
SUSE OpenStack Cloud 8

Security Guide

Security Guide
SUSE OpenStack Cloud 8

Publication Date: 09/08/2022

SUSE LLC
1800 South Novell Place
Provo, UT 84606
USA

https://documentation.suse.com

Copyright © 2006– 2022 SUSE LLC and contributors. All rights reserved.

https://documentation.suse.com

Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 Li-

cense : http://creativecommons.org/licenses/by/3.0/legalcode

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the

property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its

affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does

not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be

held liable for possible errors or the consequences thereof.

http://creativecommons.org/licenses/by/3.0/legalcode
http://www.suse.com/company/legal/

Contents

1 SUSE® OpenStack Cloud: Security Features
Overview 1

1.1 Security features in SUSE OpenStack Cloud 8 1

1.2 Role-Based Access Control (RBAC) Support for Neutron Networks 1

1.3 Separate Service Administrator Role 1

1.4 Inter-service Password Enhancements 2

1.5 SELinux for KVM 2

1.6 Data In Transit Protection 2

1.7 Data-at-Rest Protection Using Project-Based Encryption 3

1.8 CADF-Compliant Security Audit Logs 3

1.9 PCI Readiness 3

1.10 Glance-API Rate Limit to Address CVE-2016-8611 3

2 Key Management with the Barbican Service 4

2.1 Barbican Service Overview 4

2.2 Key Features 4

2.3 Installation 5

2.4 Auditing Barbican Events 9

2.5 Barbican Key Management Service Bootstrap Data 10

2.6 Known issues and workarounds 14

3 Key Management Service Administration 15

3.1 Post-installation verification and administration 15

3.2 Updating the Barbican Key Management Service 15

iv Security Guide

3.3 Barbican Settings 15

3.4 Enable or Disable Auditing of Barbican Events 16

3.5 Updating the Barbican API Service Configuration File 17

3.6 Starting and Stopping the Barbican Service 18

3.7 Changing or Resetting a Password 18

3.8 Checking Barbican Status 19

3.9 Updating Logging Configuration 19

4 SUSE® OpenStack Cloud: Service Admin Role
Segregation in the Identity Service 21

4.1 Overview 21

4.2 Pre-Installed Service Admin Role Components 21

4.3 Features and Benefits 22

4.4 Roles 23

5 Role-Based Access Control in Neutron 24

5.1 Creating a Network 24

5.2 Creating an RBAC Policy 25

5.3 Listing RBACs 25

5.4 Listing the Attributes of an RBAC 26

5.5 Deleting an RBAC Policy 26

5.6 Sharing a Network with All Tenants 26

5.7 Target Project (demo2) View of Networks and Subnets 31

5.8 Target Project: Creating a Port Using demo-net 32

5.9 Target Project Booting a VM Using Demo-Net 33

5.10 Limitations 35

v Security Guide

6 Configuring Keystone and Horizon to use X.509 Client
Certificates 37

6.1 Keystone configuration 37

6.2 HAProxy Configuration 40

6.3 Create CA and client certificates 42

6.4 Horizon configuration 42

6.5 Browser configuration 44

6.6 User accounts 44

6.7 How it works 45

7 Transport Layer Security (TLS) Overview 47

7.1 Comparing Clean Installation and Upgrade of SUSE OpenStack
Cloud 47

7.2 TLS Configuration 48

Using the Default My Public Cert 48 • Certificate Terms 48 • Configuring

TLS in the input model 50 • Generating and Signing

Certificates 51 • User-provided certificates and trust

chains 52 • Edit the Input Model to Include Your Certificate

Files 53 • Generating a Self-signed CA 54 • Generate a Certificate

Signing Request 56 • Generate a Server Certificate 57 • Upload

to the Cloud Lifecycle Manager 59 • Configuring the Cipher

Suite 61 • Testing 61 • Verifying That the Trust Chain is Correctly

Deployed 61 • Turning TLS on or off 62

7.3 Enabling TLS for MySQL Traffic 63

Enabling TLS on the database server for client access 63 • MySQL

replication over TLS 64 • Enabling TLS for MySQL replication on a new

deployment 64 • Enabling TLS for MySQL replication on an existing

system 65 • Testing whether a service is using TLS 65

7.4 Enabling TLS for RabbitMQ Traffic 66

Testing 67

vi Security Guide

7.5 Troubleshooting TLS 68

Troubleshooting TLS certificate errors when running playbooks with a

limit 68 • Certificate Update Failure 68 • Troubleshooting trust

chain installation 68 • Expired TLS Certificates 70 • Troubleshooting

certificates 71

8 SUSE® OpenStack Cloud: Preventing Host Header
Poisoning 72

9 Encryption of Passwords and Sensitive Data 74

9.1 SSH Introduction 74

9.2 Protecting sensitive data on the Cloud Lifecycle Manager 75

9.3 Interacting with Encrypted Files 76

10 Encryption of Ephemeral Volumes 78

10.1 Enabling ephemeral volume encryption 78

11 Refining Access Control with AppArmor 80

11.1 AppArmor in SUSE OpenStack Cloud 8 80

12 Data at Rest Encryption 81

12.1 Configuring KMIP and ESKM 81

12.2 Configuring Cinder volumes for encryption 84

12.3 For More Information 85

13 Glance-API Rate Limit (CVE-2016-8611) 86

14 Security Audit Logs 88

14.1 The need for auditing 88

14.2 Audit middleware 88

14.3 Centralized auditing configuration 89

vii Security Guide

1 SUSE® OpenStack Cloud: Security Features
Overview

1.1 Security features in SUSE OpenStack Cloud 8
Enterprises need protection against security breaches, insider threats, and operational issues
that increase the risk to sensitive data. By combining technologies from both OpenStack services
and Micro Focus Security–Data Security products, SUSE OpenStack Cloud 8 provides capabilities
that help you protect your data at rest and in transit, enable centralized key management, and
comply with Payment Card Industry Data Security Standard (PCI-DSS).

In SUSE OpenStack Cloud 8, a number of security enhancements are available to strengthen
and harden your cloud deployment. Below is an overview of some of the features and brief
descriptions. Follow the links to the relevant topics for instructions on setup, configuration, and
use of these security features.

1.2 Role-Based Access Control (RBAC) Support for
Neutron Networks
The RBAC feature in this release enables better security as administrators can now control who
has access to specific networks. This is a significant improvement over the previous all-or-noth-
ing approach to shared networks. This is beneficial from a security standpoint as some projects
(or tenants) have stricter security policies. For example, a finance department must run PCI-
compliant workloads in isolation from other departments, and thus cannot share their Neutron
network resources. RBAC enables cloud admins to create granular security policies for sharing
Neutron resources with one or more tenants or projects using the standard CRUD (Create, Read,
Update, Delete) model. More information can be found in Chapter 5, Role-Based Access Control in

Neutron.

1.3 Separate Service Administrator Role
Each OpenStack service account now has an optional role available to restrict the OpenS-
tack functions each account can access. This feature enables cloud administrators to apply ser-
vice-specific role-based, admin-level access to a specific UserID, with the ability to audit ad-

1 Security features in SUSE OpenStack Cloud 8 SUSE OpenStack Cloud 8

min-level actions. This functionality provides better security by not only providing full visibility
into admin-level activities via audit logs, but also by fulfilling compliance requirements such as
PCI DSS v3.1 standards. More information in Section 4.1, “Overview”.

1.4 Inter-service Password Enhancements

You can conveniently change the inter-service passwords used for authenticating communica-
tions between services in your SUSE OpenStack Cloud deployment, promoting better compliance
with your organization’s security policies. The inter-service passwords that can be changed in-
clude (but are not limited to) Keystone, MariaDB, RabbitMQ, Cloud Lifecycle Manager, Monasca
and Barbican. Admins can implement this feature by running the configuration processor to
generate new passwords followed by Ansible playbook commands to change the credentials.

1.5 SELinux for KVM

SELinux (also known as Security-Enhanced Linux) provides enhanced security at the hypervisor
layer on Compute Nodes by mitigating the risk of hypervisor attacks and strongly isolating the
guest VMs. It enforces mandatory access control security policies for the Compute Nodes (svirt
process) running KVM, thus reducing the risk of a hypervisor breakout. By providing a locked
down profile for the KVM/QEMU processes that the guest VMs run in, it strongly isolates the
guest VMs. With such strong security measures as SELinux, malicious attacks on VMs and the
underlying host OS are much less possible. SELinux provides enhanced security for instances
managed by libvirt . It does not, however, provide enhanced security for OpenStack processes.

1.6 Data In Transit Protection

With SUSE OpenStack Cloud 8, data transmission between internal API endpoints is encrypt-
ed using TLS v 1.2 to protect sensitive data against unauthorized disclosure and modification
(spoofing and tampering attacks). Additionally, you can configure TLS using your own certifi-
cates, from a Certificate Authority of your choice, providing deployment flexibility. More at
Section 7.2, “TLS Configuration”.

2 Inter-service Password Enhancements SUSE OpenStack Cloud 8

1.7 Data-at-Rest Protection Using Project-Based
Encryption
You can encrypt sensitive data-at-rest on per tenant or project basis, while storing and manag-
ing keys externally and centrally using Enterprise Secure Key Manager (ESKM). This capability
requires the Barbican API and OASIS KMIP (Key Management Interoperability Protocol) plug-
ins for integration, and supports encryption of Cinder block storage with SUSE OpenStack Cloud
8. More information at Chapter 12, Data at Rest Encryption.

1.8 CADF-Compliant Security Audit Logs
Security audit logs for critical services such as Keystone, Nova, Cinder, Glance, Heat, Neutron,
Barbican are available in a standard CADF (Cloud Audit Data Federation) format. These logs
contain information on events such as unauthorized logins, admin level access, unsuccessful
login attempts, and anomalous deletion of VMs that are critical from a security threat monitoring
standpoint. Audit logs are useful as a tool for risk mitigation, identifying suspicious or anomalous
activity, and for fulfilling compliance. For more information see Chapter 14, Security Audit Logs.

1.9 PCI Readiness
SUSE OpenStack Cloud 8 is PCI (Payment Card Industry) ready, enabling retail and finance in-
dustries that are subject to PCI compliance, to become certified. The readiness is based on lab
assessment and verification conducted by an external audit rm, against the more than 250 se-
curity requirements specified in the PCI DSS (Data Security Standard) v3.1 standards document.
Since SUSE OpenStack Cloud satisfies the requirements that fall under vendor responsibility,
customers can proceed with their certification efforts with full confidence and peace of mind
that SUSE OpenStack Cloud will not be a blocker.

1.10 Glance-API Rate Limit to Address CVE-2016-8611
No limits are enforced within the Glance service for both v1 and v2/images API POST method
for authenticated users, resulting in possible denial of service through database table saturation.
Further explanation and instructions for adding a rate-limiter are in Chapter 13, Glance-API Rate

Limit (CVE-2016-8611).

3 Data-at-Rest Protection Using Project-Based Encryption SUSE OpenStack Cloud 8

2 Key Management with the Barbican Service

2.1 Barbican Service Overview
Barbican is an OpenStack key management service offering secure storage, provisioning, and
management of key data. The Barbican service provides management of secrets, keys and cer-
tificates via multiple storage back-ends. The support for various back ends is provided via a plug-
in mechanism, a Key Management Interoperability Protocol (KMIP) plug-in for a KMIP-compli-
ant HSM Hardware Secure Module (HSM) device. Barbican supports symmetric and asymmetric
key generation using various algorithms. Cinder, neutron-lbaas v2 and Nova will integrate with
Barbican for their encryption key generation and storage.

Barbican has two types of core feature sets:

The Barbican component, a Web Server Gateway Interface (WSGI) application that exposes
a REST API for secrets/containers/orders.

Barbican workers for asynchronous processing, which is used for various messaging-event-
driven tasks related to certificate generation.

2.2 Key Features
The major features of the Barbican key management service are:

The ability to encrypt volumes/disks. In an OpenStack context, this means support for
encrypting Cinder volumes (volume encryption). Cinder has its own key manager interface
(KeyMgr) and can use BarbicanClient as one of its implementations. By default in SUSE
OpenStack Cloud 8, Cinder uses Barbican as its key manager when Barbican is enabled.
KeyMgr encrypts data in the virtualization host before writing data to the remote disk.
There are three options available in SUSE OpenStack Cloud:

Tenant-based encryption for block volume storage using Barbican for KMS,

Barbican with KMIP and PKCS11 and external KMS (certified with Micro Focus
ESKM),

3PAR StoreServ Data-At-Rest Encryption,

Storage and retrieval of secrets (passwords)

4 Barbican Service Overview SUSE OpenStack Cloud 8

Certificate management for Load Balancer as a Service V2 (previously known as Neu-
tron-LBaaS)

The ability to define and manage access policies for key material

Administrative functionality, and the ability to control the lifecycle of key material

A well-defined auditing ability in OpenStack services for key access and lifecycle events

Key management as a service for PaaS application(s) deployed on an OpenStack cloud

The ability to scale key management effectively and make it highly available (able to
handle failover)

Warning
Do not delete the certificate container associated with your load balancer listeners before
deleting the load balancers themselves. If you delete the certificate rst, future operations
on your load balancers and failover will stop working.

2.3 Installation
New installations of SUSE OpenStack Cloud 8:

For new installations, no changes are needed for Barbican to be enabled. When installing
your cloud, you should use the input models which already define the necessary Barbican
components. When using the pre-defined input model les that come with SUSE OpenStack
Cloud 8, nothing else needs to be done in those les.

Generate a master key.

Warning
Do not change your master key after deploying it to Barbican.

If you decide to make configuration changes to your clean install of SUSE OpenStack Cloud
8, you will need to redeploy the Barbican service. For details on available customization
options, please see Chapter 3, Key Management Service Administration.

5 Installation SUSE OpenStack Cloud 8

Master Key Configuration

Barbican currently supports databases and KMIP as its secret store back-ends. In OpenStack
upstream additional back-ends are available, such as the PKCS11 and dogtag plug-ins, but they
are not tested or supported by SUSE OpenStack Cloud.

In SUSE OpenStack Cloud, by default Barbican is configured to use a database as a secret (keys)
storage back-end. This back-end encrypts Barbican-managed keys with a project level key (KEK/
Key Encryption Key) before storing it in the database. Project-level keys are encrypted using
a master key. As part of the initial Barbican configuration, you must generate and configure
this master key.

When Barbican is used with simple_crypto_plugin as its secret store back-end, its master key
needs to be defined before initial deployment. If no key is specified before deployment, the
default master key is used—this practice is discouraged.

1. Generate the master key using the provided python *generate_kek* script on the Cloud
Lifecycle Manager node:

python ~/openstack/ardana/ansible/roles/KEYMGR-API/templates/generate_kek

The master key is generated at stdout from this command.

2. Set the master key in ~/openstack/my_cloud/config/barbican/barbican_de-

ploy_config.yml .

3. If there is an existing barbican_customer_master_key value, replace it with the gener-
ated master key you just generated.

4. Commit the change to the Git repository:

cd ~/openstack
git add -A
git commit -m "My config"

5. Run ready-deployment:

cd ~/openstack/ardana/ansible/
ansible-playbook -i hosts/localhost ready-deployment.yml

6. When the master key is set, continue with your cloud deployment.

6 Installation SUSE OpenStack Cloud 8

Upgrade Master Key Configuration

1. Check the master key.
If a master key is already defined, check ~/openstack/ardana/ansible/roles/

barbican-common/vars/barbican_deploy_config.yml for barbican_customer_mas-
ter_key value. If the value does not have a prefix @ardana@ , it is not encrypted. It is
highly recommended to encrypt this value.

2. Encrypt the existing key during upgrade:

a. Set up the environment variable.

ARDANA_USER_PASSWORD_ENCRYPT_KEY

which contains the key used to encrypt Barbican master key.

b. Before you run any playbooks, you need to export the encryption key in the following
environment variable:

i. export ARDANA_USER_PASSWORD_ENCRYPT_KEY=<USER_ENCRYPTION_KEY>

ii. python
*roles/KEYMGR-API/templates/generate_kek <barbican_customer_master_key>

iii. Master key is generated at stdout.

iv. Set this master key in le

~/openstack/ardana/ansible/roles/barbican-common/vars/
barbican_deploy_config.yml

v. Replace existing barbican_customer_master_key value with the master key
you just generated.

vi. Commit the change in git repository.

vii. cd ~/openstack/ardana/ansible/
ansible-playbook -i hosts/localhost ready-deployment.yml

viii. When the master key is set, continue with cloud deployment.

7 Installation SUSE OpenStack Cloud 8

3. Changing the master key during the upgrade process is discouraged. Changing the master
key will result in a read error for existing secrets as they were encrypted using the previous
master key.

Note
For a Barbican deployment with a database back-end, the master key needs to be gener-
ated and configured before Barbican is deployed for the rst time. Once the master key
is set, it must not be modified.

Note
Changing the master key can result in read errors for existing secrets as those secrets
are stored in the database and are encrypted using the previous master key. Once a new
master key is used, Barbican will not be able to read those secrets. Also it will not be able
to create new secrets within that project as the project key is encrypted using previous
master key.

KMIP Plug-in Support

Barbican has a KMIP plug-in to store encryption keys (called secrets in Barbican service termi-
nology) in an HSM device using the KMIP protocol. This plug-in has been tested against Micro
Focus ESKM with KMIP server. To enable support for it, Barbican needs to be configured with the
corresponding plug-in connection details, and client certificate information needs to be defined
in its configuration. The ESKM KMIP server uses a client certificate to validate a KMIP client
connection established by the Barbican server. As part of that KMIP configuration, playbooks
provide a mechanism to upload your client certs to nodes hosting the Barbican API server.

