/net_interfaces.yml . That le needs to be edited to match your system.

Local Storage

146 Entry Scale Cloud with Metering and Monitoring Services SUSE OpenStack Cloud 8

All servers should present a single OS disk, protected by a RAID controller. This disk needs
to be at least 512 GB of capacity. In addition, the example configures one additional disk
depending on the role of the server:

Core Controllers /dev/sdb and /dev/sdc is configured to be used by Swift.

DBMQ Controllers /dev/sdb is configured as an additional Volume Group to be
used by the database and RabbitMQ.

Compute Servers /dev/sdb is configured as an additional Volume Group to be used
for VM storage.

Additional disks can be configured for any of these roles by editing the corresponding
data/disks_*.yml le.

9.3.3 Single-Region Mid-Size Model

The mid-size model is intended as a template for a moderate sized cloud. The Control plane
is made up of multiple server clusters to provide sufficient computational, network and IOPS
capacity for a mid-size production style cloud.

Control Plane

Core Cluster runs core OpenStack Services, such as Keystone, Nova API, Glance API,
Neutron API, Horizon, and Heat API. Default configuration is two nodes of role type
CORE-ROLE .

Metering and Monitoring Cluster runs the OpenStack Services for metering and
monitoring (for example, Ceilometer, Monasca and logging). Default configuration
is three nodes of role type MTRMON-ROLE .

Database and Message Queue Cluster runs clustered MariaDB and RabbitMQ ser-
vices to support the Ardana cloud infrastructure. Default configuration is three nodes
of role type DBMQ-ROLE . Three nodes are required for high availability.

Swift PAC Cluster runs the Swift Proxy, Account and Container services. Default
configuration is three nodes of role type SWPAC-ROLE .

Neutron Agent Cluster Runs Neutron VPN (L3), DHCP, Metadata and OpenVswitch
agents. Default configuration is two nodes of role type NEUTRON-ROLE .

147 Single-Region Mid-Size Model SUSE OpenStack Cloud 8

Cloud Lifecycle Manager

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.yml le.

Resource Nodes

Compute runs Nova Compute and associated services. Runs on nodes of role type
COMPUTE-ROLE . This model lists 3 nodes. 1 node is the minimum requirement.

Object Storage 3 nodes of type SOWBJ-ROLE run the Swift Object service. The min-
imum node count should match your Swift replica count.

The minimum node count required to run this model unmodified is 19 nodes. This can be
reduced by consolidating services on the control plane clusters.

Networking

This example requires the following networks:

IPMI network connected to the lifecycle-manager and the IPMI ports of all servers.

Nodes require a pair of bonded NICs which are used by the following networks:

External API The network for making requests to the cloud.

Internal API This network is used within the cloud for API access between services.

External VM This network provides access to VMs via floating IP addresses.

Cloud Management This network is used for all internal traffic between the cloud
services. It is also used to install and configure the nodes. The network needs to be
on an untagged VLAN.

Guest The network that carries traffic between VMs on private networks within the
cloud.

SWIFT This network is used for internal Swift communications between the Swift
nodes.

The EXTERNAL API network must be reachable from the EXTERNAL VM network for VMs
to be able to make API calls to the cloud.
An example set of networks is defined in data/networks.yml . The le needs to be mod-
ified to reflect your environment.

148 Single-Region Mid-Size Model SUSE OpenStack Cloud 8

The example uses the devices hed3 and hed4 as a bonded network interface for all ser-
vices. The name given to a network interface by the system is configured in the le da-
ta/net_interfaces.yml . That le needs to be edited to match your system.

9.3.3.1 Adapting the Mid-Size Model to Fit Your Environment

The minimum set of changes you need to make to adapt the model for your environment are:

Update servers.yml to list the details of your baremetal servers.

Update the networks.yml le to replace network CIDRs and VLANs with site specific
values.

Update the nic_mappings.yml le to ensure that network devices are mapped to the
correct physical port(s).

Review the disk models (disks_*.yml) and confirm that the associated servers have the
number of disks required by the disk model. The device names in the disk models might
need to be adjusted to match the probe order of your servers. The default number of disks
for the Swift nodes (3 disks) is set low on purpose to facilitate deployment on generic
hardware. For production scale Swift the servers should have more disks. For example,
6 on SWPAC nodes and 12 on SWOBJ nodes. If you allocate more Swift disks then you
should review the ring power in the Swift ring configuration. This is documented in the
Swift section. Disk models are provided as follows:

DISK SET CONTROLLER: Minimum 1 disk

DISK SET DBMQ: Minimum 3 disks

DISK SET COMPUTE: Minimum 2 disks

DISK SET SWPAC: Minimum 3 disks

DISK SET SWOBJ: Minimum 3 disks

Update the netinterfaces.yml le to match the server NICs used in your configuration.
This le has a separate interface model definition for each of the following:

INTERFACE SET CONTROLLER

INTERFACE SET DBMQ

149 Single-Region Mid-Size Model SUSE OpenStack Cloud 8

INTERFACE SET SWPAC

INTERFACE SET SWOBJ

INTERFACE SET COMPUTE

9.4 ESX Examples

9.4.1 Single-Region Entry-Scale Cloud with a Mix of KVM and ESX
Hypervisors

This example deploys a cloud which mixes KVM and ESX hypervisors.

Control Plane

Cluster1 3 nodes of type CONTROLLER-ROLE run the core OpenStack services, such as
Keystone, Nova API, Glance API, Neutron API, Horizon, and Heat API.

Cloud Lifecycle Manager

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.yml le.

Resource Nodes

Compute:

KVM runs Nova Computes and associated services. It runs on nodes of role type
COMPUTE-ROLE .

ESX provides ESX Compute services. OS and software on this node is installed
by user.

ESX Resource Requirements

1. User needs to supply vSphere server

2. User needs to deploy the ovsvapp network resources using the vSphere GUI (Book

“Installing with Cloud Lifecycle Manager”, Chapter 15 “Installing ESX Computes and OVS-

vAPP”, Section 15.8 “Configuring the Required Distributed vSwitches and Port Groups”, Sec-

150 ESX Examples SUSE OpenStack Cloud 8

tion 15.8.2 “Creating ESXi MGMT DVS and Required Portgroup”) by running the neu-
tron-create-ovsvapp-resources.yml playbook (Book “Installing with Cloud Lifecy-

cle Manager”, Chapter 15 “Installing ESX Computes and OVSvAPP”, Section 15.8 “Configuring

the Required Distributed vSwitches and Port Groups”, Section 15.8.3 “Configuring OVSvApp

Network Resources Using Ansible-Playbook”) or via Python-Networking-vSphere (Book

“Installing with Cloud Lifecycle Manager”, Chapter 15 “Installing ESX Computes and OVS-

vAPP”, Section 15.8 “Configuring the Required Distributed vSwitches and Port Groups”, Sec-

tion 15.8.4 “Configuring OVSVAPP Using Python-Networking-vSphere”)
The following DVS and DVPGs need to be created and configured for each cluster in
each ESX hypervisor that will host an OvsVapp appliance. The settings for each DVS
and DVPG are specific to your system and network policies. A JSON le example is
provided in the documentation, but it needs to be edited to match your requirements.

DVS Port Groups assigned to DVS

MGMT MGMT-PG, ESX-CONF-PG, GUEST-PG

TRUNK TRUNK-PG

3. User needs to deploy ovsvapp appliance (OVSVAPP-ROLE) and nova-proxy appliance
(ESX-COMPUTE-ROLE)

4. User needs to add required information related to compute proxy and OVSvApp
Nodes

Networking

This example requires the following networks:

IPMInetwork connected to the lifecycle-manager and the IPMI ports of all nodes,
except the ESX hypervisors.

Nodes require a pair of bonded NICs which are used by the following networks:

External API The network for making requests to the cloud.

External VM The network that provides access to VMs via floating IP addresses.

Cloud Management The network used for all internal traffic between the cloud ser-
vices. It is also used to install and configure the nodes. The network needs to be on
an untagged VLAN.

151

Single-Region Entry-Scale Cloud with a Mix of KVM and ESX Hypervisors SUSE OpenStack

Cloud 8

Guest This network carries traffic between VMs on private networks within the cloud.

SES This is the network that control-plane and compute-node clients use to talk to
the external SUSE Enterprise Storage.

TRUNK is the network that is used to apply security group rules on tenant traffic. It
is managed by the cloud admin and is restricted to the vCenter environment.

ESX-CONF-NET network is used only to configure the ESX compute nodes in the
cloud. This network should be different from the network used with PXE to stand
up the cloud control-plane.

This example's set of networks is defined in data/networks.yml . The le needs to be
modified to reflect your environment.
The example uses the devices hed3 and hed4 as a bonded network interface for all ser-
vices. The name given to a network interface by the system is configured in the le da-
ta/net_interfaces.yml . That le needs to be edited to match your system.

Local Storage

All servers should present a single OS disk, protected by a RAID controller. This disk needs
to be at least 512 GB in capacity. In addition, the example configures additional disk
depending on the node's role:

Controllers /dev/sdb and /dev/sdc are configured to be used by Swift

Compute Servers /dev/sdb is configured as an additional Volume Group to be used
for VM storage

Additional disks can be configured for any of these roles by editing the corresponding
data/disks_*.yml le.

9.4.2 Single-Region Entry-Scale Cloud with Metering and
Monitoring Services, and a Mix of KVM and ESX Hypervisors

This example deploys a cloud which mixes KVM and ESX hypervisors, provides metering and
monitoring services, and runs the database and messaging services in their own cluster.

Control Plane

152

Single-Region Entry-Scale Cloud with Metering and Monitoring Services, and a Mix of KVM and

ESX Hypervisors SUSE OpenStack Cloud 8

Cluster1 2 nodes of type CONTROLLER-ROLE run the core OpenStack services, such
as Keystone, Nova API, Glance API, Neutron API, Horizon, and Heat API.

Cluster2 3 nodes of type MTRMON-ROLE , run the OpenStack services for metering and
monitoring (for example, Ceilometer, Monasca and Logging).

Cluster3 3 nodes of type DBMQ-ROLE , run clustered database and RabbitMQ services
to support the cloud infrastructure. 3 nodes are required for high availability.

Cloud Lifecycle Manager

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.yml le.

Resource Nodes

Compute:

KVM runs Nova Computes and associated services. It runs on nodes of role type
COMPUTE-ROLE .

ESX provides ESX Compute services. OS and software on this node is installed
by user.

ESX Resource Requirements

1. User needs to supply vSphere server

2. User needs to deploy the ovsvapp network resources using the vSphere GUI or by
running the neutron-create-ovsvapp-resources.yml playbook
The following DVS and DVPGs need to be created and configured for each cluster in
each ESX hypervisor that will host an OvsVapp appliance. The settings for each DVS
and DVPG are specific to your system and network policies. A JSON le example is
provided in the documentation, but it needs to be edited to match your requirements.

