
SUSE Cloud Application Platform 2.1.1

Deployment,
Administration, and User
Guides

Deployment, Administration, and User Guides
SUSE Cloud Application Platform 2.1.1
by Carla Schroder, Billy Tat, Claudia-Amelia Marin, and Lukas Kucharczyk

Introducing SUSE Cloud Application Platform, a software platform for cloud-native
application deployment based on KubeCF and Kubernetes.

Publication Date: November 10, 2023

SUSE LLC
1800 South Novell Place
Provo, UT 84606
USA

https://documentation.suse.com

Copyright © 2006– 2023 SUSE LLC and contributors. All rights reserved.

https://documentation.suse.com

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-

mentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright

notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation

License”.

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the prop-

erty of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates.

Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

http://www.suse.com/company/legal/

Contents

About This Guide xiv
1 Required Background xiv

2 Available Documentation xiv

3 Feedback xv

4 Documentation Conventions xv

5 Support Statement for SUSE Cloud Application Platform xvii

Version Support xvii • Platform Support xvii • Technology Previews xviii

6 About the Making of This Documentation xix

I OVERVIEW OF SUSE CLOUD APPLICATION PLATFORM 1

1 About SUSE Cloud Application Platform 2
1.1 SUSE Cloud Application Platform Overview 2

1.2 SUSE Cloud Application Platform Architecture 4

KubeCF Components 6 • KubeCF Containers 7 • KubeCF Service

Diagram 9 • Detailed Services Diagram 12

2 Other Kubernetes Systems 14

2.1 Kubernetes Requirements 14

II DEPLOYING SUSE CLOUD APPLICATION PLATFORM 15

3 Deployment and Administration Notes 16
3.1 Important Changes 16

3.2 Status of Pods during Deployment 16

3.3 Length of Release Names 17

3.4 Releases and Associated Versions 17

iv Deployment, Administration, and User Guides

4 Deploying SUSE Cloud Application Platform on SUSE
CaaS Platform 19

4.1 Prerequisites 19

4.2 Creating a SUSE CaaS Platform Cluster 20

4.3 Install the Helm Client 22

4.4 Storage Class 23

4.5 Deployment Configuration 24

Log-cache Memory Allocation 25 • Diego Cell Affinities and Tainted

Nodes 26

4.6 Certificates 26

Certificate Characteristics 26 • Deployment Configuration 27

4.7 Using an Ingress Controller 27

Install and Configure the NGINX Ingress Controller 28

4.8 Affinity and Anti-affinity 29

Configuring Rules 30

4.9 High Availability 32

Configuring Cloud Application Platform for High Availability 32

4.10 External Blobstore 34

Configuration 35

4.11 External Database 35

Configuration 36

4.12 Add the Kubernetes Charts Repository 37

4.13 Deploying SUSE Cloud Application Platform 38

Deploy the Operator 38 • Deploy KubeCF 39

4.14 LDAP Integration 40

Prerequisites 40 • Example LDAP Integration 41

4.15 Expanding Capacity of a Cloud Application Platform Deployment on
SUSE® CaaS Platform 44

v Deployment, Administration, and User Guides

5 Deploying SUSE Cloud Application Platform on
Microsoft Azure Kubernetes Service (AKS) 46

5.1 Prerequisites 46

5.2 Create Resource Group and AKS Instance 47

5.3 Install the Helm Client 49

5.4 Storage Class 49

5.5 Deployment Configuration 50

Log-cache Memory Allocation 51 • Diego Cell Affinities and Tainted

Nodes 52

5.6 Certificates 52

Certificate Characteristics 52 • Deployment Configuration 53

5.7 Using an Ingress Controller 53

Install and Configure the NGINX Ingress Controller 54

5.8 Affinity and Anti-affinity 55

Configuring Rules 56

5.9 High Availability 58

Configuring Cloud Application Platform for High Availability 58

5.10 External Blobstore 60

Configuration 61

5.11 External Database 61

Configuration 62

5.12 Add the Kubernetes Charts Repository 63

5.13 Deploying SUSE Cloud Application Platform 64

Deploy the Operator 64 • Deploy KubeCF 65

5.14 LDAP Integration 66

Prerequisites 66 • Example LDAP Integration 67

5.15 Expanding Capacity of a Cloud Application Platform Deployment on
Microsoft AKS 70

vi Deployment, Administration, and User Guides

6 Deploying SUSE Cloud Application Platform on Amazon
Elastic Kubernetes Service (EKS) 72

6.1 Prerequisites 72

6.2 Create an EKS Cluster 73

6.3 Install the Helm Client 74

6.4 Storage Class 74

6.5 Deployment Configuration 75

Log-cache Memory Allocation 76 • Diego Cell Affinities and Tainted

Nodes 76

6.6 Certificates 77

Certificate Characteristics 77 • Deployment Configuration 77

6.7 Using an Ingress Controller 78

Install and Configure the NGINX Ingress Controller 78

6.8 Affinity and Anti-affinity 80

Configuring Rules 81

6.9 High Availability 82

Configuring Cloud Application Platform for High Availability 82

6.10 External Blobstore 85

Configuration 85

6.11 External Database 86

Configuration 86

6.12 Add the Kubernetes Charts Repository 88

6.13 Deploying SUSE Cloud Application Platform 89

Deploy the Operator 89 • Deploy KubeCF 89

6.14 LDAP Integration 91

Prerequisites 91 • Example LDAP Integration 92

6.15 Expanding Capacity of a Cloud Application Platform Deployment on
Amazon EKS 95

vii Deployment, Administration, and User Guides

7 Deploying SUSE Cloud Application Platform on Google
Kubernetes Engine (GKE) 97

7.1 Prerequisites 97

7.2 Creating a GKE cluster 99

7.3 Get kubeconfig File 100

7.4 Install the Helm Client 100

7.5 Storage Class 101

7.6 Deployment Configuration 101