KMIP deployment instructions can be found in Section 12.1, “Configuring KMIP and ESKM”.

Note
Installation and deployment of the Micro Focus ESKM or any other HSM devices and de-
pendent components is beyond the scope of this document. Please refer the relevant doc-
umentation for your choice of product. For example, you can get more information on Mi-
cro Focus ESKM and related Data Security and Encryption Products at https://software.mi-

crofocus.com/en-us/products/eskm-enterprise-secure-key-management/overview .

8 Installation SUSE OpenStack Cloud 8

https://software.microfocus.com/en-us/products/eskm-enterprise-secure-key-management/overview
https://software.microfocus.com/en-us/products/eskm-enterprise-secure-key-management/overview

2.4 Auditing Barbican Events
The Barbican service supports auditing and uses Chapter 14, Security Audit Logs to generate audit-
ing data in Cloud Auditing Data Federation (CADF) format. The SUSE OpenStack Cloud input
model has a mechanism to enable and disable auditing on a per-service basis. When Barbican
auditing is enabled, it writes audit messages to an audit log le that is separate from the Barbican
internal logging. The base location of audit log le is driven by common auditing configuration.

Enabling and Disabling Auditing

The auditing of Barbican events can be enabled and disabled through the Barbican reconfigure
playbook. As part of the configuration of Barbican, its audit messages can be directed to a log
or to a messaging queue. By default, messages are written to the Barbican log le. Once an
architecture-level decision is made with regards to the default consumer of audit events (either
logging or messaging), the Barbican service can be configured to use it as the default option
when auditing is enabled.

Auditing can be disabled or enabled by following these steps on the Cloud Lifecycle Manager
node.

PROCEDURE 2.1: ENABLING OR DISABLING AUDITING

1. Edit the le ~/openstack/my_cloud/definition/cloudConfig.yml . All audit-related
configuration is defined in the audit-settings section. You must use valid YAML syntax
when specifying values.

2. Any service (including Barbican) that is listed under enabled-services or disabled-services
will override the default setting. To enable auditing, make sure that the Barbican service
name is in the enabled-services list of the audit-settings section or is not present in
disabled-services list when default: is set to enabled.
The relevant section of cloudConfig.yml is shown below. Enabled-services are com-
mented out.
The default: enabled setting applies to all services. If you want to disable (or enable)
a few, whichever is the opposite of the default global setting you used, you can do so in
a disabled-services (or enabled-services) section below it. Here the enabled-services entry
is commented out. You should only have either a default of enabled (or disabled) or a
section of disabled (or enabled). There is no need to duplicate the setting.

audit-settings:

9 Auditing Barbican Events SUSE OpenStack Cloud 8

 default: enabled
 #enabled-services:
 # - keystone
 # - barbican
 disabled-services:
 - nova
 - barbican
 - keystone
 - cinder
 - ceilometer
 - neutron

3. When you are satisfied with your settings, copy the les to ~/openstack/my_cloud/def-
inition/ , and commit the changes in the git repository. For example, if you are using the
Entry Scale KVM model, you would copy from ~/openstack/examples/entry-scale-
kvm and commit.

 cp -r ~/openstack/examples/entry-scale-kvm/* ~/openstack/my_cloud/definition/
 cd ~/openstack
 git add -A
 git commit -m "My config"

4. Run the configuration processor and ready-deployment:

cd ~/openstack/ardana/ansible/
 ansible-playbook -i hosts/localhost config-processor-run.yml
 ansible-playbook -i hosts/localhost ready-deployment.yml

5. Run barbican-reconfigure:

cd ~/scratch/ansible/next/ardana/ansible
 ansible-playbook -i hosts/verb_hosts barbican-reconfigure.yml

2.5 Barbican Key Management Service Bootstrap
Data

When the key management service is installed, some of the Keystone-related initial data is boot-
strapped as part of its initial deployment. The data added is primarily related to Barbican user,
roles, service and endpoint definitions, and Barbican role assignments.

10 Barbican Key Management Service Bootstrap Data SUSE OpenStack Cloud 8

User, Roles, Service and Endpoint Definitions

Type Name or
key-value
pair

Purpose Comments

Key-
stone
User
Ac-
count

barbican Barbican user account associated
with administrative privileges.

Password is randomly generated
and made available in the Barbi-
can client environment setup script,
barbican.osrc, , on the Cloud
Lifecycle Manager node.

Key-
stone
User
Ac-
count

barbi-
can_ser-
vice

Service account used for Keystone
token validation by barbican ser-
vice.

Password is randomly generated
and stored in barbican paste config-
uration, barbican-api-paste.i-
ni .

Key-
stone
Role

key-man-
ager:cre-
ator

Barbican specific role with priv-
ilege to create, modify, list, and
delete keys and certificates.

This role has the same privileges
defined for creator role in up-
stream Barbican. Referenced in the
service policy config le, poli-
cy.json .

Key-
stone
Role

key-man-
ager:ad-
min

Barbican-specific role that has ad-
ministrative privileges. Privileges
include modifications (update and
delete) in container's consumer,
transport keys, certificate authori-
ties (CA), assignment, and manage-
ment of per-project CA.

This role has the same privileges
defined for admin role in upstream
Barbican. Referenced in the service
policy config le, policy.json .

Key-
stone
Role

key-man-
ager:ob-
server

Barbican specific role which has
privileges limited to read/list of
keys, certificates.

This role has the same privileges
defined for observer role in up-
stream Barbican. Referenced in the
service policy config le, poli-
cy.json .

11 Barbican Key Management Service Bootstrap Data SUSE OpenStack Cloud 8

Type Name or
key-value
pair

Purpose Comments

Key-
stone
Role

key-man-
ager:audi-
tor

Barbican specific role which has
privileges limited to reading meta-
data of keys, certificates. This role
does not allow reading and listing
of actual keys and certificates.

This role has the same privileges
defined for auditor role in up-
stream Barbican. Referenced in the
service policy config le, poli-
cy.json .

Key-
stone
Role

key-man-
ager:ser-
vice-ad-
min

Barbican specific role which has
privilege to modify global preferred
CA and modify default project quo-
tas.

This role has the same privileges
defined for key-manager:ser-
vice-admin role in upstream Bar-
bican. Referenced in the service
policy config le, policy.json .

Key-
stone
Ser-
vice

name:
barbican
type: key-
manager

Barbican service definition. Service
type is key-manager.

Key-
stone
End-
point

interface:
internal
region: re-
gion1

Barbican internal endpoint. This is
the load-balanced endpoint exposed
for internal service usage.

Key-
stone
End-
point

interface:
public re-
gion: re-
gion1

Barbican public endpoint. This is
the load-balanced endpoint exposed
for external/public service usage.

12 Barbican Key Management Service Bootstrap Data SUSE OpenStack Cloud 8

Role Assignments

User
name

Project
name

Role name Purpose

bar-
bican

ad-
min

key-manager:admin User is assigned Barbican administration privileges on
Keystone-defined admin project. This allows the user to
manage Barbican resources associated with that project
using the Barbican CLI setup.

bar-
bican

ad-
min

key-
manager:ser-
vice-admin

User is assigned Barbican service administration privi-
leges on Keystone-defined admin project. This role and
the one above allows full Barbican-related administra-
tion capabilities.

bar-
bican

ad-
min

admin User assigned Keystone defined administrative role on
its admin project. This way customer can continue to
use Barbican CLI and OpenStack CLI without need to
switch when testing or verifying data.

ad-
min

ad-
min

key-manager:admin Keystone-defined admin user is given Barbican related
administrative privileges on Keystone-defined admin
project.

ad-
min

ad-
min

key-
manager:ser-
vice-admin

In lines of above role assignment, Barbican specific ser-
vice administrator role is assigned to allow global pre-
ferred CA and quotas modifications.

bar-
bi-
can_ser-
vice

ser-
vices

service Barbican service account is given service role on
services project for token validation. API server us-
es this for creating scoped service token and then in-
cludes it as X-Service-Token when requesting cus-
tomer/client token validation from Keystone.

13 Barbican Key Management Service Bootstrap Data SUSE OpenStack Cloud 8

2.6 Known issues and workarounds

1. Make sure that in your Certificate Signing Request (CSR) Common Name matches the bar-
bican_kmip_username value defined in roles/barbican-common/vars/barbican_de-
ploy_config.yml . Otherwise you may see an internal server error message in Barbican
for secret create request.

2. Barbican does not return a clear error message with regards to client certificate setup
and its connectivity with KMIP server. During secret create request, a general "Internal
Server Error" is returned when the certificate is invalid or missing any of necessary client
certificate data (client certificate, key and CA root certificate).

14 Known issues and workarounds SUSE OpenStack Cloud 8

3 Key Management Service Administration

3.1 Post-installation verification and administration

In a production environment, you can verify your installation of the Barbican key management
service by running the barbican-status.yml Ansible playbook on the Cloud Lifecycle Man-
ager node.

ansible-playbook -i hosts/verb_hosts barbican-status.yml

In any non-production environment, along with the playbook, you can also verify the service
by storing and retrieving the secret from Barbican.

3.2 Updating the Barbican Key Management Service

Some Barbican features and service configurations can be changed. This is done using the Cloud
Lifecycle Manager Reconfigure Ansible playbook. For example, the log level can be changed
from INFO to DEBUG and vice-versa. If needed, this change can be restricted to a set of nodes
via the playbook's host limit option. Barbican administration tasks should be performed by an
admin user with a token scoped to the default domain via the Keystone identity API. These
settings are preconfigured in the barbican.osrc le. By default, barbican.osrc is configured
with the admin endpoint. If the admin endpoint is not accessible from your network, change
OS_AUTH_URL to point to the public endpoint.

3.3 Barbican Settings

The following Barbican configuration settings can be changed:

Anything in the main Barbican configuration le: /etc/barbican/barbican.conf

Anything in the main Barbican worker configuration le: /etc/barbican/barbi-

can-worker.conf

15 Post-installation verification and administration SUSE OpenStack Cloud 8

You can also update the following configuration options and enable the following features. For
example, you can:

Change the verbosity of logs written to Barbican log les (var/log/barbican/).

Enable and disable auditing of the Barbican key management service

Edit barbican_secret_store plug-ins. The two options are:

store_crypto used to store the secrets in the database

kmip_plugin used to store the secrets into KMIP-enabled external devices

3.4 Enable or Disable Auditing of Barbican Events

Auditing of Barbican key manager events can be disabled or enabled by following steps on the
Cloud Lifecycle Manager node.

1. Edit the le ~/openstack/my_cloud/definition/cloudConfig.yml .
All audit-related configuration is defined under audit-settings section. Valid YAML
syntax is required when specifying values.
Service name defined under enabled-services or disabled-services override the
default setting (that is, default: enabled or default: disabled)

2. To enable auditing, make sure that the barbican service name is listed in the en-
abled-services list of audit-settings section or is not listed in the disabled-ser-
vices list when default: is set to enabled .

3. To disable auditing for the Barbican service specifically, make sure that barbican ser-
vice name is in disabled-services list of the audit-settings section or is not present
in the enabled-services list when default: is set to disabled . You should not speci-
fy the service name in both lists. If it is specified in both, the enabled-services list takes
precedence.

4. Commit the change in git repository.

cd ~/openstack/ardana/ansible
git add -A
git commit -m "My config"

16 Enable or Disable Auditing of Barbican Events SUSE OpenStack Cloud 8

5. Run the configuration-processor-run and ready-deployment playbooks, followed
by the barbican-reconfigure playbook:

cd ~/openstack/ardana/ansible/
ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-reconfigure.yml

3.5 Updating the Barbican API Service Configuration
File

1. The Barbican API service configuration le (/etc/barbican/barbican.conf), located
on each control plane server (controller node) is generated from the following template le
located on the Cloud Lifecycle Manager node: /var/lib/ardana/openstack/my_cloud/
config/barbican/barbican.conf.j2 . Modify this template le as appropriate. This is a
Jinja2 template, which expects certain template variables to be set. Do not change values
inside double curly braces: {{ }} .

2. Once the template is modified, copy the les to ~/openstack/my_cloud/definition/ ,
and commit the change to the local git repository:

cp -r ~/hp-ci/padawan/* ~/openstack/my_cloud/definition/
cd ~/openstack/ardana/ansible
git add -A
git commit -m "My config"

3. Then rerun the configuration processor and ready-deployment playbooks:

cd ~/openstack/ardana/ansible
ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml

4. Finally, run the barbican-reconfigure playbook in the deployment area:

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-reconfigure.yml

17 Updating the Barbican API Service Configuration File SUSE OpenStack Cloud 8

3.6 Starting and Stopping the Barbican Service
You can start or stop the Barbican service from the Cloud Lifecycle Manager nodes by running
the appropriate Ansible playbooks:

To stop the Barbican service:

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-stop.yml

To start the Barbican service:

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-start.yml

3.7 Changing or Resetting a Password
To change the password for the Barbican administrator:

1. Copy the le as shown below:

cp ~/openstack/my_cloud/info/private_data_metadata_ccp.yml \
 ~/openstack/change_credentials/

2. Then edit private_data_metadata_ccp.yml found here:

~/openstack/change_credentials/private_data_metadata_ccp.yml

3. Change credentials for the Barbican admin user and/or Barbican service user. Remove
everything else. The le will look similar to this:

barbican_admin_password:
 value: 'testing_123'
 metadata:
 - clusters:
 - cluster1
 component: barbican-api
 cp: ccp
 version: '2.0'
barbican_service_password:
 value: 'testing_123'
 metadata:
 - clusters:
 - cluster1

18 Starting and Stopping the Barbican Service SUSE OpenStack Cloud 8

 component: barbican-api
 cp: ccp
 version: '2.0'

The value (shown in bold) is optional; it is used to set a user-chosen password. If left blank,
the playbook will generate a random password.

4. Execute the following playbooks from ~/openstack/ardana/ansible/ :

cd ~/openstack/ardana/ansible/
ansible-playbook -i hosts/localhost config-processor-run.yml -e encrypt="" -e
 rekey=""
ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-reconfigure-credentials-change.yml

5. SSH to the controller and make sure the password has been properly updated.

/etc/barbican# vi barbican-api-paste.ini

3.8 Checking Barbican Status
You can check the status of Barbican by running the barbican-status.yml Ansible playbook
on the Cloud Lifecycle Manager node.

ansible-playbook -i hosts/verb_hosts barbican-status.yml

Note
Make sure you remove/delete ~/openstack/change_credentials/private_da-

ta_metadata.yml after successfully changing the password.

3.9 Updating Logging Configuration
All Barbican logging is set to INFO by default. To change the level from the Cloud Lifecycle
Manager, there are two options available

1. Edit the Barbican configuration le, /barbican_deploy_config.yml , in the following
directory.

19 Checking Barbican Status SUSE OpenStack Cloud 8

~/openstack/my_cloud/config/barbican/

To change log level entry (barbican_loglevel) to DEBUG, edit the entry:

barbican_loglevel = {{ openstack_loglevel | default('DEBUG') }}

To change the log level to INFO, edit the entry:

barbican_loglevel = {{ openstack_loglevel | default('INFO') }}

2. Edit le ~/openstack/ardana/ansible/roles/KEYMGR-API/templates/api-log-

ging.conf.j2 and update the log level accordingly.

Commit the change to the local git repository:

cd ~/openstack/ardana/ansible
git add -A
git commit -m "My config"

Run the configuration-processor-run and ready-deployment playbooks, followed by the barbi-
can-reconfigure playbook:

ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-reconfigure.yml

20 Updating Logging Configuration SUSE OpenStack Cloud 8

4 SUSE® OpenStack Cloud: Service Admin Role Se-
gregation in the Identity Service

4.1 Overview

Under the default OpenStack user policies, a user can have either member privilege or admin
privilege. Admin privilege is assigned by creating a user account with the role of admin. How-
ever, the default admin role is too broad and often grants users more privilege than they need,
giving them access to additional tasks and resources that they should not have.

Ideally, each user account should only be assigned privileges necessary to perform tasks they are
required to perform. According to the widely accepted principle of least privilege, a user who
needs to perform administrative tasks should have a user account with the privileges required to
perform only those administrative tasks and no others. This prevents the granting of too much
privilege while retaining the individual accountability of the user.

Service Administrator Roles is an alternative to the current one-size-ts-all admin role model
and can help you institute different privileges for different administrators.

4.2 Pre-Installed Service Admin Role Components

The main components of Service Administrator Roles are:

nova_admin role in the identity service (Keystone) and support in nova_policy.json

neutron_admin role in the identity service and support in neutron_policy.json

cinder_admin role in the identity service and support in cinder_policy.json

swiftoperator role in the identity service, defined in the keystoneauth section of the
proxy-server.conf le.

glance_admin role in the identity service and support in glance_policy.json

21 Overview SUSE OpenStack Cloud 8

Warning: Changing glance_policy.json may Introduce a
Security Issue
A security issue is described in the OpenStack Security Note OSSN-0075 https://

wiki.openstack.org/wiki/OSSN/OSSN-0075 . It refers to a scenario where a malicious
tenant is able to reuse deleted Glance image IDs to share malicious images with
other tenants in a manner that is undetectable to the victim tenant.

The default policy glance_policy.json that is shipped with SUSE OpenStack
Cloud prevents this by ensuring only admins can deactivate/reactivate images:

"deactivate": "role:admin"
"reactivate": "role:admin"

It is suggested to not change these settings. If you do change them, please refer
to the OSSN-0075 https://wiki.openstack.org/wiki/OSSN/OSSN-0075 . This reference
has details about on the exact scope of the security issue.

