
Administration Guide

Administration Guide: This guide describes general and specialized adminis-
trative tasks for SUSE CaaS Platform 4.0.3.
by Markus Napp and Nora Kořánová

Publication Date: 2022-05-02

SUSE LLC
1800 South Novell Place
Provo, UT 84606
USA

https://documentation.suse.com

https://documentation.suse.com

Contents

vii

1 About This Guide 1
1.1 Required Background 1

1.2 Available Documentation 1

1.3 Feedback 2

1.4 Documentation Conventions 2

2 Cluster Management 4

2.1 Bootstrap and Initial Configuration 4

2.2 Adding Nodes 4

2.3 Removing Nodes 5

Temporary Removal 5 • Permanent Removal 5

2.4 Reconfiguring Nodes 6

2.5 Node Operations 7

Uncordon and Cordon 7 • Draining Nodes 7

3 Software Management 8

3.1 Software Installation 8

Base OS 8 • Kubernetes stack 10

4 Security 13

4.1 Access Control 13

4.2 Role Management 13

List of Verbs 13 • List of Resources 14 • Creating Roles 15 • Create

Role Bindings 16

iii Administration Guide

4.3 Managing Users and Groups 18

Adding a New Organizational Unit 18 • Removing an Organizational

Unit 18 • Adding a New Group to an Organizational Unit 19 • Removing

a Group from an Organizational Unit 20

4.4 Role Based Access Control (RBAC) 25

Introduction 25 • Authentication Flow 25 • RBAC Operations 31

4.5 Configuring an External LDAP Server 34

Deploying an External 389 Directory Server 34 • Deploying a 389 Directory

Server with an External Certificate 35 • Examples of Usage 36

4.6 Pod Security Policies 46

Default Policies 47 • Policy Definition 47 • Creating a

PodSecurityPolicy 50

4.7 NGINX Ingress Controller 50

4.8 Admission Controllers 52

Introduction 52 • Configured admission controllers 53

4.9 Certificates 53

Communication Security 53 • Certificate Validity 53 • Certificate

Location 54 • Deployment with a Custom CA Certificate 55 • Automatic

Certificate Renewal 57 • Manual Certificate Renewal 57

5 Cluster Updates 61

5.1 Updating Kubernetes Components 61

Generating an Overview of Available Platform Updates 61 • Generating an

Overview of Available Addon Updates 63

5.2 Updating Nodes 63

How To Update Nodes 64

5.3 Base OS Updates 65

Disabling Automatic Updates 65 • Completely Disabling

Reboots 65 • Manual Unlock 66

iv Administration Guide

6 Monitoring 67

6.1 Monitoring Stack 67

Introduction 67 • Prerequisites 68 • Installation 69 • Monitoring 81

6.2 Health Checks 85

Cluster Health Checks 86 • Node Health Checks 88 • Service/

Application Health Checks 92 • General Health Checks 94

7 Logging 95

7.1 Centralized Logging 95

Prerequisites 95 • Types of Logs 95 • Log

Formats 96 • Deployment 97 • Queuing 98 • Optional

settings 98

8 Integration 101

8.1 SUSE Enterprise Storage Integration 101

Prerequisites 101 • Procedures According to Type of Integration 101

8.2 SUSE Cloud Application Platform Integration 113

Prerequisites 113 • Procedures 114

9 Miscellaneous 117

9.1 Configuring HTTP/HTTPS Proxy for CRI-O 117

Configuration Example 117

9.2 Configuring Container Registries for CRI-O 117

Per-namespace Settings 119 • Remapping and Mirroring Registries 119

9.3 FlexVolume Configuration 120

10 Troubleshooting 122

10.1 The supportconfig Tool 122

10.2 Cluster definition directory 123

10.3 Log collection 124

10.4 Debugging SLES Nodes provision 129

v Administration Guide

10.5 Debugging Cluster Deployment 129

10.6 Error x509: certificate signed by unknown authority 130

10.7 Replacing a Lost Node 130

10.8 Rebooting an Undrained Node with RBD Volumes Mapped 131

10.9 ETCD Troubleshooting 131

Introduction 131 • ETCD

container 132 • logging 132 • etcdctl 133 • curl as an

alternative 134

10.10 Kubernetes debugging tips 135

10.11 Helm Error: context deadline exceeded 135

A GNU Licenses 136

A.1 GNU Free Documentation License 136

vi Administration Guide

Warning
This document is a work in progress.

The content in this document is subject to change without notice.

Note
This guide assumes a configured SUSE Linux Enterprise 15 SP1 environment.

Copyright © 2006 — 2019 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled “GNU Free Documentation License”.

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trade-
marks are the property of their respective owners. Trademark symbols (®, ™, etc.) denote trade-
marks of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors, nor the
translators shall be held liable for possible errors or the consequences thereof.

vii

http://www.suse.com/company/legal/

1 About This Guide

1.1 Required Background
To keep the scope of these guidelines manageable, certain technical assumptions have been
made. These documents are not aimed at beginners in Kubernetes usage and require extensive
knowledge of

You have some computer experience and are familiar with common technical terms.

You are familiar with the documentation for your system and the network on which it runs.

You have a basic understanding of Linux systems.

You have an understanding of how to follow instructions aimed at experienced Linux ad-
ministrators and can ll in gaps with your own research.

You understand how to plan, deploy and manage Kubernetes applications.

1.2 Available Documentation

We provide HTML and PDF versions of our books in different languages. Documentation for our
products is available at https://documentation.suse.com , where you can also nd the latest
updates and browse or download the documentation in various formats.

The following documentation is available for this product:

Architecture Guide

The SUSE CaaS Platform Architecture Guide gives you a rough overview of the software
architecture. It is as of yet incomplete and will change infrequently.

Deployment Guide

The SUSE CaaS Platform Deployment Guide gives you details about installation and con-
figuration of SUSE CaaS Platform along with a description of architecture and minimum
system requirements.

Quick Start Guide

The SUSE CaaS Platform Quick Start guides you through the installation of a minimum
cluster in the fastest way possible.

1 Required Background

https://documentation.suse.com

Admin Guide

The SUSE CaaS Platform Admin Guide discusses authorization, updating clusters and in-
dividual nodes, monitoring, use of Helm and Tiller, the Kubernetes dashboard, and inte-
gration with SUSE Enterprise Storage.

1.3 Feedback
Several feedback channels are available:

Bugs and Enhancement Requests

For services and support options available for your product, refer to http://www.suse.com/

support/ .
To report bugs for a product component, go to https://scc.suse.com/support/requests ,
log in, and click Create New.

Mail

We want to hear your comments about and suggestions for this manual and the other
documentation included with this product. For feedback on the documentation of this
product, you can send a mail to doc-team@suse.com . Make sure to include the document
title, the product version and the publication date of the documentation. To report errors
or suggest enhancements, provide a concise description of the problem and refer to the
respective section number and page (or URL).

1.4 Documentation Conventions
The following notices and typographical conventions are used in this documentation:

/etc/passwd : directory names and le names

<PLACEHOLDER> : replace <PLACEHOLDER> with the actual value

PATH : the environment variable PATH

ls , --help : commands, options, and parameters

user : users or groups

package name : name of a package

2 Feedback

http://www.suse.com/support/
http://www.suse.com/support/
https://scc.suse.com/support/requests

Alt , Alt – F1 : a key to press or a key combination; keys are shown in uppercase as on
a keyboard

File Save As : menu items, buttons

Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a chapter in
another manual.

Commands that must be run with root privileges. Often you can also prefix these commands
with the sudo command to run them as non-privileged user.

sudo command

Commands that can be run by non-privileged users.

command

Notices:

Warning
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important
Important information you should be aware of before proceeding.

Note
Additional information, for example about differences in software versions.

Tip
Helpful information, like a guideline or a piece of practical advice.

3 Documentation Conventions

2 Cluster Management

Cluster management refers to several processes in the life cycle of a cluster and its individual
nodes: bootstrapping, joining and removing nodes. For maximum automation and ease SUSE
CaaS Platform uses the skuba tool, which simplifies Kubernetes cluster creation and reconfig-
uration.

2.1 Bootstrap and Initial Configuration
Bootstrapping the cluster is the initial process of starting up a minimal viable cluster and joining
the rst master node. Only the rst master node needs to be bootstrapped, later nodes can simply
be joined as described in Section 2.2, “Adding Nodes”.

Before bootstrapping any nodes to the cluster, you need to create an initial cluster definition
folder (initialize the cluster). This is done using skuba cluster init and its --control-plane
ag.

For a step by step guide on how to initialize the cluster, configure updates using kured and
subsequently bootstrap nodes to it, refer to the SUSE CaaS Platform Deployment Guide.

2.2 Adding Nodes
Once you have added the rst master node to the cluster using skuba node bootstrap , use the
skuba node join command to add more nodes. Joining master or worker nodes to an existing
cluster should be done sequentially, meaning the nodes have to be added one after another and
not more of them in parallel.

skuba node join --role <MASTER/WORKER> --user <USER_NAME> --sudo --target <IP/FQDN>
 <NODE_NAME>

The mandatory ags for the join command are --role , --user , --sudo and --target .

--role serves to specify if the node is a master or worker.

--sudo is for running the command with superuser privileges, which is necessary for all
node operations.

<USER_NAME> is the name of the user that exists on your SLES machine (default: sles).

4 Bootstrap and Initial Configuration

--target <IP/FQDN> is the IP address or FQDN of the relevant machine.

<NODE_NAME> is how you decide to name the node you are adding.

Important
New master nodes that you didn’t initially include in your Terraform’s configuration have
to be manually added to your load balancer’s configuration.

To add a new worker node, you would run something like:

skuba node join --role worker --user sles --sudo --target 10.86.2.164 worker1

2.3 Removing Nodes

2.3.1 Temporary Removal

If you wish to remove a node temporarily, the recommended approach is to rst drain the node.

When you want to bring the node back, you only have to uncordon it.

Tip
For instructions on how to perform these operations refer to Section 2.5, “Node Operations”.

2.3.2 Permanent Removal

Important
Nodes removed with this method cannot be added back to the cluster or any other sku-
ba-initiated cluster. You must reinstall the entire node and then join it again to the cluster.

The skuba node remove command serves to permanently remove nodes. Running this com-
mand will work even if the target virtual machine is down, so it is the safest way to remove
the node.

5 Removing Nodes

skuba node remove <NODE_NAME> [flags]

Note
Per default, node removal has an unlimited timeout on waiting for the node to drain.
If the node is unreachable it can not be drained and thus the removal will fail or get
stuck indefinitely. You can specify a time after which removal will be performed without
waiting for the node to drain with the ag --drain-timeout <DURATION> .

For example, waiting for the node to drain for 1 minute and 5 seconds:

skuba node remove caasp-worker1 --drain-timeout 1m5s

For a list of supported time formats run skuba node remove -h .

Important
After the removal of a master node, you have to manually delete its entries from your
load balancer’s configuration.

2.4 Reconfiguring Nodes
To reconfigure a node, for example to change the node’s role from worker to master, you will
need to use a combination of commands.

1. Run skuba node remove <NODE_NAME> .

2. Reinstall the node from scratch.

3. Run skuba node join --role <DESIRED_ROLE> --user <USER_NAME> --sudo --
target <IP/FQDN> <NODE_NAME> .

6 Reconfiguring Nodes

2.5 Node Operations

2.5.1 Uncordon and Cordon

These to commands respectively define if a node is marked as schedulable or unschedulable .
This means that a node is allowed to or not allowed to receive any new workloads. This can be
useful when troubleshooting a node.

To mark a node as unschedulable run:

kubectl cordon <NODE_NAME>

To mark a node as schedulable run:

kubectl uncordon <NODE_NAME>

2.5.2 Draining Nodes

Draining a node consists of evicting all the running pods from the current node in order to
perform maintenance. This is a mandatory step in order to ensure a proper functioning of the
workloads. This is achieved using kubectl .

To drain a node run:

kubectl drain <NODE_NAME>

This action will also implicitly cordon the node. Therefore once the maintenance is done, un-
cordon the node to set it back to schedulable.

Refer to the official Kubernetes documentation for more information: https://kubernetes.io/docs/

tasks/administer-cluster/safely-drain-node/#use-kubectl-drain-to-remove-a-node-from-service

7 Node Operations

https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/#use-kubectl-drain-to-remove-a-node-from-service
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/#use-kubectl-drain-to-remove-a-node-from-service

3 Software Management

3.1 Software Installation
Software can be installed in three basic layers

Base OS layer

Linux RPM packages, Kernel etc.. Installation via AutoYaST,Terraform or {zypper}

Kubernetes Stack

Software that helps/controls execution of workloads in Kubernetes

Container image

Here it entirely depends on the actual makeup of the container what can be installed and
how. Please refer to your respecitve container image documentation for further details.

Note
Installation of software in container images is beyond the scope of this document.

3.1.1 Base OS

Applications that will be deployed to Kubernetes will typically contain all the required software
to be executed. In some cases, especially when it comes to the hardware layer abstraction (stor-
age backends, GPU), additional packages must be installed on the underlying operating system
outside of Kubernetes.

Note
The following examples show installation of required packages for Ceph , please adjust
the list of packages and repositories to whichever software you need to install.

While you can install any software package from the {sles} ecosystem this falls outside
of the support scope for SUSE CaaS Platform.

8 Software Installation

3.1.1.1 Initial Rollout

During the rollout of nodes you can use either AutoYaST or Terraform (depending on your
chosen deployment type) to automatically install packages to all nodes.

For example, to install additional packages required by the Ceph storage backend you can
modify your autoyast.xml or tfvars.yml les to include the additional repositories and
instructions to install xfsprogs and ceph-common .

1. tfvars.yml

EXAMPLE:
repositories = {
repository1 = "http://example.my.repo.com/repository1/"
repository2 = "http://example.my.repo.com/repository2/"
}
repositories = {

}

Minimum required packages. Do not remove them.
Feel free to add more packages
packages = [
 "kernel-default",
 "-kernel-default-base",
 "ca-certificates-suse",
 "xfsprogs",
 "ceph-common"
]

2. autoyast.xml

<!-- install required packages -->
<software>
 <image/>
 <products config:type="list">
 <product>SLES</product>
 </products>
 <instsource/>
 <patterns config:type="list">
 <pattern>base</pattern>
 <pattern>enhanced_base</pattern>
 <pattern>minimal_base</pattern>
 <pattern>basesystem</pattern>
 </patterns>
 <packages config:type="list">

9 Base OS

 <package>ceph-common</package>
 <package>xfsprogs</package>
 </packages>
</software>

3.1.1.2 Existing Cluster

To install software on existing cluster nodes, you must use zypper on each node individually.
Simply log in to a node via SSH and run:

sudo zypper in ceph-common xfsprogs

3.1.2 Kubernetes stack

3.1.2.1 Installing Helm

As of SUSE CaaS Platform 4.0.2, Helm is part of the SUSE CaaS Platform package repository, so
to use this, you only need to run the following command from the location where you normally
run skuba commands:

sudo zypper install helm

3.1.2.2 Installing Tiller

As of SUSE CaaS Platform 4.0.2, Tiller is not part of the SUSE CaaS Platform package repository
but it is available as a helm chart from the chart. To install the Tiller server, choose either way
to deploy the Tiller server:

3.1.2.2.1 Unsecured Tiller Deployment

This will install Tiller without additional certificate security.

kubectl create serviceaccount --namespace kube-system tiller

kubectl create clusterrolebinding tiller \
--clusterrole=cluster-admin \

10 Kubernetes stack

--serviceaccount=kube-system:tiller

helm init --tiller-image registry.suse.com/caasp/v4/helm-tiller:{helm_tiller_version} \
--service-account tiller

3.1.2.2.2 Secured Tiller Deployment with SSL/TLS

This installs tiller with SSL/TLS certificate security.

1. Prepare CA certificate
In some cases you want to create self-signed certificates for testing purpose. This is not
recommended for the production environment. If you are using proper CA signed certifi-
cates or using existed Kubernetes cluster CA certificates, you could skip this step.

openssl genrsa -out ca.key 2048
openssl req -key ca.key -new -x509 -days 3650 -sha256 -out ca.crt -extensions v3_ca

2. Prepare Tiller server certificate

openssl genrsa -out tiller.key 2048
openssl req -key tiller.key -new -sha256 -out tiller.csr
openssl x509 -req -CA ca.crt -CAkey ca.key -CAcreateserial -in tiller.csr -out
 tiller.crt -days 365

3. Prepare Helm client certificate

openssl genrsa -out helm.key 2048
openssl req -key helm.key -new -sha256 -out helm.csr
openssl x509 -req -CA ca.crt -CAkey ca.key -CAcreateserial -in helm.csr -out
 helm.crt -days 365

4. Deploy Tiller server with SSL/TLS

kubectl create serviceaccount --namespace kube-system tiller
kubectl create clusterrolebinding tiller --clusterrole=cluster-admin --
serviceaccount=kube-system:tiller

helm init --tiller-tls --tiller-tls-verify --tiller-tls-cert tiller.crt \
--tiller-tls-key tiller.key --tls-ca-cert ca.crt \
--tiller-image registry.suse.com/caasp/v4/helm-tiller:{helm_tiller_version} \
--service-account tiller

5. Configure Helm client with SSL/TLS

11 Kubernetes stack

Setup $HELM_HOME environment and copy the CA certificate, helm client certificate and
key to the $HELM_HOME path.

export HELM_HOME=<path/to/helm/home>

cp ca.crt $HELM_HOME/ca.pem
cp helm.crt $HELM_HOME/cert.pem
cp helm.key $HELM_HOME/key.pem

Then, for helm commands, pass ag --tls . For example:

helm ls --tls [flags]
helm install --tls <CHART> [flags]
helm upgrade --tls <RELEASE_NAME> <CHART> [flags]
helm del --tls <RELEASE_NAME> [flags]

12 Kubernetes stack

4 Security

4.1 Access Control
Users access the API using kubectl , client libraries, or by making REST requests. Both human
users and Kubernetes service accounts can be authorized for API access. When a request reaches
the API, it goes through several stages, that can be explained with the following three questions:

1. Authentication: who are you? This is accomplished via client certificates, bearer tokens,
an authenticating proxy, or HTTP basic auth to authenticate API requests through authen-
tication plugins.

2. Authorization: what kind of access do you have? This is accomplished via Section 4.4,

“Role Based Access Control (RBAC)” API, that is a set of permissions for the previously authen-
ticated user. Permissions are purely additive (there are no "deny" rules). A role can be
defined within a namespace with a Role, or cluster-wide with a ClusterRole.

3. Admission Control: what are you trying to do? This is accomplished via Section 4.8, “Ad-

mission Controllers”. They can modify (mutate) or validate (accept or reject) requests.

Unlike authentication and authorization, if any admission controller rejects, then the request
is immediately rejected.

4.2 Role Management
SUSE CaaS Platform uses role-based access control authorization for Kubernetes. . Roles define,
which subjects (users or groups) can use which verbs (operations) on which resources. The fol-
lowing sections provide an overview of the resources, verbs and how to create roles. Roles can
then be assigned to users and groups.

4.2.1 List of Verbs

This section provides an overview of the most common verbs (operations) used for defining roles.
Verbs correspond to sub-commands of kubectl .

create

13 Access Control

Create a resource.

delete

Delete resources.

deletecollection

Delete a collection of a resource (can only be invoked using the Kubernetes API).

get

Display individual resource.

list

Display collections.

patch

Update an API object in place.

proxy

Allows running kubectl in a mode where it acts as a reverse proxy.

update

Update elds of a resource, for example annotations or labels.

watch

Watch resource.

4.2.2 List of Resources

This section provides an overview of the most common resources used for defining roles.

Autoscaler

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

ConfigMaps

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

Cronjob

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/

DaemonSet

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Deployment

14 List of Resources

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Ingress

https://kubernetes.io/docs/concepts/services-networking/ingress/

Job

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

Namespace

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Node

https://kubernetes.io/docs/concepts/architecture/nodes/

Pod

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/

Persistent Volumes

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Secrets

https://kubernetes.io/docs/concepts/configuration/secret/

Service

https://kubernetes.io/docs/concepts/services-networking/service/

ReplicaSets

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

4.2.3 Creating Roles

Roles are defined in YAML les. To apply role definitions to Kubernetes, use kubectl apply -
f YAML_FILE . The following examples provide an overview about different use cases of roles.

EXAMPLE 4.1: SIMPLE ROLE FOR CORE RESOURCE

This example allows to get , watch and list all pods in the namespace default .

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: view-pods 1

 namespace: default 2

rules:
- apiGroups: [""] 3

15 Creating Roles

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

 resources: ["pods"] 4

 verbs: ["get", "watch", "list"] 5

1 Name of the role. This is required to associate the rule with a group or user. For
details, refer to Section 4.2.4, “Create Role Bindings”.

2 Namespace the new group should be allowed to access. Use default for Kubernetes'
default namespace.

3 Kubernetes API groups. Use "" for the core group. Use kubectl api-resources
to list all API groups.

4 Kubernetes resources. For a list of available resources, refer to Section 4.2.2, “List of

Resources”.

5 Kubernetes verbs. For a list of available verbs, refer to Section 4.2.1, “List of Verbs”.

EXAMPLE 4.2: CLUSTER ROLE FOR CREATION OF PODS

This example creates a cluster role to allow create pods clusterwide. Note the Clus-
terRole value for kind .

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: admin-create-pods 1

rules:
- apiGroups: [""] 2

 resources: ["pods"] 3

 verbs: ["create"] 4

1 a group or user. For details, refer to Section 4.2.4, “Create Role Bindings”.

2 Kubernetes API groups. Use "" for the core group. Use kubectl api-resources
to list all API groups.

3 Kubernetes resources. For a list of available resources, refer to Section 4.2.2, “List of

Resources”.