ESX-CONF (DVS and DVPG) connected to ovsvapp eth0 and compute-proxy
eth0

MANAGEMENT (DVS and DVPG) connected to ovsvapp eth1, eth2, eth3 and
compute-proxy eth1

153

Single-Region Entry-Scale Cloud with Metering and Monitoring Services, and a Mix of KVM and

ESX Hypervisors SUSE OpenStack Cloud 8

3. User needs to deploy ovsvapp appliance (OVSVAPP-ROLE) and nova-proxy appliance
(ESX-COMPUTE-ROLE)

4. User needs to add required information related to compute proxy and OVSvApp
Nodes

Networking

This example requires the following networks:

IPMInetwork connected to the lifecycle-manager and the IPMI ports of all nodes,
except the ESX hypervisors.

Nodes require a pair of bonded NICs which are used by the following networks:

External API The network for making requests to the cloud.

External VM The network that provides access to VMs (via floating IP addresses).

Cloud Management This network is used for all internal traffic between the cloud
services. It is also used to install and configure the nodes. The network needs to be
on an untagged VLAN.

Guest This is the network that will carry traffic between VMs on private networks
within the cloud.

TRUNK is the network that will be used to apply security group rules on tenant traffic.
It is managed by the cloud admin and is restricted to the vCenter environment.

ESX-CONF-NET network is used only to configure the ESX compute nodes in the
cloud. This network should be different from the network used with PXE to stand
up the cloud control-plane.

This example's set of networks is defined in data/networks.yml . The le needs to be
modified to reflect your environment.
The example uses the devices hed3 and hed4 as a bonded network interface for all ser-
vices. The name given to a network interface by the system is configured in the le da-
ta/net_interfaces.yml . That le needs to be edited to match your system.

Local Storage

154

Single-Region Entry-Scale Cloud with Metering and Monitoring Services, and a Mix of KVM and

ESX Hypervisors SUSE OpenStack Cloud 8

All servers should present a single OS disk, protected by a RAID controller. This disk needs
to be at least 512 GB in capacity. In addition, the example configures additional disk
depending on the node's role:

Controllers /dev/sdb and /dev/sdc are configured to be used by Swift.

Compute Servers /dev/sdb is configured as an additional Volume Group to be used
for VM storage

Additional disks can be configured for any of these roles by editing the corresponding
data/disks_*.yml le

9.5 Swift Examples

9.5.1 Entry-scale Swift Model

This example shows how SUSE OpenStack Cloud can be configured to provide a Swift-only
configuration, consisting of three controllers and one or more Swift object servers.

155 Swift Examples SUSE OpenStack Cloud 8

The example requires the following networks:

External API - The network for making requests to the cloud.

Swift - The network for all data traffic between the Swift services.

Management - This network that is used for all internal traffic between the cloud services,
including node provisioning. This network must be on an untagged VLAN.

All of these networks are configured to be presented via a pair of bonded NICs. The example
also enables provider VLANs to be configured in Neutron on this interface.

In the diagram "External Routing" refers to whatever routing you want to provide to allow users
to access the External API. "Internal Routing" refers to whatever routing you want to provide to
allow administrators to access the Management network.

If you are using SUSE OpenStack Cloud to install the operating system, then an IPMI network
connected to the IPMI ports of all servers and routable from the Cloud Lifecycle Manager is also
required for BIOS and power management of the node during the operating system installation
process.

In the example the controllers use one disk for the operating system and two disks for Swift
proxy and account storage. The Swift object servers use one disk for the operating system and
four disks for Swift storage. These values can be modified to suit your environment.

These recommended minimums are based on the included with the base installation and are
suitable only for demo environments. For production systems you will want to consider your
capacity and performance requirements when making decisions about your hardware.

The entry-scale-swift example runs the Swift proxy, account and container services on the
three controller servers. However, it is possible to extend the model to include the Swift proxy,
account and container services on dedicated servers (typically referred to as the Swift proxy
servers). If you are using this model, we have included the recommended Swift proxy servers
specs in the table below.

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Dedicated
Cloud Life-
cycle Man-

Lifecy-
cle-manag-
er

1 300 GB 8 GB 1 x 10 Gbit/
s with PXE
Support

8 CPU (64-
bit) cores

156 Entry-scale Swift Model SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

ager (op-
tional)

total (Intel
x86_64)

Control
Plane

Controller 3 1 x
600
GB
(mini-
mum)
- op-
erat-
ing
sys-
tem
drive

2 x
600
GB
(mini-
mum)
-
Swift
ac-
count/con-
tainer
data
drive

64 GB 2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

157 Entry-scale Swift Model SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

Swift Ob-
ject

swobj 3 If using x3
replication
only:

1 x
600
GB
(mini-
mum,
see
con-
sider-
ations
at
bot-
tom
of
page
for
more
de-
tails)

If using
Erasure
Codes on-
ly or a mix
of x3 repli-

32 GB
(see consid-
erations at
bottom of
page for
more de-
tails)

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

158 Entry-scale Swift Model SUSE OpenStack Cloud 8

Server Hardware - Minimum Re-
quirements and Recommendations

Node Type Role Name Required
Number

Disk Memory Network CPU

cation and
Erasure
Codes:

6 x
600
GB
(mini-
mum,
see
con-
sider-
ations
at
bot-
tom
of
page
for
more
de-
tails)

Swift
Proxy, Ac-
count, and
Container

swpac 3 2 x 600
GB (mini-
mum, see
considera-
tions at bot-
tom of page
for more
details)

64 GB
(see consid-
erations at
bottom of
page for
more de-
tails)

2 x 10
Gbit/s with
one PXE en-
abled port

8 CPU (64-
bit) cores
total (Intel
x86_64)

159 Entry-scale Swift Model SUSE OpenStack Cloud 8

Note
The disk speeds (RPM) chosen should be consistent within the same ring or storage policy.
It is best to not use disks with mixed disk speeds within the same Swift ring.

Considerations for your Swift object and proxy, account, container servers RAM and disk
capacity needs

Swift can have a diverse number of hardware configurations. For example, a Swift object server
may have just a few disks (minimum of 6 for erasure codes) or up to 70 and beyond. The
memory requirement needs to be increased as more disks are added. The general rule of thumb
for memory needed is 0.5 GB per TB of storage. For example, a system with 24 hard drives at
8TB each, giving a total capacity of 192TB, should use 96GB of RAM. However, this does not
work well for a system with a small number of small hard drives or a very large number of very
large drives. So, if after calculating the memory given this guideline, if the answer is less than
32GB then go with 32GB of memory minimum and if the answer is over 256GB then use 256GB
maximum, no need to use more memory than that.

When considering the capacity needs for the Swift proxy, account, and container (PAC) servers,
you should calculate 2% of the total raw storage size of your object servers to specify the storage
required for the PAC servers. So, for example, if you were using the example we provided earlier
and you had an object server setup of 24 hard drives with 8TB each for a total of 192TB and you
had a total of 6 object servers, that would give a raw total of 1152TB. So you would take 2% of
that, which is 23TB, and ensure that much storage capacity was available on your Swift proxy,
account, and container (PAC) server cluster. If you had a cluster of three Swift PAC servers, that
would be ~8TB each.

Another general rule of thumb is that if you are expecting to have more than a million objects
in a container then you should consider using SSDs on the Swift PAC servers rather than HDDs.

9.6 Ironic Examples

9.6.1 Entry-Scale Cloud with Ironic Flat Network

This example deploys an entry scale cloud that uses the Ironic service to provision physical
machines through the Compute services API.

160 Ironic Examples SUSE OpenStack Cloud 8

Control Plane

Cluster1 3 nodes of type CONTROLLER-ROLE run the core OpenStack services, such as
Keystone, Nova API, Glance API, Neutron API, Horizon, and Heat API.

Cloud Lifecycle Manager

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.yml le.

Resource Nodes

Ironic Compute One node of type IRONIC-COMPUTE-ROLE runs nova-compute, no-
va-compute-ironic, and other supporting services.

Object Storage Minimal Swift resources are provided by the control plane.

Networking

161 Entry-Scale Cloud with Ironic Flat Network SUSE OpenStack Cloud 8

This example requires the following networks:

IPMI network connected to the lifecycle-manager and the IPMI ports of all servers.

Nodes require a pair of bonded NICs which are used by the following networks:

External API This is the network that users will use to make requests to the cloud.

Cloud Management This is the network that will be used for all internal traffic
between the cloud services. This network is also used to install and configure the
nodes. The network needs to be on an untagged VLAN.

Guest This is the at network that will carry traffic between bare metal instances
within the cloud. It is also used to PXE boot said bare metal instances and install the
operating system selected by tenants.

The EXTERNAL API network must be reachable from the GUEST network for the bare
metal instances to make API calls to the cloud.
An example set of networks is defined in data/networks.yml . The le needs to be mod-
ified to reflect your environment.
The example uses the devices hed3 and hed4 as a bonded network interface for all ser-
vices. The name given to a network interface by the system is configured in the le da-
ta/net_interfaces.yml . That le needs to be modified to match your system.

Local Storage

All servers should present a single OS disk, protected by a RAID controller. This disk needs
to be at least 512 GB in capacity. In addition the example configures one additional disk
depending on the role of the server:

Controllers /dev/sdb and /dev/sdc configured to be used by Swift.

Additional discs can be configured for any of these roles by editing the corresponding
data/disks_*.yml le.

9.6.2 Entry-Scale Cloud with Ironic Multi-Tenancy

This example deploys an entry scale cloud that uses the Ironic service to provision physical
machines through the Compute services API and supports multi tenancy.

162 Entry-Scale Cloud with Ironic Multi-Tenancy SUSE OpenStack Cloud 8

FIGURE 9.1: ENTRY-SCALE CLOUD WITH IRONIC MUTI-TENANCY

Control Plane

Cluster1 3 nodes of type CONTROLLER-ROLE run the core OpenStack services, such as
Keystone, Nova API, Glance API, Neutron API, Horizon, and Heat API.

Cloud Lifecycle Manager

The Cloud Lifecycle Manager runs on one of the control-plane nodes of type CON-
TROLLER-ROLE . The IP address of the node that will run the Cloud Lifecycle Manager needs
to be included in the data/servers.ymlle.

Resource Nodes

Ironic Compute One node of type IRONIC-COMPUTE-ROLE runs nova-compute, no-
va-compute-ironic, and other supporting services.

Object Storage Minimal Swift Resources are provided by the control plane.

Networking

This example requires the following networks:

IPMI network connected to the deployer and the IPMI ports of all nodes.

External API network is used to make requests to the cloud.

163 Entry-Scale Cloud with Ironic Multi-Tenancy SUSE OpenStack Cloud 8

Cloud Management This is the network that will be used for all internal traffic
between the cloud services. This network is also used to install and configure the
controller nodes. The network needs to be on an untagged VLAN.

