
Deploying and Installing SUSE
AI
Publication Date: 2026-01-08

Contents

1 Installation overview 2

2 Installing the Linux and Kubernetes distribution 3

3 Preparing the cluster for AI Library 45

4 Installing applications from AI Library 127

5 Steps after the installation is complete 209

Glossary 210

A Copyright 214

B GNU Free Documentation License 215

1 Deploying and Installing SUSE AI

WHAT?

This document provides a comprehensive, step-by-step guide for the SUSE AI deployment.

WHY?

To help users successfully complete the deployment process.

EFFORT

Less than one hour of reading and an advanced knowledge of Linux deployment.

GOAL

To learn enough information to deploy SUSE AI in both testing and production environ-
ments.

SUSE AI is a versatile product consisting of multiple software layers and components. This doc-
ument outlines the complete workflow for deployment and installation of all SUSE AI depen-
dencies, as well as SUSE AI itself. You can also nd references to recommended hardware and
software requirements, as well as steps to take after the product installation.

Tip: Hardware and software requirements
For hardware, software and application-specific requirements, refer to SUSE AIrequire-

ments (https://documentation.suse.com/suse-ai/1.0/html/AI-requirements/index.html) .

1 Installation overview

The following chart illustrates the installation process of SUSE AI. It outlines the following
possible scenarios:

You have clean cluster nodes prepared without a supported Linux operating system in-
stalled.

You have a supported Linux operating system and Kubernetes distribution installed on
cluster nodes.

You have SUSE Rancher Prime and all supportive components installed on the Kubernetes
cluster and are prepared to install the required applications from the AI Library.

2 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/AI-requirements/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-requirements/index.html

FIGURE 1: SUSE AI INSTALLATION PROCESS

2 Installing the Linux and Kubernetes distribution

This procedure includes the steps to install the base Linux operating system and a Kubernetes
distribution for users who start deploying on cluster nodes from scratch. If you already have
a Kubernetes cluster installed and running, you can skip this procedure and continue with Sec-

tion 4.1, “Installation procedure”.

1. Install and register a supported Linux operating system on each cluster node. We recom-
mend using one of the following operating systems:

SUSE Linux Enterprise Server 15 SP6 for a traditional non-transactional operating
system. For more information, see Section 2.1, “Installing SUSE Linux Enterprise Server”.

SUSE Linux Micro 6.1 for an immutable transactional operating system. For
more information, see SUSE Linux Micro 6.1 documentation (https://documenta-

tion.suse.com/sle-micro/6.1/) .

3 Deploying and Installing SUSE AI

https://documentation.suse.com/sle-micro/6.1/
https://documentation.suse.com/sle-micro/6.1/

For a list of supported operating systems, refer to https://www.suse.com/suse-ranch-

er/support-matrix/all-supported-versions/ .

2. Install the NVIDIA GPU driver on cluster nodes with GPUs. Refer to Section 2.2, “Installing

NVIDIA GPU drivers” for details.

3. Install Kubernetes on cluster nodes. We recommend using the supported SUSE Rancher
Prime: RKE2 distribution. Refer to Section 2.3, “Installing SUSE Rancher Prime: RKE2” for de-
tails. For a list of supported Kubernetes platforms, refer to https://www.suse.com/suse-

rancher/support-matrix/all-supported-versions/ .

2.1 Installing SUSE Linux Enterprise Server

Use the following procedures to install SLES on all supported hardware platforms. They assume
you have successfully booted into the installation system. For more detailed installation instruc-
tions and deployment strategies, refer to SUSE Linux Enterprise Server Deployment Guide (https://

documentation.suse.com/sles/15-SP6/html/SLES-all/book-deployment.html) .

2.1.1 The Unified Installer

Starting with SLES 15, the installation medium consists only of the Unified Installer, a minimal
system for installing, updating and registering all SLE base products. During the installation,
you can add functionality by selecting modules and extensions to be installed on top of the
Unified Installer.

2.1.2 Installing offline or without registration

The default installation medium 15 SP6-Online-ARCH-GM-media1.iso is optimized for size and
does not contain any modules and extensions. Therefore, the installation requires network access
to register your product and retrieve repository data for the modules and extensions.

For installation without registering the system, use the 15 SP6-Full-ARCH-GM-medi-

a1.iso image from https://www.suse.com/download/sles/ and refer to Installing without

registration (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-

install-scc-registration-none) .

4 Deploying and Installing SUSE AI

https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/
https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/
https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/
https://www.suse.com/suse-rancher/support-matrix/all-supported-versions/
https://documentation.suse.com/sles/15-SP6/html/SLES-all/book-deployment.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/book-deployment.html
https://www.suse.com/download/sles/
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-scc-registration-none
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-scc-registration-none
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-scc-registration-none

Tip: Copying the installation media image to a removable flash
disk
Use the following command to copy the contents of the installation image to a removable
ash disk.

> sudo dd if=IMAGE of=FLASH_DISK bs=4M && sync

IMAGE needs to be replaced with the path to the 15 SP6-Online-ARCH-GM-media1.iso
or 15 SP6-Full-ARCH-GM-media1.iso image le. FLASH_DISK needs to be replaced with
the ash device. To identify the device, insert it and run:

{prompt_root}grep -Ff <(hwinfo --disk --short) <(hwinfo --usb --short)
disk:
 /dev/sdc General USB Flash Disk

Make sure the size of the device is sufficient for the desired image. You can check the
size of the device with:

{prompt_root}fdisk -l /dev/sdc | grep -e "^/dev"
 /dev/sdc1 * 2048 31490047 31488000 15G 83 Linux

In this example, the device has a capacity of 15 GB. The command to use for the 15 SP6-
Full-ARCH-GM-media1.iso would be:

dd if=15 SP6-Full-ARCH-GM-media1.iso of=/dev/sdc bs=4M && sync

The device must not be mounted when running the dd command. Note that all data on
the partition will be erased.

2.1.3 The installation procedure

To install SLES, boot or IPL into the installer from the Unified Installer medium and start the
installation.

5 Deploying and Installing SUSE AI

2.1.3.1 Language, keyboard and product selection

FIGURE 2: LANGUAGE, KEYBOARD AND PRODUCT SELECTION

The Language and Keyboard Layout settings are initialized with the language you chose on the
boot screen. If you do not change the default, it remains English (US). Change the settings here,
if necessary. Use the Keyboard Test text box to test the layout.

Select SUSE Linux Enterprise Server 15 SP6 for installation. You need to have a registration code
for the product. Proceed with Next.

Tip: Light and high-contrast themes
If you have difficulty reading the labels in the installer, you can change the widget colors
and theme.

Click the button or press Shift – F3 to open a theme selection dialog. Select a theme
from the list and Close the dialog.

6 Deploying and Installing SUSE AI

Shift – F4 switches to the color scheme for vision-impaired users. Press the buttons again
to switch back to the default scheme.

2.1.3.2 License agreement

FIGURE 3: LICENSE AGREEMENT

Read the License Agreement. It is presented in the language you have chosen on the boot screen.
Translations are available via the License Language drop-down list. You need to accept the agree-
ment by checking I Agree to the License Terms to install SLES. Proceed with Next.

7 Deploying and Installing SUSE AI

2.1.3.3 Network settings

FIGURE 4: NETWORK SETTINGS

A system analysis is performed, where the installer probes for storage devices and tries to nd
other installed systems. If the network was automatically configured via DHCP during the start
of the installation, you are presented the registration step.

If the network is not yet configured, the Network Settings dialog opens. Choose a network
interface from the list and configure it with Edit. Alternatively, Add an interface manual-
ly. See the sections on installer network settings (https://documentation.suse.com/sles/15-SP6/

html/SLES-all/cha-install.html#sec-yast-install-network) and configuring a network connection

with YaST (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-net-

work-yast) for more information. If you prefer to do an installation without network access,
skip this step without making any changes and proceed with Next.

8 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-network
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-network
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-network-yast
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-network-yast
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-network-yast

2.1.3.4 Registration

FIGURE 5: REGISTRATION

To get technical support and product updates, you need to register and activate SLES with the
SUSE Customer Center or a local registration server. Registering your product at this stage also
grants you immediate access to the update repository. This enables you to install the system
with the latest updates and patches available.

When registering, repositories and dependencies for modules and extensions are loaded from
the registration server.

Register system at scc.suse.com

To register at the SUSE Customer Center, enter the E-mail Address associated with your
SUSE Customer Center account and the Registration Code for SLES. Proceed with Next.

9 Deploying and Installing SUSE AI

Register system via local RMT server

If your organization provides a local registration server, you may alternatively register to
it. Activate Register System via local RMT Server and either choose a URL from the drop-
down list or type in an address. Proceed with Next.

Skip registration

If you are offline or want to skip registration, activate Skip Registration. Accept the warning
with OK and proceed with Next.

Important: Skipping the registration
Your system and extensions need to be registered to retrieve updates and to be
eligible for support. Skipping the registration is only possible when installing from
the 15 SP6-Full-ARCH-GM-media1.iso image.

If you do not register during the installation, you can do so at any time later from the
running system. To do so, run YaST Product Registration or the command-line tool SUSE-
Connect.

Tip: Installing product patches at installation time
After SLES has been successfully registered, you are asked whether to install the latest
available online updates during the installation. If choosing Yes, the system will be in-
stalled with the most current packages without having to apply the updates after instal-
lation. Activating this option is recommended.

Note: Firewall settings for receiving updates
By default, the firewall on SUSE AI only blocks incoming connections. If your system
is behind another firewall that blocks outgoing traffic, make sure to allow connections
to https://scc.suse.com/ and https://updates.suse.com on ports 80 and 443 to
receive updates.

10 Deploying and Installing SUSE AI

2.1.3.5 Extension and module selection

FIGURE 6: EXTENSION AND MODULE SELECTION

After the system is successfully registered, the installer lists modules and extensions that are
available for SLES. Modules are components that allow you to customize the product according
to your needs. They are included in your SLES subscription. Extensions add functionality to your
product. They must be purchased separately.

The availability of certain modules or extensions depends on the product selected in the rst
step of the installation. For a description of the modules and their lifecycles, select a module to
see the accompanying text. More detailed information is available in the Modules and extensins

quick start guide (https://documentation.suse.com/sles-15/html/SLES-all/article-modules.html) .

The selection of modules indirectly affects the scope of the installation, because it defines which
software sources (repositories) are available for installation and in the running system.

11 Deploying and Installing SUSE AI

https://documentation.suse.com/sles-15/html/SLES-all/article-modules.html
https://documentation.suse.com/sles-15/html/SLES-all/article-modules.html

The following modules and extensions are available for SUSE Linux Enterprise Server:

Basesystem Module

This module adds a basic system on top of the Unified Installer. It is required by all other
modules and extensions. The scope of an installation that only contains the base system
is comparable to the installation pattern minimal system of previous SLES versions. This
module is selected for installation by default and should not be deselected.
Dependencies: None

Certifications Module

Contains the FIPS certification packages.
Dependencies: Server Applications

Confidential Computing Technical Preview

Contains packages related to confidential computing.
Dependencies: Basesystem

Containers Module

Contains support and tools for containers.
Dependencies: Basesystem

Desktop Applications Module

Adds a graphical user interface and essential desktop applications to the system.
Dependencies: Basesystem

Development Tools Module

Contains the compilers (including gcc) and libraries required for compiling and debugging
applications. Replaces the former Software Development Kit (SDK).
Dependencies: Basesystem, Desktop Applications

High Performance Computing (HPC) Module

Provides specific tools commonly used for high performance, numerically intensive work-
loads.
Dependencies: Basesystem

Legacy Module

Helps you with migrating applications from earlier versions of SLES and other systems
to SLES 15 SP6 by providing packages which are discontinued on SLE. Packages in this
module are selected based on the requirements for migration and the level of complexity
of configuration.

12 Deploying and Installing SUSE AI

This module is recommended when migrating from a previous product version.
Dependencies: Basesystem, Server Applications

NVIDIA Compute Module

Contains the NVIDIA CUDA (Compute Unified Device Architecture) drivers.
The software in this module is provided by NVIDIA under the CUDA End User License Agree-

ment (http://docs.nvidia.com/cuda/eula/) and is not supported by SUSE.
Dependencies: Basesystem

Public Cloud Module

Contains all tools required to create images for deploying SLES in cloud environments such
as Amazon Web Services (AWS), Microsoft Azure, Google Compute Platform, or OpenStack.
Dependencies: Basesystem, Server Applications

Python 3 Module

This module contains the most recent versions of the selected Python 3 packages.
Dependencies: Basesystem

SAP Business One Server

This module contains packages and system configurations specific to SAP Business One
Server. It is maintained and supported under the SUSE Linux Enterprise Server product
subscription.
Dependencies: Basesystem, Server Applications, Desktop Applications, Development
Tools

Server Applications Module

Adds server functionality by providing network services such as DHCP server, name server,
or Web server. This module is selected for installation by default. Deselecting it is not
recommended.
Dependencies: Basesystem

SLE High Availability

Adds clustering support for mission-critical setups to SLES. This extension requires a sep-
arate license key.
Dependencies: Basesystem, Server Applications

SLE Live Patching

Adds support for performing critical patching without having to shut down the system.
This extension requires a separate license key.
Dependencies: Basesystem, Server Applications

13 Deploying and Installing SUSE AI

http://docs.nvidia.com/cuda/eula/
http://docs.nvidia.com/cuda/eula/

SUSE Linux Enterprise Workstation Extension

Extends the functionality of SLES with packages from SUSE Linux Enterprise Desktop,
like additional desktop applications (office suite, e-mail client, graphical editor, etc.) and
libraries. It allows combining both products to create a fully featured workstation. This
extension requires a separate license key.
Dependencies: Basesystem, Desktop Applications

SUSE Package Hub

Provides access to packages for SLES maintained by the openSUSE community. These pack-
ages are delivered without L3 support and do not interfere with the supportability of SLES.
For more information, refer to https://packagehub.suse.com/ .
Dependencies: Basesystem

Transactional Server Module

Adds support for transactional updates. Updates are either applied to the system as a single
transaction or not applied at all. This happens without influencing the running system.
If an update fails, or if the successful update is deemed to be incompatible or otherwise
incorrect, it can be discarded to immediately return the system to its previous functioning
state.
Dependencies: Basesystem

Web and Scripting Module

Contains packages intended for a running Web server.
Dependencies: Basesystem, Server Applications

Certain modules depend on the installation of other modules. Therefore, when selecting a mod-
ule, other modules may be selected automatically to fulfill dependencies.

Depending on the product, the registration server can mark modules and extensions as recom-
mended. Recommended modules and extensions are preselected for registration and installation.
To avoid installing these recommendations, deselect them manually.

Select the modules and extensions you want to install and proceed with Next. In case you have
chosen one or more extensions, you will be prompted to provide the respective registration
codes. Depending on your choice, it may also be necessary to accept additional license agree-
ments.

14 Deploying and Installing SUSE AI

https://packagehub.suse.com/

Important: Default modules for offline installation
When performing an offline installation from the 15 SP6-Full-ARCH-GM-media1.iso, only
the Basesystem Module is selected by default. To install the complete default package set
of SUSE Linux Enterprise Server, additionally select the Server Applications Module and
the Python 3 Module.

2.1.3.6 Add-on product

FIGURE 7: ADD-ON PRODUCT

The Add-On Product dialog allows you to add additional software sources (called "repositories")
to SLES that are not provided by the SUSE Customer Center. Add-on products may include third-
party products and drivers as well as additional software for your system.

15 Deploying and Installing SUSE AI

Tip: Adding drivers during the installation
You can also add driver update repositories via the Add-On Product dialog. Driver up-
dates for SLE are provided at https://drivers.suse.com/ . These drivers have been created
through the SUSE SolidDriver Program.

To skip this step, proceed with Next. Otherwise, activate I would like to install an additional Add
On Product. Specify a media type, a local path, or a network resource hosting the repository and
follow the on-screen instructions.

Check Download Repository Description Files to download the les describing the repository now.
If deactivated, they will be downloaded after the installation has started. Proceed with Next and
insert a medium if required. Depending on the content of the product, it may be necessary to
accept additional license agreements. Proceed with Next. If you have chosen an add-on product
requiring a registration key, you will be asked to enter it before proceeding to the next step.

16 Deploying and Installing SUSE AI

https://drivers.suse.com/

2.1.3.7 System role

FIGURE 8: SYSTEM ROLE

The availability of system roles depends on your selection of modules and extensions. System
roles define, for example, the set of software patterns that are preselected for the installation.
Refer to the description on the screen to make your choice. Select a role and proceed with Next.
If from the enabled modules only one role or no role is suitable for the respective base product,
the System Role dialog is omitted.

Tip: Release notes
From this point on, the Release Notes can be viewed from any screen during the instal-
lation process by selecting Release Notes.

17 Deploying and Installing SUSE AI

2.1.3.8 Suggested partitioning

FIGURE 9: SUGGESTED PARTITIONING

Review the partition setup proposed by the system. If necessary, change it. You have the fol-
lowing options:

Guided setup

Starts a wizard that lets you refine the partitioning proposal. The options available here
depend on your system setup. If it contains more than a single hard disk, you can choose
which disk or disks to use and where to place the root partition. If the disks already contain
partitions, decide whether to remove or resize them.
In subsequent steps, you may also add LVM support and disk encryption. You can change
the le system for the root partition and decide whether or not to have a separate home
partition.

18 Deploying and Installing SUSE AI

Expert partitioner

Opens the Expert Partitioner. This gives you full control over the partitioning setup and
lets you create a custom setup. This option is intended for experts. For details, see the Ex-

pert Partitioner (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-expert-parti-

tioner.html#sec-expert-partitioner) chapter.

Warning: Disk space units
For partitioning purposes, disk space is measured in binary units rather than in decimal
units. For example, if you enter sizes of 1GB, 1GiB or 1G, they all signify 1 GiB (Gibibyte),
as opposed to 1 GB (Gigabyte).

Binary

1 GiB = 1,073,741,824 bytes.

Decimal

1 GB = 1,000,000,000 bytes.

Difference

1 GiB ≈ 1.07 GB.

To accept the proposed setup without any changes, choose Next to proceed.

19 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-expert-partitioner.html#sec-expert-partitioner
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-expert-partitioner.html#sec-expert-partitioner
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-expert-partitioner.html#sec-expert-partitioner

2.1.3.9 Clock and time zone

FIGURE 10: CLOCK AND TIME ZONE

Select the clock and time zone to use in your system. To manually adjust the time or to
configure an NTP server for time synchronization, choose Other Settings. See the section on
Clock and Time Zone (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.htm-

l#sec-yast-install-date-time) for detailed information. Proceed with Next.

20 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-date-time
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-date-time

2.1.3.10 Local user

FIGURE 11: LOCAL USER CREATION

To create a local user, type the rst and last name in the User’s Full Name eld, the login name
in the Username eld, and the password in the Password eld.

The password should be at least eight characters long and should contain both uppercase and
lowercase letters and numbers. The maximum length for passwords is 72 characters, and pass-
words are case-sensitive.

For security reasons, it is also strongly recommended not to enable Automatic Login. You should
also not Use this Password for the System Administrator but provide a separate root password in
the next installation step.

If you install on a system where a previous Linux installation was found, you may Import User
Data from a Previous Installation. Click Choose User for a list of available user accounts. Select
one or more users.

21 Deploying and Installing SUSE AI

In an environment where users are centrally managed (for example, by NIS or LDAP), you can
skip the creation of local users. Select Skip User Creation in this case.

Proceed with Next.

2.1.3.11 Authentication for the system administrator root

FIGURE 12: PASSWORD FOR THE SYSTEM ADMINISTRATOR root

Type a password for the system administrator (called the root user) or provide a public SSH
key. If you want, you can use both.

Because the root user is equipped with extensive permissions, the password should be chosen
carefully. You should never forget the root password. After you entered it here, the password
cannot be retrieved.

22 Deploying and Installing SUSE AI

Tip: Passwords and keyboard layout
It is recommended to use only US ASCII characters. In the event of a system error or when
you need to start your system in rescue mode, the keyboard may not be localized.

To access the system remotely via SSH using a public key, import a key from remov-
able media or an existing partition. See the section on Authentication for the system admin-

istrator root (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-

install-user-root) for more information.

Proceed with Next.

2.1.3.12 Installation settings

FIGURE 13: INSTALLATION SETTINGS

23 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-user-root
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-user-root
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-user-root

Use the Installation Settings screen to review and—if necessary—change several proposed instal-
lation settings. The current configuration is listed for each setting. To change it, click the head-
line. Certain settings, such as firewall or SSH, can be changed directly by clicking the respective
links.

Important: Remote access
Changes you can make here can also be made later at any time from the installed system.
However, if you need remote access right after the installation, you may need to open
the SSH port in the Security settings.

Software

The scope of the installation is defined by the modules and extensions you have chosen
for this installation. However, depending on your selection, not all packages available in
a module are selected for installation.
Clicking Software opens the Software Selection and System Tasks screen, where you can
change the software selection by selecting or deselecting patterns. Each pattern contains
several software packages needed for specific functions (for example, KVM Host Serv-
er). For a more detailed selection based on software packages to install, select Details to
switch to the YaST Software Manager. See Installing or removing software (https://documen-

tation.suse.com/sles/15-SP6/html/SLES-all/cha-yast-software.html) for more information.

Booting

This section shows the boot loader configuration. Changing the defaults is recom-
mended only if really needed. Refer to The boot loader GRUB 2 (https://documenta-

tion.suse.com/sles/15-SP6/html/SLES-all/cha-grub2.html) for details.

Security

The CPU Mitigations refer to kernel boot command-line parameters for software mitigations
that have been deployed to prevent CPU side-channel attacks. Click the selected entry to
choose a different option. For details, see the section on CPU Mitigations (https://documenta-

tion.suse.com/sles/15-SP6/html/SLES-all/cha-grub2.html#vle-grub2-yast2-cpu-mitigations) .
By default, the Firewall is enabled on all configured network interfaces. To disable fire-
walld, click disable (not recommended). Refer to the Masquerading and Firewalls (https://

documentation.suse.com/sles/15-SP6/html/SLES-all/cha-security-firewall.html) chapter for
configuration details.

24 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-yast-software.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-yast-software.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-grub2.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-grub2.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-grub2.html#vle-grub2-yast2-cpu-mitigations
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-grub2.html#vle-grub2-yast2-cpu-mitigations
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-security-firewall.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-security-firewall.html

Note: Firewall settings for receiving updates
By default, the firewall on SUSE AI only blocks incoming connections. If your sys-
tem is behind another firewall that blocks outgoing traffic, make sure to allow con-
nections to https://scc.suse.com/ and https://updates.suse.com on ports 80
and 443 to receive updates.

The SSH service is enabled by default, but its port (22) is closed in the firewall. Click
open to open the port or disable to disable the service. If SSH is disabled, remote logins
will not be possible. Refer to Securing network operations with OpenSSH (https://documen-

tation.suse.com/sles/15-SP6/html/SLES-all/cha-ssh.html) for more information.
The default Major Linux Security Module is AppArmor. To disable it, select None as the
module in the Security settings.

Security Policies

Click to enable the Defense Information Systems Agency STIG security policy. If any
installation settings are incompatible with the policy, you will be prompted to modify them
accordingly. Certain settings can be adjusted automatically while others require user input.
Enabling a security profile enables a full SCAP remediation on rst boot. You can
also perform a scan only or do nothing and manually remediate the system lat-
er with OpenSCAP. For more information, refer to the section on Security Pro-

files (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-in-

stall-proposal-security-profile) .

Network configuration

Displays the current network configuration. By default, wicked is used for server in-
stallations and NetworkManager for desktop workloads. Click Network Configuration to
change the settings. For details, see the section on Configuring a network connection with

YaST (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-net-

work-yast) .

Important: Support for NetworkManager
SUSE only supports NetworkManager for desktop workloads with SLED or the Work-
station extension. All server certifications are done with wicked as the network con-
figuration tool, and using NetworkManager may invalidate them. NetworkManager
is not supported by SUSE for server workloads.

25 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-ssh.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-ssh.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-proposal-security-profile
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-proposal-security-profile
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-proposal-security-profile
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-network-yast
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-network-yast
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html#sec-network-yast

Kdump

Kdump saves the memory image ("core dump") to the le system in case the ker-
nel crashes. This enables you to nd the cause of the crash by debugging the
dump le. Kdump is preconfigured and enabled by default. See the Basic Kdump con-

figuration (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-tuning-kexec.htm-

l#cha-tuning-kdump-basic) for more information.

Default systemd target

If you have installed the desktop applications module, the system boots into the graphical
target, with network, multi-user and display manager support. Switch to multi-user if you
do not need to log in via a display manager.

System

View detailed hardware information by clicking System. In the resulting screen,
you can also change Kernel Settings—see the section on System Informa-

tion (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-in-

stall-proposal-system) for more information.

26 Deploying and Installing SUSE AI

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-tuning-kexec.html#cha-tuning-kdump-basic
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-tuning-kexec.html#cha-tuning-kdump-basic
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-tuning-kexec.html#cha-tuning-kdump-basic
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-proposal-system
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-proposal-system
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-install.html#sec-yast-install-proposal-system

2.1.3.13 Start the installation

FIGURE 14: CONFIRM INSTALLATION

After you have finalized the system configuration on the Installation Settings screen, click Install.
Depending on your software selection, you may need to agree to license agreements before the
installation confirmation screen pops up. Up to this point, no changes have been made to your
system. After you click Install a second time, the installation process starts.

27 Deploying and Installing SUSE AI

2.1.3.14 The installation process

FIGURE 15: PERFORMING THE INSTALLATION

During the installation, the progress is shown. After the installation routine has finished, the
computer is rebooted into the installed system.

2.2 Installing NVIDIA GPU drivers

This article demonstrates how to implement host-level NVIDIA GPU support via the open-dri-
ver. The `open-driver`is part of the core package repositories. Therefore, there is no need to
compile it or download executable packages. This driver is built into the operating system rather
than dynamically loaded by the NVIDIA GPU Operator. This configuration is desirable for cus-
tomers who want to pre-build all artifacts required for deployment into the image, and where
the dynamic selection of the driver version via Kubernetes is not a requirement.

28 Deploying and Installing SUSE AI

2.2.1 Installing NVIDIA GPU drivers on SUSE Linux Enterprise Server

2.2.1.1 Requirements

If you are following this guide, it assumes that you have the following already available:

At least one host with SLES 15 SP6 installed, physical or virtual.

Your hosts are attached to a subscription as this is required for package access.

A compatible NVIDIA GPU (https://github.com/NVIDIA/open-gpu-kernel-modules#compati-

ble-gpus) installed or fully passed through to the virtual machine in which SLES is run-
ning.

Access to the root user—these instructions assume you are the root user, and not escalating
your privileges via sudo.

2.2.1.2 Considerations before the installation

2.2.1.2.1 Select the driver generation

You must verify the driver generation for the NVIDIA GPU that your system has. For modern
GPUs, the G06 driver is the most common choice. Find more details in the support database

(https://en.opensuse.org/SDB:NVIDIA_drivers#Install) .

This section details the installation of the G06 generation of the driver.

2.2.1.2.2 Additional NVIDIA components

Besides the NVIDIA open-driver provided by SUSE as part of SLES, you might also need addi-
tional NVIDIA components. These could include OpenGL libraries, CUDA toolkits, command-line
utilities such as nvidia-smi, and container-integration components such as nvidia-contain-
er-toolkit. Many of these components are not shipped by SUSE as they are proprietary NVIDIA
software. This section describes how to configure additional repositories that give you access
to these components and provides examples of using these tools to achieve a fully functional
system.

29 Deploying and Installing SUSE AI

https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://en.opensuse.org/SDB:NVIDIA_drivers#Install
https://en.opensuse.org/SDB:NVIDIA_drivers#Install

2.2.1.3 The installation procedure

1. Add a package repository from NVIDIA. This allows pulling in additional utilities, for ex-
ample, nvidia-smi.
For the AMD64/Intel 64 architecture, run:

zypper ar \
 https://developer.download.nvidia.com/compute/cuda/repos/sles15/x86_64/ \
 cuda-sle15
zypper --gpg-auto-import-keys refresh

For the Arm AArch64 architecture, run:

zypper ar \
 https://developer.download.nvidia.com/compute/cuda/repos/sles15/sbsa/ \
 cuda-sle15
transactional update # zypper --gpg-auto-import-keys refresh

2. Install the Open Kernel driver KMP and detect the driver version.

{prompt_root}zypper install -y --auto-agree-with-licenses \
 nv-prefer-signed-open-driver
{prompt_root}version=$(rpm -qa --queryformat '%{VERSION}\n' \
 nv-prefer-signed-open-driver | cut -d "_" -f1 | sort -u | tail -n 1)

3. You can then install the appropriate packages for additional utilities that are useful for
testing purposes.

{prompt_root}zypper install -y --auto-agree-with-licenses \
nvidia-compute-utils-G06=${version} \
nvidia-persistenced=${version}

4. Reboot the host to make the changes effective.

reboot

5. Log back in and use the nvidia-smi tool to verify that the driver is loaded successfully
and that it can both access and enumerate your GPUs.

nvidia-smi

The output of this command should show you something similar to the following output.
In the example below, the system has one GPU.

Fri Aug 1 15:32:10 2025

30 Deploying and Installing SUSE AI

+--+
| NVIDIA-SMI 580.82.07 Driver Version: 580.82.07 CUDA Version: 13.0 |
|------------------------------+------------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
==============================+========================+======================		
0 Tesla T4 On	00000000:00:1E.0 Off	0
N/A 33C P8 13W / 70W	0MiB / 15360MiB	0% Default
		N/A
+------------------------------+------------------------+----------------------+

+--+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|==|
| No running processes found |
+--+

2.2.1.4 Validation of the driver installation

Running the nvidia-smi command has verified that, at the host level, the NVIDIA device can
be accessed and that the drivers are loading successfully. To validate that it is functioning, you
need to validate that the GPU can take instructions from a user-space application, ideally via
a container and through the CUDA library, as that is typically what a real workload would
use. For this, we can make a further modification to the host OS by installing nvidia-contain-
er-toolkit.

1. Install the nvidia-container-toolkit package from the NVIDIA Container Toolkit repos-
itory.

zypper ar \
"https://nvidia.github.io/libnvidia-container/stable/rpm/"\
nvidia-container-toolkit.repo
zypper --gpg-auto-import-keys install \
 -y nvidia-container-toolkit

31 Deploying and Installing SUSE AI

The nvidia-container-toolkit.repo le contains a stable repository nvidia-contain-
er-toolkit and an experimental repository nvidia-container-toolkit-experimen-
tal. Use the stable repository for production use. The experimental repository is disabled
by default.

2. Verify that the system can successfully enumerate the devices using the NVIDIA Container
Toolkit. The output should be verbose, with INFO and WARN messages, but no ERROR
messages.

nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

This ensures that any container started on the machine can employ discovered NVIDIA
GPU devices.

3. You can then run a Podman-based container. Doing this via podman gives you a good way
of validating access to the NVIDIA device from within a container, which should give
confidence for doing the same with Kubernetes at a later stage.
Give Podman access to the labeled NVIDIA devices that were taken care of by the previous
command and simply run the bash command.

podman run --rm --device nvidia.com/gpu=all \
 --security-opt=label=disable \
 -it registry.suse.com/bci/bci-base:latest bash

You can now execute commands from within a temporary Podman container. It does not
have access to your underlying system and is ephemeral—whatever you change in the
container does not persist. Also, you cannot break anything on the underlying host.

4. Inside the container, install the required CUDA libraries. Identify their version from the
output of the nvidia-smi command. From the above example, we are installing CUDA
version 13.0 with many examples, demos and development kits to fully validate the GPU.

zypper ar \
 http://developer.download.nvidia.com/compute/cuda/repos/sles15/x86_64/ \
 cuda-sle15-sp6
zypper --gpg-auto-import-keys refresh
zypper install -y cuda-libraries-13-0 cuda-demo-suite-12-9

5. Inside the container, run the deviceQuery CUDA example of the same version, which
comprehensively validates GPU access via CUDA and from within the container itself.

/usr/local/cuda-12.9/extras/demo_suite/deviceQuery Starting...

32 Deploying and Installing SUSE AI

 CUDA Device Query (Runtime API)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla T4"
 CUDA Driver Version / Runtime Version 13.0/ 13.0
 CUDA Capability Major/Minor version number: 7.5
 Total amount of global memory: 14913 MBytes (15637086208 bytes)
 (40) Multiprocessors, (64) CUDA Cores/MP: 2560 CUDA Cores
 GPU Max Clock rate: 1590 MHz (1.59 GHz)
 Memory Clock rate: 5001 Mhz
 Memory Bus Width: 256-bit
 L2 Cache Size: 4194304 bytes
 Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),
 3D=(16384, 16384, 16384)
 Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 1024
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 3 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device supports Compute Preemption: Yes
 Supports Cooperative Kernel Launch: Yes
 Supports MultiDevice Co-op Kernel Launch: Yes
 Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 30
 Compute Mode:
 < Default (multiple host threads can use ::cudaSetDevice() with device
 simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 13.0, CUDA Runtime Version
 = 13.0, NumDevs = 1, Device0 = Tesla T4
Result = PASS

33 Deploying and Installing SUSE AI

From inside the container, you can continue to run any other CUDA workload—such as
compilers—to run further tests. When finished, you can exit the container.

exit

Important
Changes you have made in the container and packages you have installed inside
will be lost and will not impact the underlying operating system.

2.2.2 Installing NVIDIA GPU drivers on SUSE Linux Enterprise Micro

2.2.2.1 Requirements

If you are following this guide, it assumes that you have the following already available:

At least one host with SUSE Linux Enterprise Micro 6.1 installed, physical or virtual.

Your hosts are attached to a subscription as this is required for package access.

A compatible NVIDIA GPU (https://github.com/NVIDIA/open-gpu-kernel-modules#compati-

ble-gpus) installed or fully passed through to the virtual machine in which SUSE Linux
Enterprise Micro is running.

Access to the root user—these instructions assume you are the root user, and not escalating
your privileges via sudo.

2.2.2.2 Considerations before the installation

2.2.2.2.1 Select the driver generation

You must verify the driver generation for the NVIDIA GPU that your system has. For modern
GPUs, the G06 driver is the most common choice. Find more details in the support database

(https://en.opensuse.org/SDB:NVIDIA_drivers#Install) .

This section details the installation of the G06 generation of the driver.

34 Deploying and Installing SUSE AI

https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://en.opensuse.org/SDB:NVIDIA_drivers#Install
https://en.opensuse.org/SDB:NVIDIA_drivers#Install

2.2.2.2.2 Additional NVIDIA components

Besides the NVIDIA open-driver provided by SUSE as part of SUSE Linux Enterprise Micro, you
might also need additional NVIDIA components. These could include OpenGL libraries, CUDA
toolkits, command-line utilities such as nvidia-smi, and container-integration components such
as nvidia-container-toolkit. Many of these components are not shipped by SUSE as they are
proprietary NVIDIA software. This section describes how to configure additional repositories
that give you access to these components and provides examples of using these tools to achieve
a fully functional system.