Log-cache Memory Allocation 103 • Diego Cell Affinities and Tainted

Nodes 103

7.7 Certificates 104

Certificate Characteristics 104 • Deployment Configuration 104

7.8 Using an Ingress Controller 105

Install and Configure the NGINX Ingress Controller 105

7.9 Affinity and Anti-affinity 107

Configuring Rules 107

7.10 High Availability 109

Configuring Cloud Application Platform for High Availability 109

7.11 External Blobstore 112

Configuration 112

7.12 External Database 113

Configuration 113

7.13 Add the Kubernetes charts repository 115

7.14 Deploying SUSE Cloud Application Platform 116

Deploy the Operator 116 • Deploy KubeCF 116

7.15 LDAP Integration 118

Prerequisites 118 • Example LDAP Integration 119

viii Deployment, Administration, and User Guides

7.16 Expanding Capacity of a Cloud Application Platform Deployment on
Google GKE 122

8 Installing the Stratos Web Console 124

8.1 Deploy Stratos on SUSE® CaaS Platform 124

Connecting SUSE® CaaS Platform to Stratos 127

8.2 Deploy Stratos on Amazon EKS 128

Connecting Amazon EKS to Stratos 131

8.3 Deploy Stratos on Microsoft AKS 132

Connecting Microsoft AKS to Stratos 134

8.4 Deploy Stratos on Google GKE 135

Connecting Google GKE to Stratos 137

8.5 Upgrading Stratos 139

8.6 Stratos Metrics 139

Exporter Configuration 139 • Install Stratos Metrics with

Helm 141 • Connecting Stratos Metrics 143

9 Eirini 146

9.1 Limitations and Other Considerations 146

9.2 Enabling Eirini 147

10 Deploying SUSE Cloud Application Platform Using
Terraform 149

11 Setting Up a Registry for an Air Gapped
Environment 150

11.1 Prerequisites 150

11.2 Mirror Images to Registry 150

ix Deployment, Administration, and User Guides

12 SUSE Private Registry 153

III SUSE CLOUD APPLICATION PLATFORM ADMINISTRATION 154

13 Upgrading SUSE Cloud Application Platform 155
13.1 Important Considerations 155

13.2 Upgrading SUSE Cloud Application Platform 156

14 Configuration Changes 158

14.1 Configuration Change Example 158

14.2 Other Examples 159

15 Creating Admin Users 160

15.1 Prerequisites 160

15.2 Creating an Example Cloud Application Platform Cluster
Administrator 161

16 Managing Passwords 163

16.1 Password Management with the Cloud Foundry Client 163

16.2 Changing User Passwords with Stratos 164

17 Accessing the UAA User Interface 165

17.1 Prerequisites 165

17.2 Procedure 165

18 Container Memory Limits and Requests 167

18.1 Enabling and Disabling Memory Limits and Request Sizes 167

18.2 Configuring Memory Limits and Request Sizes 168

19 Cloud Controller Database Secret Rotation 171

19.1 Tables with Encrypted Information 172

Update Existing Data with New Encryption Key 173

x Deployment, Administration, and User Guides

20 Rotating Automatically Generated Secrets 174

20.1 Finding Secrets 174

20.2 Rotating Specific Secrets 174

21 Backup and Restore 176

21.1 Backup and Restore Using cf-plugin-backup 176

Installing the cf-plugin-backup 176 • Using cf-plugin-backup 177 • Scope

of Backup 178

21.2 Disaster Recovery through Raw Data Backup and Restore 181

Prerequisites 182 • Scope of Raw Data Backup and

Restore 182 • Performing a Raw Data Backup 182 • Performing a Raw

Data Restore 184

22 Service Brokers 187

22.1 Provisioning Services with Minibroker 187

Deploy Minibroker 188 • Setting Up the Environment for Minibroker

Usage 191 • Using Minibroker with Applications 193

23 App-AutoScaler 195

23.1 Prerequisites 195

23.2 Enabling and Disabling the App-AutoScaler Service 196

23.3 Using the App-AutoScaler Service 196

The App-AutoScaler cf CLI Plugin 197 • App-AutoScaler API 198

23.4 Policies 199

Scaling Types 199

24 Integrating CredHub with SUSE Cloud Application
Platform 201

24.1 Installing the CredHub Client 201

24.2 Enabling and Disabling CredHub 201

24.3 Connecting to the CredHub Service 202

xi Deployment, Administration, and User Guides

25 Buildpacks 204

25.1 System Buildpacks 204

25.2 Using Buildpacks 205

25.3 Adding Buildpacks 206

25.4 Updating Buildpacks 208

25.5 Offline Buildpacks 210

Creating an Offline Buildpack 210

IV SUSE CLOUD APPLICATION PLATFORM USER GUIDE 216

26 Deploying and Managing Applications with the Cloud
Foundry Client 217

26.1 Using the cf CLI with SUSE Cloud Application Platform 217

V TROUBLESHOOTING 220

27 Troubleshooting 221
27.1 Logging 221

27.2 Using Supportconfig 222

27.3 Deployment Is Taking Too Long 223

27.4 Deleting and Rebuilding a Deployment 224

27.5 Querying with Kubectl 225

27.6 Admission webhook denied 226

27.7 Namespace does not exist 226

27.8 Log-cache Memory Allocation Issue 227

A Appendix 228
A.1 Complete suse/kubecf values.yaml File 228

A.2 Complete suse/cf-operator values.yaml File 241

xii Deployment, Administration, and User Guides

B GNU Licenses 244

xiii Deployment, Administration, and User Guides

About This Guide

SUSE Cloud Application Platform is a software platform for cloud-native applications based on
Cloud Foundry Application Runtime (cf-operator, KubeCF, and Stratos) with additional support-
ing components.

Cloud Application Platform is designed to run on any Kubernetes cluster. This guide describes
how to deploy it on:

For SUSE® CaaS Platform, see Chapter 4, Deploying SUSE Cloud Application Platform on SUSE

CaaS Platform.

For Microsoft Azure Kubernetes Service, see Chapter 5, Deploying SUSE Cloud Application Plat-

form on Microsoft Azure Kubernetes Service (AKS).