The OpenStack admin user has broad capabilities to administer the cloud, including Nova,
Neutron, Cinder, Swift, and Glance. This is maintained to ensure backwards compatilibity,
but if separation of duties is desired among administrative sta then the OpenStack roles
may be partitioned across different administrators. For example, it is possible to have a set
of network administrators with the neutron_admin role, a set of storage administrators
with the cinder_admin and/or swiftoperator roles, and a set of compute administra-
tors with the nova_admin and glance_admin roles.

4.3 Features and Benefits

Service Administrator Roles offer the following features and benefits:

Support separation of duties through more granular roles

Are enabled by default

Are backwards compatible

22 Features and Benefits SUSE OpenStack Cloud 8

https://wiki.openstack.org/wiki/OSSN/OSSN-0075
https://wiki.openstack.org/wiki/OSSN/OSSN-0075
https://wiki.openstack.org/wiki/OSSN/OSSN-0075

Have predefined service administrator roles in the identity service

Have predefined policy.json les with corresponding service admin roles to facilitate
quick and easy deployment

4.4 Roles
The following are the roles defined in SUSE OpenStack Cloud 8. These roles serve as a way
to group common administrative needs at the OpenStack service level. Each role represents
administrative privilege into each service. Multiple roles can be assigned to a user. You can
assign a Service Admin Role to a user once you have determined that the user is authorized to
perform administrative actions and access resources in that service.

Pre-Installed Service Admin Roles

The following service admin roles exist by default:

nova_admin role

Assign this role to users whose job function it is to perform Nova compute-related admin-
istrative tasks.

neutron_admin role

Assign this role to users whose job function it is to perform Neutron networking-related
administrative tasks.

cinder_admin role

Assign this role to users whose job function it is to perform Cinder storage-related admin-
istrative tasks.

glance_admin role

Assign this role to users whose job function it is to perform Glance image service-related
administrative tasks.

For configuration steps, see Book “User Guide”, Chapter 4 “Cloud Admin Actions with the Command

Line”.

23 Roles SUSE OpenStack Cloud 8

5 Role-Based Access Control in Neutron

This topic explains how to achieve more granular access control for your Neutron networks.

Previously in SUSE OpenStack Cloud, a network object was either private to a project or could
be used by all projects. If the network's shared attribute was True, then the network could be
used by every project in the cloud. If false, only the members of the owning project could use
it. There was no way for the network to be shared by only a subset of the projects.

Neutron Role Based Access Control (RBAC) solves this problem for networks. Now the network
owner can create RBAC policies that give network access to target projects. Members of a tar-
geted project can use the network named in the RBAC policy the same way as if the network
was owned by the project. Constraints are described in the section Section 5.10, “Limitations”.

With RBAC you are able to let another tenant use a network that you created, but as the owner
of the network, you need to create the subnet and the router for the network.

To use RBAC, Neutron configuration les do not need to be changed.

5.1 Creating a Network

ardana > openstack network create demo-net
+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	
availability_zones	
created_at	2018-07-25T17:43:59Z
description	
dns_domain	
id	9c801954-ec7f-4a65-82f8-e313120aabc4
ipv4_address_scope	None
ipv6_address_scope	None
is_default	False
is_vlan_transparent	None
mtu	1450
name	demo-net
port_security_enabled	False
project_id	cb67c79e25a84e328326d186bf703e1b
provider:network_type	vxlan
provider:physical_network	None
provider:segmentation_id	1009

24 Creating a Network SUSE OpenStack Cloud 8

qos_policy_id	None
revision_number	2
router:external	Internal
segments	None
shared	False
status	ACTIVE
subnets	
tags	
updated_at	2018-07-25T17:43:59Z
+---------------------------+--------------------------------------+

5.2 Creating an RBAC Policy

Here we will create an RBAC policy where a member of the project called 'demo' will share the
network with members of project 'demo2'

To create the RBAC policy, run:

ardana > openstack network rbac create --target-project DEMO2-PROJECT-ID --type network
 --action access_as_shared demo-net

Here is an example where the DEMO2-PROJECT-ID is 5a582af8b44b422fafcd4545bd2b7eb5

ardana > openstack network rbac create --target-tenant 5a582af8b44b422fafcd4545bd2b7eb5 \
 --type network --action access_as_shared demo-net

5.3 Listing RBACs

To list all the RBAC rules/policies, execute:

ardana > openstack network rbac list
+--------------------------------------+-------------
+--------------------------------------+
| ID | Object Type | Object ID
 |
+--------------------------------------+-------------
+--------------------------------------+
| 0fdec7f0-9b94-42b4-a4cd-b291d04282c1 | network | 7cd94877-4276-488d-
b682-7328fc85d721 |
+--------------------------------------+-------------
+--------------------------------------+

25 Creating an RBAC Policy SUSE OpenStack Cloud 8

5.4 Listing the Attributes of an RBAC
To see the attributes of a specific RBAC policy, run

ardana > openstack network rbac show POLICY-ID

For example:

ardana > openstack network rbac show 0fd89dcb-9809-4a5e-adc1-39dd676cb386

Here is the output:

+---------------+--------------------------------------+
| Field | Value |
+---------------+--------------------------------------+
action	access_as_shared
id	0fd89dcb-9809-4a5e-adc1-39dd676cb386
object_id	c3d55c21-d8c9-4ee5-944b-560b7e0ea33b
object_type	network
target_tenant	5a582af8b44b422fafcd4545bd2b7eb5
tenant_id	75eb5efae5764682bca2fede6f4d8c6f
+---------------+--------------------------------------+

5.5 Deleting an RBAC Policy
To delete an RBAC policy, run openstack network rbac delete passing the policy id:

ardana > openstack network rbac delete POLICY-ID

For example:

ardana > openstack network rbac delete 0fd89dcb-9809-4a5e-adc1-39dd676cb386

Here is the output:

Deleted rbac_policy: 0fd89dcb-9809-4a5e-adc1-39dd676cb386

5.6 Sharing a Network with All Tenants
Either the administrator or the network owner can make a network shareable by all tenants.

26 Listing the Attributes of an RBAC SUSE OpenStack Cloud 8

The administrator can make a tenant's network shareable by all tenants. To make the network
demo-shareall-net accessible by all tenants in the cloud:

To share a network with all tenants:

1. Get a list of all projects

ardana > ~/service.osrc
ardana > openstack project list

which produces the list:

+----------------------------------+------------------+
| ID | Name |
+----------------------------------+------------------+
1be57778b61645a7a1c07ca0ac488f9e	demo
5346676226274cd2b3e3862c2d5ceadd	admin
749a557b2b9c482ca047e8f4abf348cd	swift-monitor
8284a83df4df429fb04996c59f9a314b	swift-dispersion
c7a74026ed8d4345a48a3860048dcb39	demo-sharee
e771266d937440828372090c4f99a995	glance-swift
f43fb69f107b4b109d22431766b85f20	services
+----------------------------------+------------------+

2. Get a list of networks:

ardana > openstack network list

This produces the following list:

+--------------------------------------+-------------------
+--+
| id | name | subnets
 |
+--------------------------------------+-------------------
+--+
| f50f9a63-c048-444d-939d-370cb0af1387 | ext-net | ef3873db-fc7a-4085-8454-5566fb5578ea
 172.31.0.0/16 |
| 9fb676f5-137e-4646-ac6e-db675a885fd3 | demo-net | 18fb0b77-fc8b-4f8d-9172-ee47869f92cc
 10.0.1.0/24 |
| 8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e | demo-shareall-net | 2bbc85a9-3ffe-464c-944b-2476c7804877
 10.0.250.0/24 |
| 73f946ee-bd2b-42e9-87e4-87f19edd0682 | demo-share-subset | c088b0ef-f541-42a7-b4b9-6ef3c9921e44
 10.0.2.0/24 |
+--------------------------------------+-------------------
+--+

27 Sharing a Network with All Tenants SUSE OpenStack Cloud 8

3. Set the network you want to share to a shared value of True:

ardana > openstack network set --share 8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e

You should see the following output:

Updated network: 8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e

4. Check the attributes of that network by running the following command using the ID of
the network in question:

ardana > openstack network show 8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e

The output will look like this:

+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	
availability_zones	
created_at	2018-07-25T17:43:59Z
description	
dns_domain	
id	8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e
ipv4_address_scope	None
ipv6_address_scope	None
is_default	None
is_vlan_transparent	None
mtu	1450
name	demo-net
port_security_enabled	False
project_id	cb67c79e25a84e328326d186bf703e1b
provider:network_type	vxlan
provider:physical_network	None
provider:segmentation_id	1009
qos_policy_id	None
revision_number	2
router:external	Internal
segments	None
shared	False
status	ACTIVE
subnets	
tags	
updated_at	2018-07-25T17:43:59Z
+---------------------------+--------------------------------------+

28 Sharing a Network with All Tenants SUSE OpenStack Cloud 8

5. As the owner of the demo-shareall-net network, view the RBAC attributes for de-
mo-shareall-net (id=8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e) by rst getting an
RBAC list:

ardana > echo $OS_USERNAME ; echo $OS_PROJECT_NAME
demo
demo
ardana > openstack network rbac list

This produces the list:

+--------------------------------------+--------------------------------------+
| id | object_id |
+--------------------------------------+--------------------------------------+
| ... |
| 3e078293-f55d-461c-9a0b-67b5dae321e8 | 8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e |
+--------------------------------------+--------------------------------------+

6. View the RBAC information:

ardana > openstack network rbac show 3e078293-f55d-461c-9a0b-67b5dae321e8

+---------------+--------------------------------------+
| Field | Value |
+---------------+--------------------------------------+
action	access_as_shared
id	3e078293-f55d-461c-9a0b-67b5dae321e8
object_id	8eada4f7-83cf-40ba-aa8c-5bf7d87cca8e
object_type	network
target_tenant	*
tenant_id	1be57778b61645a7a1c07ca0ac488f9e
+---------------+--------------------------------------+

7. With network RBAC, the owner of the network can also make the network shareable by
all tenants. First create the network:

ardana > echo $OS_PROJECT_NAME ; echo $OS_USERNAME
demo
demo
ardana > openstack network create test-net

The network is created:

+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
| admin_state_up | UP |

29 Sharing a Network with All Tenants SUSE OpenStack Cloud 8

availability_zone_hints	
availability_zones	
created_at	2018-07-25T18:04:25Z
description	
dns_domain	
id	a4bd7c3a-818f-4431-8cdb-fedf7ff40f73
ipv4_address_scope	None
ipv6_address_scope	None
is_default	False
is_vlan_transparent	None
mtu	1450
name	test-net
port_security_enabled	False
project_id	cb67c79e25a84e328326d186bf703e1b
provider:network_type	vxlan
provider:physical_network	None
provider:segmentation_id	1073
qos_policy_id	None
revision_number	2
router:external	Internal
segments	None
shared	False
status	ACTIVE
subnets	
tags	
updated_at	2018-07-25T18:04:25Z
+---------------------------+--------------------------------------+

8. Create the RBAC. It is important that the asterisk is surrounded by single-quotes to prevent
the shell from expanding it to all les in the current directory.

ardana > openstack network rbac create --type network \
 --action access_as_shared --target-project '*' test-net

Here are the resulting RBAC attributes:

+---------------+--------------------------------------+
| Field | Value |
+---------------+--------------------------------------+
action	access_as_shared
id	0b797cc6-debc-48a1-bf9d-d294b077d0d9
object_id	a4bd7c3a-818f-4431-8cdb-fedf7ff40f73
object_type	network
target_tenant	*
tenant_id	1be57778b61645a7a1c07ca0ac488f9e
+---------------+--------------------------------------+

30 Sharing a Network with All Tenants SUSE OpenStack Cloud 8

5.7 Target Project (demo2) View of Networks and
Subnets
Note that the owner of the network and subnet is not the tenant named demo2 . Both the network
and subnet are owned by tenant demo . Demo2members cannot create subnets of the network.
They also cannot modify or delete subnets owned by demo .

As the tenant demo2 , you can get a list of neutron networks:

ardana > openstack network list

+--------------------------------------+-----------
+--+
| id | name | subnets
 |
+--------------------------------------+-----------
+--+
| f60f3896-2854-4f20-b03f-584a0dcce7a6 | ext-net | 50e39973-b2e3-466b-81c9-31f4d83d990b
 |
| c3d55c21-d8c9-4ee5-944b-560b7e0ea33b | demo-net | d9b765da-45eb-4543-be96-1b69a00a2556
 10.0.1.0/24 |
 ...
+--------------------------------------+-----------
+--+

And get a list of subnets:

ardana > openstack subnet list --network c3d55c21-d8c9-4ee5-944b-560b7e0ea33b

+--------------------------------------+---------+--------------------------------------+---------------+
| ID | Name | Network | Subnet |
+--------------------------------------+---------+--------------------------------------+---------------+
| a806f28b-ad66-47f1-b280-a1caa9beb832 | ext-net | c3d55c21-d8c9-4ee5-944b-560b7e0ea33b | 10.0.1.0/24 |
+--------------------------------------+---------+--------------------------------------+---------------+

To show details of the subnet:

ardana > openstack subnet show d9b765da-45eb-4543-be96-1b69a00a2556

+-------------------+--+
| Field | Value |
+-------------------+--+
allocation_pools	{"start": "10.0.1.2", "end": "10.0.1.254"}
cidr	10.0.1.0/24
dns_nameservers	
enable_dhcp	True
gateway_ip	10.0.1.1

31 Target Project (demo2) View of Networks and Subnets SUSE OpenStack Cloud 8

host_routes	
id	d9b765da-45eb-4543-be96-1b69a00a2556
ip_version	4
ipv6_address_mode	
ipv6_ra_mode	
name	sb-demo-net
network_id	c3d55c21-d8c9-4ee5-944b-560b7e0ea33b
subnetpool_id	
tenant_id	75eb5efae5764682bca2fede6f4d8c6f
+-------------------+--+

5.8 Target Project: Creating a Port Using demo-net
The owner of the port is demo2 . Members of the network owner project (demo) will not see
this port.

Running the following command:

ardana > openstack port create c3d55c21-d8c9-4ee5-944b-560b7e0ea33b

Creates a new port:

+-----------------------
+---+
| Field | Value
 |
+-----------------------
+---+
| admin_state_up | True
 |
| allowed_address_pairs |
 |
| binding:vnic_type | normal
 |
| device_id |
 |
| device_owner |
 |
| dns_assignment | {"hostname": "host-10-0-1-10", "ip_address": "10.0.1.10", "fqdn":
 "host-10-0-1-10.openstacklocal."} |
| dns_name |
 |
| fixed_ips | {"subnet_id": "d9b765da-45eb-4543-be96-1b69a00a2556", "ip_address": "10.0.1.10"}
 |
| id | 03ef2dce-20dc-47e5-9160-942320b4e503
 |
| mac_address | fa:16:3e:27:8d:ca
 |
| name |
 |

32 Target Project: Creating a Port Using demo-net SUSE OpenStack Cloud 8

| network_id | c3d55c21-d8c9-4ee5-944b-560b7e0ea33b
 |
| security_groups | 275802d0-33cb-4796-9e57-03d8ddd29b94
 |
| status | DOWN
 |
| tenant_id | 5a582af8b44b422fafcd4545bd2b7eb5
 |
+-----------------------
+---+

5.9 Target Project Booting a VM Using Demo-Net
Here the tenant demo2 boots a VM that uses the demo-net shared network:

ardana > openstack server create --flavor 1 --image $OS_IMAGE --nic net-id=c3d55c21-
d8c9-4ee5-944b-560b7e0ea33b demo2-vm-using-demo-net-nic

+--------------------------------------+--+
| Property | Value |
+--------------------------------------+--+
OS-EXT-AZ:availability_zone	
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
adminPass	sS9uSv9PT79F
config_drive	
created	2016-01-04T19:23:24Z
flavor	m1.tiny (1)
hostId	
id	3a4dc44a-027b-45e9-acf8-054a7c2dca2a
image	cirros-0.3.3-x86_64 (6ae23432-8636-4e...1efc5)
key_name	-
metadata	{}
name	demo2-vm-using-demo-net-nic
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default
status	BUILD
tenant_id	5a582af8b44b422fafcd4545bd2b7eb5
updated	2016-01-04T19:23:24Z
user_id	a0e6427b036344fdb47162987cb0cee5
+--------------------------------------+--+

Run openstack server list:

ardana > openstack server list

33 Target Project Booting a VM Using Demo-Net SUSE OpenStack Cloud 8

See the VM running:

+-------------------+-----------------------------+--------+------------+-------------
+--------------------+
| ID | Name | Status | Task State | Power State | Networks
 |
+-------------------+-----------------------------+--------+------------+-------------
+--------------------+
| 3a4dc...a7c2dca2a | demo2-vm-using-demo-net-nic | ACTIVE | - | Running | demo-
net=10.0.1.11 |
+-------------------+-----------------------------+--------+------------+-------------
+--------------------+

Run openstack port list:

ardana > neutron port-list --device-id 3a4dc44a-027b-45e9-acf8-054a7c2dca2a

View the subnet:

+---------------------+------+-------------------
+---+
| id | name | mac_address | fixed_ips
 |
+---------------------+------+-------------------
+---+
| 7d14ef8b-9...80348f | | fa:16:3e:75:32:8e | {"subnet_id": "d9b765da-45...00a2556",
 "ip_address": "10.0.1.11"} |
+---------------------+------+-------------------
+---+

Run neutron port-show:

ardana > openstack port show 7d14ef8b-9d48-4310-8c02-00c74d80348f

+-----------------------
+---+
| Field | Value
 |
+-----------------------
+---+
| admin_state_up | True
 |
| allowed_address_pairs |
 |
| binding:vnic_type | normal
 |
| device_id | 3a4dc44a-027b-45e9-acf8-054a7c2dca2a
 |
| device_owner | compute:None
 |
| dns_assignment | {"hostname": "host-10-0-1-11", "ip_address": "10.0.1.11", "fqdn":
 "host-10-0-1-11.openstacklocal."} |
| dns_name |
 |

34 Target Project Booting a VM Using Demo-Net SUSE OpenStack Cloud 8

| extra_dhcp_opts |
 |
| fixed_ips | {"subnet_id": "d9b765da-45eb-4543-be96-1b69a00a2556", "ip_address": "10.0.1.11"}
 |
| id | 7d14ef8b-9d48-4310-8c02-00c74d80348f
 |
| mac_address | fa:16:3e:75:32:8e
 |
| name |
 |
| network_id | c3d55c21-d8c9-4ee5-944b-560b7e0ea33b
 |
| security_groups | 275802d0-33cb-4796-9e57-03d8ddd29b94
 |
| status | ACTIVE
 |
| tenant_id | 5a582af8b44b422fafcd4545bd2b7eb5
 |
+-----------------------
+---+

5.10 Limitations
Note the following limitations of RBAC in Neutron.

Neutron network is the only supported RBAC Neutron object type.