2.2.2.3 The installation procedure

1. On each (local) GPU-enabled host, open up a transactional-update shell session to create a
new read/write snapshot of the underlying operating system so that we can make changes
to the immutable platform.

transactional-update shell

2. When you are in the transactional-update shell session, add a package repository from
NVIDIA. This allows pulling in additional utilities, for example, nvidia-smi.
For the AMD64/Intel 64 architecture, run:

transactional update # zypper ar \
 https://developer.download.nvidia.com/compute/cuda/repos/sles15/x86_64/ \
 cuda-sle15
transactional update # zypper --gpg-auto-import-keys refresh

For the Arm AArch64 architecture, run:

transactional update # zypper ar \
 https://developer.download.nvidia.com/compute/cuda/repos/sles15/sbsa/ \
 cuda-sle15
transactional update # zypper --gpg-auto-import-keys refresh

3. Install the Open Kernel driver KMP and detect the driver version.

transactional update # zypper install -y --auto-agree-with-licenses \
 nvidia-open-driver-G06-signed-cuda-kmp-default
transactional update # version=$(rpm -qa --queryformat '%{VERSION}\n' \
 nvidia-open-driver-G06-signed-cuda-kmp-default \
 | cut -d "_" -f1 | sort -u | tail -n 1)

35 Deploying and Installing SUSE AI

4. You can then install the appropriate packages for additional utilities that are useful for
testing purposes.

transactional update # zypper install -y --auto-agree-with-licenses \
nvidia-compute-utils-G06=${version} \
nvidia-persistenced=${version}

5. Exit the transactional-update session and reboot to the new snapshot that contains the
changes you have made.

transactional update # exit
reboot

6. After the system has rebooted, log back in and use the nvidia-smi tool to verify that the
driver is loaded successfully and that it can both access and enumerate your GPUs.

nvidia-smi

The output of this command should show you something similar to the following output.
In the example below, the system has one GPU.

Fri Aug 1 14:53:26 2025
+--+
| NVIDIA-SMI 580.82.07 Driver Version: 580.82.07 CUDA Version: 13.0 |
|---------------------------------+---------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
=================================+=====================+======================		
0 Tesla T4 On	00000000:00:1E.0 Off	0
N/A 34C P8 10W / 70W	0MiB / 15360MiB	0% Default
		N/A
+---------------------------------+---------------------+----------------------+

+--+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|==|
| No running processes found |
+--+

36 Deploying and Installing SUSE AI

2.2.2.4 Validation of the driver installation

Running the nvidia-smi command has verified that, at the host level, the NVIDIA device can
be accessed and that the drivers are loading successfully. To validate that it is functioning, you
need to validate that the GPU can take instructions from a user-space application, ideally via
a container and through the CUDA library, as that is typically what a real workload would
use. For this, we can make a further modification to the host OS by installing nvidia-contain-
er-toolkit.

1. Open another transactional-update shell.

{prompt_root} {tr-up-shell}

2. Install the nvidia-container-toolkit package from the NVIDIA Container Toolkit repos-
itory.

transactional update # zypper ar \
"https://nvidia.github.io/libnvidia-container/stable/rpm/"\
nvidia-container-toolkit.repo
transactional update # zypper --gpg-auto-import-keys install \
 -y nvidia-container-toolkit

The nvidia-container-toolkit.repo le contains a stable repository nvidia-contain-
er-toolkit and an experimental repository nvidia-container-toolkit-experimen-
tal. Use the stable repository for production use. The experimental repository is disabled
by default.

3. Exit the transactional-update session and reboot to the new snapshot that contains the
changes you have made.

transactional update # exit
reboot

4. Verify that the system can successfully enumerate the devices using the NVIDIA Container
Toolkit. The output should be verbose, with INFO and WARN messages, but no ERROR
messages.

nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

This ensures that any container started on the machine can employ discovered NVIDIA
GPU devices.

37 Deploying and Installing SUSE AI

5. You can then run a Podman-based container. Doing this via podman gives you a good way
of validating access to the NVIDIA device from within a container, which should give
confidence for doing the same with Kubernetes at a later stage.
Give Podman access to the labeled NVIDIA devices that were taken care of by the previous
command and simply run the bash command.

podman run --rm --device nvidia.com/gpu=all \
 --security-opt=label=disable \
 -it registry.suse.com/bci/bci-base:latest bash

You can now execute commands from within a temporary Podman container. It does not
have access to your underlying system and is ephemeral—whatever you change in the
container does not persist. Also, you cannot break anything on the underlying host.

6. Inside the container, install the required CUDA libraries. Identify their version from the
output of the nvidia-smi command. From the above example, we are installing CUDA
version 13.0 with many examples, demos and development kits to fully validate the GPU.

zypper ar \
 http://developer.download.nvidia.com/compute/cuda/repos/sles15/x86_64/ \
 cuda-sle15-sp6
zypper --gpg-auto-import-keys refresh
zypper install -y cuda-libraries-13-0 cuda-demo-suite-12-9

7. Inside the container, run the deviceQuery CUDA example of the same version, which
comprehensively validates GPU access via CUDA and from within the container itself.

/usr/local/cuda-12.9/extras/demo_suite/deviceQuery Starting...

 CUDA Device Query (Runtime API)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla T4"
 CUDA Driver Version / Runtime Version 13.0 / 13.0
 CUDA Capability Major/Minor version number: 7.5
 Total amount of global memory: 14914 MBytes (15638134784 bytes)
 (40) Multiprocessors, (64) CUDA Cores/MP: 2560 CUDA Cores
 GPU Max Clock rate: 1590 MHz (1.59 GHz)
 Memory Clock rate: 5001 Mhz
 Memory Bus Width: 256-bit
 L2 Cache Size: 4194304 bytes
 Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),
 3D=(16384, 16384, 16384)

38 Deploying and Installing SUSE AI

 Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 1024
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 3 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device supports Compute Preemption: Yes
 Supports Cooperative Kernel Launch: Yes
 Supports MultiDevice Co-op Kernel Launch: Yes
 Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 30
 Compute Mode:
 < Default (multiple host threads can use ::cudaSetDevice() with device
 simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 13.0, CUDA Runtime Version
 = 13.0, NumDevs = 1, Device0 = Tesla T4
Result = PASS

From inside the container, you can continue to run any other CUDA workload—such as
compilers—to run further tests. When finished, you can exit the container.

exit

Important
Changes you have made in the container and packages you have installed inside
will be lost and will not impact the underlying operating system.

39 Deploying and Installing SUSE AI

2.3 Installing SUSE Rancher Prime: RKE2

This guide will help you quickly launch a cluster with default options.

Tip
New to Kubernetes? The official Kubernetes docs already have great tutorials (https://

kubernetes.io/docs/tutorials/kubernetes-basics/) outlining the basics.

Important
You can use any RKE2 Prime version listed on the Prime Artifacts URL for the as-
sets mentioned in these steps. To learn more about the Prime Artifacts URL, see our
Prime-only documentation (https://scc.suse.com/rancher-docs/rancherprime/latest/en/ref-

erence-guide.html#prime-artifacts-url) . Authentication is required. Use your SUSE Cus-

tomer Center (SCC) (https://scc.suse.com/home) credentials to log in.

2.3.1 Prerequisites

Make sure your environment fulfills the requirements (https://documenta-

tion.suse.com/cloudnative/rke2/latest/en/install/requirements.html) . If NetworkManager
is installed and enabled on your hosts, ensure that it is configured to ignore CNI-

managed interfaces (https://documentation.suse.com/cloudnative/rke2/latest/en/known_is-

sues.html#_networkmanager) .

If the host kernel supports AppArmor (https://apparmor.net/) , the AppArmor tools (usu-
ally available via the apparmor-parser package) must also be present before installing
RKE2.

The RKE2 installation process must be run as the root user or through sudo.

40 Deploying and Installing SUSE AI

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://scc.suse.com/rancher-docs/rancherprime/latest/en/reference-guide.html#prime-artifacts-url
https://scc.suse.com/rancher-docs/rancherprime/latest/en/reference-guide.html#prime-artifacts-url
https://scc.suse.com/home
https://scc.suse.com/home
https://documentation.suse.com/cloudnative/rke2/latest/en/install/requirements.html
https://documentation.suse.com/cloudnative/rke2/latest/en/install/requirements.html
https://documentation.suse.com/cloudnative/rke2/latest/en/known_issues.html#_networkmanager
https://documentation.suse.com/cloudnative/rke2/latest/en/known_issues.html#_networkmanager
https://documentation.suse.com/cloudnative/rke2/latest/en/known_issues.html#_networkmanager
https://apparmor.net/

2.3.2 Server node installation

SUSE Rancher Prime: RKE2 provides an installation script that is a convenient way to install it
as a service on systemd-based systems. This script is available at https://get.rke2.io . To install
RKE2 using this method, do the following:

1. Run the installer, where INSTALL_RKE2_ARTIFACT_URL is the Prime Artifacts URL and
INSTALL_RKE2_CHANNEL is a release channel you can subscribe to and defaults to stable.
In this example, INSTALL_RKE2_CHANNEL="latest" gives you the latest version of RKE2.

> sudocurl -sfL https://get.rke2.io/ | \
 sudo INSTALL_RKE2_ARTIFACT_URL=_PRIME-ARTIFACTS-URL_/rke2 \
 INSTALL_RKE2_CHANNEL="latest" sh -

To specify a version, set the INSTALL_RKE2_VERSION environment variable.

> sudocurl -sfL https://get.rke2.io/ | \
sudo INSTALL_RKE2_ARTIFACT_URL=_PRIME-ARTIFACTS-URL_/rke2 \
 INSTALL_RKE2_VERSION="_VERSION_" ./install.sh

This will install the rke2-server service and the rke2 binary onto your machine. Due to
its nature, it will fail unless it runs as the root user or through sudo.

2. Enable the rke2-server service.

> sudosystemctl enable rke2-server.service

3. To pull images from the Rancher Prime registry, set the following value in etc/ranch-
er/rke2/config.yaml:

system-default-registry: registry.rancher.com

This configuration tells RKE2 to use registry.rancher.com as the default location for all
container images it needs to deploy within the cluster.

4. Start the service.

> sudosystemctl start rke2-server.service

5. Follow the logs with the following command:

> sudojournalctl -u rke2-server -f

41 Deploying and Installing SUSE AI

https://get.rke2.io

After running this installation:

The rke2-server service will be installed. The rke2-server service will be configured to
automatically restart after node reboots or if the process crashes or is killed.

Additional utilities will be installed at /var/lib/rancher/rke2/bin/. They include:
kubectl, crictl, and ctr. Note that these are not on your path by default.

Two cleanup scripts, rke2-killall.sh and rke2-uninstall.sh, will be installed to the
path at:

/usr/local/bin for regular le systems

/opt/rke2/bin for read-only and Btrfs le systems

INSTALL_RKE2_TAR_PREFIX/bin if INSTALL_RKE2_TAR_PREFIX is set

A kubeconfig (https://kubernetes.io/docs/concepts/configuration/organize-cluster-ac-

cess-kubeconfig/) le will be written to /etc/rancher/rke2/rke2.yaml.

A token that can be used to register other server or agent nodes will be created at /var/
lib/rancher/rke2/server/node-token.

Note
If you are adding additional server nodes, you must have an odd number in total. An odd
number is needed to maintain a quorum. See the High Availability documentation (https://

documentation.suse.com/cloudnative/rke2/latest/en/install/ha.html) for more details.

2.3.3 Linux agent (worker) node installation

The steps on this section requires root-level access or sudo to work.

1. Run the installer.

> sudocurl -sfL https://get.rke2.io | INSTALL_RKE2_TYPE="agent" sh -

This will install the rke2-agent service and the rke2 binary onto your machine. Due to
its nature, it will fail unless it runs as the root user or through sudo.

2. Enable the rke2-agent service.

42 Deploying and Installing SUSE AI

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://documentation.suse.com/cloudnative/rke2/latest/en/install/ha.html
https://documentation.suse.com/cloudnative/rke2/latest/en/install/ha.html

> sudosystemctl enable rke2-agent.service

3. Configure the rke2-agent service.

> sudomkdir -p /etc/rancher/rke2/
vim /etc/rancher/rke2/config.yaml

Content for config.yaml:

> sudoserver: https://_SERVER_IP_OR_DNS_:9345
token: _TOKEN_FROM_SERVER_NODE_

Note
The rke2 server process listens on port 9345 for new nodes to register. The Ku-
bernetes API is still served on port 6443, as normal.

4. Start the service.

> sudosystemctl start rke2-agent.service

5. Follow the logs with the following command:

> sudojournalctl -u rke2-agent -f

Note
Each machine must have a unique host name. If your machines do not have unique host
names, set the node-name parameter in the config.yaml le and provide a value with
a valid and unique host name for each node. To learn more about the config.yaml le,
refer to the Configuration options documentation (https://documentation.suse.com/cloud-

native/rke2/latest/en/install/configuration.html#_configuration-file) .

2.3.4 Microsoft Windows agent (worker) node installation

Windows Support works with Calico or Flannel as the CNI for the RKE2 cluster.

43 Deploying and Installing SUSE AI

https://documentation.suse.com/cloudnative/rke2/latest/en/install/configuration.html#_configuration-file
https://documentation.suse.com/cloudnative/rke2/latest/en/install/configuration.html#_configuration-file

Note
The Windows Server Containers feature needs to be enabled for the RKE2 agent to work.

PREPARE THE MICROSOFT WINDOWS AGENT NODE

1. Open a new PowerShell window with administrator privileges.

powershell -Command "Start-Process PowerShell -Verb RunAs"

2. In the new PowerShell window, run the following command to install the containers fea-
ture.

Enable-WindowsOptionalFeature -Online -FeatureName containers –All

This will require a reboot for the Containers feature to function properly.

3. Download the install script.

Invoke-WebRequest -Uri https://raw.githubusercontent.com/rancher/rke2/master/
install.ps1 -Outfile install.ps1

This script will download the rke2.exe Windows binary onto your machine.

4. Configure the rke2-agent for Windows.

> sudoNew-Item -Type Directory c:/etc/rancher/rke2 -Force
Set-Content -Path c:/etc/rancher/rke2/config.yaml -Value @"
server: https://_SERVER_IP_OR_DNS_:9345
token: _TOKEN_FROM_SERVER_NODE_
"@

To learn more about the config.yaml le, refer to the Configuration options

documentation (https://documentation.suse.com/cloudnative/rke2/latest/en/install/configu-

ration.html#_configuration-file) .

5. Configure the PATH.

> sudo$env:PATH+=";c:\var\lib\rancher\rke2\bin;c:\usr\local\bin"

[Environment]::SetEnvironmentVariable(
 "Path",
 [Environment]::GetEnvironmentVariable("Path",
 [EnvironmentVariableTarget]::Machine) + ";c:\var\lib\rancher\rke2\bin;c:\usr\local
\bin",

44 Deploying and Installing SUSE AI

https://documentation.suse.com/cloudnative/rke2/latest/en/install/configuration.html#_configuration-file
https://documentation.suse.com/cloudnative/rke2/latest/en/install/configuration.html#_configuration-file
https://documentation.suse.com/cloudnative/rke2/latest/en/install/configuration.html#_configuration-file

 [EnvironmentVariableTarget]::Machine)

6. Run the installer.

> sudo./install.ps1

7. Start the Windows RKE2 Service.

> sudorke2.exe agent service --add

Note
Each machine must have a unique host name.

Do not forget to start the RKE2 service with:

Start-Service rke2

If you would prefer to use CLI parameters only instead, run the binary with the desired
parameters.

rke2.exe agent --token _TOKEN_ --server _SERVER_URL_

3 Preparing the cluster for AI Library

This procedure assumes that you already have the base operating system installed on cluster
nodes as well as the SUSE Rancher Prime: RKE2 Kubernetes distribution installed and opera-
tional. If you are installing from scratch, refer to Section 2, “Installing the Linux and Kubernetes

distribution” rst.

1. Install SUSE Rancher Prime (Section 3.1, “Installing SUSE Rancher Prime on a Kubernetes cluster”)
on the cluster.

2. Install the NVIDIA GPU Operator on the cluster as described in Section 3.2, “Installing the

NVIDIA GPU Operator on the SUSE Rancher Prime: RKE2 cluster”.

3. Connect the Kubernetes cluster to SUSE Rancher Prime as described in Section 3.3, “Regis-

tering existing clusters”.

45 Deploying and Installing SUSE AI

4. Configure the GPU-enabled nodes so that the SUSE AI containers are assigned to Pods that
run on nodes equipped with NVIDIA GPU hardware. Find more details about assigning
Pods to nodes in Section 3.4, “Assigning GPU nodes to applications”.

5. _ (Optional)_ Install SUSE Security as described in Section 3.5, “Installing SUSE Security”. Al-
though this step is not required, we strongly encourage it to ensure data security in the
production environment.

6. Install and configure SUSE Observability to observe the nodes used for SUSE AI application.
Refer to Section 3.6, “Setting up SUSE Observability for SUSE AI” for more details.

3.1 Installing SUSE Rancher Prime on a Kubernetes cluster

In this section, you will learn how to deploy SUSE Rancher Prime on a Kubernetes cluster using
the Helm CLI.

3.1.1 Prerequisites

Kubernetes cluster (Section 3.1.1.1, “Kubernetes cluster”)

Ingress controller (Section 3.1.1.2, “Ingress controller”)

CLI tools (Section 3.1.1.3, “CLI tools”)

3.1.1.1 Kubernetes cluster

Set up the SUSE Rancher Prime server’s local Kubernetes cluster.

SUSE Rancher Prime can be installed on any Kubernetes cluster. This cluster can use upstream
Kubernetes, or it can use one of SUSE Rancher Prime’s Kubernetes distributions, or it can be a
managed Kubernetes cluster from a provider such as Amazon EKS.

Tip
For help setting up a RKE2 cluster, refer to Section 2.3, “Installing SUSE Rancher Prime: RKE2”.

46 Deploying and Installing SUSE AI

3.1.1.2 Ingress controller

The SUSE Rancher Prime UI and API are exposed through an Ingress. This means the Kubernetes
cluster that you install SUSE Rancher Prime in must contain an Ingress controller.

For SUSE Rancher Prime: RKE2 and K3s installations, you do not have to install the Ingress
controller manually because one is installed by default.

3.1.1.3 CLI tools

The following CLI tools are required for setting up the Kubernetes cluster. Make sure these tools
are installed and available in your $PATH.

kubectl (https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl) - Kuber-
netes command-line tool.

helm (https://docs.helm.sh/using_helm/#installing-helm) - Package manage-
ment for Kubernetes. Refer to the Helm version require-

ments (https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/re-

quirements/helm-version-requirements) to choose a version of Helm to install SUSE
Rancher Prime. Refer to the instructions provided by the Helm project (https://helm.sh/docs/

intro/install/) for your specific platform.

3.1.2 Install the Rancher Helm chart

SUSE Rancher Prime is installed using the Helm (https://helm.sh/) package manager for Kuber-
netes. Helm charts provide templating syntax for Kubernetes YAML manifest documents. With
Helm, we can create configurable deployments instead of just using static les.

To choose a SUSE Rancher Prime version to install, refer to Choosing a SUSE

Rancher Prime version (https://docs.ranchermanager.rancher.io/getting-started/installation-and-

upgrade/resources/choose-a-rancher-version) .

To choose a version of Helm to install SUSE Rancher Prime with, refer to the Helm

version requirements (https://docs.ranchermanager.rancher.io/getting-started/installation-and-up-

grade/requirements/helm-version-requirements) .

Note
The installation instructions assume you are using Helm version 3.

47 Deploying and Installing SUSE AI

https://kubernetes.io/docs/tasks/tools/install-kubectl/#install-kubectl
https://docs.helm.sh/using_helm/#installing-helm
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/requirements/helm-version-requirements
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/requirements/helm-version-requirements
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/requirements/helm-version-requirements
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://helm.sh/
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/choose-a-rancher-version
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/choose-a-rancher-version
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/choose-a-rancher-version
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/requirements/helm-version-requirements
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/requirements/helm-version-requirements
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/requirements/helm-version-requirements

To set up SUSE Rancher Prime,

1. Add the Helm chart repository (Section 3.1.3, “Add the Helm chart repository”)

2. Create a namespace for Rancher (Section 3.1.4, “Create a namespace for Rancher”)

3. Choose your SSL configuration (Section 3.1.5, “Choose your SSL configuration”)

4. Install cert-manager (Section 3.1.6, “Install cert-manager”)

5. Install Rancher with Helm and your chosen certificate option (Section 3.1.7, “Install Rancher

with Helm and your chosen certificate option”)

6. Verify that the Rancher server is successfully deployed (Section 3.1.8, “Verify that the Rancher

server is successfully deployed”)

7. Save your options (Section 3.1.9, “Save your options”)

3.1.3 Add the Helm chart repository

Use the helm repo add command to add the Helm chart repository that contains charts to
install SUSE Rancher Prime.

> helm repo add rancher-prime <helm-chart-repo-url>

For information on the Helm chart repository URL, refer to the SUSE Rancher Prime documen-
tation.

3.1.4 Create a namespace for Rancher

Define a Kubernetes namespace where the resources created by the chart will be installed named
cattle-system:

> kubectl create namespace cattle-system

3.1.5 Choose your SSL configuration

The SUSE Rancher Prime management server is designed to be secure by default and requires
SSL/TLS configuration.

48 Deploying and Installing SUSE AI

Note
To externally cancel SSL/TLS, see TLS termination on an External

Load Balancer (https://docs.ranchermanager.rancher.io/getting-started/installation-and-up-

grade/references/helm-chart-options#external-tls-termination) . As outlined on that page,
this option does have additional requirements for TLS verification.

There are three recommended options for the source of the certificate used for TLS termination
at the SUSE Rancher Prime server:

SUSE Rancher Prime-generated TLS certificate: In this case, you need to install cert-
manager into the cluster. SUSE Rancher Prime utilizes cert-manager to issue and main-
tain its certificates. SUSE Rancher Prime generates a CA certificate of its own, and sign a
certificate using that CA. cert-manager is then responsible for managing that certificate.
No extra action is needed when agent-tls-mode is set to strict. More information can be
found on this setting in Agent TLS Enforcement (https://docs.ranchermanager.rancher.io/get-

ting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement) .

Let’s Encrypt: The Let’s Encrypt option also uses cert-manager. However, in this case,
cert-manager is combined with a special Issuer for Let’s Encrypt that performs all ac-
tions (including request and validation) necessary for getting a Let’s Encrypt issued cert.
This configuration uses HTTP validation (HTTP-01), so the load balancer must have a
public DNS record and be accessible from the internet. When setting agent-tls-mode
to strict, you must also specify --privateCA=true and upload the Let’s Encrypt CA
as described in Adding TLS Secrets (https://docs.ranchermanager.rancher.io/getting-start-

ed/installation-and-upgrade/resources/tls-secrets) . Find more information on this setting
in Agent TLS Enforcement (https://docs.ranchermanager.rancher.io/getting-started/installa-

tion-and-upgrade/references/tls-settings#agent-tls-enforcement) .

Bring your own certificate: This option allows you to bring your own public- or pri-
vate-CA signed certificate. SUSE Rancher Prime will use that certificate to secure web-
socket and HTTPS traffic. In this case, you must upload this certificate (and associated
key) as PEM-encoded les with the name tls.crt and tls.key. If you are using a pri-
vate CA, you must also upload that certificate. This is because this private CA may not
be trusted by your nodes. SUSE Rancher Prime will take that CA certificate, and gener-
ate a checksum from it, which the various SUSE Rancher Prime components use to vali-
date their connection to SUSE Rancher Prime. If agent-tls-mode is set to strict, the

49 Deploying and Installing SUSE AI

https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement

CA must be uploaded, so that downstream clusters can successfully connect. Find more in-
formation in Agent TLS Enforcement (https://docs.ranchermanager.rancher.io/getting-start-

ed/installation-and-upgrade/references/tls-settings#agent-tls-enforcement) .

TABLE 1: SSL CONFIGURATION OPTIONS

Configuration Helm Chart Option Requires cert-manager

SUSE Rancher Prime Gener-
ated Certificates (Default)

ingress.tl-

s.source=rancher

yes (Section 3.1.6, “Install cert-

manager”)

Let’s Encrypt ingress.tl-

s.source=letsEncrypt

Section 3.1.6, “Install cert-man-

ager”

Certificates from Files ingress.tls.source=se-

cret

no

3.1.6 Install cert-manager

You should skip this step if you are bringing your own certificate les (op-
tion ingress.tls.source=secret), or if you use TLS termination on an external load

balancer (https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/refer-

ences/helm-chart-options#external-tls-termination) .

This step is only required to use certificates issued by SUSE Rancher Prime’s generated CA
(ingress.tls.source=rancher) or to request Let’s Encrypt issued certificates (ingress.tl-
s.source=letsEncrypt).

Important
Recent changes to cert-manager require an upgrade. If you are upgrading SUSE
Rancher Prime and using a version of cert-manager older than v0.11.0, please see
our upgrade documentation (https://docs.ranchermanager.rancher.io/getting-started/instal-

lation-and-upgrade/resources/upgrade-cert-manager) .

These instructions are adapted from the official cert-manager documentation (https://cert-manag-

er.io/docs/installation/kubernetes/#installing-with-helm) .

50 Deploying and Installing SUSE AI

https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/tls-settings#agent-tls-enforcement
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/upgrade-cert-manager
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/upgrade-cert-manager
https://cert-manager.io/docs/installation/kubernetes/#installing-with-helm
https://cert-manager.io/docs/installation/kubernetes/#installing-with-helm

Note
To see options on how to customize the cert-manager install including for cases
where your cluster uses PodSecurityPolicies, see the cert-manager docs (https://artifac-

thub.io/packages/helm/cert-manager/cert-manager#configuration) .

If you have installed the CRDs manually, instead of setting --set installCRDs=true \
 or --set crds.enabled=true in your Helm install command, \
 you should upgrade your CRD resources before upgrading the Helm chart:
kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/
<VERSION>/cert-manager.crds.yaml

Add the Jetstack Helm repository
helm repo add jetstack https://charts.jetstack.io

Update your local Helm chart repository cache
helm repo update

Install the cert-manager Helm chart
helm install cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --create-namespace \
 --set crds.enabled=true

Once you have installed cert-manager, you can verify it is deployed correctly by checking the
cert-manager namespace for running pods:

kubectl get pods --namespace cert-manager

NAME READY STATUS RESTARTS AGE
cert-manager-5c6866597-zw7kh 1/1 Running 0 2m
cert-manager-cainjector-577f6d9fd7-tr77l 1/1 Running 0 2m
cert-manager-webhook-787858fcdb-nlzsq 1/1 Running 0 2m

3.1.7 Install Rancher with Helm and your chosen certificate option

The exact command to install SUSE Rancher Prime differs depending on the certificate config-
uration.

However, irrespective of the certificate configuration, the name of the SUSE Rancher Prime
installation in the cattle-system namespace should always be rancher.

51 Deploying and Installing SUSE AI

https://artifacthub.io/packages/helm/cert-manager/cert-manager#configuration
https://artifacthub.io/packages/helm/cert-manager/cert-manager#configuration

Tip

Testing and development. This final command to install SUSE Rancher Prime requires a
domain name that forwards traffic to SUSE Rancher Prime. If you are using the Helm CLI
to set up a proof-of-concept, you can use a fake domain name when passing the hostname
option. An example of a fake domain name would be <IP_OF_LINUX_NODE>.sslip.io,
which would expose SUSE Rancher Prime on an IP where it is running. Production installs
would require a real domain name.

3.1.7.1 Rancher-generated certificates

The default is for SUSE Rancher Prime to generate a CA and uses cert-manager to issue the
certificate for access to the SUSE Rancher Prime server interface.

Because rancher is the default option for ingress.tls.source, we are not specifying
ingress.tls.source when running the helm install command.

Set the hostname to the DNS name you pointed at your load balancer.

Set the bootstrapPassword to something unique for the admin user.

To install a specific SUSE Rancher Prime version, use the --version ag, example: --
version 2.7.0

> helm install rancher rancher-prime/rancher \
 --namespace cattle-system \
 --set hostname=rancher.my.org \
 --set bootstrapPassword=admin

Wait for SUSE Rancher Prime to be rolled out:

> kubectl -n cattle-system rollout status deploy/rancher
Waiting for deployment "rancher" rollout to finish: 0 of 3 updated replicas are
 available...
deployment "rancher" successfully rolled out

3.1.7.2 Let’s Encrypt

This option uses cert-manager to automatically request and renew Let’s Encrypt certificates

(https://letsencrypt.org/) . This is a free service that provides you with a valid certificate as Let’s
Encrypt is a trusted CA.

52 Deploying and Installing SUSE AI

https://letsencrypt.org/
https://letsencrypt.org/

Note
You need to have port 80 open as the HTTP-01 challenge can only be done on port 80.

In the following command,

hostname is set to the public DNS record,

Set the bootstrapPassword to something unique for the admin user.

ingress.tls.source is set to letsEncrypt

letsEncrypt.email is set to the email address used for communication about your cer-
tificate (for example, expiry notices)

Set letsEncrypt.ingress.class to whatever your Ingress controller is, for example,
traefik, nginx, haproxy, etc.

Important
When agent-tls-mode is set to strict (the default value for new installs of SUSE
Rancher Prime starting from v2.9.0), you must supply the privateCA=true chart value
(e.x. through --set privateCA=true) and upload the Let’s Encrypt Certificate Authori-
ty as outlined in Adding TLS Secrets (https://docs.ranchermanager.rancher.io/getting-start-

ed/installation-and-upgrade/resources/tls-secrets) . Information on identifying the Let’s
Encrypt Root CA can be found in the Let’s Encrypt docs (https://letsencrypt.org/certifi-

cates/) . If you do not upload the CA, then SUSE Rancher Prime may fail to connect to
new or existing downstream clusters.

> helm install rancher rancher-prime/rancher \
 --namespace cattle-system \
 --set hostname=rancher.my.org \
 --set bootstrapPassword=admin \
 --set ingress.tls.source=letsEncrypt \
 --set letsEncrypt.email=me@example.org \
 --set letsEncrypt.ingress.class=nginx

Wait for SUSE Rancher Prime to be rolled out:

> kubectl -n cattle-system rollout status deploy/rancher

53 Deploying and Installing SUSE AI

https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://letsencrypt.org/certificates/
https://letsencrypt.org/certificates/

Waiting for deployment "rancher" rollout to finish: 0 of 3 updated replicas are
 available...
deployment "rancher" successfully rolled out

3.1.7.3 Certificates from files

In this option, Kubernetes secrets are created from your own certificates for SUSE Rancher Prime
to use.

When you run this command, the hostname option must match the Common Name or a Subject
Alternative Names entry in the server certificate or the Ingress controller will fail to configure
correctly.

Although an entry in the Subject Alternative Names is technically required, having a match-
ing Common Name maximizes compatibility with older browsers and applications.

Note
To check if your certificates are correct, see How do I check

Common Name and Subject Alternative Names in my server cer-

tificate? (https://docs.ranchermanager.rancher.io/faq/technical-items#how-do-i-check-com-

mon-name-and-subject-alternative-names-in-my-server-certificate)

Set the hostname.

Set the bootstrapPassword to something unique for the admin user.

Set ingress.tls.source to secret.

> helm install rancher rancher-prime/rancher \
 --namespace cattle-system \
 --set hostname=rancher.my.org \
 --set bootstrapPassword=admin \
 --set ingress.tls.source=secret

If you are using a Private CA signed certificate , add --set privateCA=true to the command:

> helm install rancher rancher-prime/rancher \
 --namespace cattle-system \
 --set hostname=rancher.my.org \
 --set bootstrapPassword=admin \
 --set ingress.tls.source=secret \

54 Deploying and Installing SUSE AI

https://docs.ranchermanager.rancher.io/faq/technical-items#how-do-i-check-common-name-and-subject-alternative-names-in-my-server-certificate
https://docs.ranchermanager.rancher.io/faq/technical-items#how-do-i-check-common-name-and-subject-alternative-names-in-my-server-certificate
https://docs.ranchermanager.rancher.io/faq/technical-items#how-do-i-check-common-name-and-subject-alternative-names-in-my-server-certificate
https://docs.ranchermanager.rancher.io/faq/technical-items#how-do-i-check-common-name-and-subject-alternative-names-in-my-server-certificate

 --set privateCA=true

Now that SUSE Rancher Prime is deployed, see Adding TLS Secrets to publish the certificate files so

SUSE Rancher Prime and the Ingress controller can use them (https://docs.ranchermanager.ranch-

er.io/getting-started/installation-and-upgrade/resources/tls-secrets) .

3.1.7.4 Advanced options

The SUSE Rancher Prime chart configuration has many options for customizing the installation
to suit your specific environment. Here are common advanced scenarios.

HTTP Proxy (https://docs.ranchermanager.rancher.io/getting-started/installation-and-up-

grade/references/helm-chart-options#http-proxy)

Private Container Image Registry (https://docs.ranchermanager.rancher.io/getting-started/in-

stallation-and-upgrade/references/helm-chart-options#private-registry-and-air-gap-

installs)

TLS Termination on an External Load Balancer (https://docs.ranchermanager.rancher.io/get-

ting-started/installation-and-upgrade/references/helm-chart-options#external-tls-

termination)

See the Chart Options (https://docs.ranchermanager.rancher.io/getting-started/installation-and-

upgrade/references/helm-chart-options) for the full list of options.

3.1.8 Verify that the Rancher server is successfully deployed

After adding the secrets, check if SUSE Rancher Prime was rolled out successfully:

> kubectl -n cattle-system rollout status deploy/rancher
Waiting for deployment "rancher" rollout to finish: 0 of 3 updated replicas are
 available...
deployment "rancher" successfully rolled out

If you see the following error: error: deployment "rancher" exceeded its progress
deadline, you can check the status of the deployment by running the following command:

> kubectl -n cattle-system get deploy rancher
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
rancher 3 3 3 3 3m

55 Deploying and Installing SUSE AI

https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/resources/tls-secrets
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#http-proxy
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#http-proxy
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#private-registry-and-air-gap-installs
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#private-registry-and-air-gap-installs
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#private-registry-and-air-gap-installs
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options#external-tls-termination
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options
https://docs.ranchermanager.rancher.io/getting-started/installation-and-upgrade/references/helm-chart-options

It should show the same count for DESIRED and AVAILABLE.

3.1.9 Save your options

Make sure you save the --set options you used. You will need to use the same options when
you upgrade SUSE Rancher Prime to new versions with Helm.

3.1.10 Finishing up

Now you should have a functional SUSE Rancher Prime server.

In a Web browser, go to the DNS name that forwards traffic to your load balancer. Then you
should be greeted by the colorful login page.

3.2 Installing the NVIDIA GPU Operator on the SUSE Rancher
Prime: RKE2 cluster

The NVIDIA operator allows administrators of Kubernetes clusters to manage GPUs just like
CPUs. It includes everything needed for pods to be able to operate GPUs.

3.2.1 Host OS requirements

To expose the GPU to the pod correctly, the NVIDIA kernel drivers and the libnvidia-ml library
must be correctly installed in the host OS. The NVIDIA Operator can automatically install drivers
and libraries on specific operating systems. Check the NVIDIA documentation for information on
supported operating system releases (https://docs.nvidia.com/datacenter/cloud-native/gpu-oper-

ator/latest/platform-support.html#supported-operating-systems-and-kubernetes-platforms) . In-
stallation of the NVIDIA components on your host OS is out of the scope of this document. Refer
to the NVIDIA documentation for instructions.

The following three commands should return a correct output if the kernel driver is correctly
installed.