4 Kubernetes verbs. For a list of available verbs, refer to Section 4.2.1, “List of Verbs”.

4.2.4 Create Role Bindings

To bind a group or user to a role, create a YAML le that contains the role binding description.
Then apply the binding with kubectl apply -f YAML_FILE . The following examples provide
an overview about different use cases of role bindings.

16 Create Role Bindings

EXAMPLE 4.3: BINDING A GROUP TO A ROLE

This example shows how to bind a group to a defined role.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: <ROLE_BINDING_NAME> 1

 namespace: <NAMESPACE> 2

subjects:
- kind: Group
 name: <LDAP_GROUP_NAME> 3

 apiGroup: rbac.authorization.k8s.io
roleRef:
- kind: Role
 name: <ROLE_NAME> 4

 apiGroup: rbac.authorization.k8s.io

1 Defines a name for this new role binding.

2 Name of the namespace to which the binding applies.

3 Name of the LDAP group to which this binding applies.

4 Name of the role used. For defining rules, refer to Section 4.2.3, “Creating Roles”.

EXAMPLE 4.4: BINDING A GROUP TO A CLUSTER ROLE

This example shows how to bind a group to a defined cluster role.

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: <CLUSTER_ROLE_BINDING_NAME> 1

subjects:
 kind: Group
 name: <CLUSTER_GROUP_NAME> 2

 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: ClusterRole
 name: <CLUSER_ROLE_NAME> 3

 apiGroup: rbac.authorization.k8s.io

1 Defines a name for this new cluster role binding.

2 Name of the LDAP group to which this binding applies.

3 Name of the role used. For defining rules, refer to Section 4.2.3, “Creating Roles”.

17 Create Role Bindings

4.3 Managing Users and Groups
You can use standard LDAP administration tools for managing organizations, groups and users
remotely. To do so, install the openldap2-client package on a computer in your network and
make sure that the computer can connect to the LDAP server (389 Directory Server) on port
389 or secure port 636 .

4.3.1 Adding a New Organizational Unit

1. To add a new organizational unit, create an LDIF le (create_ou_groups.ldif) like this:

dn: ou=OU_NAME,dc=example,dc=org
changetype: add
objectclass: top
objectclass: organizationalUnit
ou: OU_NAME

Substitute OU_NAME with an organizational unit name of your choice.

2. Run ldapmodify to add the new organizational unit:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./create_ou_groups.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
 "<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

4.3.2 Removing an Organizational Unit

1. To remove an organizational unit, create an LDIF le (delete_ou_groups.ldif) like this:

dn: ou=OU_NAME,dc=example,dc=org
changetype: delete

18 Managing Users and Groups

Substitute OU_NAME with the name of the organizational unit you would like to
remove.

2. Execute ldapmodify to remove the organizational unit:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./delete_ou_groups.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
 "<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

4.3.3 Adding a New Group to an Organizational Unit

1. To add a new group to an organizational unit, create an LDIF le (create_groups.ldif)
like this:

dn: cn=GROUP,ou=OU_NAME,dc=example,dc=org
changetype: add
objectClass: top
objectClass: groupOfNames
gidNumber: GROUPID
cn: GROUP

GROUP: Group name

OU_NAME: Organizational unit name

GROUPID: Group ID (GID) of the new group. This value should be a unique number.

2. Run ldapmodify to add the new group to the organizational unit:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./create_groups.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

19 Adding a New Group to an Organizational Unit

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
 "<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

4.3.4 Removing a Group from an Organizational Unit

1. To remove a group from an organizational unit, create an LDIF le (delete_ou_group-
s.ldif) like this:

dn: cn=GROUP,ou=OU_NAME,dc=example,dc=org
changetype: delete

GROUP: Group name

OU_NAME: organizational unit name

2. Execute ldapmodify to remove the group from the organizational unit:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./delete_ou_groups.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
 "<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

4.3.4.1 Adding a New User

1. To add a new user, create an LDIF le (new_user.ldif) like this:

dn: uid=USERID,ou=OU_NAME,dc=example,dc=org
objectClass: person
objectClass: inetOrgPerson
objectClass: top
uid: USERID
userPassword: PASSWORD_HASH
givenname: FIRST_NAME
sn: SURNAME
cn: FULL_NAME
mail: E-MAIL_ADDRESS

20 Removing a Group from an Organizational Unit

USERID: User ID (UID) of the new user. This value must be a unique number.

OU_NAME: organizational unit name

PASSWORD_HASH: The user’s hashed password.SSHA_PASSWORD: The user’s new
hashed password.
Use /usr/sbin/slappasswd to generate the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER_PASSWORD>

Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA $ <USER_PASSWORD>

FIRST_NAME: The user’s rst name

SURNAME: The user’s last name

FULL_NAME: The user’s full name

E-MAIL_ADDRESS: The user’s e-mail address

2. Execute ldapadd to add the new user:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./new_user.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

ldapadd -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
"<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

4.3.4.2 Showing User Attributes

1. To show the attributes of a user, use the ldapsearch command:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
USERID=user1
BASE_DN="uid=<USERID>,dc=example,dc=org"

21 Removing a Group from an Organizational Unit

BIND_DN="cn=Directory Manager" # Admin User
DS_DM_PASSWORD= # Admin Password

ldapsearch -v -x -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -b
"<BASE_DN>" -D "<BIND_DN>" -w <DS_DM_PASSWORD>

4.3.4.3 Modifying a User

The following procedure shows how to modify a user in the LDAP server. See the LDIF les
for examples of how to change rootdn password, a user password and add a user to the Admin-
istrators group. To modify other elds, you can use the password example, replacing user-
Password with other eld names you want to change.

1. Create an LDIF le (modify_rootdn.ldif), which contains the change to the LDAP server:

dn: cn=config
changetype: modify
replace: nsslapd-rootpw
nsslapd-rootpw: NEW_PASSWORD

NEW_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd
to generate the SSHA hash.
Use /usr/sbin/slappasswd to generate the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER_PASSWORD>

Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA $ <USER_PASSWORD>

2. Create an LDIF le (modify_user.ldif), which contains the change to the LDAP server:

dn: uid=USERID,ou=OU_NAME,dc=example,dc=org
changetype: modify
replace: userPassword
userPassword: NEW_PASSWORD

22 Removing a Group from an Organizational Unit

USERID: The desired user’s ID

OU_NAME: organizational unit name

NEW_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd
to generate the SSHA hash.
Use /usr/sbin/slappasswd to generate the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER_PASSWORD>

Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA $ <USER_PASSWORD>

3. Add the user to the Administrators group:

dn: cn=Administrators,ou=Groups,dc=example,dc=org
changetype: modify
add: uniqueMember
uniqueMember: uid=USERID,ou=OU_NAME,dc=example,dc=org

USERID: Substitute with the user’s ID.

OU_NAME: organizational unit name

4. Execute ldapmodify to change user attributes:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./modify_user.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
"<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

23 Removing a Group from an Organizational Unit

4.3.4.4 Deleting a User

To delete a user from the LDAP server, follow these steps:

1. Create an LDIF le (delete_user.ldif) that specifies the name of the entry:

dn: uid=USER_ID,ou=OU_NAME,dc=example,dc=org
changetype: delete

USERID: Substitute this with the user’s ID.

OU_NAME: organizational unit name

2. Run ldapmodify to delete the user:

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN="cn=Directory Manager" # Admin User
LDIF_FILE=./delete_user.ldif # LDIF Configuration File
DS_DM_PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
 "<BIND_DN>" -f <LDIF_FILE> -w <DS_DM_PASSWORD>

4.3.4.5 Changing Your own LDAP Password from CLI

To perform a change to your own user password from CLI.

LDAP_PROTOCOL=ldap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND_DN= # User's binding dn
DS_DM_PASSWORD= # Old Password
NEW_DS_DM_PASSWORD= # New Password

ldappasswd -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -x -D
 "<BIND_DN>" -w <DS_DM_PASSWORD> -a <DS_DM_PASSWORD> -s <NEW_DS_DM_PASSWORD>

24 Removing a Group from an Organizational Unit

4.4 Role Based Access Control (RBAC)

4.4.1 Introduction

RBAC uses the rbac.authorization.k8s.io API group to drive authorization decisions, al-
lowing administrators to dynamically configure policies through the Kubernetes API.

The authentication components are deployed as part of the SUSE CaaS Platform installation.
Administrators can update LDAP identity providers before or after platform deployment. After
deploying SUSE CaaS Platform, administrators can use Kubernetes RBAC to design user or group
authorizations. Users can access with a Web browser or command line to do the authentication
and self-configure kubectl to access authorized resources.

4.4.2 Authentication Flow

Authentication is composed of:

Dex (https://github.com/dexidp/dex) is an identity provider service (idP) that uses OIDC
(Open ID Connect: https://openid.net/connect/) to drive authentication for client appli-
cations. It acts as a portal to defer authentication to provider through connected identity
providers (connectors).

Client:

1. Web browser: Gangway (https://github.com/heptiolabs/gangway): a Web applica-
tion that enables authentication ow for your SUSE CaaS Platform. The user can lo-
gin, authorize access, download kubeconfig or self-configure kubectl .

2. Command line: skuba auth login , a CLI application that enables authentication
ow for your SUSE CaaS Platform. The user can log in, authorize access, and get
kubeconfig .

For RBAC, administrators can use kubectl to create corresponding RoleBinding or Clus-
terRoleBinding for a user or group to limit resource access.

25 Role Based Access Control (RBAC)

https://github.com/dexidp/dex
https://openid.net/connect/
https://github.com/heptiolabs/gangway

4.4.2.1 Web Flow

26 Authentication Flow

1. User requests access through Gangway.

2. Gangway redirects to Dex.

3. Dex redirects to connected identity provider (connector). User login and a request to ap-
prove access are generated.

4. Dex continues with OIDC authentication ow on behalf of the user and creates/updates
data to Kubernetes CRDs.

5. Dex redirects the user to Gangway. This redirect includes (ID/refresh) tokens.

6. Gangway returns a link to download kubeconfig or self-configures kubectl instructions
to the user.

27 Authentication Flow

28 Authentication Flow

7. User downloads kubeconf or self-configures kubectl .

8. User uses kubectl to connect to the Kubernetes API server.

9. Kubernetes CRDs validate the Kubernetes API server request and return a response.

10. The kubectl connects to the authorized Kubernetes resources through the Kubernetes
API server.

29 Authentication Flow

4.4.2.2 CLI Flow

30 Authentication Flow

1. User requests access through skuba auth login with the Dex server URL, username and
password.

2. Dex uses received username and password to log in and approve the access request to the
connected identity providers (connectors).

3. Dex continues with the OIDC authentication ow on behalf of the user and creates/updates
data to the Kubernetes CRDs.

4. Dex returns the ID token and refresh token to skuba auth login .

5. skuba auth login generates the kubeconfig le kubeconf.txt .

6. User uses kubectl to connect the Kubernetes API server.

7. Kubernetes CRDs validate the Kubernetes API server request and return a response.

8. The kubectl connects to the authorized Kubernetes resources through Kubernetes API
server.

4.4.3 RBAC Operations

4.4.3.1 Administration

4.4.3.1.1 Kubernetes Role Binding

Administrators can create Kubernetes RoleBinding or ClusterRoleBinding for users. This
grants permission to users on the Kubernetes cluster like in the example below.

In order to create a RoleBinding for <USER_1> , <USER_2> , and <GROUP_1> using the Clus-
terRole admin you would run the following:

kubectl create rolebinding admin --clusterrole=admin --user=<USER_1> --user=<USER_2> --
group=<GROUP_1>

31 RBAC Operations

4.4.3.1.2 Update the Authentication Connector

Administrators can update the authentication connector settings after SUSE CaaS Platform de-
ployment as follows:

1. Run the following kubectl command to access Dex ConfigMap:

kubectl --namespace=kube-system edit configmap oidc-dex-config

2. Adapt ConfigMap by adding LDAP configuration to the connector section. For detailed
configuration of the LDAP connector, refer to Dex documentation: https://github.com/dex-

idp/dex/blob/v2.16.0/Documentation/connectors/ldap.md . The following is an example
LDAP connector:

connectors:
- type: ldap
 id: 389ds
 name: 389ds
 config:
 host: ldap.example.org:636
 rootCAData: <base64 encoded PEM file>
 bindDN: cn=Directory Manager
 bindPW: <Password of Bind DN>
 usernamePrompt: Email Address
 userSearch:
 baseDN: ou=Users,dc=example,dc=org
 filter: "(objectClass=person)"
 username: mail
 idAttr: DN
 emailAttr: mail
 nameAttr: cn
 groupSearch:
 baseDN: ou=Groups,dc=example,dc=org
 filter: "(objectClass=groupOfNames)"
 userAttr: uid
 groupAttr: memberUid
 nameAttr: cn

3. A base64 encoded PEM le can be generated by running:

cat <ROOT_CA_PEM_FILE> | base64 | awk '{print}' ORS='' && echo

Besides the LDAP connector you can also set up other connectors. For additional con-
nectors, refer to the available connector configurations in the Dex repository: https://

github.com/dexidp/dex/tree/v2.16.0/Documentation/connectors .

32 RBAC Operations

https://github.com/dexidp/dex/blob/v2.16.0/Documentation/connectors/ldap.md
https://github.com/dexidp/dex/blob/v2.16.0/Documentation/connectors/ldap.md
https://github.com/dexidp/dex/tree/v2.16.0/Documentation/connectors
https://github.com/dexidp/dex/tree/v2.16.0/Documentation/connectors

4. Save and exit Dex ConfigMap by typing :wq in the terminal.

5. Restart Dex and Gangway by running:

kubectl --namespace=kube-system delete pod -l app=oidc-dex
kubectl --namespace=kube-system delete pod -l app=oidc-gangway

4.4.3.2 User Access

4.4.3.2.1 Setting up kubectl

4.4.3.2.1.1 In the Web Browser

1. Go to the login page at https://<CONTROL_PLANE_IP/FQDN>:32001 in your browser.

2. Click "Sign In".

3. Choose the login method.

4. Enter the login credentials.

5. Download kubeconfig or self-configure kubectl with the provided setup instructions.

4.4.3.2.1.2 Using the CLI

1. Use skuba auth login with Dex server URL https://<CON-

TROL_PLANE_IP/FQDN>:32000 , login username and password.

2. The kubeconfig kubeconf.txt is generated locally.

4.4.3.2.2 Access Kubernetes Resources

The user can now access resources in the authorized <NAMESPACE> .

If the user has the proper permissions to access the resources, the output should look like this:

kubectl -n <NAMESPACE> get pod

33 RBAC Operations

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system dex-844dc9b8bb-w2zkm 1/1 Running 0 19d
kube-system gangway-944dc9b8cb-w2zkm 1/1 Running 0 19d
kube-system cilium-76glw 1/1 Running 0 27d
kube-system cilium-fvgcv 1/1 Running 0 27d
kube-system cilium-j5lpx 1/1 Running 0 27d
kube-system cilium-operator-5d9cc4fbb7-g5plc 1/1 Running 0 34d
kube-system cilium-vjf6p 1/1 Running 8 27d
kube-system coredns-559fbd6bb4-2r982 1/1 Running 9 46d
kube-system coredns-559fbd6bb4-89k2j 1/1 Running 9 46d
kube-system etcd-my-master 1/1 Running 5 46d
kube-system kube-apiserver-my-cluster 1/1 Running 0 19d
kube-system kube-controller-manager-my-master 1/1 Running 14 46d
kube-system kube-proxy-62hls 1/1 Running 4 46d
kube-system kube-proxy-fhswj 1/1 Running 0 46d
kube-system kube-proxy-r4h42 1/1 Running 1 39d
kube-system kube-proxy-xsdf4 1/1 Running 0 39d
kube-system kube-scheduler-my-master 1/1 Running 13 46d

If the user does not have the right permissions to access a resource, they will receive a For-
bidden message.

Error from server (Forbidden): pods is forbidden

4.5 Configuring an External LDAP Server
SUSE CaaS Platform supports user authentication via an external LDAP server like "389 Direc-
tory Server" (389-ds) and "Active Directory" by updating the built-in Dex LDAP connector con-
figuration.

4.5.1 Deploying an External 389 Directory Server

The 389 Directory Server image registry.suse.com/caasp/v4/389-ds:1.4.0 will automat-
ically generate a self-signed certificate and key. The following instructions show how to de-
ploy the "389 Directory Server" with a customized configuration using container commands.

1. Prepare the customized 389 Directory configuration and enter it into the terminal in the
following format:

DS_DM_PASSWORD= # Admin Password
DS_SUFFIX="dc=example,dc=org" # Domain Suffix

34 Configuring an External LDAP Server

DATA_DIR=<PWD>/389_ds_data # Directory Server Data on Host
 Machine to Mount

2. Execute the following docker command to deploy 389-ds in the same terminal. This will
start a non-TLS port (389) and a TLS port (636) together with an automatically self-signed
certificate and key.

docker run -d \
-p 389:3389 \
-p 636:636 \
-e DS_DM_PASSWORD=<DS_DM_PASSWORD> \
-e DS_SUFFIX=<DS_SUFFIX> \
-v <DATA_DIR>:/data \
--name 389-ds registry.suse.com/caasp/v4/389-ds:1.4.0

4.5.2 Deploying a 389 Directory Server with an External Certificate

To replace the automatically generated certificate with your own, follow these steps:

1. Stop the running container:

docker stop 389-ds

2. Copy the external certificate Server-Cert-Key.pem , Server-Cert.crt , and pwd-

file-import.txt to a mounted data directory <DATA_DIR>/config/ .

Server-Cert-Key.pem : PRIVATE KEY.

Server-Cert.crt : CERTIFICATE.

pwdfile-import.txt : Password for the PRIVATE KEY.

3. Execute the docker command to run the 389 Directory Server with a mounted data di-
rectory from the previous step:

docker start 389-ds

4.5.2.1 Known Issues

This error message is actually a warning for 389-ds version 1.4.0 when replacing external
certificates.

35 Deploying a 389 Directory Server with an External Certificate

ERR - attrcrypt_cipher_init - No symmetric key found for cipher AES in backend
 exampleDB, attempting to create one...
INFO - attrcrypt_cipher_init - Key for cipher AES successfully generated and stored
ERR - attrcrypt_cipher_init - No symmetric key found for cipher 3DES in backend
 exampleDB, attempting to create one...
INFO - attrcrypt_cipher_init - Key for cipher 3DES successfully generated and stored

It is due to the encrypted key being stored in the dse.ldif . When replacing the key and
certificate in /data/config , 389ds will search in dse.ldif for a symmetric key and
create one if it does not exist. 389-ds developers are planning a x that switches 389-ds
to use the nssdb exclusively.

4.5.3 Examples of Usage

In both directories, user-regular1 and user-regular2 are members of the k8s-users
group, and user-admin is a member of the k8s-admins group.

In Active Directory, user-bind is a simple user that is a member of the default Domain Users
group. Hence, we can use it to authenticate, because it has read-only access to Active Directory.
The mail attribute is used to create the RBAC rules.