The "access_as_external" action is not supported – even though it is listed as a valid action
by python-neutronclient.

The neutron-api server will not accept action value of 'access_as_external'. The ac-
cess_as_external definition is not found in the specs.

The target project users cannot create, modify, or delete subnets on networks that have
RBAC policies.

The subnet of a network that has an RBAC policy cannot be added as an interface of a
target tenant's router. For example, the command neutron router-interface-add tgt-
tenant-router <sb-demo-net uuid> will error out.

The security group rules on the network owner do not apply to other projects that can
use the network.

A user in target project can boot up VMs using a VNIC using the shared network. The user
of the target project can assign a floating IP (FIP) to the VM. The target project must have
SG rules that allows SSH and/or ICMP for VM connectivity.

35 Limitations SUSE OpenStack Cloud 8

Neutron RBAC creation and management are currently not supported in Horizon. For now,
the Neutron CLI has to be used to manage RBAC rules.

A RBAC rule tells Neutron whether a tenant can access a network (Allow). Currently there
is no DENY action.

Port creation on a shared network fails if --fixed-ip is specified in the neutron port-
create command.

36 Limitations SUSE OpenStack Cloud 8

6 Configuring Keystone and Horizon to use X.509
Client Certificates

The Keystone service supports X.509 SSL cerificate authentication and authorization for access-
ing the Horizon dashboard in SUSE OpenStack Cloud. This feature is disabled by default, and
must be manually configured and enabled by running a number of Ansible playbooks.

Note
Enabling client SSL certificate authentication and authorization for the Horizon dash-
board is a non-core feature in SUSE OpenStack Cloud.

6.1 Keystone configuration

To configure and enable X.509 SSL authentication and authorization support for the Keystone
service, perform the following steps.

1. Create a new configuration le named x509auth.yml and place it in any directory in
your deployer node. For example, perform the following command to create the le in
the /tmp directory:

touch /tmp/x509auth.yml

2. Edit the new le to include the following text. Note that YAML les are whitespace-sen-
sitive. Preserve the indentation format of the following text.

keystone_x509auth_conf:
 identity_provider:
 id: intermediateca
 description: This is the trusted issuer HEX Id.
 mapping:
 id: x509_mapping1
 rules_file: /tmp/x509auth_mapping.json
 protocol:
 id: x509
 remote_id: intermediateca
 ca_file: /tmp/cacert.pem

37 Keystone configuration SUSE OpenStack Cloud 8

The preceding example sets a number of configuration parameters for the X.509/Keystone
configuration. The following are detailed descriptions of each parameter.

identity_provider This section identifies and describes an outside identity provider.

id: Any unique, readable string that identifies the identitiy provider.

description: A description of the identity provider.

mapping: This section describes a JSON-format le that maps X.509 client certificate
attributes to a local Keystone user.

id: Any unique, readable string that identifies the user-certificate mapping.

rules_le: The lepath to a JSON le that contains the client certificate attrib-
utes mapping.

protocol: This section sets the cryptographic protocol to be used.

id: The cryptographic protocol used for the certificate-based authentication/au-
thorization.

remote_id: By default, this eld expects the client certificate's issuer's common name
(CN) as a value. The expected value is set in the keystone.conf le, where the
default setting is:

remote_id_attribute = SSL_CLIENT_I_DN_CN

ca_le: The le that contains the client certificate's related intermediary and root
CA certificates.

Note: In the /tmp/x509auth.yml le, the ca_file value should be a le that contains
both the root and signing CA certificates (often found in /home/pki/cacert.pem).

3. Create a JSON-formatted mapping le. To do so, edit the x509auth.yml le you created
in Step 2 to reference this le in the mapping→ rules_le parameter. You can create the
le with the following example command:

touch /tmp/x509auth_mapping.json

4. Edit the JSON le you created in Step 3 to include the following content:

[

38 Keystone configuration SUSE OpenStack Cloud 8

 {
 "local": [
 {
 "user": {
 "name": "{0}",
 "domain": {
 "name": "{1}"
 },
 "type": "local"
 }
 }
],
 "remote": [
 {
 "type": "SSL_CLIENT_S_DN_CN"
 },
 {
 "type": "SSL_CLIENT_S_DN_O"
 },
 {
 "type": "SSL_CLIENT_I_DN",
 "any_one_of": [
]
 }
]
 }
]

5. Enter the distinguished name(s) (DN) of the certificate issuer(s) that issued your client
certificates into the any_one_of eld in the remote block. The any_one_of eld is a com-
ma-separated list of all certificate issuers that you want the Keystone service to trust.
All DNs in the any_one_of eld must adhere to the following format: A descending list of
DN elements, with each element separated by a forward slash (/).
The following is an example of a properly formatted DN for a certificate issuer named
intermedia .

/C=US/ST=California/O=EXAMPLE/OU=Engineering/CN=intermediateca/
emailAddress=user@example.com

The following example le illustrates an x509auth_mapping.json le with the inter-
media certificate issuer added to the any_one_of eld. Note that the DN string is in quotes.

[
 {
 "local": [

39 Keystone configuration SUSE OpenStack Cloud 8

 {
 "user": {
 "name": "{0}",
 "domain": {
 "name": "{1}"
 },
 "type": "local"
 }
 }
],
 "remote": [
 {
 "type": "SSL_CLIENT_S_DN_CN"
 },
 {
 "type": "SSL_CLIENT_S_DN_O"
 },
 {
 "type": "SSL_CLIENT_I_DN",
 "any_one_of": [
 "/C=US/ST=California/O=EXAMPLE/OU=Engineering/
CN=intermediateca/emailAddress=user@example.com"
]
 }
]
 }
]

The Keystone service will trust all client certificates issued by any of the certificate issuers
listed in the any_one_of eld.

6. Run the following commands to enable the new X.509/Keystone settings.

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts keystone-reconfigure.yml -e@/tmp/x509auth.yml

6.2 HAProxy Configuration

Because of the experimental nature of the HAProxy feature, it is important to minimize the risk
of impacting other services. If you have implemented, or wish to implement the HAProxy feature
alongside client SSL certificate login to the Horizon dashboard in your cloud, please complete
the following steps to make the necessary manual configuration changes.

40 HAProxy Configuration SUSE OpenStack Cloud 8

Note
You must perform the Keystone configuration steps in the previous section before per-
forming the following HAProxy configuration changes.

1. Locate and open the ~/openstack/ardana/ansible/roles/haproxy/tem-

plates/haproxy.cfg le.

2. Locate the following line in the haproxy.cfg le.

listen {{ network.vip }}-{{ port }}

Enter the following codeblock in the open space immediately preceding the listen
{{ network.vip }}-{{ port }} line.

{%- if service == 'KEY_API' and port == '5000' %}
 {% set bind_defaults = 'ca-file /etc/ssl/private/cacert.pem verify optional' %}
{%- endif %}

After entering the preceding code, your haproxy.cfg le should look like the following
example.

{%- if network.terminate_tls is defined and network.terminate_tls and port == '80'
 %}
 {% set port = '443' %}
{%- endif %}

{%- if service == 'KEY_API' and port == '5000' %}
 {% set bind_defaults = 'ca-file /etc/ssl/private/cacert.pem verify optional' %}
{%- endif %}

listen {{ network.vip }}-{{ port }}
 {%- set options = network.vip_options | default(vip_options_defaults) %}
 {%- if options > 0 %}
 {%- for option in options %}
 {{ option }}
 {%- endfor %}
 {%- endif %}
 bind {{ network.vip }}:{{ port }} {% if network.terminate_tls is defined
 and network.terminate_tls %} ssl crt {{ frontend_server_cert_directory }}/
{{ network.cert_file }} {{ bind_defaults }} {% endif %}

3. Commit the changes to your local git repository.

41 HAProxy Configuration SUSE OpenStack Cloud 8

git add -A
git commit -m "Added HAProxy configuration changes"

4. Run the configuration processor and ready-deployment Ansible playbooks.

cd ~/openstack/ardana/ansible
ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml

5. Implement the HAProxy configuration changes.

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts FND-CLU-reconfigure.yml

6.3 Create CA and client certificates

An X.509 client certificate can be issued from any certificate authority (CA). You can use the
openssl command-line tool to generate certificate signing requests (CSRs). Once a CA has signed
your CSR, the CA will return a signed certificate that you can use to authenticate to Horizon.

Read more about openssl here: https://www.openssl.org/

Note
Your cloud's load balancer will reject any self-signed client SSL certificates. Ensure that
all client certificates are signed by a certificate authority that your cloud recognizes.

6.4 Horizon configuration

Complete the following steps to configure Horizon to support SSL certificate authorization and
authentication.

1. Edit the ~/openstack/ardana/ansible/roles/HZN-WEB/defaults/main.yml le and
set the following parameter to True .

horizon_websso_enabled: True

42 Create CA and client certificates SUSE OpenStack Cloud 8

https://www.openssl.org/

2. Locate the last line in the ~/openstack/ardana/ansible/roles/HZN-WEB/de-

faults/main.yml le. The default configuration for this line should look like the follow-
ing.

horizon_websso_choices:
 - {protocol: saml2, description: "ADFS Credentials"}

If your cloud does not have AD FS enabled, then replace the preceding hori-
zon_websso_choices: parameter with the following.

- {protocol: x509, description: "X.509 SSL Certificate"}

The resulting block should look like the following.

horizon_websso_choices:
 - {protocol: x509, description: "X.509 SSL Certificate"}

If your cloud does have AD FS enabled, then simply add the following parameter to
the horizon_websso_choices: section. Do not replace the default parameter, add
the following line to the existing block.

- {protocol: saml2, description: "ADFS Credentials"}

If your cloud has AD FS enabled, the final block of your ~/openstack/ardana/an-
sible/roles/HZN-WEB/defaults/main.yml should have the following entries.

horizon_websso_choices:
 - {protocol: x509, description: "X.509 SSL Certificate"}
 - {protocol: saml2, description: "ADFS Credentials"}

3. Run the following commands to add your changes to the local git repository, and recon-
figure the Horizon service, enabling the changes made in Step 1:

cd ~/openstack
git add -A
git commit -m "my commit message"
cd ~/openstack/ardana/ansible/
ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts horizon-reconfigure.yml

43 Horizon configuration SUSE OpenStack Cloud 8

6.5 Browser configuration
To enable your web browser to present a certificate to the Horizon dashboard upon login, you
rst need to import the certificate. The steps to complete this action will vary from browser to
browser. Please refer to your browser's documentation for specific instructions.

1. Import the desired certificate into your web browser's certificate store.

2. After importing the certificate, verify that it appears in your browser's certificate manager.

6.6 User accounts
For the Keystone service to use X.509 certificates to grant users access to Horizon, there must be
a Keystone user account associated with each certificate. Keystone associates user accounts with
certificates by matching the common name (CN) and organization (O) of a presented certificate
with the username and domain of an existing Keystone user.

When an X.509 certificate is presented to Horizon for authentication/authorization, Horizon
passes the certificate information along to the Keystone service. Keystone attempts to match the
CN and O of the certificate with the username and domain of an existing local user account. For
this operation to be successful, there must be a Keystone user account and domain that match
the CN and O of the certificate.

For example, if a user named Sam presents a certificate to Horizon with the following informa-
tion,

CN=sam

O=EXAMPLE

Then there must be an existing Keystone user account with the following values,

Username=sam

Domain=EXAMPLE

Further, Sam's client certificate must have been issued by one of the certificate issuers listed in
the any_one_of eld in the x509auth_mapping.json le.

Also, when creating a local Keystone user, you must assign the user account a project scope.
Without a project scope, the authorization portion of the sign-on process will fail.

44 Browser configuration SUSE OpenStack Cloud 8

The following steps illustrate how to use the CLI to create a domain, create and manage a user,
and assign a permissions role to the new user.

1. Create a new domain, named EXAMPLE .

openstack domain create EXAMPLE

2. Create a new project named xyz , under the EXAMPLE domain.

openstack project create --domain EXAMPLE xyz

3. Create a new user named Sam in the EXAMPLE domain. Set the password and email for
the new account.

openstack user create --domain EXAMPLE --password pass \
 --email sam@example.com --enable sam

4. Create a new role named role1 .

openstack role create role1

5. Grant the new role, role1 to the new user Sam from the EXAMPLE domain. Note that
both the user account and domain must be referenced by their unique ID numbers rather
than their friendly names.

openstack role add --user 04f3db9e7f3f45dc82e1d5f20b4acfcc \
 --domain 6b64021839774991b5e0df16077f11eb role1

6. Add the user Sam to the newly-created project from Step 2. Note that the project and
user account must be referenced by their respective unique ID numbers rather than their
friendly names.

openstack role add --project 4e2ad14406b247c7a9fc0a48c0b1713e \
 --user 04f3db9e7f3f45dc82e1d5f20b4acfcc role1

6.7 How it works
The SSL authentication and authorization process is detailed in the following steps.

1. User directs a web browser to the SUSE OpenStack Cloud Horizon login landing page.

2. The user selects the "X.509 Certificate" login option from the dropdown menu.

45 How it works SUSE OpenStack Cloud 8

3. Horizon responds with an HTTP 302 redirect, redirecting the browser to the SSL-protected
Keystone (federated) authentication endpoint.

4. The browser then prompts user to select the certificate to use for the login (if there is more
than one certificate for the given trusted Certificate Authority (CA)).

5. The web browser establishes a 2-way SSL handshake with the Keystone service.

6. Keystone, utilizing federation mapping, maps the user to a federated persona and issues
an (federated) unscoped token.

7. The token is then passed to the browser, along with JavaScript code that redirects the
browser back to the Horizon dashboard.

8. The browser then logs into the Horizon dashboard using the newly issued unscoped token
to authenticate the user.

9. Horizon queries the Keystone service for the list of federated projects the authenticated
user has access to.

10. Horizon then rescopes the token to the rst project, granting the user authorization.

11. The login process is completed.

46 How it works SUSE OpenStack Cloud 8

7 Transport Layer Security (TLS) Overview

The Transport Layer Security (TLS) protocol, successor to SSL, provides the mechanisms to en-
sure authentication, non-repudiation, confidentiality, and integrity of user communications to
and between the SUSE OpenStack Cloud services from internal and public endpoints.

OpenStack endpoints are HTTP (REST) services providing APIs to other OpenStack services on
the management network. All traffic to OpenStack services coming in on the public endpoints
and some traffic between services can be secured using TLS connections.

In SUSE OpenStack Cloud 8, the following are enabled for TLS

API endpoints in the internal and admin VIPs can now be secured by TLS.

API endpoints can be provided with their own certificates (this is shown in the model
examples) or they can simply use the default certificate.

The Barbican key management service API can be secured by TLS from the load balancer
to the service endpoint.

You can add multiple trust chains (certificate authority (CA) certificates).

Fully qualified domain names (FQDNs) can be used for public endpoints and now they can
be changed. The external name in the input model les (in ~/openstack/my_cloud/defi-
nition/data/network_groups.yml) is where the domain name is indicated and changed.

There are two monitoring alarms specific to certificates, 14-days to certificate expiration
and 1-day to expiration.

TLS can be turned o/on for individual endpoints.

7.1 Comparing Clean Installation and Upgrade of
SUSE OpenStack Cloud
Clean install: all TLS-encrypted services are already listed under tls-components in net-
work_groups.yml

You just have to:

Add your self-signed CA cert and server cert (for testing)

Or add your public (or company) CA-signed server cert and the public (or company) CA
cert (for production)

47

Comparing Clean Installation and Upgrade of SUSE OpenStack Cloud SUSE OpenStack

Cloud 8

Upgrade: you do not have TLS enabled already on the internal endpoints so you need to

Add your self-signed CA cert and server cert (for testing)

Or add your public (or company) CA-signed server cert and the public (or company) CA
cert (for production)

Add all the services to tls-components in network_groups.yml

For information on enabling and disabling TLS, see Section 7.2, “TLS Configuration”.

For instructions on installing certificates, see Section 7.2, “TLS Configuration”.

7.2 TLS Configuration
In SUSE OpenStack Cloud 8, you can provide your own certificate authority and certificates
for internal and public virtual IP addresses (VIPs), and you should do so for any production
cloud. The certificates automatically generated by SUSE OpenStack Cloud are useful for testing
and setup, but you should always install your own for production use. Certificate installation
is discussed below.