For Amazon Elastic Kubernetes Service, see Chapter 6, Deploying SUSE Cloud Application Plat-

form on Amazon Elastic Kubernetes Service (EKS).

For Google Kubernetes Engine, see Chapter 7, Deploying SUSE Cloud Application Platform on

Google Kubernetes Engine (GKE).

1 Required Background
To keep the scope of these guidelines manageable, certain technical assumptions have been
made:

You have some computer experience and are familiar with common technical terms.

You are familiar with the documentation for your system and the network on which it runs.

You have a basic understanding of Linux systems.

2 Available Documentation
We provide HTML and PDF versions of our books in different languages. Documentation for
our products is available at http://documentation.suse.com/ , where you can also nd the latest
updates and browse or download the documentation in various formats.

xiv Required Background SUSE Cloud Applic… 2.1.1

http://documentation.suse.com/

The following documentation is available for this product:

Book “Deployment, Administration, and User Guides”

The SUSE Cloud Application Platform guide is a comprehensive guide providing deploy-
ment, administration, and user guides, and architecture and minimum system require-
ments.

3 Feedback
Several feedback channels are available:

Bugs and Enhancement Requests

For services and support options available for your product, refer to http://www.suse.com/

support/ .
To report bugs for a product component, go to https://scc.suse.com/support/requests ,
log in, and click Create New.

User Comments

We want to hear your comments about and suggestions for this manual and the other
documentation included with this product. Use the User Comments feature at the bottom
of each page in the online documentation or go to http://documentation.suse.com/feed-

back.html and enter your comments there.

Mail

For feedback on the documentation of this product, you can also send a mail to doc-
team@suse.com . Make sure to include the document title, the product version and the
publication date of the documentation. To report errors or suggest enhancements, provide
a concise description of the problem and refer to the respective section number and page
(or URL).

4 Documentation Conventions
The following notices and typographical conventions are used in this documentation:

/etc/passwd : directory names and le names

PLACEHOLDER : replace PLACEHOLDER with the actual value

xv Feedback SUSE Cloud Applic… 2.1.1

http://www.suse.com/support/
http://www.suse.com/support/
https://scc.suse.com/support/requests
http://documentation.suse.com/feedback.html
http://documentation.suse.com/feedback.html

PATH : the environment variable PATH

ls , --help : commands, options, and parameters

user : users or groups

package name : name of a package

Alt , Alt – F1 : a key to press or a key combination; keys are shown in uppercase as on
a keyboard

File, File Save As: menu items, buttons

AMD/Intel This paragraph is only relevant for the AMD64/Intel 64 architecture. The ar-
rows mark the beginning and the end of the text block.
IBM Z, POWER This paragraph is only relevant for the architectures z Systems and POWER .

The arrows mark the beginning and the end of the text block.

Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a chapter in
another manual.

Commands that must be run with root privileges. Often you can also prefix these com-
mands with the sudo command to run them as non-privileged user.

root # command
tux > sudo command

Commands that can be run by non-privileged users.

tux > command

Notices

Warning: Warning Notice
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important: Important Notice
Important information you should be aware of before proceeding.

xvi Documentation Conventions SUSE Cloud Applic… 2.1.1

Note: Note Notice
Additional information, for example about differences in software versions.

Tip: Tip Notice
Helpful information, like a guideline or a piece of practical advice.

5 Support Statement for SUSE Cloud Application
Platform
To receive support, you need an appropriate subscription with SUSE. For more information, see
https://www.suse.com/support/?id=SUSE_Cloud_Application_Platform .

The following definitions apply:

5.1 Version Support

Technical Support and Troubleshooting (L1 - L2)

Current and previous major versions (n-1). For example, SUSE will provide technical sup-
port and troubleshooting for versions 1.0, 1.1, 1.2, 1.3 (and all 2.x point releases) until
the release of 3.0.

Patches and updates (L3)

On the latest or last minor release of each major release. For example, SUSE will provide
patches and updates for 1.3 (and 2.latest) until the release of 3.0.

SUSE Cloud Application Platform closely follows upstream Cloud Foundry releases which may
implement fixes and changes which are not backwards compatible with previous releases. SUSE
will backport patches for critical bugs and security issues on a best efforts basis.

5.2 Platform Support

SUSE Cloud Application Platform is fully supported on Amazon EKS, Microsoft Azure AKS and
Google GKE. Each release is tested by SUSE Cloud Application Platform QA on these platforms.

xvii Support Statement for SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

https://www.suse.com/support/?id=SUSE_Cloud_Application_Platform

SUSE Cloud Application Platform is fully supported on SUSE CaaS Platform, wherever it happens
to be installed. If SUSE CaaS Platform is supported on a particular cloud service provider (CSP),
the customer can get support for SUSE Cloud Application Platform in that context.

SUSE can provide support for SUSE Cloud Application Platform on 3rd party/generic Kubernetes
on a case-by-case basis provided:

1. The Kubernetes cluster satisfies the Requirements listed here
at https://documentation.suse.com/suse-cap/2.1.1/html/cap-guides/cha-cap-depl-kube-re-

quirements.html#sec-cap-changes-kube-reqs .

2. The kube-ready-state-check.sh script has been run on the target Kubernetes cluster
and does not show any configuration problems.

3. A SUSE Services or Sales Engineer has verified that SUSE Cloud Application Platform works
correctly on the target Kubernetes cluster.

5.3 Technology Previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses
into upcoming innovations. The previews are included for your convenience to give you the
chance to test new technologies within your environment. We would appreciate your feedback!
If you test a technology preview, please contact your SUSE representative and let them know
about your experience and use cases. Your input is helpful for future development.

However, technology previews come with the following limitations:

Technology previews are still in development. Therefore, they may be functionally incom-
plete, unstable, or in other ways not suitable for production use.

Technology previews are not supported.

Details and functionality of technology previews are subject to change. As a result, up-
grading to subsequent releases of a technology preview may be impossible and require a
fresh installation.