Tip
The following examples might use PEM les encoded to a base64 string. These can be
generated using:

cat <ROOT_CA_PEM_FILE> | base64 | awk '{print}' ORS='' && echo

4.5.3.1 389 Directory Server:

4.5.3.1.1 Example 1: 389-ds Content LDIF

Example LDIF configuration to initialize LDAP using an LDAP command:

dn: dc=example,dc=org
objectClass: top
objectClass: domain

36 Examples of Usage

dc: example

dn: cn=Directory Administrators,dc=example,dc=org
objectClass: top
objectClass: groupofuniquenames
cn: Directory Administrators
uniqueMember: cn=Directory Manager

dn: ou=Groups,dc=example,dc=org
objectClass: top
objectClass: organizationalunit
ou: Groups

dn: ou=People,dc=example,dc=org
objectClass: top
objectClass: organizationalunit
ou: People

dn: ou=Users,dc=example,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Users

Example LDIF configuration to configure ACL using an LDAP command:

dn: dc=example,dc=org
changetype: modify
add: aci
aci: (targetattr!="userPassword || aci")(version 3.0; acl "Enable anonymous access";
 allow (read, search, compare) userdn="ldap:///anyone";)
aci: (targetattr="carLicense || description || displayName || facsimileTelephoneNumber
 || homePhone || homePostalAddress || initials || jpegPhoto || labeledURI || mail
 || mobile || pager || photo || postOfficeBox || postalAddress || postalCode ||
 preferredDeliveryMethod || preferredLanguage || registeredAddress || roomNumber ||
 secretary || seeAlso || st || street || telephoneNumber || telexNumber || title ||
 userCertificate || userPassword || userSMIMECertificate || x500UniqueIdentifier")
(version 3.0; acl "Enable self write for common attributes"; allow (write)
 userdn="ldap:///self";)
aci: (targetattr ="*")(version 3.0;acl "Directory Administrators Group";allow (all)
 (groupdn = "ldap:///cn=Directory Administrators, dc=example,dc=org");)

Example LDIF configuration to create user user-regular1 using an LDAP command:

dn: uid=user-regular1,ou=Users,dc=example,dc=org
changetype: add
uid: user-regular1

37 Examples of Usage

userPassword: SSHA_PASSWORD
objectClass: posixaccount
objectClass: inetOrgPerson
objectClass: person
objectClass: inetUser
objectClass: organizationalPerson
uidNumber: 1200
gidNumber: 500
givenName: User
mail: user-regular1@example.org
sn: Regular1
homeDirectory: /home/regular1
cn: User Regular1

SSHA_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd to generate
the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER_PASSWORD>

Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA $ <USER_PASSWORD>

Example LDIF configuration to create user user-regular2 using an LDAP command:

dn: uid=user-regular2,ou=Users,dc=example,dc=org
changetype: add
uid: user-regular2
userPassword: SSHA_PASSWORD
objectClass: posixaccount
objectClass: inetOrgPerson
objectClass: person
objectClass: inetUser
objectClass: organizationalPerson
uidNumber: 1300
gidNumber: 500
givenName: User
mail: user-regular2@example.org
sn: Regular1
homeDirectory: /home/regular2
cn: User Regular2

SSHA_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd to generate
the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER_PASSWORD>

38 Examples of Usage

Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA $ <USER_PASSWORD>

Example LDIF configuration to create user user-admin using an LDAP command:

dn: uid=user-admin,ou=Users,dc=example,dc=org
changetype: add
uid: user-admin
userPassword: SSHA_PASSWORD
objectClass: posixaccount
objectClass: inetOrgPerson
objectClass: person
objectClass: inetUser
objectClass: organizationalPerson
uidNumber: 1000
gidNumber: 100
givenName: User
mail: user-admin@example.org
sn: Admin
homeDirectory: /home/admin
cn: User Admin

SSHA_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd to generate
the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER_PASSWORD>

Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA $ <USER_PASSWORD>

Example LDIF configuration to create group k8s-users using an LDAP command:

dn: cn=k8s-users,ou=Groups,dc=example,dc=org
changetype: add
gidNumber: 500
objectClass: groupOfNames
objectClass: posixGroup
cn: k8s-users
ou: Groups
memberUid: user-regular1
memberUid: user-regular2

Example LDIF configuration to create group k8s-admins using an LDAP command:

dn: cn=k8s-admins,ou=Groups,dc=example,dc=org

39 Examples of Usage

changetype: add
gidNumber: 100
objectClass: groupOfNames
objectClass: posixGroup
cn: k8s-admins
ou: Groups
memberUid: user-admin

4.5.3.1.2 Example 2: Dex LDAP TLS Connector Configuration (addons/dex/
dex.yaml)

Dex connector template configured to use 389-DS:

connectors:
- type: ldap
 # Required field for connector id.
 id: 389ds
 # Required field for connector name.
 name: 389ds
 config:
 # Host and optional port of the LDAP server in the form "host:port".
 # If the port is not supplied, it will be guessed based on "insecureNoSSL",
 # and "startTLS" flags. 389 for insecure or StartTLS connections, 636
 # otherwise.
 host: ldap.example.org:636

 # The following field is required if the LDAP host is not using TLS (port 389).
 # Because this option inherently leaks passwords to anyone on the same network
 # as dex, THIS OPTION MAY BE REMOVED WITHOUT WARNING IN A FUTURE RELEASE.
 #
 # insecureNoSSL: true

 # If a custom certificate isn't provide, this option can be used to turn on
 # TLS certificate checks. As noted, it is insecure and shouldn't be used outside
 # of explorative phases.
 #
 insecureSkipVerify: true

 # When connecting to the server, connect using the ldap:// protocol then issue
 # a StartTLS command. If unspecified, connections will use the ldaps:// protocol
 #
 # startTLS: true

 # Path to a trusted root certificate file. Default: use the host's root CA.
 # rootCA: /etc/dex/pki/ca.crt

40 Examples of Usage

 # A raw certificate file can also be provided inline.
 rootCAData: <BASE64_ENCODED_PEM_FILE>

 # The DN and password for an application service account. The connector uses
 # these credentials to search for users and groups. Not required if the LDAP
 # server provides access for anonymous auth.
 # Please note that if the bind password contains a `$`, it has to be saved in an
 # environment variable which should be given as the value to `bindPW`.
 bindDN: cn=Directory Manager
 bindPW: <BIND_DN_PASSWORD>

 # The attribute to display in the provided password prompt. If unset, will
 # display "Username"
 usernamePrompt: Email Address

 # User search maps a username and password entered by a user to a LDAP entry.
 userSearch:
 # BaseDN to start the search from. It will translate to the query
 # "(&(objectClass=person)(mail=<USERNAME>))".
 baseDN: ou=Users,dc=example,dc=org
 # Optional filter to apply when searching the directory.
 filter: "(objectClass=person)"

 # username attribute used for comparing user entries. This will be translated
 # and combined with the other filter as "(<attr>=<USERNAME>)".
 username: mail
 # The following three fields are direct mappings of attributes on the user entry.
 # String representation of the user.
 idAttr: DN
 # Required. Attribute to map to Email.
 emailAttr: mail
 # Maps to display name of users. No default value.
 nameAttr: cn

 # Group search queries for groups given a user entry.
 groupSearch:
 # BaseDN to start the search from. It will translate to the query
 # "(&(objectClass=group)(member=<USER_UID>))".
 baseDN: ou=Groups,dc=example,dc=org
 # Optional filter to apply when searching the directory.
 filter: "(objectClass=groupOfNames)"

 # Following two fields are used to match a user to a group. It adds an additional
 # requirement to the filter that an attribute in the group must match the user's
 # attribute value.
 userAttr: uid

41 Examples of Usage

 groupAttr: memberUid

 # Represents group name.
 nameAttr: cn

Then, refer to Section 4.4.3.1.2, “Update the Authentication Connector” to apply the dex.yaml and
Section 4.4.3.2, “User Access” to access through Web or CLI.

4.5.3.2 Active Directory

4.5.3.2.1 Example 1: Active Directory Content LDIF

Example LDIF configuration to create user user-regular1 using an LDAP command:

dn: cn=user-regular1,ou=Users,dc=example,dc=org
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: user-regular1
sn: Regular1
givenName: User
distinguishedName: cn=user-regular1,ou=Users,dc=example,dc=org
displayName: User Regular1
memberOf: cn=Domain Users,ou=Users,dc=example,dc=org
memberOf: cn=k8s-users,ou=Groups,dc=example,dc=org
name: user-regular1
sAMAccountName: user-regular1
objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-regular1@example.org

Example LDIF configuration to create user user-regular2 using an LDAP command:

dn: cn=user-regular2,ou=Users,dc=example,dc=org
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: user-regular2
sn: Regular2
givenName: User
distinguishedName: cn=user-regular2,ou=Users,dc=example,dc=org
displayName: User Regular2
memberOf: cn=Domain Users,ou=Users,dc=example,dc=org
memberOf: cn=k8s-users,ou=Groups,dc=example,dc=org

42 Examples of Usage

name: user-regular2
sAMAccountName: user-regular2
objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-regular2@example.org

Example LDIF configuration to create user user-bind using an LDAP command:

dn: cn=user-bind,ou=Users,dc=example,dc=org
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: user-bind
sn: Bind
givenName: User
distinguishedName: cn=user-bind,ou=Users,dc=example,dc=org
displayName: User Bind
memberOf: cn=Domain Users,ou=Users,dc=example,dc=org
name: user-bind
sAMAccountName: user-bind
objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-bind@example.org

Example LDIF configuration to create user user-admin using an LDAP command:

dn: cn=user-admin,ou=Users,dc=example,dc=org
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: user-admin
sn: Admin
givenName: User
distinguishedName: cn=user-admin,ou=Users,dc=example,dc=org
displayName: User Admin
memberOf: cn=Domain Users,ou=Users,dc=example,dc=org
memberOf: cn=k8s-admins,ou=Groups,dc=example,dc=org
name: user-admin
sAMAccountName: user-admin
objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-admin@example.org

Example LDIF configuration to create group k8s-users using an LDAP command:

dn: cn=k8s-users,ou=Groups,dc=example,dc=org
objectClass: top
objectClass: group
cn: k8s-users

43 Examples of Usage

member: cn=user-regular1,ou=Users,dc=example,dc=org
member: cn=user-regular2,ou=Users,dc=example,dc=org
distinguishedName: cn=k8s-users,ou=Groups,dc=example,dc=org
name: k8s-users
sAMAccountName: k8s-users
objectCategory: cn=Group,cn=Schema,cn=Configuration,dc=example,dc=org

Example LDIF configuration to create group k8s-admins using an LDAP command:

dn: cn=k8s-admins,ou=Groups,dc=example,dc=org
objectClass: top
objectClass: group
cn: k8s-admins
member: cn=user-admin,ou=Users,dc=example,dc=org
distinguishedName: cn=k8s-admins,ou=Groups,dc=example,dc=org
name: k8s-admins
sAMAccountName: k8s-admins
objectCategory: cn=Group,cn=Schema,cn=Configuration,dc=example,dc=org

4.5.3.2.2 Example 2: Dex Active Directory TLS Connector Configuration

Run kubectl --namespace=kube-system edit configmap oidc-dex-config to edit Dex
ConfigMap. Configure Dex ConfigMap to use Active Directory using the following template:

connectors:
- type: ldap
 # Required field for connector id.
 id: AD
 # Required field for connector name.
 name: AD
 config:
 # Host and optional port of the LDAP server in the form "host:port".
 # If the port is not supplied, it will be guessed based on "insecureNoSSL",
 # and "startTLS" flags. 389 for insecure or StartTLS connections, 636
 # otherwise.
 host: ad.example.org:636

 # Following field is required if the LDAP host is not using TLS (port 389).
 # Because this option inherently leaks passwords to anyone on the same network
 # as dex, THIS OPTION MAY BE REMOVED WITHOUT WARNING IN A FUTURE RELEASE.
 #
 # insecureNoSSL: true

 # If a custom certificate isn't provide, this option can be used to turn on
 # TLS certificate checks. As noted, it is insecure and shouldn't be used outside
 # of explorative phases.

44 Examples of Usage

 #
 # insecureSkipVerify: true

 # When connecting to the server, connect using the ldap:// protocol then issue
 # a StartTLS command. If unspecified, connections will use the ldaps:// protocol
 #
 # startTLS: true

 # Path to a trusted root certificate file. Default: use the host's root CA.
 # rootCA: /etc/dex/ldap.ca

 # A raw certificate file can also be provided inline.
 rootCAData: <BASE_64_ENCODED_PEM_FILE>

 # The DN and password for an application service account. The connector uses
 # these credentials to search for users and groups. Not required if the LDAP
 # server provides access for anonymous auth.
 # Please note that if the bind password contains a `$`, it has to be saved in an
 # environment variable which should be given as the value to `bindPW`.
 bindDN: cn=user-admin,ou=Users,dc=example,dc=org
 bindPW: <BIND_DN_PASSWORD>

 # The attribute to display in the provided password prompt. If unset, will
 # display "Username"
 usernamePrompt: Email Address

 # User search maps a username and password entered by a user to a LDAP entry.
 userSearch:
 # BaseDN to start the search from. It will translate to the query
 # "(&(objectClass=person)(mail=<USERNAME>))".
 baseDN: ou=Users,dc=example,dc=org
 # Optional filter to apply when searching the directory.
 filter: "(objectClass=person)"

 # username attribute used for comparing user entries. This will be translated
 # and combined with the other filter as "(<attr>=<USERNAME>)".
 username: mail
 # The following three fields are direct mappings of attributes on the user entry.
 # String representation of the user.
 idAttr: distinguishedName
 # Required. Attribute to map to Email.
 emailAttr: mail
 # Maps to display name of users. No default value.
 nameAttr: sAMAccountName

 # Group search queries for groups given a user entry.
 groupSearch:

45 Examples of Usage

 # BaseDN to start the search from. It will translate to the query
 # "(&(objectClass=group)(member=<USER_UID>))".
 baseDN: ou=Groups,dc=example,dc=org
 # Optional filter to apply when searching the directory.
 filter: "(objectClass=group)"

 # Following two fields are used to match a user to a group. It adds an additional
 # requirement to the filter that an attribute in the group must match the user's
 # attribute value.
 userAttr: distinguishedName
 groupAttr: member

 # Represents group name.
 nameAttr: sAMAccountName

base64 encoded PEM le can be generated by running:

cat <ROOT_CA_PEM_FILE> | base64 | awk '{print}' ORS='' && echo

Then, refer to Section 4.4.3.1.2, “Update the Authentication Connector” to apply the dex.yaml and
Section 4.4.3.2, “User Access” to access through Web or CLI.

4.6 Pod Security Policies

Note
Please note that criteria for designing PodSecurityPolicy are not part of this document.

"Pod Security Policy" (stylized as PodSecurityPolicy and abbreviated "PSP") is a security mea-
sure implemented by Kubernetes to control which specifications a pod must meet to be allowed
to run in the cluster. They control various aspects of execution of pods and interactions with
other parts of the software infrastructure.

You can nd more general information about PodSecurityPolicy in the Kubernetes Docs (https://

kubernetes.io/docs/concepts/policy/pod-security-policy/) .

User access to the cluster is controlled via "Role Based Access Control (RBAC)". Each PodSe-
curityPolicy is associated with one or more users or service accounts so they are allowed to
launch pods with the associated specifications. The policies are associated with users or service
accounts via role bindings.

46 Pod Security Policies

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Warning
The default policies shipped with SUSE CaaS Platform are not suitable for production
environments. Please create your own security policies with the appropriate amount of
permissions/restrictions.

4.6.1 Default Policies

SUSE CaaS Platform 4 currently ships with two default policies:

Privileged (full access everywhere)

Unprivileged (only very basic access)

All pods running the containers for the basic SUSE CaaS Platform software are deployed into
the kube-system namespace and run with the "privileged" policy.

All authenticated system users (group system:authenticated) and service accounts in
kube-system (system:serviceaccounts:kube-system) have a RoleBinding (suse:caasp:p-
sp:privileged) to run pods using the privileged policy in the kube-system namespace.

Any other pods launched in any other namespace are, by default, deployed in unprivileged mode.

Important
You must configure RBAC rules and PodSecurityPolicy to provide proper functionality
and security.

4.6.2 Policy Definition

The policy definitions are embedded in the cluster bootstrap manifest (GitHub) (https://

github.com/SUSE/skuba/blob/master/pkg/skuba/actions/cluster/init/manifests.go) .

During the bootstrap with skuba , the policy les will be stored on your workstation in the
cluster definition folder under addons/psp . These policy les will be installed automatically
for all cluster nodes.

The le names of the les created are:

podsecuritypolicy-unprivileged.yaml

47 Default Policies

https://github.com/SUSE/skuba/blob/master/pkg/skuba/actions/cluster/init/manifests.go
https://github.com/SUSE/skuba/blob/master/pkg/skuba/actions/cluster/init/manifests.go

and

podsecuritypolicy-privileged.yaml .

4.6.2.1 Policy File Examples

This is the unprivileged policy as a configuration le. You can use this as a basis to develop
your own PodSecurityPolicy.

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: suse.caasp.psp.unprivileged
 annotations:
 apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
 apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: runtime/default
 seccomp.security.alpha.kubernetes.io/defaultProfileName: runtime/default
spec:
 # Privileged
 privileged: false
 # Volumes and File Systems
 volumes:
 # Kubernetes Pseudo Volume Types
 - configMap
 - secret
 - emptyDir
 - downwardAPI
 - projected
 - persistentVolumeClaim
 # Networked Storage
 - nfs
 - rbd
 - cephFS
 - glusterfs
 - fc
 - iscsi
 # Cloud Volumes
 - cinder
 - gcePersistentDisk
 - awsElasticBlockStore
 - azureDisk
 - azureFile
 - vsphereVolume
 allowedHostPaths:

48 Policy Definition

 # Note: We don't allow hostPath volumes above, but set this to a path we
 # control anyway as a belt+braces protection. /dev/null may be a better
 # option, but the implications of pointing this towards a device are
 # unclear.
 - pathPrefix: /opt/kubernetes-hostpath-volumes
 readOnlyRootFilesystem: false
 # Users and groups
 runAsUser:
 rule: RunAsAny
 supplementalGroups:
 rule: RunAsAny
 fsGroup:
 rule: RunAsAny
 # Privilege Escalation
 allowPrivilegeEscalation: false
 defaultAllowPrivilegeEscalation: false
 # Capabilities
 allowedCapabilities: []
 defaultAddCapabilities: []
 requiredDropCapabilities: []
 # Host namespaces
 hostPID: false
 hostIPC: false
 hostNetwork: false
 hostPorts:
 - min: 0
 max: 65535
 # SELinux
 seLinux:
 # SELinux is unused in CaaSP
 rule: 'RunAsAny'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: suse:caasp:psp:unprivileged
rules:
 - apiGroups: ['extensions']
 resources: ['podsecuritypolicies']
 verbs: ['use']
 resourceNames: ['suse.caasp.psp.unprivileged']

Allow all users and serviceaccounts to use the unprivileged
PodSecurityPolicy
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

49 Policy Definition

 name: suse:caasp:psp:default
roleRef:
 kind: ClusterRole
 name: suse:caasp:psp:unprivileged
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:serviceaccounts
- kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated

4.6.3 Creating a PodSecurityPolicy

In order to properly secure and run your Kubernetes workloads you must configure RBAC rules
for your desired users create a PodSecurityPolicy adequate for your respective workloads and
then link the user accounts to the PodSecurityPolicy using (Cluster)RoleBinding.

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

4.7 NGINX Ingress Controller
Configure and deploy NGINX ingress controller

1. Choose which networking configuration the ingress controller should have. Create a le
nginx-ingress-config-values.yaml with one of the following examples as content.

NodePort: The services will be publicly exposed on each node of the cluster, includ-
ing master nodes, at port 30443 for HTTPS .

Enable the creation of pod security policy
podSecurityPolicy:
 enabled: false

Create a specific service account
serviceAccount:
 create: true
 name: nginx-ingress

Publish services on port HTTPS/30443
These services are exposed on each node

50 Creating a PodSecurityPolicy

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

controller:
 service:
 enableHttp: false
 type: NodePort
 nodePorts:
 https: 30443

External IPs: The services will be exposed on specific nodes of the cluster, at port
443 for HTTPS .

Enable the creation of pod security policy
podSecurityPolicy:
 enabled: false

Create a specific service account
serviceAccount:
 create: true
 name: nginx-ingress

Publish services on port HTTPS/443
These services are exposed on the node with IP 10.86.4.158
controller:
 service:
 enableHttp: false
 externalIPs:
 - 10.86.4.158

2. Deploy the upstream helm chart and pass along our configuration values le.

Tip
For instructions on how to install Helm and Tiller refer to Section 3.1.2.1, “Installing

Helm”.

kubectl create namespace nginx-ingress

helm install --name nginx-ingress suse/nginx-ingress \
--namespace nginx-ingress \
--values nginx-ingress-config-values.yaml

The result should be two running pods:

kubectl -n nginx-ingress get pod
NAME READY STATUS RESTARTS AGE

51 NGINX Ingress Controller

nginx-ingress-controller-74cffccfc-p8xbb 1/1 Running 0 4s
nginx-ingress-default-backend-6b9b546dc8-mfkjk 1/1 Running 0 4s

4.8 Admission Controllers

4.8.1 Introduction

After user authentication and authorization, admission takes place to complete the access con-
trol for the Kubernetes API. As the final step in the access control process, admission enhances
the security layer by mandating a reasonable security baseline across a specific namespace or the
entire cluster. The built-in PodSecurityPolicy admission controller is perhaps the most promi-
nent example of it.

Apart from the security aspect, admission controllers can enforce custom policies to adhere to
certain best-practices such as having good labels, annotation, resource limits, or other settings.
It is worth noting that instead of only validating the request, admission controllers are also
capable of "fixing" a request by mutating it, such as automatically adding resource limits if the
user forgets to.

The admission is controlled by admission controllers which may only be configured by the
cluster administrator. The admission control process happens in two phases:

1. In the rst phase, mutating admission controllers are run. They are empowered to auto-
matically change the requested object to comply with certain cluster policies by making
modifications to it if needed.

2. In the second phase, validating admission controllers are run. Based on the results of the
previous mutating phase, an admission controller can either allow the request to proceed
and reach etcd or deny it.

Important
If any of the controllers in either phase reject the request, the entire request is rejected
immediately and an error is returned to the end-user.

52 Admission Controllers

4.8.2 Configured admission controllers

Important
Any modification of this list prior to the creation of the cluster will be overwritten by
these default settings.

The ability to add or remove individual admission controllers will be provided with one
of the upcoming releases of SUSE CaaS Platform.

The complete list of admission controllers can be found at https://kubernetes.io/docs/refer-

ence/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do

The default admission controllers enabled in SUSE CaaS Platform are:

1. NodeRestriction

2. PodSecurityPolicy

4.9 Certificates
During the installation of SUSE CaaS Platform, a CA (Certificate Authority) certificate is gener-
ated, which is then used to authenticate and verify all communication. This process also creates
and distributes client and server certificates for the components.

4.9.1 Communication Security

Communication is secured with TLS v1.2 using the AES 128 CBC cipher. All certificates are 2048
bit RSA encrypted.

4.9.2 Certificate Validity

The CA certificate is valid for 3650 days (10 years) by default. Client and server certificates are
valid for 365 days (1 year) by default.

53 Configured admission controllers

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do

4.9.3 Certificate Location

Required CAs for SUSE CaaS Platform are stored on all master nodes:

Common Name Path Description

kubernetes /etc/kubernetes/pki/
ca.crt,key

kubernetes general CA

etcd-ca /etc/kubernetes/pki/etcd/
ca.crt,key

Etcd cluster

kubelet-ca /var/lib/kubelet/pki/
ca.crt,key

Kubelet components

front-proxy-ca /etc/kubernetes/pki/front-
proxy-ca.crt,key`

Front-proxy components

The following certificates are managed by kubeadm :

Common Name Parent CA Path (/etc/kuber-
netes/pki)

Kind

kubernetes ca.crt,key CA

kube-apiserver kubernetes apiserver.crt,key Server

kube-apiserver-etcd-
client

kubernetes apiserver-etcd-clien-
t.crt,key

Client

kube-apiserv-
er-kubelet-client

kubernetes apiserver-kubelet-
client.crt,key

Client

etcd-ca etcd/ca.crt,key CA

kube-etcd-
healthcheck-client

etcd-ca etcd/healthcheck-
client.crt,key

Client

kube-etcd-peer etcd-ca etcd/peer.crt,key Server,Client

54 Certificate Location

Common Name Parent CA Path (/etc/kuber-
netes/pki)

Kind

kube-etcd-server etcd-ca etcd/server.crt,key Server,Client

front-proxy-ca front-proxy-ca.crt,key CA

front-proxy-client front-proxy-ca front-proxy-clien-
t.crt,key

Client

The following certificates are created by skuba :

stored in the Kubernetes cluster as le format:

Common Name Parent CA Path (/var/lib/
kubelet/pki)

Kind

kubelet-ca kubelet-ca.crt,key CA

<node-name> kubelet-ca kubelet.crt,key Server

stored in the Kubernetes cluster as Secret resource:

Common Name Parent CA Secret Resource
Name

Kind

oidc-dex kubernetes oidc-dex-cert Server

oidc-gangway kubernetes oidc-gangway-cert Server

cilium-etcd-client etcd-ca cilium-secret Client

4.9.4 Deployment with a Custom CA Certificate

Warning
Please plan carefully when deploying with a custom CA certificate. This certificate can not
be reconfigured once deployed and requires a full re-installation of the cluster to replace.