1. lsmod | grep nvidia returns a list of NVIDIA kernel modules. For example:

nvidia_uvm 2129920 0
nvidia_drm 131072 0

56 Deploying and Installing SUSE AI

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-operating-systems-and-kubernetes-platforms
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-operating-systems-and-kubernetes-platforms

nvidia_modeset 1572864 1 nvidia_drm
video 77824 1 nvidia_modeset
nvidia 9965568 2 nvidia_uvm,nvidia_modeset
ecc 45056 1 nvidia

2. cat /proc/driver/nvidia/version returns the NVRM and GCC versions of the driver.
For example:

NVRM version: NVIDIA UNIX Open Kernel Module for x86_64 555.42.06
 Release Build (abuild@host) Thu Jul 11 12:00:00 UTC 2024
 GCC version: gcc version 7.5.0 (SUSE Linux)

3. find /usr/ -iname libnvidia-ml.so returns a path to the libnvidia-ml.so library.
For example:

/usr/lib64/libnvidia-ml.so

This library is used by Kubernetes components to interact with the kernel driver.

3.2.2 Operator installation

Once the OS is ready and RKE2 is running, adjust the RKE2 nodes:

1. On the agent nodes of RKE2, run the following command:

echo PATH=$PATH:/usr/local/nvidia/toolkit >> /etc/default/rke2-agent

2. On the server nodes of RKE2, run the following command:

echo PATH=$PATH:/usr/local/nvidia/toolkit >> /etc/default/rke2-server

Then, install the NVIDIA GPU Operator using the following YAML manifest.

apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata:
 name: gpu-operator
 namespace: kube-system
spec:
 repo: https://helm.ngc.nvidia.com/nvidia
 chart: gpu-operator
 targetNamespace: gpu-operator
 createNamespace: true

57 Deploying and Installing SUSE AI

 valuesContent: |-
 toolkit:
 env:
 - name: CONTAINERD_SOCKET
 value: /run/k3s/containerd/containerd.sock

Warning
The NVIDIA operator restarts containerd with a hangup call, which restarts RKE2.

After approximately one minute, you can make the following checks to verify that everything
works as expected.

1. Assuming the drivers and libnvidia-ml.so library are installed, check if the operator
detects them correctly.

> kubectl get node <NODENAME> \
 -o jsonpath='{.metadata.labels}' | grep "nvidia.com/gpu.deploy.driver"

You should see the value pre-installed. If you see true, the drivers are not installed
correctly. If the requirements in Section 3.2.1, “Host OS requirements” are met, you may have
forgotten to reboot the node after installing all packages.
You can also check other driver labels:

> kubectl get node <NODENAME> \
 -o jsonpath='{.metadata.labels}' | jq | grep "nvidia.com"

You should see labels specifying driver and GPU, for example, nvidia.com/gpu.machine
or nvidia.com/cuda.driver.major.

2. Check if the GPU was added by nvidia-device-plugin-daemonset as an allocatable re-
source in the node.

> kubectl get node <NODENAME> \
 -o jsonpath='{.status.allocatable}' | jq

You should see "nvidia.com/gpu": followed by the number of GPUs in the node.

3. Check that the container runtime binary was installed by the operator (in particular, by
the nvidia-container-toolkit-daemonset):

> ls /usr/local/nvidia/toolkit/nvidia-container-runtime

58 Deploying and Installing SUSE AI

4. Verify whether the containerd configuration was updated to include the NVIDIA container
runtime.

> grep nvidia /var/lib/rancher/rke2/agent/etc/containerd/config.toml

5. Run a pod to verify that the GPU resource can successfully be scheduled on a pod and
the pod can detect it.

apiVersion: v1
kind: Pod
metadata:
 name: nbody-gpu-benchmark
 namespace: default
spec:
 restartPolicy: OnFailure
 runtimeClassName: nvidia
 containers:
 - name: cuda-container
 image: nvcr.io/nvidia/k8s/cuda-sample:nbody
 args: ["nbody", "-gpu", "-benchmark"]
 resources:
 limits:
 nvidia.com/gpu: 1
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: compute,utility

Note: Version gate
Available as of October 2024 releases: v1.28.15+rke2r1, v1.29.10+rke2r1,
v1.30.6+rke2r1, v1.31.2+rke2r1.

RKE2 will now use PATH to nd alternative container runtimes, in addition to checking the
default paths used by the container runtime packages. To use this feature, you must modify
the RKE2 service’s PATH environment variable to add the directories containing the container
runtime binaries.

We recommend modifying one of these two environment les:

/etc/default/rke2-server # or rke2-agent

/etc/sysconfig/rke2-server # or rke2-agent

59 Deploying and Installing SUSE AI

This example adds the PATH in /etc/default/rke2-server:

> echo PATH=$PATH >> /etc/default/rke2-server

Warning
PATH changes should be done with care to avoid placing untrusted binaries in the path
of services that run as root.

3.3 Registering existing clusters

In this section, you will learn how to register existing RKE2 clusters in SUSE Rancher Prime
(Rancher).

The cluster registration feature replaced the feature for importing clusters.

The control that Rancher has to manage a registered cluster depends on the type of cluster. For
details, see Section 3.3.3, “Management capabilities for registered clusters”.

3.3.1 Prerequisites

3.3.1.1 Kubernetes node roles

Registered RKE Kubernetes clusters must have all three node roles: etcd, controlplane and
worker. A cluster with only controlplane components cannot be registered in Rancher.

For more information on RKE node roles, see the best prac-

tices (https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installa-

tion-requirements/production-checklist#cluster-architecture) .

3.3.1.2 Permissions

To register a cluster in Rancher, you must have cluster-admin privileges within that cluster.
If you do not, grant these privileges to your user by running:

> kubectl create clusterrolebinding cluster-admin-binding \
 --clusterrole cluster-admin \

60 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installation-requirements/production-checklist#cluster-architecture
https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installation-requirements/production-checklist#cluster-architecture
https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installation-requirements/production-checklist#cluster-architecture

 --user <USER_ACCOUNT>

3.3.2 Registering a cluster

1. Click # > Cluster Management.

2. On the Clusters page, click Import Existing.

3. Choose the type of cluster.

4. Use Member Roles to configure user authorization for the cluster. Click Add Member to add
users who can access the cluster. Use the Role drop-down list to set permissions for each
user.

5. If you are importing a generic Kubernetes cluster in Rancher, perform the following steps
for setup:

a. Click Agent Environment Variables under Cluster Options to set environment variables
for the Rancher cluster agent (https://ranchermanager.docs.rancher.com/getting-start-

ed/installation-and-upgrade/advanced-options/about-rancher-agents) . The environ-
ment variables can be set using key-value pairs. If the Rancher agent requires the
use of a proxy to communicate with the Rancher server, HTTP_PROXY, HTTP_PROXY,
HTTPS_PROXY and NO_PROXY environment variables can be set using agent environ-
ment variables.

b. Enable Project Network Isolation to ensure the cluster supports Kubernetes Net-
workPolicy resources. Users can select the Project Network Isolation option under the
Advanced Options drop-down list to do so.

c. Configure the version management feature for imported RKE2 and K3s clusters. (Sec-

tion 3.3.4, “Configuring version management for RKE2 and SUSE Rancher Prime: K3s clusters”)

6. Click Create.

7. The requirements for cluster-admin privileges are shown (see Section 3.3.1, “Prerequisites”),
including an example command to fulfill them.

8. Copy the kubectl command to your clipboard and run it on a node where kubeconfig is
configured to point to the cluster you want to import. If you are unsure it is configured cor-
rectly, run kubectl get nodes to verify before running the command shown in Rancher.

61 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/advanced-options/about-rancher-agents
https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/advanced-options/about-rancher-agents

9. If you are using self-signed certificates, you will receive the message certificate signed
by unknown authority. To work around this validation, copy the command starting with
curl displayed in Rancher to your clipboard. Then run the command on a node where
kubeconfig is configured to point to the cluster you want to import.

10. After you finish running the command(s) on your node, click Done.

Important
The NO_PROXY environment variable is not standardized, and the accepted format of
the value can differ between applications. When configuring the NO_PROXY variable for
Rancher, the value must adhere to the format expected by Golang.

Specifically, the value should be a comma-delimited string that contains only IP address-
es, CIDR notation, domain names or special DNS labels (such as *). For a full descrip-
tion of the expected value format, refer to the upstream Golang documentation (https://

pkg.go.dev/golang.org/x/net/http/httpproxy#Config) .

Note: Expected results

Your cluster is registered and assigned a state of Pending. Rancher is deploying
resources to manage your cluster.

You can access your cluster after its state is updated to Active.

Active clusters are assigned two projects: Default (containing the namespace de-
fault) and System (containing the namespaces cattle-system, ingress-nginx,
kube-public and kube-system, if present).

Note
You cannot re-register a cluster that is currently active in a Rancher setup.

3.3.3 Management capabilities for registered clusters

The control that Rancher has to manage a registered cluster depends on the type of cluster.

62 Deploying and Installing SUSE AI

https://pkg.go.dev/golang.org/x/net/http/httpproxy#Config
https://pkg.go.dev/golang.org/x/net/http/httpproxy#Config

Features for all registered clusters (Section 3.3.3.1, “Features for all registered clusters”)

Additional features for registered RKE2 and SUSE Rancher Prime: K3s clusters (Sec-

tion 3.3.3.2, “Additional features for registered RKE2 and SUSE Rancher Prime: K3s clusters”)

3.3.3.1 Features for all registered clusters

After registering a cluster, the cluster owner can:

Manage cluster access (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-

guides/authentication-permissions-and-global-configuration/manage-role-based-

access-control-rbac/cluster-and-project-roles) through role-based access control

Enable monitoring, alerts and notifiers (https://ranchermanager.docs.rancher.com/how-to-

guides/new-user-guides/monitoring-alerting-and-logging/rancher-ui-monitoring)

Enable logging (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/

monitoring-alerting-and-logging/logging)

Enable Istio (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/is-

tio-setup-guide)

Manage projects and workloads

3.3.3.2 Additional features for registered RKE2 and SUSE Rancher Prime: K3s
clusters

SUSE Rancher Prime: K3s (https://documentation.suse.com/cloudnative/k3s/latest/en/introduc-

tion.html) is a lightweight, fully compliant Kubernetes distribution for edge installations.

RKE2 (https://documentation.suse.com/cloudnative/rke2/latest/en/introduction.html) is Ranch-
er’s next-generation Kubernetes distribution for data center and cloud installations.

63 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/authentication-permissions-and-global-configuration/manage-role-based-access-control-rbac/cluster-and-project-roles
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/authentication-permissions-and-global-configuration/manage-role-based-access-control-rbac/cluster-and-project-roles
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/authentication-permissions-and-global-configuration/manage-role-based-access-control-rbac/cluster-and-project-roles
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/monitoring-alerting-and-logging/rancher-ui-monitoring
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/monitoring-alerting-and-logging/rancher-ui-monitoring
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/monitoring-alerting-and-logging/logging
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/monitoring-alerting-and-logging/logging
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/istio-setup-guide
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/istio-setup-guide
https://documentation.suse.com/cloudnative/k3s/latest/en/introduction.html
https://documentation.suse.com/cloudnative/k3s/latest/en/introduction.html
https://documentation.suse.com/cloudnative/rke2/latest/en/introduction.html

When an RKE2 or SUSE Rancher Prime: K3s cluster is registered in Rancher, Rancher will rec-
ognize it. The Rancher UI will expose features available to all registered clusters (Section 3.3.3.1,

“Features for all registered clusters”), along with the following options for editing and upgrading
the cluster:

Enable or disable version management (Section 3.3.4, “Configuring version management for

RKE2 and SUSE Rancher Prime: K3s clusters”).

Upgrade the Kubernetes version (https://ranchermanager.docs.rancher.com/how-to-guides/

new-user-guides/manage-clusters/back-up-restore-and-disaster-recovery/back-up-

rancher-launched-kubernetes-clusters) when version management is enabled.

Configure the upgrade strategy (Section 3.3.5, “Configuring RKE2 and SUSE Rancher Prime: K3s

cluster upgrades”).

View a read-only version of the cluster’s configuration arguments and environment vari-
ables used to launch each node.

3.3.4 Configuring version management for RKE2 and SUSE Rancher Prime:
K3s clusters

Warning
When version management is enabled for an imported cluster, upgrading it outside of
Rancher may lead to unexpected consequences.

The version management feature for imported RKE2 and SUSE Rancher Prime: K3s clusters can
be configured using one of the following options:

Global default (default): Inherits behavior from the global imported-cluster-ver-
sion-management setting.

True: Enables version management, allowing users to control the Kubernetes version and
upgrade strategy of the cluster through Rancher.

False: Disables version management, enabling users to manage the cluster’s Kubernetes
version independently, outside of Rancher.

You can define the default behavior for newly created clusters or existing ones set to 'Global
default' by modifying the imported-cluster-version-management setting.

64 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/back-up-restore-and-disaster-recovery/back-up-rancher-launched-kubernetes-clusters
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/back-up-restore-and-disaster-recovery/back-up-rancher-launched-kubernetes-clusters
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/back-up-restore-and-disaster-recovery/back-up-rancher-launched-kubernetes-clusters

Changes to the global imported-cluster-version-management setting take effect during the
cluster’s next reconciliation cycle.

Note
If version management is enabled for a cluster, Rancher will deploy the system-up-
grade-controller app, along with the associated plans and other required Kubernetes
resources, to the cluster. If version management is disabled, Rancher will remove these
components from the cluster.

3.3.5 Configuring RKE2 and SUSE Rancher Prime: K3s cluster upgrades

Tip
It is a Kubernetes best practice to back up the cluster before upgrading. When upgrading
a high-availability SUSE Rancher Prime: K3s cluster with an external database, back up
the database in whichever way is recommended by the relational database provider.

The concurrency is the maximum number of nodes that are permitted to be unavailable during
an upgrade. If the number of unavailable nodes is larger than the concurrency, the upgrade
will fail. If an upgrade fails, you may need to repair or remove failed nodes before the upgrade
can succeed.

Control plane concurrency: the maximum number of server nodes to upgrade at a single
time; also the maximum unavailable server nodes

Worker concurrency: the maximum number of worker nodes to upgrade at the same
time; also the maximum unavailable worker nodes

In the RKE2 and SUSE Rancher Prime: K3s documentation, control plane nodes are called server
nodes. These nodes run the Kubernetes master, which maintains the desired state of the cluster.
By default, these control plane nodes can have workloads scheduled to them by default.

Also in the RKE2 and SUSE Rancher Prime: K3s documentation, nodes with the worker role are
called agent nodes. Any workloads or pods that are deployed in the cluster can be scheduled
to these nodes by default.

65 Deploying and Installing SUSE AI

3.3.6 Debug logging and troubleshooting for registered RKE2 and SUSE
Rancher Prime: K3s clusters

Nodes are upgraded by the system upgrade controller running in the downstream cluster. Based
on the cluster configuration, Rancher deploys two plans (https://github.com/rancher/system-up-

grade-controller#example-upgrade-plan) to upgrade nodes: one for control plane nodes and
one for workers. The system upgrade controller follows the plans and upgrades the nodes.

To enable debug logging on the system upgrade controller de-
ployment, edit the configmap (https://github.com/rancher/system-upgrade-con-

troller/blob/50a4c8975543d75f1d76a8290001d87dc298bdb4/manifests/system-upgrade-con-

troller.yaml#L32) to set the debug environment variable to true. Then restart the system-up-
grade-controller pod.

Logs created by the system-upgrade-controller can be viewed by running this command:

> kubectl logs -n cattle-system system-upgrade-controller

The current status of the plans can be viewed with this command:

> kubectl get plans -A -o yaml

Tip
If the cluster becomes stuck during upgrading, restart the system-upgrade-controller.

To prevent issues when upgrading, the Kubernetes upgrade best practices (https://kuber-

netes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/) should be followed.

3.3.7 Authorized cluster endpoint support for RKE2 and SUSE Rancher
Prime: K3s clusters

Rancher supports Authorized Cluster Endpoints (ACE) for registered RKE2 and SUSE Rancher
Prime: K3s clusters. This support includes manual steps you will perform on the downstream
cluster to enable the ACE. For additional information on the authorized cluster endpoint, refer
to How the Authorized Cluster Endpoint Works (https://ranchermanager.docs.rancher.com/how-to-

guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint) .

66 Deploying and Installing SUSE AI

https://github.com/rancher/system-upgrade-controller#example-upgrade-plan
https://github.com/rancher/system-upgrade-controller#example-upgrade-plan
https://github.com/rancher/system-upgrade-controller/blob/50a4c8975543d75f1d76a8290001d87dc298bdb4/manifests/system-upgrade-controller.yaml#L32
https://github.com/rancher/system-upgrade-controller/blob/50a4c8975543d75f1d76a8290001d87dc298bdb4/manifests/system-upgrade-controller.yaml#L32
https://github.com/rancher/system-upgrade-controller/blob/50a4c8975543d75f1d76a8290001d87dc298bdb4/manifests/system-upgrade-controller.yaml#L32
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint

Note: Notes

These steps only need to be performed on the control plane nodes of the downstream
cluster. You must configure each control plane node individually.

The following steps will work on both RKE2 and SUSE Rancher Prime: K3s clusters
registered in v2.6.x as well as those registered (or imported) from a previous version
of Rancher with an upgrade to v2.6.x.

These steps will alter the configuration of the downstream RKE2 and SUSE
Rancher Prime: K3s clusters and deploy the kube-api-authn-webhook. If
a future implementation of the ACE requires an update to the kube-

api-authn-webhook, then this would also have to be done manually. For
more information on this webhook, see Authentication webhook documenta-

tion (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/man-

age-clusters/access-clusters/authorized-cluster-endpoint#about-the-kube-api-auth-

authentication-webhook) .

MANUAL STEPS TO BE TAKEN ON THE CONTROL PLANE OF EACH DOWNSTREAM CLUSTER TO ENABLE ACE

1. Create a le at /var/lib/rancher/{rke2,k3s}/kube-api-authn-webhook.yaml with
the following contents:

apiVersion: v1
kind: Config
clusters:
- name: Default
 cluster:
 insecure-skip-tls-verify: true
 server: http://127.0.0.1:6440/v1/authenticate
users:
- name: Default
 user:
 insecure-skip-tls-verify: true
current-context: webhook
contexts:
- name: webhook
 context:
 user: Default
 cluster: Default

67 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint#about-the-kube-api-auth-authentication-webhook
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint#about-the-kube-api-auth-authentication-webhook
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint#about-the-kube-api-auth-authentication-webhook
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/manage-clusters/access-clusters/authorized-cluster-endpoint#about-the-kube-api-auth-authentication-webhook

2. Add the following to the configuration le (or create one if it does not exist). Note that
the default location is /etc/rancher/{rke2,k3s}/config.yaml:

kube-apiserver-arg:
 - authentication-token-webhook-config-file=/var/lib/rancher/{rke2,k3s}/kube-api-
authn-webhook.yaml

3. Run the following commands:

> sudo systemctl stop {rke2,k3s}-server
> sudo systemctl start {rke2,k3s}-server

4. Finally, you must go back to the Rancher UI and edit the imported cluster there to complete
the ACE enablement. Click on # > Edit Config, then click the Networking tab under Cluster
Configuration. Finally, click the Enabled button for Authorized Endpoint. Once the ACE is
enabled, you then have the option of entering a fully qualified domain name (FQDN) and
certificate information.

Note
The FQDN eld is optional, and if one is entered, it should point to the downstream
cluster. Certificate information is only needed if there is a load balancer in front of the
downstream cluster that is using an untrusted certificate. If you have a valid certificate,
then nothing needs to be added to the CA Certificates eld.

3.3.8 Annotating registered clusters

For all types of registered Kubernetes clusters except for RKE2 and SUSE Rancher Prime: K3s
Kubernetes clusters, Rancher does not have any information about how the cluster is provisioned
or configured.

Therefore, when Rancher registers a cluster, it assumes that several capabilities are disabled by
default. Rancher assumes this to avoid exposing UI options to the user even when the capabilities
are not enabled in the registered cluster.

However, if the cluster has a certain capability, a user of that cluster might still want to select the
capability for the cluster in the Rancher UI. To do that, the user will need to manually indicate
to Rancher that certain capabilities are enabled for the cluster.

By annotating a registered cluster, it is possible to indicate to Rancher that a cluster was given
additional capabilities outside of Rancher.

68 Deploying and Installing SUSE AI

The following annotation indicates Ingress capabilities. Note that the values of non-primitive
objects need to be JSON-encoded, with quotations escaped.

"capabilities.cattle.io/ingressCapabilities": "[
 {
 \"customDefaultBackend\":true,
 \"ingressProvider\":\"asdf\"
 }
]"

These capabilities can be annotated for the cluster:

ingressCapabilities

loadBalancerCapabilities

nodePoolScalingSupported

nodePortRange

taintSupport

All the capabilities and their type definitions can be viewed in the Rancher API view, at <RANCH-
ER_SERVER_URL>/v3/schemas/capabilities.

To annotate a registered cluster,

1. Click # > Cluster Management.

2. On the Clusters page, go to the custom cluster you want to annotate and click # > Edit
Config.

3. Expand the Labels & Annotations section.

4. Click Add Annotation.

5. Add an annotation to the cluster with the format capabilities/<capability>: <value>
where value is the cluster capability that will be overridden by the annotation. In this sce-
nario, Rancher is not aware of any capabilities of the cluster until you add the annotation.

6. Click Save.

Tip
The annotation does not give the capabilities to the cluster, but it does indicate to Rancher
that the cluster has those capabilities.

69 Deploying and Installing SUSE AI

3.4 Assigning GPU nodes to applications

When deploying a containerized application to Kubernetes, you need to ensure that containers
requiring GPU resources are run on appropriate worker nodes. For example, Ollama, a core
component of SUSE AI, can deeply benefit from the use of GPU acceleration. This topic describes
how to satisfy this requirement by explicitly requesting GPU resources and labeling worker
nodes for configuring the node selector.

REQUIREMENTS

Kubernetes cluster—such as SUSE Rancher Prime: RKE2—must be available and config-
ured with more than one worker node in which certain nodes have NVIDIA GPU resources
and others do not.

This document assumes that any kind of deployment to the Kubernetes cluster is done
using Helm charts.

3.4.1 Labeling GPU nodes

To distinguish nodes with the GPU support from non-GPU nodes, Kubernetes uses labels. Labels
are used for relevant metadata and should not be confused with annotations that provide simple
information about a resource. It is possible to manipulate labels with the kubectl command, as
well as by tweaking configuration les from the nodes. If an IaC tool such as Terraform is used,
labels can be inserted in the node resource configuration les.

To label a single node, use the following command:

> kubectl label node <GPU_NODE_NAME> accelerator=nvidia-gpu

To achieve the same result by tweaking the node.yaml node configuration, add the following
content and apply the changes with kubectl apply -f node.yaml:

apiVersion: v1
kind: Node
metadata:
 name: node-name
 labels:
 accelerator: nvidia-gpu

70 Deploying and Installing SUSE AI

Tip: Labeling multiple nodes
To label multiple nodes, use the following command:

> kubectl label node \
 <GPU_NODE_NAME1> \
 <GPU_NODE_NAME2> ... \
 accelerator=nvidia-gpu

Tip
If Terraform is being used as an IaC tool, you can add labels to a group of nodes by editing
the .tf les and adding the following values to a resource:

resource "node_group" "example" {
 labels = {
 "accelerator" = "nvidia-gpu"
 }
}

To check if the labels are correctly applied, use the following command:

> kubectl get nodes --show-labels

3.4.2 Assigning GPU nodes

The matching between a container and a node is configured by the explicit resource allocation
and the use of labels and node selectors. The use cases described below focus on NVIDIA GPUs.

3.4.2.1 Enable GPU passthrough

Containers are isolated from the host environment by default. For the containers that rely on
the allocation of GPU resources, their Helm charts must enable GPU passthrough so that the
container can access and use the GPU resource. Without enabling the GPU passthrough, the
container may still run, but it can only use the main CPU for all computations. Refer to Ollama

Helm chart (https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.html#ol-

lama-helmchart) for an example of the configuration required for GPU acceleration.

71 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.html#ollama-helmchart
https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.html#ollama-helmchart
https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.html#ollama-helmchart

3.4.2.2 Assignment by resource request

After the NVIDIA GPU Operator is configured on a node, you can instantiate applications re-
questing the resource nvidia.com/gpu provided by the operator. Add the following content to
your values.yaml le. Specify the number of GPUs according to your setup.

resources:
 requests:
 nvidia.com/gpu: 1
 limits:
 nvidia.com/gpu: 1

3.4.2.3 Assignment by labels and node selectors

If affected cluster nodes are labeled with a label such as accelerator=nvidia-gpu, you can
configure the node selector to check for the label. In this case, use the following values in your
values.yaml le.

nodeSelector:
 accelerator: nvidia-gpu

3.4.3 Verifying Ollama GPU assignment

If the GPU is correctly detected, the Ollama container logs this event:

| [...] source=routes.go:1172 msg="Listening on :11434 (version 0.0.0)"
 │
│ [...] source=payload.go:30 msg="extracting embedded files" dir=/tmp/ollama2502346830/
runners │
│ [...] source=payload.go:44 msg="Dynamic LLM libraries [cuda_v12 cpu cpu_avx cpu_avx2]"
 │
│ [...] source=gpu.go:204 msg="looking for compatible GPUs"
 │
│ [...] source=types.go:105 msg="inference compute" id=GPU-c9ad37d0-d304-5d2a-c2e6-
d3788cd733a7 library=cuda compute │

72 Deploying and Installing SUSE AI

3.5 Installing SUSE Security

This chapter describes how to install SUSE Security to scan SUSE AI nodes for vulnerabilities
and improve data protection. You can install it either using SUSE Rancher Prime (Section 3.5.1,

“Installing and managing SUSE Security through Rancher Extensions or Apps & Marketplace”) or on any
Kubernetes cluster (Section 3.5.2, “Installing SUSE Security using Kubernetes”).

3.5.1 Installing and managing SUSE Security through Rancher Extensions or
Apps & Marketplace

SUSE Security can be deployed easily either through Rancher Extensions for Prime customers,
or Rancher Apps and Marketplace. The default (Helm-based) deployment deploys SUSE Security
containers into the cattle-neuvector-system namespace.

Note
Only SUSE Security deployments through Rancher Extensions (SUSE Security) of Rancher
version 2.7.0+, or Apps & Marketplace of Rancher version 2.6.5+ can be managed di-
rectly (single sign-on to the SUSE Security console) through Rancher. If adding clusters to
Rancher with SUSE Security already deployed, or where SUSE Security has been deployed
directly onto the cluster, these clusters will not be enabled for SSO integration.

3.5.1.1 SUSE Security UI extension for Rancher

SUSE Rancher Prime customers are able to easily deploy SUSE Security and the SUSE Security
UI Extension for Rancher. This will enable Prime users to monitor and manage certain SUSE
Security functions and events directly through the Rancher UI. For community users, please see
the Deploy SUSE Security section below to deploy from Rancher Apps and Marketplace.

1. The rst step is to enable the Rancher Extensions capability globally if it is not already
enabled.

73 Deploying and Installing SUSE AI

FIGURE 16: RANCHER EXTENSIONS

FIGURE 17: ENABLE EXTENSIONS

2. Install the SUSE Security-UI-Ext from the Available list.

74 Deploying and Installing SUSE AI

FIGURE 18: INSTALL UI EXTENSION

3. Reload the extension after installation is complete.

FIGURE 19: RELOAD EXTENSION

4. On your selected cluster, install the SUSE Security application from the SUSE Security tab
if the SUSE Security app is not already installed. This should take you to the application
installation steps. For more details on this installation process, see Section 3.5.1.2, “Deploy

SUSE Security”.

75 Deploying and Installing SUSE AI

FIGURE 20: INSTALL SUSE SECURITY APPLICATION

5. The SUSE Security dashboard should now be shown from the SUSE Security menu for that
cluster. From this dashboard, the security health of the cluster can be monitored. There are
interactive elements in the dashboard, such as invoking a wizard to improve your Security
Risk Score, including being able to turn on automated scanning for vulnerabilities if it is
not enabled.

FIGURE 21: SUSE SECURITY DASBOARD

76 Deploying and Installing SUSE AI

The links in the upper right of the dashboard provide convenient single sign-on (SSO) links
to the full SUSE Security console for more detailed analysis and configuration.

6. To uninstall the extension, go back to the Extensions page.

FIGURE 22: UNINSTALLING EXTENSION

Note
Uninstalling the SUSE Security UI extension does not uninstall the SUSE Security
app from each cluster. The SUSE Security menu will revert to providing an SSO link
into the SUSE Security console.

3.5.1.2 Deploy SUSE Security

First, nd the SUSE Security chart in Rancher charts, select it and review the instructions and
configuration values. Optionally, create a project to deploy into if desired, for example, SUSE
Security.

Note
If you see more than one SUSE Security chart, do not select the one that is for upgrading
legacy SUSE Security 4.x Helm chart deployments.

77 Deploying and Installing SUSE AI

FIGURE 23: RANCHER CHART

Deploy the SUSE Security chart, rst configuring appropriate values for a Rancher deployment,
such as:

Container runtime, such as Docker for RKE and containerd for RKE2, or select the K3s
value if using K3s.

Manager service type: change to LoadBalancer if available on public cloud deployments. If
access is only desired through Rancher, any allowed value will work here. See the Impor-
tant note below about changing the default administration password in SUSE Security.

Indicate whether this cluster will be a multi-cluster federated primary or remote (or select
both if either option is desired).

Persistent volume for configuration backups

FIGURE 24: NEUVECTOR VALUES

Click Install after you have reviewed and updated any chart values.

78 Deploying and Installing SUSE AI

After a successful SUSE Security deployment, you will see a summary of the deployments, dae-
mon sets, and cron jobs for SUSE Security. You will also be able to see the services deployed
in the Services Discovery menu on the left.

FIGURE 25: NEUVECTOR DEPLOYED

3.5.1.3 Manage SUSE Security

You will now see a SUSE Security menu item in the left, and selecting that will show a SUSE
Security tile/button, which when clicked will take you to the SUSE Security console, in a new
tab.

FIGURE 26: NEUVECTOR CONSOLE ACCESS

When this Single Sign-On (SSO) access method is used for the rst time, a corresponding user
in the SUSE Security cluster is created for the Rancher user login. The same user name as the
Rancher logged-in user will be created in SUSE Security, with a role of either admin or fedAdmin,
and Identity provider as Rancher.

79 Deploying and Installing SUSE AI

FIGURE 27: NEUVECTOR ADMINISTRATOR USERS

In the above screenshot, two Rancher users--admin and gkosaka--have been automatically cre-
ated for SSO. If another user is created manually in SUSE Security, the identity provider would
be listed as SUSE Security, as shown below. This local user can log in directly to the SUSE Se-
curity console without going through Rancher.

FIGURE 28: LOCAL ADMIN

Important
It is recommended to log in directly to the SUSE Security console as admin/admin to
manually change the administrator password to a strong password. This will only change
the SUSE Security identity provider administrator user password (you may see anoth-
er administrator user whose identify provider is Rancher). Alternatively, include a Con-

figMap as a secret (https://ranchermanager.docs.rancher.com/integrations-in-rancher/neu-

vector/configuration/configmaps#protect-sensitive-data-using-a-secret) in the initial de-
ployment from Rancher (see chart values for ConfigMap settings) to set the default admin
password to a strong password.

80 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/configuration/configmaps#protect-sensitive-data-using-a-secret
https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/configuration/configmaps#protect-sensitive-data-using-a-secret
https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/configuration/configmaps#protect-sensitive-data-using-a-secret

3.5.1.4 Neuvector/Rancher SSO permission resources

The Rancher v2.9.2 UI provides for selecting Neuvector permission resources when creating
Global/Cluster/Project/Namespaces roles. When a Rancher user is assigned a role with a
Neuvector permission resource, the user’s Neuvector SSO session is assigned the respective Neu-
vector permission accordingly. This is to provide SSO users with custom roles other than the
reserved admin/reader/fedAdmin/fedReader roles.

Below are the mapped permission resources used with applicable Global/Cluster/Project/
Namespaces roles.

3.5.1.4.1 Mapped permission resources for Global/Cluster role

Note
Users will need to manually add * (Verbs) / services/proxy (Resource) to Neuvector-re-
lated Global/Cluster Roles.

API Groups:

permission.neuvector.com

Verbs:

get // for read-only(i.e. view)
* // for read/write(i.e. modify)

Resources:

Neuvector, Cluster Scoped

AdmissionControl
Authentication
CI Scan
Cluster
Federation
Vulnerability

Neuvector, Namespaced

AuditEvents
Authorization
Compliance
Events

81 Deploying and Installing SUSE AI

Namespace
RegistryScan
RuntimePolicy
RuntimeScan
SecurityEvents
SystemConfig

3.5.1.4.2 Mapped permission resources for Project/Namespace role

Note
You will need to manually add * (Verbs) / services/proxy (Resource) to Neuvector-related
Project/Namespace Roles.

API Groups:

permission.neuvector.com

Verbs:

get // for read-only(i.e. view)
* // for read/write(i.e. modify)

Resources:

Neuvector, Namespaced

AuditEvents
Authorization
Compliance
Events
Namespace
RegistryScan
RuntimePolicy
RuntimeScan
SecurityEvents
SystemConfig

3.5.1.5 Disabling SUSE Security/Rancher SSO

To disable the ability to log in to SUSE Security from SUSE Rancher Prime, go to Settings →
Configuration.

82 Deploying and Installing SUSE AI

FIGURE 29: RANCHER SSO

3.5.1.6 Rancher legacy deployments

The sample le will deploy one manager and 3 controllers. It will deploy an enforcer on every
node. See the bottom section for specifying dedicated manager or controller nodes using node
labels.

Note
We do not recommend deploying or scaling more than one manager behind a load bal-
ancer due to potential session state issues.

Note
Deployment on Rancher 2.x/Kubernetes should follow the Kubernetes reference section
and/or Helm-based deployment.

1. Deploy the catalog docker-compose-dist.yml. Controllers will be deployed on the la-
beled nodes; enforcers will be deployed on the rest of the nodes. (The sample le can be
modified so that enforcers are only deployed to the specified nodes.)

2. Pick one controller for the manager to connect to. Modify the manager’s catalog le dock-
er-compose-manager.yml, set CTRL_SERVER_IP to the controller’s IP, then deploy the
manager catalog.

Here are the sample compose les. If you wish to deploy only one or two of the components,
just use that section of the le.

83 Deploying and Installing SUSE AI

SUSE Rancher Prime/Controller/Enforcer Compose Sample File:

manager:
 scale: 1
 image: neuvector/manager
 restart: always
 environment:
 - CTRL_SERVER_IP=controller
 ports:
 - 8443:8443
controller:
 scale: 3
 image: neuvector/controller
 restart: always
 privileged: true
 environment:
 - CLUSTER_JOIN_ADDR=controller
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 - /proc:/host/proc:ro
 - /sys/fs/cgroup:/host/cgroup:ro
 - /var/neuvector:/var/neuvector
enforcer:
 image: neuvector/enforcer
 pid: host
 restart: always
 privileged: true
 environment:
 - CLUSTER_JOIN_ADDR=controller
 volumes:
 - /lib/modules:/lib/modules
 - /var/run/docker.sock:/var/run/docker.sock
 - /proc:/host/proc:ro
 - /sys/fs/cgroup/:/host/cgroup/:ro
 labels:
 io.rancher.scheduler.global: true

3.5.1.7 Deploy without privileged mode

On certain systems, deployment without using privileged mode is supported. These systems must
support the ability to add capabilities using the cap_add setting and to set the AppArmor profile.