Technology previews can be dropped at any time. For example, if SUSE discovers that a
preview does not meet the customer or market needs, or does not prove to comply with
enterprise standards. SUSE does not commit to providing a supported version of such tech-
nologies in the future.

xviii Technology Previews SUSE Cloud Applic… 2.1.1

https://documentation.suse.com/suse-cap/2.1.1/html/cap-guides/cha-cap-depl-kube-requirements.html#sec-cap-changes-kube-reqs
https://documentation.suse.com/suse-cap/2.1.1/html/cap-guides/cha-cap-depl-kube-requirements.html#sec-cap-changes-kube-reqs

For an overview of technology previews shipped with your product, see the release notes at
https://www.suse.com/releasenotes/ .

6 About the Making of This Documentation
This documentation is written in GeekoDoc (https://github.com/openSUSE/geekodoc) , a subset
of DocBook 5 (http://www.docbook.org) . The XML source les were validated by jing (see
https://code.google.com/p/jing-trang/), processed by xsltproc , and converted into XSL-FO us-
ing a customized version of Norman Walsh's stylesheets. The final PDF is formatted through FOP
from Apache Software Foundation (https://xmlgraphics.apache.org/fop) . The open source tools
and the environment used to build this documentation are provided by the DocBook Author-
ing and Publishing Suite (DAPS). The project's home page can be found at https://github.com/

openSUSE/daps .

The XML source code of this documentation can be found at https://github.com/SUSE/doc-cap .

xix About the Making of This Documentation SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/
https://github.com/openSUSE/geekodoc
http://www.docbook.org
https://code.google.com/p/jing-trang/
https://xmlgraphics.apache.org/fop
https://github.com/openSUSE/daps
https://github.com/openSUSE/daps
https://github.com/SUSE/doc-cap

I Overview of SUSE Cloud Application
Platform

1 About SUSE Cloud Application Platform 2

2 Other Kubernetes Systems 14

1 About SUSE Cloud Application Platform

Tip: Read the Release Notes
Make sure to review the release notes for SUSE Cloud Application Platform published at
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/ .

1.1 SUSE Cloud Application Platform Overview

SUSE Cloud Application Platform is a software platform for cloud-native applications based on
Cloud Foundry Application Runtime (cf-operator, KubeCF, and Stratos) with additional support-
ing components.

SUSE Cloud Application Platform describes the complete software stack, including the operating
system, Kubernetes, and KubeCF.

SUSE Cloud Application Platform is comprised of cf-operator (cf-operator), KubeCF
(kubecf), the Stratos Web user interface, and Stratos Metrics.

The Cloud Foundry code base provides the basic functionality. KubeCF differentiates itself from
other Cloud Foundry distributions by running in Linux containers managed by Kubernetes,
rather than virtual machines managed with BOSH, for greater fault tolerance and lower mem-
ory use.

All Docker images for the SUSE Linux Enterprise builds are hosted on registry.suse.com .
These are the commercially-supported images. (Community-supported images for openSUSE
are hosted on Docker Hub (https://hub.docker.com) .) Product manuals on https://documenta-

tion.suse.com/suse-cap/2/ refer to the commercially-supported SUSE Linux Enterprise version.

Cloud Application Platform is designed to run on any Kubernetes cluster as described in Sec-

tion 5.2, “Platform Support”. This guide describes how to deploy it:

For SUSE® CaaS Platform, see Chapter 4, Deploying SUSE Cloud Application Platform on SUSE

CaaS Platform.

For Microsoft Azure Kubernetes Service, see Chapter 5, Deploying SUSE Cloud Application Plat-

form on Microsoft Azure Kubernetes Service (AKS).

2 SUSE Cloud Application Platform Overview SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://hub.docker.com
https://documentation.suse.com/suse-cap/2/
https://documentation.suse.com/suse-cap/2/

For Amazon Elastic Kubernetes Service, see Chapter 6, Deploying SUSE Cloud Application Plat-

form on Amazon Elastic Kubernetes Service (EKS).

For Google Kubernetes Engine, see Chapter 7, Deploying SUSE Cloud Application Platform on

Google Kubernetes Engine (GKE).

SUSE Cloud Application Platform serves different but complementary purposes for operators
and application developers.

For operators, the platform is:

Easy to install, manage, and maintain

Secure by design

Fault tolerant and self-healing

Offers high availability for critical components

Uses industry-standard components

Avoids single vendor lock-in

For developers, the platform:

Allocates computing resources on demand via API or Web interface

Offers users a choice of language and Web framework

Gives access to databases and other data services

Emits and aggregates application log streams

Tracks resource usage for users and groups

Makes the software development workflow more efficient

3 SUSE Cloud Application Platform Overview SUSE Cloud Applic… 2.1.1

The principle interface and API for deploying applications to SUSE Cloud Application Platform is
KubeCF. Most Cloud Foundry distributions run on virtual machines managed by BOSH. KubeCF
runs in SUSE Linux Enterprise containers managed by Kubernetes. Containerizing the compo-
nents of the platform itself has these advantages:

Improves fault tolerance. Kubernetes monitors the health of all containers, and automati-
cally restarts faulty containers faster than virtual machines can be restarted or replaced.

Reduces physical memory overhead. KubeCF components deployed in containers consume
substantially less memory, as host-level operations are shared between containers by Ku-
bernetes.

SUSE Cloud Application Platform uses cf-operator, a Kubernetes Operator deployed via a Helm
chart, to install custom resource definitions that convert BOSH releases into Kubernetes re-
sources, such as Pod , Deployment , and StatefulSet . This is made possible by leveraging
KubeCF, a version of Cloud Foundry deployed as Helm chart.

1.2 SUSE Cloud Application Platform Architecture

The following figures illustrate the main structural concepts of SUSE Cloud Application Platform.
Figure 1.1, “Cloud Platform Comparisons” shows a comparison of the basic cloud platforms:

Infrastructure as a Service (IaaS)

Container as a Service (CaaS)

Platform as a Service (PaaS)

Software as a Service (SaaS)

SUSE CaaS Platform is a Container as a Service platform, and SUSE Cloud Application Platform
is a PaaS.