55 Deployment with a Custom CA Certificate

Administrators can provide custom CA certificates (root CAs or intermediate CAs) during clus-
ter deployment and decide which CA components to replace (multiple CA certificates) or if to
replace all with a single CA certificate.

After you have run skuba cluster init , go to the my-cluster folder that has been generated,
Create a pki folder and put your custom CA certificate into the pki folder.

Replacing the Kubernetes apiserver CA certificate:

mkdir -p my-cluster/pki
cp <CUSTOM_APISERVER_ROOTCA_CERT_PATH> my-cluster/pki/ca.crt
cp <CUSTOM_APISERVER_ROOTCA_KEY_PATH> my-cluster/pki/ca.key
chmod 644 my-cluster/pki/ca.crt
chmod 600 my-cluster/pki/ca.key

Replacing the etcd CA certificate:

mkdir -p my-cluster/pki/etcd
cp <CUSTOM_ETCD_ROOTCA_CERT_PATH> my-cluster/pki/etcd/ca.crt
cp <CUSTOM_ETCD_ROOTCA_KEY_PATH> my-cluster/pki/etcd/ca.key
chmod 644 my-cluster/pki/etcd/ca.crt
chmod 600 my-cluster/pki/etcd/ca.key

Replacing the kubelet CA certificate:

mkdir -p my-cluster/pki
cp <CUSTOM_KUBELET_ROOTCA_CERT_PATH> my-cluster/pki/kubelet-ca.crt
cp <CUSTOM_KUBELET_ROOTCA_KEY_PATH> my-cluster/pki/kubelet-ca.key
chmod 644 my-cluster/pki/kubelet-ca.crt
chmod 600 my-cluster/pki/kubelet-ca.key

Replacing the front-end proxy CA certificate:

mkdir -p my-cluster/pki
cp <CUSTOM_FRONTPROXY_ROOTCA_CERT_PATH> my-cluster/pki/front-proxy-ca.crt
cp <CUSTOM_FRONTPROXY_ROOTCA_KEY_PATH> my-cluster/pki/front-proxy-ca.key
chmod 644 my-cluster/pki/front-proxy-ca.crt
chmod 600 my-cluster/pki/front-proxy-ca.key

After this process bootstrap the cluster with skuba node bootstrap .

56 Deployment with a Custom CA Certificate

4.9.4.1 Extracting Certificate And Key From Combined PEM File

Some PKIs will issue certificates and keys in a combined .pem le. In order to use the contained
certificate, you must extract them into separate les using openssl .

1. Extract the certificate:

openssl x509 -in /path/to/file.pem -out /path/to/file.crt

2. Extract the key:

openssl rsa -in /path/to/file.pem -out /path/to/file.key

4.9.5 Automatic Certificate Renewal

SUSE CaaS Platform renews all certificates automatically during the control plane update, see
Section 5.1, “Updating Kubernetes Components”.

Note
It is a best practice to update your Kubernetes cluster frequently to stay secure.

4.9.6 Manual Certificate Renewal

Important
If you are running multiple master nodes, you need to run the followings commands
sequentially on all master nodes.

4.9.6.1 Renewing Certificates Managed by kubeadm

1. To SSH into the master node, renew all kubeadm certificates and reboot, run the following:

ssh <USERNAME>@<MASTER_NODE_IP_ADDRESS/FQDN>
sudo cp -r /etc/kubernetes/pki /etc/kubernetes/pki.bak
sudo kubeadm alpha certs renew all

57 Automatic Certificate Renewal

sudo reboot

2. Copy the renewed admin.conf from one of the master nodes to your local environment:

ssh <USERNAME>@<MASTER_NODE_IP_ADDRESS/FQDN>
sudo cat /etc/kubernetes/admin.conf

4.9.6.2 Renewing Certificates Created by skuba:

1. Log in to the master node and regenerate the certificates:

Replace the oidc-dex server certificate:
Backup the original oidc-dex server certificate and key from Secret resource.

sudo mkdir -p /etc/kubernetes/pki.bak
sudo kubectl --kubeconfig=/etc/kubernetes/admin.conf get secret oidc-dex-cert -
n kube-system -o yaml | sudo tee /etc/kubernetes/pki.bak/oidc-dex-cert.yaml > /
dev/null

cat /etc/kubernetes/pki.bak/oidc-dex-cert.yaml | grep tls.crt | awk '{print
 $2}' | base64 --decode | sudo tee /etc/kubernetes/pki.bak/oidc-dex.crt > /dev/
null
cat /etc/kubernetes/pki.bak/oidc-dex-cert.yaml | grep tls.key | awk '{print
 $2}' | base64 --decode | sudo tee /etc/kubernetes/pki.bak/oidc-dex.key > /dev/
null

Sign the oidc-dex server certificate with the CA certificate/key /etc/kuber-

netes/pki/ca.crt and /etc/kubernetes/pki/ca.key , make sure that the signed
server certificate SAN is the same as the origin. To get the original SAN IP address(es)
and DNS(s), run:

openssl x509 -noout -text -in /etc/kubernetes/pki.bak/oidc-dex.crt | grep -oP
 '(?<=IP Address:)[^,]+'
openssl x509 -noout -text -in /etc/kubernetes/pki.bak/oidc-dex.crt | grep -oP
 '(?<=DNS:)[^,]+'

Finally, update the Kubernetes cluster secret data tls.crt , and tls.key with
base64 encoded from signed oidc-dex server certificate and key respectively, and
restart oidc-dex pods.

cat <SIGNED_OIDC_DEX_SERVER_CERT_PATH> | base64 | awk '{print}' ORS='' && echo
cat <SIGNED_OIDC_DEX_SERVER_KEY_PATH> | base64 | awk '{print}' ORS='' && echo

58 Manual Certificate Renewal

sudo kubectl --kubeconfig=/etc/kubernetes/admin.conf edit secret oidc-dex-cert
 -n kube-system
sudo kubectl --kubeconfig=/etc/kubernetes/admin.conf delete pod -lapp=oidc-dex
 -n kube-system

Replace the oidc-gangway server certificate:
Backup the original oidc-gangway server certificate and key from Secret resource.

sudo mkdir -p /etc/kubernetes/pki.bak
sudo kubectl --kubeconfig=/etc/kubernetes/admin.conf get secret oidc-gangway-
cert -n kube-system -o yaml | sudo tee /etc/kubernetes/pki.bak/oidc-gangway-
cert.yaml > /dev/null

cat /etc/kubernetes/pki.bak/oidc-gangway-cert.yaml | grep tls.crt | awk '{print
 $2}' | base64 --decode | sudo tee /etc/kubernetes/pki.bak/oidc-gangway.crt > /
dev/null
cat /etc/kubernetes/pki.bak/oidc-gangway-cert.yaml | grep tls.key | awk '{print
 $2}' | base64 --decode | sudo tee /etc/kubernetes/pki.bak/oidc-gangway.key > /
dev/null

Sign the oidc-gangway server certificate with the CA certificate/key /etc/kuber-
netes/pki/ca.crt and /etc/kubernetes/pki/ca.key , make sure that the signed
server certificate SAN is the same as the origin. To get the original SAN IP address(es)
and DNS(s), run:

openssl x509 -noout -text -in /etc/kubernetes/pki.bak/oidc-gangway.crt | grep -
oP '(?<=IP Address:)[^,]+'
openssl x509 -noout -text -in /etc/kubernetes/pki.bak/oidc-gangway.crt | grep -
oP '(?<=DNS:)[^,]+'

Finally, update the Kubernetes cluster secret data tls.crt , and tls.key with
base64 encoded from signed oidc-gangway server certificate and key respectively,
and restart oidc-gangway pods.

cat <SIGNED_OIDC_GANGWAY_SERVER_CERT_PATH> | base64 | awk '{print}' ORS='' &&
 echo
cat <SIGNED_OIDC_GANGWAY_SERVER_KEY_PATH> | base64 | awk '{print}' ORS='' &&
 echo

sudo kubectl --kubeconfig=/etc/kubernetes/admin.conf edit secret oidc-gangway-
cert -n kube-system

59 Manual Certificate Renewal

sudo kubectl --kubeconfig=/etc/kubernetes/admin.conf delete pod -lapp=oidc-
gangway -n kube-system

Replace the kubelet server certificate:

Important
You need to generate kubelet server certificate for all the nodes on one of
control plane nodes, because the kubelet CA certificate key only exists on the
control plane nodes. Therefore, after generating re-signed kubelet server cer-
tificate/key for worker nodes, you have to copy each kubelet server certifi-
cate/key from the control plane node to the corresponding worker node.

Backup the original kubelet certificates and keys.

sudo cp -r /var/lib/kubelet/pki /var/lib/kubelet/pki.bak

Sign each node kubelet server certificate with the CA certificate/key /

var/lib/kubelet/pki/kubelet-ca.crt and /var/lib/kubelet/pki/kubelet-

ca.key , make sure that the signed server certificate SAN is the same as the origin.
To get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in /var/lib/kubelet/pki.bak/kubelet.crt | grep -oP
 '(?<=IP Address:)[^,]+'
openssl x509 -noout -text -in /var/lib/kubelet/pki.bak/kubelet.crt | grep -oP
 '(?<=DNS:)[^,]+'

Finally, update the kubelet server certificate and key le /var/lib/kubelet/
kubelet.crt and /var/lib/kubelet/kubelet.key respectively, and restart
kubelet service.

sudo cp <CUSTOM_KUBELET_SERVER_CERT_PATH> /var/lib/kubelet/pki/kubelet.crt
sudo cp <CUSTOM_KUBELET_SERVER_KEY_PATH> /var/lib/kubelet/pki/kubelet.key
chmod 644 /var/lib/kubelet/pki/kubelet.crt
chmod 600 /var/lib/kubelet/pki/kubelet.key

sudo systemctl restart kubelet

60 Manual Certificate Renewal

5 Cluster Updates

5.1 Updating Kubernetes Components
Updating of Kubernetes components is handled via skuba .

5.1.1 Generating an Overview of Available Platform Updates

In order to get an overview of the updates available, you can run:

skuba cluster upgrade plan

This will show you a list of updates (if available) for different components installed on the
cluster. If the cluster is already running the latest available versions, the output should look
like this:

Current Kubernetes cluster version: 1.15.0
Latest Kubernetes version: 1.15.0

Congratulations! You are already at the latest version available

If the cluster has a new patch-level and minor Kubernetes version available, the output should
look like this:

Current Kubernetes cluster version: 1.14.1
Latest Kubernetes version: 1.15.0
Upgrade path to update from 1.14.1 to 1.15.0:
 - 1.14.1 -> 1.14.2
 - 1.14.2 -> 1.15.0

Similarly, you can also fetch this information on a per-node basis with the following command:

skuba node upgrade plan <NODE>

For example, if the cluster has a node named worker0 which is running the latest available
versions, the output should look like this:

Current Kubernetes cluster version: 1.15.0
Latest Kubernetes version: 1.15.0

61 Updating Kubernetes Components

Node worker0 is up to date

On the other hand, if this same node has a new patch-level or minor Kubernetes version avail-
able, the output should look like this:

Current Kubernetes cluster version: 1.14.1
Latest Kubernetes version: 1.15.0

Component versions in worker0
 - kubelet: 1.14.1 -> 1.15.0
 - cri-o: 1.14.1 -> 1.15.0

You will get a similar output if there is a version available on a master node (named master0
in this example):

Current Kubernetes cluster version: 1.14.1
Latest Kubernetes version: 1.15.0

Component versions in master0
 - apiserver: 1.14.1 -> 1.15.0
 - controller-manager: 1.14.1 -> 1.15.0
 - scheduler: 1.14.1 -> 1.15.0
 - etcd: 3.3.11 -> 3.3.11
 - kubelet: 1.14.1 -> 1.15.0
 - cri-o: 1.14.1 -> 1.15.0

It may happen that the Kubernetes version on the control plane is too outdated for the update
to progress. In this case, you would get output similar to the following:

Current Kubernetes cluster version: 1.15.0
Latest Kubernetes version: 1.15.0

Unable to plan node upgrade: at least one control plane does not tolerate the current
 cluster version

Tip
The control plane consists of these components:

apiserver

controller-manager

scheduler

62 Generating an Overview of Available Platform Updates

etcd

kubelet

cri-o

5.1.2 Generating an Overview of Available Addon Updates

In order to get an overview of the addon updates available, you can run:

skuba addon upgrade plan

This will show you a list of updates (if available) for different addons installed on the cluster:

Current Kubernetes cluster version: 1.15.2
Latest Kubernetes version: 1.15.2

Addon upgrades:
 - cilium: 1.5.3 -> 1.5.3 (manifest version from 0 to 4)
 - kured: 1.2.0 -> 1.3.0
 - dex: 2.16.0 -> 2.16.1
 - gangway: 3.1.0 -> 3.1.0 (manifest version from 1 to 2)
 - psp: 1.0.0 -> 1.1.0

If the cluster is already running the latest available versions, the output should look like this:

Current Kubernetes cluster version: 1.15.2
Latest Kubernetes version: 1.15.2

Congratulations! Addons are already at the latest version available

5.2 Updating Nodes

Note
It is recommended to use a load balancer with active health checks and pool management
that will take care of adding/removing nodes to/from the pool during this process.

Updates have to be applied separately to each node, starting with the control plane all the way
down to the worker nodes.

63 Generating an Overview of Available Addon Updates

Note that the upgrade via skuba node upgrade apply will:

Upgrade the containerized control plane.

Upgrade the rest of the Kubernetes system stack (kubelet , cri-o).

Restart services.

During the upgrade to a newer version, the API server will be unavailable.

During the upgrade all the pods in the worker node will be restarted so it is recommended to
drain the pods if your application requires high availability. In most cases, the restart is handled
by replicaSet .

5.2.1 How To Update Nodes

1. Upgrade the master nodes:

skuba node upgrade apply --target <MASTER_NODE_IP> --user <USER> --sudo

2. When all master nodes are upgraded, upgrade the worker nodes as well:

skuba node upgrade apply --target <WORKER_NODE_IP> --user <USER> --sudo

3. Verify that your cluster nodes are upgraded by running:

skuba cluster upgrade plan

Tip
The upgrade via skuba node upgrade apply will:

upgrade the containerized control plane.

upgrade the rest of the Kubernetes system stack (kubelet , cri-o).

restart services.

64 How To Update Nodes

5.3 Base OS Updates
Base operating system updates are handled by skuba-update , which works together with the
kured reboot daemon.

5.3.1 Disabling Automatic Updates

Nodes added to a cluster have the service skuba-update.timer , which is responsible for run-
ning automatic updates, activated by default. This service calls the skuba-update utility and
it can be configured with the /etc/sysconfig/skuba-update le. To disable the automatic
updates on a node, simply ssh to it and then configure the skuba-update service by editing the
/etc/sysconfig/skuba-update le with the following runtime options:

Path : System/Management
Description : Extra switches for skuba-update
Type : string
Default : ""
ServiceRestart : skuba-update
#
SKUBA_UPDATE_OPTIONS="--annotate-only"

Tip
It is not required to reload or restart skuba-update.timer .

The --annotate-only ag makes the skuba-update utility only check if updates are available
and annotate the node accordingly. When this ag is activated no updates are installed at all.

5.3.2 Completely Disabling Reboots

If you would like to take care of reboots manually, either as a temporary measure or perma-
nently, you can disable them by creating a lock:

kubectl -n kube-system annotate ds kured weave.works/kured-node-
lock='{"nodeID":"manual"}'

This command modifies an annotation (annotate) on the daemonset (ds) named kured .

65 Base OS Updates

5.3.3 Manual Unlock

In exceptional circumstances, such as a node experiencing a permanent failure whilst rebooting,
manual intervention may be required to remove the cluster lock:

kubectl -n kube-system annotate ds kured weave.works/kured-node-lock-

This command modifies an annotation (annotate) on the daemonset (ds) named kured . It
explicitly performs an "unset" (-) for the value for the annotation named weave.works/kured-
node-lock .

66 Manual Unlock

6 Monitoring

6.1 Monitoring Stack

Important
This is not an officially supported recommendation and does not claim complete coverage
of any use case in a production environment.

The described monitoring approach in this document is a generalized example of one way
of monitoring a SUSE CaaS Platform cluster.

Please apply best practices to develop your own monitoring approach using the described
examples and available health checking endpoints.

6.1.1 Introduction

This document aims to describe monitoring in a Kubernetes cluster.

The monitoring stack consists of a metrics server, a visualization platform, and an ingress con-
troller for authentication.

Prometheus
Prometheus is an open-source metrics server with a dimensional data model, flexible query
language, efficient time series database and modern alerting approach. The time series
collection happens via a pull mode over HTTP.
The Prometheus consists of multiple components:

Prometheus server: scrapes and stores data to time series database

Alertmanager (https://prometheus.io/docs/alerting/alertmanager/) handles client
alerts, sanitizes duplicates and noise and routes them to configuratble receivers.

Pushgateway (https://prometheus.io/docs/practices/pushing/) is an intermediate ser-
vice which allows you to push metrics from jobs which cannot be scraped.

67 Monitoring Stack

https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/practices/pushing/

Note
Deploying Prometheus Pushgateway (https://prometheus.io/docs/practices/push-

ing/) is out of the scope of this document.

Exporters (https://prometheus.io/docs/instrumenting/exporters/) are libraries which
help to exports existing metrics from 3rd-party system as Prometheus metric.

Grafana
Grafana is an open-source system for querying, analysing and visualizing metrics.

NGINX Ingress Controller
Deploying NGINX Ingress Controller allows us to provide TLS termination to our services
and to provide basic authentication to the Prometheus Expression browser/API.

6.1.2 Prerequisites

1. Monitoring namespace
We will deploy our monitoring stack in its own namespace and therefore create one.

kubectl create namespace monitoring

2. Create DNS entries
In this example, we will use a worker node with IP 10.86.4.158 .
You should configure proper DNS names in any production environment. These values are
only for example purposes.

monitoring.example.com IN A 10.86.4.158
prometheus.example.com IN CNAME monitoring.example.com
prometheus-alertmanager.example.com IN CNAME monitoring.example.com
grafana.example.com IN CNAME monitoring.example.com

Or add this entry to /etc/hosts

10.86.4.158 prometheus.example.com prometheus-alertmanager.example.com
 grafana.example.com

3. Create certificates

68 Prerequisites

https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/instrumenting/exporters/

You will need SSL certificates for the shared resources. If you are deploying in a
predefined network environment, please get proper certificates from your network
administrator. In this example, the domains are named after the components they
represent. prometheus.example.com , prometheus-alertmanager.example.com and
grafana.example.com

6.1.3 Installation

Important
In order to provide additional security level by using TLS certificates please make sure
you have the Section 4.7, “NGINX Ingress Controller” installed and configured.

If you don’t need TLS you may use other methods for exposing these web services as
native LBaaS in OpenStack, haproxy service or k8s native methods as port-forwarding or
NodePort but this is out of scope of this document.

6.1.3.1 TLS

You must configure your certificates for the components as secrets in Kubernetes cluster. Get
certificates from your local certificate authority. In this example we are using a single certifi-
cate shared by the components prometheus.example.com , prometheus-alertmanager.ex-
ample.com and grafana.example.com .

Note: Create Individual Secrets For Components
Should you choose to secure each service with an individual certificate, you must repeat
the step below for each component and adjust the name for the individual secret each
time.

In this example the name is monitoring-tls .

Important: Note Down Secret Names For Configuration
Please note down the names of the secrets you have created. Later configuration steps
require secret names to be specified.

69 Installation

6.1.3.1.1 Trusted Certificates

Import trusted certificate to Kubernetes cluster. In this example, trusted certificate are moni-
toring.key and monitoring.crt .

kubectl create -n monitoring secret tls monitoring-tls \
--key ./monitoring.key \
--cert ./monitoring.crt

6.1.3.1.2 Self-signed Certificates (optional)

In some cases you want to create self-signed certificates for testing of the stack. This is not
recommended. If you are using proper CA signed certificates, you must skip this entirely.

Important
Do not use self-signed certificates in production environments. There is severe risk of
Man-in-the-middle attacks. Use proper certificates signed by your CA.

1. Create a le openssl.conf with the appropriate values

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req
default_md = sha256
default_bits = 4096
prompt=no

[req_distinguished_name]
C = CZ
ST = CZ
L = Prague
O = example
OU = monitoring
CN = example.com
emailAddress = admin@example.com

[v3_req]
basicConstraints = CA:FALSE
keyUsage = keyEncipherment, dataEncipherment
extendedKeyUsage = serverAuth
subjectAltName = @alt_names

70 Installation

[alt_names]
DNS.1 = prometheus.example.com
DNS.2 = prometheus-alertmanager.example.com
DNS.3 = grafana.example.com

This certificate uses Subject Alternative Names so it can be used for Prometheus and
Grafana.