Here is a sample Rancher compose le for deployment without privileged mode:

manager:
 scale: 1

84 Deploying and Installing SUSE AI

 image: neuvector/manager
 restart: always
 environment:
 - CTRL_SERVER_IP=controller
 ports:
 - 8443:8443
controller:
 scale: 3
 image: neuvector/controller
 pid: host
 restart: always
 cap_add:
 - SYS_ADMIN
 - NET_ADMIN
 - SYS_PTRACE
 security_opt:
 - apparmor=unconfined
 - seccomp=unconfined
 - label=disable
 environment:
 - CLUSTER_JOIN_ADDR=controller
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 - /proc:/host/proc:ro
 - /sys/fs/cgroup:/host/cgroup:ro
 - /var/neuvector:/var/neuvector
enforcer:
 image: neuvector/enforcer
 pid: host
 restart: always
 cap_add:
 - SYS_ADMIN
 - NET_ADMIN
 - SYS_PTRACE
 - IPC_LOCK
 security_opt:
 - apparmor=unconfined
 - seccomp=unconfined
 - label=disable
 environment:
 - CLUSTER_JOIN_ADDR=controller
 volumes:
 - /lib/modules:/lib/modules
 - /var/run/docker.sock:/var/run/docker.sock
 - /proc:/host/proc:ro
 - /sys/fs/cgroup/:/host/cgroup/:ro
 labels:

85 Deploying and Installing SUSE AI

 io.rancher.scheduler.global: true

3.5.1.8 Using node labels for manager and controller nodes

To control which nodes the Manager and Controller are deployed on, label each node. Pick the
nodes where the controllers are to be deployed. Label them with 'nvcontroller=true'. With the
current sample le, no more than one controller can run on the same node.

For the manager node, label it 'nvmanager=true'.

Add labels to the YAML le. For example, for the manager:

 labels:
 io.rancher.scheduler.global: true
 io.rancher.scheduler.affinity:host_label: "nvmanager=true"

For the controller:

 labels:
 io.rancher.scheduler.global: true
 io.rancher.scheduler.affinity:host_label: "nvcontroller=true"

For the enforcer, to prevent it from running on a controller node (if desired):

 labels:
 io.rancher.scheduler.global: true
 io.rancher.scheduler.affinity:host_label_ne: "nvcontroller=true"

3.5.2 Installing SUSE Security using Kubernetes

You can use Kubernetes to deploy separate manager, controller and enforcer containers and
make sure that all new nodes have an enforcer deployed. SUSE Security requires and supports
Kubernetes network plug-ins such as flannel, weave and calico.

The sample le will deploy one manager and 3 controllers. It will deploy an enforcer on every
node as a daemonset. By default, the sample below will deploy to the Master node as well.

Refer to Section 3.5.2.3, “Using node labels for manager and controller nodes” for specifying dedicated
manager or controller nodes using node labels.

86 Deploying and Installing SUSE AI

Note
It is not recommended to deploy (scale) more than one manager behind a
load balancer due to potential session state issues. If you plan to use a Per-
sistentVolume claim to store the backup of SUSE Security configuration les,
please see the general Backup/Persistent Data section in the Deploying SUSE

Security (https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/pro-

duction-deployment-considerations#backups-and-persistent-data) overview.

If your deployment supports an integrated load balancer, change type NodePort to LoadBal-
ancer for the console in the YAML le below.

SUSE Security supports Helm-based deployment with a Helm chart at https://github.com/neu-

vector/neuvector-helm .

There is a separate section for OpenShift instructions, and EE on Kubernetes has some special
steps described in the Docker section.

3.5.2.1 SUSE Security images on Docker Hub

The images are on the SUSE Security Docker Hub registry. Use the appropriate version tag for
the manager, controller and enforcer, and leave the version as 'latest' for scanner and updater.
For example:

neuvector/manager:5.4.3

neuvector/controller:5.4.3

neuvector/enforcer:5.4.3

neuvector/scanner:latest

neuvector/updater:latest

Be sure to update the image references in the appropriate YAML les.

If deploying with the current SUSE Security Helm chart (v1.8.9+), the following changes should
be made to values.yml:

Update the registry to docker.io.

Update image names and tags to the current version on Docker Hub, as shown above.

Leave imagePullSecrets empty.

87 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/production-deployment-considerations#backups-and-persistent-data
https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/production-deployment-considerations#backups-and-persistent-data
https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/production-deployment-considerations#backups-and-persistent-data
https://github.com/neuvector/neuvector-helm
https://github.com/neuvector/neuvector-helm

Note
If deploying from the SUSE Rancher Prime 2.6.5+ SUSE Security chart, images are pulled
automatically from the Rancher Registry mirrored image repo, and deployed into the
cattle-neuvector-system namespace.

3.5.2.2 Deploy SUSE Security

1. Create the SUSE Security namespace and the required service accounts:

> kubectl create namespace neuvector
> kubectl create sa controller -n neuvector
> kubectl create sa enforcer -n neuvector
> kubectl create sa basic -n neuvector
> kubectl create sa updater -n neuvector
> kubectl create sa scanner -n neuvector
> kubectl create sa registry-adapter -n neuvector
> kubectl create sa cert-upgrader -n neuvector

2. (Optional) Create the SUSE Security Pod Security Admission (PSA) or Pod Security Policy
(PSP). If you have enabled Pod Security Admission (aka Pod Security Standards) in Kuber-
netes 1.25+, or Pod Security Policies (prior to 1.25) in your Kubernetes cluster, add the
following for SUSE Security (for example, nv_psp.yaml).

Note

PSP is deprecated in Kubernetes 1.21 and will be removed in 1.25.

The Manager and Scanner pods run without a UID. If your PSP has a rule Run
As User: Rule: MustRunAsNonRoot then add the following into the sample
YAML below with the appropriate value for #:

securityContext:
 runAsUser: ###

For PSA in Kubernetes 1.25+, label the SUSE Security namespace with the privileged
profile for deploying on a PSA-enabled cluster.

> kubectl label namespace neuvector \

88 Deploying and Installing SUSE AI

 "pod-security.kubernetes.io/enforce=privileged"

3. Create the custom resources (CRD) for SUSE Security rules. For Kubernetes 1.19+:

Note
If you are upgrading to version 5.4.6 using YAML, you must deploy the respon-
serules-crd-k8s.yaml le. If you are using Helm charts, this step is handled au-
tomatically, and no action is required.

> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/crd-k8s-1.19.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/waf-crd-k8s-1.19.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/dlp-crd-k8s-1.19.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/com-crd-k8s-1.19.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/vul-crd-k8s-1.19.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/admission-crd-k8s-1.19.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/5.4.3_group-definition-k8s.yaml
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/5.4.3_group-definition-k8s
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/responserules-crd-k8s.yaml

4. Add read permission to access the Kubernetes API.

Important
The standard SUSE Security 5.2+ deployment uses least-privileged service accounts
instead of the default. See below if upgrading from a version prior to 5.3.

Warning
If you are upgrading to 5.3.0+, run the following commands based on your current
version:

89 Deploying and Installing SUSE AI

Version 5.2.0:

> kubectl delete clusterrole neuvector-binding-nvsecurityrules \
 neuvector-binding-nvadmissioncontrolsecurityrules \
 neuvector-binding-nvdlpsecurityrules \
 neuvector-binding-nvwafsecurityrules

Versions prior to 5.2.0:

> kubectl delete clusterrolebinding \
 neuvector-binding-app neuvector-binding-rbac \
 neuvector-binding-admission \
 neuvector-binding-customresourcedefinition \
 neuvector-binding-nvsecurityrules \
 neuvector-binding-view \
 neuvector-binding-nvwafsecurityrules \
 neuvector-binding-nvadmissioncontrolsecurityrules \
 neuvector-binding-nvdlpsecurityrules
> kubectl delete rolebinding neuvector-admin -n neuvector

Apply the read permissions via the following create clusterrole commands:

> kubectl create clusterrole neuvector-binding-app --verb=get,list,watch,update --
resource=nodes,pods,services,namespaces
> kubectl create clusterrole neuvector-binding-rbac --verb=get,list,watch --
resource=rolebindings.rbac.authorization.k8s.io,roles.rbac.authorization.k8s.io,clusterrolebindings.rbac.authorization.k8s.io,clusterroles.rbac.authorization.k8s.io
> kubectl create clusterrolebinding neuvector-binding-app --clusterrole=neuvector-
binding-app --serviceaccount=neuvector:controller
> kubectl create clusterrolebinding neuvector-binding-rbac --clusterrole=neuvector-
binding-rbac --serviceaccount=neuvector:controller
> kubectl create clusterrole neuvector-binding-
admission --verb=get,list,watch,create,update,delete --
resource=validatingwebhookconfigurations,mutatingwebhookconfigurations
> kubectl create clusterrolebinding neuvector-binding-admission --
clusterrole=neuvector-binding-admission --serviceaccount=neuvector:controller
> kubectl create clusterrole neuvector-binding-customresourcedefinition --
verb=watch,create,get,update --resource=customresourcedefinitions
> kubectl create clusterrolebinding neuvector-binding-customresourcedefinition
 --clusterrole=neuvector-binding-customresourcedefinition --
serviceaccount=neuvector:controller
> kubectl create clusterrole neuvector-binding-nvsecurityrules --
verb=get,list,delete --resource=nvsecurityrules,nvclustersecurityrules
> kubectl create clusterrole neuvector-binding-nvadmissioncontrolsecurityrules --
verb=get,list,delete --resource=nvadmissioncontrolsecurityrules

90 Deploying and Installing SUSE AI

> kubectl create clusterrole neuvector-binding-nvdlpsecurityrules --
verb=get,list,delete --resource=nvdlpsecurityrules
> kubectl create clusterrole neuvector-binding-nvwafsecurityrules --
verb=get,list,delete --resource=nvwafsecurityrules
> kubectl create clusterrolebinding neuvector-binding-nvsecurityrules --
clusterrole=neuvector-binding-nvsecurityrules --serviceaccount=neuvector:controller
> kubectl create clusterrolebinding neuvector-binding-view --clusterrole=view --
serviceaccount=neuvector:controller
> kubectl create clusterrolebinding neuvector-binding-nvwafsecurityrules
 --clusterrole=neuvector-binding-nvwafsecurityrules --
serviceaccount=neuvector:controller
> kubectl create clusterrolebinding neuvector-binding-
nvadmissioncontrolsecurityrules --clusterrole=neuvector-binding-
nvadmissioncontrolsecurityrules --serviceaccount=neuvector:controller
> kubectl create clusterrolebinding neuvector-binding-nvdlpsecurityrules
 --clusterrole=neuvector-binding-nvdlpsecurityrules --
serviceaccount=neuvector:controller
> kubectl create role neuvector-binding-scanner --verb=get,patch,update,watch --
resource=deployments -n neuvector
> kubectl create rolebinding neuvector-binding-scanner --role=neuvector-binding-
scanner --serviceaccount=neuvector:updater --serviceaccount=neuvector:controller -n
 neuvector
> kubectl create role neuvector-binding-secret --verb=get --resource=secrets -n
 neuvector
> kubectl create rolebinding neuvector-binding-secret --role=neuvector-binding-
secret --serviceaccount=neuvector:controller -n neuvector
> kubectl create role neuvector-binding-secret --verb=get,list,watch --
resource=secrets -n neuvector
> kubectl create rolebinding neuvector-binding-secret --role=neuvector-binding-
secret --serviceaccount=neuvector:controller --serviceaccount=neuvector:enforcer
 --serviceaccount=neuvector:scanner --serviceaccount=neuvector:registry-adapter -n
 neuvector
> kubectl create clusterrole neuvector-binding-nvcomplianceprofiles --
verb=get,list,delete --resource=nvcomplianceprofiles
> kubectl create clusterrolebinding neuvector-binding-nvcomplianceprofiles
 --clusterrole=neuvector-binding-nvcomplianceprofiles --
serviceaccount=neuvector:controller
> kubectl create clusterrole neuvector-binding-nvvulnerabilityprofiles --
verb=get,list,delete --resource=nvvulnerabilityprofiles
> kubectl create clusterrolebinding neuvector-binding-nvvulnerabilityprofiles
 --clusterrole=neuvector-binding-nvvulnerabilityprofiles --
serviceaccount=neuvector:controller
> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/neuvector-roles-k8s.yaml
> kubectl create role neuvector-binding-lease --verb=create,get,update --
resource=leases -n neuvector

91 Deploying and Installing SUSE AI

> kubectl create rolebinding neuvector-binding-cert-upgrader --role=neuvector-
binding-cert-upgrader --serviceaccount=neuvector:cert-upgrader -n neuvector
> kubectl create rolebinding neuvector-binding-job-creation --role=neuvector-
binding-job-creation --serviceaccount=neuvector:controller -n neuvector
> kubectl create rolebinding neuvector-binding-lease --role=neuvector-binding-lease
 --serviceaccount=neuvector:controller --serviceaccount=neuvector:cert-upgrader -n
 neuvector
> kubectl create clusterrole neuvector-binding-nvgroupdefinitions --
verb=list,get,delete --resource=nvgroupdefinitions
> kubectl create clusterrolebinding neuvector-binding-nvgroupdefinitions
 --clusterrole=neuvector-binding-nvgroupdefinitions --
serviceaccount=neuvector:controller
> kubectl create role neuvector-binding-secret-controller --verb=create,patch,update
 --resource=secrets -n neuvector
> kubectl create rolebinding neuvector-binding-secret-controller --
role=neuvector-binding-secret-controller --serviceaccount=neuvector:controller --
serviceaccount=neuvector:default -n neuvector
> kubectl create clusterrole neuvector-binding-nvresponserulesecurityrules --
verb=get,list,delete --resource=nvresponserulesecurityrules
> kubectl create clusterrolebinding neuvector-binding-nvresponserulesecurityrules
 --clusterrole=neuvector-binding-nvresponserulesecurityrules --
serviceaccount=neuvector:controller

5. Run the following commands to check if the neuvector/controller and neuvector/updater
service accounts are added successfully.

> kubectl get ClusterRoleBinding \
 neuvector-binding-app neuvector-binding-rbac \
 neuvector-binding-admission \
 neuvector-binding-customresourcedefinition \
 neuvector-binding-nvsecurityrules \
 neuvector-binding-view \
 neuvector-binding-nvwafsecurityrules \
 neuvector-binding-nvadmissioncontrolsecurityrules \
 neuvector-binding-nvdlpsecurityrules \
 neuvector-binding-nvgroupdefinitions \
 neuvector-binding-nvresponserulesecurityrules -o wide

Sample output:

NAME ROLE
 AGE USERS GROUPS SERVICEACCOUNTS
neuvector-binding-app ClusterRole/neuvector-binding-
app 66d neuvector/controller
neuvector-binding-rbac ClusterRole/neuvector-binding-
rbac 66d neuvector/controller

92 Deploying and Installing SUSE AI

neuvector-binding-admission ClusterRole/neuvector-binding-
admission 66d neuvector/controller
neuvector-binding-customresourcedefinition ClusterRole/neuvector-binding-
customresourcedefinition 66d neuvector/controller
neuvector-binding-nvsecurityrules ClusterRole/neuvector-binding-
nvsecurityrules 66d neuvector/controller
neuvector-binding-view ClusterRole/view
 66d neuvector/controller
neuvector-binding-nvwafsecurityrules ClusterRole/neuvector-binding-
nvwafsecurityrules 66d neuvector/controller
neuvector-binding-nvadmissioncontrolsecurityrules ClusterRole/neuvector-binding-
nvadmissioncontrolsecurityrules 66d neuvector/controller
neuvector-binding-nvdlpsecurityrules ClusterRole/neuvector-binding-
nvdlpsecurityrules 66d neuvector/controller
neuvector-binding-nvgroupdefinitions ClusterRole/neuvector-binding-
nvgroupdefinitions 66d neuvector/controller

And this command:

> kubectl get RoleBinding neuvector-binding-scanner \
 neuvector-binding-cert-upgrader \
 neuvector-binding-job-creation \
 neuvector-binding-lease \
 neuvector-binding-secret -n neuvector -o wide

Sample output:

NAME ROLE AGE
 USERS GROUPS SERVICEACCOUNTS
neuvector-binding-scanner Role/neuvector-binding-scanner 8m8s
 neuvector/controller, neuvector/updater
neuvector-binding-cert-upgrader Role/neuvector-binding-cert-upgrader 8m8s
 neuvector/cert-upgrader
neuvector-binding-job-creation Role/neuvector-binding-job-creation 8m8s
 neuvector/controller
neuvector-binding-lease Role/neuvector-binding-lease 8m8s
 neuvector/controller, neuvector/cert-upgrader
neuvector-binding-secret Role/neuvector-binding-secret 8m8s
 neuvector/controller, neuvector/enforcer, neuvector/scanner, neuvector/
registry-adapter

93 Deploying and Installing SUSE AI

6. (Optional) Create the Federation Master and/or Remote Multi-Cluster Management Ser-
vices. If you plan to use the multi-cluster management functions in SUSE Security, one
cluster must have the Federation Master service deployed, and each remote cluster must
have the Federation Worker service. For flexibility, you may choose to deploy both Master
and Worker services on each cluster so any cluster can be a master or remote.

apiVersion: v1
kind: Service
metadata:
 name: neuvector-service-controller-fed-master
 namespace: neuvector
spec:
 ports:
 - port: 11443
 name: fed
 protocol: TCP
 type: LoadBalancer
 selector:
 app: neuvector-controller-pod

apiVersion: v1
kind: Service
metadata:
 name: neuvector-service-controller-fed-worker
 namespace: neuvector
spec:
 ports:
 - port: 10443
 name: fed
 protocol: TCP
 type: LoadBalancer
 selector:
 app: neuvector-controller-pod

Then create the appropriate service(s):

> kubectl create -f nv_master_worker.yaml

7. Create the primary SUSE Security services and pods using the preset version commands
or modify the sample YAML below. The preset version invokes a LoadBalancer for the
SUSE Security Console. If using the sample YAML le below, replace the image names
and VERSION tags for the manager, controller and enforcer image references in the YAML

94 Deploying and Installing SUSE AI

le. Also, make any other modifications required for your deployment environment (such
as LoadBalancer/NodePort/Ingress for manager access). The YAML below needs to be
changed for internal certificate changes if deployed from v5.4.2 or above. Refer to this
Section 3.5.2.7, “Kubernetes deployment YAML for v5.4.2 onwards”.

> kubectl apply -f https://raw.githubusercontent.com/neuvector/manifests/main/
kubernetes/5.4.0/neuvector-k8s.yaml

Or, if modifying any of the above YAML or samples from below:

> kubectl create -f neuvector.yaml

Now you should be able to connect to the SUSE Security console and log in with admin:ad-
min, for example: https://<PUBLIC-IP>:8443

Note
The nodeport service specified in the neuvector.yaml le will open a random port on
all Kubernetes nodes for the SUSE Security Management Web console port. Alternatively,
you can use a LoadBalancer or Ingress, using a public IP and default port 8443. For
nodeport, be sure to open access through firewall rules for that port, if needed. To see
which port is open on the host nodes, please run the following commands:

> kubectl get svc -n neuvector

And you will see something like:

NAME CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
neuvector-service-webui 10.100.195.99 <nodes> 8443:30257/TCP
 15m

PKS Change

Note
PKS is eld-tested and requires enabling privileged containers to the plan/tile, and chang-
ing the YAML hostPath as follows for All-in-One, Controller and Enforcer:

hostPath:

95 Deploying and Installing SUSE AI

 path: /var/vcap/sys/run/docker/docker.sock

Master node taints and tolerations

All taint info must match to schedule Enforcers on nodes. To check the taint info on a node
(such as Master):

> kubectl get node taintnodename -o yaml

Sample output:

spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 # there may be an extra info for taint as below
 - effect: NoSchedule
 key: mykey
 value: myvalue

If there are additional taints as above, add these to the sample YAML tolerations section:

spec:
 template:
 spec:
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 - effect: NoSchedule
 key: node-role.kubernetes.io/control-plane
 # if there is an extra info for taints as above, please add it here.
 # This is required to match all the taint info defined on the taint
 # node. Otherwise, the Enforcer won't deploy on the taint node
 - effect: NoSchedule
 key: mykey
 value: myvalue

3.5.2.3 Using node labels for manager and controller nodes

To control which nodes the Manager and Controller are deployed on, label each node. Replace
NODE_NAME with the appropriate node name (“kubectl get nodes”). Note: By default, Kubernetes
will not schedule pods on the master node.

> kubectl label nodes <NODE_NAME> nvcontroller=true

96 Deploying and Installing SUSE AI

Then add a nodeSelector to the YAML le for the Manager and Controller deployment sections.
For example:

 - mountPath: /host/cgroup
 name: cgroup-vol
 readOnly: true
 nodeSelector:
 nvcontroller: "true"
 restartPolicy: Always

To prevent the enforcer from being deployed on a controller node, if it is a dedicated manage-
ment node (without application containers to be monitored), add a nodeAffinity to the Enforcer
YAML section. For example:

 app: neuvector-enforcer-pod
 spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: nvcontroller
 operator: NotIn
 values: ["true"]
 imagePullSecrets:

3.5.2.4 Rolling updates

Orchestration tools such as Kubernetes, Red Hat OpenShift, and Rancher support rolling updates
with configurable policies. You can use this feature to update the SUSE Security containers.
The most important thing will be to ensure that there is at least one Controller (or All-in-One)
running so that policies, logs and connection data are not lost. Make sure that there is a minimum
of 120 seconds between container updates so that a new leader can be elected and the data
synchronized between controllers.

The provided sample deployment YAMLs already configure the rolling update policy. If you are
updating via the SUSE Security Helm chart, please pull the latest chart to properly configure
new features such as admission control, and delete the old cluster role and cluster role binding
for SUSE Security. If you are updating via Kubernetes, you can manually update to a new version
with the sample commands below.

97 Deploying and Installing SUSE AI

3.5.2.4.1 Sample Kubernetes rolling update

For upgrades that just need to update to a new image version, you can use this simple approach.

If your Deployment or DaemonSet is already running, you can change the YAML le to the new
version, then apply the update:

> kubectl apply -f <YAML_FILE>

This will update to a new version of SUSE Security from the command line.

For the controller as a Deployment (also do the same for the manager):

> kubectl set image deployment/neuvector-controller-pod \
 neuvector-controller-pod=neuvector/controller:<VERSION> -n neuvector

For any container as a DaemonSet:

> kubectl set image -n neuvector \
 ds/neuvector-enforcer-pod neuvector-enforcer-pod=neuvector/enforcer:<VERSION>

To check the status of the rolling update:

> kubectl rollout status -n neuvector ds/neuvector-enforcer-pod
> kubectl rollout status -n neuvector deployment/neuvector-controller-pod

To roll back the update:

> kubectl rollout undo -n neuvector ds/neuvector-enforcer-pod
> kubectl rollout undo -n neuvector deployment/neuvector-controller-pod

3.5.2.5 Expose REST API in Kubernetes

To expose the REST API for access from outside of the Kubernetes cluster, here is a sample
YAML le:

apiVersion: v1
kind: Service
metadata:
 name: neuvector-service-rest
 namespace: neuvector
spec:
 ports:
 - port: 10443
 name: controller
 protocol: TCP
 type: LoadBalancer
 selector:

98 Deploying and Installing SUSE AI

 app: neuvector-controller-pod

Please see the Automation section for more info on the REST API.

3.5.2.6 Kubernetes deployment in non-privileged mode

The following instructions can be used to deploy SUSE Security without using privileged mode
containers. The controller is already in non-privileged mode and enforcer deployment should
be changed, which is shown in the excerpted snippets below.

Enforcer:

spec:
 template:
 metadata:
 annotations:
 container.apparmor.security.beta.kubernetes.io/neuvector-enforcer-pod: unconfined
 # this line is required to be added if k8s version is pre-v1.19
 # container.seccomp.security.alpha.kubernetes.io/neuvector-enforcer-pod:
 unconfined
 spec:
 containers:
 securityContext:
 # the following two lines are required for k8s v1.19+.
 # Comment out both lines if version is pre-1.19.
 # Otherwise, a validating data error message will show
 seccompProfile:
 type: Unconfined
 capabilities:
 add:
 - SYS_ADMIN
 - NET_ADMIN
 - SYS_PTRACE
 - IPC_LOCK

3.5.2.7 Kubernetes deployment YAML for v5.4.2 onwards

The following sample YAML is for versions 5.4.2 and onwards where we need to mount the
internal certificates on Controller, Enforcer and Scanner pods since we do not support hard-
coded certificates anymore. Create the internal-certificate secret from the given link before de-
ploying: Replacing Internal Certificates (https://ranchermanager.docs.rancher.com/integrations-in-

rancher/neuvector/custom-certs#replacing-internal-certificates) .

apiVersion: v1

99 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/custom-certs#replacing-internal-certificates
https://ranchermanager.docs.rancher.com/integrations-in-rancher/neuvector/custom-certs#replacing-internal-certificates

kind: Service
metadata:
 name: neuvector-svc-crd-webhook
 namespace: neuvector
spec:
 ports:
 - port: 443
 targetPort: 30443
 protocol: TCP
 name: crd-webhook
 type: ClusterIP
 selector:
 app: neuvector-controller-pod

apiVersion: v1
kind: Service
metadata:
 name: neuvector-svc-admission-webhook
 namespace: neuvector
spec:
 ports:
 - port: 443
 targetPort: 20443
 protocol: TCP
 name: admission-webhook
 type: ClusterIP
 selector:
 app: neuvector-controller-pod

apiVersion: v1
kind: Service
metadata:
 name: neuvector-service-webui
 namespace: neuvector
spec:
 ports:
 - port: 8443
 name: manager
 protocol: TCP
 type: LoadBalancer
 selector:
 app: neuvector-manager-pod

100 Deploying and Installing SUSE AI

apiVersion: v1
kind: Service
metadata:
 name: neuvector-svc-controller
 namespace: neuvector
spec:
 ports:
 - port: 18300
 protocol: "TCP"
 name: "cluster-tcp-18300"
 - port: 18301
 protocol: "TCP"
 name: "cluster-tcp-18301"
 - port: 18301
 protocol: "UDP"
 name: "cluster-udp-18301"
 clusterIP: None
 selector:
 app: neuvector-controller-pod

apiVersion: apps/v1
kind: Deployment
metadata:
 name: neuvector-manager-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-manager-pod
 replicas: 1
 template:
 metadata:
 labels:
 app: neuvector-manager-pod
 spec:
 serviceAccountName: basic
 serviceAccount: basic
 containers:
 - name: neuvector-manager-pod
 image: neuvector/manager:5.4.3
 env:
 - name: CTRL_SERVER_IP
 value: neuvector-svc-controller.neuvector

101 Deploying and Installing SUSE AI

 restartPolicy: Always

apiVersion: apps/v1
kind: Deployment
metadata:
 name: neuvector-controller-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-controller-pod
 minReadySeconds: 60
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 replicas: 3
 template:
 metadata:
 labels:
 app: neuvector-controller-pod
 spec:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - neuvector-controller-pod
 topologyKey: "kubernetes.io/hostname"
 serviceAccountName: controller
 serviceAccount: controller
 containers:
 - name: neuvector-controller-pod
 image: neuvector/controller:5.4.3
 securityContext:
 runAsUser: 0
 readinessProbe:
 exec:
 command:

102 Deploying and Installing SUSE AI

 - cat
 - /tmp/ready
 failureThreshold: 3
 initialDelaySeconds: 5
 periodSeconds: 5
 successThreshold: 1
 timeoutSeconds: 1
 env:
 - name: CLUSTER_JOIN_ADDR
 value: neuvector-svc-controller.neuvector
 - name: CLUSTER_ADVERTISED_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CLUSTER_BIND_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 volumeMounts:
 - mountPath: /etc/config
 name: config-volume
 readOnly: true
 - mountPath: /etc/neuvector/certs/internal/cert.key
 name: internal-cert
 readOnly: true
 subPath: tls.key
 - mountPath: /etc/neuvector/certs/internal/cert.pem
 name: internal-cert
 readOnly: true
 subPath: tls.crt
 - mountPath: /etc/neuvector/certs/internal/ca.cert
 name: internal-cert
 readOnly: true
 subPath: ca.crt
 terminationGracePeriodSeconds: 300
 restartPolicy: Always
 volumes:
 - name: config-volume
 projected:
 sources:
 - configMap:
 name: neuvector-init
 optional: true
 - secret:
 name: neuvector-init
 optional: true
 - secret:

103 Deploying and Installing SUSE AI

 name: neuvector-secret
 optional: true
 - name: internal-cert
 secret:
 defaultMode: 420
 secretName: internal-cert

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: neuvector-enforcer-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-enforcer-pod
 updateStrategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: neuvector-enforcer-pod
 spec:
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 - effect: NoSchedule
 key: node-role.kubernetes.io/control-plane
 hostPID: true
 serviceAccountName: enforcer
 serviceAccount: enforcer
 containers:
 - name: neuvector-enforcer-pod
 image: neuvector/enforcer:5.4.3
 securityContext:
 privileged: true
 env:
 - name: CLUSTER_JOIN_ADDR
 value: neuvector-svc-controller.neuvector
 - name: CLUSTER_ADVERTISED_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CLUSTER_BIND_ADDR
 valueFrom:

104 Deploying and Installing SUSE AI

 fieldRef:
 fieldPath: status.podIP
 volumeMounts:
 - mountPath: /lib/modules
 name: modules-vol
 readOnly: true
 - mountPath: /var/nv_debug
 name: nv-debug
 readOnly: false
 - mountPath: /etc/neuvector/certs/internal/cert.key
 name: internal-cert
 readOnly: true
 subPath: tls.key
 - mountPath: /etc/neuvector/certs/internal/cert.pem
 name: internal-cert
 readOnly: true
 subPath: tls.crt
 - mountPath: /etc/neuvector/certs/internal/ca.cert
 name: internal-cert
 readOnly: true
 subPath: ca.crt
 terminationGracePeriodSeconds: 1200
 restartPolicy: Always
 volumes:
 - name: modules-vol
 hostPath:
 path: /lib/modules
 - name: nv-debug
 hostPath:
 path: /var/nv_debug
 - name: internal-cert
 secret:
 defaultMode: 420
 secretName: internal-cert

apiVersion: apps/v1
kind: Deployment
metadata:
 name: neuvector-scanner-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-scanner-pod
 strategy:

105 Deploying and Installing SUSE AI

 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 replicas: 2
 template:
 metadata:
 labels:
 app: neuvector-scanner-pod
 spec:
 serviceAccountName: scanner
 serviceAccount: scanner
 containers:
 - name: neuvector-scanner-pod
 image: neuvector/scanner:latest
 imagePullPolicy: Always
 env:
 - name: CLUSTER_JOIN_ADDR
 value: neuvector-svc-controller.neuvector
 volumeMounts:
 - mountPath: /etc/neuvector/certs/internal/cert.key
 name: internal-cert
 readOnly: true
 subPath: tls.key
 - mountPath: /etc/neuvector/certs/internal/cert.pem
 name: internal-cert
 readOnly: true
 subPath: tls.crt
 - mountPath: /etc/neuvector/certs/internal/ca.cert
 name: internal-cert
 readOnly: true
 subPath: ca.crt
 restartPolicy: Always
 volumes:
 - name: internal-cert
 secret:
 defaultMode: 420
 secretName: internal-cert

apiVersion: batch/v1
kind: CronJob
metadata:
 name: neuvector-updater-pod
 namespace: neuvector
spec:
 schedule: "0 0 * * *"

106 Deploying and Installing SUSE AI

 jobTemplate:
 spec:
 template:
 metadata:
 labels:
 app: neuvector-updater-pod
 spec:
 serviceAccountName: updater
 serviceAccount: updater
 containers:
 - name: neuvector-updater-pod
 image: neuvector/updater:latest
 imagePullPolicy: Always
 command:
 - /bin/sh
 - -c
 - TOKEN=`cat /var/run/secrets/kubernetes.io/serviceaccount/token`; /usr/
bin/curl -kv -X PATCH -H "Authorization:Bearer $TOKEN" -H "Content-Type:application/
strategic-merge-patch+json" -d '{"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt":"'`date +%Y-%m-%dT%H:%M:%S%z`'"}}}}}' 'https://
kubernetes.default/apis/apps/v1/namespaces/neuvector/deployments/neuvector-scanner-pod'
 restartPolicy: Never

The following sample is a complete deployment reference (Kubernetes 1.19+).

apiVersion: v1
kind: Service
metadata:
 name: neuvector-svc-crd-webhook
 namespace: neuvector
spec:
 ports:
 - port: 443
 targetPort: 30443
 protocol: TCP
 name: crd-webhook
 type: ClusterIP
 selector:
 app: neuvector-controller-pod

apiVersion: v1
kind: Service
metadata:
 name: neuvector-svc-admission-webhook
 namespace: neuvector
spec:

107 Deploying and Installing SUSE AI

 ports:
 - port: 443
 targetPort: 20443
 protocol: TCP
 name: admission-webhook
 type: ClusterIP
 selector:
 app: neuvector-controller-pod

apiVersion: v1
kind: Service
metadata:
 name: neuvector-service-webui
 namespace: neuvector
spec:
 ports:
 - port: 8443
 name: manager
 protocol: TCP
 type: LoadBalancer
 selector:
 app: neuvector-manager-pod

apiVersion: v1
kind: Service
metadata:
 name: neuvector-svc-controller
 namespace: neuvector
spec:
 ports:
 - port: 18300
 protocol: "TCP"
 name: "cluster-tcp-18300"
 - port: 18301
 protocol: "TCP"
 name: "cluster-tcp-18301"
 - port: 18301
 protocol: "UDP"
 name: "cluster-udp-18301"
 clusterIP: None
 selector:
 app: neuvector-controller-pod

108 Deploying and Installing SUSE AI

apiVersion: apps/v1
kind: Deployment
metadata:
 name: neuvector-manager-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-manager-pod
 replicas: 1
 template:
 metadata:
 labels:
 app: neuvector-manager-pod
 spec:
 serviceAccountName: basic
 serviceAccount: basic
 containers:
 - name: neuvector-manager-pod
 image: neuvector/manager:5.4.3
 env:
 - name: CTRL_SERVER_IP
 value: neuvector-svc-controller.neuvector
 restartPolicy: Always

apiVersion: apps/v1
kind: Deployment
metadata:
 name: neuvector-controller-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-controller-pod
 minReadySeconds: 60
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 replicas: 3
 template:
 metadata:

109 Deploying and Installing SUSE AI

 labels:
 app: neuvector-controller-pod
 spec:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - neuvector-controller-pod
 topologyKey: "kubernetes.io/hostname"
 serviceAccountName: controller
 serviceAccount: controller
 containers:
 - name: neuvector-controller-pod
 image: neuvector/controller:5.4.3
 securityContext:
 runAsUser: 0
 readinessProbe:
 exec:
 command:
 - cat
 - /tmp/ready
 initialDelaySeconds: 5
 periodSeconds: 5
 env:
 - name: CLUSTER_JOIN_ADDR
 value: neuvector-svc-controller.neuvector
 - name: CLUSTER_ADVERTISED_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CLUSTER_BIND_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 volumeMounts:
 - mountPath: /etc/config
 name: config-volume
 readOnly: true
 terminationGracePeriodSeconds: 300
 restartPolicy: Always
 volumes:

110 Deploying and Installing SUSE AI

 - name: config-volume
 projected:
 sources:
 - configMap:
 name: neuvector-init
 optional: true
 - secret:
 name: neuvector-init
 optional: true
 - secret:
 name: neuvector-secret
 optional: true

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: neuvector-enforcer-pod
 namespace: neuvector
spec:
 selector:
 matchLabels:
 app: neuvector-enforcer-pod
 updateStrategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: neuvector-enforcer-pod
 annotations:
 container.apparmor.security.beta.kubernetes.io/neuvector-enforcer-pod: unconfined
 # Add the following for pre-v1.19
 # container.seccomp.security.alpha.kubernetes.io/neuvector-enforcer-pod: unconfined
 spec:
 tolerations:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
 - effect: NoSchedule
 key: node-role.kubernetes.io/control-plane
 hostPID: true
 serviceAccountName: enforcer
 serviceAccount: enforcer
 containers:
 - name: neuvector-enforcer-pod
 image: neuvector/enforcer:5.4.3
 securityContext:

111 Deploying and Installing SUSE AI

 # the following two lines are required for k8s v1.19+. pls comment out both
 lines if version is pre-1.19. Otherwise, a validating data error message will show
 seccompProfile:
 type: Unconfined
 capabilities:
 add:
 - SYS_ADMIN
 - NET_ADMIN
 - SYS_PTRACE
 - IPC_LOCK
 env:
 - name: CLUSTER_JOIN_ADDR
 value: neuvector-svc-controller.neuvector
 - name: CLUSTER_ADVERTISED_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CLUSTER_BIND_ADDR
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 volumeMounts:
 - mountPath: /lib/modules
 name: modules-vol
 readOnly: true
 - mountPath: /var/nv_debug
 name: nv-debug
 readOnly: false
 terminationGracePeriodSeconds: 1200
 restartPolicy: Always
 volumes:
 - name: modules-vol
 hostPath:
 path: /lib/modules
 - name: nv-debug
 hostPath:
 path: /var/nv_debug

apiVersion: apps/v1
kind: Deployment
metadata:
 name: neuvector-scanner-pod
 namespace: neuvector
spec:
 selector:

112 Deploying and Installing SUSE AI

 matchLabels:
 app: neuvector-scanner-pod
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 0
 replicas: 2
 template:
 metadata:
 labels:
 app: neuvector-scanner-pod
 spec:
 serviceAccountName: scanner
 serviceAccount: scanner
 containers:
 - name: neuvector-scanner-pod
 image: neuvector/scanner:latest
 imagePullPolicy: Always
 env:
 - name: CLUSTER_JOIN_ADDR
 value: neuvector-svc-controller.neuvector
 restartPolicy: Always

apiVersion: batch/v1
kind: CronJob
metadata:
 name: neuvector-updater-pod
 namespace: neuvector
spec:
 schedule: "0 0 * * *"
 jobTemplate:
 spec:
 template:
 metadata:
 labels:
 app: neuvector-updater-pod
 spec:
 serviceAccountName: updater
 serviceAccount: updater
 containers:
 - name: neuvector-updater-pod
 image: neuvector/updater:latest
 imagePullPolicy: Always
 command:

113 Deploying and Installing SUSE AI

 - TOKEN=`cat /var/run/secrets/kubernetes.io/serviceaccount/token`; /usr/
bin/curl -kv -X PATCH -H "Authorization:Bearer $TOKEN" -H "Content-Type:application/
strategic-merge-patch+json" -d '{"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt":"'`date +%Y-%m-%dT%H:%M:%S%z`'"}}}}}' 'https://
kubernetes.default/apis/apps/v1/namespaces/neuvector/deployments/neuvector-scanner-pod'
 restartPolicy: Never

3.5.2.8 PKS change

Note
PKS is eld-tested and requires enabling privileged containers to the plan/tile, and chang-
ing the YAML hostPath as follows for All-in-One and Enforcer:

 hostPath:
 path: /var/vcap/sys/run/docker/docker.sock

3.6 Setting up SUSE Observability for SUSE AI

SUSE Observability provides comprehensive monitoring and insights into your infrastructure
and applications. It enables efficient tracking of metrics, logs and traces, helping you maintain
optimal performance and troubleshoot issues effectively. This procedure guides you through
setting up SUSE Observability for the SUSE AI environment using the SUSE AI Observability
Extension.