7.2.1 Using the Default My Public Cert

Read the following if you are using the default cert-name: my-public-cert in your model.

The bundled test cert for public endpoints, located at ~/openstack/my_cloud/config/tls/
certs/my-public-cert , is now expired but was left in the product in case you changed the
content with your valid cert. Please verify if the certificate is expired and generate your own
by following the guidelines further down on this page or by using a generic instruction from
the web.

You can verify the expiry by running this command:

openssl x509 -in ~/openstack/my_cloud/config/tls/certs/my-public-cert -noout -enddate
notAfter=Feb 12 01:18:46 2019 GMT

7.2.2 Certificate Terms

Before you begin, the following list of terms will be helpful when generating and installing
certificates.

48 TLS Configuration SUSE OpenStack Cloud 8

Openstack-generated public CA

An OpenStack-generated public CA (openstack_frontend_cacert.crt) is available for
you in /usr/local/share/ca-certificates .

Fully qualified domain name (FQDN) of the public VIP

The registered domain name. A FQDN is not mandatory. It is valid to have no FQDN and
use IP addresses instead. You can use FQDNs on public endpoints, and you may change
them whenever the need arises.

Certificate authority (CA) certificate

Your certificates must be signed by a CA, such as your internal IT department or a public
certificate authority. For this example we will use a self-signed certificate.

Server certificate

It is easy to confuse server certificates and CA certificates. Server certificates reside on the
server and CA certificates reside on the client. A server certificate affirms that the server
that sent it serves a set of IP addresses, domain names, and set of services. A CA certificate
is used by the client to authenticate this claim.

SAN (subject-alt-name)

The set of IP addresses and domain names in a server certificate request: A template for
a server certificate.

Certificate signing request (CSR)

A blob of data generated from a certificate request and sent to a CA, which would then
sign it, produce a server certificate, and send it back.

External VIP

External virtual IP address

Internal VIP

Internal virtual IP address

The major difference between an external VIP certificate and an internal VIP certificate is that
the internal VIP has approximately 40 domain names in the SAN. This is because each service
has a different domain name in SUSE OpenStack Cloud 8. So it is unlikely that you can create an
internal server certificate before running the configuration processor. But after a configuration
processor run, a certificate request would be created for each of your cert-names.

49 Certificate Terms SUSE OpenStack Cloud 8

7.2.3 Configuring TLS in the input model

For this example certificate configuration, let us assume there is no FQDN for the external VIP
and that you are going to use the default IP address provided by SUSE OpenStack Cloud 8. Let's
also assume that for the internal VIP you will use the defaults as well. If you were to call your
certificate authority "example-CA," the CA certificate would then be called "example-CA.crt"
and the key would be called "example-CA.key." In the following examples, the external VIP
certificate will be named "example-public-cert" and the internal VIP certificate will be named
"example-internal-cert."

Any time you make a cert change when using your own CA:

You should use a distinct name from those already existing in config/tls/cacerts . This
also means you should not reuse your CA names. You should use unique and distinguishable
names such as MyCompanyXYZ_PrivateRootCA.crt. A new name is what indicates that a
le is new or changed, so reusing a name means that the le is not considered changed
even its contents have changed.

You should not remove any existing CA les from config/tls/cacerts .

If you want to remove an existing CA use the following steps:

1. Remove the le.

2. Then run:

ansible -i hosts/verb_hosts FND-STN -a 'sudo keytool -delete -alias debian:<filename
 to remove> \
-keystore /usr/lib/jvm/java-7-openjdk-amd64/jre/lib/security/cacerts -storepass
 changeit'

Important
Be sure to install your own certificate for all production clouds after installing and testing
your cloud. If you ever want to test or troubleshoot later, you will be able to revert to the
sample certificate to get back to a stable state for testing.

Note
Unless this is a new deployment, do not update both the certificate and the CA together.
Add the CA rst and then run a site deploy. Then update the certificate and run tls-
reconfigure, FND-CLU-stop, FND-CLU-start and then hlm-reconfigure. If a playbook has

50 Configuring TLS in the input model SUSE OpenStack Cloud 8

failed, rerun it with -vv to get detailed error information. The configure, HAproxy restart,
and reconfigure steps are included below. If this is a new deployment and you are adding
your own certs/CA before running site.yml this caveat does not apply.

You can add your own certificate by following the instructions below. All changes must go into
the following le:

~/openstack/my_cloud/definition/data/network_groups.yml

The entries for TLS for the internal and admin load balancers are:

- provider: ip-cluster
 name: lb
 tls-components:
 - default
 components:
 # These services do not currently support TLS so they are not listed
 # under tls-components
 - nova-metadata
 roles:
 - internal
 - admin
 cert-file: openstack-internal-cert
 # The openstack-internal-cert is a reserved name and
 # this certificate will be autogenerated. You
 # can bring in your own certificate with a different name

 # cert-file: customer-provided-internal-cert
 # replace this with name of file in "config/tls/certs/"

The configuration processor will also create a request template for each named certificate under
info/cert_reqs/ , which looks like:

info/cert_reqs/customer-provided-internal-cert

7.2.4 Generating and Signing Certificates

These request templates contain the subject Alt-names that the certificates need. You can add
to this template before generating your certificate signing request.

You would then send the CSR to your CA to be signed, and once you receive the certificate,
place it in config/tls/certs

51 Generating and Signing Certificates SUSE OpenStack Cloud 8

When you bring in your own certificate, you may want to bring in the trust chains (or CA
certificate) for this certificate. This is usually not required if the CA is a public signer that is
typically bundled with the operating system. However, we suggest you include it anyway by
copying the le into the directory config/cacerts/ .

7.2.5 User-provided certificates and trust chains

SUSE OpenStack Cloud generates its own internal certificates but is designed to allow you to
bring in your own certificates for the VIPs. Here is the general process.

1. You must have a server certificate and a CA certificate to go with it (unless the signer is
a public CA and it is already bundled with most distributions).

2. You must decide the names of the server certificates and configure the network_group-
s.yml le in the input model such that each load balancer provider has at least one cert-
name associated with it.

3. Run the configuration processor. You may or may not have the certificate le at this
point. The configuration processor would create certificate request le artefacts under
info/cert_reqs/ for each of the cert-name(s) in the network_groups.yml le. While
there is no special reason to use the request le created for an external endpoint VIP
certificate, it is important to use the request les created for internal certificates since the
canonical names for the internal VIP as there can be many of them and they will be service
specific. Each of these needs to be in the Subject Alt Names attribute of the. certificate.

4. Create a certificate signing request for this request le and send it to your internal CA or
a public CA to get it certified and issued with a certificate. You will now have a server
certificate and possibly a trust chain or CA certificate.

5. Upload to the Cloud Lifecycle Manager. Server certificates should be added to con-
fig/tls/certs and CA certificates should be added to config/tls/cacerts . The le
extension should be .crt for the CA certificate to be processed by SUSE OpenStack Cloud.
Detailed steps are next.

52 User-provided certificates and trust chains SUSE OpenStack Cloud 8

7.2.6 Edit the Input Model to Include Your Certificate Files

1. Edit the load balancer configuration in openstack/my_cloud/definition/data/net-
work_groups.yml :

load-balancers:
 - provider: ip-cluster
 name: lb
 tls-components:
 - default
 components:
 - cassandra
 - nova-metadata
 roles:
 - internal
 - admin
 cert-file: example-internal-cert #<<<-------- Certificate name for the internal VIP

- provider: ip-cluster
 name: extlb
 external-name: myardana.test #<<<------ Use just IP for the external VIP in this example
 tls-components:
 - default
 roles:
 - public
 cert-file: example-public-cert #<<<-------- Certificate name for the external VIP

2. Commit your changes to the local git repository and run the configuration processor:

cd ~/openstack/ardana/ansible
git add -A
git commit -m "changed VIP certificates"
ansible-playbook -i hosts/localhost config-processor-run.yml

3. Verify that certificate requests have been generated by the configuration processor for
every certificate le configured in the networks_groups.yml le. In this example, there
are two les, as shown from the list command:

ls ~/openstack/my_cloud/info/cert_reqs
example-internal-cert
example-public-cert

53 Edit the Input Model to Include Your Certificate Files SUSE OpenStack Cloud 8

7.2.7 Generating a Self-signed CA

Note
In a production setting you will not perform this step. You will use your company's CA
or a valid public CA.

This section demonstrates to how you can create your own self-signed CA and then use this CA
to sign server certificates. This CA can be your organization's IT internal CA that is self-signed
and whose CA certificates are deployed on your organization's machines. This way the server
certificate becomes legitimate.

1. Copy the commands below to the command line and execute. This will cause the two les
to be created: example-CA.key and example-CA.crt .

export EXAMPLE_CA_KEY_FILE='example-CA.key'
export EXAMPLE_CA_CERT_FILE='example-CA.crt'
openssl req -x509 -batch -newkey rsa:2048 -nodes -out "${EXAMPLE_CA_CERT_FILE}" \
-keyout "${EXAMPLE_CA_KEY_FILE}" \
-subj "/C=UK/O=hp/CN=YourOwnUniqueCertAuthorityName" \
-days 365

You can tweak the subj and days settings above to meet your needs, or to test. For instance,
if you want to test what happens when a CA expires, you can set 'days' to a very low value.

2. Select the configuration processor-generated request le from info/cert_reqs/ :

cat ~/openstack/my_cloud/info/cert_reqs/example-internal-cert

3. Copy this le to your working directory and append a .req extension to it.

cp ~/openstack/my_cloud/info/cert_reqs/example-internal-cert \
 example-internal-cert.req

EXAMPLE 7.1: CERTIFICATE REQUEST FILE

The certificate request le should look similar to the following example:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req
prompt = no

54 Generating a Self-signed CA SUSE OpenStack Cloud 8

[req_distinguished_name]
CN = "openstack-vip"

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
DNS.1 = "deployerincloud-ccp-c0-m1-mgmt"
DNS.2 = "deployerincloud-ccp-vip-CEI-API-mgmt"
DNS.3 = "deployerincloud-ccp-vip-CND-API-mgmt"
[...]
DNS.47 = "192.168.245.5"
IP.1 = "192.168.245.5"

=============end of certificate request file.

Note
In the case of a public VIP certificate, please add all the FQDNs you want it to support
Currently, SUSE OpenStack Cloud does not add the hostname for the external-name spec-
ified in network_groups.yml to the certificate request le. However, you can add it to
the certificate request le manually. Here we assume that myopenstack.test is your
external-name. In that case you would add this line (to the full sample certificate request
le shown in Example 7.1, “Certificate request file”):

DNS.48 = "myopenstack.test"

Note
Any attempt to use IP addresses rather than FQDNs in certificates must use subject alter-
nate name entries that list both the IP address (needed for Google) and DNS with an IP
(needed for a Python bug workaround). Failure to create the certificates in this manner
will cause future installations of Go-based tools (such as Cloud Foundry, Stackato and
other PaaS components) to fail.

55 Generating a Self-signed CA SUSE OpenStack Cloud 8

In the case of a public VIP certificate, add all the FQDNs you want it to support. Openstack
does not add the hostname for the external-name specified in network_groups.yml to the
certificate request le. However, you can add it to the certificate request le manually. Assume
that myopenstack.test is your external-name. In that case you would add this line to the full
sample certificate request le shown above.

DNS.48 = "myopenstack.test"

Note
Any attempt to use IP addresses rather than FQDNs in certificates must use subject alter-
nate name entries that list both the IP address (needed for Google) and DNS with an IP
(needed for a Python bug workaround). Failure to create the certificates in this manner
will cause future installations of Go-based tools (such as Cloud Foundry, Stackato and
other PaaS components) to fail.

7.2.8 Generate a Certificate Signing Request

Note
In a production setting you will not perform this step. You will use your company's CA
or a valid public CA.

Now that you have a CA and a certificate request le, it is time to generate a CSR.

Note
Please use a unique CN for your example Certificate Authority and do not install multiple
CA certificates with the same CN into your cloud.

export EXAMPLE_SERVER_KEY_FILE='example-internal-cert.key'
export EXAMPLE_SERVER_CSR_FILE='example-internal-cert.csr'
export EXAMPLE_SERVER_REQ_FILE=example-internal-cert.req
openssl req -newkey rsa:2048 -nodes -keyout "$EXAMPLE_SERVER_KEY_FILE" \
-out "$EXAMPLE_SERVER_CSR_FILE" -extensions v3_req -config "$EXAMPLE_SERVER_REQ_FILE"

In production you would usually send the generated example-internal-cert.csr le to your
IT department. But in this example you are your own CA, so sign and generate a server certificate.

56 Generate a Certificate Signing Request SUSE OpenStack Cloud 8

7.2.9 Generate a Server Certificate

Note
In a production setting you will not perform this step. You will send the CSR created in
the previous section to your company CA or a to a valid public CA and have them sign
and send you back the certificate.

This section demonstrates how you would use the self-signed CA that you created earlier to
sign and generate a server certificate. A server certificate is essentially a signed public key, the
signer being a CA and trusted by a client. When you install this signed CA's certificate (called CA
certificate or trust chain) on the client machine, you are telling the client to trust this CA, and
to implicitly trust any server certificates that are signed by this CA. This creates a trust anchor.

CA configuration le

When the CA signs the certificate, it uses a configuration le that tells it to verify the CSR. Note
that in a production scenario the CA takes care of this for you.

1. Create a le called openssl.cnf and add the following contents to it.

Copyright 2010 United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
All Rights Reserved.
#...

OpenSSL configuration file.
#

Establish working directory.

dir = .

[ca]
default_ca = CA_default

[CA_default]
serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/
certificate = $dir/cacert.pem
private_key = $dir/cakey.pem
unique_subject = no
default_crl_days = 365

57 Generate a Server Certificate SUSE OpenStack Cloud 8

default_days = 365
default_md = md5
preserve = no
email_in_dn = no
nameopt = default_ca
certopt = default_ca
policy = policy_match
copy_extensions = copy

[policy_match]
countryName = optional
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
default_bits = 1024 # Size of keys
default_keyfile = key.pem # name of generated keys
default_md = md5 # message digest algorithm
string_mask = nombstr # permitted characters
distinguished_name = req_distinguished_name
req_extensions = v3_req
x509_extensions = v3_ca

[req_distinguished_name]
Variable name Prompt string
#---------------------- ----------------------------------
0.organizationName = Organization Name (company)
organizationalUnitName = Organizational Unit Name (department, division)
emailAddress = Email Address
emailAddress_max = 40
localityName = Locality Name (city, district)
stateOrProvinceName = State or Province Name (full name)
countryName = Country Name (2 letter code)
countryName_min = 2
countryName_max = 2
commonName = Common Name (hostname, IP, or your name)
commonName_max = 64

[v3_ca]
basicConstraints = CA:TRUE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer:always
subjectAltName = @alt_names

58 Generate a Server Certificate SUSE OpenStack Cloud 8

[v3_req]
basicConstraints = CA:FALSE
subjectKeyIdentifier = hash

[alt_names]

######### end of openssl.cnf #########

2. Sign the server certificate with your CA. Copy the comands below to the command line
and execute. This will cause the le, example-internal-cert.crt , to be created.

export EXAMPLE_SERVER_CERT_FILE='example-internal-cert.crt'
export EXAMPLE_SERVER_CSR_FILE='example-internal-cert.csr'
export EXAMPLE_CA_KEY_FILE='example-CA.key'
export EXAMPLE_CA_CERT_FILE='example-CA.crt'

touch index.txt
openssl rand -hex -out serial 6

openssl ca -batch -notext -md sha256 -in "$EXAMPLE_SERVER_CSR_FILE" \
-cert "$EXAMPLE_CA_CERT_FILE" \
-keyfile "$EXAMPLE_CA_KEY_FILE" \
-out "$EXAMPLE_SERVER_CERT_FILE" \
-config openssl.cnf -extensions v3_req

3. Concatenate both the server key and certificate in preparation for uploading to the Cloud
Lifecycle Manager.

cat example-internal-cert.key example-internal-cert.crt > example-internal-cert

4. You have only created the internal-cert in this example. Repeat the above sequence for
example-public-cert . Make sure you use the appropriate certificate request generated
by the configuration processor.

7.2.10 Upload to the Cloud Lifecycle Manager

1. The two les created from the example above will need to be uploaded to the Cloud
Lifecycle Manager and copied into config/tls :

example-internal-cert

example-CA.crt

59 Upload to the Cloud Lifecycle Manager SUSE OpenStack Cloud 8

2. On the Cloud Lifecycle Manager, execute the following copy commands. If you created an
external cert, copy that in a similar manner.

cp example-internal-cert ~/openstack/my_cloud/config/tls/certs/
cp example-CA.crt ~/openstack/my_cloud/config/tls/cacerts/

3. Log into the Cloud Lifecycle Manager node. Save and commit the changes to the local
Git repository:

cd ~/openstack/ardana/ansible
git add -A
git commit -m "updated certificate and CA"

4. Rerun the config-processor-run playbook, and run ready-deployment.yml :

cd ~/openstack/ardana/ansible
ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml

5. If you receive any prompts, enter the required information.

Note
For automated installation (for example, CI) you can specify the required passwords
on the Ansible command line. For example, the command below will disable en-
cryption by the configuration processor:

ansible-playbook -i hosts/localhost config-processor-run.yml -e encrypt="" -e
 rekey=""

6. Run this series of runbooks to complete the deployment:

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts tls-reconfigure.yml
ansible-playbook -i hosts/verb_hosts FND-CLU-stop.yml
ansible-playbook -i hosts/verb_hosts FND-CLU-start.yml
ansible-playbook -i hosts/verb_hosts monasca-stop.yml
ansible-playbook -i hosts/verb_hosts monasca-start.yml
ansible-playbook -i hosts/verb_hosts ardana-reconfigure.yml

60 Upload to the Cloud Lifecycle Manager SUSE OpenStack Cloud 8

7.2.11 Configuring the Cipher Suite

By default, the cipher suite is set to: HIGH:!aNULL:!eNULL:!DES:!3DES . This setting is
recommended in the OpenStack documentation (http://docs.openstack.org/security-guide/se-

cure-communication/introduction-to-ssl-and-tls.html) . You may override this by editing con-
fig/haproxy/defaults.yml . The parameters can be found under the haproxy_globals list.