2. Generate certificate

openssl req -x509 -nodes -days 365 -newkey rsa:4096 \
-keyout ./monitoring.key -out ./monitoring.crt \
-config ./openssl.conf -extensions 'v3_req'

3. Add TLS secret to Kubernetes cluster

kubectl create -n monitoring secret tls monitoring-tls \
--key ./monitoring.key \
--cert ./monitoring.crt

6.1.3.2 Prometheus

1. Configure Authentication
We need to create a basic-auth secret so the NGINX Ingress Controller can perform
authentication.
Install htpasswd on your local workstation

zypper in apache2-utils

Create the secret le auth

htpasswd -c auth admin
New password:
Re-type new password:
Adding password for user admin

Important
It is very important that the filename is auth . During creation, a key in the config-
uration containing the secret is created that is named after the used filename. The
ingress controller will expect a key named auth .

71 Installation

Create secret in Kubernetes cluster

kubectl create secret generic -n monitoring prometheus-basic-auth --from-file=auth

2. Create a configuration le prometheus-config-values.yaml
We need to configure the storage for our deployment. Choose among the options and
uncomment the line in the config le. In production environments you must configure
persistent storage.

Use an existing PersistentVolumeClaim

Use a StorageClass (preferred)

Alertmanager configuration
alertmanager:
 enabled: true
 ingress:
 enabled: true
 hosts:
 - prometheus-alertmanager.example.com
 annotations:
 kubernetes.io/ingress.class: nginx
 nginx.ingress.kubernetes.io/auth-type: basic
 nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
 nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
 tls:
 - hosts:
 - prometheus-alertmanager.example.com
 secretName: monitoring-tls
 persistentVolume:
 enabled: true
 ## Use a StorageClass
 storageClass: my-storage-class
 ## Create a PersistentVolumeClaim of 2Gi
 size: 2Gi
 ## Use an existing PersistentVolumeClaim (my-pvc)
 #existingClaim: my-pvc

Alertmanager is configured through alertmanager.yml. This file and any others
listed in alertmanagerFiles will be mounted into the alertmanager pod.
See configuration options https://prometheus.io/docs/alerting/configuration/
#alertmanagerFiles:
alertmanager.yml:

72 Installation

Create a specific service account
serviceAccounts:
 nodeExporter:
 name: prometheus-node-exporter

Allow scheduling of node-exporter on master nodes
nodeExporter:
 hostNetwork: false
 hostPID: false
 podSecurityPolicy:
 enabled: true
 annotations:
 apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
 apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: runtime/default
 seccomp.security.alpha.kubernetes.io/defaultProfileName: runtime/default
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule

Disable Pushgateway
pushgateway:
 enabled: false

Prometheus configuration
server:
 ingress:
 enabled: true
 hosts:
 - prometheus.example.com
 annotations:
 kubernetes.io/ingress.class: nginx
 nginx.ingress.kubernetes.io/auth-type: basic
 nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
 nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
 tls:
 - hosts:
 - prometheus.example.com
 secretName: monitoring-tls
 persistentVolume:
 enabled: true
 ## Use a StorageClass
 storageClass: my-storage-class
 ## Create a PersistentVolumeClaim of 8Gi
 size: 8Gi
 ## Use an existing PersistentVolumeClaim (my-pvc)

73 Installation

 #existingClaim: my-pvc

Prometheus is configured through prometheus.yml. This file and any others
listed in serverFiles will be mounted into the server pod.
See configuration options
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
#serverFiles:
prometheus.yml:

3. Add SUSE helm charts repository

helm repo add suse https://kubernetes-charts.suse.com

4. Deploy SUSE prometheus helm chart and pass our configuration values le.

helm install --name prometheus suse/prometheus \
--namespace monitoring \
--values prometheus-config-values.yaml

There need to be 3 pods running (3 node-exporter pods because we have 3 nodes).

kubectl -n monitoring get pod | grep prometheus
NAME READY STATUS RESTARTS AGE
prometheus-alertmanager-5487596d54-kcdd6 2/2 Running 0 2m
prometheus-kube-state-metrics-566669df8c-krblx 1/1 Running 0 2m
prometheus-node-exporter-jnc5w 1/1 Running 0 2m
prometheus-node-exporter-qfwp9 1/1 Running 0 2m
prometheus-node-exporter-sc4ls 1/1 Running 0 2m
prometheus-server-6488f6c4cd-5n9w8 2/2 Running 0 2m

5. At this stage, the Prometheus Expression browser/API should be accessible, depending on
your network configuration

NodePort: https://prometheus.example.com:30443

External IPs: https://prometheus.example.com

74 Installation

https://prometheus.example.com:30443
https://prometheus.example.com

6.1.3.3 Alertmanager Configuration Example

The configuration sets one "receiver" to get notified by email when a node meets one of these
conditions:

Node is unschedulable

Node runs out of disk space

Node has memory pressure

Node has disk pressure

The rst two are critical because the node cannot accept new pods, the last two are just warnings.

The Alertmanager configuration can be added to prometheus-config-values.yaml by adding
the alertmanagerFiles section.

For more information on how to configure Alertmanager, refer to Prometheus: Alerting - Config-

uration (https://prometheus.io/docs/alerting/configuration) .

1. Configuring Alertmanager
Add the alertmanagerFiles section to your Prometheus configuration.

alertmanagerFiles:
 alertmanager.yml:
 global:
 # The smarthost and SMTP sender used for mail notifications.
 smtp_from: alertmanager@example.com
 smtp_smarthost: smtp.example.com:587
 smtp_auth_username: admin@example.com
 smtp_auth_password: <PASSWORD>
 smtp_require_tls: true

 route:
 # The labels by which incoming alerts are grouped together.
 group_by: ['node']

 # When a new group of alerts is created by an incoming alert, wait at
 # least 'group_wait' to send the initial notification.
 # This way ensures that you get multiple alerts for the same group that start
 # firing shortly after another are batched together on the first
 # notification.
 group_wait: 30s

 # When the first notification was sent, wait 'group_interval' to send a batch
 # of new alerts that started firing for that group.

75 Installation

https://prometheus.io/docs/alerting/configuration
https://prometheus.io/docs/alerting/configuration

 group_interval: 5m

 # If an alert has successfully been sent, wait 'repeat_interval' to
 # resend them.
 repeat_interval: 3h

 # A default receiver
 receiver: admin-example

 receivers:
 - name: 'admin-example'
 email_configs:
 - to: 'admin@example.com'

2. Replace the empty set of rules rules: {} in the serverFiles section of the configuration
le.
For more information on how to configure alerts, refer to: Prometheus: Alerting - Notification

Template Examples (https://prometheus.io/docs/alerting/notification_examples/)

serverFiles:
 alerts: {}
 rules:
 groups:
 - name: caasp.node.rules
 rules:
 - alert: NodeIsNotReady
 expr: kube_node_status_condition{condition="Ready",status="false"} == 1
 for: 1m
 labels:
 severity: critical
 annotations:
 description: '{{ $labels.node }} is not ready'
 - alert: NodeIsOutOfDisk
 expr: kube_node_status_condition{condition="OutOfDisk",status="true"} == 1
 labels:
 severity: critical
 annotations:
 description: '{{ $labels.node }} has insufficient free disk space'
 - alert: NodeHasDiskPressure
 expr: kube_node_status_condition{condition="DiskPressure",status="true"} ==
 1
 labels:
 severity: warning
 annotations:
 description: '{{ $labels.node }} has insufficient available disk space'
 - alert: NodeHasInsufficientMemory

76 Installation

https://prometheus.io/docs/alerting/notification_examples/
https://prometheus.io/docs/alerting/notification_examples/

 expr: kube_node_status_condition{condition="MemoryPressure",status="true"}
 == 1
 labels:
 severity: warning
 annotations:
 description: '{{ $labels.node }} has insufficient available memory'

3. To apply the changed configuration, run:

helm upgrade prometheus suse/prometheus --namespace monitoring --values prometheus-
config-values.yaml

4. You should now be able to see your Alertmanager, depending on your network configu-
ration

NodePort: https://prometheus-alertmanager.example.com:30443

External IPs: https://prometheus-alertmanager.example.com

6.1.3.4 Grafana

Starting from Grafana 5.0, it is possible to dynamically provision the data sources and dash-
boards via les. In Kubernetes cluster, these les are provided via the utilization of ConfigMap ,
editing a ConfigMap will result by the modification of the configuration without having to
delete/recreate the pod.

1. Configure Grafana provisioning
Create the default datasource configuration le grafana-datasources.yaml which point to
our Prometheus server

kind: ConfigMap
apiVersion: v1
metadata:
 name: grafana-datasources
 namespace: monitoring
 labels:
 grafana_datasource: "1"
data:
 datasource.yaml: |-
 apiVersion: 1
 deleteDatasources:
 - name: Prometheus

77 Installation

https://prometheus-alertmanager.example.com:30443
https://prometheus-alertmanager.example.com

 orgId: 1
 datasources:
 - name: Prometheus
 type: prometheus
 url: http://prometheus-server.monitoring.svc.cluster.local:80
 access: proxy
 orgId: 1
 isDefault: true

2. Create the ConfigMap in Kubernetes cluster

kubectl create -f grafana-datasources.yaml

3. Configure storage for the deployment
Choose among the options and uncomment the line in the config le. In production envi-
ronments you must configure persistent storage.

Use an existing PersistentVolumeClaim

Use a StorageClass (preferred)

Create a le grafana-config-values.yaml with the appropriate values
+

Configure admin password
adminPassword: <PASSWORD>

Ingress configuration
ingress:
 enabled: true
 annotations:
 kubernetes.io/ingress.class: nginx
 hosts:
 - grafana.example.com
 tls:
 - hosts:
 - grafana.example.com
 secretName: monitoring-tls

Configure persistent storage
persistence:
 enabled: true
 accessModes:
 - ReadWriteOnce
 ## Use a StorageClass
 storageClassName: my-storage-class

78 Installation

 ## Create a PersistentVolumeClaim of 10Gi
 size: 10Gi
 ## Use an existing PersistentVolumeClaim (my-pvc)
 #existingClaim: my-pvc

Enable sidecar for provisioning
sidecar:
 datasources:
 enabled: true
 label: grafana_datasource
 dashboards:
 enabled: true
 label: grafana_dashboard

4. Add SUSE helm charts repository

helm repo add suse https://kubernetes-charts.suse.com

5. Deploy SUSE grafana helm chart and pass our configuration values le

helm install --name grafana suse/grafana \
--namespace monitoring \
--values grafana-config-values.yaml

6. The result should be a running Grafana pod

kubectl -n monitoring get pod | grep grafana
NAME READY STATUS RESTARTS AGE
grafana-dbf7ddb7d-fxg6d 3/3 Running 0 2m

At this stage, Grafana should be accessible, depending on your network configuration

NodePort: https://grafana.example.com:30443

External IPs: https://grafana.example.com

7. Now you can add Grafana dashboards.

6.1.3.4.1 Adding Grafana Dashboards

There are three ways to add dashboards to Grafana:

Deploy an existing dashboard from Grafana dashboards (https://grafana.com/dashboards)

79 Installation

https://grafana.example.com:30443
https://grafana.example.com
https://grafana.com/dashboards

1. Open the deployed Grafana in your browser and log in.

2. On the home page of Grafana, hover your mousecursor over the + button on the left
sidebar and click on the import menuitem.

3. Select an existing dashboard for your purpose from Grafana dashboards. Copy the
URL to the clipboard.

4. Paste the URL (for example) https://grafana.com/dashboards/3131 into the rst
input eld to import the "Kubernetes All Nodes" Grafana Dashboard. After pasting in
the url, the view will change to another form.

5. Now select the "Prometheus" datasource in the prometheus eld and click on the
import button.

6. The browser will redirect you to your newly created dashboard.

Use our pre-built dashboards (https://github.com/SUSE/caasp-monitoring) to monitor the
SUSE CaaS Platform system

monitor SUSE CaaS Platform cluster
kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-cluster.yaml
monitor etcd
kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-etcd-cluster.yaml
monitor namespaces
kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-namespaces.yaml

Build your own dashboard Deploy your own dashboard by configuration le containing
the dashboard definition.

1. Create your dashboard definition le as a ConfigMap , for example grafana-dash-
boards-caasp-cluster.yaml .

apiVersion: v1
kind: ConfigMap
metadata:
 name: grafana-dashboards-caasp-cluster
 namespace: monitoring
 labels:
 grafana_dashboard: "1"

80 Installation

https://github.com/SUSE/caasp-monitoring

data:
 caasp-cluster.json: |-
 {
 "__inputs": [
 {
 "name": "DS_PROMETHEUS",
 "label": "Prometheus",
 "description": "",
 "type": "datasource",
 "pluginId": "prometheus",
 "pluginName": "Prometheus"
 }
],
 "__requires": [
 {
 "type": "grafana",
[...]
continues with definition of dashboard JSON
[...]

1. Apply the ConfigMap to the cluster.

kubectl apply -f grafana-dashboards-caasp-cluster.yaml

6.1.4 Monitoring

6.1.4.1 Prometheus Jobs

The Prometheus SUSE helm chart includes the following predefined jobs that will scrapes metrics
from these jobs using service discovery.

prometheus: Get metrics from prometheus server

kubernetes-apiservers: Get metrics from Kubernetes apiserver

kubernetes-nodes: Get metrics from Kubernetes nodes

kubernetes-nodes-cadvisor: Get cAdvisor (https://kubernetes.io/docs/tasks/debug-applica-

tion-cluster/resource-usage-monitoring/#cadvisor) metrics reported from Kubernetes
cluster

81 Monitoring

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

kubernetes-service-endpoints: Get metrics from Services which have annotation
prometheus.io/scrape=true in the metadata

kubernetes-pods: Get metrics from Pods which have annotation prometheus.io/

port=true in the metadata

If you wanna monitor new pods and services, you don’t need to change prometheus.yaml but
add annotation prometheus.io/scrape=true , prometheus.io/port=<TARGET_PORT> and
prometheus.io/path=<METRIC_ENDPOINT> to your pods and services metadata. Prometheus
will automatically scraped the target.

6.1.4.2 ETCD Cluster

ETCD server expose metrics on /metrics endpoint. Prometheus jobs does not scrapes it by
default. Edit prometheus.yaml if you wanna monitor etcd cluster. Since etcd cluster run in
https, so we need certificate to access the endpoint.

1. At one of the master node, create etcd certificate to secret in monitoring namespace

cd /etc/kubernetes

kubectl --kubeconfig=admin.conf -n monitoring create secret generic etcd-certs --
from-file=/etc/kubernetes/pki/etcd/ca.crt --from-file=/etc/kubernetes/pki/etcd/
healthcheck-client.crt --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.key

2. Edit the configuration le prometheus-config-values.yaml , add extraSecretMounts
part

Alertmanager configuration
alertmanager:
 enabled: true
 ingress:
 enabled: true
 hosts:
 - prometheus-alertmanager.example.com
 annotations:
 kubernetes.io/ingress.class: nginx
 nginx.ingress.kubernetes.io/auth-type: basic
 nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
 nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
 tls:
 - hosts:
 - prometheus-alertmanager.example.com

82 Monitoring

 secretName: monitoring-tls
 persistentVolume:
 enabled: true
 ## Use a StorageClass
 storageClass: my-storage-class
 ## Create a PersistentVolumeClaim of 2Gi
 size: 2Gi
 ## Use an existing PersistentVolumeClaim (my-pvc)
 #existingClaim: my-pvc

Alertmanager is configured through alertmanager.yml. This file and any others
listed in alertmanagerFiles will be mounted into the alertmanager pod.
See configuration options https://prometheus.io/docs/alerting/configuration/
#alertmanagerFiles:
alertmanager.yml:

Create a specific service account
serviceAccounts:
 nodeExporter:
 name: prometheus-node-exporter

Allow scheduling of node-exporter on master nodes
nodeExporter:
 hostNetwork: false
 hostPID: false
 podSecurityPolicy:
 enabled: true
 annotations:
 apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
 apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
 seccomp.security.alpha.kubernetes.io/allowedProfileNames: runtime/default
 seccomp.security.alpha.kubernetes.io/defaultProfileName: runtime/default
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule

Disable Pushgateway
pushgateway:
 enabled: false

Prometheus configuration
server:
 ingress:
 enabled: true
 hosts:
 - prometheus.example.com

83 Monitoring

 annotations:
 kubernetes.io/ingress.class: nginx
 nginx.ingress.kubernetes.io/auth-type: basic
 nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
 nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
 tls:
 - hosts:
 - prometheus.example.com
 secretName: monitoring-tls
 persistentVolume:
 enabled: true
 ## Use a StorageClass
 storageClass: my-storage-class
 ## Create a PersistentVolumeClaim of 8Gi
 size: 8Gi
 ## Use an existing PersistentVolumeClaim (my-pvc)
 #existingClaim: my-pvc
 ## Additional Prometheus server Secret mounts
 # Defines additional mounts with secrets. Secrets must be manually created in the
 namespace.
 extraSecretMounts:
 - name: etcd-certs
 mountPath: /etc/secrets
 secretName: etcd-certs
 readOnly: true

Prometheus is configured through prometheus.yml. This file and any others
listed in serverFiles will be mounted into the server pod.
See configuration options
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
#serverFiles:
prometheus.yml:

3. Upgrade prometheus helm deployment

helm upgrade prometheus suse/prometheus \
--namespace monitoring \
--values prometheus-config-values.yaml

4. First get all etcd cluster private IP address.

kubectl get pods -n kube-system -l component=etcd -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED
 NODE READINESS GATES
etcd-master0 1/1 Running 2 21h 192.168.0.6 master0 <none>
 <none>

84 Monitoring

etcd-master1 1/1 Running 2 21h 192.168.0.20 master1 <none>
 <none>

5. Add new job for etcd, change the target ip address as your environment and change the
target numbers if you have different etcd cluster members.

kubectl edit -n monitoring configmap prometheus-server

scrape_configs:
 - job_name: etcd
 static_configs:
 - targets: ['192.168.0.6:2379','192.168.0.20:2379']
 scheme: https
 tls_config:
 ca_file: /etc/secrets/ca.crt
 cert_file: /etc/secrets/healthcheck-client.crt
 key_file: /etc/secrets/healthcheck-client.key

6. Save the new configmap, the prometheus server will auto reload new configmap.

6.2 Health Checks
Although Kubernetes cluster takes care of a lot of the traditional deployment problems on its
own, it is good practice to monitor the availability and health of your services and applications
in order to react to problems should they go beyond the automated measures.

A very basic (visual) health check can be achieved by accessing cAdvisor on the admin node at
port 4194 . This will display a basic statistics UI about the cluster resources.

A complete set of instructions on how to monitor and maintain the health of you cluster is
beyond the scope of this document. More information is available at https://kubernetes.io/docs/

tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

There are three levels of health checks.

Cluster

Node

Service / Application

85 Health Checks

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor
https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/#cadvisor

6.2.1 Cluster Health Checks

The basic check if a cluster is working correctly is based on a few criteria:

Are all services running as expected?

Is there at least one Kubernetes master fully working? Even if the deployment is configured
to be highly available, it’s useful to know if kube-controller-manager is down on one
of the machines.

Note
For further understanding cluster health information, consider reading https://kuber-

netes.io/docs/tasks/debug-application-cluster/debug-cluster/

6.2.1.1 Kubernetes master

All components in Kubernetes cluster expose a /healthz endpoint. The expected (healthy)
HTTP response status code is 200 .

The minimal services for the master to work properly are:

kube-apiserver:
The component that receives your requests from kubectl and from the rest of the Kuber-
netes components. The URL is https://<CONTROL_PLANE_IP/FQDN>:6443/healthz

Local Check

curl -k -i https://localhost:6443/healthz

Remote Check

curl -k -i https://<CONTROL_PLANE_IP/FQDN>:6443/healthz

kube-controller-manager:
The component that contains the control loop, driving current state to the desired state.
The URL is http://<CONTROL_PLANE_IP/FQDN>:10252/healthz

Local Check

86 Cluster Health Checks

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://<CONTROL_PLANE_IP/FQDN>:6443/healthz
http://<CONTROL_PLANE_IP/FQDN>:10252/healthz

curl -i http://localhost:10252/healthz

Remote Check
Make sure firewall allows port 10252 .

curl -i http://<CONTROL_PLANE_IP/FQDN>:10252/healthz

kube-scheduler:
The component that schedules workloads to nodes. The URL is http://<CON-

TROL_PLANE_IP/FQDN>:10251/healthz

Local Check

curl -i http://localhost:10251/healthz

Remote Check
Make sure firewall allows port 10251 .

curl -i http://<CONTROL_PLANE_IP/FQDN>:10251/healthz

Note: High-Availability Environments
In a HA environment you can monitor kube-apiserver on https://<LOAD_BAL-
ANCER_IP/FQDN>:6443/healthz .

If any one of the master nodes is running correctly, you will receive a valid response.

This does, however, not mean that all master nodes necessarily work correctly. To ensure
that all master nodes work properly, the health checks must be repeated individually for
each deployed master node.

This endpoint will return a successful HTTP response if the cluster is operational; other-
wise it will fail. It will for example check that it can access etcd . This should not be used
to infer that the overall cluster health is ideal. It will return a successful response even
when only minimal operational cluster health exists.

To probe for full cluster health, you must perform individual health checking for all
machines.

87 Cluster Health Checks

http://<CONTROL_PLANE_IP/FQDN>:10251/healthz
http://<CONTROL_PLANE_IP/FQDN>:10251/healthz

6.2.1.2 ETCD Cluster

The etcd cluster exposes an endpoint /health . The expected (healthy) HTTP response body
is {"health":"true"} . The etcd cluster is accessed through HTTPS only, so be sure to have
etcd certificates.

Local Check

curl --cacert /etc/kubernetes/pki/etcd/ca.crt
--cert /etc/kubernetes/pki/etcd/healthcheck-client.crt
--key /etc/kubernetes/pki/etcd/healthcheck-client.key https://localhost:2379/health

Remote Check
Make sure firewall allows port 2379 .

curl --cacert <ETCD_ROOT_CA_CERT> --cert <ETCD_CLIENT_CERT>
--key <ETCD_CLIENT_KEY> https://<CONTROL_PLANE_IP/FQDN>:2379/health

6.2.2 Node Health Checks

This basic node health check consists of two parts. It checks:

1. The kubelet endpoint

2. CNI (Container Networking Interface) pod state

6.2.2.1 kubelet

First, determine if kubelet is up and working on the node.