Provisioning is the network used to PXE boot the Ironic nodes and install the oper-
ating system selected by tenants. This network needs to be tagged on the switch for
control plane/Ironic compute nodes. For Ironic bare metal nodes, VLAN configura-
tion on the switch will be set by Neutron driver.

Tenant VLANs The range of VLAN IDs should be reserved for use by Ironic and set in
the cloud configuration. It is configured as untagged on control plane nodes, therefore
it cannot be combined with management network on the same network interface.

The following access should be allowed by routing/firewall:

Access from Management network to IPMI. Used during cloud installation and during
Ironic bare metal node provisioning.

Access from Management network to switch management network. Used by neutron
driver.

The EXTERNAL API network must be reachable from the tenant networks if you want
bare metal nodes to be able to make API calls to the cloud.

An example set of networks is defined in data/networks.yml . The le needs to be mod-
ified to reflect your environment.
The example uses hed3 for Management and External API traffic, and hed4 for provision-
ing and tenant network traffic. If you need to modify these assignments for your environ-
ment, they are defined in data/net_interfaces.yml .

Local Storage

All servers should present a single OS disk, protected by a RAID controller. This disk needs
to be at least 512 GB in capacity. In addition the example configures one additional disk
depending on the role of the server:

Controllers /dev/sdb and /dev/sdc configured to be used by Swift.

Additional disks can be configured for any of these roles by editing the corresponding
data/disks_*.yml le.

164 Entry-Scale Cloud with Ironic Multi-Tenancy SUSE OpenStack Cloud 8

10 Modifying Example Configurations for Compute
Nodes

This section contains detailed information about the Compute Node parts of the input model.
For example input models, see Chapter 9, Example Configurations. For general descriptions of the
input model, see Section 6.14, “Networks”.

Usually, the example models provide most of the data that is required to create a valid input
model. However, before you start to deploy, you may want to customize an input model using
the following information about Compute Nodes.

10.1 SLES Compute Nodes

net_interfaces.yml

- name: SLES-COMPUTE-INTERFACES
 network-interfaces:
 - name: BOND0
 device:
 name: bond0
 bond-data:
 options:
 mode: active-backup
 miimon: 200
 primary: hed1
 provider: linux
 devices:
 - name: hed1
 - name: hed2
 network-groups:
 - EXTERNAL-VM
 - GUEST
 - MANAGEMENT

servers.yml

 - id: compute1
 ip-addr: 10.13.111.15
 role: SLES-COMPUTE-ROLE
 server-group: RACK1
 nic-mapping: DL360p_G8_2Port
 mac-addr: ec:b1:d7:77:d0:b0

165 SLES Compute Nodes SUSE OpenStack Cloud 8

 ilo-ip: 10.12.13.14
 ilo-password: *********
 ilo-user: Administrator
 distro-id: sles12sp3-x86_64

server_roles.yml

- name: SLES-COMPUTE-ROLE
 interface-model: SLES-COMPUTE-INTERFACES
 disk-model: SLES-COMPUTE-DISKS

disk_compute.yml

 - name: SLES-COMPUTE-DISKS
 volume-groups:
 - name: ardana-vg
 physical-volumes:
 - /dev/sda_root

 logical-volumes:
 # The policy is not to consume 100% of the space of each volume group.
 # 5% should be left free for snapshots and to allow for some flexibility.
 - name: root
 size: 35%
 fstype: ext4
 mount: /
 - name: log
 size: 50%
 mount: /var/log
 fstype: ext4
 mkfs-opts: -O large_file
 - name: crash
 size: 10%
 mount: /var/crash
 fstype: ext4
 mkfs-opts: -O large_file

 - name: vg-comp
 # this VG is dedicated to Nova Compute to keep VM IOPS off the OS disk
 physical-volumes:
 - /dev/sdb
 logical-volumes:
 - name: compute
 size: 95%
 mount: /var/lib/nova
 fstype: ext4
 mkfs-opts: -O large_file

166 SLES Compute Nodes SUSE OpenStack Cloud 8

control_plane.yml

 control-planes:
 - name: control-plane-1
 control-plane-prefix: cp1
 region-name: region0
....
 resources:
 - name: sles-compute
 resource-prefix: sles-comp
 server-role: SLES-COMPUTE-ROLE
 allocation-policy: any
 min-count: 1
 service-components:
 - ntp-client
 - nova-compute
 - nova-compute-kvm
 - neutron-l3-agent
 - neutron-metadata-agent
 - neutron-openvswitch-agent
 - neutron-lbaasv2-agent

167 SLES Compute Nodes SUSE OpenStack Cloud 8

11 Modifying Example Configurations for Object Stor-
age using Swift

This section contains detailed descriptions about the Swift-specific parts of the input model. For
example input models, see Chapter 9, Example Configurations. For general descriptions of the input
model, see Section 6.14, “Networks”. In addition, the Swift ring specifications are available in the
~/openstack/my_cloud/definition/data/swift/rings.yml le.

Usually, the example models provide most of the data that is required to create a valid input
model. However, before you start to deploy, you must do the following:

Check the disk model used by your nodes and that all disk drives are correctly named and
used as described in Section 11.6, “Swift Requirements for Device Group Drives”.

Select an appropriate partition power for your rings. For more information, see Sec-

tion 11.10, “Understanding Swift Ring Specifications”.

For further information, read these related pages:

11.1 Object Storage using Swift Overview

11.1.1 What is the Object Storage (Swift) Service?

The SUSE OpenStack Cloud Object Storage using Swift service leverages Swift which uses soft-
ware-defined storage (SDS) layered on top of industry-standard servers using native storage de-
vices. Swift presents an object paradigm, using an underlying set of disk drives. The disk drives
are managed by a data structure called a "ring" and you can store, retrieve, and delete objects
in containers using RESTful APIs.

SUSE OpenStack Cloud Object Storage using Swift provides a highly-available, resilient, and
scalable storage pool for unstructured data. It has a highly-durable architecture, with no sin-
gle point of failure. In addition, SUSE OpenStack Cloud includes the concept of cloud models,
where the user can modify the cloud input model to provide the configuration required for their
environment.

168 Object Storage using Swift Overview SUSE OpenStack Cloud 8

11.1.2 Object Storage (Swift) Services

A Swift system consists of a number of services:

Swift-proxy provides the API for all requests to the Swift system.

Account and container services provide storage management of the accounts and contain-
ers.

Object services provide storage management for object storage.

These services can be co-located in a number of ways. The following general pattern exists in
the example cloud models distributed in SUSE OpenStack Cloud:

The swift-proxy, account, container, and object services run on the same (PACO) node type
in the control plane. This is used for smaller clouds or where Swift is a minor element in
a larger cloud. This is the model seen in most of the entry-scale models.

The swift-proxy, account, and container services run on one (PAC) node type in a cluster in
a control plane and the object services run on another (OBJ) node type in a resource pool.
This deployment model, known as the Entry-Scale Swift model, is used in larger clouds or
where a larger Swift system is in use or planned. See Section 9.5.1, “Entry-scale Swift Model”

for more details.

The Swift storage service can be scaled both vertically (nodes with larger or more disks) and
horizontally (more Swift storage nodes) to handle an increased number of simultaneous user
connections and provide larger storage space.

Swift is configured through a number of YAML les in the SUSE OpenStack Cloud implementa-
tion of the OpenStack Object Storage (Swift) service. For more details on the configuration of
the YAML les, see Chapter 11, Modifying Example Configurations for Object Storage using Swift.

11.2 Allocating Proxy, Account, and Container (PAC)
Servers for Object Storage

A Swift proxy, account, and container (PAC) server is a node that runs the swift-proxy, swift-
account and swift-container services. It is used to respond to API requests and to store account
and container data. The PAC node does not store object data.

169 Object Storage (Swift) Services SUSE OpenStack Cloud 8

This section describes the procedure to allocate PAC servers during the initial deployment of
the system.

11.2.1 To Allocate Swift PAC servers

Perform the following steps to allocate PAC servers:

Verify if the example input model already contains a suitable server role. The server roles
are usually described in the data/server_roles.yml le. If the server role is not de-
scribed, you must add a suitable server role and allocate drives to store object data. For
instructions, see Section 11.4, “Creating Roles for Swift Nodes” and Section 11.5, “Allocating Disk

Drives for Object Storage”.

Verify if the example input model has assigned a cluster to Swift proxy, account, container
servers. It is usually mentioned in the data/control_plane.yml le. If the cluster is not
assigned, then add a suitable cluster. For instructions, see Section 11.7, “Creating a Swift Proxy,

Account, and Container (PAC) Cluster”.

Identify the physical servers and their IP address and other detailed information.

You add these details to the servers list (usually in the data/servers.yml le).

As with all servers, you must also verify and/or modify the server-groups information
(usually in data/server_groups.yml)

The only part of this process that is unique to Swift is the allocation of disk drives for use by
the account and container rings. For instructions, see Section 11.5, “Allocating Disk Drives for Object

Storage”.

11.3 Allocating Object Servers

A Swift object server is a node that runs the swift-object service (only) and is used to store object
data. It does not run the swift-proxy, swift-account, or swift-container services.

This section describes the procedure to allocate a Swift object server during the initial deploy-
ment of the system.

170 To Allocate Swift PAC servers SUSE OpenStack Cloud 8

11.3.1 To Allocate a Swift Object Server

Perform the following steps to allocate one or more Swift object servers:

Verify if the example input model already contains a suitable server role. The server roles
are usually described in the data/server_roles.yml le. If the server role is not de-
scribed, you must add a suitable server role. For instructions, see Section 11.4, “Creating

Roles for Swift Nodes”. While adding a server role for the Swift object server, you will also
allocate drives to store object data. For instructions, see Section 11.5, “Allocating Disk Drives

for Object Storage”.

Verify if the example input model has a resource node assigned to Swift object servers.
The resource nodes are usually assigned in the data/control_plane.yml le. If it is not
assigned, you must add a suitable resource node. For instructions, see Section 11.8, “Creating

Object Server Resource Nodes”.

Identify the physical servers and their IP address and other detailed information. Add the
details for the servers in either of the following YAML les and verify the server-groups
information:

Add details in the servers list (usually in the data/servers.yml le).

As with all servers, you must also verify and/or modify the server-groups information
(usually in the data/server_groups.yml le).

The only part of this process that is unique to Swift is the allocation of disk drives for use
by the object ring. For instructions, see Section 11.5, “Allocating Disk Drives for Object Storage”.