- "ssl-default-bind-ciphers HIGH:!aNULL:!eNULL:!DES:!3DES"
- "ssl-default-server-ciphers HIGH:!aNULL:!eNULL:!DES:!3DES"

Make the changes as needed. Keep the two options identical.

7.2.12 Testing

You can determine if an endpoint is behind TLS by running the following command, which
probes a Keystone identity service endpoint that is behind TLS:

tux > echo | openssl s_client -connect 192.168.245.5:5000 | \
 openssl x509 -fingerprint -noout
depth=0 CN = openstack-vip
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 CN = openstack-vip
verify error:num=27:certificate not trusted
verify return:1
depth=0 CN = openstack-vip
verify error:num=21:unable to verify the first certificate
verify return:1
DONE
SHA1 Fingerprint=C6:46:1E:59:C6:11:BF:72:5E:DD:FC:FF:B0:66:A7:A2:CC:32:1C:B8

The next command probes a MariaDB endpoint that is not behind TLS:

echo | openssl s_client -connect 192.168.245.5:3306 | openssl x509 -fingerprint -noout
140448358213264:error:140770FC:SSL routines:SSL23_GET_SERVER_HELLO:unknown protocol:s23_clnt.c:795:
unable to load certificate
140454148159120:error:0906D06C:PEM routines:PEM_read_bio:no start line:pem_lib.c:703:Expecting: TRUSTED
 CERTIFICATE

7.2.13 Verifying That the Trust Chain is Correctly Deployed

You can determine if the trust chain is correctly deployed by running the following commands:

tux > echo | openssl s_client -connect 192.168.245.9:5000 2>/dev/null \
 | grep code

61 Configuring the Cipher Suite SUSE OpenStack Cloud 8

http://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html
http://docs.openstack.org/security-guide/secure-communication/introduction-to-ssl-and-tls.html

Verify return code: 21 (unable to verify the first certificate)
tux > echo | openssl s_client -connect 192.168.245.9:5000 -CAfile \
 /usr/local/share/ca-certificates/openstack_frontend_cacert.crt 2>/dev/null \
 | grep code
Verify return code: 0 (ok)

The rst command produces error 21, which is then xed by providing the CA certificate le.
This verifies that the CA certificate matches the server certificate.

7.2.14 Turning TLS on or off

You should leave TLS enabled in production. However, if you need to disable it for any rea-
son, you must change tls-components to components in network_groups.yml (as shown
earlier) and comment out the cert-le. Additionally, if you have a network_groups.yml le
from a previous installation, TLS will not be enabled unless you change components to tls-
components in that le. By default, Horizon is configured with TLS in the input model. You
should not disable TLS in the input model for Horizon as that is a public endpoint and is re-
quired. Additionally, you should keep all services behind TLS, but using the input model le
network_groups.yml you may turn TLS o for a service for troubleshooting or debugging. TLS
should always be enabled for production environments.

If you are using an example input model on a clean install, all supported TLS services will be
enabled before deployment of your cloud. If you want to change this setting later, such as when
upgrading, you can change the input model and reconfigure the system. The process is as follows:

1. Edit the input model network_groups.yml le appropriately as described above, chang-
ing tls-components to components .

2. Commit the changes to the Git repository:

cd ~/openstack/ardana/ansible/
git add -A
git commit -m "TLS change"

3. Change directories again and run the configuration processor and ready deployment play-
books:

ansible-playbook -i hosts/localhost config-processor-run.yml
ansible-playbook -i hosts/localhost ready-deployment.yml

4. Change directories again and run the reconfigure playbook:

cd ~/scratch/ansible/next/ardana/ansible

62 Turning TLS on or off SUSE OpenStack Cloud 8

ansible-playbook -i hosts/verb_hosts ardana-reconfigure.yml

7.3 Enabling TLS for MySQL Traffic

MySQL traffic can be encrypted using TLS. For completely new SUSE OpenStack Cloud deploy-
ments using the supplied input model example les, you will have to uncomment the comment-
ed entries for tls-component-endpoints: . For upgrades from a previous version, you will
have to add the entries to your input model les if you have not already done so. This topic
explains how to do both.

7.3.1 Enabling TLS on the database server for client access

1. Edit network_groups.yml to either add mysql under tls-component-endpoints in your
existing le from a previous version, or uncomment it if installing from scratch.

tls-component-endpoints:
 - mysql

2. After making the necessary changes, commit the changed le to git and run the con-
fig-processor-run and reconfigure Ansible playbooks:

cd ~/openstack
git add -A
git commit -m "My changed config"
cd ~/openstack/ardana/ansible/
ansible-playbook -i hosts/localhost config-processor-run.yml -e encrypt="<encryption
 key>" -e rekey=""
ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible

3. Next, either run site.yml if you are installing a new system:

ansible-playbook -i hosts/verb_hosts site.yml

4. or ardana-reconfigure if you are reconfiguring an existing one:

ansible-playbook -i hosts/verb_hosts ardana-reconfigure.yml

63 Enabling TLS for MySQL Traffic SUSE OpenStack Cloud 8

7.3.2 MySQL replication over TLS

MySQL replication over TLS is disabled. This is true even if you followed the instruction to turn
on Mysql TLS in the previous section. Those steps turn on the service interactions to the database.

Turning on MySQL replication over TLS

Note
Using TLS connections for MySQL replication will incur a performance cost.

You should have already enabled TLS for MySQL client interactions in the previous section. If
not, read Section 7.3.1, “Enabling TLS on the database server for client access”.

TLS for MySQL replication is not turned on by default. Therefore, you will need to follow a
manual process. Again, the steps are different for new systems and upgrades.

7.3.3 Enabling TLS for MySQL replication on a new deployment

1. Log in to the Cloud Lifecycle Manager node and before running the config processor, edit
the ~/openstack/my_cloud/config/mariadb/defaults.yml le.

2. Search for mysql_gcomms_bind_tls. You should nd this section:

TLS disabled for cluster
#mysql_gcomms_bind_tls: "{{ host.bind['FND_MDB'].mysql_gcomms.tls }}"
mysql_gcomms_bind_tls: False

3. Uncomment the appropriate line so the le looks like this:

TLS disabled for cluster
mysql_gcomms_bind_tls: "{{ host.bind['FND_MDB'].mysql_gcomms.tls }}"
#mysql_gcomms_bind_tls: False

4. Follow the steps to deploy or reconfigure your cloud: Step 2 in Section 7.3.1, “Enabling TLS

on the database server for client access”.

64 MySQL replication over TLS SUSE OpenStack Cloud 8

7.3.4 Enabling TLS for MySQL replication on an existing system

If your cluster is already up, perform these steps to enable MySQL replication over TLS:

1. Edit the following two les: ~/openstack/my_cloud/config/mariadb/de-

faults.yml and ~/scratch/ansible/next/ardana/ansible/roles/FND-MDB/de-

faults/main.yml . Note that these les are identical. The rst is a master le and the
second is a scratch version that is used for the current deployment. Make the same changes
as explained in Section 7.3.3, “Enabling TLS for MySQL replication on a new deployment”.

2. Then run the following command:

ansible-playbook -i hosts/verb_hosts tls-percona-reconfigure.yml

After this your MySQL should come up and replicate over TLS. You need to follow this
section again if you ever want to switch TLS o for MySQL replication. You also must
repeat these steps if any lifecycle operation changes the mysql_gcomms_bind_tls option.

7.3.5 Testing whether a service is using TLS

Almost all services that have a database are able to communicate over TLS. You can test whether
a service, in this example the Identity service (Keystone), is communicating with MySQL over
TLS by executing the following steps:

1. Log into the Cloud Lifecycle Manager as root and run the mysql command.

root@<server>:~# mysql

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

2. Run:

mysql> select * from information_schema.user_statistics where user='keystone'\G

3. Note the results. TOTAL_SSL_CONNECTIONS should not be zero:

*************************** 1. row ***************************
 USER: keystone
 TOTAL_CONNECTIONS: 316
CONCURRENT_CONNECTIONS: 0
 CONNECTED_TIME: 905790
 BUSY_TIME: 205

65 Enabling TLS for MySQL replication on an existing system SUSE OpenStack Cloud 8

 CPU_TIME: 141
 BYTES_RECEIVED: 197137617
 BYTES_SENT: 801964
 BINLOG_BYTES_WRITTEN: 0
 ROWS_FETCHED: 972421
 ROWS_UPDATED: 6893
 TABLE_ROWS_READ: 1025866
 SELECT_COMMANDS: 660209
 UPDATE_COMMANDS: 3039
 OTHER_COMMANDS: 299746
 COMMIT_TRANSACTIONS: 0
 ROLLBACK_TRANSACTIONS: 295200
 DENIED_CONNECTIONS: 0
 LOST_CONNECTIONS: 83
 ACCESS_DENIED: 0
 EMPTY_QUERIES: 71778
 TOTAL_SSL_CONNECTIONS: 298
1 row in set (0.00 sec)

mysql>

7.4 Enabling TLS for RabbitMQ Traffic
RabbitMQ traffic can be encrypted using TLS. To enable it, you will have to add entries for
tls-component-endpoints: in your input model les if you have not already done so. This
topic explains how.

1. Edit openstack/my_cloud/definition/data/network_groups.yml , adding rabbitmq
to the tls-component-endpoints section:

tls-component-endpoints:
 - barbican-api
 - mysql
 - rabbitmq

2. Commit the changes:

cd ~/openstack
git add -A
git commit -m "My changed config"

3. Then run the typical deployment steps:

cd ~/openstack/ardana/ansible/

66 Enabling TLS for RabbitMQ Traffic SUSE OpenStack Cloud 8

ansible-playbook -i hosts/localhost config-processor-run.yml -e encrypt="<encryption
 key>" -e rekey=""
ansible-playbook -i hosts/localhost ready-deployment.yml

4. Change directories:

cd ~/scratch/ansible/next/ardana/ansible

5. Then for a fresh TLS install run:

ansible-playbook -i hosts/verb_hosts site.yml

6. Or, to reconfigure an existing system run:

ansible-playbook -i hosts/verb_hosts ardana-reconfigure.yml

7.4.1 Testing

On the one of the rabbitmq nodes you can list the clients and their TLS status by running:

$ sudo rabbitmqctl -q list_connections ssl state ssl_protocol user name

You will see output like this where true indicates the client is using TLS for the connection, and
false, as shown here, indicates the connection is over TCP:

Listing connections ...

rmq_barbican_user false

Other indicators will be rabbit_use_ssl = True in the Oslo messaging section of client con-
figurations. The list of clients that support TLS are as follows:

Barbican

Ceilometer

Cinder

Designate

Eon

Glance

Heat

Ironic

67 Testing SUSE OpenStack Cloud 8

Keystone

Monasca

Neutron

Nova

Octavia

7.5 Troubleshooting TLS

7.5.1 Troubleshooting TLS certificate errors when running
playbooks with a limit

Has the deployer been restarted after the original site installation or is this a new deployer? If
so, TLS certificates need to be bootstrapped before a playbook is run with limits. You can do
this by running the following command.

cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts tls-reconfigure.yml --limit TLS-CA

7.5.2 Certificate Update Failure

In general, if a certificate update fails, it is because of the following: Haproxy has not restarted or
the Trust chain is not installed. This is the certificate of the CA that signed the server certificate.

7.5.3 Troubleshooting trust chain installation

It is important to note that while SUSE OpenStack Cloud 8 allows you to add new trust chains,
it would be better if you add all the required trust chains during the initial deploy. Trust chain
changes can impact services.

However, this does not apply to certificates. There is a certificate-related issue whereby haproxy
is not restarted if certificate content has been changed but the certificate le name remained the
same. If you are having issues and you have replaced the content of existing CA le with new
content, create another CA le with a new name. Also make sure the CA le has a .crt extension.

68 Troubleshooting TLS SUSE OpenStack Cloud 8

Do not update both certificate and the CA together. Add the CA rst and then run a site deploy.
Then update the certificate and run tls-reconfigure, FND-CLU-stop, FND-CLU-start and then ar-
dana-reconfigure. If you know which playbook failed, rerun it with -vv to get detaled error
information. The configure, HAproxy restart, and reconfigure steps are included in Section 7.2,

“TLS Configuration”.

You can run the following commands to see if client libraries see the CA you have added:

~/scratch/ansible/next/ardana/ansible$ ansible -i hosts/verb_hosts FND-STN -a 'sudo
 keytool -list -alias \
 debian:username-internal-cacert-001.pem -keystore /usr/lib/jvm/java-7-openjdk-amd64/
jre/lib/security/cacerts -storepass changeit'
 padawan-ccp-c0-m1-mgmt | FAILED | rc=1 >>
 sudo: keytool: command not found

 padawan-ccp-comp0001-mgmt | FAILED | rc=1 >>
 sudo: keytool: command not found

 padawan-ccp-comp0003-mgmt | FAILED | rc=1 >>
 sudo: keytool: command not found

 padawan-ccp-comp0002-mgmt | FAILED | rc=1 >>
 sudo: keytool: command not found

 padawan-ccp-c1-m1-mgmt | success | rc=0 >>
 debian:username-internal-cacert-001.pem, May 9, 2016, trustedCertEntry,
 Certificate fingerprint (SHA1):
 E7:B2:6E:9E:00:FB:86:0F:E5:46:CD:B8:C5:67:13:53:4E:3D:8F:43

 padawan-ccp-c1-m2-mgmt | success | rc=0 >>
 debian:username-internal-cacert-001.pem, May 9, 2016, trustedCertEntry,
 Certificate fingerprint (SHA1):
 E7:B2:6E:9E:00:FB:86:0F:E5:46:CD:B8:C5:67:13:53:4E:3D:8F:43

 padawan-ccp-c1-m3-mgmt | success | rc=0 >>
 debian:username-internal-cacert-001.pem, May 9, 2016, trustedCertEntry,
 Certificate fingerprint (SHA1):
 E7:B2:6E:9E:00:FB:86:0F:E5:46:CD:B8:C5:67:13:53:4E:3D:8F:43

Java client libraries are used by Monasca, so compute nodes will not have them. So the rst
three errors are expected. Check that the fingerprint is correct by checking the CA:

~/scratch/d002-certs/t002$ openssl x509 -in example-CA.crt -noout -fingerprint
 SHA1 Fingerprint=E7:B2:6E:9E:00:FB:86:0F:E5:46:CD:B8:C5:67:13:53:4E:3D:8F:43

69 Troubleshooting trust chain installation SUSE OpenStack Cloud 8

If they do not match, there likely was a name collision. Add the CA cert again with a new le
name. If you get Monasca errors but nd that the fingerprints match, try stopping and restarting
Monasca.

ansible-playbook -i hosts/verb_hosts monasca-stop.yml
ansible-playbook -i hosts/verb_hosts monasca-start.yml

7.5.4 Expired TLS Certificates

Use the following steps to re-create expired TLS certificates for MySQL Percona clusters.

1. Determine if the TLS certificates for MySQL / Percsona have expired.

ardana > cd /etc/mysql/
ardana > openssl x509 -noout -enddate -in control-plane-1-mysql-internal-cert.pem
 Not After : Jul 24 12:24:17 2021 GMT

2. Regenerate the TLS certificates on the deployer.

ardana > cd ~/scratch/ansible/next/hos/ansible
ardana > ansible-playbook -i hosts/verb_hosts tls-reconfigure.yml --limit
 DEPLOYER_HOST

3. Distribute the regenerated TLS certificates to the MySQL Percona clusters.

ardana > cd ~/scratch/ansible/next/hos/ansible
ardana > ansible-playbook -i hosts/verb_hosts --extra-vars
 "mysql_certs_needs_regeneration=true" tls-percona-reconfigure.yml

4. Verify Percona cluster status on a controller node

ardana > sudo mysql -e 'show status'

Use the following steps to re-create expired TLS certificates for RabbitMQ.

1. Determine if SSL certificate for RabbitMQ is expired

root # cd /etc/rabbitmq
root # openssl x509 -noout -text -in control-plane-1-rabbitmq.pem | grep After
Not After : Nov 6 15:15:38 2018 GMT

2. Regenerate the TLS certificates on the deployer.

70 Expired TLS Certificates SUSE OpenStack Cloud 8

ardana > cd ~/scratch/ansible/next/hos/ansible
ardana > ansible-playbook -i hosts/verb_hosts tls-reconfigure.yml --limit
 DEPLOYER_HOST

3. Reconfigure RabbitMQ. Certificate will be re-created if the input model is correct.

ardana > cd ~/scratch/ansible/next/ardana/ansible
ardana > ansible-playbook -i hosts/verb_hosts --extra-vars
 "rabbitmq_tls_certs_force_regeneration=true" rabbitmq-reconfigure.yml

7.5.5 Troubleshooting certificates

Certificates can fail in SUSE OpenStack Cloud 8 due to the following.