Kubelet has two ports exposed on all machines:

Port https/10250: exposes kubelet services to the entire cluster and is available from all
nodes through authentication.

Port http/10248: is only available on local host.

You can send an HTTP request to the endpoint to nd out if kubelet is healthy on that machine.
The expected (healthy) HTTP response status code is 200 .

88 Node Health Checks

6.2.2.1.1 Local Check

If there is an agent running on each node, this agent can simply fetch the local healthz port:

curl -i http://localhost:10248/healthz

6.2.2.1.2 Remote Check

There are two ways to fetch endpoints remotely (metrics, healthz, etc.). Both methods use HTTPS
and a token.

The rst method is executed against the APIServer and mostly used with Prometheus and
Kubernetes discovery kubernetes_sd_config . It allows automatic discovery of the nodes
and avoids the task of defining monitoring for each node. For more information see the Ku-
bernetes documentation: https://prometheus.io/docs/prometheus/latest/configuration/configura-

tion/#kubernetes_sd_config

The second method directly talks to kubelet and can be used in more traditional monitoring
where one must configure each node to be checked.

Configuration and Token retrieval:
Create a Service Account (monitoring) with an associated secondary Token (monitor-
ing-secret-token). The token will be used in HTTP requests to authenticate against the
API server.
This Service Account can only fetch information about nodes and pods. Best practice is not
to use the token that has been created default. Using a secondary token is also easier for
management. Create a le kubelet.yaml with the following as content.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: monitoring
 namespace: kube-system
secrets:
- name: monitoring-secret-token

apiVersion: v1
kind: Secret
metadata:
 name: monitoring-secret-token
 namespace: kube-system
 annotations:

89 Node Health Checks

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

 kubernetes.io/service-account.name: monitoring
type: kubernetes.io/service-account-token

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: monitoring-clusterrole
 namespace: kube-system
rules:
- apiGroups: [""]
 resources:
 - nodes/metrics
 - nodes/proxy
 - pods
 verbs: ["get", "list"]
- nonResourceURLs: ["/metrics", "/healthz", "/healthz/*"]
 verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
 name: monitoring-clusterrole-binding
 namespace: kube-system
roleRef:
 kind: ClusterRole
 name: monitoring-clusterrole
 apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
 name: monitoring
 namespace: kube-system

Apply the yaml le:

kubectl apply -f kubelet.yaml

Export the token to an environment variable:

TOKEN=$(kubectl -n kube-system get secrets monitoring-secret-token
-o jsonpath='{.data.token}' | base64 -d)

This token can now be passed through the --header argument as: "Authorization: Bearer
$TOKEN".
Now export important values as environment variables:

Environment Variables Setup

90 Node Health Checks

1. Choose a Kubernetes master node or worker node. The NODE_IP_FQDN here must be
a node’s IP address or FQDN. The NODE_NAME here must be a node name in your
Kubernetes cluster. Export the variables NODE_IP_FQDN and NODE_NAME so it can
be reused.

NODE_IP_FQDN="10.86.4.158"
NODE_NAME=worker0

2. Retrieve the TOKEN with kubectl.

TOKEN=$(kubectl -n kube-system get secrets monitoring-secret-token
-o jsonpath='{.data.token}' | base64 -d)

3. Get the control plane <IP/FQDN> from the configuration le. You can skip this
step if you only want to use the kubelet endpoint.

CONTROL_PLANE=$(kubectl config view | grep server | cut -f 2- -d ":" | tr -d "
 ")

Now the key information to retrieve data from the endpoints should be available in
the environment and you can poll the endpoints.

Fetching Information from kubelet Endpoint

1. Make sure firewall allows port 10250 .

2. Fetching metrics

curl -k https://$NODE_IP_FQDN:10250/metrics --header "Authorization: Bearer
 $TOKEN"

3. Fetching cAdvisor

curl -k https://$NODE_IP_FQDN:10250/metrics/cadvisor --header "Authorization:
 Bearer $TOKEN"

4. Fetching healthz

curl -k https://$NODE_IP_FQDN:10250/healthz --header "Authorization: Bearer
 $TOKEN"

Fetching Information from APISERVER Endpoint

91 Node Health Checks

1. Fetching metrics

curl -k $CONTROL_PLANE/api/v1/nodes/$NODE_NAME/proxy/metrics --header
"Authorization: Bearer $TOKEN"

2. Fetching cAdvisor

curl -k $CONTROL_PLANE/api/v1/nodes/$NODE_NAME/proxy/metrics/cadvisor --header
"Authorization: Bearer $TOKEN"

3. Fetching healthz

curl -k $CONTROL_PLANE/api/v1/nodes/$NODE_NAME/proxy/healthz --header
"Authorization: Bearer $TOKEN"

6.2.2.2 CNI

You can check if the CNI (Container Networking Interface) is working as expected by check if the
coredns service is running. If CNI has some kind of trouble coredns will not be able to start:

kubectl get deployments -n kube-system
NAME READY UP-TO-DATE AVAILABLE AGE
cilium-operator 1/1 1 1 8d
coredns 2/2 2 2 8d
oidc-dex 1/1 1 1 8d
oidc-gangway 1/1 1 1 8d

If coredns is running and you are able to create pods then you can be certain that CNI and
your CNI plugin are working correctly.

There’s also the Monitor Node Health (https://kubernetes.io/docs/tasks/debug-application-clus-

ter/monitor-node-health/) check. This is a DaemonSet that runs on every node, and reports to
the apiserver back as NodeCondition and Events .

6.2.3 Service/Application Health Checks

If the deployed services contain a health endpoint, or if they contain an endpoint that can be
used to determine if the service is up, you can use livenessProbes and/or readinessProbes .

92 Service/Application Health Checks

https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/
https://kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/

Note: Health check endpoints vs. functional endpoints
A proper health check is always preferred if designed correctly.

Despite the fact that any endpoint could potentially be used to infer if your application
is up, it is better to have an endpoint specifically for health in your application. Such
an endpoint will only respond affirmatively when all your setup code on the server has
finished and the application is running in a desired state.

The livenessProbes and readinessProbes share configuration options and probe types.

initialDelaySeconds

Number of seconds to wait before performing the very rst liveness probe.

periodSeconds

Number of seconds that the kubelet should wait between liveness probes.

successThreshold

Number of minimum consecutive successes for the probe to be considered successful (De-
fault: 1).

failureThreshold

Number of times this probe is allowed to fail in order to assume that the service is not
responding (Default: 3).

timeoutSeconds

Number of seconds after which the probe times out (Default: 1).

There are different options for the livenessProbes to check:

Command

A command executed within a container; a return code of 0 means success. All other return
codes mean failure.

TCP

If a TCP connection can be established is considered success.

HTTP

Any HTTP response between 200 and 400 indicates success.

93 Service/Application Health Checks

6.2.3.1 livenessProbe

livenessProbes are used to detect running but misbehaving pods/a service that might be
running (the process didn’t die), but that is not responding as expected. You can nd out
more about livenessProbes here: https://kubernetes.io/docs/tasks/configure-pod-container/con-

figure-liveness-readiness-probes/

Probes are executed by each kubelet against the pods that define them and that are running
in that specific node. When a livenessProbe fails, Kubernetes will automatically restart the
pod and increase the RESTARTS count for that pod. These probes will be executed every peri-
odSeconds starting from initialDelaySeconds .

6.2.3.2 readinessProbe

readinessProbes are used to wait for processes that take some time to start. Find out
more about readinessProbes here: https://kubernetes.io/docs/tasks/configure-pod-container/con-

figure-liveness-readiness-probes/#define-readiness-probes Despite the container running, it
might be performing some time consuming initialization operations. During this time, you don’t
want Kubernetes to route traffic to that specific pod. You also don’t want that container to be
restarted because it will appear unresponsive.

These probes will be executed every periodSeconds starting from initialDelaySeconds un-
til the service is ready.

Both probe types can be used at the same time. If a service is running, but misbehaving, the
livenessProbe will ensure that it’s restarted, and the readinessProbe will ensure that Ku-
bernetes won’t route traffic to that specific pod until it’s considered to be fully functional and
running again.

6.2.4 General Health Checks

We recommend to apply other best practices from system administration to your monitoring and
health checking approach. These steps are not specific to SUSE CaaS Platform and are beyond
the scope of this document.

94 General Health Checks

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes

7 Logging

7.1 Centralized Logging
Centralized Logging is a means of collecting logs from the SUSE CaaS Platform for centralized
management. It forwards system and Kubernetes cluster logs to a specified external logging
service, for example, Rsyslog server.

Collecting logs in a central location can be useful for audit or debug purposes or to analyze and
visually present data.

7.1.1 Prerequisites

In order to successfully use Centralized Logging, you rst need to install Helm and Tiller .
Helm is used to install the log agents and provide custom logging settings.

Refer to Section 3.1.2.1, “Installing Helm”.

7.1.2 Types of Logs

You can log the following groups of services. See Section 7.1.4, “Deployment” for more information
on how to select and customize the logs.

Kubernetes System Components

Kubelet

Cri-o

Kubernetes Control Plane Components

API Server

Controller Manager

Scheduler

Cilium

95 Centralized Logging

Kube-proxy

all resources in the kube-system namespaces

Kubernetes Namespaces Pods

All namespaces in cluster except kube-system

OS Components

Kernel

Audit

Zypper

Network (wicked)

Centralized Logging is also restricted to the following protocols: UDP, TCP, TCP + TLS, TCP
+ mTLS.

7.1.3 Log Formats

The two supported syslog message formats are RFC 5424 and RFC 3164.

Note
The Kubernetes cluster metadata is included in the RFC 5424 message.

Example RFC 3164

2019-05-30T09:11:21.968458+00:00 worker1 k8s.system/
crio[12080] level=debug msg="Endpoint successfully created"
 containerID=caa46f14a68e766b877af01442e58731845bb45d8ce1f856553440a02c958b2f
 eventUUID=e2405f2a-82ba-11e9-9a06-fa163eebdfd6 subsys=cilium-cni

Example RFC 5424

<133>1 2019-05-30T08:28:38.784214+00:00 master0 k8s.pod/kube-system/kube-apiserver-
master0/kube-apiserver - - [kube_meta namespace_id="1e030def-81db-11e9-a62b-
fa163e1876c9" container_name="kube-apiserver" creation_timestamp="2019-05-29T06:29:31Z"
 host="master0" namespace_name="kube-system" master_url="https://

96 Log Formats

kubernetes.default.svc.cluster.local:443" pod_id="4aaf10f9-81db-11e9-a62b-fa163e1876c9"
 pod_name="kube-apiserver-master0"] 2019-05-30T08:28:38.783780355+00:00 stderr F I0530
 08:28:38.783710 1 log.go:172] http: TLS handshake error from 172.28.0.19:45888:
 tls: client offered only unsupported versions: [300]

7.1.4 Deployment

After you have successfully installed it, use Helm CLI to install log agents on each node, and
provide customized settings via specific command options.

The only three mandatory parameters for a successful deployment of Centralized Logging are:

server.host , default value = rsyslog-server.default.svc.cluster.local

server.port , default value = 514

server.protocol , default value = TCP

See Section 7.1.6, “Optional settings” for the facultative parameters and their default values.

Running the following will create the minimal working setup:

helm repo add suse-charts https://kubernetes-charts.suse.com
helm install suse-charts/log-agent-rsyslog --name ${RELEASE_NAME} --set server.host=
${SERVER_HOST} --set server.port=${SERVER_PORT}

Note
If not specified otherwise, Helm will install log agents with TCP as the default value for
server.protocol .

After this step, all of the log agents will initialize then start to forward logs from each node to
the configured remote Rsyslog server.

To check the installation progress, use the helm status command:

helm status ${RELEASE_NAME}

To uninstall log agents, use the helm delete command:

helm delete --purge ${RELEASE_NAME}

97 Deployment

7.1.5 Queuing

Centralized Logging supports a configurable buered queue. This can be used to improve log
processing throughput and eliminate possible data loss, for instance after log agents shutdown,
restart or in case of an unresponsive remote server. The queue les are located under /var/
log/containers/{RELEASE_NAME}-log-agent-rsyslog on every node in the cluster. Queue
les remain even after the log agents are deleted.

The buered queue can be enabled/disabled with the following parameter:

queue.enabled , default value = false

Setting queue.enabled to false means that data will be stored in-memory only. Setting the
parameter to true will set the data store to a mixture of in-memory and in-disk. Data will then
be stored in memory until the queue is lled up, after which storing is switched to disk. Enabling
the queue also automatically saves the queue to disk at service shutdown.

Additional parameters to define queue size and its disk usage are:

queue.size , default value = 50000

This option sets the number of messages allowed for the in-memory queue. This setting af-
fects the Kubernetes cluster logs (kubernetes-control-plane and kubernetes-USER_NAME-
space).

queue.maxDiskSpace , default value = 2147483648

This option sets the maximum size allowed for disk storage (in bytes). The storage is divided so
that 20 percent of it is for journal logs and 80 percent for the remaining logs.

7.1.6 Optional settings

Note
Options with empty default values are set as not specified.

Parameter Function Default value

image.repository specifies image repository to
pull from

registry.suse.com/caasp/v4/
rsyslog

image.tag specifies image tag to pull 8.39.0

98 Queuing

Parameter Function Default value

kubernetesPodAnnotation-
sEnabled

enables kubernetes meta an-
notations in pod logs

false

kubernetesPodLabelsEnabled enables kubernetes meta la-
bels in pod logs

false

logs.kubernetesControl-
Plane.enabled

enables Kubernetes control
plane logs

true

logs.kubernetesSystem.en-
abled

enables Kubernetes system
logs (kubelet, crio)

true

logs.kubernetesUserName-
spaces.enabled

enables Kubernetes user
namespaces logs

false

logs.kubernetesUserName-
spaces.exclude

excludes Kubernetes logs for
specific namespaces

- ""

logs.osSystem.enabled enables OS logs (auditd, ker-
nel, wicked, zypper)

true

persistStateInterval sets interval (number-of-mes-
sages) for data state persis-
tency

100

queue.enabled enables Rsyslog queue false

queue.maxDiskSpace sets maximum Rsyslog queue
disk space in bytes

2147483648

queue.size sets Rsyslog queue size in
bytes

50000

resources.limits.cpu sets CPU limits

resources.limits.memory sets memory limits 512 Mi

resources.requests.cpu sets CPU for requests 100m

99 Optional settings

Parameter Function Default value

resources.requests.memory sets memory for requests 512 Mi

resumeInterval specifies time (seconds) af-
ter failure before retry is at-
tempted

30

resumeRetryCount sets number of retries after
rst failure before the log is
discarded. -1 is unlimited

-1

server.tls.clientCert sets TLS client certificate

server.tls.clientKey sets TLS client key

server.tls.enabled enables TLS false

server.tls.permittedPeer sets a list of TLS/fingerprints
or TLS/names with permis-
sion to access the server

server.tls.rootCa specifies TLS root certificate
authority

100 Optional settings

8 Integration

Note
Integration with external systems might require you to install additional packages to the
base OS. Please refer to Section 3.1, “Software Installation”.

8.1 SUSE Enterprise Storage Integration
SUSE CaaS Platform offers SUSE Enterprise Storage as a storage solution for its containers. This
chapter describes the steps required for successful integration.

8.1.1 Prerequisites

Before you start with integrating SUSE Enterprise Storage, you need to ensure the following:

The SUSE CaaS Platform cluster must have ceph-common and xfsprogs installed on all
nodes. You can check this by running rpm -q ceph-common and rpm -q xfsprogs .

The SUSE CaaS Platform cluster can communicate with all of the following SUSE Enterprise
Storage nodes: master, monitoring nodes, OSD nodes and the metadata server (in case
you need a shared le system). For more details refer to the SUSE Enterprise Storage
documentation: https://documentation.suse.com/ses/ .

The SUSE Enterprise Storage cluster has a pool with RADOS Block Device (RBD) enabled.

8.1.2 Procedures According to Type of Integration

The steps will differ in small details depending on whether you are using RBD or CephFS and
dynamic or static persistent volumes.

8.1.2.1 Using RBD in a Pod

RBD, also known as the Ceph Block Device or RADOS Block Device, is software that facilitates the
storage of block-based data in the open source Ceph distributed storage system. The procedure
below describes steps to take when you need to use a RADOS Block Device in a pod.

101 SUSE Enterprise Storage Integration

https://documentation.suse.com/ses/

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring .

2. Apply the configuration that includes the Ceph secret by running kubectl apply . Replace
<CEPH_SECRET> with your own Ceph secret and run the following:

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
type: "kubernetes.io/rbd"
data:
 key: "$(echo <CEPH_SECRET> | base64)"
EOF

3. Create an image in the SES cluster. To do that, run the following command on the master
node, replacing <SIZE> with the size of the image, for example 2G , and <YOUR_VOLUME>
with the name of the image.

rbd create -s <SIZE> <YOUR_VOLUME>

4. Create a pod that uses the image by executing the command below. This example is the
minimal configuration for using a RADOS Block Device. Fill in the IP addresses and ports of
your monitor nodes under <MONITOR_IP> and <MONITOR_PORT> . The default port num-
ber is 6789. Substitute <POD_NAME> and <CONTAINER_NAME> for a Kubernetes container
and pod name of your choice. <IMAGE_NAME> is the name you decide to give your con-
tainer image, for example "opensuse/leap". <RBD_POOL>. is the RBD pool name, please
refer to the RBD documentation for instructions on how to create the RBD pool: https://

docs.ceph.com/docs/mimic/rbd/rados-rbd-cmds/#create-a-block-device-pool

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Pod
metadata:
 name: <POD_NAME>
spec:
 containers:
 - name: <CONTAINER_NAME>
 image: <IMAGE_NAME>

102 Procedures According to Type of Integration

https://docs.ceph.com/docs/mimic/rbd/rados-rbd-cmds/#create-a-block-device-pool
https://docs.ceph.com/docs/mimic/rbd/rados-rbd-cmds/#create-a-block-device-pool

 volumeMounts:
 - mountPath: /mnt/rbdvol
 name: rbdvol
 volumes:
 - name: rbdvol
 rbd:
 monitors:
 - '<MONITOR1_IP:MONITOR1_PORT>'
 - '<MONITOR2_IP:MONITOR2_PORT>'
 - '<MONITOR3_IP:MONITOR3_PORT>'
 pool: <RBD_POOL>
 image: <YOUR_VOLUME>
 user: admin
 secretRef:
 name: ceph-secret
 fsType: ext4
 readOnly: false
EOF

5. Verify that the pod exists and check its status:

kubectl get pod

6. Once the pod is running, check the mounted volume:

kubectl exec -it CONTAINER_NAME -- df -k ...
Filesystem 1K-block Used Available Used% Mounted on
/dev/rbd1 999320 1284 929224 0% /mnt/rbdvol
...

In case you need to delete the pod, run the following command:

kubectl delete pod <POD_NAME>

8.1.2.2 Using RBD with Static Persistent Volumes

The following procedure describes how to attach a pod to an RDB static persistent volume:

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

103 Procedures According to Type of Integration

or directly from /etc/ceph/ceph.client.admin.keyring .

2. Apply the configuration that includes the Ceph secret by using kubectl apply . Replace
<CEPH_SECRET> with your Ceph secret.

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
type: "kubernetes.io/rbd"
data:
 key: "$(echo <CEPH_SECRET> | base64)"
EOF

3. Create an image in the SES cluster. On the master node, run the following command:

rbd create -s <SIZE> <YOUR_VOLUME>

Replace <SIZE> with the size of the image, for example 2G (2 gigabytes), and <YOUR_VOL-
UME> with the name of the image.

4. Create the persistent volume:

kubectl apply -f - << *EOF*
apiVersion: v1
kind: PersistentVolume
metadata:
 name: <PV_NAME>
spec:
 capacity:
 storage: <SIZE>
 accessModes:
 - ReadWriteOnce
 rbd:
 monitors:
 - '<MONITOR1_IP:MONITOR1_PORT>'
 - '<MONITOR2_IP:MONITOR2_PORT>'
 - '<MONITOR3_IP:MONITOR3_PORT>'
 pool: <RDB_POOL>
 image: <YOUR_VOLUME>
 user: admin
 secretRef:
 name: ceph-secret
 fsType: ext4
 readOnly: false

104 Procedures According to Type of Integration

EOF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example
2Gi .

5. Create a persistent volume claim:

kubectl apply -f - << *EOF*
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: <PVC_NAME>
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: SIZE
EOF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example
2Gi .

Note: Listing Volumes
This persistent volume claim does not explicitly list the volume. Persistent volume
claims work by picking any volume that meets the criteria from a pool. In this case
we specified any volume with a size of 2G or larger. When the claim is removed,
the recycling policy will be followed.

6. Create a pod that uses the persistent volume claim:

kubectl apply -f - <<*EOF*
apiVersion: v1
kind: Pod
metadata:
 name: <POD_NAME>
spec:
 containers:
 - name: <CONTAINER_NAME>
 image: <IMAGE_NAME>
 volumeMounts:
 - mountPath: /mnt/rbdvol
 name: rbdvol

105 Procedures According to Type of Integration

 volumes:
 - name: rbdvol
 persistentVolumeClaim:
 claimName: <PV_NAME>
EOF

7. Verify that the pod exists and its status:

kubectl get pod

8. Once the pod is running, check the volume:

kubectl exec -it CONTAINER_NAME -- df -k ...
/dev/rbd3 999320 1284 929224 0% /mnt/rbdvol
...

In case you need to delete the pod, run the following command:

kubectl delete pod <CONTAINER_NAME>

Note: Deleting A Pod
When you delete the pod, the persistent volume claim is deleted as well. The RBD is not
deleted.