11.4 Creating Roles for Swift Nodes

To create roles for Swift nodes, you must edit the data/server_roles.yml le and add an
entry to the server-roles list using the following syntax:

server-roles:
- name: PICK-A-NAME
 interface-model: SPECIFY-A-NAME
 disk-model: SPECIFY-A-NAME

171 To Allocate a Swift Object Server SUSE OpenStack Cloud 8

The elds for server roles are defined as follows:

name Specifies a name assigned for the role. In the
following example, SWOBJ-ROLE is the role
name.

interface-model You can either select an existing interface
model or create one specifically for Swift ob-
ject servers. In the following example SWOBJ-
INTERFACES is used. For more information,
see Section 11.9, “Understanding Swift Network

and Service Requirements”.

disk-model You can either select an existing model or cre-
ate one specifically for Swift object servers. In
the following example SWOBJ-DISKS is used.
For more information, see Section 11.5, “Allocat-

ing Disk Drives for Object Storage”.

server-roles:
- name: SWOBJ-ROLE
 interface-model: SWOBJ-INTERFACES
 disk-model: SWOBJ-DISKS

11.5 Allocating Disk Drives for Object Storage

The disk model describes the configuration of disk drives and their usage. The examples include
several disk models. You must always review the disk devices before making any changes to
the existing the disk model.

172 Allocating Disk Drives for Object Storage SUSE OpenStack Cloud 8

11.5.1 Making Changes to a Swift Disk Model

There are several reasons for changing the disk model:

If you have additional drives available, you can add them to the devices list.

If the disk devices listed in the example disk model have different names on your servers.
This may be due to different hardware drives. Edit the disk model and change the device
names to the correct names.

If you prefer a different disk drive than the one listed in the model. For example, if /dev/
sdb and /dev/sdc are slow hard drives and you have SDD drives available in /dev/sdd
and /dev/sde . In this case, delete /dev/sdb and /dev/sdc and replace them with /
dev/sdd and /dev/sde .

Note
Disk drives must not contain labels or le systems from a prior usage. For more
information, see Section 11.6, “Swift Requirements for Device Group Drives”.

Tip
The terms add and delete in the document means editing the respective YAML les
to add or delete the configurations/values.

Swift Consumer Syntax

The consumer eld determines the usage of a disk drive or logical volume by Swift. The syntax
of the consumer eld is as follows:

consumer:
 name: swift
 attrs:
 rings:
 - name: RING-NAME
 - name: RING-NAME
 - etc...

173 Making Changes to a Swift Disk Model SUSE OpenStack Cloud 8

The elds for consumer are defined as follows:

name Specifies the service that uses the device
group. A name eld containing swift indi-
cates that the drives or logical volumes are
used by Swift.

attrs Lists the rings that the devices are allocated
to. It must contain a rings item.

rings Contains a list of ring names. In the rings
list, the name eld is optional.

The following are the different configurations (patterns) of the proxy, account, container, and
object services:

Proxy, account, container, and object (PACO) run on same node type.

Proxy, account, and container run on a node type (PAC) and the object services run on a
dedicated object server (OBJ).

Note
The proxy service does not have any rings associated with it.

EXAMPLE 11.1: PACO - PROXY, ACCOUNT, CONTAINER, AND OBJECT RUN ON THE SAME NODE TYPE.

consumer:
 name: swift
 attrs:
 rings:
 - name: account
 - name: container
 - name: object-0

EXAMPLE 11.2: PAC - PROXY, ACCOUNT, AND CONTAINER RUN ON THE SAME NODE TYPE.

consumer:
 name: swift
 attrs:

174 Making Changes to a Swift Disk Model SUSE OpenStack Cloud 8

 rings:
 - name: account
 - name: container

EXAMPLE 11.3: OBJ - DEDICATED OBJECT SERVER

The following example shows two Storage Policies (object-0 and object-1). For more in-
formation, see Section 11.11, “Designing Storage Policies”.

consumer:
 name: swift
 attrs:
 rings:
 - name: object-0
 - name: object-1

Swift Device Groups

You may have several device groups if you have several different uses for different sets of drives.

The following example shows a configuration where one drive is used for account and container
rings and the other drives are used by the object-0 ring:

device-groups:

- name: swiftpac
 devices:
 - name: /dev/sdb
 consumer:
 name: swift
 attrs:
 - name: account
 - name: container
 - name: swiftobj
 devices:
 - name: /dev/sdc
 - name: /dev/sde
 - name: /dev/sdf
 consumer:
 name: swift
 attrs:
 rings:
 - name: object-0

175 Making Changes to a Swift Disk Model SUSE OpenStack Cloud 8

Swift Logical Volumes

Warning
Be careful while using logical volumes to store Swift data. The data remains intact during
an upgrade, but will be lost if the server is reimaged. If you use logical volumes you must
ensure that you only reimage one server at a time. This is to allow the data from the other
replicas to be replicated back to the logical volume once the reimage is complete.

Swift can use a logical volume. To do this, ensure you meet the requirements listed in the table
below:

mount

mkfs-opts

fstype

Do not specify these attributes.

name

size

Specify both of these attributes.

consumer This attribute must have a name eld set to
swift.

Note
When setting up Swift as a logical volume, the configuration processor will give a warning.
This warning is normal and does not affect the configuration.

Following is an example of Swift logical volumes:

...
 - name: swift
 size: 50%
 consumer:
 name: swift
 attrs:
 rings:
 - name: object-0

176 Making Changes to a Swift Disk Model SUSE OpenStack Cloud 8

 - name: object-1

11.6 Swift Requirements for Device Group Drives
To install and deploy, Swift requires that the disk drives listed in the devices list of the de-
vice-groups item in a disk model meet the following criteria (if not, the deployment will fail):

The disk device must exist on the server. For example, if you add /dev/sdX to a server
with only three devices, then the deploy process will fail.

The disk device must be unpartitioned or have a single partition that uses the whole drive.

The partition must not be labeled.

The XFS le system must not contain a le system label.

If the disk drive is already labeled as described above, the swiftlm-drive-provision
process will assume that the drive has valuable data and will not use or modify the drive.

11.7 Creating a Swift Proxy, Account, and Container
(PAC) Cluster
If you already have a cluster with the server-role SWPAC-ROLE there is no need to proceed
through these steps.

11.7.1 Steps to Create a Swift Proxy, Account, and Container (PAC)
Cluster

To create a cluster for Swift proxy, account, and container (PAC) servers, you must identify the
control plane and node type/role:

1. In the ~/openstack/my_cloud/definition/data/control_plane.yml le, identify the
control plane that the PAC servers are associated with.

2. Next, identify the node type/role used by the Swift PAC servers. In the following example,
server-role is set to SWPAC-ROLE.

177 Swift Requirements for Device Group Drives SUSE OpenStack Cloud 8

Add an entry to the clusters item in the control-plane section.
Example:

control-planes:
 - name: control-plane-1
 control-plane-prefix: cp1

 . . .
 clusters:
 . . .
 - name: swpac1
 cluster-prefix: c2
 server-role: SWPAC-ROLE
 member-count: 3
 allocation-policy: strict
 service-components:
 - ntp-client
 - swift-ring-builder
 - swift-proxy
 - swift-account
 - swift-container
 - swift-client

Important
Do not change the name of the cluster swpac as it may conflict with an existing
cluster. Use a name such as swpac1 , swpac2 , or swpac3 .

3. If you have more than three servers available that have the SWPAC-ROLE assigned to them,
you must change member-count to match the number of servers.
For example, if you have four servers with a role of SWPAC-ROLE , then the member-count
should be 4.

11.7.2 Service Components

A Swift PAC server requires the following service components:

ntp-client

swift-proxy

swift-account

178 Service Components SUSE OpenStack Cloud 8

swift-container

swift-ring-builder

swift-client

11.8 Creating Object Server Resource Nodes
To create a resource node for Swift object servers, you must identify the control plane and node
type/role:

In the data/control_plane.yml le, identify the control plane that the object servers
are associated with.

Next, identify the node type/role used by the Swift object servers. In the following example,
server-role is set to SWOBJ-ROLE:
Add an entry to the resources item in the control-plane:

control-planes:
 - name: control-plane-1
 control-plane-prefix: cp1
 region-name: region1
 . . .
 resources:
 . . .
 - name: swobj
 resource-prefix: swobj
 server-role: SWOBJ-ROLE
 allocation-policy: strict
 min-count: 0
 service-components:
 - ntp-client
 - swift-object

Service Components

A Swift object server requires the following service components:

ntp-client

swift-object

swift-client is optional; installs the python-swiftclient package on the server.

179 Creating Object Server Resource Nodes SUSE OpenStack Cloud 8

Resource nodes do not have a member count attribute. So the number of servers allocated with
the SWOBJ-ROLE is the number of servers in the data/servers.yml le with a server role
of SWOBJ-ROLE.

11.9 Understanding Swift Network and Service
Requirements

This topic describes Swift’s requirements for which service components must exist in the input
model and how these relate to the network model. This information is useful if you are creating
a cluster or resource node, or when defining the networks used by Swift. The network model
allows many options and configurations. For smooth Swift operation, the following must be true:

The following services must have a direct connection to the same network:

swift-proxy

swift-account

swift-container

swift-object

swift-ring-builder

The swift-proxy service must have a direct connection to the same network as the
cluster-ip service.

The memcached service must be configured on a cluster of the control plane. In small
deployments, it is convenient to run it on the same cluster as the horizon service. For larger
deployments, with many nodes running the swift-proxy service, it is better to co-locate
the swift-proxy and memcached services. The swift-proxy and swift-container
services must have a direct connection to the same network as the memcached service.

The swift-proxy and swift-ring-builder service must be co-located in the same
cluster of the control plane.

The ntp-client service must be present on all Swift nodes.

180 Understanding Swift Network and Service Requirements SUSE OpenStack Cloud 8

11.10 Understanding Swift Ring Specifications
In Swift, the ring is responsible for mapping data on particular disks. There is a separate ring
for account databases, container databases, and each object storage policy, but each ring works
similarly. The swift-ring-builder utility is used to build and manage rings. This utility uses
a builder le to contain ring information and additional data required to build future rings. In
SUSE OpenStack Cloud 8, you will use the cloud model to specify how the rings are configured
and used. This model is used to automatically invoke the swift-ring-builder utility as part
of the deploy process. (Normally, you will not run the swift-ring-builder utility directly.)

The rings are specified in the input model using the configuration-data key. The configura-
tion-data in the control-planes definition is given a name that you will then use in the
swift_config.yml le. If you have several control planes hosting Swift services, the ring spec-
ifications can use a shared configuration-data object, however it is considered best practice
to give each Swift instance its own configuration-data object.