3.6.1 Deployment scenarios

You can deploy SUSE Observability and SUSE AI in two different ways:

Single-Cluster setup: Both SUSE AI and SUSE Observability are installed in the same Ku-
bernetes cluster. This is a simpler approach ideal for testing and proof-of-concept deploy-
ments. Communication between components can use internal cluster DNS.

Multi-Cluster setup: SUSE AI and SUSE Observability are installed on separate, dedicated
Kubernetes clusters. This setup is recommended for production environments because it
isolates workloads. Communication requires exposing the SUSE Observability endpoints
externally, for example, via an Ingress.

114 Deploying and Installing SUSE AI

This section provides instructions for both scenarios.

3.6.2 Requirements

To set up SUSE Observability for SUSE AI, you need to meet the following requirements:

Have access to SUSE Application Collection

Have a valid SUSE AI subscription

Have a valid license for SUSE Observability in SUSE Customer Center

Instrument your applications for telemetry data acquisition with OpenTelemetry.

For details on how to collect traces and metrics from SUSE AI components and user-developed
applications, refer to Monitoring SUSE AI with OpenTelemetry and SUSE Observability (https://docu-

mentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html) . It includes configurations that
are essential for full observability.

Important: SUSE Application Collection not instrumented by
default
Applications from the SUSE Application Collection are not instrumented by default. If you
want to monitor your AI applications, you need to follow the instrumentation guidelines
that we provide in the document Monitoring SUSE AI with OpenTelemetry and SUSE Ob-

servability (https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html) .

3.6.3 Setup process overview

The following chart shows the high-level steps for the setup procedure. You will rst set up
the SUSE Observability cluster, then configure the SUSE AI cluster, and finally instrument your
applications. Execute the steps in each column from left to right and top to bottom.

Blue steps are related to Helm chart installations.

Gray steps represent another type of interaction, such as coding.

115 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html

FIGURE 30: HIGH-LEVEL OVERVIEW OF THE SUSE OBSERVABILITY SETUP

Tip: Setup clusters
You can create and configure Kubernetes clusters for SUSE AI and SUSE Ob-
servability as you prefer. If you are using SUSE Rancher Prime, check its docu-

mentation (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/ku-

bernetes-clusters-in-rancher-setup) . For testing purposes, you can even share one clus-
ter for both deployments. You can skip instructions on setting up a specific cluster if you
already have one configured.

The diagram below shows the result of the above steps. There are two clusters represented, one
for the SUSE Observability workload and another one for SUSE AI. You may use identical setup
or customize it for your environment.

116 Deploying and Installing SUSE AI

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/kubernetes-clusters-in-rancher-setup

FIGURE 31: SEPARATE CLUSTERS FOR SUSE AI AND SUSE OBSERVABILITY

POINTS TO NOTICE

You can install SUSE AI Observability Extension alongside SUSE Observability. It means
that you can confidently use the internal Kubernetes DNS.

SUSE Observability contains several components and the following two of them need to
be accessible by the AI Cluster:

The Collector endpoint. Refer to Exposing SUSE Observability outside of the clus-

ter (https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/in-

stall-stackstate/kubernetes_openshift/ingress.html) or Self-hosted SUSE Observabili-

ty (https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/otel/

otlp-apis.html#_self_hosted_suse_observability) for details about exposing it.

The SUSE Observability API. Refer to Exposing SUSE Observability outside of the clus-

ter (https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/in-

stall-stackstate/kubernetes_openshift/ingress.html) for details about exposing it.

Milvus metrics and traces can be scraped by the OpenTelemetry Collector with simple
configurations, provided below. The same is true for GPU metrics.

To get information from Open WebUI, Ollama or vLLM, you must have a specific
instrumentation set. It can be an application instrumented with the OpenLIT SDK or
other form of instrumentation following the same patterns.

117 Deploying and Installing SUSE AI

https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/otel/otlp-apis.html#_self_hosted_suse_observability
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/otel/otlp-apis.html#_self_hosted_suse_observability
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/otel/otlp-apis.html#_self_hosted_suse_observability
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/next/en/setup/install-stackstate/kubernetes_openshift/ingress.html

Important
Remember that in multi-cluster setups, it is critical to properly expose your endpoints.
Configure TLS, be careful with the configuration, and make sure to provide the right keys
and tokens. More details are provided in the respective instructions.

3.6.4 Setting up the SUSE Observability cluster

This initial step is identical for both single-cluster and multi-cluster deployments.

1. Install SUSE Observability. You can follow the official SUSE Observabili-

ty installation documentation (https://documentation.suse.com/cloudnative/suse-observ-

ability/latest/en/classic.html) for all installation instructions. Remember to ex-

pose your APIs (https://documentation.suse.com/cloudnative/suse-observability/latest/en/

setup/install-stackstate/kubernetes_openshift/ingress.html) and collector endpoints to
your SUSE AI cluster.

Important: Multi-cluster setup
For multi-cluster setups, you must expose the SUSE Observability API
and collector endpoints so that the SUSE AI cluster can reach
them. Refer to the guide on exposing SUSE Observability outside of the

cluster (https://documentation.suse.com/cloudnative/suse-observability/latest/en/set-

up/install-stackstate/kubernetes_openshift/ingress.html) .

2. Install the SUSE Observability extension. Create a new Helm values le named
genai_values.yaml. Before creating the le, review the placeholders below.

SUSE_OBSERVABILITY_API_URL

The URL of the SUSE Observability API. For multi-cluster deployments, this is the
external URL. For single-cluster deployments, this can be the internal service URL.
Example: http://suse-observability-api.your-domain.com

SUSE_OBSERVABILITY_API_KEY

The API key from the baseConfig_values.yaml le used during the SUSE Observ-
ability installation.

118 Deploying and Installing SUSE AI

https://documentation.suse.com/cloudnative/suse-observability/latest/en/classic.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/classic.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/classic.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/setup/install-stackstate/kubernetes_openshift/ingress.html
https://documentation.suse.com/cloudnative/suse-observability/latest/en/setup/install-stackstate/kubernetes_openshift/ingress.html

SUSE_OBSERVABILITY_API_TOKEN_TYPE

Can be api for a token from the Web UI or service for a Service Token.

SUSE_OBSERVABILITY_TOKEN

The API or Service token itself.

OBSERVED_SERVER_NAME

The name of the cluster to observe. It must match the name used in the Kubernetes
StackPack configuration. Example: suse-ai-cluster.

a. Create the genai_values.yaml le with the following content:

global:
 imagePullSecrets:
 - application-collection 1

 ifdef::deployment_airgap[]
 imageRegistry: <LOCAL_DOCKER_REGISTRY_URL>:5043
 endif::[]
serverUrl: <SUSE_OBSERVABILITY_API_URL>
apiKey: <SUSE_OBSERVABILITY_API_KEY>
tokenType: <SUSE_OBSERVABILITY_API_TOKEN_TYPE>
apiToken: <SUSE_OBSERVABILITY_TOKEN>
clusterName: <OBSERVED_SERVER_NAME>

1 Instructs Helm to use credentials from the SUSE Application Collection.
For instructions on how to configure the image pull secrets for the SUSE
Application Collection, refer to the official documentation (https://docs.app-

s.rancher.io/get-started/authentication/) .

b. Run the install command.

> helm upgrade --install ai-obs \
 oci://dp.apps.rancher.io/charts/suse-ai-observability-extension \
 -f genai_values.yaml --namespace so-extensions --create-namespace

Note: Self-signed certificates not supported
Self-signed certificates are not supported. Consider running the extension
in the same cluster as SUSE Observability and then use the internal Ku-
bernetes address.

119 Deploying and Installing SUSE AI

https://docs.apps.rancher.io/get-started/authentication/
https://docs.apps.rancher.io/get-started/authentication/

After the installation is complete, a new menu called GenAI is added to the
Web interface and also a Kubernetes cron job is created that synchronizes the
topology view with the components found in the SUSE AI cluster.

3. Verify SUSE Observability extension. After the installation, you can verify that a new
lateral menu appears:

FIGURE 32: NEW GENAI OBSERVABILITY MENU ITEM

3.6.5 Setting up the SUSE AI cluster

Follow the instructions for your deployment scenario.

Single-cluster deployment

In this setup, the SUSE AI components are installed in the same cluster as SUSE Observ-
ability and can communicate using internal service DNS.

Multi-cluster deployment

In this setup, the SUSE AI cluster is separate. Communication relies on externally exposed
endpoints of the SUSE Observability cluster.

The difference between deployment scenarios affects the OTEL Collector exporter configura-
tion and the SUSE Observability Agent URL as described in the following list.

SUSE_OBSERVABILITY_API_URL

The URL of the SUSE Observability API.
Single-cluster example: http://suse-observability-otel-collector.suse-observability.svc.clus-

ter.local:4317

Multi-cluster example: https://suse-observability-api.your-domain.com

SUSE_OBSERVABILITY_COLLECTOR_ENDPOINT

The endpoint of the SUSE Observability Collector.

120 Deploying and Installing SUSE AI

http://suse-observability-otel-collector.suse-observability.svc.cluster.local:4317
http://suse-observability-otel-collector.suse-observability.svc.cluster.local:4317
https://suse-observability-api.your-domain.com

Single-cluster example: http://suse-observability-router.suse-observability.svc.cluster.lo-

cal:8080/receiver/stsAgent

Multi-cluster example: https://suse-observability-router.your-domain.com/receiv-

er/stsAgent

1. Install NVIDIA GPU Operator. Follow the instructions in https://documenta-

tion.suse.com/cloudnative/rke2/latest/en/advanced.html#_deploy_nvidia_operator .

2. Install OpenTelemetry collector. Create a secret with your SUSE Observability API key in
the namespace where you want to install the collector. Retrieve the API key using the Web
UI or from the baseConfig_values.yaml le that you used during the SUSE Observability
installation. If the namespace does not exist yet, create it.

kubectl create namespace observability
kubectl create secret generic open-telemetry-collector \
 --namespace observability \
 --from-literal=API_KEY='<SUSE_OBSERVABILITY_API_KEY>'

Create a new le named otel-values.yaml with the following content.

global:
 imagePullSecrets:
 - application-collection
 ifdef::deployment_airgap[]
 repository: <LOCAL_DOCKER_REGISTRY_URL>:5043/opentelemetry-collector-k8s
 endif::[]
extraEnvsFrom:
 - secretRef:
 name: open-telemetry-collector
mode: deployment
ports:
 metrics:
 enabled: true
presets:
 kubernetesAttributes:
 enabled: true
 extractAllPodLabels: true
config:
 receivers:
 prometheus:
 config:
 scrape_configs:
 - job_name: 'gpu-metrics'
 scrape_interval: 10s
 scheme: http

121 Deploying and Installing SUSE AI

http://suse-observability-router.suse-observability.svc.cluster.local:8080/receiver/stsAgent
http://suse-observability-router.suse-observability.svc.cluster.local:8080/receiver/stsAgent
https://suse-observability-router.your-domain.com/receiver/stsAgent
https://suse-observability-router.your-domain.com/receiver/stsAgent
https://documentation.suse.com/cloudnative/rke2/latest/en/advanced.html#_deploy_nvidia_operator
https://documentation.suse.com/cloudnative/rke2/latest/en/advanced.html#_deploy_nvidia_operator

 kubernetes_sd_configs:
 - role: endpoints
 namespaces:
 names:
 - gpu-operator
 - job_name: 'milvus'
 scrape_interval: 15s
 metrics_path: '/metrics'
 static_configs:
 - targets:
 ['<MILVUS_SERVICE_NAME>.<SUSE_AI_NAMESPACE>.svc.cluster.local:9091'] 1

 - job_name: 'vllm'
 scrape_interval: 10s
 scheme: http
 kubernetes_sd_configs:
 - role: service
 relabel_configs:
 - source_labels: [__meta_kubernetes_namespace]
 action: keep
 regex: '<VLLM_NAMESPACE>' 2

 - source_labels: [__meta_kubernetes_service_name]
 action: keep
 regex: '.*<VLLM_RELEASE_NAME>.*' 3

 exporters:
 otlp:
 endpoint: https://<OPEN_TELEMETRY_COLLECTOR_NAME>.suse-
observability.svc.cluster.local:4317 4

 headers:
 Authorization: "SUSEObservability ${env:API_KEY}"
 tls:
 insecure: true
 processors:
 tail_sampling:
 decision_wait: 10s
 policies:
 - name: rate-limited-composite
 type: composite
 composite:
 max_total_spans_per_second: 500
 policy_order: [errors, slow-traces, rest]
 composite_sub_policy:
 - name: errors
 type: status_code
 status_code:
 status_codes: [ERROR]
 - name: slow-traces

122 Deploying and Installing SUSE AI

 type: latency
 latency:
 threshold_ms: 1000
 - name: rest
 type: always_sample
 rate_allocation:
 - policy: errors
 percent: 33
 - policy: slow-traces
 percent: 33
 - policy: rest
 percent: 34
 resource:
 attributes:
 - key: k8s.cluster.name
 action: upsert
 value: <CLUSTER_NAME> 5

 - key: service.instance.id
 from_attribute: k8s.pod.uid
 action: insert
 filter/dropMissingK8sAttributes:
 error_mode: ignore
 traces:
 span:
 - resource.attributes["k8s.node.name"] == nil
 - resource.attributes["k8s.pod.uid"] == nil
 - resource.attributes["k8s.namespace.name"] == nil
 - resource.attributes["k8s.pod.name"] == nil
 connectors:
 spanmetrics:
 metrics_expiration: 5m
 namespace: otel_span
 routing/traces:
 error_mode: ignore
 table:
 - statement: route()
 pipelines: [traces/sampling, traces/spanmetrics]
 service:
 extensions:
 - health_check
 pipelines:
 traces:
 receivers: [otlp, jaeger]
 processors: [filter/dropMissingK8sAttributes, memory_limiter, resource]
 exporters: [routing/traces]
 traces/spanmetrics:
 receivers: [routing/traces]

123 Deploying and Installing SUSE AI

 processors: []
 exporters: [spanmetrics]
 traces/sampling:
 receivers: [routing/traces]
 processors: [tail_sampling, batch]
 exporters: [debug, otlp]
 metrics:
 receivers: [otlp, spanmetrics, prometheus]
 processors: [memory_limiter, resource, batch]
 exporters: [debug, otlp]

1 Configure the Milvus service and namespace for the Prometheus scraper. Because
Milvus will be installed in subsequent steps, you can return to this step and edit the
endpoint if necessary.

2 Update to match the values in the vLLM deployment section.

3 Update to match the values in the vLLM deployment section.

4 Set the exporter to your exposed SUSE Observability collector. Remember that the
value can be distinct, depending on the deployment pattern. For production usage,
we recommend using TLS communication.

5 Replace <CLUSTER_NAME> with the cluster’s name.

Finally, run the installation command.

> helm upgrade --install opentelemetry-collector \
 oci://dp.apps.rancher.io/charts/opentelemetry-collector \
 -f otel-values.yaml --namespace observability

Verify the installation by checking the existence of a new deployment and service in the
observability namespace.

3. The GPU metrics scraper that we configure in the OTEL Collector requires custom RBAC
rules. Create a le named otel-rbac.yaml with the following content:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: suse-observability-otel-scraper
rules:
 - apiGroups:
 - ""
 resources:
 - services
 - endpoints

124 Deploying and Installing SUSE AI

 verbs:
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: suse-observability-otel-scraper
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: suse-observability-otel-scraper
subjects:
 - kind: ServiceAccount
 name: opentelemetry-collector
 namespace: observability

Then apply the configuration by running the following command.

> kubectl apply -n gpu-operator -f otel-rbac.yaml

4. Install the SUSE Observability Agent.

> helm upgrade --install \
 --namespace suse-observability --create-namespace \
 --set-string 'stackstate.apiKey'='<YOUR_API_KEY>' \ 1

 --set-string 'stackstate.cluster.name'='<CLUSTER_NAME>' \ 2

 --set-string 'stackstate.url'='http://suse-observability-router.suse-
observability.svc.cluster.local:8080/receiver/stsAgent' \ 3

 --set 'nodeAgent.skipKubeletTLSVerify'=true suse-observability-agent \
 suse-observability/suse-observability-agent

1 Retrieve the API key using the Web UI or from the baseConfig_values.yaml le
that you used during the SUSE Observability installation.

2 Replace <CLUSTER_NAME> with the cluster’s name.

3 Replace with your SUSE Observability server URL.

5. Install SUSE AI. Refer to Section 4, “Installing applications from AI Library” for the complete
procedure.

125 Deploying and Installing SUSE AI

Warning: SUSE Observability version 2.6.2 and above
With SUSE Observability version 2.6.2, a change of the standard behavior broke the vLLM
monitoring performed by the extension. To x it, update otel-values.yaml to include
the following additions. No changes are required for people using SUSE Observability
version 2.6.1 and below.

Add a new processor.

config:
 processors:
 ... # same as before
 transform:
 metric_statements:
 - context: metric
 statements:
 - replace_pattern(name, "^vllm:", "vllm_")

Modify the metrics pipeline to perform the transformation defined above:

config:
 service:
 pipelines:
 ... # same as before
 metrics:
 receivers: [otlp, spanmetrics, prometheus]
 processors: [transform, memory_limiter, resource, batch]
 exporters: [debug, otlp]

3.6.6 Instrument applications

Instrumentation is the act of configuring your applications for telemetry data acquisition. Our
stack employs OpenTelemetry standards as a vendor-neutral and open base for our telemetry.
For a comprehensive guide on how to set up your instrumentation, please refer to Monitoring

SUSE AI with OpenTelemetry and SUSE Observability (https://documentation.suse.com/suse-ai/1.0/

html/AI-monitoring/index.html) .

By following the instructions in the document referenced above, you will be able to retrieve
all relevant telemetry data from Open WebUI, Ollama, Milvus and vLLM by simply applying
specific configuration to their Helm chart values. You can nd links for advanced use cases
(auto-instrumentation with the OTEL Operator) at the end of the document.

126 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-monitoring/index.html

4 Installing applications from AI Library
SUSE AI is delivered as a set of components that you can combine to meet specific use cases. To
enable the full integrated stack, you need to deploy multiple applications in sequence. Applica-
tions with the fewest dependencies must be installed rst, followed by dependent applications
once their required dependencies are in place within the cluster.

You can either install required AI Library components manually using their Helm charts, or use
SUSE Deployer to include all the dependencies in one step.

4.1 Installation procedure

This procedure includes steps to install AI Library applications.

1. Purchase the SUSE AI entitlement. It is a separate entitlement from SUSE Rancher Prime.

2. Access SUSE AI via the SUSE Application Collection at https://apps.rancher.io/ to perform
the check for the SUSE AI entitlement.

3. If the entitlement check is successful, you are given access to the SUSE AI-related Helm
charts and container images, and can deploy directly from the SUSE Application Collection.

4. Visit the SUSE Application Collection, sign in and get the user access token as described
in https://docs.apps.rancher.io/get-started/authentication/ .

5. Create a Kubernetes namespace if it does not already exist. The steps in this proce-
dure assume that all containers are deployed into the same namespace referred to as
SUSE_AI_NAMESPACE. Replace its name to match your preferences.

> kubectl create namespace <SUSE_AI_NAMESPACE>

6. Create the SUSE Application Collection secret.

> kubectl create secret docker-registry application-collection \
 --docker-server=dp.apps.rancher.io \
 --docker-username=<APPCO_USERNAME> \
 --docker-password=<APPCO_USER_TOKEN> \
 -n <SUSE_AI_NAMESPACE>

7. Log in to the Helm registry.

> helm registry login dp.apps.rancher.io/charts \
 -u <APPCO_USERNAME> \

127 Deploying and Installing SUSE AI

https://apps.rancher.io/
https://docs.apps.rancher.io/get-started/authentication/

 -p <APPCO_USER_TOKEN>

8. Install cert-manager as described in Section 4.2, “Installing cert-manager”.

9. Install AI Library components. You can either install each component separately, or use
the SUSE Deployer chart to install the components together as described in Section 4.11,

“Installing AI Library components using SUSE Deployer”.

a. Install an application with vector database capabilities. Open WebUI supports either
OpenSearch (Section 4.3, “Installing OpenSearch”) or Milvus (Section 4.4, “Installing Mil-

vus”).

b. (Optional) Install Ollama as described in Section 4.5, “Installing Ollama”.

c. Install Open WebUI as described in Section 4.6, “Installing Open WebUI”.

d. Install vLLM as described in Section 4.7, “Installing vLLM”.

e. Install mcpo as described in Section 4.8, “Installing mcpo”.

4.2 Installing cert-manager

cert-manager is an extensible X.509 certificate controller for Kubernetes workloads. It supports
certificates from popular public issuers as well as private issuers. cert-manager ensures that the
certificates are valid and up-to-date, and attempts to renew certificates at a configured time
before expiry.

In previous releases, cert-manager was automatically installed together with Open WebUI. Cur-
rently, cert-manager is no longer part of the Open WebUI Helm chart and you need to install
it separately.

4.2.1 Details about the cert-manager application

Before deploying cert-manager, it is important to know more about the supported configurations
and documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/cert-manager

Alternatively, you can also refer to the cert-manager Helm chart page on the SUSE Application
Collection site at https://apps.rancher.io/applications/cert-manager . It contains available ver-
sions and the link to pull the cert-manager container image.

128 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/cert-manager

4.2.2 cert-manager installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

Install the cert-manager chart.

> helm upgrade --install cert-manager \
 oci://dp.apps.rancher.io/charts/cert-manager \
 -n <CERT_MANAGER_NAMESPACE> \
 --set crds.enabled=true \
 --set 'global.imagePullSecrets[0].name'=application-collection

4.2.3 Upgrading cert-manager

To upgrade cert-manager to a specific new version, run the following command:

> helm upgrade --install cert-manager \
 oci://dp.apps.rancher.io/charts/cert-manager \
 -n <CERT_MANAGER_NAMESPACE> \
 --version <VERSION_NUMBER>

To upgrade cert-manager to the latest version, run the following command:

> helm upgrade --install cert-manager \
 oci://dp.apps.rancher.io/charts/cert-manager \
 -n <CERT_MANAGER_NAMESPACE>

4.2.4 Uninstalling cert-manager

To uninstall cert-manager, run the following command:

> helm uninstall cert-manager -n <CERT_MANAGER_NAMESPACE>

129 Deploying and Installing SUSE AI

4.3 Installing OpenSearch

OpenSearch is a community-driven, open source search and analytics suite. It is used to search,
visualize and analyze data. OpenSearch consists of a data store and search engine (OpenSearch),
a visualization and user interface (OpenSearch Dashboards), and a server-side data collector
(Data Prepper). Its functionality can be extended by plug-ins that enhance features like search,
analytics, observability, security or machine learning.

4.3.1 Details about the OpenSearch application

Before deploying OpenSearch, it is important to know more about the supported configurations
and documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/opensearch

Alternatively, you can also refer to the OpenSearch Helm chart page on the SUSE Application
Collection site at https://apps.rancher.io/applications/opensearch . It contains OpenSearch de-
pendencies, available versions and the link to pull the OpenSearch container image.

4.3.2 OpenSearch installation procedure

OpenSearch can operate as a single-node or multi-node cluster. The following override le ex-
amples outline both scenarios.

Important
Both scenarios require increasing the value of the vm.max_map_count to at least 262144.
To check the current value, run the following command:

> cat /proc/sys/vm/max_map_count

To increase the value, add the following to /etc/sysctl.conf:

vm.max_map_count=262144

Then run sudo sysctl -p to reload.

130 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/opensearch

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

1. Create an opensearch_custom_overrides.yaml le to override the default values of the
Helm chart.
For a single-node cluster, use the following template le:

opensearch_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
singleNode: true
replicas: 1
persistence:
 enabled: true
 storageClass: local-path

extraEnvs:
 - name: OPENSEARCH_INITIAL_ADMIN_PASSWORD
 value: "MySecurePass123"

service:
 type: NodePort
 httpPort: 9200
 transportPort: 9300
 metricsPort: 9600

resources:
 limits:
 memory: "6Gi"
 cpu: "2"

config:
 opensearch.yml: |
 plugins.security.disabled: true

For a multi-node cluster, use the following template le:

opensearch_custom_overrides.yaml
global:
 imagePullSecrets:

131 Deploying and Installing SUSE AI

 - application-collection
singleNode: false
replicas: 3
persistence:
 enabled: true
 storageClass: local-path

extraEnvs:
 - name: OPENSEARCH_INITIAL_ADMIN_PASSWORD
 value: "MySecurePass123"
 - name: ES_JAVA_OPTS
 value: "-Xms3g -Xmx3g"

service:
 type: NodePort
 httpPort: 9200
 transportPort: 9300
 metricsPort: 9600

resources:
 limits:
 memory: "6Gi"
 cpu: "2"
 requests:
 memory: "4Gi"
 cpu: "1"

startupProbe:
 tcpSocket:
 port: 9200
 initialDelaySeconds: 60
 periodSeconds: 10
 timeoutSeconds: 5
 failureThreshold: 12

readinessProbe:
 tcpSocket:
 port: 9200
 initialDelaySeconds: 60
 periodSeconds: 10
 timeoutSeconds: 5
 failureThreshold: 6

livenessProbe:
 tcpSocket:
 port: 9200
 initialDelaySeconds: 120

132 Deploying and Installing SUSE AI

 periodSeconds: 20
 timeoutSeconds: 5
 failureThreshold: 3

config:
 opensearch.yml: |
 plugins.security.disabled: true

2. After saving the override le as opensearch_custom_overrides.yaml, apply its configu-
ration with the following command.

> helm upgrade --install \
 opensearch oci://dp.apps.rancher.io/charts/opensearch \
 -n <SUSE_AI_NAMESPACE> \
 -f <opensearch_custom_overrides.yaml>

3. Check that the pods and services are running.

> kubectl get pods -n <SUSE_AI_NAMESPACE> | grep "opensearch"
opensearch-cluster-master-0 1/1 Running 0 5h34m

A multi-node cluster configuration shows that the replicas are distributed across multiple
nodes.

> kubectl get pods -n <SUSE_AI_NAMESPACE> | grep "opensearch"
opensearch-cluster-master-0 1/1 Running 0 2m30s 10.42.1.32 mgmt-rancher-wkrgpu1
opensearch-cluster-master-1 1/1 Running 0 2m30s 10.42.1.33 mgmt-rancher-wkrgpu1
opensearch-cluster-master-2 1/1 Running 0 2m30s 10.42.0.27 mgmt-rancher

4.3.3 Integrating OpenSearch with Open WebUI

To integrate OpenSearch with Open WebUI, follow these steps:

1. Edit the override le for Open WebUI, owui_custom_overrides.yaml, and update the
extraEnvVars section as follows.

Change the VECTOR_DB value to opensearch.

Remove the MILVUS_URI variable.

Add all the OpenSearch-related environment variables.

extraEnvVars:
- name: DEFAULT_MODELS

133 Deploying and Installing SUSE AI

 value: "gemma:2b"
- name: DEFAULT_USER_ROLE
 value: "pending"
- name: ENABLE_SIGNUP
 value: "true"
- name: GLOBAL_LOG_LEVEL
 value: INFO
- name: RAG_EMBEDDING_MODEL
 value: "sentence-transformers/all-MiniLM-L6-v2"
- name: INSTALL_NLTK_DATASETS
 value: "true"
- name: VECTOR_DB
 value: "opensearch"
#- name: MILVUS_URI
value: http://milvus.<SUSE_AI_NAMESPACE>.svc.cluster.local:19530
- name: OPENAI_API_KEY
 value: "0p3n-w3bu!"
- name: OPENSEARCH_SSL
 value: "false"
- name: OPENSEARCH_URI
 value: http://opensearch-cluster-
master.<SUSE_AI_NAMESPACE>.svc.cluster.local:9200
- name: OPENSEARCH_USERNAME
 value: admin
- name: OPENSEARCH_PASSWORD
 value: MySecurePass123
- name: OPENSEARCH_CERT_VERIFY
 value: "false"

2. Redeploy Open WebUI.

> helm upgrade --install \
 open-webui oci://dp.apps.rancher.io/charts/open-webui \
 -n <SUSE_AI_NAMESPACE> \
 -f <owui_custom_overrides.yaml>

3. Verify that VECTOR_DB is set to opensearch.

> kubectl exec -it open-webui-0 -n <SUSE_AI_NAMESPACE> \
 -- sh -c 'echo "VECTOR_DB=$VECTOR_DB"'

Defaulted container "open-webui" out of: open-webui, copy-app-data (init)
VECTOR_DB=opensearch

134 Deploying and Installing SUSE AI

4.3.4 Upgrading OpenSearch

The OpenSearch chart receives application updates and updates of the Helm chart templates.
New versions may include changes that require manual steps. These steps are listed in the
corresponding README le. All OpenSearch dependencies are updated automatically during an
OpenSearch upgrade.

To upgrade OpenSearch, identify the new version number and run the following command
below:

> helm upgrade --install \
 opensearch oci://dp.apps.rancher.io/charts/opensearch \
 -n <SUSE_AI_NAMESPACE> \
 --version <VERSION_NUMBER> \
 -f <opensearch_custom_overrides.yaml>

Tip
If you omit the --version option, OpenSearch gets upgraded to the latest available ver-
sion.

4.3.5 Uninstalling OpenSearch

To uninstall OpenSearch, run the following command:

> helm uninstall opensearch -n <SUSE_AI_NAMESPACE>

4.4 Installing Milvus

Milvus is a scalable, high-performance vector database designed for AI applications. It enables
efficient organization and searching of massive unstructured datasets, including text, images
and multi-modal content. This procedure walks you through the installation of Milvus and its
dependencies.

135 Deploying and Installing SUSE AI

4.4.1 Details about the Milvus application

Before deploying Milvus, it is important to know more about the supported configurations and
documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/milvus

Alternatively, you can also refer to the Milvus Helm chart page on the SUSE Application Collec-
tion site at https://apps.rancher.io/applications/milvus . It contains Milvus dependencies, avail-
able versions and the link to pull the Milvus container image.

FIGURE 33: MILVUS PAGE IN THE SUSE APPLICATION COLLECTION

4.4.2 Milvus installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

136 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/milvus

1. When installed as part of SUSE AI, Milvus depends on etcd, MinIO and Apache Kafka.
Because the Milvus chart uses a non-default configuration, create an override le mil-
vus_custom_overrides.yaml with the following content.

Tip
As a template, you can download the Milvus Helm chart that includes the val-
ues.yaml le with the default configuration by running the following command:

> helm pull oci://dp.apps.rancher.io/charts/milvus --version 4.2.2

global:
 imagePullSecrets:
 - application-collection
 ifdef::deployment_airgap[]
 imageRegistry: <LOCAL_DOCKER_REGISTRY_URL>:5043
 endif::[]
cluster:
 enabled: True
standalone:
 persistence:
 persistentVolumeClaim:
 storageClassName: "local-path"
etcd:
 replicaCount: 1
 persistence:
 storageClassName: "local-path"
minio:
 mode: distributed
 replicas: 4
 rootUser: "admin"
 rootPassword: "adminminio"
 persistence:
 storageClass: "local-path"
 resources:
 requests:
 memory: 1024Mi
kafka:
 enabled: true
 name: kafka
 replicaCount: 3
 broker:
 enabled: true

137 Deploying and Installing SUSE AI

 cluster:
 listeners:
 client:
 protocol: 'PLAINTEXT'
 controller:
 protocol: 'PLAINTEXT'
 persistence:
 enabled: true
 annotations: {}
 labels: {}
 existingClaim: ""
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 8Gi
 storageClassName: "local-path"
extraConfigFiles: 1

 user.yaml: |+
 trace:
 exporter: jaeger
 sampleFraction: 1
 jaeger:
 url: "http://opentelemetry-collector.observability.svc.cluster.local:14268/
api/traces" 2

1 The extraConfigFiles section is optional, required only to receive telemetry data
from Open WebUI.

2 The URL of the OpenTelemetry Collector installed by the user.

Tip
The above example uses local storage. For production environments, we recommend
using an enterprise class storage solution such as SUSE Storage in which case the
storageClassName option must be set to longhorn.