8.1.2.3 Using RBD with Dynamic Persistent Volumes

The following procedure describes how to attach a pod to an RDB dynamic persistent volume.

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring .

2. Apply the configuration that includes the Ceph secret by using kubectl apply . Replace
<CEPH_SECRET> with your Ceph secret.

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Secret

106 Procedures According to Type of Integration

metadata:
 name: ceph-secret-admin
type: "kubernetes.io/rbd"
data:
 key: "$(echo <CEPH_SECRET> | base64)"
EOF

3. Create Ceph user on the SES cluster.

ceph auth get-or-create client.user mon "allow r" osd "allow class-read
 object_prefix rbd_children,
allow rwx pool=<RBD_POOL>" -o ceph.client.user.keyring

Replace <RBD_POOL> with the RBD pool name.

4. For a dynamic persistent volume, you will also need a user key. Retrieve the Ceph user
secret by running:

ceph auth get-key client.user

or directly from /etc/ceph/ceph.client.user.keyring

5. Apply the configuration that includes the Ceph secret by running the kubectl apply
command, replacing <CEPH_SECRET> with your own Ceph secret.

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret-user
type: "kubernetes.io/rbd"
data:
 key: "$(echo <CEPH_SECRET> | base64)"
EOF

6. Create the storage class:

kubectl apply -f - << *EOF*
apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: <SC_NAME>
 annotations:
 storageclass.beta.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/rbd
parameters:

107 Procedures According to Type of Integration

 monitors: <MONITOR1_IP:MONITOR1_PORT>, <MONITOR2_IP:MONITOR2_PORT>,
 <MONITOR3_IP:MONITOR3_PORT>
 adminId: admin
 adminSecretName: ceph-secret-admin
 adminSecretNamespace: default
 pool: <RBD_POOL>
 userId: user
 userSecretName: ceph-secret-user
EOF

7. Create the persistent volume claim:

kubectl apply -f - << *EOF*
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: <PVC_NAME>
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <SIZE>
EOF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example
2Gi .

8. Create a pod that uses the persistent volume claim.

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Pod
metadata:
 name: <POD_NAME>
spec:
 containers:
 - name: <CONTAINER_NAME>
 image: <IMAGE_NAME>
 volumeMounts:
 - name: rbdvol
 mountPath: /mnt/rbdvol
 readOnly: false
 volumes:
 - name: rbdvol
 persistentVolumeClaim:
 claimName: <PVC_NAME>

108 Procedures According to Type of Integration

EOF

9. Verify that the pod exists and check its status.

kubectl get pod

10. Once the pod is running, check the volume:

kubectl exec -it <CONTAINER_NAME> -- df -k ...
/dev/rbd3 999320 1284 929224 0% /mnt/rbdvol
...

In case you need to delete the pod, run the following command:

kubectl delete pod <CONTAINER_NAME>

Note: Deleting A Pod
When you delete the pod, the persistent volume claim is deleted as well. The RBD is not
deleted.

8.1.2.4 Using CephFS in a Pod

The procedure below describes steps to take when you need to use a CephFS in a pod.

PROCEDURE: USING CEPHFS IN A POD

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring .

2. Apply the configuration that includes the Ceph secret by running kubectl apply . Replace
<CEPH_SECRET> with your own Ceph secret and run the following:

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
type: "kubernetes.io/rbd"
data:
 key: "$(echo <CEPH_SECRET> | base64)"

109 Procedures According to Type of Integration

EOF

3. Create a pod that uses the image by executing the following command. This example shows
the minimal configuration for a CephFS volume. Fill in the IP addresses and ports of your
monitor nodes. The default port number is 6789 .

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Pod
metadata:
 name: <POD_NAME>
spec:
 containers:
 - name: <CONTAINER_NAME>
 image: <IMAGE_NAME>
 volumeMounts:
 - mountPath: /mnt/cephfsvol
 name: ceph-vol
 volumes:
 - name: ceph-vol
 cephfs:
 monitors:
 - '<MONITOR1_IP:MONITOR1_PORT>'
 - '<MONITOR2_IP:MONITOR2_PORT>'
 - '<MONITOR3_IP:MONITOR3_PORT>'
 user: admin
 secretRef:
 name: ceph-secret-admin
 readOnly: false
EOF

4. Verify that the pod exists and check its status:

kubectl get pod

5. Once the pod is running, check the mounted volume:

kubectl exec -it <CONTAINER_NAME> -- df -k ...
172.28.0.6:6789,172.28.0.14:6789,172.28.0.7:6789:/ 59572224 0 59572224
 0% /mnt/cephfsvol
...

In case you need to delete the pod, run the following command:

kubectl delete pod <POD_NAME>

110 Procedures According to Type of Integration

8.1.2.5 Using CephFS with Static Persistent Volumes

The following procedure describes how to attach a CephFS static persistent volume to a pod:

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring .

2. Apply the configuration that includes the Ceph secret by running kubectl apply . Replace
<CEPH_SECRET> with your own Ceph secret and run the following:

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Secret
metadata:
 name: ceph-secret
type: "kubernetes.io/rbd"
data:
 key: "$(echo <CEPH_SECRET> | base64)"
EOF

3. Create the persistent volume:

kubectl apply -f - << *EOF*
apiVersion: v1
kind: PersistentVolume
metadata:
 name: <PV_NAME>
spec:
 capacity:
 storage: <SIZE>
 accessModes:
 - ReadWriteOnce
 cephfs:
 monitors:
 - '<MONITOR1_IP:MONITOR1_PORT>'
 - '<MONITOR2_IP:MONITOR2_PORT>'
 - '<MONITOR3_IP:MONITOR3_PORT>'
 user: admin
 secretRef:
 name: ceph-secret-admin
 readOnly: false
EOF

111 Procedures According to Type of Integration

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example
2Gi .

4. Create a persistent volume claim:

kubectl apply -f - << *EOF*
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: <PVC_NAME>
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <SIZE>
EOF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example
2Gi .

5. Create a pod that uses the persistent volume claim.

kubectl apply -f - << *EOF*
apiVersion: v1
kind: Pod
metadata:
 name: <POD_NAME>
spec:
 containers:
 - name: <CONTAINER_NAME>
 image: <IMAGE_NAME>
 volumeMounts:
 - mountPath: /mnt/cephfsvol
 name: cephfsvol
 volumes:
 - name: cephfsvol
 persistentVolumeClaim:
 claimName: <PVC_NAME>

EOF

6. Verify that the pod exists and check its status.

112 Procedures According to Type of Integration

kubectl get pod

7. Once the pod is running, check the volume by running:

kubectl exec -it <CONTAINER_NAME> -- df -k ...
172.28.0.25:6789,172.28.0.21:6789,172.28.0.6:6789:/ 76107776 0 76107776
 0% /mnt/cephfsvol
...

In case you need to delete the pod, run the following command:

kubectl delete pod <CONTAINER_NAME>

Note: Deleting A Pod
When you delete the pod, the persistent volume claim is deleted as well. The cephFS is
not deleted.

8.2 SUSE Cloud Application Platform Integration
SUSE CaaS Platform offers Cloud Application Platform for modern application delivery. This
chapter describes the steps required for successful integration.

8.2.1 Prerequisites

Before you start integrating Cloud Application Platform, you need to ensure the following:

The SUSE CaaS Platform cluster did not use the --strict-capability-defaults option
during the initial setup when you ran skuba cluster init . This ensures the presence of
extra CRI-O capabilities compatible with docker containers. For more details refer to the
SUSE CaaS Platform Deployment Guide, Transitioning from Docker to CRI-O.

The SUSE CaaS Platform cluster has swapaccount=1 set on all worker nodes.

grep "swapaccount=1" /etc/default/grub || sudo sed -i -r 's|
^(GRUB_CMDLINE_LINUX_DEFAULT=)\"(.*.)\"|\1\"\2 swapaccount=1 \"|' /etc/default/grub
sudo grub2-mkconfig -o /boot/grub2/grub.cfg
sudo systemctl reboot

113 SUSE Cloud Application Platform Integration

The SUSE CaaS Platform cluster has no restrictions for Cloud Application Platform ports.
For more details refer to the Cloud Application Platform documentation: https://documen-

tation.suse.com/suse-cap/1.5.1/ .

Helm and Tiller are installed on the node where you run the skuba and kubectl com-
mands. For instructions on how to install Helm and Tiller refer to Section 3.1.2.1, “Installing

Helm”.

8.2.2 Procedures

1. Create a storage class. For precise steps, refer to Section 8.1.2.3, “Using RBD with Dynamic

Persistent Volumes”.

2. Add the Helm chart repository.

helm repo add suse https://kubernetes-charts.suse.com/

3. Map the SUSE CaaS Platform master node external IP address to the <CAP_DOMAIN> and
uaa.<CAP_DOMAIN> on your DNS server. For testing purposes you can also use /etc/
hosts .

<CAASP_MASTER_NODE_EXTERNAL_IP> <CAASP_MASTER_NODE_EXTERNAL_IP>.omg.howdoi.website
<CAASP_MASTER_NODE_EXTERNAL_IP>
 uaa.<CAASP_MASTER_NODE_EXTERNAL_IP>.omg.howdoi.website

4. Create a shared value le. This will be used for CAP uaa , cf , and console charts. Sub-
stitute the values enclosed in < > with specific values.

cat << *EOF* > custom_values.yaml
env:
 DOMAIN: <CAP_DOMAIN>
 UAA_HOST: uaa.<CAP_DOMAIN>

kube:
 external_ips:
 - <CAASP_MASTER_NODE_EXTERNAL_IP>
 - <CAASP_MASTER_NODE_INTERNAL_IP>
 storage_class:
 persistent: <STORAGE_CLASS_NAME>

secrets:
 # CLUSTER_ADMIN_PASSWORD is for user login access

114 Procedures

https://documentation.suse.com/suse-cap/1.5.1/
https://documentation.suse.com/suse-cap/1.5.1/

 CLUSTER_ADMIN_PASSWORD: <SECURE_PASSWORD>
 # UAA_ADMIN_CLIENT_SECRET is for OAuth client
 UAA_ADMIN_CLIENT_SECRET: <SECURE_SECRET>
EOF

5. Deploy uaa :

helm install suse/uaa --name uaa --namespace uaa --values custom_values.yaml

kubectl -n uaa get pod ...
NAME READY STATUS RESTARTS AGE
mysql-0 1/1 Running 0 21h
secret-generation-1-wr76g 0/1 Completed 0 21h
uaa-0 1/1 Running 1 21h
...

6. Verify uaa OAuth — this should return a JSON object:

curl --insecure https://uaa.<CAP_DOMAIN>:2793/.well-known/openid-configuration

7. Deploy cf :

SECRET=$(kubectl get pods --namespace uaa -o jsonpath='{.items[?
(.metadata.name=="uaa-0")].spec.containers[?(.name=="uaa")].env[?
(.name=="INTERNAL_CA_CERT")].valueFrom.secretKeyRef.name}')

CA_CERT="$(kubectl get secret $SECRET --namespace uaa -o jsonpath="{.data['internal-
ca-cert']}" | base64 --decode -)"

helm install suse/cf --name scf --namespace scf --values custom_values.yaml --set
 "secrets.UAA_CA_CERT=${CA_CERT}"

kubectl -n scf get pod ...
NAME READY STATUS RESTARTS AGE
adapter-0 2/2 Running 0 56m
api-group-0 2/2 Running 0 49m
bits-0 1/1 Running 0 57m
blobstore-0 2/2 Running 0 56m
cc-clock-0 2/2 Running 0 61m
cc-uploader-0 2/2 Running 0 61m
cc-worker-0 2/2 Running 0 61m
cf-usb-group-0 1/1 Running 0 53m
diego-api-0 2/2 Running 0 61m
diego-brain-0 2/2 Running 0 61m
diego-cell-0 2/2 Running 0 57m
diego-ssh-0 2/2 Running 0 61m
doppler-0 2/2 Running 0 56m

115 Procedures

locket-0 2/2 Running 0 61m
log-api-0 2/2 Running 0 55m
log-cache-scheduler-0 2/2 Running 0 56m
mysql-0 1/1 Running 0 55m
nats-0 2/2 Running 0 57m
nfs-broker-0 1/1 Running 0 61m
post-deployment-setup-1-vrbcv 0/1 Completed 0 61m
router-0 2/2 Running 0 57m
routing-api-0 2/2 Running 0 61m
secret-generation-1-l9bf7 0/1 Completed 0 61m
syslog-scheduler-0 2/2 Running 0 61m
tcp-router-0 2/2 Running 0 61m
...

8. Deploy console :

helm install suse/console --name console --namespace console --values
 custom_values.yaml

kubectl -n console get pod ...
NAME READY STATUS RESTARTS AGE
stratos-0 3/3 Running 1 54m
stratos-db-8d658bbf5-nsng6 1/1 Running 0 54m
volume-migration-1-s96cc 0/1 Completed 0 54m
....

A successful deployment allows you to access Cloud Application Platform console via a Web
browser at https://<DOMAIN_NAME>:8443/login . The default username is admin and the pass-
word is the <SECURE_PASSWORD> you have set in one of the steps above.

116 Procedures

https://<DOMAIN_NAME>:8443/login

9 Miscellaneous

9.1 Configuring HTTP/HTTPS Proxy for CRI-O
In some cases you must configure the container runtime to use a proxy to pull container images.
To configure this for CRI-O you must modify the le /etc/sysconfig/crio .

1. First define the host names that should be used without a proxy (NO_PROXY).

2. Then define which proxies should be used by the HTTP and HTTPS connections
(HTTP_PROXY and HTTPS_PROXY).

3. After you have saved the changes, restart the container runtime with

systemctl restart crio

9.1.1 Configuration Example

Proxy server without authentication

NO_PROXY="localhost,127.0.0.1,192.168.0.0/16,10.0.0.0/8,.example.com"
HTTP_PROXY="http://PROXY_IP_FQDN:PROXY_PORT"
HTTPS_PROXY="http://PROXY_IP_FQDN:PROXY_PORT"

Proxy server with authentication

NO_PROXY="localhost,127.0.0.1,192.168.0.0/16,10.0.0.0/8,.example.com"
HTTP_PROXY="http://USER:PASSWORD@PROXY_IP_FQDN:PROXY_PORT"
HTTPS_PROXY="http://USER:PASSWORD@PROXY_IP_FQDN:PROXY_PORT"

9.2 Configuring Container Registries for CRI-O

Important
The configuration example in this text uses VERSION 2 of the CRI-O registries configu-
ration syntax. It is not compatible with the VERSION 1 syntax present in some upstream
examples.

117 Configuring HTTP/HTTPS Proxy for CRI-O

Please refer to: https://raw.githubusercontent.com/containers/image/master/docs/contain-

ers-registries.conf.5.md

Every registry-related configuration needs to be done in the TOML (https://github.com/toml-lang/

toml) le /etc/containers/registries.conf . After any change of this le, CRI-O needs
to be restarted.

The configuration is a sequence of [[registry]] entries. For example, a single registry entry
within that configuration could be added like this:

/etc/containers/registries.conf

[[registry]]
blocked = false
insecure = false
location = "example.net/bar"
prefix = "example.com/foo/images"
mirror = [
 { location = "example-mirror-0.local", insecure = false },
 { location = "example-mirror-1.local", insecure = true, mirror-by-digest-only =
 true }
]

[[registry]]
blocked = false
insecure = false
location = "example.net/mymirror"
prefix = "example.com/mirror/images"
mirror = [
 { location = "example-mirror-2.local", insecure = false, mirror-by-digest-only =
 true },
 { location = "example-mirror-3.local", insecure = true }
]
unqualified-search = false

Given an image name, a single [[registry]] TOML table is chosen based on its prefix eld.

A prefix is mainly a user-specified image name and can have one of the following formats:

host[:port]

host[:port]/namespace[/namespace…]

host[:port]/namespace[/namespace…]/repo

host[:port]/namespace[/namespace…]/repo[:tag|@digest]

118 Configuring Container Registries for CRI-O

https://raw.githubusercontent.com/containers/image/master/docs/containers-registries.conf.5.md
https://raw.githubusercontent.com/containers/image/master/docs/containers-registries.conf.5.md
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

The user-specified image name must start with the specified prefix (and continue with the
appropriate separator) for a particular [[registry]] TOML table to be considered. Only the
TOML entry with the longest match is used.

As a special case, the prefix eld can be missing. If so, it defaults to the value of the location
eld.

9.2.1 Per-namespace Settings

insecure (true or false): By default, container runtimes require TLS when retrieving
images from a registry. If insecure is set to true , unencrypted HTTP as well as TLS
connections with untrusted certificates are allowed.

blocked (true or false): If true , pulling images with matching names is forbidden.

9.2.2 Remapping and Mirroring Registries

The user-specified image reference is, primarily, a "logical" image name, always used for naming
the image. By default, the image reference also directly specifies the registry and repository
to use, but the following options can be used to redirect the underlying accesses to different
registry servers or locations. This can be used to support configurations with no access to the
Internet without having to change Dockerfiles, or to add redundancy.

9.2.2.1 location

Accepts the same format as the prefix eld, and specifies the physical location of the prefix -
rooted namespace. By default, this is equal to prefix (in which case prefix can be omitted
and the [[registry]] TOML table can just specify location).

9.2.2.1.1 Example

prefix = "example.com/foo"
location = "internal-registry-for-example.net/bar"

Requests for the image example.com/foo/myimage:latest will actually work with the in-
ternal-registry-for-example.net/bar/myimage:latest image.

119 Per-namespace Settings

9.2.2.2 mirror

An array of TOML tables specifying (possibly partial) mirrors for the prefix -rooted namespace.

The mirrors are attempted in the specified order. The rst one that can be contacted and contains
the image will be used (and if none of the mirrors contains the image, the primary location
specified by the registry.location eld, or using the unmodified user-specified reference,
is tried last).

Each TOML table in the mirror array can contain the following elds, with the same semantics
as if specified in the [[registry]] TOML table directly:

location

insecure

9.2.2.3 mirror-by-digest-only

Can be true or false . If true , mirrors will only be used during pulling if the image reference
includes a digest. Referencing an image by digest ensures that the same one is always used
(whereas referencing an image by a tag may cause different registries to return different images
if the tag mapping is out of sync).

Note that if this is true , images referenced by a tag will only use the primary registry, failing
if that registry is not accessible.

9.3 FlexVolume Configuration
FlexVolume drivers are external (out-of-tree) drivers usually provided by a specific vendor. They
are executable les that are placed in a predefined directory in the cluster on both worker and
master nodes. Pods interact with FlexVolume drivers through the flexvolume in-tree plugin.

The vendor driver rst has to be installed on each worker and master node in a Kubernetes
cluster. On SUSE CaaS Platform 4, the path to install the drivers is /usr/libexec/kuber-
netes/kubelet-plugins/volume/exec/ .

If the drivers are deployed with DaemonSet , this will require changing the FlexVolume directory
path, which is usually stored as an environment variable, for example for rook:

FLEXVOLUME_DIR_PATH=/usr/libexec/kubernetes/kubelet-plugins/volume/exec/

120 FlexVolume Configuration

For a general guide to the FlexVolume configuration, see https://github.com/kubernetes/commu-

nity/blob/master/contributors/devel/sig-storage/flexvolume.md

121 FlexVolume Configuration

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

10 Troubleshooting

This chapter summarizes frequent problems that can occur while using SUSE CaaS Platform and
their solutions.

Additionally, SUSE support collects problems and their solutions online at https://www.suse.com/

support/kb/?id=SUSE_CaaS_Platform .

10.1 The supportconfig Tool
As a rst step for any troubleshooting/debugging effort, you need to nd out the location of the
cause of the problem. For this purpose we ship the supportconfig tool and plugin with SUSE
CaaS Platform. With a simple command you can collect and compile a variety of details about
your cluster to enable SUSE support to pinpoint the potential cause of an issue.

In case of problems, a detailed system report can be created with the supportconfig command
line tool. It will collect information about the system, such as:

Current Kernel version

Hardware information

Installed packages

Partition setup

Cluster and node status

Tip
A full list of of the data collected by supportconfig can be found under https://

github.com/SUSE/supportutils-plugin-suse-caasp/blob/master/README.md .

Important
To collect all the relevant logs, run the supportconfig command on all the master and
worker nodes individually.

sudo supportconfig

122 The supportconfig Tool

https://www.suse.com/support/kb/?id=SUSE_CaaS_Platform
https://www.suse.com/support/kb/?id=SUSE_CaaS_Platform
https://github.com/SUSE/supportutils-plugin-suse-caasp/blob/master/README.md
https://github.com/SUSE/supportutils-plugin-suse-caasp/blob/master/README.md

sudo tar -xvJf /var/log/nts_*.txz
cd /var/log/nts*
sudo cat kubernetes.txt crio.txt

The result is a TAR archive of les. Each of the *.txz les should be given a name that can be
used to identify which cluster node it was created on.

After opening a Service Request (SR), you can upload the TAR archives to SUSE Global Technical
Support.

The data will help to debug the issue you reported and assist you in solving the problem.
For details, see https://documentation.suse.com/sles/15-SP1/single-html/SLES-admin/#cha-adm-

support .

10.2 Cluster definition directory
Apart from the logs provided by running the supportconfig tool, an additional set of data
might be required for debugging purposes. This information is located at the Management node,
under your cluster definition directory. This folder contains important and sensitive information
about your SUSE CaaS Platform cluster and it’s the one from where you issue skuba commands.

Warning
If the problem you are facing is related to your production environment, do not upload
the admin.conf as this would expose access to your cluster to anyone in possession of
the collected information! The same precautions apply for the pki directory, since this
also contains sensitive information (CA cert and key).

In this case add --exclude='./my-cluster/admin.conf' --exclude='./my-clus-

ter/pki/' to the command in the following example. Make sure to replace ./my-clus-
ter with the actual path of your cluster definition folder.