4 SUSE Cloud Application Platform Architecture SUSE Cloud Applic… 2.1.1

Application

Runtime

Userland

Kernel

Virtualization

Hardware

Application

Runtime

Userland

Kernel

Virtualization

Hardware

Application

Runtime

Userland

Kernel

Virtualization

Hardware

Application

Runtime

Userland

Kernel

Virtualization

Hardware

Infrastructure
(IaaS)

Container
(CaaS)

Platform
(PaaS)

Software
(SaaS)

Managed by user:

Managed by provider:

Cloud Platforms Comparison

FIGURE 1.1: CLOUD PLATFORM COMPARISONS

Figure 1.2, “Containerized Platforms” illustrates how SUSE Cloud Application Platform containerize
the platform itself on top of a cloud provider.

Container Container

Container
(CaaS)

Application

Runtime

Userland

Kernel

Virtualization

Hardware

Platform
(PaaS)

Application

Runtime

Userland

Kernel

Virtualization

Hardware

FIGURE 1.2: CONTAINERIZED PLATFORMS

Figure 1.3, “SUSE Cloud Application Platform Stack” shows the relationships of the major components
of the software stack. SUSE Cloud Application Platform runs on Kubernetes, which in turn runs
on multiple platforms, from bare metal to various cloud stacks. Your applications run on SUSE
Cloud Application Platform and provide services.

5 SUSE Cloud Application Platform Architecture SUSE Cloud Applic… 2.1.1

Services

Kubernetes

Containers

User Applications

Cloud Foundry

Buildpack

Containers

User Applications

Cloud Foundry

Buildpack

SUSE CaaS
Platform

GKEEKSAKS

FIGURE 1.3: SUSE CLOUD APPLICATION PLATFORM STACK

1.2.1 KubeCF Components

KubeCF is comprised of developer and administrator clients, trusted download sites, transient
and long-running components, APIs, and authentication:

Clients for developers and admins to interact with KubeCF: the cf CLI, which provides the
cf command, Stratos Web interface, IDE plugins.

Docker Trusted Registry owned by SUSE.

SUSE Helm chart repository.

Helm, the Kubernetes package manager, and the helm command line client.

kubectl , the command line client for Kubernetes.

cf-operator , a Kubernetes Operator that converts BOSH releases to Kubernetes re-
sources.

KubeCF , a version of Cloud Foundry deployed via cf-operator.

Long-running KubeCF components.

KubeCF post-deployment components: Transient KubeCF components that start after all
KubeCF components are started, perform their tasks, and then exit.

KubeCF Linux cell, an elastic runtime component that runs Linux applications.

6 KubeCF Components SUSE Cloud Applic… 2.1.1

uaa , a Cloud Application Platform service for authentication and authorization.

The Kubernetes API.

1.2.2 KubeCF Containers

Figure 1.4, “KubeCF Containers, Grouped by Function” provides a look at KubeCF's containers.

KubeCF Containers

minibroker

Services

diego-api

Diego Scheduler

nats

Internals

database

singleton-blobstore

Internal Storage

log-api

doppler

adapter

scheduler

Logging

router

tcp-router

routing-api

Routing and Access

api

uaa

cc-worker

APIs and management

credhub

buildpack/docker

application

runc

grootfs

garden

Diego Cell

Elastic Runtime

FIGURE 1.4: KUBECF CONTAINERS, GROUPED BY FUNCTION

LIST OF KUBECF CONTAINERS

adapter

Part of the logging system, manages connections to user application syslog drains.

api

Contains the KubeCF Cloud Controller, which implements the CF API. It is exposed via
the router.

cc-worker

Sidekick to the Cloud Controller, processes background tasks.

database

A PXC database to store persistent data for various CAP components such as the cloud
controller, UAA, etc.

7 KubeCF Containers SUSE Cloud Applic… 2.1.1

diego-api

API for the Diego scheduler.

diego-cell (privileged)

The elastic layer of KubeCF, where applications live.

eirini

An alternative to the Diego scheduler.

eirini-persi

Enables persistent storage for applications when using the Eirini scheduler.

eirini-ssh

Provides SSH access to user applications when using the Eirini scheduler.

doppler

Routes log messages from applications and components.

log-api

Part of the logging system; exposes log streams to users using web sockets and proxies user
application log messages to syslog drains. Exposed using the router.

nats

A pub-sub messaging queue for the routing system.

router

Routes application and API traffic. Exposed using a Kubernetes service.

routing-api

API for the routing system.

scheduler

Service used to create, schedule and interact with jobs that execute on Cloud Foundry

singleton-blobstore

A WebDAV blobstore for storing application bits, buildpacks, and stacks.

tcp-router

Routes TCP traffic for your applications.

uaa

User account and authentication.

8 KubeCF Containers SUSE Cloud Applic… 2.1.1

1.2.3 KubeCF Service Diagram

This simple service diagram illustrates how KubeCF components communicate with each other
(Figure 1.5, “Simple Services Diagram”). See Figure 1.6, “Detailed Services Diagram” for a more detailed
view.

Internet KubeCF Network Kube

Cloud Foundry Client...

SUSE Docker Registry

Helm Repository

kubectl

Non Privileged Components

Privileged Components

helm

Kube API

CAP Components

CAP Jobs

Diego Cell

1

2

2

3

7

4, 5, 6

FIGURE 1.5: SIMPLE SERVICES DIAGRAM

This table describes how these services operate.