11.10.1 Ring Specifications in the Input Model

In most models, the ring-specification is mentioned in the ~/openstack/my_cloud/defini-
tion/data/swift/swift_config.yml le. For example:

configuration-data:
 - name: SWIFT-CONFIG-CP1
 services:
 - swift
 data:
 control_plane_rings:
 swift-zones:
 - id: 1
 server-groups:
 - AZ1
 - id: 2
 server-groups:
 - AZ2
 - id: 3
 server-groups:
 - AZ3
 rings:
 - name: account
 display-name: Account Ring
 min-part-hours: 16
 partition-power: 12

181 Understanding Swift Ring Specifications SUSE OpenStack Cloud 8

 replication-policy:
 replica-count: 3

 - name: container
 display-name: Container Ring
 min-part-hours: 16
 partition-power: 12
 replication-policy:
 replica-count: 3

 - name: object-0
 display-name: General
 default: yes
 min-part-hours: 16
 partition-power: 12
 replication-policy:
 replica-count: 3

The above sample le shows that the rings are specified using the configuration-data object
SWIFT-CONFIG-CP1 and has three rings as follows:

Account ring: You must always specify a ring called account. The account ring is used
by Swift to store metadata about the projects in your system. In Swift, a Keystone project
maps to a Swift account. The display-name is informational and not used.

Container ring:You must always specify a ring called container. The display-name is
informational and not used.

Object ring: This ring is also known as a storage policy. You must always specify a ring
called object-0. It is possible to have multiple object rings, which is known as storage
policies. The display-name is the name of the storage policy and can be used by users of
the Swift system when they create containers. It allows them to specify the storage policy
that the container uses. In the example, the storage policy is called General. There are also
two aliases for the storage policy name: GeneralPolicy and AnotherAliasForGeneral .
In this example, you can use General , GeneralPolicy , or AnotherAliasForGeneral
to refer to this storage policy. The aliases item is optional. The display-name is required.

Min-part-hours, partition-power, replication-policy and replica-count are described
in the following section.

182 Ring Specifications in the Input Model SUSE OpenStack Cloud 8

11.10.2 Replication Ring Parameters

The ring parameters for traditional replication rings are defined as follows:

Parameter Description

replica-count Defines the number of copies of object creat-
ed.

Use this to control the degree of resiliency or
availability. The replica-count is normal-
ly set to 3 (that means Swift will keep three
copies of accounts, containers, or objects).
As a best practice, do not set the value below
3 . To achieve higher resiliency, increase the
value.

min-part-hours Changes the value used to decide when a
given partition can be moved. This is the
number of hours that the swift-ring-
builder tool will enforce between ring re-
builds. On a small system, this can be as low
as 1 (one hour). The value can be different
for each ring.

In the example above, the swift-ring-
builder will enforce a minimum of 16
hours between ring rebuilds. However, this
time is system-dependent so you will be un-
able to determine the appropriate value for
min-part-hours until you have more expe-
rience with your system.

A value of 0 (zero) is not allowed.

In prior releases, this parameter was called
min-part-time . The older name is still sup-
ported, however do not specify both min-
part-hours and min-part-time in the
same les.

183 Replication Ring Parameters SUSE OpenStack Cloud 8

Parameter Description

partition-power The optimal value for this parameter is related
to the number of disk drives that you allocate
to Swift storage. As a best practice, you should
use the same drives for both the account
and container rings. In this case, the parti-
tion-power value should be the same. For
more information, see Section 11.10.4, “Selecting

a Partition Power”.

replication-policy Specifies that a ring uses replicated storage.
The duplicate copies of the object are created
and stored on different disk drives. All repli-
cas are identical. If one is lost or corrupted,
the system automatically copies one of the re-
maining replicas to restore the missing repli-
ca.

default The default value in the above sample le of
ring-specification is set to yes, which means
that the storage policy is enabled to store ob-
jects. For more information, see Section 11.11,

“Designing Storage Policies”.

11.10.3 Erasure Coded Rings

In the cloud model, a ring-specification is mentioned in the ~/openstack/my_cloud/de-
finition/data/swift/rings.yml le. A typical erasure coded ring in this le looks like this:

- name: object-1
 display-name: EC_ring
 default: no
 min-part-hours: 16
 partition-power: 12
 erasure-coding-policy:
 ec-type: jerasure_rs_vand
 ec-num-data-fragments: 10
 ec-num-parity-fragments: 4

184 Erasure Coded Rings SUSE OpenStack Cloud 8

 ec-object-segment-size: 1048576

The additional parameters are defined as follows:

Parameter Description

ec-type This is the particular erasure policy scheme
that is being used. The supported ec_types in
SUSE OpenStack Cloud 8 are:

jerasure_rs_vand => Vander-
monde Reed-Solomon encoding, based
on Jerasure

erasure-coding-policy This line indicates that the object ring will be
of type "erasure coding"

ec-num-data-fragments This indicated the number of data fragments
for an object in the ring.

ec-num-parity-fragments This indicated the number of parity fragments
for an object in the ring.

ec-object-segment-size The amount of data that will be buered up
before feeding a segment into the encoder/de-
coder. The default value is 1048576.

When using an erasure coded ring, the number of devices in the ring must be greater than or
equal to the total number of fragments of an object. For example, if you define an erasure coded
ring with 10 data fragments and 4 parity fragments, there must be at least 14 (10+4) devices
added to the ring.

When using erasure codes, for a PUT object to be successful it must store ec_ndata + 1 fragment
to achieve quorum. Where the number of data fragments (ec_ndata) is 10 then at least 11
fragments must be saved for the object PUT to be successful. The 11 fragments must be saved
to different drives. To tolerate a single object server going down, say in a system with 3 object
servers, each object server must have at least 6 drives assigned to the erasure coded storage
policy. So with a single object server down, 12 drives are available between the remaining
object servers. This allows an object PUT to save 12 fragments, one more than the minimum
to achieve quorum.

185 Erasure Coded Rings SUSE OpenStack Cloud 8

Unlike replication rings, none of the erasure coded parameters may be edited after the initial
creation. Otherwise there is potential for permanent loss of access to the data.

On the face of it, you would expect that an erasure coded configuration that uses a data to parity
ratio of 10:4, that the data consumed storing the object is 1.4 times the size of the object just
like the x3 replication takes x3 times the size of the data when storing the object. However,
for erasure coding, this 10:4 ratio is not correct. The efficiency (that is how much storage is
needed to store the object) is very poor for small objects and improves as the object size grows.
However, the improvement is not linear. If all of your les are less than 32K in size, erasure
coding will take more space to store than the x3 replication.

11.10.4 Selecting a Partition Power

When storing an object, the object storage system hashes the name. This hash results in a hit on a
partition (so a number of different object names result in the same partition number). Generally,
the partition is mapped to available disk drives. With a replica count of 3, each partition is
mapped to three different disk drives. The hashing algorithm used hashes over a xed number
of partitions. The partition-power attribute determines the number of partitions you have.

Partition power is used to distribute the data uniformly across drives in a Swift nodes. It also
defines the storage cluster capacity. You must set the partition power value based on the total
amount of storage you expect your entire ring to use.

You should select a partition power for a given ring that is appropriate to the number of disk
drives you allocate to the ring for the following reasons:

If you use a high partition power and have a few disk drives, each disk drive will have
thousands of partitions. With too many partitions, audit and other processes in the Object
Storage system cannot walk the partitions in a reasonable time and updates will not occur
in a timely manner.

If you use a low partition power and have many disk drives, you will have tens (or maybe
only one) partition on a drive. The Object Storage system does not use size when hashing
to a partition - it hashes the name.
With many partitions on a drive, a large partition is cancelled out by a smaller partition
so the overall drive usage is similar. However, with very small numbers of partitions, the
uneven distribution of sizes can be reflected in uneven disk drive usage (so one drive
becomes full while a neighboring drive is empty).

186 Selecting a Partition Power SUSE OpenStack Cloud 8

An ideal number of partitions per drive is 100. If you know the number of drives, select a
partition power that will give you approximately 100 partitions per drive. Usually, you install a
system with a specific number of drives and add drives as needed. However, you cannot change
the value of the partition power. Hence you must select a value that is a compromise between
current and planned capacity.

Important
If you are installing a small capacity system and you need to grow to a very large capacity
but you cannot t within any of the ranges in the table, please seek help from Sales
Engineering to plan your system.

There are additional factors that can help mitigate the xed nature of the partition power:

Account and container storage represents a small fraction (typically 1 percent) of your
object storage needs. Hence, you can select a smaller partition power (relative to object
ring partition power) for the account and container rings.

For object storage, you can add additional storage policies (that is, another object ring).
When you have reached capacity in an existing storage policy, you can add a new storage
policy with a higher partition power (because you now have more disk drives in your sys-
tem). This means that you can install your system using a small partition power appropri-
ate to a small number of initial disk drives. Later, when you have many disk drives, the
new storage policy can have a higher value appropriate to the larger number of drives.

However, when you continue to add storage capacity, existing containers will continue to use
their original storage policy. Hence, the additional objects must be added to new containers to
take advantage of the new storage policy.

Use the following table to select an appropriate partition power for each ring. The partition
power of a ring cannot be changed, so it is important to select an appropriate value. This table
is based on a replica count of 3. If your replica count is different, or you are unable to nd
your system in the table, then see Section 11.10.4, “Selecting a Partition Power” for information of
selecting a partition power.

The table assumes that when you rst deploy Swift, you have a small number of drives (the
minimum column in the table), and later you add drives.

187 Selecting a Partition Power SUSE OpenStack Cloud 8

Note

Use the total number of drives. For example, if you have three servers, each with
two drives, the total number of drives is six.

The lookup should be done separately for each of the account, container and object
rings. Since account and containers represent approximately 1 to 2 percent of object
storage, you will probably use fewer drives for the account and container rings (that
is, you will have fewer proxy, account, and container (PAC) servers) so that your
object rings may have a higher partition power.

The largest anticipated number of drives imposes a limit in the minimum drives you
can have. (For more information, see Section 11.10.4, “Selecting a Partition Power”.) This
means that, if you anticipate significant growth, your initial system can be small,
but under a certain limit. For example, if you determine that the maximum number
of drives the system will grow to is 40,000, then use a partition power of 17 as
listed in the table below. In addition, a minimum of 36 drives is required to build
the smallest system with this partition power.

The table assumes that disk drives are the same size. The actual size of a drive is
not significant.

11.11 Designing Storage Policies

Storage policies enable you to differentiate the way objects are stored.

Reasons to use storage policies include the following:

Different types or classes of disk drive
You can use different drives to store various type of data. For example, you can use 7.5K
RPM high-capacity drives for one type of data and fast SSD drives for another type of data.

Different redundancy or availability needs
You can define the redundancy and availability based on your requirement. You can use
a replica count of 3 for "normal" data and a replica count of 4 for "critical" data.

Growing of cluster capacity

188 Designing Storage Policies SUSE OpenStack Cloud 8

If the storage cluster capacity grows beyond the recommended partition power as described
in Section 11.10, “Understanding Swift Ring Specifications”.

Erasure-coded storage and replicated storage
If you use erasure-coded storage for some objects and replicated storage for other objects.