If you need to debug issues with your private certificates, a separate call with SUSE sup-
port must be scheduled to help you.

Create a TAR archive by compressing the cluster definition directory.

Read the TIP above
Move the admin.conf and pki directory to another safe location or exclude from
 packaging

123 Cluster definition directory

https://documentation.suse.com/sles/15-SP1/single-html/SLES-admin/#cha-adm-support
https://documentation.suse.com/sles/15-SP1/single-html/SLES-admin/#cha-adm-support

tar -czvf cluster.tar.gz /home/user/my-cluster/
If the error is related to Terraform, please copy the terraform configuration files as
 well
tar -czvf cluster.tar.gz /home/user/my-terraform-configuration/

After opening a Service Request (SR), you can upload the TAR archive to SUSE Global Technical
Support.

10.3 Log collection
Some of these information are required for debugging certain cases. The data collected by via
supportconfig in such cases are following:

etcd.txt (master nodes)

curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/health
curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
members
curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
stats/leader
curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
stats/self
curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
stats/store
curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/metrics

etcdcontainer=$(crictl ps --label io.kubernetes.container.name=etcd --quiet)

crictl exec $etcdcontainer sh -c \"ETCDCTL_ENDPOINTS='https://127.0.0.1:2379'
 ETCDCTL_CACERT='/etc/kubernetes/pki/etcd/ca.crt' ETCDCTL_CERT='/etc/kubernetes/pki/
etcd/server.crt' ETCDCTL_KEY='/etc/kubernetes/pki/etcd/server.key' ETCDCTL_API=3
 etcdctl check perf\"

crictl logs -t $etcdcontainer

crictl stats --id $etcdcontainer

etcdpod=$(crictl ps | grep etcd | awk -F ' ' '{ print $9 }')

124 Log collection

crictl inspectp $etcdpod

Note
For more information about etcd , refer to Section 10.9, “ETCD Troubleshooting”.

kubernetes.txt (all nodes)

export KUBECONFIG=/etc/kubernetes/admin.conf

kubectl version

kubectl api-versions

kubectl config view

kubectl -n kube-system get pods

kubectl get events --sort-by=.metadata.creationTimestamp

kubectl get nodes

kubectl get all -A

kubectl get nodes -o yaml

kubernetes-cluster-info.txt (all nodes)

export KUBECONFIG=/etc/kubernetes/admin.conf

a copy of kubernetes logs /var/log/kubernetes
kubectl cluster-info dump --output-directory="/var/log/kubernetes"

kubelet.txt (all nodes)

systemctl status --full kubelet

journalctl -u kubelet

a copy of kubernetes manifests /etc/kubernetes/manifests"
cat /var/lib/kubelet/config.yaml

oidc-gangway.txt (all nodes)

125 Log collection

container=$(crictl ps --label io.kubernetes.container.name="oidc-gangway" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "oidc-gangway" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

oidc-dex.txt (worker nodes)

container=$(crictl ps --label io.kubernetes.container.name="oidc-dex" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "oidc-dex" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

cilium-agent.txt (all nodes)

container=$(crictl ps --label io.kubernetes.container.name="cilium-agent" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "cilium-agent" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

cilium-operator.txt (only from the worker node is runs)

container=$(crictl ps --label io.kubernetes.container.name="cilium-operator" --
quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "cilium-operator" | awk -F ' ' '{ print $9 }')

126 Log collection

crictl inspectp $pod

kured.txt (all nodes)

container=$(crictl ps --label io.kubernetes.container.name="kured" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "kured" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

coredns.txt (_worker nodes)

container=$(crictl ps --label io.kubernetes.container.name="coredns" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "coredns" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

kube-apiserver.txt (master nodes)

container=$(crictl ps --label io.kubernetes.container.name="kube-apiserver" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "kube-apiserver" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

kube-proxy.txt (all nodes)

container=$(crictl ps --label io.kubernetes.container.name="kube-proxy" --quiet)

crictl logs -t $container

crictl inspect $container

127 Log collection

pod=$(crictl ps | grep "kube-proxy" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

kube-scheduler.txt (master nodes)

container=$(crictl ps --label io.kubernetes.container.name="kube-scheduler" --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "kube-scheduler" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

kube-controller-manager.txt (master nodes)

container=$(crictl ps --label io.kubernetes.container.name="kube-controller-manager"
 --quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "kube-controller-manager" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

kube-system.txt (all nodes)

export KUBECONFIG=/etc/kubernetes/admin.conf

kubectl get all -n kube-system -o yaml

crio.txt (all_nodes)

crictl version

systemctl status --full crio.service

crictl info

crictl images

crictl ps --all

128 Log collection

crictl stats --all

journalctl -u crio

a copy of /etc/crictl.yaml

a copy of /etc/sysconfig/crio

a copy of /etc/crio/crio.conf

a copy of every file under /etc/crio/

Run the following three commands for every container using this loop:
for i in $(crictl ps -a 2>/dev/null | grep -v "CONTAINER" | awk '{print $1}');
do
 crictl stats --id $i
 crictl logs $i
 crictl inspect $i
done

10.4 Debugging SLES Nodes provision
If Terraform fails to setup the required {sles} infrastructure for your cluster, please provide the
configuration you applied in a form of a TAR archive.

Create a TAR archive by compressing the Terraform.

tar -czvf terraform.tar.gz /path/to/terraform/configuration

After opening a Service Request (SR), you can upload the TAR archive to Global Technical
Support.

10.5 Debugging Cluster Deployment
If the cluster deployment fails, please re-run the command again with setting verbosity level
to 10 -v=10 .

For example, if bootstraps the rst master node of the cluster fails, re-run the command like

skuba node bootstrap --user sles --sudo --target <IP/FQDN> <NODE_NAME> -v=10

However, if the join procedure fails at the last final steps, re-running it might not help. To
verify this, please list the current member nodes of your cluster and look for the one who failed.

129 Debugging SLES Nodes provision

kubectl get nodes

If the node that failed to join is nevertheless listed in the output as part of your cluster, then
this is a bad indicator. This node cannot be reset back to a clean state anymore and it’s not safe to
keep it online in this unknown state. As a result, instead of trying to x its existing configuration
either by hand or re-running the join/bootstrap command, we would highly recommend you to
remove this node completely from your cluster and then replace it with a new one.

skuba node remove <NODE_NAME> --drain-timeout 5s

10.6 Error x509: certificate signed by
unknown authority
When interacting with Kubernetes, you might run into the situation where your existing con-
figuration for the authentication has changed (cluster has been rebuild, certificates have been
switched.) In such a case you might see an error message in the output of your CLI or Web
browser.

x509: certificate signed by unknown authority

This message indicates that your current system does not know the Certificate Authority (CA)
that signed the SSL certificates used for encrypting the communication to the cluster. You then
need to add or update the Root CA certificate in your local trust store.

1. Obtain the root CA certificate from on of the Kubernetes cluster node, at the location /
etc/kubernetes/pki/ca.crt

2. Copy the root CA certificate into your local machine directory /etc/pki/trust/an-
chors/

3. Update the cache for know CA certificates

sudo update-ca-certificates

10.7 Replacing a Lost Node
If your cluster loses a node, for example due to failed hardware, remove the node as explained
in Section 2.3, “Removing Nodes”. Then add a new node as described in Section 2.2, “Adding Nodes”.

130 Error x509: certificate signed by unknown authority

10.8 Rebooting an Undrained Node with RBD
Volumes Mapped
Rebooting a cluster node always requires a preceding drain . In some cases, draining the nodes
rst might not be possible and some problem can occur during reboot if some RBD volumes
are mapped to the nodes.

In this situation, apply the following steps.

1. Make sure kubelet and CRI-O are stopped:

systemctl stop kubelet crio

2. Unmount every RBD device /dev/rbd* before rebooting. For example:

umount -vAf /dev/rbd0

If there are several device mounted, this little script can be used to avoid manual unmounting:

#!/usr/bin/env bash

while grep "rbd" /proc/mounts > /dev/null 2>&1; do
 for dev in $(lsblk -p -o NAME | grep "rbd"); do
 if $(mountpoint -x $dev > /dev/null 2>&1); then
 echo ">>> umounting $dev"
 umount -vAf "$dev"
 fi
 done
done

10.9 ETCD Troubleshooting

10.9.1 Introduction

This document aims to describe debugging a {etcd} cluster.

The required etcd logs are part of the supportconfig , a utility that collects all the required
information for debugging a problem. The rest of the document provides information on how
you can obtain these information manually.

131 Rebooting an Undrained Node with RBD Volumes Mapped

10.9.2 ETCD container

ETCD is a distributed reliable key-value store for the most critical data of a distributed system.
It is running only on the master nodes in a form a container application. For instance, in a
cluster with 3 master nodes, it is expected to have 3 etcd instances as well:

kubectl get pods -n kube-system -l component=etcd
NAME READY STATUS RESTARTS AGE
etcd-vm072044.qa.prv.suse.net 1/1 Running 1 7d
etcd-vm072050.qa.prv.suse.net 1/1 Running 1 7d
etcd-vm073033.qa.prv.suse.net 1/1 Running 1 7d

The specific configuration which etcd is using to start, is the following:

etcd \
 --advertise-client-urls=https://<YOUR_MASTER_NODE_IP_ADDRESS>:2379 \
 --cert-file=/etc/kubernetes/pki/etcd/server.crt \
 --client-cert-auth=true --data-dir=/var/lib/etcd \
 --initial-advertise-peer-urls=https://<YOUR_MASTER_NODE_IP_ADDRESS>:2380 \
 --initial-cluster=vm072050.qa.prv.suse.net=https://
<YOUR_MASTER_NODE_IP_ADDRESS>:2380 \
 --key-file=/etc/kubernetes/pki/etcd/server.key \
 --listen-client-urls=https://127.0.0.1:2379,https://
<YOUR_MASTER_NODE_IP_ADDRESS>:2379 \
 --listen-peer-urls=https://<YOUR_MASTER_NODE_IP_ADDRESS>:2380 \
 --name=vm072050.qa.prv.suse.net \
 --peer-cert-file=/etc/kubernetes/pki/etcd/peer.crt \
 --peer-client-cert-auth=true \
 --peer-key-file=/etc/kubernetes/pki/etcd/peer.key \
 --peer-trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt \
 --snapshot-count=10000 --trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt

Note
For more information related to ETCD, we highly recommend you to read ETCD FAQ

(https://etcd.io/docs/v3.4.0/faq/) page.

10.9.3 logging

Since etcd is running in a container, that means it is not controlled by systemd , thus any
commands related to that (e.g. journalctl) will fail, therefore you need to use container de-
bugging approach instead.

132 ETCD container

https://etcd.io/docs/v3.4.0/faq/
https://etcd.io/docs/v3.4.0/faq/

Note
To use the following commands, you need to connect (e.g. via SSH) to the master node
where the etcd pod is running.

To see the etcd logs, connect to a Kubernetes master node and then run as root:

ssh sles@<MASTER_NODE>
sudo bash # connect as root
etcdcontainer=$(crictl ps --label io.kubernetes.container.name=etcd --quiet)
crictl logs -f $etcdcontainer

10.9.4 etcdctl

etcdctl is a command line client for etcd . The new version of CaaSP is using the v3 API.
For that, you need to make sure to set environment variable ETCDCTL_API=3 before using it.
Apart from that, you need to provide the required keys and certificates for authentication and
authorization, via ETCDCTL_CACERT , ETCDCTL_CERT and ETCDCTL_KEY environment variables.
Last but not least, you need to also specify the endpoint via ETCDCTL_ENDPOINTS environment
variable.

Example
To nd out if your network and disk latency are fast enough, you can benchmark your
node using the etcdctl check perf command. To do this, frist connect to a Kubernetes
master node:

ssh sles@<MASTER_NODE>
sudo bash # login as root

and then run as root:

etcdcontainer=$(crictl ps --label io.kubernetes.container.name=etcd --quiet)
crictl exec $etcdcontainer sh -c \
"ETCDCTL_ENDPOINTS='https://127.0.0.1:2379' \
ETCDCTL_CACERT='/etc/kubernetes/pki/etcd/ca.crt' \
ETCDCTL_CERT='/etc/kubernetes/pki/etcd/server.crt' \
ETCDCTL_KEY='/etc/kubernetes/pki/etcd/server.key' \
ETCDCTL_API=3 \

133 etcdctl

etcdctl check perf"

10.9.5 curl as an alternative

For most of the etcdctl commands, there is an alternative way to fetch the same information
via curl . First you need to connect to the master node and then issue a curl command against
the ETCD endpoint. Here’s an example of the information which supportconfig is collecting:

Health check:

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/health

Member list

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/members

Leader information

available only from the master node where ETCD **leader** runs
sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/stats/leader

Current member information

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/stats/self

Statistics

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/stats/store

Metrics

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \

134 curl as an alternative

--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/metrics

10.10 Kubernetes debugging tips

General guidelines and instructions: https://kubernetes.io/docs/tasks/debug-applica-

tion-cluster/troubleshooting/

Troubleshooting applications: https://kubernetes.io/docs/tasks/debug-application-clus-

ter/debug-application

Troubleshooting clusters: https://kubernetes.io/docs/tasks/debug-application-cluster/de-

bug-cluster

Debugging pods: https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-

replication-controller

Debugging services: https://kubernetes.io/docs/tasks/debug-application-cluster/debug-ser-

vice

10.11 Helm Error: context deadline exceeded
This means the tiller installation was secured via SSL/TLS as described in Section 3.1.2.1, “Installing

Helm”. You must pass the --tls ag to helm to enable authentication.

135 Kubernetes debugging tips

https://kubernetes.io/docs/tasks/debug-application-cluster/troubleshooting/
https://kubernetes.io/docs/tasks/debug-application-cluster/troubleshooting/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service

A GNU Licenses

This appendix contains the GNU Free Documentation License version 1.2.

A.1 GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or non-commercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

136 GNU Free Documentation License

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or po-
litical position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent le format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

137 GNU Free Documentation License

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-com-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other condi-
tions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material

138 GNU Free Documentation License

on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the rst
ones listed (as many as t reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take rea-
sonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least ve of the principal
authors of the Document (all of its principal authors, if it has fewer than ve), unless they
release you from this requirement.

139 GNU Free Documentation License

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

140 GNU Free Documentation License

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled "Ac-
knowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled
"Endorsements".

141 GNU Free Documentation License

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires spe-
cial permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

142 GNU Free Documentation License

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published
(not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with…
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

143 GNU Free Documentation License

http://www.gnu.org/copyleft/

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

144 GNU Free Documentation License

	Administration Guide
	Contents
	
	Chapter 1. About This Guide
	1.1. Required Background
	1.2. Available Documentation
	1.3. Feedback
	1.4. Documentation Conventions

	Chapter 2. Cluster Management
	2.1. Bootstrap and Initial Configuration
	2.2. Adding Nodes
	2.3. Removing Nodes
	2.3.1. Temporary Removal
	2.3.2. Permanent Removal

	2.4. Reconfiguring Nodes
	2.5. Node Operations
	2.5.1. Uncordon and Cordon
	2.5.2. Draining Nodes

	Chapter 3. Software Management
	3.1. Software Installation
	3.1.1. Base OS
	3.1.1.1. Initial Rollout
	3.1.1.2. Existing Cluster

	3.1.2. Kubernetes stack
	3.1.2.1. Installing Helm
	3.1.2.2. Installing Tiller
	3.1.2.2.1. Unsecured Tiller Deployment
	3.1.2.2.2. Secured Tiller Deployment with SSL/TLS

	Chapter 4. Security
	4.1. Access Control
	4.2. Role Management
	4.2.1. List of Verbs
	4.2.2. List of Resources
	4.2.3. Creating Roles
	4.2.4. Create Role Bindings

	4.3. Managing Users and Groups
	4.3.1. Adding a New Organizational Unit
	4.3.2. Removing an Organizational Unit
	4.3.3. Adding a New Group to an Organizational Unit
	4.3.4. Removing a Group from an Organizational Unit
	4.3.4.1. Adding a New User
	4.3.4.2. Showing User Attributes
	4.3.4.3. Modifying a User
	4.3.4.4. Deleting a User
	4.3.4.5. Changing Your own LDAP Password from CLI

	4.4. Role Based Access Control (RBAC)
	4.4.1. Introduction
	4.4.2. Authentication Flow
	4.4.2.1. Web Flow
	4.4.2.2. CLI Flow

	4.4.3. RBAC Operations
	4.4.3.1. Administration
	4.4.3.1.1. Kubernetes Role Binding
	4.4.3.1.2. Update the Authentication Connector

	4.4.3.2. User Access
	4.4.3.2.1. Setting up kubectl
	4.4.3.2.1.1. In the Web Browser
	4.4.3.2.1.2. Using the CLI

	4.4.3.2.2. Access Kubernetes Resources

	4.5. Configuring an External LDAP Server
	4.5.1. Deploying an External 389 Directory Server
	4.5.2. Deploying a 389 Directory Server with an External Certificate
	4.5.2.1. Known Issues

	4.5.3. Examples of Usage
	4.5.3.1. 389 Directory Server:
	4.5.3.1.1. Example 1: 389-ds Content LDIF
	4.5.3.1.2. Example 2: Dex LDAP TLS Connector Configuration (addons/dex/dex.yaml)

	4.5.3.2. Active Directory
	4.5.3.2.1. Example 1: Active Directory Content LDIF
	4.5.3.2.2. Example 2: Dex Active Directory TLS Connector Configuration

	4.6. Pod Security Policies
	4.6.1. Default Policies
	4.6.2. Policy Definition
	4.6.2.1. Policy File Examples

	4.6.3. Creating a PodSecurityPolicy

	4.7. NGINX Ingress Controller
	4.8. Admission Controllers
	4.8.1. Introduction
	4.8.2. Configured admission controllers

	4.9. Certificates
	4.9.1. Communication Security
	4.9.2. Certificate Validity
	4.9.3. Certificate Location
	4.9.4. Deployment with a Custom CA Certificate
	4.9.4.1. Extracting Certificate And Key From Combined PEM File

	4.9.5. Automatic Certificate Renewal
	4.9.6. Manual Certificate Renewal
	4.9.6.1. Renewing Certificates Managed by kubeadm
	4.9.6.2. Renewing Certificates Created by skuba:

	Chapter 5. Cluster Updates
	5.1. Updating Kubernetes Components
	5.1.1. Generating an Overview of Available Platform Updates
	5.1.2. Generating an Overview of Available Addon Updates

	5.2. Updating Nodes
	5.2.1. How To Update Nodes

	5.3. Base OS Updates
	5.3.1. Disabling Automatic Updates
	5.3.2. Completely Disabling Reboots
	5.3.3. Manual Unlock

	Chapter 6. Monitoring
	6.1. Monitoring Stack
	6.1.1. Introduction
	6.1.2. Prerequisites
	6.1.3. Installation
	6.1.3.1. TLS
	6.1.3.1.1. Trusted Certificates
	6.1.3.1.2. Self-signed Certificates (optional)

	6.1.3.2. Prometheus
	6.1.3.3. Alertmanager Configuration Example
	6.1.3.4. Grafana
	6.1.3.4.1. Adding Grafana Dashboards

	6.1.4. Monitoring
	6.1.4.1. Prometheus Jobs
	6.1.4.2. ETCD Cluster

	6.2. Health Checks
	6.2.1. Cluster Health Checks
	6.2.1.1. Kubernetes master
	6.2.1.2. ETCD Cluster

	6.2.2. Node Health Checks
	6.2.2.1. kubelet
	6.2.2.1.1. Local Check
	6.2.2.1.2. Remote Check

	6.2.2.2. CNI

	6.2.3. Service/Application Health Checks
	6.2.3.1. livenessProbe
	6.2.3.2. readinessProbe

	6.2.4. General Health Checks

	Chapter 7. Logging
	7.1. Centralized Logging
	7.1.1. Prerequisites
	7.1.2. Types of Logs
	7.1.3. Log Formats
	7.1.4. Deployment
	7.1.5. Queuing
	7.1.6. Optional settings

	Chapter 8. Integration
	8.1. SUSE Enterprise Storage Integration
	8.1.1. Prerequisites
	8.1.2. Procedures According to Type of Integration
	8.1.2.1. Using RBD in a Pod
	8.1.2.2. Using RBD with Static Persistent Volumes
	8.1.2.3. Using RBD with Dynamic Persistent Volumes
	8.1.2.4. Using CephFS in a Pod
	8.1.2.5. Using CephFS with Static Persistent Volumes

	8.2. SUSE Cloud Application Platform Integration
	8.2.1. Prerequisites
	8.2.2. Procedures

	Chapter 9. Miscellaneous
	9.1. Configuring HTTP/HTTPS Proxy for CRI-O
	9.1.1. Configuration Example

	9.2. Configuring Container Registries for CRI-O
	9.2.1. Per-namespace Settings
	9.2.2. Remapping and Mirroring Registries
	9.2.2.1. location
	9.2.2.1.1. Example

	9.2.2.2. mirror
	9.2.2.3. mirror-by-digest-only

	9.3. FlexVolume Configuration

	Chapter 10. Troubleshooting
	10.1. The supportconfig Tool
	10.2. Cluster definition directory
	10.3. Log collection
	10.4. Debugging SLES Nodes provision
	10.5. Debugging Cluster Deployment
	10.6. Error x509: certificate signed by unknown authority
	10.7. Replacing a Lost Node
	10.8. Rebooting an Undrained Node with RBD Volumes Mapped
	10.9. ETCD Troubleshooting
	10.9.1. Introduction
	10.9.2. ETCD container
	10.9.3. logging
	10.9.4. etcdctl
	10.9.5. curl as an alternative

	10.10. Kubernetes debugging tips
	10.11. Helm Error: context deadline exceeded

	Appendix A. GNU Licenses
	A.1. GNU Free Documentation License