Interface, Net-
work Name,
Network Proto-
col

Requestor & Re-
quest

Request Cre-
dentials & Re-
quest Autho-
rization

Listener, Re-
sponse & Re-
sponse Creden-
tials

Description of
Operation

1

External
(HTTPS)

Requestor:
Helm Client

Request: Deploy
Cloud Applica-
tion Platform

Request Cre-
dentials:
OAuth2 Bearer
token

Request Au-
thorization:
Deployment of
Cloud Applica-

Listener: Helm/
Kubernetes API

Response: Op-
eration ack and
handle

Response Cre-
dentials: TLS
certificate on ex-
ternal endpoint

Operator de-
ploys Cloud Ap-
plication Plat-
form on Kuber-
netes

9 KubeCF Service Diagram SUSE Cloud Applic… 2.1.1

Interface, Net-
work Name,
Network Proto-
col

Requestor & Re-
quest

Request Cre-
dentials & Re-
quest Autho-
rization

Listener, Re-
sponse & Re-
sponse Creden-
tials

Description of
Operation

tion Platform
Services on Ku-
bernetes

2

External
(HTTPS)

Requestor: In-
ternal Kuber-
netes compo-
nents

Request: Down-
load Docker
Images

Request Cre-
dentials: Re-
fer to reg-
istry.suse.com

Request Au-
thorization:
Refer to reg-
istry.suse.com

Listener: reg-
istry.suse.com

Response:
Docker images

Response Cre-
dentials: None

Docker images
that make up
Cloud Applica-
tion Platform are
downloaded

3

Tenant (HTTPS)

Requestor:
Cloud Applica-
tion Platform
components

Request: Get to-
kens

Request Cre-
dentials:
OAuth2 client
secret

Request Autho-
rization: Varies,
based on con-
figured OAuth2
client scopes

Listener: uaa

Response: An
OAuth2 refresh
token used to in-
teract with other
service

Response Cre-
dentials: TLS
certificate

KubeCF compo-
nents ask uaa
for tokens so
they can talk to
each other

4

External
(HTTPS)

Requestor:
KubeCF clients

Request:
KubeCF API Re-
quests

Request Cre-
dentials:
OAuth2 Bearer
token

Request Au-
thorization:
KubeCF appli-
cation manage-
ment

Listener: Cloud
Application Plat-
form compo-
nents

Response: JSON
object and HTTP
Status code

Cloud Applica-
tion Platform
Clients interact
with the KubeCF
API (for example
users deploying
apps)

10 KubeCF Service Diagram SUSE Cloud Applic… 2.1.1

Interface, Net-
work Name,
Network Proto-
col

Requestor & Re-
quest

Request Cre-
dentials & Re-
quest Autho-
rization

Listener, Re-
sponse & Re-
sponse Creden-
tials

Description of
Operation

Response Cre-
dentials: TLS
certificate on ex-
ternal endpoint

5

External (WSS)

Requestor:
KubeCF clients

Request: Log
streaming

Request Cre-
dentials:
OAuth2 Bearer
token

Request Au-
thorization:
KubeCF appli-
cation manage-
ment

Listener: Cloud
Application Plat-
form compo-
nents

Response:
A stream of
KubeCF logs

Response Cre-
dentials: TLS
certificate on ex-
ternal endpoint

KubeCF clients
ask for logs (for
example user
looking at ap-
plication logs or
administrator
viewing system
logs)

6

External (SSH)

Requestor:
KubeCF clients,
SSH clients

Request: SSH
Access to Appli-
cation

Request Cre-
dentials:
OAuth2 bearer
token

Request Au-
thorization:
KubeCF appli-
cation manage-
ment

Listener: Cloud
Application Plat-
form compo-
nents

Response: A du-
plex connection
is created allow-
ing the user to
interact with a
shell

Response Cre-
dentials: RSA
SSH Key on ex-
ternal endpoint

KubeCF Clients
open an SSH
connection to
an application's
container (for
example users
debugging their
applications)

11 KubeCF Service Diagram SUSE Cloud Applic… 2.1.1

Interface, Net-
work Name,
Network Proto-
col

Requestor & Re-
quest

Request Cre-
dentials & Re-
quest Autho-
rization

Listener, Re-
sponse & Re-
sponse Creden-
tials

Description of
Operation

7

External
(HTTPS)

Requestor:
Helm

Request: Down-
load charts

Request Cre-
dentials: Re-
fer to kuber-
netes-chart-
s.suse.com

Request Au-
thorization:
Refer to ku-
bernetes-chart-
s.suse.com

Listener: ku-
bernetes-chart-
s.suse.com

Response: Helm
charts

Response Cre-
dentials: Helm
charts for Cloud
Application Plat-
form are down-
loaded

Helm charts for
Cloud Applica-
tion Platform are
downloaded

1.2.4 Detailed Services Diagram

Figure 1.6, “Detailed Services Diagram” presents a more detailed view of KubeCF services and how
they interact with each other. Services labeled in red are unencrypted, while services labeled
in green run over HTTPS.

12 Detailed Services Diagram SUSE Cloud Applic… 2.1.1

Database
(pxc)

FIGURE 1.6: DETAILED SERVICES DIAGRAM

13 Detailed Services Diagram SUSE Cloud Applic… 2.1.1

2 Other Kubernetes Systems

2.1 Kubernetes Requirements
SUSE Cloud Application Platform is designed to run on any Kubernetes system that meets the
following requirements:

Kubernetes API version of at least 1.14

Ensure nodes use a mininum kernel version of 3.19 and the kernel parameter
max_user_namespaces should be set greater than 0.

The container runtime storage driver should not be aufs .

Presence of a storage class for SUSE Cloud Application Platform to use

kubectl can authenticate with the apiserver

kube-dns or core-dns should be running and ready

ntp , systemd-timesyncd , or chrony must be installed and active

The container runtime must be configured to allow privileged containers

Privileged container must be enabled in kube-apiserver . See kube-apiserver (https://

kubernetes.io/docs/admin/kube-apiserver) .

For Kubernetes deployments prior to version 1.15, privileged must be enabled in kubelet

The TasksMax property of the containerd service definition must be set to infinity

14 Kubernetes Requirements SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/admin/kube-apiserver
https://kubernetes.io/docs/admin/kube-apiserver

II Deploying SUSE Cloud Application
Platform

3 Deployment and Administration Notes 16

4 Deploying SUSE Cloud Application Platform on SUSE CaaS Platform 19

5 Deploying SUSE Cloud Application Platform on Microsoft Azure Kuber-
netes Service (AKS) 46

6 Deploying SUSE Cloud Application Platform on Amazon Elastic Kubernetes
Service (EKS) 72

7 Deploying SUSE Cloud Application Platform on Google Kubernetes Engine
(GKE) 97

8 Installing the Stratos Web Console 124

9 Eirini 146

10 Deploying SUSE Cloud Application Platform Using Terraform 149

11 Setting Up a Registry for an Air Gapped Environment 150

12 SUSE Private Registry 153

3 Deployment and Administration Notes

Important things to know before deploying SUSE Cloud Application Platform.