Storage policies are implemented on a per-container basis. If you want a non-default storage
policy to be used for a new container, you can explicitly specify the storage policy to use when
you create the container. You can change which storage policy is the default. However, this
does not affect existing containers. Once the storage policy of a container is set, the policy for
that container cannot be changed.

The disk drives used by storage policies can overlap or be distinct. If the storage policies overlap
(that is, have disks in common between two storage policies), it is recommended to use the
same set of disk drives for both policies. But in the case where there is a partial overlap in disk
drives, because one storage policy receives many objects, the drives that are common to both
policies must store more objects than drives that are only allocated to one storage policy. This
can be appropriate for a situation where the overlapped disk drives are larger than the non-
overlapped drives.

11.11.1 Specifying Storage Policies

There are two places where storage policies are specified in the input model:

The attribute of the storage policy is specified in ring-specification in the data/swift/
rings.yml le.

When associating disk drives with specific rings in a disk model. This specifies which
drives and nodes use the storage policy. In other word words, where data associated with
a storage policy is stored.

A storage policy is specified similar to other rings. However, the following features are unique
to storage policies:

Storage policies are applicable to object rings only. The account or container rings cannot
have storage policies.

There is a format for the ring name: object- index , where index is a number in the range
0 to 9 (in this release). For example: object-0.

189 Specifying Storage Policies SUSE OpenStack Cloud 8

The object-0 ring must always be specified.

Once a storage policy is deployed, it should never be deleted. You can remove all disk
drives for the storage policy, however the ring specification itself cannot be deleted.

You can use the display-name attribute when creating a container to indicate which
storage policy you want to use for that container.

One of the storage policies can be the default policy. If you do not specify the storage
policy then the object created in new container uses the default storage policy.

If you change the default, only containers created later will have that changed default
policy.

The following example shows three storage policies in use. Note that the third storage policy
example is an erasure coded ring.

rings:
. . .
- name: object-0
 display-name: General
 default: no
 min-part-hours: 16
 partition-power: 12
 replication-policy:
 replica-count: 3
- name: object-1
 display-name: Data
 default: yes
 min-part-hours: 16
 partition-power: 20
 replication-policy:
 replica-count: 3
- name: object-2
 display-name: Archive
 default: no
 min-part-hours: 16
 partition-power: 20
 erasure-coded-policy:
 ec-type: jerasure_rs_vand
 ec-num-data-fragments: 10
 ec-num-parity-fragments: 4
 ec-object-segment-size: 1048576

190 Specifying Storage Policies SUSE OpenStack Cloud 8

11.12 Designing Swift Zones
The concept of Swift zones allows you to control the placement of replicas on different groups
of servers. When constructing rings and allocating replicas to specific disk drives, Swift will,
where possible, allocate replicas using the following hierarchy so that the greatest amount of
resiliency is achieved by avoiding single points of failure:

Swift will place each replica on a different disk drive within the same server.

Swift will place each replica on a different server.

Swift will place each replica in a different Swift zone.

If you have three servers and a replica count of three, it is easy for Swift to place each replica
on a different server. If you only have two servers though, Swift will place two replicas on one
server (different drives on the server) and one copy on the other server.

With only three servers there is no need to use the Swift zone concept. However, if you have
more servers than your replica count, the Swift zone concept can be used to control the degree
of resiliency. The following table shows how data is placed and explains what happens under
various failure scenarios. In all cases, a replica count of three is assumed and that there are a
total of six servers.

Number of Swift
Zones

Replica Placement Failure Scenarios Details

One server fails You are guaranteed
that there are two oth-
er replicas.

Two servers fail You are guaranteed
that there is one re-
maining replica.

One (all servers in the
same zone)

Replicas are placed
on different servers.
For any given ob-
ject, you have no
control over which
servers the replicas
are placed on.

Three servers fail 1/3 of the objects can-
not be accessed. 2/3
of the objects have
three replicas.

Two (three servers in
each Swift zone)

Half the objects have
two replicas in Swift

One Swift zone fails You are guaranteed
to have at least one

191 Designing Swift Zones SUSE OpenStack Cloud 8

Number of Swift
Zones

Replica Placement Failure Scenarios Details

zone 1 with one
replica in Swift zone
The other objects are
reversed, with one
replica in Swift zone
1 and two replicas in
Swift zone 2.

replica. Half the ob-
jects have two re-
maining replicas and
the other half have a
single replica.

One Swift zone fails You are guaranteed to
have two replicas of
every object.

Three (two servers in
each Swift zone)

Each zone contains a
replica. For any given
object, there is a repli-
ca in each Swift zone.

Two Swift zones fail You are guaranteed to
have one replica of
every object.

The following sections show examples of how to specify the Swift zones in your input model.

11.12.1 Using Server Groups to Specify Swift Zones

Swift zones are specified in the ring specifications using the server group concept. To define a
Swift zone, you specify:

An id - this is the Swift zone number

A list of associated server groups

Server groups are defined in your input model. The example input models typically define a
number of server groups. You can use these pre-defined server groups or create your own.

For example, the following three models use the example server groups CLOUD , AZ1 , AZ2 and
AZ3 . Each of these examples achieves the same effect – creating a single Swift zone.

ring-specifications:
 - region: region1
 swift-zones:
 - id: 1
 server-groups:

192 Using Server Groups to Specify Swift Zones SUSE OpenStack Cloud 8

 - CLOUD
 rings:
 …

ring-specifications:
 - region: region1
 swift-zones:
 - id: 1
 server-groups:
 - AZ1
 - AZ2
 - AZ3
 rings:
 …

server-groups:
 - name: ZONE_ONE
 server-groups:
 - AZ1
 - AZ2
 - AZ3
 ring-specifications:
 - region: region1
 swift-zones:
 - id: 1
 server-groups:
 - ZONE_ONE
 rings:
 …

Alternatively, if you omit the swift-zones specification, a single Swift zone is used by default
for all servers.

In the following example, three Swift zones are specified and mapped to the same availability
zones that Nova uses (assuming you are using one of the example input models):

ring-specifications:
 - region: region1
 swift-zones:
 - id: 1
 server-groups:
 - AZ1
 - id: 2
 server-groups:
 - AZ2
 - id: 3
 server-groups:

193 Using Server Groups to Specify Swift Zones SUSE OpenStack Cloud 8

 - AZ3

In this example, it shows a datacenter with four availability zones which are mapped to two
Swift zones. This type of setup may be used if you had two buildings where each building has
a duplicated network infrastructure:

ring-specifications:
 - region: region1
 swift-zones:
 - id: 1
 server-groups:
 - AZ1
 - AZ2
 - id: 2
 server-groups:
 - AZ3
 - AZ4

11.12.2 Specifying Swift Zones at Ring Level

Usually, you would use the same Swift zone layout for all rings in your system. However, it is
possible to specify a different layout for a given ring. The following example shows that the
account, container and object-0 rings have two zones, but the object-1 ring has a single zone.

ring-specifications:
 - region: region1
 swift-zones:
 - id: 1
 server-groups:
 - AZ1
 - id: 2
 server-groups:
 - AZ2
 rings
 - name: account
 …
 - name: container
 …
 - name: object-0
 …
 - name: object-1
 swift-zones:
 - id: 1
 server-groups:

194 Specifying Swift Zones at Ring Level SUSE OpenStack Cloud 8

 - CLOUD
 …

11.13 Customizing Swift Service Configuration Files
SUSE OpenStack Cloud 8 enables you to modify various Swift service configuration les. The
following Swift service configuration les are located on the Cloud Lifecycle Manager in the ~/
openstack/my_cloud/config/swift/ directory:

account-server.conf.j2

container-reconciler.conf.j2

container-server.conf.j2

container-sync-realms.conf.j2

object-expirer.conf.j2

object-server.conf.j2

proxy-server.conf.j2

rsyncd.conf.j2

swift.conf.j2

swift-recon.j2

There are many configuration options that can be set or changed, including container rate
limit and logging level:

11.13.1 Configuring Swift Container Rate Limit

The Swift container rate limit allows you to limit the number of PUT and DELETE requests of
an object based on the number of objects in a container. For example, suppose the contain-
er_ratelimit_x = r . It means that for containers of size x , limit requests per second to r .

To enable container rate limiting:

1. Log in to the Cloud Lifecycle Manager.

195 Customizing Swift Service Configuration Files SUSE OpenStack Cloud 8

2. Edit the DEFAULT section of ~/openstack/my_cloud/config/swift/proxy-serv-

er.conf.j2 :

container_ratelimit_0 = 100
container_ratelimit_1000000 = 100
container_ratelimit_5000000 = 50

This will set the PUT and DELETE object rate limit to 100 requests per second for con-
tainers with up to 1,000,000 objects. Also, the PUT and DELETE rate for containers with
between 1,000,000 and 5,000,000 objects will vary linearly from between 100 and 50
requests per second as the container object count increases.

3. Commit your changes to git:

ardana > cd ~/openstack/ardana/ansible
ardana > git commit -m "COMMIT_MESSAGE" \
~/openstack/my_cloud/config/swift/proxy-server.conf.j2

4. Run the configuration processor:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml

5. Create a deployment directory:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost ready-deployment.yml

6. Run the swift-reconfigure.yml playbook to reconfigure the Swift servers:

ardana > cd ~/scratch/ansible/next/ardana/ansible
ardana > ansible-playbook -i hosts/verb_hosts swift-reconfigure.yml

11.13.2 Configuring Swift Account Server Logging Level

By default the Swift logging level is set to INFO . As a best practice, do not set the log level
to DEBUG for a long period of time. Use it for troubleshooting issues and then change it back
to INFO.

Perform the following steps to set the logging level of the account-server to DEBUG :

1. Log in to the Cloud Lifecycle Manager.

196 Configuring Swift Account Server Logging Level SUSE OpenStack Cloud 8

2. Edit the DEFAULT section of ~/openstack/my_cloud/config/swift/account-serv-
er.conf.j2 :

[DEFAULT] . . log_level = DEBUG

3. Commit your changes to git:

ardana > cd ~/openstack/ardana/ansible
ardana > git commit -m "COMMIT_MESSAGE" \
~/openstack/my_cloud/config/swift/account-server.conf.j2

4. Run the configuration processor:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml

5. Create a deployment directory:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost ready-deployment.yml

6. Run the swift-reconfigure.yml playbook to reconfigure the Swift servers:

ardana > cd ~/scratch/ansible/next/ardana/ansible
ardana > ansible-playbook -i hosts/verb_hosts swift-reconfigure.yml

11.13.3 For More Information

For more information, see:

Book “Operations Guide”, Chapter 12 “Managing Monitoring, Logging, and Usage Reporting”, Sec-

tion 12.2 “Centralized Logging Service”, Section 12.2.5 “Configuring Centralized Logging”

Book “Operations Guide”, Chapter 12 “Managing Monitoring, Logging, and Usage Reporting”, Sec-

tion 12.2 “Centralized Logging Service”

197 For More Information SUSE OpenStack Cloud 8

12 Alternative Configurations

In SUSE OpenStack Cloud 8 there are alternative configurations that we recommend
for specific purposes.