Trust chain issue. This is dealt with in the previous section

Wrong certificate: Compare the fingerprints. If they differ, then you have a wrong certifi-
cate somewhere.

Date range of the certificate is either in the future or expired: Check the dates and change
certificates as necessary, observing the naming cautions above.

TLS handshake fails because the client does not support the ciphers the server offers. It
is possible that you reused a certificate created for a different network model. Make sure
the request le found under info/cert_req/ are used to create the certificate. If not, the
service VIP names may not match.

71 Troubleshooting certificates SUSE OpenStack Cloud 8

8 SUSE® OpenStack Cloud: Preventing Host Header
Poisoning

Depending on the environment and context of your SUSE OpenStack Cloud deployment, it may
be advisable to configure Horizon to protect against Host header poisoning (see ref. #1 below)
by using Django's ALLOWED_HOSTS setting (see ref. #2 below). To configure Horizon to use
the ALLOWED_HOSTS setting, take the following steps:

1. Edit the haproxy settings to reconfigure the health check for Horizon to specify the allowed
hostname(s). This needs to be done rst, before configuring Horizon itself. Otherwise, if
Horizon is rst configured to restrict the values of the "Host" header on incoming HTTP
requests, the haproxy health checks will start to fail. So, the haproxy configuration needs
to be updated rst, if this is being done on an existing installation.

a. On your Cloud Lifecycle Manager node, make a backup copy of this le and then
open /usr/share/ardana/input-model/2.0/services/horizon.yml

b. Find the line that contains "option httpchk" and modify it so it reads the following
way:

- "option httpchk GET / HTTP/1.1\r\nHOST:\ my.example.com"
Note the escaped escape characters.

In this example, my.example.com is the hostname associated with the Horizon VIP on
the external API network. However, you are not restricted to just one allowed host.
In addition, allowed hosts can contain wildcards (though not in the horizon.yml le;
there you must have an actual resolvable hostname or a routeable IP address). How-
ever, for this change to the haproxy healthcheck, it is suggested that the hostname
associated with the Horizon VIP on the external API network be used.

2. Edit the template le that will be use for Horizon's local_settings.py configuration le

a. While still on your Cloud Lifecycle Manager node, open ~/openstack/my_cloud/
config/horizon/local_settings.py .

b. Change the line that sets the "ALLOWED_HOSTS" setting. This can be a list of host-
names and (V)IPs that eventually get routed to Horizon. Wildcards are supported.

ALLOWED_HOSTS = ['my.example.com', '*.example.net', '192.168.245.6']

72 SUSE OpenStack Cloud 8

In the above example, any HTTP request received with a hostname not matching any
in this list will receive an HTTP 400 reply.

c. Commit the change with a "git commit -a" command.

3. Run the configuration processor

cd ~/openstack/ardana/ansible
ansible-playbook -i hosts/localhost config-processor-run.yml

4. Enable the configuration: This can be done in one of a few ways: As part of a site deploy
play as part of an upgrade play or by re-running the FND-CLU and Horizon deploys on
an existing deployment: If modifying an existing deploy, the FND-CLU deploy will need to
be run rst, since changing the ALLOWED_HOSTS setting in Horizon rst will cause the
default health check to fail, if it does not specify a Host header in the HTTP request sent
to check the health of Horizon's Apache virtual host.

cd ~/openstack/ardana/ansible
ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts horizon-deploy.yml
ansible-playbook -i hosts/verb_hosts FND-CLU-deploy.yml

References:

https://www.djangoproject.com/weblog/2013/feb/19/security/#s-issue-host-

header-poisoning

https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

73 SUSE OpenStack Cloud 8

https://www.djangoproject.com/weblog/2013/feb/19/security/#s-issue-host-header-poisoning
https://www.djangoproject.com/weblog/2013/feb/19/security/#s-issue-host-header-poisoning
https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts

9 Encryption of Passwords and Sensitive Data

In SUSE OpenStack Cloud, sensitive connection data is encrypted. The passwords that are en-
crypted include:

Inter-service passwords generated by the configuration processor (Keystone, MariaDB,
RabbitMQ and Cassandra passwords)

Secret keys generated by the configuration processor (MariaDB cluster-id, erlang cookie
for RabbitMQ, Horizon secret key, Keystone admin token)

User-supplied passwords (IPMI passwords, Block Storage back-end passwords)

9.1 SSH Introduction

What is encrypted Encryption mecha-
nism

Is password change-
able

Is encryption key
changeable

Inter-service pass-
words and secret
keys generated by
the configuration
processor (Keystone,
MariaDB, RabbitMQ
and Cassandra pass-
words)

Uses PyCrypto li-
braries & Ansible
vault for encryption

No Yes

Passphrase for the
encryption key will
be prompted when
running Ansible play-
book. Can also use
command ask-an-
sible-pass

User supplied pass-
words (IPMI pass-
words, Block Storage
back-end passwords)

OpenSSL Yes Yes

The environ-
ment variable AR-
DANA_USER_PASS-
WORD_ENCRYP-
T_KEY must con-
tain the key used to
encrypt those pass-
words.

74 SSH Introduction SUSE OpenStack Cloud 8

Other protected data:

The SSH private key used by Ansible to connect to client nodes from the Cloud Lifecycle
Manager is protected with a passphrase.

The Swift swift-hash prefix and suffix values are encrypted.

All of the Ansible variables generated by the configuration processor are encrypted and
held in Ansible Vault.

However, if a user wants to change the encryption keys then that can be done for all categories
of password and secret-keys listed below, and the processes are documented.

The SSH private key passphrase needs to be entered once before any Ansible plays are run
against the cloud.

The configuration processor encryption key will be prompted for when the relevant Ansible play
is run. Once the configuration processor output has been encrypted, all subsequent Ansible plays
need to have --ask-ansible-pass added to the command line to ensure that the encryption key
which is needed by Ansible is prompted for.

Finally, if user-supplied passwords have been encrypted (this process uses the OpenSSL library)
then the environment variable ARDANA_USER_PASSWORD_ENCRYPT_KEY must contain the key
used to encrypt those passwords.

In the case where the ARDANA_USER_PASSWORD_ENCRYPT_KEY environment variable is either
null, the empty string, or not defined, then no encryption will be performed on your passwords
when using the ardanaencrypt.py script.

The generated passwords are stored in Ansible inputs generated by the configuration processor
and also in the persistent state information maintained by the configuration processor.

9.2 Protecting sensitive data on the Cloud Lifecycle
Manager

There are a number of mechanisms that can be used to protect sensitive data such as passwords,
some Ansible inputs, and the SSH key used by Ansible on the Cloud Lifecycle Manager. See the
installation documents for details. Please remember the need to guard against exposure of your
environment variables, which may happen through observation over the shoulder.

75 Protecting sensitive data on the Cloud Lifecycle Manager SUSE OpenStack Cloud 8

There are instructions included in the installation documents that show how to encrypt your
data using the ardanaencrypt.py script. You may want to change the encryption keys used to
protect your sensitive data in the future and this shows you how:

SSH keys - Run the command below to change the passphrase used to protect the key:

ssh-keygen -f id_rsa -p

configuration processor Key - If you wish to change an encryption password that you
have already used when running the configuration processor then enter the existing pass-
word at the rst prompt and the new password at the second prompt when running the
configuration processor playbook. See Book “Installing with Cloud Lifecycle Manager”, Chap-

ter 12 “Installing Mid-scale and Entry-scale KVM” for more details.

IPMI passwords if encrypted with ardanaencrypt.py - Rerun the utility specifying a
new encryption key when prompted. You will need to enter the plain text passwords at
the password prompt.

9.3 Interacting with Encrypted Files
Once you have enabled encryption in your environment you may have a need to interact with
these encrypted les at a later time. This section will show you how.

ardanaencrypt.py script password encryption

If you used the ardanaencrypt.py script to encrypt your IPMI or other passwords and have a
need to view them later, you can do so with these steps.

You will want to ensure that the ARDANA_USER_PASSWORD_ENCRYPT_KEY environment variable
is set prior to running these commands:

export ARDANA_USER_PASSWORD_ENCRYPT_KEY="<encryption_key>"

To view an encrypted password, you can use this command below which will promot you for
the encrypted password value. It will then output the decrypted value:

./ardanaencrypt.py -d

Configuration processor encryption key

If you have used the encryption options available with the configuration processor, which uses
Ansible vault, you can do so with these commands. Each of these commands will prompt you
for the password you used when setting the encryption initially.

76 Interacting with Encrypted Files SUSE OpenStack Cloud 8

To view an encrypted le in read-only mode, use this command:

ansible-vault view <filename>

To edit an encrypted le, use this command. This allows you to edit a decrypted version of the
le without the need to decrypt and re-encrypt it:

ansible-vault edit <filename>

For other available commands, use the help le:

ansible-vault -h

77 Interacting with Encrypted Files SUSE OpenStack Cloud 8

10 Encryption of Ephemeral Volumes

By default, ephemeral volumes are not encrypted. If you wish to enable this feature, you should
use the following steps.

Note
For more details about this feature, see Ephemeral storage encryption for LVM back-

end (http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/lvm-ephemer-

al-storage-encryption.html) .

10.1 Enabling ephemeral volume encryption
Before deploying the Compute nodes you will need to change the disk configuration to create
a new volume-group which will be used for your ephemeral disks. To do this, following these
steps:

1. Log in to the Cloud Lifecycle Manager.

2. Add details about the volume-group you will be using for your encrypted volumes. You
have two options for this, you can either create a new volume-group or add the details for
an already existing volume-group.

a. To create a new volume-group, add the following lines to your Compute disk config-
uration le.
The location of the Compute disk configuration le is:

~/openstack/my_cloud/definition/data/disks_compute.yml

name: vg-comp
 physical-volumes:
 - /dev/sdb

b. To utilize an existing volume-group you can add the following lines to your no-
va.conf le, using the name of your volume-group:

[libvirt]
images_type = lvm
images_volume_group = <volume_group_name>

78 Enabling ephemeral volume encryption SUSE OpenStack Cloud 8

http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/lvm-ephemeral-storage-encryption.html
http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/lvm-ephemeral-storage-encryption.html
http://specs.openstack.org/openstack/nova-specs/specs/juno/approved/lvm-ephemeral-storage-encryption.html

Note
The requirement here is to have free space available on a volume-group . The cor-
rect disk to use and the name for the volume group will depend on your environ-
ment's needs.

3. Modify the nova.conf le for the Compute and API nodes. Verify that the following en-
tries exist, if they do not then add them and then restart the nova-compute and nova-api
services:

[libvirt]
images_type = lvm
images_volume_group = vg-comp

[ephemeral_storage_encryption]
key_size = 256
cipher = aes-xts-plain64
enabled = True

[keymgr]
api_class = nova.keymgr.barbican.BarbicanKeyManager

[barbican]
endpoint_template = https://192.168.245.9:9311/v1

To restart the services, use the following commands:

sudo systemctl restart nova-compute
sudo systemctl restart nova-api

4. Assign the role in Keystone using the CLI tool. Using the openstack client you can assign
the user key-manager:creator role for the project.

5. Boot an instance with an ephermal disk and verify that the disk is encrypted. Once the
instance is active it is possible to check on the Compute node if the ephermal disk is
encrypted.
SSH into the Compute node then run the following commands:

sudo dmsetup status
cryptsetup -v status <name_of_ephemeral_disk>

79 Enabling ephemeral volume encryption SUSE OpenStack Cloud 8

11 Refining Access Control with AppArmor

AppArmor is a Mandatory Access Control (MAC) system as opposed to a discretionary access
control system. It is a kernel-level security module for Linux that controls access to low-level
resources based on rights granted via policies to a program rather than to a user role. It enforces
rules at the lowest software layer (the kernel level) preventing software from circumventing
resource restrictions that reside at levels above the kernel. With AppArmor, the final gatekeeper
is closest to the hardware.

Controlling resource access per application versus per user role allows you to enforce rules based
on specifically what a program can do versus trying to create user roles that are broad enough
yet specific enough to apply to a group of users. In addition, it prevents the trap of having to
predict all possible vulnerabilities in order to be secure.

AppArmor uses a hybrid of whitelisting and blacklisting rules, and its security policies are/
can be cascading, permitting inheritance from different or more general policies. Policies are
enforced on a per-process basis.

AppArmor also lets you tie a process to a CPU core if you want, and set process priority.

AppArmor profiles are loaded into the kernel, typically on boot. They can run in either enforce-
ment or complain modes. In enforcement mode, the policy is enforced and policy violation at-
tempts are reported. In complain mode, policy violation attempts are reported but not prevented.

11.1 AppArmor in SUSE OpenStack Cloud 8
At this time, AppArmor is not enabled by default in SUSE OpenStack Cloud 8. However, we
recommend enabling it for key virtualization processes on compute nodes. For more information,
see the https://documentation.suse.com/sles/12-SP5/single-html/SLES-security/#part-apparmor .

80 AppArmor in SUSE OpenStack Cloud 8 SUSE OpenStack Cloud 8

https://documentation.suse.com/sles/12-SP5/single-html/SLES-security/#part-apparmor

12 Data at Rest Encryption

The data at rest encryption features in SUSE OpenStack Cloud 8 include the Barbican key man-
agement service for safely storing encryption keys, and Cinder volume encryption. This topic
explains how to configure a back end for Barbican key storage, and how to configure Cinder
volumes to be encrypted.

The Barbican service in SUSE OpenStack Cloud 8 supports two types of back ends for safely
storing encryption keys:

A native database back end

An HSM device (KMIP + Micro Focus ESKM)

Configuring the key management back-end key store

Using the Cloud Lifecycle Manager reconfigure playbook, you can configure one of two back
ends for the Barbican key management service:

Native database: This is the default configuration in SUSE OpenStack Cloud 8.

KMIP + Atalla ESKM: For a KMIP device, an SSL client certificate is needed as HSM devices
generally require two-way SSL for security reasons. You will need a client certificate, a
client private key and client root certificate authority recognized by your HSM device.

12.1 Configuring KMIP and ESKM

1. To configure KMIP + Atalla ESKM in place of the default database, begin by providing
certificate information by modifying the sample configuration le, barbican_kmip_plu-
gin_config_sample.yml , on the Cloud Lifecycle Manager node:

~/openstack/ardana/ansible/roles/KEYMGR-API/files/samples/
barbican_kmip_plugin_config_sample.yml

2. Copy this le to a temporary directory such as /tmp.

3. Edit the le to provide either client certificates as absolute le paths as shown below in
bold, or by pasting certificate and key content directly into the le.

81 Configuring KMIP and ESKM SUSE OpenStack Cloud 8

Note
File paths take precedence over content variables if both are provided.

4. To set le path variables, open kmip_plugin_certs.yml for editing and setting the paths
to the cert les:

vi /tmp/kmip_plugin_certs.yml
 # File paths takes precedence over cert content if both are provided.
 # Here file path refers to local filesystem path where ansible is
 # executed.
 client_cert_file_path: /path/to/cert/file
 client_key_file_path: /path/to/key/file
 client_cacert_file_path: /path/to/cacert/file

5. Alternatively, set the content variables by opening /tmp/kmip_plugin_certs.yml and
copy the certificates and keys directly into the le.

vi /tmp/kmip_plugin_certs.yml
 # Following are samples you need to replace with your
 # own content here or via file path approach mentioned above.
 client_cert_content: |
 -----BEGIN CERTIFICATE-----
 MIID0jCCArqgAwIBAgICAKQwDQYJKoZIhvcNAQELBQAwgZQxCzAJBgNVBAYTAlVT
 MQswCQYDVQQIEwJDTzEUMBIGA1UEBxMLRnQuIENvbGxpbnMxGDAWBgNVBAoTD0hl
 ...
 d2xldHQgUGFja2FyZDEMMAoGA1UECxMDQ1RMMRYwFAYDVQQDFA1LTUlQX0xvY2Fs
 L7x0qB6Zaf3IBkOZqf5bMfAQoKfxww==
 -----END CERTIFICATE-----
 client_key_content: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEArjYVZzdsSMsk520UD1E94jl0/AZGLlsAB152dEP5E9C3mXzQ
 ZYvfApMh8PFc53gZwLBCb4joy1r8mZj/e7CwCUuo1cJHR9xnhwdK3RLeRbU3dfW8
 ...
 98DmYxBio8+wQWQdiAPRRthtnvhSWL67oYACPwvWUJJ+D18HfpWCEgCmBU3a8ZHc
 AaW8rRXtMZzuujGgAbA1hpf5z1lHuiG/X7/XMDVGiRALMyBbHV57
 -----END RSA PRIVATE KEY-----
 client_cacert_content: |
 -----BEGIN CERTIFICATE-----
 MIIEmjCCA4KgAwIBAgIBADANBgkqhkiG9w0BAQsFADCBlDELMAkGA1UEBhMCVVMx
 CzAJBgNVBAgTAkNPMRQwEgYDVQQHEwtGdC4gQ29sbGluczEYMBYGA1UEChMPSGV3
 ...
 FAimEB/a2E+A0oxwuHmhMg0kOpDuXIWn4BW+Z6z5h1j3PFyg/CZ548Fz0XOgvXC7
 Ejpkd+5R+24HloruUV1R2EYvmlr8UMFX80og11u+

82 Configuring KMIP and ESKM SUSE OpenStack Cloud 8

 -----END CERTIFICATE-----

6. Provide certificate information to the Barbican service using the barbican-reconfig-
ure.yml playbook:

cd ~/openstack/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-reconfigure.yml -e@/tmp/
kmip_plugin_certs.yml

7. Provide HSM connection credentials for the Barbican service. In this step, provide the KMIP
plug-in connection details to the Barbican service: Open the le barbican_deploy_con-
fig.yml found here:

~/openstack/ardana/ansible/roles/barbican-common/vars/barbican_deploy_config.yml

8. Set the value of use_kmip_secretstore_plugin to True to use the KMIP plug-in or
False to use the default secret store plugin (store_crypto).