3.1 Important Changes
Schedulers such as Diego and Eirini, and stacks such as cflinuxfs3 or sle15 , have different
memory requirements for applications. Not every combination is tested so there is no universal
memory setting for Cloud Application Platform, and because it depends on the application de-
ployed, it is up to the user to adjust the setting based on their application.

3.2 Status of Pods during Deployment
During deployment, pods are spawned over time, starting with a single pod whose name stars
with ig- . This pod will eventually disappear and will be replaced by other pods whose progress
then can be followed as usual.

The whole process can take around 20—30 minutes to finish.

The initial stage may look like this:

tux > kubectl get pods --namespace kubecf
ig-kubecf-f9085246244fbe70-jvg4z 1/21 Running 0 8m28s

Later the progress may look like this:

NAME READY STATUS RESTARTS AGE
adapter-0 4/4 Running 0 6m45s
api-0 0/15 Init:30/63 0 6m38s
bits-0 0/6 Init:8/15 0 6m34s
bosh-dns-7787b4bb88-2wg9s 1/1 Running 0 7m7s
bosh-dns-7787b4bb88-t42mh 1/1 Running 0 7m7s
cc-worker-0 0/4 Init:5/9 0 6m36s
credhub-0 0/5 Init:6/11 0 6m33s
database-0 2/2 Running 0 6m36s
diego-api-0 6/6 Running 2 6m38s
doppler-0 0/9 Init:7/16 0 6m40s
eirini-0 9/9 Running 0 6m37s
log-api-0 0/7 Init:6/13 0 6m35s
nats-0 4/4 Running 0 6m39s
router-0 0/5 Init:5/11 0 6m33s

16 Important Changes SUSE Cloud Applic… 2.1.1

routing-api-0 0/4 Init:5/10 0 6m42s
scheduler-0 0/8 Init:8/17 0 6m35s
singleton-blobstore-0 0/6 Init:6/11 0 6m46s
tcp-router-0 0/5 Init:5/11 0 6m37s
uaa-0 0/6 Init:8/13 0 6m36s

3.3 Length of Release Names
Release names (for example, when you run helm install RELEASE_NAME) have a maximum
length of 36 characters.

3.4 Releases and Associated Versions

Warning: KubeCF and cf-operator versions
KubeCF and cf-operator interoperate closely. Before you deploy a specific version com-
bination, make sure they were confirmed to work. For more information see Section 3.4,

“Releases and Associated Versions”.

The supported upgrade method is to install all upgrades, in order. Skipping releases is not sup-
ported. This table matches the Helm chart versions to each release as well as other version re-
lated information.

CAP Re-
lease

cf-
opera-
tor
Helm
Chart
Version

KubeCF
Helm
Chart
Version

Stratos
Helm
Chart
Version

Stratos
Metrics
Helm
Chart
Version

Mini-
mum
Kuber-
netes
Version
Re-
quired

CF API
Imple-
mented

Known
Com-
patible
CF CLI
Version

CF CLI
URL

2.1.1
(current
release)

7.2.1+0.gae-
b6ef3

2.7.13 4.4.1 1.3.0 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

17 Length of Release Names SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0

CAP Re-
lease

cf-
opera-
tor
Helm
Chart
Version

KubeCF
Helm
Chart
Version

Stratos
Helm
Chart
Version

Stratos
Metrics
Helm
Chart
Version

Mini-
mum
Kuber-
netes
Version
Re-
quired

CF API
Imple-
mented

Known
Com-
patible
CF CLI
Version

CF CLI
URL

es/tag/

v6.49.0

2.1.0 6.1.17+0.gec409fd72.5.8 4.2.0 1.3.0 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

2.0.1 4.5.13+.gd47387122.2.3 4.0.1 1.2.1 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

2.0 4.5.6+0.gf-
fc6f942

2.2.2 3.2.1 1.2.1 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

18 Releases and Associated Versions SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0

4 Deploying SUSE Cloud Application Platform on
SUSE CaaS Platform

Important
Before you start deploying SUSE Cloud Application Platform, review the following doc-
uments:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

SUSE Cloud Application Platform supports deployment on SUSE CaaS Platform. SUSE CaaS Plat-
form is an enterprise-class container management solution that enables IT and DevOps profes-
sionals to more easily deploy, manage, and scale container-based applications and services. It
includes Kubernetes to automate lifecycle management of modern applications, and surround-
ing technologies that enrich Kubernetes and make the platform itself easy to operate. As a re-
sult, enterprises that use SUSE CaaS Platform can reduce application delivery cycle times and
improve business agility. This chapter describes the steps to prepare a SUSE Cloud Application
Platform deployment on SUSE CaaS Platform. See https://documentation.suse.com/suse-caasp/

for more information on SUSE CaaS Platform.

4.1 Prerequisites
The following are required to deploy and use SUSE Cloud Application Platform on SUSE CaaS
Platform:

Access to one of the platforms listed at https://documentation.suse.com/suse-caasp/sin-

gle-html/caasp-deployment/#_platform to deploy SUSE CaaS Platform.

A management workstation, which is used to deploy and control a SUSE CaaS Platform
cluster, that is capable of running skuba (see https://github.com/SUSE/skuba for instal-
lation instructions). The management workstation can be a regular desktop workstation
or laptop running SUSE Linux Enterprise 15 SP1 or later.