12.1 Using a Dedicated Cloud Lifecycle Manager
Node

All of the example configurations included host the Cloud Lifecycle Manager on the rst Control
Node. It is also possible to deploy this service on a dedicated node. One use case for wanting
to run the dedicated Cloud Lifecycle Manager is to be able to test the deployment of different
configurations without having to re-install the rst server. Some administrators prefer the ad-
ditional security of keeping all of the configuration data on a separate server from those that
users of the cloud connect to (although all of the data can be encrypted and SSH keys can be
password protected).

198 Using a Dedicated Cloud Lifecycle Manager Node SUSE OpenStack Cloud 8

Here is a graphical representation of this setup:

12.1.1 Specifying a dedicated Cloud Lifecycle Manager in your
input model

To specify a dedicated Cloud Lifecycle Manager in your input model, make the following edits
to your configuration les.

Important
The indentation of each of the input les is important and will cause errors if not done
correctly. Use the existing content in each of these les as a reference when adding ad-
ditional content for your Cloud Lifecycle Manager.

199

Specifying a dedicated Cloud Lifecycle Manager in your input model SUSE OpenStack

Cloud 8

Update control_plane.yml to add the Cloud Lifecycle Manager.

Update server_roles.yml to add the Cloud Lifecycle Manager role.

Update net_interfaces.yml to add the interface definition for the Cloud Lifecycle Man-
ager.

Create a disks_lifecycle_manager.yml le to define the disk layout for the Cloud Life-
cycle Manager.

Update servers.yml to add the dedicated Cloud Lifecycle Manager node.

Control_plane.yml : The snippet below shows the addition of a single node cluster into the
control plane to host the Cloud Lifecycle Manager service. Note that, in addition to adding
the new cluster, you also have to remove the Cloud Lifecycle Manager component from the
cluster1 in the examples:

 clusters:
 - name: cluster0
 cluster-prefix: c0
 server-role: LIFECYCLE-MANAGER-ROLE
 member-count: 1
 allocation-policy: strict
 service-components:
 - lifecycle-manager
 - ntp-client
 - name: cluster1
 cluster-prefix: c1
 server-role: CONTROLLER-ROLE
 member-count: 3
 allocation-policy: strict
 service-components:
 - lifecycle-manager
 - ntp-server
 - tempest

This specifies a single node of role LIFECYCLE-MANAGER-ROLE hosting the Cloud Lifecycle Man-
ager.

Server_roles.yml : The snippet below shows the insertion of the new server roles definition:

 server-roles:

 - name: LIFECYCLE-MANAGER-ROLE
 interface-model: LIFECYCLE-MANAGER-INTERFACES
 disk-model: LIFECYCLE-MANAGER-DISKS

200

Specifying a dedicated Cloud Lifecycle Manager in your input model SUSE OpenStack

Cloud 8

 - name: CONTROLLER-ROLE

This defines a new server role which references a new interface-model and disk-model to be
used when configuring the server.

net-interfaces.yml : The snippet below shows the insertion of the network-interface info:

 - name: LIFECYCLE-MANAGER-INTERFACES
 network-interfaces:
 - name: BOND0
 device:
 name: bond0
 bond-data:
 options:
 mode: active-backup
 miimon: 200
 primary: hed3
 provider: linux
 devices:
 - name: hed3
 - name: hed4
 network-groups:
 - MANAGEMENT

This assumes that the server uses the same physical networking layout as the other servers in
the example.

disks_lifecycle_manager.yml : In the examples, disk-models are provided as separate les
(this is just a convention, not a limitation) so the following should be added as a new le named
disks_lifecycle_manager.yml :

 product:
 version: 2

 disk-models:
 - name: LIFECYCLE-MANAGER-DISKS
 # Disk model to be used for Cloud Lifecycle Managers nodes
 # /dev/sda_root is used as a volume group for /, /var/log and /var/crash
 # sda_root is a templated value to align with whatever partition is really used
 # This value is checked in os config and replaced by the partition actually used
 # on sda e.g. sda1 or sda5

 volume-groups:
 - name: ardana-vg
 physical-volumes:
 - /dev/sda_root

201

Specifying a dedicated Cloud Lifecycle Manager in your input model SUSE OpenStack

Cloud 8

 logical-volumes:
 # The policy is not to consume 100% of the space of each volume group.
 # 5% should be left free for snapshots and to allow for some flexibility.
 - name: root
 size: 80%
 fstype: ext4
 mount: /
 - name: crash
 size: 15%
 mount: /var/crash
 fstype: ext4
 mkfs-opts: -O large_file
 consumer:
 name: os

Servers.yml : The snippet below shows the insertion of an additional server used for hosting the
Cloud Lifecycle Manager. Provide the address information here for the server you are running
on, that is, the node where you have installed the SUSE OpenStack Cloud ISO.

 servers:
 # NOTE: Addresses of servers need to be changed to match your environment.
 #
 # Add additional servers as required

 #Lifecycle-manager
 - id: lifecycle-manager
 ip-addr: YOUR IP ADDRESS HERE
 role: LIFECYCLE-MANAGER-ROLE
 server-group: RACK1
 nic-mapping: HP-SL230-4PORT
 mac-addr: 8c:dc:d4:b5:c9:e0
 # ipmi information is not needed

 # Controllers
 - id: controller1
 ip-addr: 192.168.10.3
 role: CONTROLLER-ROLE

Important
With a stand-alone deployer, the OpenStack CLI and other clients will not be installed
automatically. You need to install OpenStack clients to get the desired OpenStack capa-
bilities. For more information and installation instructions, consult Book “Installing with

Cloud Lifecycle Manager”, Chapter 28 “Installing OpenStack Clients”.

202

Specifying a dedicated Cloud Lifecycle Manager in your input model SUSE OpenStack

Cloud 8

12.2 Configuring SUSE OpenStack Cloud without DVR

By default in the KVM model, the Neutron service utilizes distributed routing (DVR). This is
the recommended setup because it allows for high availability. However, if you would like to
disable this feature, here are the steps to achieve this.

On your Cloud Lifecycle Manager, make the following changes:

1. In the ~/openstack/my_cloud/config/neutron/neutron.conf.j2 le, change the line
below from:

router_distributed = {{ router_distributed }}

to:

router_distributed = False

2. In the ~/openstack/my_cloud/config/neutron/ml2_conf.ini.j2 le, change the line
below from:

enable_distributed_routing = True

to:

enable_distributed_routing = False

3. In the ~/openstack/my_cloud/config/neutron/l3_agent.ini.j2 le, change the line
below from:

agent_mode = {{ neutron_l3_agent_mode }}

to:

agent_mode = legacy

4. In the ~/openstack/my_cloud/definition/data/control_plane.yml le, remove the
following values from the Compute resource service-components list:

- neutron-l3-agent
 - neutron-metadata-agent

203 Configuring SUSE OpenStack Cloud without DVR SUSE OpenStack Cloud 8

Warning
If you fail to remove the above values from the Compute resource ser-
vice-components list from le ~/openstack/my_cloud/definition/data/con-
trol_plane.yml , you will end up with routers (non_DVR routers) being deployed
in the compute host, even though the lifecycle manager is configured for non_dis-
tributed routers.

5. Commit your changes to your local git repository:

ardana > cd ~/openstack/ardana/ansible
ardana > git add -A
ardana > git commit -m "My config or other commit message"

6. Run the configuration processor:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml

7. Run the ready deployment playbook:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost ready-deployment.yml

8. Continue installation. More information on cloud deployments are available in the Book

“Installing with Cloud Lifecycle Manager”, Chapter 7 “Overview”

12.3 Configuring SUSE OpenStack Cloud with
Provider VLANs and Physical Routers Only
Another option for configuring Neutron is to use provider VLANs and physical routers only, here
are the steps to achieve this.

On your Cloud Lifecycle Manager, make the following changes:

1. In the ~/openstack/my_cloud/config/neutron/neutron.conf.j2 le, change the line
below from:

router_distributed = {{ router_distributed }}

204

Configuring SUSE OpenStack Cloud with Provider VLANs and Physical Routers Only SUSE

OpenStack Cloud 8

to:

router_distributed = False

2. In the ~/openstack/my_cloud/config/neutron/ml2_conf.ini.j2 le, change the line
below from:

enable_distributed_routing = True

to:

enable_distributed_routing = False

3. In the ~/openstack/my_cloud/config/neutron/dhcp_agent.ini.j2 le, change the
line below from:

enable_isolated_metadata = {{ neutron_enable_isolated_metadata }}

to:

enable_isolated_metadata = True

4. In the ~/openstack/my_cloud/definition/data/control_plane.yml le, remove the
following values from the Compute resource service-components list:

- neutron-l3-agent
 - neutron-metadata-agent

12.4 Considerations When Installing Two Systems on
One Subnet

If you wish to install two separate SUSE OpenStack Cloud 8 systems using a single subnet, you
will need to consider the following notes.

The ip_cluster service includes the keepalived daemon which maintains virtual IPs (VIPs)
on cluster nodes. In order to maintain VIPs, it communicates between cluster nodes over the
VRRP protocol.

205 Considerations When Installing Two Systems on One Subnet SUSE OpenStack Cloud 8

A VRRP virtual routerid identifies a particular VRRP cluster and must be unique for a subnet.
If you have two VRRP clusters with the same virtual routerid, causing a clash of VRRP traffic,
the VIPs are unlikely to be up or pingable and you are likely to get the following signature in
your /etc/keepalived/keepalived.log :

Dec 16 15:43:43 ardana-cp1-c1-m1-mgmt Keepalived_vrrp[2218]: ip address
 associated with VRID not present in received packet : 10.2.1.11
Dec 16 15:43:43 ardana-cp1-c1-m1-mgmt Keepalived_vrrp[2218]: one or more VIP
 associated with VRID mismatch actual MASTER advert
Dec 16 15:43:43 ardana-cp1-c1-m1-mgmt Keepalived_vrrp[2218]: bogus VRRP packet
 received on br-bond0 !!!
Dec 16 15:43:43 ardana-cp1-c1-m1-mgmt Keepalived_vrrp[2218]: VRRP_Instance(VI_2)
 ignoring received advertisment...

To resolve this issue, our recommendation is to install your separate SUSE OpenStack Cloud 8
systems with VRRP traffic on different subnets.

If this is not possible, you may also assign a unique routerid to your separate SUSE OpenStack
Cloud 8 system by changing the keepalived_vrrp_offset service configurable. The routerid is
currently derived using the keepalived_vrrp_index which comes from a configuration proces-
sor variable and the keepalived_vrrp_offset .