2. Install the Milvus Helm chart using the milvus_custom_overrides.yaml override le.

> helm upgrade --install \
 milvus oci://dp.apps.rancher.io/charts/milvus \
 -n <SUSE_AI_NAMESPACE> \
 --version 4.2.2 -f <milvus_custom_overrides.yaml>

138 Deploying and Installing SUSE AI

4.4.2.1 Using Apache Kafka with SUSE Storage

When Milvus is deployed in cluster mode, it uses Apache Kafka as a message queue. If Apache
Kafka uses SUSE Storage as a storage back-end, you need to create an XFS storage class and
make it available for the Apache Kafka deployment. Otherwise deploying Apache Kafka with a
storage class of an Ext4 le system fails with the following error:

"Found directory /mnt/kafka/logs/lost+found, 'lost+found' is not
 in the form of topic-partition or topic-partition.uniqueId-delete
 (if marked for deletion)"

To introduce the XFS storage class, follow these steps:

1. Create a le named longhorn-xfs.yaml with the following content:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: longhorn-xfs
provisioner: driver.longhorn.io
allowVolumeExpansion: true
reclaimPolicy: Delete
volumeBindingMode: Immediate
parameters:
 numberOfReplicas: "3"
 staleReplicaTimeout: "30"
 fromBackup: ""
 fsType: "xfs"
 dataLocality: "disabled"
 unmapMarkSnapChainRemoved: "ignored"

2. Create the new storage class using the kubectl command.

> kubectl apply -f longhorn-xfs.yaml

3. Update the Milvus overrides YAML le to reference the Apache Kafka storage class, as in
the following example:

 [...]
 kafka:
 enabled: true
 persistence:
 storageClassName: longhorn-xfs

139 Deploying and Installing SUSE AI

4.4.3 Upgrading Milvus

The Milvus chart receives application updates and updates of the Helm chart templates. New
versions may include changes that require manual steps. These steps are listed in the correspond-
ing README le. All Milvus dependencies are updated automatically during Milvus upgrade.

To upgrade Milvus, identify the new version number and run the following command below:

> helm upgrade --install \
 milvus oci://dp.apps.rancher.io/charts/milvus \
 -n <SUSE_AI_NAMESPACE> \
 --version <VERSION_NUMBER> \
 -f <milvus_custom_overrides.yaml>

4.4.4 Uninstalling Milvus

To uninstall Milvus, run the following command:

> helm uninstall milvus -n <SUSE_AI_NAMESPACE>

4.5 Installing Ollama

Ollama is a tool for running and managing language models locally on your computer. It offers a
simple interface to download, run and interact with models without relying on cloud resources.

Tip
When installing SUSE AI, Ollama is installed by the Open WebUI installation by default.
If you decide to install Ollama separately, disable its installation during the installation
of Open WebUI as outlined in Example 6, “Open WebUI override file with Ollama installed

separately”.

4.5.1 Details about the Ollama application

Before deploying Ollama, it is important to know more about the supported configurations and
documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/ollama

140 Deploying and Installing SUSE AI

Alternatively, you can also refer to the Ollama Helm chart page on the SUSE Application Collec-
tion site at https://apps.rancher.io/applications/ollama . It contains the available versions and
a link to pull the Ollama container image.

4.5.2 Ollama installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

1. Create the ollama_custom_overrides.yaml le to override the values of the parent Helm
chart. Refer to Section 4.5.5, “Values for the Ollama Helm chart” for more details.

2. Install the Ollama Helm chart using the ollama-custom-overrides.yaml override le.

> helm upgrade \
 --install ollama oci://dp.apps.rancher.io/charts/ollama \
 -n <SUSE_AI_NAMESPACE> \
 -f ollama_custom_overrides.yaml

Tip: Hugging Face models
Models downloaded from Hugging Face need to be converted before they can
be used by Ollama. Refer to https://github.com/ollama/ollama/blob/main/docs/im-

port.md for more details.

4.5.3 Uninstalling Ollama

To uninstall Ollama, run the following command:

> helm uninstall ollama -n <SUSE_AI_NAMESPACE>

141 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/ollama
https://github.com/ollama/ollama/blob/main/docs/import.md
https://github.com/ollama/ollama/blob/main/docs/import.md

4.5.4 Upgrading Ollama

You can upgrade Ollama to a specific version by running the following command:

> helm upgrade ollama oci://dp.apps.rancher.io/charts/ollama \
 -n <SUSE_AI_NAMESPACE> \
 --version <OLLAMA_VERSION_NUMBER> -f <ollama_custom_overrides.yaml>

If you omit the --version option, Ollama gets upgraded to the latest available version.

4.5.4.1 Upgrading from version 0.x.x to 1.x.x

The version 1.x.x introduces the ability to load models in memory at startup. To reflect this,
change ollama.models to ollama.models.pull in the Ollama Helm chart to avoid errors before
upgrading, for example:

EXAMPLE 1: OLLAMA HELM CHART VERSION 0.X.X

[...]
ollama:
 models:
 - "gemma:2b"
 - "llama3.1"

EXAMPLE 2: OLLAMA HELM CHART VERSION 1.X.X

[...]
ollama:
 models:
 pull:
 - "gemma:2b"
 - "llama3.1"

Without this change you may experience the following error when trying to upgrade from 0.x.x
to 1.x.x.

coalesce.go:286: warning: cannot overwrite table with non table for
ollama.ollama.models (map[pull:[] run:[]])
Error: UPGRADE FAILED: template: ollama/templates/deployment.yaml:145:27:
executing "ollama/templates/deployment.yaml" at <.Values.ollama.models.pull>:
can't evaluate field pull in type interface {}

142 Deploying and Installing SUSE AI

4.5.5 Values for the Ollama Helm chart

To override the default values during the Helm chart installation or update, you can create an
override YAML le with custom values. Then, apply these values by specifying the path to the
override le with the -f option of the helm command. Remember to replace <SUSE_AI_NAMES-
PACE> with your Kubernetes namespace.

Important: GPU section
Ollama can run optimized for NVIDIA GPUs if the following conditions are fulfilled:

The NVIDIA driver and NVIDIA GPU Operator are installed as described in
Installing NVIDIA GPU Drivers on SLES (https://documentation.suse.com/suse-ai/1.0/

html/NVIDIA-GPU-driver-on-SLES/index.html) or Installing NVIDIA GPU Drivers on

SUSE Linux Micro (https://documentation.suse.com/suse-ai/1.0/html/NVIDIA-GPU-dri-

ver-on-SL-Micro/index.html) .

The workloads are set to run on NVIDIA-enabled nodes as described
in https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.htm-

l#ai-gpu-nodes-assigning .

If you do not want to use the NVIDIA GPU, remove the gpu section from ollama_cus-
tom_overrides.yaml or disable it.

 ollama:
 [...]
 gpu:
 enabled: false
 type: 'nvidia'
 number: 1

EXAMPLE 3: BASIC OVERRIDE FILE WITH GPU AND TWO MODELS PULLED AT STARTUP

global:
 imagePullSecrets:
 - application-collection
ingress:
 enabled: false
defaultModel: "gemma:2b"
runtimeClassName: nvidia
ollama:
 models:

143 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/NVIDIA-GPU-driver-on-SLES/index.html
https://documentation.suse.com/suse-ai/1.0/html/NVIDIA-GPU-driver-on-SLES/index.html
https://documentation.suse.com/suse-ai/1.0/html/NVIDIA-GPU-driver-on-SL-Micro/index.html
https://documentation.suse.com/suse-ai/1.0/html/NVIDIA-GPU-driver-on-SL-Micro/index.html
https://documentation.suse.com/suse-ai/1.0/html/NVIDIA-GPU-driver-on-SL-Micro/index.html
https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.html#ai-gpu-nodes-assigning
https://documentation.suse.com/suse-ai/1.0/html/AI-deployment-intro/index.html#ai-gpu-nodes-assigning

 pull:
 - "gemma:2b"
 - "llama3.1"
 run:
 - "gemma:2b"
 - "llama3.1"
 gpu:
 enabled: true
 type: 'nvidia'
 number: 1
 nvidiaResource: "nvidia.com/gpu"
persistentVolume: 1

 enabled: true
 storageClass: local-path 2

1 Without the persistentVolume option enabled, changes made to Ollama—such as down-
loading other LLM-- are lost when the container is restarted.

2 Use local-path storage only for testing purposes. For production use, we recommend
using a storage solution suitable for persistent storage, such as SUSE Storage.

EXAMPLE 4: BASIC OVERRIDE FILE WITH INGRESS AND NO GPU

ollama:
 models:
 pull:
 - llama2
 run:
 - llama2
 persistentVolume:
 enabled: true
 storageClass: local-path 1

ingress:
 enabled: true
 hosts:
 - host: <OLLAMA_API_URL>
 paths:
 - path: /
 pathType: Prefix

1 Use local-path storage (requires installing the corresponding provisioner) only for testing
purposes. For production use, we recommend using a storage solution suitable for persistent
storage, such as SUSE Storage.

144 Deploying and Installing SUSE AI

TABLE 2: OVERRIDE FILE OPTIONS FOR THE OLLAMA HELM CHART

Key Type Default Description

affinity object {} Affinity for pod as-
signment

autoscaling.enabled bool false Enable autoscaling

autoscal-
ing.maxReplicas

int 100 Number of maximum
replicas

autoscaling.minRepli-
cas

int 1 Number of minimum
replicas

autoscaling.tar-
getCPUUtilization-
Percentage

int 80 CPU usage to target
replica

extraArgs list [] Additional arguments
on the output De-
ployment definition.

extraEnv list [] Additional environ-
ment variables on the
output Deployment
definition.

fullnameOverride string "" String to fully over-
ride template

global.imagePullSe-
crets

list [] Global override for
container image reg-
istry pull secrets

global.imageRegistry string "" Global override for
container image reg-
istry

145 Deploying and Installing SUSE AI

Key Type Default Description

hostIPC bool false Use the host’s IPC
namespace

hostNetwork bool false Use the host’s net-
work namespace

hostPID bool false Use the host’s PID
namespace.

image.pullPolicy string "IfNotPresent" Image pull policy to
use for the Ollama
container

image.registry string "dp.apps.rancher.io" Image registry to use
for the Ollama con-
tainer

image.repository string "containers/ollama" Image repository to
use for the Ollama
container

image.tag string "0.3.6" Image tag to use for
the Ollama container

imagePullSecrets list [] Docker registry secret
names as an array

ingress.annotations object {} Additional annota-
tions for the Ingress
resource

ingress.className string "" IngressClass that is
used to implement
the Ingress (Kuber-
netes 1.18+)

146 Deploying and Installing SUSE AI

Key Type Default Description

ingress.enabled bool false Enable Ingress con-
troller resource

ingress.hosts[0].host string "ollama.local"

ingress.hosts[0].path-
s[0].path

string "/"

ingress.hosts[0].path-
s[0].pathType

string "Prefix"

ingress.tls list [] The TLS configura-
tion for host names
to be covered with
this Ingress record

initContainers list [] Init containers to add
to the pod

knative.container-
Concurrency

int 0 Knative service con-
tainer concurrency

knative.enabled bool false Enable Knative inte-
gration

knative.idleTime-
outSeconds

int 300 Knative service idle
timeout seconds

knative.responseS-
tartTimeoutSeconds

int 300 Knative service re-
sponse start timeout
seconds

knative.timeoutSe-
conds

int 300 Knative service time-
out seconds

livenessProbe.en-
abled

bool true Enable livenessProbe

147 Deploying and Installing SUSE AI

Key Type Default Description

livenessProbe.fail-
ureThreshold

int 6 Failure threshold for
livenessProbe

livenessProbe.ini-
tialDelaySeconds

int 60 Initial delay seconds
for livenessProbe

livenessProbe.path string "/" Request path for live-
nessProbe

livenessProbe.peri-
odSeconds

int 10 Period seconds for
livenessProbe

livenessProbe.suc-
cessThreshold

int 1 Success threshold for
livenessProbe

livenessProbe.time-
outSeconds

int 5 Timeout seconds for
livenessProbe

nameOverride string "" String to partially
override template
(maintains the re-
lease name)

nodeSelector object {} Node labels for pod
assignment

ollama.gpu.enabled bool false Enable GPU integra-
tion

ollama.gpu.number int 1 Specify the number
of GPUs

ollama.gpu.nvidiaRe-
source

string "nvidia.com/gpu" Only for NVIDIA
cards; change
to nvidi-
a.com/mig-1g.10gb

to use MIG slice

148 Deploying and Installing SUSE AI

Key Type Default Description

ollama.gpu.type string "nvidia" GPU type: 'nvidia' or
'amd.' If 'ollama.g-
pu.enabled' is en-
abled, the default
value is 'nvidia.' If
set to 'amd,' this adds
the 'rocm' suffix to
the image tag if 'im-
age.tag' is not over-
ride. This is because
AMD and CPU/CUDA
are different images.

ollama.insecure bool false Add insecure ag for
pulling at container
startup

ollama.models list [] List of models to pull
at container startup.
The more you add,
the longer the con-
tainer takes to start
if models are not
present models: - lla-
ma2 - mistral

ollama.mountPath string "" Override ollama-data
volume mount path,
default: "/root/.olla-
ma"

persistentVolume.ac-
cessModes

list ["ReadWriteOnce"] Ollama server da-
ta Persistent Vol-
ume access modes.
Must match those of

149 Deploying and Installing SUSE AI

Key Type Default Description

existing PV or dy-
namic provisioner,
see https://kuber-

netes.io/docs/con-

cepts/storage/persis-

tent-volumes/ .

persistentVolume.an-
notations

object {} Ollama server data
Persistent Volume
annotations

persistentVolume.en-
abled

bool false Enable persistence
using PVC

persistentVolume.ex-
istingClaim

string "" If you want to bring
your own PVC for
persisting Ollama
state, pass the name
of the created +
ready PVC here. If
set, this Chart does
not create the default
PVC. Requires serv-
er.persistentVol-

ume.enabled: true

persistentVolume.size string "30Gi" Ollama server data
Persistent Volume
size

persistentVolume.s-
torageClass

string "" If persistentVol-
ume.storageClass is
present, and is set
to either a dash ('-')
or empty string (''),
dynamic provision-

150 Deploying and Installing SUSE AI

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Key Type Default Description

ing is disabled. Oth-
erwise, the storage-
ClassName for per-
sistent volume claim
is set to the given
value specified by
persistentVolume.s-
torageClass. If per-
sistentVolume.stor-
ageClass is absent,
the default storage
class is used for dy-
namic provisioning
whenever possible.
See https://kuber-

netes.io/docs/con-

cepts/storage/stor-

age-classes/ for
more details.

persistentVol-
ume.subPath

string "" Subdirectory of Olla-
ma server data Per-
sistent Volume to
mount. Useful if the
volume’s root direc-
tory is not empty.

persistentVolume.vol-
umeMode

string "" Ollama server da-
ta Persistent Vol-
ume Binding Mode.
If empty (the default)
or set to null, no vol-
umeBindingMode

151 Deploying and Installing SUSE AI

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Key Type Default Description

specification is set,
choosing the default
mode.

persistentVolume.vol-
umeName

string "" Ollama server Persis-
tent Volume name. It
can be used to force-
attach the created
PVC to a specific PV.

podAnnotations object {} Map of annotations
to add to the pods

podLabels object {} Map of labels to add
to the pods

podSecurityContext object {} Pod Security Context

readinessProbe.en-
abled

bool true Enable readi-
nessProbe

readinessProbe.fail-
ureThreshold

int 6 Failure threshold for
readinessProbe

readinessProbe.ini-
tialDelaySeconds

int 30 Initial delay seconds
for readinessProbe

readinessProbe.path string "/" Request path for
readinessProbe

readinessProbe.peri-
odSeconds

int 5 Period seconds for
readinessProbe

readinessProbe.suc-
cessThreshold

int 1 Success threshold for
readinessProbe

readinessProbe.time-
outSeconds

int 3 Timeout seconds for
readinessProbe

152 Deploying and Installing SUSE AI

Key Type Default Description

replicaCount int 1 Number of replicas

resources.limits object {} Pod limit

resources.requests object {} Pod requests

runtimeClassName string "" Specify runtime class

securityContext object {} Container Security
Context

service.annotations object {} Annotations to add to
the service

service.nodePort int 31434 Service node port
when service type is
'NodePort'

service.port int 11434 Service port

service.type string "ClusterIP" Service type

serviceAccount.anno-
tations

object {} Annotations to add to
the service account

serviceAccount.auto-
mount

bool true Whether to automat-
ically mount a Ser-
viceAccount’s API
credentials

serviceAccount.create bool true Whether a service ac-
count should be cre-
ated

serviceAccount.name string "" The name of the ser-
vice account to use.
If not set and 'create'

153 Deploying and Installing SUSE AI

Key Type Default Description

is 'true', a name is
generated using the
full name template.

tolerations list [] Tolerations for pod
assignment

topologySpreadCon-
straints

object {} Topology Spread
Constraints for pod
assignment

updateStrategy object {"type":""} How to replace exist-
ing pods.

updateStrategy.type string "" Can be 'Recreate' or
'RollingUpdate'; de-
fault is 'RollingUp-
date'

volumeMounts list [] Additional volumeM-
ounts on the output
Deployment defini-
tion

volumes list [] Additional volumes
on the output De-
ployment definition

4.6 Installing Open WebUI

Open WebUI is a user-friendly web interface for interacting with Large Language Models (LLMs).
It supports various LLM runners, including Ollama and vLLM.

154 Deploying and Installing SUSE AI

4.6.1 Details about the Open WebUI application

Before deploying Open WebUI, it is important to know more about the supported configurations
and documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/open-webui

Alternatively, you can also refer to the Open WebUI Helm chart page on the SUSE Applica-
tion Collection site at https://apps.rancher.io/applications/open-webui . It contains available
versions and the link to pull the Open WebUI container image.

4.6.2 Open WebUI installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

REQUIREMENTS

An installed cert-manager. If cert-manager is not installed from previous Open WebUI
releases, install it by following the steps in Section 4.2, “Installing cert-manager”.

1. Create the owui_custom_overrides.yaml le to override the values of the parent Helm
chart. The le contains URLs for Milvus and Ollama, and specifies whether a stand-alone
Ollama deployment is used or whether Ollama is installed as part of the Open WebUI
installation. Find more details in Section 4.6.5, “Examples of Open WebUI Helm chart override

files”. For a list of all installation options with examples, refer to Section 4.6.6, “Values for

the Open WebUI Helm chart”.

2. Install the Open WebUI Helm chart using the owui_custom_overrides.yaml override le.

> helm upgrade --install \
 open-webui charts/open-webui-<X.Y.Z>.tgz \
 -n <SUSE_AI_NAMESPACE> \
 --version <X.Y.Z> -f <owui_custom_overrides.yaml>

155 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/open-webui

4.6.3 Upgrading Open WebUI

To upgrade Open WebUI to a specific new version, run the following command:

> helm upgrade --install open-webui \
 oci://dp.apps.rancher.io/charts/open-webui \
 -n <SUSE_AI_NAMESPACE> \
 --version <VERSION_NUMBER> \
 -f <owui_custom_overrides.yaml>

To upgrade Open WebUI to the latest version, run the following command:

> helm upgrade --install open-webui \
 oci://dp.apps.rancher.io/charts/open-webui \
 -n <SUSE_AI_NAMESPACE> \
 -f <owui_custom_overrides.yaml>

4.6.4 Uninstalling Open WebUI

To uninstall Open WebUI, run the following command:

> helm uninstall open-webui -n <SUSE_AI_NAMESPACE>

4.6.5 Examples of Open WebUI Helm chart override files

To override the default values during the Helm chart installation or update, you can create an
override YAML le with custom values. Then, apply these values by specifying the path to the
override le with the -f option of the helm command. Remember to replace <SUSE_AI_NAMES-
PACE> with your Kubernetes namespace.

EXAMPLE 5: OPEN WEBUI OVERRIDE FILE WITH OLLAMA INCLUDED

The following override le installs Ollama during the Open WebUI installation.

global:
 imagePullSecrets:
 - application-collection
 ifdef::deployment_airgap[]
 imageRegistry: <LOCAL_DOCKER_REGISTRY_URL>:5043
 endif::[]
ollamaUrls:
- http://open-webui-ollama.<SUSE_AI_NAMESPACE>.svc.cluster.local:11434
persistence:
 enabled: true
 storageClass: local-path 1

156 Deploying and Installing SUSE AI

ollama:
 enabled: true
 ingress:
 enabled: false
 defaultModel: "gemma:2b"
 ollama:
 models: 2

 - "gemma:2b"
 - "llama3.1"
 gpu: 3

 enabled: true
 type: 'nvidia'
 number: 1
 persistentVolume: 4

 enabled: true
 storageClass: local-path
pipelines:
 enabled: true
 persistence:
 storageClass: local-path
 extraEnvVars: 5

 - name: PIPELINES_URLS 6

 value: "https://raw.githubusercontent.com/SUSE/suse-ai-observability-
extension/refs/heads/main/integrations/oi-filter/suse_ai_filter.py"
 - name: OTEL_SERVICE_NAME 7

 value: "Open WebUI"
 - name: OTEL_EXPORTER_HTTP_OTLP_ENDPONT 8

 value: "http://opentelemetry-collector.suse-
observability.svc.cluster.local:4318"
 - name: PRICING_JSON 9

 value: "https://raw.githubusercontent.com/SUSE/suse-ai-observability-
extension/refs/heads/main/integrations/oi-filter/pricing.json"
ingress:
 enabled: true
 class: ""
 annotations:
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
 nginx.ingress.kubernetes.io/proxy-body-size: "1024m"
 host: suse-ollama-webui 10

 tls: true
extraEnvVars:
- name: DEFAULT_MODELS 11

 value: "gemma:2b"
- name: DEFAULT_USER_ROLE
 value: "user"
- name: WEBUI_NAME
 value: "SUSE AI"

157 Deploying and Installing SUSE AI

- name: GLOBAL_LOG_LEVEL
 value: INFO
- name: RAG_EMBEDDING_MODEL
 value: "sentence-transformers/all-MiniLM-L6-v2"
- name: VECTOR_DB
 value: "milvus"
- name: MILVUS_URI
 value: http://milvus.<SUSE_AI_NAMESPACE>.svc.cluster.local:19530
- name: INSTALL_NLTK_DATASETS 12

 value: "true"
- name: OMP_NUM_THREADS
 value: "1"
- name: OPENAI_API_KEY 13

 value: "0p3n-w3bu!"

1 Use local-path storage only for testing purposes. For production use, we recom-
mend using a storage solution more suitable for persistent storage. To use SUSE Stor-
age, specify longhorn.

2 Specifies that two large language models (LLM) will be loaded in Ollama when the
container starts.

3 Enables GPU support for Ollama. The type must be nvidia because NVIDIA GPUs
are the only supported devices. number must be between 1 and the number of NVIDIA
GPUs present on the system.

4 Without the persistentVolume option enabled, changes made to Ollama—such as
downloading other LLM-- are lost when the container is restarted.

5 The environment variables that you are making available for the pipeline’s runtime
container.

6 A list of pipeline URLs to be downloaded and installed by default. Individual URLs
are separated by a semicolon ;.

7 The service name that appears in traces and topological representations in SUSE Ob-
servability.

8 The endpoint for the OpenTelemetry collector. Make sure to use the HTTP port of
your collector.

9 A le for the model multipliers in cost estimation. You can customize it to match
your actual infrastructure experimentally.

10 Specifies the default LLM for Ollama.

11 Specifies the host name for the Open WebUI Web UI.

158 Deploying and Installing SUSE AI

12 Installs the natural language toolkit (NLTK) datasets for Ollama. Refer to https://

www.nltk.org/index.html for licensing information.

13 API key value for communication between Open WebUI and Open WebUI Pipelines.
The default value is '0p3n-w3bu!'.

EXAMPLE 6: OPEN WEBUI OVERRIDE FILE WITH OLLAMA INSTALLED SEPARATELY

The following override le installs Ollama separately from the Open WebUI installation.

global:
 imagePullSecrets:
 - application-collection
 ifdef::deployment_airgap[]
 imageRegistry: <LOCAL_DOCKER_REGISTRY_URL>:5043
 endif::[]
ollamaUrls:
- http://ollama.<SUSE_AI_NAMESPACE>.svc.cluster.local:11434
persistence:
 enabled: true
 storageClass: local-path 1

ollama:
 enabled: false
pipelines:
 enabled: False
 persistence:
 storageClass: local-path 2

ingress:
 enabled: true
 class: ""
 annotations:
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
 host: suse-ollama-webui
 tls: true
extraEnvVars:
- name: DEFAULT_MODELS 3

 value: "gemma:2b"
- name: DEFAULT_USER_ROLE
 value: "user"
- name: WEBUI_NAME
 value: "SUSE AI"
- name: GLOBAL_LOG_LEVEL
 value: INFO
- name: RAG_EMBEDDING_MODEL
 value: "sentence-transformers/all-MiniLM-L6-v2"
- name: VECTOR_DB
 value: "milvus"
- name: MILVUS_URI

159 Deploying and Installing SUSE AI

https://www.nltk.org/index.html
https://www.nltk.org/index.html

 value: http://milvus.<SUSE_AI_NAMESPACE>.svc.cluster.local:19530
- name: ENABLE_OTEL 4

 value: "true"
- name: OTEL_EXPORTER_OTLP_ENDPOINT 5

 value: http://opentelemetry-collector.observability.svc.cluster.local:4317 6

- name: OMP_NUM_THREADS
 value: "1"

1 Use local-path storage only for testing purposes. For production use, we recom-
mend using a storage solution suitable for persistent storage, such as SUSE Storage.

2 Use local-path storage only for testing purposes. For production use, we recom-
mend using a storage solution suitable for persistent storage, such as SUSE Storage.

3 Specifies the default LLM for Ollama.

4 These values are optional, required only to receive telemetry data from Open WebUI.

5 These values are optional, required only to receive telemetry data from Open WebUI.

6 The URL of the OpenTelemetry Collector installed by the user.

EXAMPLE 7: OPEN WEBUI OVERRIDE FILE WITH PIPELINES ENABLED

The following override le installs Ollama separately and enables Open WebUI pipelines.
This simple filter adds a limit to the number of question and answer turns during the LLM
chat.

Tip
Pipelines normally require additional configuration provided either via environ-
ment variables or specified in the Open WebUI Web UI.

global:
 imagePullSecrets:
 - application-collection
 ifdef::deployment_airgap[]
 imageRegistry: <LOCAL_DOCKER_REGISTRY_URL>:5043
 endif::[]
ollamaUrls:
- http://ollama.<SUSE_AI_NAMESPACE>.svc.cluster.local:11434
persistence:
 enabled: true
 storageClass: local-path
ollama:
 enabled: false

160 Deploying and Installing SUSE AI

pipelines:
 enabled: true
 persistence:
 storageClass: local-path
 extraEnvVars:
 - name: PIPELINES_URLS 1

 value: "https://raw.githubusercontent.com/SUSE/suse-ai-observability-extension/
refs/heads/main/integrations/oi-filter/conversation_turn_limit_filter.py"
ingress:
 enabled: true
 class: ""
 annotations:
 nginx.ingress.kubernetes.io/ssl-redirect: "true"
 host: suse-ollama-webui
 tls: true
[...]

1 A list of pipeline URLs to be downloaded and installed by default. Individual URLs
are separated by a semicolon ;.

EXAMPLE 8: OPEN WEBUI OVERRIDE FILE WITH A CONNECTION TO VLLM

The following example shows how to extend the extraEnvVars section of the Open We-
bUI override le to connect to vLLM. Replace SUSE_AI_NAMESPACE with your Kubernetes
namespace.

Tip
Find more details about installing vLLM in Section 4.7, “Installing vLLM”.

extraEnvVars:
[...]
- name: OPENAI_API_BASE_URL
 value: "http://vllm-router-service.<SUSE_AI_NAMESPACE>.svc.cluster.local:80/v1"
- name: OPENAI_API_KEY
 value: "dummy" 1

1 Open WebUI will require you to provide the OpenAI API key.

If the Open WebUI installation has pipelines enabled besides the vLLM deployment, you
can extend the extraEnvVars section as follows.

extraEnvVars:
[...]
- name: OPENAI_API_BASE_URLS

161 Deploying and Installing SUSE AI

 value: "http://open-webui-
pipelines.<SUSE_AI_NAMESPACE>.svc.cluster.local:9099;http://vllm-router-
service.<SUSE_AI_NAMESPACE>.svc.cluster.local:80/v1"
- name: OPENAI_API_KEYS
 value: "0p3n-w3bu!;dummy"

EXAMPLE 9: STAND-ALONE DEPLOYMENT OF OPEN-WEBUI-PIPELINES

You can install the open-webui-pipelines service as a stand-alone deployment, inde-
pendent of the Open WebUI chart. To install open-webui-pipelines as a stand-alone com-
ponent, use the following command:

> helm upgrade --install open-webui-pipelines \
 oci://dp.apps.rancher.io/charts/open-webui-pipelines \
-n <SUSE_AI_NAMESPACE> \
-f open-webui-pipelines-values.yaml

Following is an example of the open-webui-pipelines-values.yaml override le.

runtimeClassName: nvidia
global:
 imagePullSecrets:
 - application-collection
image:
 registry: dp.apps.rancher.io
 repository: containers/open-webui-pipelines
 tag: <IMAGE_TAG>
 pullPolicy: IfNotPresent
persistence:
 enabled: true
 storageClass: local-path
 size: 10Gi

4.6.6 Values for the Open WebUI Helm chart

To override the default values during the Helm chart installation or update, you can create an
override YAML le with custom values. Then, apply these values by specifying the path to the
override le with the -f option of the helm command. Remember to replace <SUSE_AI_NAMES-
PACE> with your Kubernetes namespace.

TABLE 3: AVAILABLE OPTIONS FOR THE OPEN WEBUI HELM CHART

Key Type Default Description

affinity object {} Affinity for pod as-
signment

162 Deploying and Installing SUSE AI

Key Type Default Description

annotations object {}

cert-manager.enabled bool true

clusterDomain string "cluster.local" Value of cluster do-
main

containerSecurity-
Context

object {} Configure contain-
er security context,
see https://kuber-

netes.io/docs/tasks/

configure-pod-con-

tainer/security-con-

text/#set-the-securi-

ty-context-for-a-con-

taine .

extraEnvVars list [{"name":"OPE-
NAI_API_KEY", "val-
ue":"0p3n-w3bu!"}]

Environment vari-
ables added to the
Open WebUI deploy-
ment. Most up-to-
date environment
variables can be
found in https://doc-

s.openwebui.com/get-

ting-started/env-con-

figuration/ .

extraEnvVars[0] object {"name":"OPE-
NAI_API_KEY","val-
ue":"0p3n-w3bu!"}

Default API key val-
ue for Pipelines. It
should be updated in
a production deploy-
ment and changed to
the required API key
if not using Pipelines.

163 Deploying and Installing SUSE AI

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://docs.openwebui.com/getting-started/env-configuration/
https://docs.openwebui.com/getting-started/env-configuration/
https://docs.openwebui.com/getting-started/env-configuration/
https://docs.openwebui.com/getting-started/env-configuration/

Key Type Default Description

global.imagePullSe-
crets

list [] Global override for
container image reg-
istry pull secrets

global.imageRegistry string "" Global override for
container image reg-
istry

global.tls.additional-
TrustedCAs

bool false

global.tls.issuerName string "suse-private-ai"

global.tls.letsEncryp-
t.email

string "none@example.com

(mailto:none@exam-

ple.com) "

global.tls.letsEncryp-
t.environment

string "staging"

global.tls.letsEncryp-
t.ingress.class

string ""

global.tls.source string "suse-private-ai" The source of Open
WebUI TLS keys, see
Section 4.6.6.1, “TLS

sources”.

image.pullPolicy string "IfNotPresent" Image pull policy to
use for the Open We-
bUI container

image.registry string "dp.apps.rancher.io" Image registry to use
for the Open WebUI
container

164 Deploying and Installing SUSE AI

mailto:none@example.com
mailto:none@example.com
mailto:none@example.com

Key Type Default Description

image.repository string "containers/open-we-
bui"

Image repository to
use for the Open We-
bUI container

image.tag string "0.3.32" Image tag to use for
the Open WebUI con-
tainer

imagePullSecrets list [] Configure imagePul-
lSecrets to use
private registry,
see https://kuber-

netes.io/docs/tasks/

configure-pod-con-

tainer/pull-image-pri-

vate-registry/ .

ingress.annotations object {"nginx.ingress.ku-
bernetes.io/ssl-redi-
rect":"true"}

Use appropriate
annotations for
your Ingress con-
troller, such as ng-
inx.ingress.ku-

ber-

netes.io/rewrite-

target: / for
NGINX.

ingress.class string ""

ingress.enabled bool true

ingress.existingSecret string ""

ingress.host string ""

ingress.tls bool true

165 Deploying and Installing SUSE AI

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Key Type Default Description

nameOverride string ""

nodeSelector object {} Node labels for pod
assignment

ollama.enabled bool true Automatically in-
stall Ollama Helm
chart from https://

otwld.github.io/ol-

lama-helm/ . Con-
figure the following
Helm values (https://

github.com/otwld/ol-

lama-helm/#helm-val-

ues) .

ollama.fullnameOver-
ride

string "open-webui-ollama" If enabling embed-
ded Ollama, update
fullnameOverride to
your desired Olla-
ma name value, or
else it will use the
default ollama.name
value from the Olla-
ma chart.

ollamaUrls list [] A list of Ollama API
endpoints. These can
be added instead of
automatically in-
stalling the Ollama
Helm chart, or in ad-
dition to it.

166 Deploying and Installing SUSE AI

https://otwld.github.io/ollama-helm/
https://otwld.github.io/ollama-helm/
https://otwld.github.io/ollama-helm/
https://github.com/otwld/ollama-helm/#helm-values
https://github.com/otwld/ollama-helm/#helm-values
https://github.com/otwld/ollama-helm/#helm-values
https://github.com/otwld/ollama-helm/#helm-values

Key Type Default Description

openaiBaseApiUrl string "" OpenAI base API
URL to use. De-
faults to the Pipelines
service endpoint
when Pipelines
are enabled, or to
https://api.ope-

nai.com/v1 if
Pipelines are not en-
abled and this value
is blank.

persistence.access-
Modes

list ["ReadWriteOnce"] If using multiple
replicas, you must
update accessModes
to ReadWriteMany.

persistence.annota-
tions

object {}

persistence.enabled bool true

persistence.existing-
Claim

string "" Use existingClaim
to reuse an existing
Open WebUI PVC in-
stead of creating a
new one.

persistence.selector object {}

persistence.size string "2Gi"

persistence.storage-
Class

string ""

167 Deploying and Installing SUSE AI

Key Type Default Description

pipelines.enabled bool false Automatically install
Pipelines chart to ex-
tend Open WebUI
functionality using
Pipelines, see https://

github.com/open-we-

bui/pipelines/ .

pipelines.ex-
traEnvVars

list [] This section can be
used to pass the re-
quired environment
variables to your
pipelines (such as the
Langfuse host name).

podAnnotations object {}

podSecurityContext object {} Configure pod se-
curity context,
see https://kuber-

netes.io/docs/tasks/

configure-pod-con-

tainer/security-con-

text/#set-the-securi-

ty-context-for-a-con-

taine .

replicaCount int 1

resources object {}

service object {"annota-
tions":{},"contain-
erPort":8080, "la-
bels":{},"loadBal-

Service values to ex-
pose Open WebUI
pods to cluster

168 Deploying and Installing SUSE AI

https://github.com/open-webui/pipelines/
https://github.com/open-webui/pipelines/
https://github.com/open-webui/pipelines/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-containe

Key Type Default Description

ancerClass":"", "node-
Port":"","port":80,"type":"Clus-
terIP"}

tolerations list [] Tolerations for pod
assignment

topologySpreadCon-
straints

list [] Topology Spread
Constraints for pod
assignment

4.6.6.1 TLS sources

There are three recommended options where Open WebUI can obtain TLS certificates for secure
communication.