9. Next, add KMIP client connection credentials and KMIP server hostname and port to bar-
bican_deploy_config.yml :

###
#################### KMIP Plugin Configuration Section ################
###
Flag to reflect whether KMIP plugin is to be used as back end for
#storing secrets
use_kmip_secretstore_plugin: True
Note: Connection username needs to match with 'Common Name' provided
in client cert request (CSR).
barbican_kmip_username: userName barbican_kmip_password: password
barbican_kmip_port: 1234 barbican_kmip_host: 111.222.333.444

10. Commit the changes to git:

cd ~/openstack/ardana/ansible
git add -A
git commit -m "My config"

and run the barbican-reconfigure.yml playbook in the deployment area:

ansible-playbook -i hosts/localhost ready-deployment.yml
cd ~/scratch/ansible/next/ardana/ansible
ansible-playbook -i hosts/verb_hosts barbican-reconfigure.yml

83 Configuring KMIP and ESKM SUSE OpenStack Cloud 8

12.2 Configuring Cinder volumes for encryption
The data-at-rest encryption model in SUSE OpenStack Cloud provides support for encrypting
Cinder volumes (Volume Encryption). These encrypted volumes are protected with an encryp-
tion key that can be stored in an HSM appliance.

Assuming Barbican and Cinder services have been installed, you can configure a Cinder volume
type for encryption. Doing so will create a new Cinder volume type, "LUKS," that can be selected
when creating a new volume. Such volumes will be encrypted using a 256bit AES key:

source ~/service.osrc
openstack role add --user admin --project admin cinder_admin
cinder type-create LUKS
cinder encryption-type-create \
 --cipher aes-xts-plain64 --key_size 256 --control_location \
 front-end LUKS nova.volume.encryptors.luks.LuksEncryptor

+--------------------------------------+---
+-----------------+----------+------------------+
| Volume Type ID | Provider |
 Cipher | Key Size | Control Location |
+--------------------------------------+---
+-----------------+----------+------------------+
| 99ed804b-7ed9-41a5-9c5e-e2002e9f9bb4 | nova.volume.encryptors.luks.LuksEncryptor | aes-
xts-plain64 | 256 | front-end |
+--------------------------------------+---
+-----------------+----------+------------------+

You should now be able to create a new volume with the type LUKS, which will request a new
key from Barbican. Once created, you can attach the new volume to an instance:

 cinder create --display-name testVolumeEncrypted --volume-type LUKS --availability-zone
 nova 1

The volume list (cinder show with the volume ID) should now show that you have a new
volume and that it is encrypted.

cinder show 2ebf610b-98bf-4914-aee1-9b866d7b1897
 +---------------------------------------+--------------------------------------+
 | Property | Value |
 +---------------------------------------+--------------------------------------+
 | attachments | [] |
 | availability_zone | nova |
 | bootable | false |
 | consistencygroup_id | None |

84 Configuring Cinder volumes for encryption SUSE OpenStack Cloud 8

 | created_at | 2016-03-04T00:17:45.000000 |
 | description | None |
 | encrypted | True |
 | id | 2ebf610b-98bf-4914-aee1-9b866d7b1897 |
 | metadata | {} |
 | migration_status | None |
 | multiattach | False |
 | name | testVolumeEncrypted |
 | os-vol-host-attr:host | ha-volume-manager@lvm-1#LVM_iSCSI |
 | os-vol-mig-status-attr:migstat | None |
 | os-vol-mig-status-attr:name_id | None |
 | os-vol-tenant-attr:tenant_id | 5f3b093c603f4dc8bc377d04e5385d42 |
 | os-volume-replication:driver_data | None |
 | os-volume-replication:extended_status | None |
 | replication_status | disabled |
 | size | 1 |
 | snapshot_id | None |
 | source_volid | None |
 | status | available |
 | user_id | 3bdde5491e174a8aafcbc5a88e01cac7 |
 | volume_type | LUKS |
 +---------------------------------------+--------------------------------------+

When using an ESKM appliance as the back end, you can also confirm that key operations are
going to your HSM via its admin portal.

UUID Owner Object Type State
 Creation Date
8d54f41d-91dd-4f5e-bcfe-964af8213a8c barbican SymmetricKey PreActive
 2016-03-02 13:58:58

12.3 For More Information
For more information on data at rest security with ESKM, see Data Security Protection for SUSE

OpenStack Cloud (http://files.asset.microfocus.com/4aa6-5241/en/4aa6-5241.pdf) .

85 For More Information SUSE OpenStack Cloud 8

http://files.asset.microfocus.com/4aa6-5241/en/4aa6-5241.pdf
http://files.asset.microfocus.com/4aa6-5241/en/4aa6-5241.pdf

13 Glance-API Rate Limit (CVE-2016-8611)

Within the Glance service, calls to the POST method within v1 or v2/images creates records in
queued status. No limit is enforced within the Glance API on the number of images a single
tenant may create. The only limit is on the total amount of storage a single user may consume.
More information about this vulnerability is at https://nvd.nist.gov/vuln/detail/CVE-2016-8611

Therefore a user could maliciously or unintentionally ll multiple database tables (images, im-
age_properties, image_tags, image_members) with useless image records, thereby causing a de-
nial of service by lengthening transaction response times in the Glance database.

This issue can be mitigated with a rate limiter to the glance-api haproxy endpoints. Only POST
requests are affected. Instance launch is not impacted. The number of images that can be cre-
ated in a 60 minute window is limited. The default value is 600 connections per 60 minute
window which should cover most normal glance-api use cases. When the number of connec-
tions has been exceeded, the user is locked out for the duration of the 60 minute interval. The
value for the number of connections per 60 minute period can be overridden by editing the
control_plane.yml le.

The following steps will implement the rate limiter patch.

1. Edit control_plane.yml , adding the following glance_rate_limit entry. Change the
glance_rate_limit if the default 600 connections does not t your situation.

- glance-api:
 ha_mode: false
 glance_stores: 'file'
 glance_default_store: 'file'
 glance_rate_limit: LIMIT

2. Commit the change to Git

ardana > git add -A
git commit "Change glance rate limit"

3. Run playbooks

ardana > cd ~/openstack/ardana/ansible
ardana > ansible-playbook -i hosts/localhost config-processor-run.yml
ardana > ansible-playbook -i hosts/localhost ready-deployment.yml
ardana > cd ~/scratch/ansible/next/ardana/ansible
ardana > ansible-playbook -i hosts/localhost FND-CLU-reconfigure.yml

86 SUSE OpenStack Cloud 8

https://nvd.nist.gov/vuln/detail/CVE-2016-8611

Access attempts are logged in /var/log/haproxy.log . Users who exceed the limit will see a
message such as:

429 Too Many Requests
You have sent too many requests in a given amount of time.

HTTP/1.0 429 Too Many Requests
Cache-Control: no-cache
Connection: close
Content-Type: text/html

87 SUSE OpenStack Cloud 8

14 Security Audit Logs

14.1 The need for auditing

Enterprises need the ability to audit and monitor workflows and data in accordance with
their strict corporate, industry or governmental policies and compliance requirements such as
FIPS-140-2, PCI-DSS, HIPAA, SOX, or ISO. To meet this need, SUSE OpenStack Cloud supports
CADF (Cloud Auditing Data Federation)-compliant security audit logs that can easily be inte-
grated with your organization's Security Information and Event Management (SIEM) tools. Such
auditing is valuable not only to meet regulatory compliance requirements, but also for correlat-
ing threat forensics.

Note that logs from existing OpenStack services can also be used for auditing purposes, even
though they are not in a consistent audit friendly CADF format today. All logs can easily be
integrated with a SIEM tool such as HPE ArcSight, Splunk etc.

14.2 Audit middleware

Audit middleware is python middleware logic that addresses the aforementioned logging short-
comings. Audit middleware constructs audit event data in easily consumed CADF format. This
data can be mined to answer critical questions about activities over REST resources such as who
made the request, when, why, and so forth.

Audit middleware supports delivery of audit data via the Oslo messaging notifier feature. Each
service is configured to route data to an audit-specific log le.

The following are key aspects of auditing support in SUSE OpenStack Cloud 8:

Auditing is disabled by default and can be enabled only after SUSE OpenStack Cloud in-
stallation.

Auditing support has been added to eight SUSE OpenStack Cloud services (Nova, Cinder,
Glance, Keystone, Neutron, Heat, Barbican, and Ceilometer).

Auditing has been added for interactions where REST API calls are invoked.

All audit events are recorded in a service-specific audit log le.

88 The need for auditing SUSE OpenStack Cloud 8

Auditing configuration is centrally managed and indicates for which services auditing is
currently disabled or enabled.

Auditing can be enabled or disabled on a per-service basis.

14.3 Centralized auditing configuration

In SUSE OpenStack Cloud, all auditing configuration is centrally managed and controlled via
input model YAML les on the Cloud Lifecycle Manager node. The settings are configured in the
le ~/openstack/my_cloud/definition/cloudConfig.yml in a newly added audit-settings
section shown below the following table.

Key Value
(de-
fault)

Type Description Expect-
ed val-
ue(s)

Comments

default dis-
abled

String Flag to glob-
ally enable
or disable
auditing for
all services.

dis-
abled,
enabled

A service's auditing behavior is de-
termined via this default key value
unless it is listed explicitly in the en-
abled-services or disabled-services
list.

en-
abled-ser-
vices

[]
(empty
list)

yaml
list

Setting to
explicitly en-
able audit-
ing for list-
ed services
regardless of
default ag
setting.

nova,
cinder,
glance,
key-
stone,
neutron,
heat,
barbi-
can,
ceilome-
ter

To enable a specific service, either
add the service name in the en-
abled-services list when default is
set to disabled or remove from dis-
abled-services list when default is set
to enabled .

If a service name is present in both
enabled-services and disabled-ser-
vices, then auditing will be enabled
for that service.

89 Centralized auditing configuration SUSE OpenStack Cloud 8

Key Value
(de-
fault)

Type Description Expect-
ed val-
ue(s)

Comments

dis-
abled-ser-
vices

Nova,
Barbi-
can,
Key-
stone,
Cinder,
Ceilome-
ter,
Neu-
tron

yaml
list

Setting to
explicitly
disable au-
diting for
listed ser-
vices regard-
less of de-
fault ag
setting.

nova,
cinder,
glance,
key-
stone,neu-
tron,
heat,
barbi-
can,
ceilome-
ter

To disable a specific service, either
add the service name in disabled-ser-
vices when default is set to enabled .
or remove from enabled-services list
when default is set to disabled .

Audit settings in cloudConfig.yml with default set to disabled and services selectively en-
abled:

product:
 version: 2
 cloud:

 # Disc space needs to be allocated to the audit directory before enabling
 # auditing.
 # keystone and nova has auditing enabled
 # cinder, ceilometer, glance, neutron, heat, barbican have auditing disabled
 audit-settings:
 audit-dir: /var/audit
 default: disabled
 enabled-services:
 - keystone
 - nova
 disabled-services:
 - cinder
 - ceilometer

Audit setting in cloudConfig.yml with default set to enabled and services selectively dis-
abled:

product:

90 Centralized auditing configuration SUSE OpenStack Cloud 8

 version: 2
 cloud:

 # Disc space needs to be allocated to the audit directory before enabling
 # auditing.
 # keystone, nova, glance, neutron, heat, barbican has auditing enabled
 # cinder, ceilometer has auditing disabled
 audit-settings:
 audit-dir: /var/audit
 default: enabled
 enabled-services:
 - keystone
 - nova
 disabled-services:
 - cinder
 - ceilometer

Because auditing is disabled by default, you will need to follow the steps below to enable it:

1. Book “Operations Guide”, Chapter 12 “Managing Monitoring, Logging, and Usage Reporting”, Sec-

tion 12.2 “Centralized Logging Service”, Section 12.2.7 “Audit Logging Overview”, Section 12.2.7.1

“Audit Logging Checklist”

2. Book “Operations Guide”, Chapter 12 “Managing Monitoring, Logging, and Usage Reporting”, Sec-

tion 12.2 “Centralized Logging Service”, Section 12.2.7 “Audit Logging Overview”, Section 12.2.7.2

“Enable Audit Logging”

For instructions on backing up and restoring audit logs, see: Book “Operations Guide”, Chapter 14

“Backup and Restore”, Section 14.13 “Backing up and Restoring Audit Logs” .

91 Centralized auditing configuration SUSE OpenStack Cloud 8

	Security Guide
	Chapter 1. SUSE® OpenStack Cloud: Security Features Overview
	1.1. Security features in SUSE OpenStack Cloud 8
	1.2. Role-Based Access Control (RBAC) Support for Neutron Networks
	1.3. Separate Service Administrator Role
	1.4. Inter-service Password Enhancements
	1.5. SELinux for KVM
	1.6. Data In Transit Protection
	1.7. Data-at-Rest Protection Using Project-Based Encryption
	1.8. CADF-Compliant Security Audit Logs
	1.9. PCI Readiness
	1.10. Glance-API Rate Limit to Address CVE-2016-8611

	Chapter 2. Key Management with the Barbican Service
	2.1. Barbican Service Overview
	2.2. Key Features
	2.3. Installation
	2.4. Auditing Barbican Events
	2.5. Barbican Key Management Service Bootstrap Data
	2.6. Known issues and workarounds

	Chapter 3. Key Management Service Administration
	3.1. Post-installation verification and administration
	3.2. Updating the Barbican Key Management Service
	3.3. Barbican Settings
	3.4. Enable or Disable Auditing of Barbican Events
	3.5. Updating the Barbican API Service Configuration File
	3.6. Starting and Stopping the Barbican Service
	3.7. Changing or Resetting a Password
	3.8. Checking Barbican Status
	3.9. Updating Logging Configuration

	Chapter 4. SUSE® OpenStack Cloud: Service Admin Role Segregation in the Identity Service
	4.1. Overview
	4.2. Pre-Installed Service Admin Role Components
	4.3. Features and Benefits
	4.4. Roles

	Chapter 5. Role-Based Access Control in Neutron
	5.1. Creating a Network
	5.2. Creating an RBAC Policy
	5.3. Listing RBACs
	5.4. Listing the Attributes of an RBAC
	5.5. Deleting an RBAC Policy
	5.6. Sharing a Network with All Tenants
	5.7. Target Project (demo2) View of Networks and Subnets
	5.8. Target Project: Creating a Port Using demo-net
	5.9. Target Project Booting a VM Using Demo-Net
	5.10. Limitations

	Chapter 6. Configuring Keystone and Horizon to use X.509 Client Certificates
	6.1. Keystone configuration
	6.2. HAProxy Configuration
	6.3. Create CA and client certificates
	6.4. Horizon configuration
	6.5. Browser configuration
	6.6. User accounts
	6.7. How it works

	Chapter 7. Transport Layer Security (TLS) Overview
	7.1. Comparing Clean Installation and Upgrade of SUSE OpenStack Cloud
	7.2. TLS Configuration
	7.2.1. Using the Default My Public Cert
	7.2.2. Certificate Terms
	7.2.3. Configuring TLS in the input model
	7.2.4. Generating and Signing Certificates
	7.2.5. User-provided certificates and trust chains
	7.2.6. Edit the Input Model to Include Your Certificate Files
	7.2.7. Generating a Self-signed CA
	7.2.8. Generate a Certificate Signing Request
	7.2.9. Generate a Server Certificate
	7.2.10. Upload to the Cloud Lifecycle Manager
	7.2.11. Configuring the Cipher Suite
	7.2.12. Testing
	7.2.13. Verifying That the Trust Chain is Correctly Deployed
	7.2.14. Turning TLS on or off

	7.3. Enabling TLS for MySQL Traffic
	7.3.1. Enabling TLS on the database server for client access
	7.3.2. MySQL replication over TLS
	7.3.3. Enabling TLS for MySQL replication on a new deployment
	7.3.4. Enabling TLS for MySQL replication on an existing system
	7.3.5. Testing whether a service is using TLS

	7.4. Enabling TLS for RabbitMQ Traffic
	7.4.1. Testing

	7.5. Troubleshooting TLS
	7.5.1. Troubleshooting TLS certificate errors when running playbooks with a limit
	7.5.2. Certificate Update Failure
	7.5.3. Troubleshooting trust chain installation
	7.5.4. Expired TLS Certificates
	7.5.5. Troubleshooting certificates

	Chapter 8. SUSE® OpenStack Cloud: Preventing Host Header Poisoning
	Chapter 9. Encryption of Passwords and Sensitive Data
	9.1. SSH Introduction
	9.2. Protecting sensitive data on the Cloud Lifecycle Manager
	9.3. Interacting with Encrypted Files

	Chapter 10. Encryption of Ephemeral Volumes
	10.1. Enabling ephemeral volume encryption

	Chapter 11. Refining Access Control with AppArmor
	11.1. AppArmor in SUSE OpenStack Cloud 8

	Chapter 12. Data at Rest Encryption
	12.1. Configuring KMIP and ESKM
	12.2. Configuring Cinder volumes for encryption
	12.3. For More Information

	Chapter 13. Glance-API Rate Limit (CVE-2016-8611)
	Chapter 14. Security Audit Logs
	14.1. The need for auditing
	14.2. Audit middleware
	14.3. Centralized auditing configuration