For example,

1. Log in to your Cloud Lifecycle Manager.

2. Edit your ~/openstack/my_cloud/config/keepalived/defaults.yml le and change
the value of the following line:

keepalived_vrrp_offset: 0

Change the o value to a number that uniquely identifies a separate vrrp cluster. For
example:
keepalived_vrrp_offset: 0 for the 1st vrrp cluster on this subnet.
keepalived_vrrp_offset: 1 for the 2nd vrrp cluster on this subnet.
keepalived_vrrp_offset: 2 for the 3rd vrrp cluster on this subnet.

Important
You should be aware that the les in the ~/openstack/my_cloud/config/ direc-
tory are symlinks to the ~/openstack/ardana/ansible/ directory. For example:

ardana > ls -al ~/openstack/my_cloud/config/keepalived/defaults.yml

206 Considerations When Installing Two Systems on One Subnet SUSE OpenStack Cloud 8

lrwxrwxrwx 1 stack stack 55 May 24 20:38 /var/lib/ardana/openstack/my_cloud/config/
keepalived/defaults.yml ->
 ../../../ardana/ansible/roles/keepalived/defaults/main.yml

If you are using a tool like sed to make edits to les in this directory, you might
break the symbolic link and create a new copy of the le. To maintain the link, you
will need to force sed to follow the link:

ardana > sed -i --follow-symlinks \
 's$keepalived_vrrp_offset: 0$keepalived_vrrp_offset: 2$' \
 ~/openstack/my_cloud/config/keepalived/defaults.yml

Alternatively, directly edit the target of the link ~/openstack/ardana/ansi-
ble/roles/keepalived/defaults/main.yml .

3. Commit your configuration to the Git repository (see Book “Installing with Cloud Lifecycle

Manager”, Chapter 10 “Using Git for Configuration Management”), as follows:

ardana > cd ~/openstack/ardana/ansible
ardana > git add -A
ardana > git commit -m "changing Admin password"

4. Run the configuration processor with this command:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml

5. Use the playbook below to create a deployment directory:

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost ready-deployment.yml

6. If you are making this change after your initial install, run the following reconfigure play-
book to make this change in your environment:

ardana > cd ~/scratch/ansible/next/ardana/ansible/
ardana > ansible-playbook -i hosts/verb_hosts FND-CLU-reconfigure.yml

207 Considerations When Installing Two Systems on One Subnet SUSE OpenStack Cloud 8

	Planning an Installation with Cloud Lifecycle Manager
	Part I. Planning
	Chapter 1. Registering SLES
	1.1. Registering SLES during the Installation
	1.2. Registering SLES from the Installed System
	1.2.1. Registering from the Installed System

	1.3. Registering SLES during Automated Deployment

	Chapter 2. Hardware and Software Support Matrix
	2.1. OpenStack Version Information
	2.2. Supported Hardware Configurations
	2.3. Support for Core and Non-Core OpenStack Features
	2.4. Cloud Scaling
	2.5. Supported Software
	2.6. Notes About Performance
	2.7. KVM Guest OS Support
	2.8. ESX Guest OS Support
	2.9. Ironic Guest OS Support

	Chapter 3. Recommended Hardware Minimums for the Example Configurations
	3.1. Recommended Hardware Minimums for an Entry-scale KVM
	3.2. Recommended Hardware Minimums for an Entry-scale ESX KVM Model
	3.3. Recommended Hardware Minimums for an Entry-scale ESX, KVM with Dedicated Cluster for Metering, Monitoring, and Logging
	3.4. Recommended Hardware Minimums for an Ironic Flat Network Model
	3.5. Recommended Hardware Minimums for an Entry-scale Swift Model

	Chapter 4. High Availability
	4.1. High Availability Concepts Overview
	4.2. Highly Available Cloud Infrastructure
	4.3. High Availability of Controllers
	4.4. High Availability Routing - Centralized
	4.5. High Availability Routing - Distributed
	4.6. Availability Zones
	4.7. Compute with KVM
	4.8. Nova Availability Zones
	4.9. Compute with ESX Hypervisor
	4.10. Cinder Availability Zones
	4.11. Object Storage with Swift
	4.12. Highly Available Cloud Applications and Workloads
	4.13. What is not Highly Available?
	4.14. More Information

	Part II. Cloud Lifecycle Manager Overview
	Chapter 5. Input Model
	5.1. Introduction to the Input Model
	5.2. Concepts
	5.2.1. Cloud
	5.2.2. Control Planes
	5.2.2.1. Control Planes and Regions

	5.2.3. Services
	5.2.4. Server Roles
	5.2.5. Disk Model
	5.2.6. Memory Model
	5.2.7. CPU Model
	5.2.8. Servers
	5.2.9. Server Groups
	5.2.9.1. Server Groups and Failure Zones
	5.2.9.2. Server Groups and Networks

	5.2.10. Networking
	5.2.10.1. Network Groups
	5.2.10.1.1. Load Balancers
	5.2.10.1.2. Separation of Public, Admin, and Internal Endpoints
	5.2.10.1.3. Network Tags

	5.2.10.2. Networks
	5.2.10.3. Interface Model
	5.2.10.4. NIC Mapping
	5.2.10.5. Firewall Configuration

	5.2.11. Configuration Data

	Chapter 6. Configuration Objects
	6.1. Cloud Configuration
	6.2. Control Plane
	6.2.1. Clusters
	6.2.2. Resources
	6.2.3. Multiple Control Planes
	6.2.4. Load Balancer Definitions in Control Planes

	6.3. Load Balancers
	6.4. Regions
	6.5. Servers
	6.6. Server Groups
	6.7. Server Roles
	6.8. Disk Models
	6.8.1. Volume Groups
	6.8.2. Device Groups

	6.9. Memory Models
	6.9.1. Huge Pages

	6.10. CPU Models
	6.10.1. CPU Assignments
	6.10.2. CPU Usage
	6.10.3. Components and Roles in the CPU Model

	6.11. Interface Models
	6.11.1. network-interfaces
	6.11.1.1. network-interfaces device

	6.11.2. fcoe-interfaces
	6.11.3. dpdk-devices
	6.11.3.1. dpdk-devices devices
	6.11.3.2. DPDK component-options for the openvswitch component

	6.12. NIC Mappings
	6.13. Network Groups
	6.13.1. Load Balancer Definitions in Network Groups
	6.13.2. Network Tags
	6.13.3. MTU (Maximum Transmission Unit)

	6.14. Networks
	6.15. Firewall Rules
	6.15.1. Rule

	6.16. Configuration Data
	6.16.1. Neutron network-tags
	6.16.2. Neutron Configuration Data
	6.16.2.1. neutron-provider-networks
	6.16.2.2. neutron-external-networks

	6.16.3. Octavia Configuration Data
	6.16.4. Ironic Configuration Data
	6.16.5. Swift Configuration Data

	6.17. Pass Through

	Chapter 7. Other Topics
	7.1. Services and Service Components
	7.2. Name Generation
	7.3. Persisted Data
	7.3.1. Persisted Server Allocations
	7.3.2. Persisted Address Allocations

	7.4. Server Allocation
	7.5. Server Network Selection
	7.6. Network Route Validation
	7.7. Configuring Neutron Provider VLANs
	7.8. Standalone Cloud Lifecycle Manager

	Chapter 8. Configuration Processor Information Files
	8.1. address_info.yml
	8.2. firewall_info.yml
	8.3. route_info.yml
	8.4. server_info.yml
	8.5. service_info.yml
	8.6. control_plane_topology.yml
	8.7. network_topology.yml
	8.8. region_topology.yml
	8.9. service_topology.yml
	8.10. private_data_metadata_ccp.yml
	8.11. password_change.yml
	8.12. explain.txt
	8.13. CloudDiagram.txt
	8.14. HTML Representation

	Chapter 9. Example Configurations
	9.1. SUSE OpenStack Cloud Example Configurations
	9.2. Alternative Configurations
	9.3. KVM Examples
	9.3.1. Entry-Scale Cloud
	9.3.2. Entry Scale Cloud with Metering and Monitoring Services
	9.3.3. Single-Region Mid-Size Model
	9.3.3.1. Adapting the Mid-Size Model to Fit Your Environment

	9.4. ESX Examples
	9.4.1. Single-Region Entry-Scale Cloud with a Mix of KVM and ESX Hypervisors
	9.4.2. Single-Region Entry-Scale Cloud with Metering and Monitoring Services, and a Mix of KVM and ESX Hypervisors

	9.5. Swift Examples
	9.5.1. Entry-scale Swift Model

	9.6. Ironic Examples
	9.6.1. Entry-Scale Cloud with Ironic Flat Network
	9.6.2. Entry-Scale Cloud with Ironic Multi-Tenancy

	Chapter 10. Modifying Example Configurations for Compute Nodes
	10.1. SLES Compute Nodes

	Chapter 11. Modifying Example Configurations for Object Storage using Swift
	11.1. Object Storage using Swift Overview
	11.1.1. What is the Object Storage (Swift) Service?
	11.1.2. Object Storage (Swift) Services

	11.2. Allocating Proxy, Account, and Container (PAC) Servers for Object Storage
	11.2.1. To Allocate Swift PAC servers

	11.3. Allocating Object Servers
	11.3.1. To Allocate a Swift Object Server

	11.4. Creating Roles for Swift Nodes
	11.5. Allocating Disk Drives for Object Storage
	11.5.1. Making Changes to a Swift Disk Model

	11.6. Swift Requirements for Device Group Drives
	11.7. Creating a Swift Proxy, Account, and Container (PAC) Cluster
	11.7.1. Steps to Create a Swift Proxy, Account, and Container (PAC) Cluster
	11.7.2. Service Components

	11.8. Creating Object Server Resource Nodes
	11.9. Understanding Swift Network and Service Requirements
	11.10. Understanding Swift Ring Specifications
	11.10.1. Ring Specifications in the Input Model
	11.10.2. Replication Ring Parameters
	11.10.3. Erasure Coded Rings
	11.10.4. Selecting a Partition Power

	11.11. Designing Storage Policies
	11.11.1. Specifying Storage Policies

	11.12. Designing Swift Zones
	11.12.1. Using Server Groups to Specify Swift Zones
	11.12.2. Specifying Swift Zones at Ring Level

	11.13. Customizing Swift Service Configuration Files
	11.13.1. Configuring Swift Container Rate Limit
	11.13.2. Configuring Swift Account Server Logging Level
	11.13.3. For More Information

	Chapter 12. Alternative Configurations
	12.1. Using a Dedicated Cloud Lifecycle Manager Node
	12.1.1. Specifying a dedicated Cloud Lifecycle Manager in your input model

	12.2. Configuring SUSE OpenStack Cloud without DVR
	12.3. Configuring SUSE OpenStack Cloud with Provider VLANs and Physical Routers Only
	12.4. Considerations When Installing Two Systems on One Subnet