Self-Signed TLS certificate

This is the default method. You need to install cert-manager on the cluster to issue and
maintain the certificates. This method generates a CA and signs the Open WebUI certificate
using the CA. cert-manager then manages the signed certificate. For this method, use the
following Helm chart option:

global.tls.source=suse-private-ai

Let’s Encrypt

This method also uses cert-manager, but it is combined with a special issuer for Let’s En-
crypt that performs all actions—including request and validation—to get the Let’s Encrypt
certificate issued. This configuration uses HTTP validation (HTTP-01) and therefore the
load balancer must have a public DNS record and be accessible from the Internet. For this
method, use the following Helm chart option:

global.tls.source=letsEncrypt

169 Deploying and Installing SUSE AI

Provide your own certificate

This method allows you to bring your own signed certificate to secure the HTTPS traffic. In
this case, you must upload this certificate and associated key as PEM-encoded les named
tls.crt and tls.key. For this method, use the following Helm chart option:

global.tls.source=secret

4.7 Installing vLLM

vLLM is an open-source high-performance inference and serving engine for large language mod-
els (LLMs). It is designed to maximize throughput and reduce latency by using an efficient mem-
ory management system that handles dynamic batching and streaming outputs. In short, vLLM
makes running LLMs cheaper and faster in production.

Deploying vLLM on Kubernetes is a scalable and efficient way to serve machine learning models.
This guide walks you through deploying vLLM using its Helm chart, which is part of AI Library.
The Helm chart deploys the full vLLM production stack and enables you to run optimized LLM
inference workloads on NVIDIA GPU in your Kubernetes cluster. It consists of the following
components:

Serving Engine runs the model inference.

Router handles OpenAI-compatible API requests.

LMCache (Optional) improves caching efficiency.

CacheServer (Optional) is a distributed KV cache back-end.

4.7.1 Details about the vLLM application

Before deploying vLLM, it is important to know more about the supported configurations and
documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/vllm

Alternatively, you can also refer to the vLLM Helm chart page on the SUSE Application Collec-
tion site at https://apps.rancher.io/applications/vllm . It contains vLLM dependencies, available
versions and the link to pull the vLLM container image.

170 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/vllm

4.7.2 vLLM installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

Warning: NVIDIA GPUs required
NVIDIA GPUs must be available in your Kubernetes cluster to successfully deploy and
run vLLM.

Important: Limitation
The current release of SUSE AI vLLM does not support Ray and LoraController.

1. Create a vllm_custom_overrides.yaml le to override the default values of the Helm
chart. Find examples of override les in Section 4.7.6, “Examples of vLLM Helm chart override

files”.

2. After saving the override le as vllm_custom_overrides.yaml, apply its configuration
with the following command.

> helm upgrade --install \
 vllm oci://dp.apps.rancher.io/charts/vllm \
 -n <SUSE_AI_NAMESPACE> \
 -f <vllm_custom_overrides.yaml>

4.7.3 Integrating vLLM with Open WebUI

You can integrate vLLM in Open WebUI either using the Open WebUI Web user interface, or
updating Open WebUI override le during Open WebUI deployment (see Example 8, “Open WebUI

override file with a connection to vLLM”).

Integrating vLLM with Open WebUI via the Web user interface.

REQUIREMENTS

171 Deploying and Installing SUSE AI

You must have Open WebUI administrator privileges to access configuration screens or
settings mentioned in this section.

1. In the bottom left of the Open WebUI window, click your avatar icon to open the user
menu and select Admin Panel.

2. Click the Settings tab and select Connections from the left menu.

3. In the Manage OpenAI API Connections section, add a new connection URL to the vLLM
router service, for example:

http://vllm-router-service.<SUSE_AI_NAMESPACE>.svc.cluster.local:80/v1

Confirm with Save.

FIGURE 34: ADDING A VLLM CONNECTION TO OPEN WEBUI

4.7.4 Upgrading vLLM

The vLLM chart receives application updates and updates of the Helm chart templates. New ver-
sions may include changes that require manual steps. These steps are listed in the corresponding
README le. All vLLM dependencies are updated automatically during a vLLM upgrade.

To upgrade vLLM, identify the new version number and run the following command below:

> helm upgrade --install \
 vllm oci://dp.apps.rancher.io/charts/vllm \
 -n <SUSE_AI_NAMESPACE> \
 --version <VERSION_NUMBER> \

172 Deploying and Installing SUSE AI

 -f <vllm_custom_overrides.yaml>

Tip
If you omit the --version option, vLLM gets upgraded to the latest available version.

Note: Rolling update
The helm upgrade command performs a rolling update on Deployments or StatefulSets
with the following conditions:

The old pod stays running until the new pod passes readiness checks.

If the cluster is already at GPU capacity, the new pod cannot start because there is
no GPU left to schedule it. This requires patching the deployment using the Recreate
update strategy. The following commands identify the vLLM deployment name and
patch its deployment.

> kubectl get deployments -n <SUSE_AI_NAMESPACE>
> kubectl patch deployment <VLLM_DEPLOYMENT_NAME> \
 -n <SUSE_AI_NAMESPACE> \
 -p '{"spec": {"strategy": {"type": "Recreate", "rollingUpdate": null}}}'

4.7.5 Uninstalling vLLM

To uninstall vLLM, run the following command:

> helm uninstall vllm -n <SUSE_AI_NAMESPACE>

4.7.6 Examples of vLLM Helm chart override files

To override the default values during the Helm chart installation or update, you can create an
override YAML le with custom values. Then, apply these values by specifying the path to the
override le with the -f option of the helm command. Remember to replace <SUSE_AI_NAMES-
PACE> with your Kubernetes namespace.

EXAMPLE 10: MINIMAL CONFIGURATION

The following override le installs vLLM using a model that is publicly available.

173 Deploying and Installing SUSE AI

global:
 imagePullSecrets:
 - application-collection
servingEngineSpec:
 modelSpec:
 - name: "phi3-mini-4k"
 registry: "dp.apps.rancher.io"
 repository: "containers/vllm-openai"
 tag: "0.9.1"
 imagePullPolicy: "IfNotPresent"
 modelURL: "microsoft/Phi-3-mini-4k-instruct"
 replicaCount: 1
 requestCPU: 6
 requestMemory: "16Gi"
 requestGPU: 1

VALIDATING THE INSTALLATION

1. Pulling the images can take a long time. You can monitor the status of the vLLM
installation by running the following command:

> kubectl get pods -n <SUSE_AI_NAMESPACE>

NAME READY STATUS RESTARTS
 AGE
[...]
vllm-deployment-router-7588bf995c-5jbkf 1/1 Running 0
 8m9s
vllm-phi3-mini-4k-deployment-vllm-79d6fdc-tx7 1/1 Running 0
 8m9s

Pods for the vLLM deployment should transition to the states Ready and Running.

VALIDATING THE STACK

1. Expose the vllm-router-service port to the host machine:

> kubectl port-forward svc/vllm-router-service \
 -n <SUSE_AI_NAMESPACE> 30080:80

174 Deploying and Installing SUSE AI

2. Query the OpenAI-compatible API to list the available models:

> curl -o- http://localhost:30080/v1/models

3. Send a query to the OpenAI /completion endpoint to generate a completion for a
prompt:

> curl -X POST http://localhost:30080/v1/completions \
 -H "Content-Type: application/json" \
 -d '{
 "model": "microsoft/Phi-3-mini-4k-instruct",
 "prompt": "Once upon a time,",
 "max_tokens": 10
 }'

example output of generated completions
{
 "id": "cmpl-3dd11a3624654629a3828c37bac3edd2",
 "object": "text_completion",
 "created": 1757530703,
 "model": "microsoft/Phi-3-mini-4k-instruct",
 "choices": [
 {
 "index": 0,
 "text": " in a bustling city full of concrete and",
 "logprobs": null,
 "finish_reason": "length",
 "stop_reason": null,
 "prompt_logprobs": null
 }
],
 "usage": {
 "prompt_tokens": 5,
 "total_tokens": 15,
 "completion_tokens": 10,
 "prompt_tokens_details": null
 },
 "kv_transfer_params": null
}

EXAMPLE 11: BASIC CONFIGURATION

The following vLLM override le includes basic configuration options.

PREREQUISITES

Access to a Hugging Face token (HF_TOKEN).

175 Deploying and Installing SUSE AI

The model meta-llama/Llama-3.1-8B-Instruct from this example is a gated mod-
el that requires you to accept the agreement to access it. For more information, see
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct .

The runtimeClassName specified here is nvidia.

Update the storageClass: entry for each modelSpec.

vllm_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
servingEngineSpec:
 runtimeClassName: "nvidia"
 modelSpec:
 - name: "llama3" 1

 registry: "dp.apps.rancher.io" 2

 repository: "containers/vllm-openai" 3

 tag: "0.9.1" 4

 imagePullPolicy: "IfNotPresent"
 modelURL: "meta-llama/Llama-3.1-8B-Instruct" 5

 replicaCount: 1 6

 requestCPU: 10 7

 requestMemory: "16Gi" 8

 requestGPU: 1 9

 storageClass: <STORAGE_CLASS>
 pvcStorage: "50Gi" 10

 pvcAccessMode:
 - ReadWriteOnce

 vllmConfig:
 enableChunkedPrefill: false 11

 enablePrefixCaching: false 12

 maxModelLen: 4096 13

 dtype: "bfloat16" 14

 extraArgs: ["--disable-log-requests", "--gpu-memory-utilization", "0.8"] 15

 hf_token: <HF_TOKEN> 16

1 The unique identifier for your model deployment.

2 The Docker image registry containing the model’s serving engine image.

3 The Docker image repository containing the model’s serving engine image.

4 The version of the model image to use.

5 The URL pointing to the model on Hugging Face or another hosting service.

176 Deploying and Installing SUSE AI

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

6 The number of replicas for the deployment, which allows scaling for load.

7 The amount of CPU resources requested per replica.

8 Memory allocation for the deployment. Sufficient memory is required to load the
model.

9 The number of GPUs to allocate for the deployment.

10 The Persistent Volume Claim (PVC) size for model storage.

11 Optimizes performance by prefetching model chunks.

12 Enables caching of prompt prefixes to speed up inference for repeated prompts.

13 The maximum sequence length the model can handle.

14 The data type for model weights, such as bfloat16 for mixed-precision inference
and faster performance on modern GPUs.

15 Additional command-line arguments for vLLM, such as disabling request logging or
setting GPU memory utilization.

16 Your Hugging Face token for accessing gated models. Replace HF_TOKEN with your
actual token.

EXAMPLE 12: LOADING PREFETCHED MODELS FROM PERSISTENT STORAGE

Prefetching models to a Persistent Volume Claim (PVC) prevents repeated downloads from
Hugging Face during pod startup. The process involves creating a PVC and a job to fetch
the model. This PVC is mounted at /models, where the prefetch job stores the model
weights. Subsequently, the vLLM modelURL is set to this path, which ensures that the
model is loaded locally instead of being downloaded when the pod starts.

1. Define a PVC for model weights using the following YAML specification.

pvc-models.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: models-pvc
 namespace: <SUSE_AI_NAMESPACE>
spec:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 50Gi # Adjust size based on your model
 storageClassName: <STORAGE_CLASS>

177 Deploying and Installing SUSE AI

Save it as pvc-models.yaml and apply with kubectl apply -f pvc-models.yaml.

2. Create a secret resource for the Hugging Face token.

> kubectl create secret -n <SUSE_AI_NAMESPACE> \
 generic huggingface-credentials \
 --from-literal=HUGGING_FACE_HUB_TOKEN=<HF_TOKEN>

3. Create a YAML specification for prefetching the model and save it as job-prefetch-
llama3.1-8b.yaml.

job-prefetch-llama3.1-8b.yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: prefetch-llama3.1-8b
 namespace: <SUSE_AI_NAMESPACE>
spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: hf-download
 image: python:3.10-slim
 env:
 - name: HF_TOKEN
 valueFrom: { secretKeyRef: { name: huggingface-credentials, key:
 <HUGGING_FACE_HUB_TOKEN> } }
 - name: HF_HUB_ENABLE_HF_TRANSFER
 value: "1"
 - name: HF_HUB_DOWNLOAD_TIMEOUT
 value: "60"
 command: ["bash","-lc"]
 args:
 - |
 set -e
 echo "Logging in..."
 echo "Installing Hugging Face CLI..."
 pip install "huggingface_hub[cli]"
 pip install "hf_transfer"
 hf auth login --token "${HF_TOKEN}"
 echo "Downloading Llama 3.1 8B Instruct to /models/llama-3.1-8b-
it ..."
 hf download meta-llama/Llama-3.1-8B-Instruct --local-dir /models/
llama-3.1-8b-it
 volumeMounts:

178 Deploying and Installing SUSE AI

 - name: models
 mountPath: /models
 volumes:
 - name: models
 persistentVolumeClaim:
 claimName: models-pvc

Apply the specification with the following commands:

> kubectl apply -f job-prefetch-llama3.1-8b.yaml
> kubectl -n <SUSE_AI_NAMESPACE> \
 wait --for=condition=complete job/prefetch-llama3.1-8b

4. Update the custom vLLM override le with support for PVC.

vllm_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
servingEngineSpec:
 runtimeClassName: "nvidia"
 modelSpec:
 - name: "llama3"
 registry: "dp.apps.rancher.io"
 repository: "containers/vllm-openai"
 tag: "0.9.1"
 imagePullPolicy: "IfNotPresent"
 modelURL: "/models/llama-3.1-8b-it"
 replicaCount: 1

 requestCPU: 10
 requestMemory: "16Gi"
 requestGPU: 1

 extraVolumes:
 - name: models-pvc
 persistentVolumeClaim:
 claimName: models-pvc 1

 extraVolumeMounts:
 - name: models-pvc
 mountPath: /models 2

 vllmConfig:
 maxModelLen: 4096

 hf_token: <HF_TOKEN>

179 Deploying and Installing SUSE AI

1 Specify your PVC name.

2 The mount path must match the base directory of the servin-

gEngineSpec.modelSpec.modeURL value specified above.

Save it as vllm_custom_overrides.yaml and apply with kubectl apply -f

vllm_custom_overrides.yaml.

5. The following example lists mounted PVCs for a pod.

> kubectl exec -it vllm-llama3-deployment-vllm-858bd967bd-w26f7 \
 -n <SUSE_AI_NAMESPACE> -- ls -l /models
drwxr-xr-x 1 root root 608 Aug 22 16:29 llama-3.1-8b-it

EXAMPLE 13: CONFIGURATION WITH MULTIPLE MODELS

This example shows how to configure multiple models to run on different GPUs. Remember
to update the entries hf_token and storageClass.

Note: Ray is not supported
Ray is currently not supported. Therefore, sharding a single large model across
multiple GPUs is not supported.

vllm_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
servingEngineSpec:
 modelSpec:
 - name: "llama3"
 registry: "dp.apps.rancher.io"
 repository: "containers/vllm-openai"
 tag: "0.9.1"
 imagePullPolicy: "IfNotPresent"
 modelURL: "meta-llama/Llama-3.1-8B-Instruct"
 replicaCount: 1
 requestCPU: 10
 requestMemory: "16Gi"
 requestGPU: 1
 pvcStorage: "50Gi"
 storageClass: <STORAGE_CLASS>
 vllmConfig:
 maxModelLen: 4096
 hf_token: <HF_TOKEN_FOR_LLAMA_31>

180 Deploying and Installing SUSE AI

 - name: "mistral"
 registry: "dp.apps.rancher.io"
 repository: "containers/vllm-openai"
 tag: "0.9.1"
 imagePullPolicy: "IfNotPresent"
 modelURL: "mistralai/Mistral-7B-Instruct-v0.2"
 replicaCount: 1
 requestCPU: 10
 requestMemory: "16Gi"
 requestGPU: 1
 pvcStorage: "50Gi"
 storageClass: <STORAGE_CLASS>
 vllmConfig:
 maxModelLen: 4096
 hf_token: <HF_TOKEN_FOR_MISTRAL>

EXAMPLE 14: CPU OFFLOADING

This example demonstrates how to enable KV cache offloading to the CPU using LMCache
in a vLLM deployment. You can enable LMCache and set the CPU offloading buer size
using the lmcacheConfig eld. In the following example, the buer is set to 20 GB, but you
can adjust this value based on your workload. Remember to update the entries hf_token
and storageClass.

Warning: Experimental Features
Setting lmcacheConfig.enabled to true implicitly enables the LMCACHE_USE_EX-
PERIMENTAL ag for LMCache. These experimental features are only supported on
newer GPU generations. It is not recommended to enable them without a compelling
reason.

vllm_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
servingEngineSpec:
 runtimeClassName: "nvidia"
 modelSpec:
 - name: "mistral"
 registry: "dp.apps.rancher.io"
 repository: "containers/lmcache-vllm-openai"
 tag: "0.3.2"
 imagePullPolicy: "IfNotPresent"

181 Deploying and Installing SUSE AI

 modelURL: "mistralai/Mistral-7B-Instruct-v0.2"
 replicaCount: 1
 requestCPU: 10
 requestMemory: "40Gi"
 requestGPU: 1
 pvcStorage: "50Gi"
 storageClass: <STORAGE_CLASS>
 pvcAccessMode:
 - ReadWriteOnce
 vllmConfig:
 maxModelLen: 32000

 lmcacheConfig:
 enabled: false
 cpuOffloadingBufferSize: "20"

 hf_token: <HF_TOKEN>

EXAMPLE 15: SHARED REMOTE KV CACHE STORAGE WITH LMCACHE

This example shows how to enable remote KV cache storage using LMCache in a vLLM de-
ployment. The configuration defines a cacheserverSpec and uses two replicas. Remem-
ber to replace the placeholder values for hf_token and storageClass before applying
the configuration.

Warning: Experimental features
Setting lmcacheConfig.enabled to true implicitly enables the LMCACHE_USE_EX-
PERIMENTAL ag for LMCache. These experimental features are only supported on
newer GPU generations. It is not recommended to enable them without a compelling
reason.

vllm_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
servingEngineSpec:
 runtimeClassName: "nvidia"
 modelSpec:
 - name: "mistral"
 registry: "dp.apps.rancher.io"
 repository: "containers/lmcache-vllm-openai"
 tag: "0.3.2"
 imagePullPolicy: "IfNotPresent"
 modelURL: "mistralai/Mistral-7B-Instruct-v0.2"

182 Deploying and Installing SUSE AI

 replicaCount: 2
 requestCPU: 10
 requestMemory: "40Gi"
 requestGPU: 1
 pvcStorage: "50Gi"
 storageClass: <STORAGE_CLASS>
 vllmConfig:
 enablePrefixCaching: true
 maxModelLen: 16384
 lmcacheConfig:
 enabled: false
 cpuOffloadingBufferSize: "20"
 hf_token: <HF_TOKEN>
 initContainer:
 name: "wait-for-cache-server"
 image: "dp.apps.rancher.io/containers/lmcache-vllm-openai:0.3.2"
 command: ["/bin/sh", "-c"]
 args:
 - |
 timeout 60 bash -c '
 while true; do
 /opt/venv/bin/python3 /workspace/LMCache/examples/kubernetes/
health_probe.py $(RELEASE_NAME)-cache-server-service $(LMCACHE_SERVER_SERVICE_PORT)
 && exit 0
 echo "Waiting for LMCache server..."
 sleep 2
 done'
cacheserverSpec:
 replicaCount: 1
 containerPort: 8080
 servicePort: 81
 serde: "naive"
 registry: "dp.apps.rancher.io"
 repository: "containers/lmcache-vllm-openai"
 tag: "0.3.2"
 resources:
 requests:
 cpu: "4"
 memory: "8G"
 limits:
 cpu: "4"
 memory: "10G"
 labels:
 environment: "cacheserver"
 release: "cacheserver"
routerSpec:
 resources:

183 Deploying and Installing SUSE AI

 requests:
 cpu: "1"
 memory: "2G"
 limits:
 cpu: "1"
 memory: "2G"
 routingLogic: "session"
 sessionKey: "x-user-id"

4.8 Installing mcpo

MCP (Model Context Protocol) is an open source standard for connecting AI applications—such
as SUSE AI—to external systems. These external systems can include data sources like databases
or local les, or tools like calculators or search engines.

mcpo is the MCP-to-OpenAPI proxy server provided by Open WebUI. It solves communication
compatibility issues, enables cloud and UI integrations, and offers increased security and scal-
ability.

4.8.1 Details about the mcpo application

Before deploying mcpo, it is important to know more about the supported configurations and
documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/open-webui-mcpo

Alternatively, you can also refer to the mcpo Helm chart page on the SUSE Application Collection
site at https://apps.rancher.io/applications/open-webui-mcpo . It contains mcpo dependencies,
available versions and the link to pull the mcpo container image.

4.8.2 mcpo installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

184 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/open-webui-mcpo

1. Create a mcpo_custom_overrides.yaml le to override the default values of the Helm
chart. The following le defines multiple MCP servers in the config.mcpServers section.
These servers will be added to the mcpo configuration le config.json.

mcpo_custom_overrides.yaml
global:
 imagePullSecrets:
 - application-collection
config:
 mcpServers:
 memory:
 command: npx
 args:
 - -y
 - "@modelcontextprotocol/server-memory"
 time:
 command: uvx
 args:
 - mcp-server-time
 - --local-timezone=America/New_York
 fetch:
 command: uvx
 args:
 - mcp-server-fetch
 weather:
 command: uvx
 args:
 - --from
 - git+https://github.com/adhikasp/mcp-weather.git
 - mcp-weather
 env:
 - ACCUWEATHER_API_KEY: your_api_key_here</screen>

2. After saving the override le as mcpo_custom_overrides.yaml, apply its configuration
with the following command.

> helm upgrade --install \
 mcpo oci://dp.apps.rancher.io/charts/open-webui-mcpo \
 -n SUSE_AI_NAMESPACE \
 -f mcpo_custom_overrides.yaml

185 Deploying and Installing SUSE AI

Tip

Installing MCP servers. You can add new MCP servers by including them in the mcpo
configuration le following the Claude Desktop MCP format (https://github.com/modelcon-

textprotocol/servers) . For detailed information on installing MCP servers with mcpo,
refer to the mcpo Quick Usage guide (https://github.com/open-webui/mcpo?tab=readme-

ov-file#-quick-usage) .

4.8.3 Integrating mcpo with Open WebUI

To integrate mcpo with Open WebUI, follow these steps:

REQUIREMENTS

You must have Open WebUI administrator privileges to access configuration screens or
settings mentioned in this section.

1. In the bottom left of the Open WebUI window, click your avatar icon to open the user
menu and select Admin Panel.

2. Click the Settings tab and select Tools from the left menu.

3. Under Manage Tool Servers, click the plus icon to add a new connection.

4. For each MCP server:

Provide the server URL, name and description.

Set the visibility to Public to make it available to all users.

Check if the connection is successful and confirm with Save.

Tip
The general URL format is: MCPO_URL/MCP_SERVER_NAME. For example, if
mcpo was deployed as mcpo in the namespace suse-ai with the default port
configuration, the URL is:

http://mcpo-open-webui-mcpo.suse-ai.svc.cluster.local:8000/
MCP_SERVER_NAME

186 Deploying and Installing SUSE AI

https://github.com/modelcontextprotocol/servers
https://github.com/modelcontextprotocol/servers
https://github.com/open-webui/mcpo?tab=readme-ov-file#-quick-usage
https://github.com/open-webui/mcpo?tab=readme-ov-file#-quick-usage

After you have configured at least one MCP server, you can enable them from the Open We-
bUI chat input eld to make answers more specific. For more information, see Selecting mcpo

services from the chat input field (https://documentation.suse.com/suse-ai/1.0/html/openwebui-us-

ing/index.html#openwebui-input-field-specify-mcpo-tools) .

Tip: Enabling MCP tools by default
To enable selected MCP tools by default for a model, refer to Enabling default MCP ser-

vices (https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.htm-

l#owui-enabling-default-mcp-services) .

4.8.4 Upgrading mcpo

The mcpo chart receives application updates and updates of the Helm chart templates. New ver-
sions may include changes that require manual steps. These steps are listed in the corresponding
README le. All mcpo dependencies are updated automatically during an mcpo upgrade.

To upgrade mcpo, identify the new version number and run the following command below:

> helm upgrade --install \
 mcpo oci://dp.apps.rancher.io/charts/open-webui-mcpo \
 -n SUSE_AI_NAMESPACE \
 --version VERSION_NUMBER \
 -f mcpo_custom_overrides.yaml

Tip
If you omit the --version option, mcpo gets upgraded to the latest available version.

4.8.5 Uninstalling mcpo

To uninstall mcpo, run the following command:

> helm uninstall mcpo -n SUSE_AI_NAMESPACE

187 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/openwebui-using/index.html#openwebui-input-field-specify-mcpo-tools
https://documentation.suse.com/suse-ai/1.0/html/openwebui-using/index.html#openwebui-input-field-specify-mcpo-tools
https://documentation.suse.com/suse-ai/1.0/html/openwebui-using/index.html#openwebui-input-field-specify-mcpo-tools
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#owui-enabling-default-mcp-services
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#owui-enabling-default-mcp-services
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#owui-enabling-default-mcp-services

4.9 Installing PyTorch

PyTorch is a widely used open-source deep-learning framework that supports both CPU and GPU
acceleration. When deployed with the SUSE AI stack, the PyTorch Helm chart lets you inject
your own training or inference code into the container and run it on NVIDIA GPUs available
in your cluster.

4.9.1 Details about the PyTorch application

Before deploying PyTorch, it is important to know more about the supported configurations and
documentation. The following command provides the corresponding details:

helm show values oci://dp.apps.rancher.io/charts/pytorch

Alternatively, you can also refer to the PyTorch Helm chart page (https://apps.rancher.io/applica-

tions/pytorch) . It contains PyTorch dependencies, available versions and the link to pull the
PyTorch container image.

4.9.2 PyTorch installation procedure

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

1. Create a pytorch_custom_overrides.yaml le to override the values of the parent Helm
chart. Find examples of PyTorch override les in Section 4.9.5, “Examples of PyTorch Helm

chart override files” and a list of all valid options and their values in Section 4.9.6, “Values for

the PyTorch Helm chart”.

2. Install the PyTorch Helm chart using the pytorch_custom_overrides.yaml le using the
following command.

> helm upgrade --install \
 pytorch oci://dp.apps.rancher.io/charts/pytorch \
 -n SUSE_AI_NAMESPACE \
 -f pytorch_custom_overrides.yaml

188 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/pytorch
https://apps.rancher.io/applications/pytorch

4.9.3 Upgrading PyTorch

You can upgrade PyTorch to a specific version by running the following command:

> helm upgrade \
 pytorch oci://dp.apps.rancher.io/charts/pytorch \
 -n SUSE_AI_NAMESPACE \
 --version VERSION_NUMBER \
 -f pytorch_custom_overrides.yaml

Tip
If you omit the --version option, PyTorch gets upgraded to the latest available version.

4.9.4 Uninstalling PyTorch

To uninstall PyTorch, run the following command:

> helm uninstall pytorch -n SUSE_AI_NAMESPACE

4.9.5 Examples of PyTorch Helm chart override files

To override the default values during the Helm chart installation or update, you can create an
override YAML le with custom values. Then, apply these values by specifying the path to the
override le with the -f option of the helm command. Remember to replace <SUSE_AI_NAMES-
PACE> with your Kubernetes namespace.

EXAMPLE 16: BASIC OVERRIDE FILE WITH GPU ENABLED

pytorch_custom_overrides.yaml
runtimeClassName: nvidia
global:
 imagePullSecrets:
 - application-collection 1

image:
 registry: dp.apps.rancher.io
 repository: containers/pytorch
 tag: "2.7.0-nvidia"
 pullPolicy: IfNotPresent
persistence:
 enabled: true
 storageClass: local-path 2

gpu:

189 Deploying and Installing SUSE AI

 enabled: true
 type: 'nvidia'
 number: 1

1 Instructs Helm to use credentials from the SUSE Application Collection. For instructions on
how to configure the image pull secrets for the SUSE Application Collection, refer to the
official documentation (https://docs.apps.rancher.io/get-started/authentication/) .

2 Use local-path storage only for testing purposes. For production use, we recommend
using a storage solution suitable for persistent storage, such as SUSE Storage.

EXAMPLE 17: CONFIGMAP-BASED UPLOAD

To create a ConfigMap, run the following command:

> kubectl describe configmap \
 MY_CONFIG_MAP -n SUSE_AI_NAMESPACE

pytorch_custom_overrides.yaml
runtimeClassName: nvidia
global:
 imagePullSecrets:
 - application-collection
image:
 registry: dp.apps.rancher.io 1

 repository: containers/pytorch
 tag: "2.7.0-nvidia"
 pullPolicy: IfNotPresent
persistence:
 enabled: true
 storageClass: local-path 2

gpu:
 enabled: true
 type: 'nvidia'
 number: 1

configMapExtFiles: "my-config-files" 3

1 Instructs Helm to use credentials from the SUSE Application Collection. For instruc-
tions on how to configure the image pull secrets for the SUSE Application Collection,
refer to the official documentation (https://docs.apps.rancher.io/get-started/authentica-

tion/) .

2 Use local-path storage only for testing purposes. For production use, we recom-
mend using a storage solution suitable for persistent storage, such as SUSE Storage.

3 Specifies ConfigMap les.

190 Deploying and Installing SUSE AI

https://docs.apps.rancher.io/get-started/authentication/
https://docs.apps.rancher.io/get-started/authentication/
https://docs.apps.rancher.io/get-started/authentication/

EXAMPLE 18: HOST-FOLDER WITH FILES BAKED INTO THE CHART

Move the entrypoint.sh le plus any helper les under the scripts/ directory.

pytorch_custom_overrides.yaml
runtimeClassName: nvidia
global:
 imagePullSecrets:
 - application-collection 1

image:
 registry: dp.apps.rancher.io
 repository: containers/pytorch
 tag: "2.7.0-nvidia"
 pullPolicy: IfNotPresent
persistence:
 enabled: true
 storageClass: local-path 2

gpu:
 enabled: true
 type: 'nvidia'
 number: 1

entrypointscript:
 filename: "entrypoint.sh" 3

 arguments: [] 4

1 Instructs Helm to use credentials from the SUSE Application Collection. For instruc-
tions on how to configure the image pull secrets for the SUSE Application Collection,
refer to the official documentation (https://docs.apps.rancher.io/get-started/authentica-

tion/) .

2 Use local-path storage only for testing purposes. For production use, we recom-
mend using a storage solution suitable for persistent storage, such as SUSE Storage.

3 The le will be mounted and accessible at /workspace/entrypoint.sh.

4 Add custom command-line arguments if needed.

EXAMPLE 19: GIT REPOSITORY CLONE: PUBLIC WITH NO AUTHENTICATION

pytorch_custom_overrides.yaml
runtimeClassName: nvidia
global:
 imagePullSecrets:
 - application-collection 1

image:
 registry: dp.apps.rancher.io
 repository: containers/pytorch

191 Deploying and Installing SUSE AI

https://docs.apps.rancher.io/get-started/authentication/
https://docs.apps.rancher.io/get-started/authentication/

 tag: "2.7.0-nvidia"
 pullPolicy: IfNotPresent
persistence:
 enabled: true
 storageClass: local-path 2

gpu:
 enabled: true
 type: 'nvidia'
 number: 1

gitClone:
 enabled: true
 repository: "github.com/YOUR_ORGANIZATOIN/YOUR_REPO" 3

 revision: "main" 4

1 Instructs Helm to use credentials from the SUSE Application Collection. For instructions on
how to configure the image pull secrets for the SUSE Application Collection, refer to the
official documentation (https://docs.apps.rancher.io/get-started/authentication/) .

2 Use local-path storage only for testing purposes. For production use, we recommend
using a storage solution suitable for persistent storage, such as SUSE Storage.

3 Do not specify the protocol, such as https://.

4 Specify a branch name, a tag name or a commit.

EXAMPLE 20: GIT REPOSITORY CLONE: PRIVATE WITH AUTHENTICATION

pytorch_custom_overrides.yaml
runtimeClassName: nvidia
global:
 imagePullSecrets:
 - application-collection 1

image:
 registry: dp.apps.rancher.io
 repository: containers/pytorch
 tag: "2.7.0-nvidia"
 pullPolicy: IfNotPresent
persistence:
 enabled: true
 storageClass: local-path 2

gpu:
 enabled: true
 type: 'nvidia'
 number: 1

gitClone:
 enabled: true

192 Deploying and Installing SUSE AI

https://docs.apps.rancher.io/get-started/authentication/

 repository: "github.com/YOUR_ORGANIZATOIN/YOUR_REPO" 3

 revision: "main" 4

 secretName: "MY_GIT_CREDENTIALS" 5

1 Instructs Helm to use credentials from the SUSE Application Collection. For instructions on
how to configure the image pull secrets for the SUSE Application Collection, refer to the
official documentation (https://docs.apps.rancher.io/get-started/authentication/) .

2 Use local-path storage only for testing purposes. For production use, we recommend
using a storage solution suitable for persistent storage, such as SUSE Storage.

3 Do not specify the protocol, such as https://.

4 Specify a branch name, a tag name or a commit.

5 Specify a preconfigured secret with username and password (or token).

4.9.6 Values for the PyTorch Helm chart

To override the default values during the Helm chart installation or update, you can create an
override YAML le with custom values. Then, apply these values by specifying the path to the
override le with the -f option of the helm command. Remember to replace <SUSE_AI_NAMES-
PACE> with your Kubernetes namespace.

TABLE 4: AVAILABLE OPTIONS FOR THE PYTORCH HELM CHART

Key Type Default Description

global.im-

ageRegistry

string "" Global override for the contain-
er-image registry used by all chart
images.

global.im-

agePullSecrets

list(string) [] Global list of image-pull secrets to
attach to all pods.

image.registry string dp.apps.ranch-

er.io

Registry that hosts the PyTorch
container image.

image.reposi-

tory

string containers/py-

torch

Repository name (path) of the Py-
Torch container image.

image.tag string "2.5.0-nvidia" Image tag to deploy (CU-
DA/NVIDIA build by default).

193 Deploying and Installing SUSE AI

https://docs.apps.rancher.io/get-started/authentication/

Key Type Default Description

image.pullPol-

icy

string IfNotPresent Kubernetes pull policy for the Py-
Torch image.

imagePullSe-

crets

list(string) [] Additional pull secrets (overrides
global.imagePullSecrets).

nameOverride string "" Replace the chart name in resource
names.

fullnameOver-

ride

string "" Fully override the generated release
name.

gpu.enabled bool false Enable GPU scheduling and auto-
matically add device requests/lim-
its.

gpu.type string "nvidia" GPU vendor: 'nvidia' or 'amd'. If
set to 'amd', a rocm image tag is in-
ferred.

gpu.number int 1 Number of full GPUs requested (ig-
nored when MIG is used).

gpu.nvidiaRe-

source

string nvidia.com/gpu Requested resource name; change
to a MIG slice (e.g. nvidi-
a.com/mig-1g.10gb) to schedule
MIG devices.

gpu.mig.en-

abled

bool false Enable explicit specification of mul-
tiple MIG device types.

gpu.mig.de-

vices

map {} Map of MIG-slice-name → count
pairs (e.g. 1g.10gb: 1).

podAnnotations map {} Custom annotations added to the
PyTorch pod.

194 Deploying and Installing SUSE AI

Key Type Default Description

podLabels map {} Additional labels added to the Py-
Torch pod.

podSecurity-

Context

map {} Pod-level security context (e.g. fs-
Group).

securityCon-

text

map {} Container-level security context
(capabilities, runAsUser, etc.).

service.en-

abled

bool false Create a ClusterIP/NodePort/Load-
Balancer service for the PyTorch
container.

service.type string ClusterIP Service type when service.en-
abled is true.

service.port int (unset) External service port.

service.con-

tainerPort

int (unset) Target container port inside the
pod.

service.node-

Port

int/string "" Fixed nodePort value (for type:
NodePort).

service.load-

BalancerIP

string (unset) Requested load-balancer IP.

service.load-

BalancerClass

string (unset) Load-balancer implementation
class.

service.anno-

tations

map {} Extra annotations applied to the
Service object.

serviceAccoun-

t.create

bool false Whether to create a dedicated Ser-
viceAccount.

serviceAccoun-

t.automount

bool true Auto-mount ServiceAccount token
in the pod.

195 Deploying and Installing SUSE AI

Key Type Default Description

serviceAccoun-

t.annotations

map {} Annotations added to the Ser-
viceAccount.

serviceAccoun-

t.name

string "" Explicit ServiceAccount name (oth-
erwise auto-generated).

ingress.en-

abled

bool false Create an Ingress exposing the ser-
vice.

ingress.class-

Name

string "" Explicit IngressClass to use.

ingress.anno-

tations

map {} Extra annotations for the Ingress.

ingress.hosts list [{host: chart-

example.lo-

cal, paths:

[{/ , Imple-

mentationSpe-

cific}]}]

Default host and path definitions.

ingress.tls list [] TLS blocks for the Ingress resource.

resources.re-

quests

map {} Pod resource requests (CPU / mem-
ory / GPU).

resources.lim-

its

map {} Pod resource limits (CPU / memo-
ry / GPU).

live-

nessProbe.en-

abled

bool false Enable liveness probe.

196 Deploying and Installing SUSE AI

Key Type Default Description

live-

nessProbe.ini-

tialDelaySe-

conds

int 5 Delay before rst liveness probe.

live-

nessProbe.pe-

riodSeconds

int 5 Interval between liveness probes.

live-

nessProbe.time-

outSeconds

int 20 Probe timeout.

live-

nessProbe.fail-

ureThreshold

int 6 Consecutive failures before restart.

live-

nessProbe.suc-

cessThreshold

int 1 Successes needed to mark pod
healthy.

readi-

nessProbe.en-

abled

bool false Enable readiness probe.

readi-

nessProbe.ini-

tialDelaySe-

conds

int 5 Delay before rst readiness probe.

readi-

nessProbe.pe-

riodSeconds

int 5 Interval between readiness probes.

197 Deploying and Installing SUSE AI

Key Type Default Description

readi-

nessProbe.time-

outSeconds

int 20 Probe timeout.

readi-

nessProbe.fail-

ureThreshold

int 6 Consecutive failures before marking
pod unready.

readi-

nessProbe.suc-

cessThreshold

int 1 Successes required to mark pod
ready.

volumes list [] Extra Kubernetes volumes attached
to the deployment.

volumeMounts list [] Extra volumeMounts in the contain-
er spec.

nodeSelector map {} Node-selector labels for pod sched-
uling.

tolerations list [] Tolerations added to the pod spec.

affinity map {} Affinity/anti-affinity rules for the
pod.

entry-

pointscrip-

t.filename

string "" Name (and path) of a startup script
inside the container.

entry-

pointscrip-

t.arguments

list(string) [] CLI arguments passed to the entry
point script.

persis-

tence.enabled

bool false Provision a PVC to persist data (e.g.
checkpoints).

198 Deploying and Installing SUSE AI

Key Type Default Description

persis-

tence.access-

Modes

list(string) ["Read-

WriteOnce"]

Access modes for the PVC.

persis-

tence.annota-

tions

map {} Annotations applied to the PVC.

persis-

tence.exist-

ingClaim

string "" Use an existing PVC instead of cre-
ating a new one.

persis-

tence.size

string 30Gi Requested storage size for the PVC.

persistence.s-

torageClass

string "" StorageClass used for dynamic pro-
visioning ("" → default).

persis-

tence.volumeM-

ode

string "" Optional PV volumeMode.

persis-

tence.subPath

string "" Subdirectory within the PV to
mount.

persis-

tence.volume-

Name

string "" Bind the PVC to a pre-existing PV
by name.

gitClone.en-

abled

bool false Clone a Git repository into the con-
tainer at startup.

git-

Clone.reposi-

tory

string "" Repository to clone (github.com/
org/repo, no protocol).

199 Deploying and Installing SUSE AI

Key Type Default Description

gitClone.revi-

sion

string "" Branch, tag, or commit to checkout.

gitClone.se-

cretName

string "" Name of a Secret containing Git
credentials (username/password or
token).

con-

figMapExtFiles

string "" Name of the ConfigMap whose les
will be mounted into the container.

4.10 Installing MLflow

MLow is an open-source platform for managing the end-to-end machine learning lifecycle.
It provides a centralized model registry to track and manage the entire lifecycle of machine
learning models. MLow includes tools for experiment tracking, model packaging, versioning
and deployment. This helps streamline the transition from development to production, ensuring
reproducibility and collaboration among data science teams.

This section describes how to deploy MLow using either Docker or Helm on a Kubernetes
cluster.

4.10.1 Installing MLflow using Helm on a Kubernetes cluster

Tip
Before the installation, you need to get user access to the SUSE Application Collection,
create a Kubernetes namespace, and log in to the Helm registry as described in Section 4.1,

“Installation procedure”.

1. Create a skeleton for a new MLflow Helm chart.

> helm create mlflow

200 Deploying and Installing SUSE AI

The command creates an mlflow directory with the basic le structure for a chart.

2. Replace mlflow/values.yaml with the following content. Replace CONTAINER_VERSION
with the current chart version.

values.yaml
replicaCount: 1
image:
 repository: dp.apps.rancher.io/containers/mlflow
 pullPolicy: IfNotPresent
 tag: "CONTAINER_VERSION"
imagePullSecrets:
 - name: application-collection
nameOverride: ""
fullnameOverride: ""
serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Automatically mount a ServiceAccount's API credentials?
 automount: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, a name is generated using the fullname template
 name: ""
podAnnotations: {}
podLabels: {}
podSecurityContext: {}
 # fsGroup: 2000
securityContext: {}
 # capabilities:
 # drop:
 # - ALL
 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000
service:
 type: ClusterIP
 port: 5000
ingress:
 enabled: true
 className: ""
 annotations: {}
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 hosts:

201 Deploying and Installing SUSE AI

 - host: suse-mlflow
 paths:
 - path: /
 pathType: ImplementationSpecific
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local
resources:
 limits:
 cpu: "2"
 memory: "2Gi"
 requests:
 cpu: "1"
 memory: "1Gi"
livenessProbe:
 httpGet:
 path: /health
 port: 5000
readinessProbe:
 httpGet:
 path: /health
 port: 5000
autoscaling:
 enabled: false
 minReplicas: 1
 maxReplicas: 100
 targetCPUUtilizationPercentage: 80
 # targetMemoryUtilizationPercentage: 80
Additional volumes on the output Deployment definition.
volumes: []
- name: foo
secret:
secretName: mysecret
optional: false
Additional volumeMounts on the output Deployment definition.
volumeMounts: []
- name: foo
mountPath: "/etc/foo"
readOnly: true
nodeSelector: {}
tolerations: []
affinity: {}</screen>

3. Replace mlflow/template/deployment.yaml with the following content:

apiVersion: apps/v1

202 Deploying and Installing SUSE AI

kind: Deployment
metadata:
 name: {{ include "mlflow.fullname" . }}
 labels:
 {{- include "mlflow.labels" . | nindent 4 }}
spec:
 {{- if not .Values.autoscaling.enabled }}
 replicas: {{ .Values.replicaCount }}
 {{- end }}
 selector:
 matchLabels:
 {{- include "mlflow.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 {{- with .Values.podAnnotations }}
 annotations:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 labels:
 {{- include "mlflow.labels" . | nindent 8 }}
 {{- with .Values.podLabels }}
 {{- toYaml . | nindent 8 }}
 {{- end }}
 spec:
 {{- with .Values.imagePullSecrets }}
 imagePullSecrets:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 serviceAccountName: {{ include "mlflow.serviceAccountName" . }}
 securityContext:
 {{- toYaml .Values.podSecurityContext | nindent 8 }}
 containers:
 - name: {{ .Chart.Name }}
 securityContext:
 {{- toYaml .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag |
 default .Chart.AppVersion }}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 command:
 - /usr/bin/mlflow
 - server
 - --host
 - "0.0.0.0"
 - --port
 - "5000"
 ports:
 - name: http

203 Deploying and Installing SUSE AI

 containerPort: {{ .Values.service.port }}
 protocol: TCP
 livenessProbe:
 {{- toYaml .Values.livenessProbe | nindent 12 }}
 readinessProbe:
 {{- toYaml .Values.readinessProbe | nindent 12 }}
 resources:
 {{- toYaml .Values.resources | nindent 12 }}
 {{- with .Values.volumeMounts }}
 volumeMounts:
 {{- toYaml . | nindent 12 }}
 {{- end }}
 {{- with .Values.volumes }}
 volumes:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.nodeSelector }}
 nodeSelector:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.affinity }}
 affinity:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 {{- with .Values.tolerations }}
 tolerations:
 {{- toYaml . | nindent 8 }}
 {{- end }}

4. Install MLow using the following command:

> helm install mlflow ./mlflow \
 -n SUSE_AI_NAMESPACE

5. Validate that Ingress is enabled for MLow.

> kubectl get ingress --all-namespaces
NAMESPACE AME CLASS HOSTS ADDRESS PORTS AGE
[...]
suse-private-ai mlflow nginx suse-mlflow 10.0.3.184 80 153m
suse-private-ai pen-webui nginx suse-ollama-webui 10.0.3.184 80, 443 8h

204 Deploying and Installing SUSE AI

4.10.1.1 Uninstalling MLflow

To uninstall MLow, run the following command:

> helm uninstall mlflow -n SUSE_AI_NAMESPACE

4.10.2 Installing MLflow using Docker

There are two ways to install MLow using Docker:

By downloading and running the MLow container (Section 4.10.2.1, “Installing MLflow using

a Docker container”) directly.

By creating an MLow Docker Compose (Section 4.10.2.2, “Installing MLflow using a Docker

Compose YAML file”) YAML le.

4.10.2.1 Installing MLflow using a Docker container

1. Download the MLow container. Replace CONTAINER_VERSION with the current container
version.

{prompt_user}docker pull dp.apps.rancher.io/containers/mlflow:CONTAINER_VERSION

1. (Optional) Verify the downloaded image.

{prompt_user}docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
dp.apps.rancher.io/containers/mlflow 3.6.0 d984124afc22 33 hours ago 715MB

1. Run the MLow server by starting the container at port 5000. Replace CONTAINER_VERSION
with the current container version.

{prompt_user} docker run -p 5000:5000 \
 dp.apps.rancher.io/containers/mlflow:CONTAINER_VERSION mlflow server \
 --host 0.0.0.0 --port 5000
[2025-11-27 18:34:15 +0000] [12] [INFO] Starting gunicorn 23.0.0
[2025-11-27 18:34:15 +0000] [12] [INFO] Listening at: http://0.0.0.0:5000 (12)
[2025-11-27 18:34:15 +0000] [12] [INFO] Using worker: sync
[2025-11-27 18:34:15 +0000] [13] [INFO] Booting worker with pid: 13
[2025-11-27 18:34:15 +0000] [14] [INFO] Booting worker with pid: 14
[2025-11-27 18:34:15 +0000] [15] [INFO] Booting worker with pid: 15

205 Deploying and Installing SUSE AI

[2025-11-27 18:34:15 +0000] [16] [INFO] Booting worker with pid: 16

4.10.2.2 Installing MLflow using a Docker Compose YAML file

1. Create a docker-compose.yaml le with the following content:

services:
 mlflow:
 image: dp.apps.rancher.io/containers/mlflow:CONTAINER_VERSION
 container_name: mlflow
 restart: always
 ports:
 - "5000:5000"
 command:
 - /usr/bin/mlflow
 - server
 - --host
 - "0.0.0.0"
 - --port
 - "5000"

1. Run MLow using the following command:

{prompt_user}docker-compose up -d
[...]
[+] Running 2/2
 \u2714 Network {exampleuser_plain}_default Created 0.0s
 \u2714 Container mlflow Started 4s

1. (Optional) Verify that the container is running.

(venv) {exampleuser_plain}@localhost:~[] docker ps
CONTAINER ID IMAGE ... STATUS PORTS NAMES
1e58723cb3d mlflow:3.6.0 Up 23 seconds 0.0.0.0:5000->5000/tcp... mlflow

1. (Optional) Follow the logs to ensure that the MLow server has started correctly.

{prompt_user}(venv) {exampleuser_plain}@localhost:~[] docker-compose logs -f
mlflow [2025-11-01 00:56:54 +0000] [3] [INFO] Starting gunicorn 23.0.0
mlflow [2025-11-01 00:56:54 +0000] [3] [INFO] Listening at: http://0.0.0.0:5000 (3)
mlflow [2025-11-01 00:56:54 +0000] [3] [INFO] Using worker: sync
mlflow [2025-11-01 00:56:54 +0000] [4] [INFO] Booting worker with pid: 4
mlflow [2025-11-01 00:56:54 +0000] [5] [INFO] Booting worker with pid: 5

206 Deploying and Installing SUSE AI

mlflow [2025-11-01 00:56:55 +0000] [6] [INFO] Booting worker with pid: 6
mlflow [2025-11-01 00:56:55 +0000] [7] [INFO] Booting worker with pid: 7

4.10.3 Accessing MLflow Web UI

After the MLow server is up and running, you can access it from a Web browser either on the
local host or exposed via Ingress.

To access MLow locally, point your Web browser to http://localhost:5000.

To access MLow via Ingress, add a corresponding line to your /etc/hosts, for example:

10.0.3.184 suse-mflow

Then point your Web browser to http://suse-mlflow.

FIGURE 35: MLFLOW WEB UI

Tip: For more information
Explore MLow core features, model training, tracing (observability) and more by fol-
lowing the official documentation (https://github.com/mlflow/mlflow?tab=readme-ov-file#-

core-components) .

4.11 Installing AI Library components using SUSE Deployer

SUSE Deployer consists of a meta Helm chart that takes care of downloading and installing
individual AI Library components required by SUSE AI on a Kubernetes cluster.

The following procedure describes how to customize and use the SUSE Deployer to install AI
Library components. It assumes that you already completed steps described in Section 4.1, “Instal-

lation procedure” including the installation of cert-manager.

207 Deploying and Installing SUSE AI

https://github.com/mlflow/mlflow?tab=readme-ov-file#-core-components
https://github.com/mlflow/mlflow?tab=readme-ov-file#-core-components

1. Pull the SUSE Deployer Helm chart with the relevant chart version and untar it. You can
nd the latest of the chart on the SUSE Application Collection page at https://apps.ranch-

er.io/applications/suse-ai-deployer .

> helm pull oci://dp.apps.rancher.io/charts/suse-ai-deployer \
 --version 1.0.0 --untar
> cd suse-ai-deployer

2. Inspect the downloaded chart and its default values.

> helm show chart .
> helm show values .

Tip
To see default values for the charts of the individual components within the meta
chart, run the following commands.

> helm show values charts/ollama/
> helm show values charts/open-webui/
> helm show values charts/milvus/
> helm show values charts/pytorch

3. Explore downloaded example override les in the suse-ai-deployer/examples subdi-
rectory. It typically includes the following les:

suse-gen-ai-minimal.yaml

Basic configuration to get started with GenAI. It deploys Ollama without GPU sup-
port, Open WebUI, and Milvus in stand-alone mode using local storage. PyTorch is
disabled.

suse-gen-ai.yaml

Configuration optimized for production usage. It deploys Ollama with GPU support,
Open WebUI, and Milvus in cluster mode using Longhorn storage. PyTorch is dis-
abled.

suse-ml-stack.yaml

Basic configuration that enables deployment of PyTorch with no GPU support with
Longhorn storage. It deploys PyTorch but disables Ollama, Open WebUI and Milvus.

208 Deploying and Installing SUSE AI

https://apps.rancher.io/applications/suse-ai-deployer
https://apps.rancher.io/applications/suse-ai-deployer

4. Create custom-overrides.yaml override le based one of the above examples. The ex-
amples use self-signed certificates for TLS communication. To use other option (see Sec-

tion 4.6.6.1, “TLS sources”), copy the global section from the values.yaml le into your
custom-overrides.yaml and update its tls section as needed.

5. Install the SUSE Deployer Helm chart with while overriding values from the custom-over-
rides.yaml le. Use the appropriate RELEASE_NAME and SUSE_AI_NAMESPACE based the
configuration in custom-overrides.yaml.

> helm upgrade --install \
 RELEASE_NAME \
 --namespace SUSE_AI_NAMESPACE \
 --create-namespace \
 --values ./custom-overrides.yaml \
 --version 1.0.0 \
 oci://dp.apps.rancher.io/charts/suse-ai-deployer

5 Steps after the installation is complete

Once the SUSE AI installation is finished, follow these tasks to complete the initial setup and
configuration.

1. Log in to SUSE AI Open WebUI using the default credentials.

2. After you have logged in, update the administrator password for SUSE AI.

3. From the available language models, configure the one you prefer. Op-
tionally, install a custom language model. Refer to the section Set-

ting base AI models (https://documentation.suse.com/suse-ai/1.0/html/openwebui-con-

figuring/index.html#openwebui-setting-base-models) and Setting the default AI

model (https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.htm-

l#openwebui-setting-default-models) for more details.

4. Configure user management with role-base access control (RBAC) as de-
scribed in https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/in-

dex.html#openwebui-managing-user-roles .

209 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-setting-base-models
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-setting-base-models
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-setting-base-models
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-setting-default-models
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-setting-default-models
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-setting-default-models
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-managing-user-roles
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-managing-user-roles

5. Integrate single sign-on authentication manager—such as Okta—with Open WebUI
as described in https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/in-

dex.html#openwebui-authentication-via-okta .

6. Configure retrieval-augmented generation (RAG) to let the model process content relevant
to the customer.

Glossary

AI, artificial intelligence
Refers to the simulation of human intelligence in machines that are designed to learn and
solve problems like humans. Enables computers to understand language, make decisions and
improve from experience.

Air gap
A security measure where a computer network is physically isolated from unsecured net-
works, including the public Internet.

Batch size
The number of samples processed simultaneously during model inference, affecting process-
ing speed and resource utilization.

BYOC, bring your own certificate
A practice allowing users to provide their own SSL/TLS certificates for securing communi-
cations instead of using default or auto-generated ones.

CA, certification authority
An entity that issues digital certificates to verify the identity of certificate holders and ensure
secure communications.

Chain-of-thought (CoT) prompting
A prompting technique that guides AI models to break down complex problems into step-
by-step reasoning processes, improving response accuracy and transparency.

Chat template
A structured format for organizing conversations between users and AI models, defining how
system prompts, user inputs, and AI responses are formatted and processed.

210 Deploying and Installing SUSE AI

https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-authentication-via-okta
https://documentation.suse.com/suse-ai/1.0/html/openwebui-configuring/index.html#openwebui-authentication-via-okta

Context window
The maximum amount of text (tokens) that an AI model can process at once, including both
the input prompt and generated response.

CRD, custom resource definitions
Extensions of the Kubernetes API that allow users to define custom resources and their con-
trollers in a Kubernetes cluster.

CUDA, Compute Unified Device Architecture
NVIDIA’s parallel computing platform and programming model used to accelerate AI work-
loads on GPU hardware.

Data leakage
The unintended exposure of sensitive information through AI model responses, potentially
compromising data security and privacy.

Embeddings
Numerical representations of data (text, images, etc.) in a high-dimensional space that cap-
ture semantic relationships and enable AI models to process information effectively.

Fine-tuning
The process of further training a pre-trained AI model on specific data to adapt it for partic-
ular tasks or domains, improving its performance for targeted applications.

GenAI, generative AI
A type of artificial intelligence that can create new content such as text, images or music.

GPU, graphics processing unit
Specialized hardware designed for parallel processing. In AI applications, GPUs accelerate
model training and inference tasks.

Hallucination
An AI behavior where the model generates false or unsupported information that appears
plausible but has no basis in provided context or real facts.

Helm
A package manager for Kubernetes that helps install and manage applications. Helm uses
charts to define, install and upgrade complex Kubernetes applications.

211 Deploying and Installing SUSE AI

Helm chart
A package format for Kubernetes applications that contains all resource definitions needed
to deploy and configure application workloads.

IaC, infrastructure as code
The practice of managing and provisioning infrastructure through machine-readable defin-
ition les rather than manual processes.

Inference
The process of using a trained AI model to make predictions or generate outputs based on
new input data.

Kubernetes pods
The smallest deployable units in Kubernetes that can host one or more containers, sharing
networking and storage resources.

LLM, large language model
An advanced AI model trained on amounts of text data to understand and generate hu-
man-like text. Can perform tasks like translation, summarization and answering questions.

Model weights
The learned parameters of an AI model that determine how it processes inputs and generates
outputs. These weights are adjusted during training to optimize model performance.

NLG, natural language generation
A process of automatically generating human-like text from structured data or other forms
of input. Designed to convert raw data into coherent and meaningful language easily under-
stood by humans.

NLU, natural language understanding
A process AI uses to analyze and understand the meaning of the input query.

NVIDIA GPU driver
Software that enables communication between the operating system and NVIDIA graphics
hardware, essential for GPU-accelerated AI workloads.

NVIDIA GPU Operator
A Kubernetes operator that automates the management of NVIDIA GPUs in container envi-
ronments, handling driver deployment, runtime configuration, and monitoring.

212 Deploying and Installing SUSE AI

Ollama
An open source framework for running and serving AI models locally. Ollama simplifies the
process of downloading, running and managing large language models.

OpenGL
A cross-platform API for rendering 2D and 3D graphics, commonly used in visualization
applications and GPU-accelerated computing.

Prompt Engineering
The practice of crafting effective input queries to AI models to obtain desired and accurate
outputs. Good prompt engineering helps prevent hallucinations and improves response qual-
ity.

Prompt injection
A security vulnerability where malicious inputs attempt to override or bypass an AI model’s
system prompt or safety constraints.

Quantization
A technique to reduce AI model size and computational requirements by converting model
parameters to lower precision formats while maintaining acceptable performance.

RAG, retrieval-augmented generation
A technique that enhances AI responses by retrieving relevant information from a knowledge
base before generating answers, improving accuracy and reducing hallucinations.

RBAC, role-based access control
A security model that restricts system access based on roles assigned to users, managing
permissions and authorization in Kubernetes clusters.

Semantic search
A search method using AI to understand the meaning and context of queries rather than just
matching keywords, enabling more relevant results.

System prompt
Initial instructions given to an AI model that define its behavior, role and response parame-
ters. System prompts help maintain consistent and appropriate AI responses.

Temperature
A parameter controlling the randomness in AI model outputs. Lower values produce more
focused and deterministic responses, while higher values increase creativity and variability.

213 Deploying and Installing SUSE AI

Token
The basic unit of text processing in AI models, representing parts of words, characters or
symbols. Models process text by breaking it into tokens for analysis and generation.

Top-K
A parameter that limits token selection during text generation to the K most likely next
tokens, helping control output quality and relevance.

Top-P
Also known as nucleus sampling, a parameter that selects from the smallest set of tokens
whose cumulative probability exceeds P, providing dynamic control over text generation
diversity.

Vector database
A specialized database designed to store and efficiently query high-dimensional vectors that
represent data in AI applications, enabling similarity searches and semantic operations.

Vector store
A specialized storage system optimized for managing and querying vector embeddings, es-
sential for semantic search and RAG implementations in AI applications.

A Copyright

Copyright © 2023–2026-01-08 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled 'GNU Free Documentation License'.

For SUSE trademarks, see https://www.suse.com/company/legal/ . All third-party trademarks
are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks
of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the
translators shall be held liable for possible errors or the consequences thereof.

214 Deploying and Installing SUSE AI

https://www.suse.com/company/legal/

B GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

B1 0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or non-commercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

B2 1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that

215 Deploying and Installing SUSE AI

overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or po-
litical position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent le format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

216 Deploying and Installing SUSE AI

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

B3 2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-com-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other condi-
tions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

B4 3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

217 Deploying and Installing SUSE AI

If the required texts for either cover are too voluminous to t legibly, you should put the rst
ones listed (as many as t reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take rea-
sonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

B5 4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least ve of the principal
authors of the Document (all of its principal authors, if it has fewer than ve), unless they
release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

218 Deploying and Installing SUSE AI

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

6. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

13. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

14. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

15. Preserve any Warranty Disclaimers.

219 Deploying and Installing SUSE AI

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

B6 5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled "Ac-
knowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

220 Deploying and Installing SUSE AI

B7 6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

B8 7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

B9 8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires spe-
cial permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

221 Deploying and Installing SUSE AI

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

B10 9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

B11 1. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See https://www.gnu.org/

copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation.

B12 ADDENDUM: How to use this License for your documents

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

222 Deploying and Installing SUSE AI

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with…
Texts."" line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

223 Deploying and Installing SUSE AI

	Deploying and Installing SUSE AI
	Contents
	1. Installation overview
	2. Installing the Linux and Kubernetes distribution
	2.1. Installing SUSE Linux Enterprise Server
	2.1.1. The Unified Installer
	2.1.2. Installing offline or without registration
	2.1.3. The installation procedure
	2.1.3.1. Language, keyboard and product selection
	2.1.3.2. License agreement
	2.1.3.3. Network settings
	2.1.3.4. Registration
	2.1.3.5. Extension and module selection
	2.1.3.6. Add-on product
	2.1.3.7. System role
	2.1.3.8. Suggested partitioning
	2.1.3.9. Clock and time zone
	2.1.3.10. Local user
	2.1.3.11. Authentication for the system administrator root
	2.1.3.12. Installation settings
	2.1.3.13. Start the installation
	2.1.3.14. The installation process

	2.2. Installing NVIDIA GPU drivers
	2.2.1. Installing NVIDIA GPU drivers on SUSE Linux Enterprise Server
	2.2.1.1. Requirements
	2.2.1.2. Considerations before the installation
	2.2.1.2.1. Select the driver generation
	2.2.1.2.2. Additional NVIDIA components

	2.2.1.3. The installation procedure
	2.2.1.4. Validation of the driver installation

	2.2.2. Installing NVIDIA GPU drivers on SUSE Linux Enterprise Micro
	2.2.2.1. Requirements
	2.2.2.2. Considerations before the installation
	2.2.2.2.1. Select the driver generation
	2.2.2.2.2. Additional NVIDIA components

	2.2.2.3. The installation procedure
	2.2.2.4. Validation of the driver installation

	2.3. Installing SUSE Rancher Prime: RKE2
	2.3.1. Prerequisites
	2.3.2. Server node installation
	2.3.3. Linux agent (worker) node installation
	2.3.4. Microsoft Windows agent (worker) node installation

	3. Preparing the cluster for AI Library
	3.1. Installing SUSE Rancher Prime on a Kubernetes cluster
	3.1.1. Prerequisites
	3.1.1.1. Kubernetes cluster
	3.1.1.2. Ingress controller
	3.1.1.3. CLI tools

	3.1.2. Install the Rancher Helm chart
	3.1.3. Add the Helm chart repository
	3.1.4. Create a namespace for Rancher
	3.1.5. Choose your SSL configuration
	3.1.6. Install cert-manager
	3.1.7. Install Rancher with Helm and your chosen certificate option
	3.1.7.1. Rancher-generated certificates
	3.1.7.2. Let’s Encrypt
	3.1.7.3. Certificates from files
	3.1.7.4. Advanced options

	3.1.8. Verify that the Rancher server is successfully deployed
	3.1.9. Save your options
	3.1.10. Finishing up

	3.2. Installing the NVIDIA GPU Operator on the SUSE Rancher Prime: RKE2 cluster
	3.2.1. Host OS requirements
	3.2.2. Operator installation

	3.3. Registering existing clusters
	3.3.1. Prerequisites
	3.3.1.1. Kubernetes node roles
	3.3.1.2. Permissions

	3.3.2. Registering a cluster
	3.3.3. Management capabilities for registered clusters
	3.3.3.1. Features for all registered clusters
	3.3.3.2. Additional features for registered RKE2 and SUSE Rancher Prime: K3s clusters

	3.3.4. Configuring version management for RKE2 and SUSE Rancher Prime: K3s clusters
	3.3.5. Configuring RKE2 and SUSE Rancher Prime: K3s cluster upgrades
	3.3.6. Debug logging and troubleshooting for registered RKE2 and SUSE Rancher Prime: K3s clusters
	3.3.7. Authorized cluster endpoint support for RKE2 and SUSE Rancher Prime: K3s clusters
	3.3.8. Annotating registered clusters

	3.4. Assigning GPU nodes to applications
	3.4.1. Labeling GPU nodes
	3.4.2. Assigning GPU nodes
	3.4.2.1. Enable GPU passthrough
	3.4.2.2. Assignment by resource request
	3.4.2.3. Assignment by labels and node selectors

	3.4.3. Verifying Ollama GPU assignment

	3.5. Installing SUSE Security
	3.5.1. Installing and managing SUSE Security through Rancher Extensions or Apps & Marketplace
	3.5.1.1. SUSE Security UI extension for Rancher
	3.5.1.2. Deploy SUSE Security
	3.5.1.3. Manage SUSE Security
	3.5.1.4. Neuvector/Rancher SSO permission resources
	3.5.1.4.1. Mapped permission resources for Global/Cluster role
	3.5.1.4.2. Mapped permission resources for Project/Namespace role

	3.5.1.5. Disabling SUSE Security/Rancher SSO
	3.5.1.6. Rancher legacy deployments
	3.5.1.7. Deploy without privileged mode
	3.5.1.8. Using node labels for manager and controller nodes

	3.5.2. Installing SUSE Security using Kubernetes
	3.5.2.1. SUSE Security images on Docker Hub
	3.5.2.2. Deploy SUSE Security
	3.5.2.3. Using node labels for manager and controller nodes
	3.5.2.4. Rolling updates
	3.5.2.4.1. Sample Kubernetes rolling update

	3.5.2.5. Expose REST API in Kubernetes
	3.5.2.6. Kubernetes deployment in non-privileged mode
	3.5.2.7. Kubernetes deployment YAML for v5.4.2 onwards
	3.5.2.8. PKS change

	3.6. Setting up SUSE Observability for SUSE AI
	3.6.1. Deployment scenarios
	3.6.2. Requirements
	3.6.3. Setup process overview
	3.6.4. Setting up the SUSE Observability cluster
	3.6.5. Setting up the SUSE AI cluster
	3.6.6. Instrument applications

	4. Installing applications from AI Library
	4.1. Installation procedure
	4.2. Installing cert-manager
	4.2.1. Details about the cert-manager application
	4.2.2. cert-manager installation procedure
	4.2.3. Upgrading cert-manager
	4.2.4. Uninstalling cert-manager

	4.3. Installing OpenSearch
	4.3.1. Details about the OpenSearch application
	4.3.2. OpenSearch installation procedure
	4.3.3. Integrating OpenSearch with Open WebUI
	4.3.4. Upgrading OpenSearch
	4.3.5. Uninstalling OpenSearch

	4.4. Installing Milvus
	4.4.1. Details about the Milvus application
	4.4.2. Milvus installation procedure
	4.4.2.1. Using Apache Kafka with SUSE Storage

	4.4.3. Upgrading Milvus
	4.4.4. Uninstalling Milvus

	4.5. Installing Ollama
	4.5.1. Details about the Ollama application
	4.5.2. Ollama installation procedure
	4.5.3. Uninstalling Ollama
	4.5.4. Upgrading Ollama
	4.5.4.1. Upgrading from version 0.x.x to 1.x.x

	4.5.5. Values for the Ollama Helm chart

	4.6. Installing Open WebUI
	4.6.1. Details about the Open WebUI application
	4.6.2. Open WebUI installation procedure
	4.6.3. Upgrading Open WebUI
	4.6.4. Uninstalling Open WebUI
	4.6.5. Examples of Open WebUI Helm chart override files
	4.6.6. Values for the Open WebUI Helm chart
	4.6.6.1. TLS sources

	4.7. Installing vLLM
	4.7.1. Details about the vLLM application
	4.7.2. vLLM installation procedure
	4.7.3. Integrating vLLM with Open WebUI
	4.7.4. Upgrading vLLM
	4.7.5. Uninstalling vLLM
	4.7.6. Examples of vLLM Helm chart override files

	4.8. Installing mcpo
	4.8.1. Details about the mcpo application
	4.8.2. mcpo installation procedure
	4.8.3. Integrating mcpo with Open WebUI
	4.8.4. Upgrading mcpo
	4.8.5. Uninstalling mcpo

	4.9. Installing PyTorch
	4.9.1. Details about the PyTorch application
	4.9.2. PyTorch installation procedure
	4.9.3. Upgrading PyTorch
	4.9.4. Uninstalling PyTorch
	4.9.5. Examples of PyTorch Helm chart override files
	4.9.6. Values for the PyTorch Helm chart

	4.10. Installing MLflow
	4.10.1. Installing MLflow using Helm on a Kubernetes cluster
	4.10.1.1. Uninstalling MLflow

	4.10.2. Installing MLflow using Docker
	4.10.2.1. Installing MLflow using a Docker container
	4.10.2.2. Installing MLflow using a Docker Compose YAML file

	4.10.3. Accessing MLflow Web UI

	4.11. Installing AI Library components using SUSE Deployer

	5. Steps after the installation is complete
	Glossary
	A. Copyright
	B. GNU Free Documentation License
	B1. 0. PREAMBLE
	B2. 1. APPLICABILITY AND DEFINITIONS
	B3. 2. VERBATIM COPYING
	B4. 3. COPYING IN QUANTITY
	B5. 4. MODIFICATIONS
	B6. 5. COMBINING DOCUMENTS
	B7. 6. COLLECTIONS OF DOCUMENTS
	B8. 7. AGGREGATION WITH INDEPENDENT WORKS
	B9. 8. TRANSLATION
	B10. 9. TERMINATION
	B11. 1. FUTURE REVISIONS OF THIS LICENSE
	B12. ADDENDUM: How to use this License for your documents