19 Prerequisites SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://documentation.suse.com/suse-caasp/
https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#_platform
https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#_platform
https://github.com/SUSE/skuba

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

kubectl , the Kubernetes command line tool. For more information, refer to https://kuber-

netes.io/docs/reference/kubectl/overview/ .
For SLE 12 SP3 or 15 SP1 systems, install the package kubernetes-client from the Public
Cloud module.
For other systems, follow the instructions at https://kubernetes.io/docs/tasks/tools/in-

stall-kubectl/ .

jq , a command line JSON processor. See https://stedolan.github.io/jq/ for more infor-
mation and installation instructions.

curl , the Client URL (cURL) command line tool.

sed , the stream editor.

4.2 Creating a SUSE CaaS Platform Cluster
When creating a SUSE CaaS Platform cluster, take note of the following general guidelines to
ensure there are sufficient resources available to run a SUSE Cloud Application Platform de-
ployment:

Minimum 2.3 GHz processor

2 vCPU per physical core

4 GB RAM per vCPU

Worker nodes need a minimum of 4 vCPU and 16 GB RAM

20 Creating a SUSE CaaS Platform Cluster SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://stedolan.github.io/jq/

As a minimum, a SUSE Cloud Application Platform deployment with a basic workload will
require:

1 master node

vCPU: 2

RAM: 8 GB

Storage: 60 GB (SSD)

2 worker nodes. Each node configured with:

(v)CPU: 4

RAM: 16 GB

Storage: 100 GB

Persistent storage: 40 GB

For steps to deploy a SUSE CaaS Platform cluster, refer to the SUSE CaaS Platform Deployment
Guide at https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/

Before proceeding with the deployment, take note of the following to ensure the SUSE CaaS
Platform cluster is suitable for a deployment of SUSE Cloud Application Platform:

Additional changes need to be applied to increase the maximum number of processes al-
lowed in a container. If the maximum is insufficient, SUSE Cloud Application Platform
clusters with multiple application deployed will observe applications failing to start.
Operators should be aware there are potential security concerns when raising the PIDs
limit/maximum (fork bombs for example). As a best practice, these should be kept as low
as possible. The example values are for guidance purposes only. Operators are encouraged
to identify the typical PIDs usage for their workloads and adjust the modifications accord-
ingly. If problems persist, these can be raised to a maximum of 32768 provided SUSE Cloud
Application Platform is the only workload on the SUSE CaaS Platform cluster.
For SUSE CaaS Platform 4.5 clusters, apply the following changes directly to each node
in the cluster.

21 Creating a SUSE CaaS Platform Cluster SUSE Cloud Applic… 2.1.1

https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/

Prior to rebooting/bootstrapping, modify /etc/crio/crio.conf.d/00-de-

fault.conf to increase the PIDs limit:

tux > sudo sed -i -e 's|pids_limit = 1024|pids_limit = 3072|g' /etc/crio/
crio.conf.d/00-default.conf

For SUSE CaaS Platform 4.2 clusters, apply the following changes directly to each node
in the cluster.

Prior to rebooting/bootstrapping, modify /etc/crio/crio.conf to increase the
PIDs limit:

tux > sudo sed -i -e 's|pids_limit = 1024|pids_limit = 3072|g' /etc/crio/
crio.conf

After rebooting/bootstrapping modify /sys/fs/cgroup/pids/kubepods/pids.max
to increase the PIDs maximum:

tux > sudo bash -c \"echo '3072' > /sys/fs/cgroup/pids/kubepods/pids.max\"

Note that these modifications are not persistent and will need to be reapplied in the event
of a SUSE CaaS Platform node restart or update.

At the cluster initialization step, do not use the --strict-capability-defaults option
when running

tux > skuba cluster init

This ensures the presence of extra CRI-O capabilities compatible with Docker containers.
For more details refer to the https://documentation.suse.com/suse-caasp/single-html/caasp-

deployment/#_transitioning_from_docker_to_cri_o

4.3 Install the Helm Client

Helm is a Kubernetes package manager used to install and manage SUSE Cloud Application
Platform. This requires installing the Helm client, helm , on your remote management worksta-
tion. Cloud Application Platform requires Helm 3. For more information regarding Helm, refer
to the documentation at https://helm.sh/docs/ .

22 Install the Helm Client SUSE Cloud Applic… 2.1.1

https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#_transitioning_from_docker_to_cri_o
https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#_transitioning_from_docker_to_cri_o
https://helm.sh/docs/

Warning
Make sure that you are installing and using Helm 3 and not Helm 2.

If your remote management workstation has the SUSE CaaS Platform package repository, install
helm by running

tux > sudo zypper install helm3
tux > sudo update-alternatives --set helm /usr/bin/helm3

Otherwise, helm can be installed by referring to the documentation at https://helm.sh/docs/

intro/install/ .

4.4 Storage Class
In some SUSE Cloud Application Platform instance groups, such as bits , database and sin-
gleton-blobstore require a storage class. To learn more about storage classes, see https://

kubernetes.io/docs/concepts/storage/storage-classes/ . Examples of provisioners include:

SUSE Enterprise Storage (see https://documentation.suse.com/suse-caasp/single-html/

caasp-admin/#RBD-dynamic-persistent-volumes)
If you are using SUSE Enterprise Storage you must copy the Ceph admin secret to the
kubecf namespaces used by SUSE Cloud Application Platform:

tux > kubectl get secret ceph-secret-admin --output json --namespace default | \
sed 's/"namespace": "default"/"namespace": "kubecf"/' | kubectl create --filename -

Network File System (see https://kubernetes.io/docs/concepts/storage/volumes/#nfs

By default, SUSE Cloud Application Platform will use the cluster's default storage class. To desig-
nate or change the default storage class, refer to https://kubernetes.io/docs/tasks/administer-clus-

ter/change-default-storage-class/ for instructions.

In some cases, the default and predefined storage classes may not be suitable for certain work-
loads. If this is the case, operators can define their own custom StorageClass resource according
to the specification at https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storage-

class-resource .

With the storage class defined, run:

tux > kubectl create --filename my-storage-class.yaml

23 Storage Class SUSE Cloud Applic… 2.1.1

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://documentation.suse.com/suse-caasp/single-html/caasp-admin/#RBD-dynamic-persistent-volumes
https://documentation.suse.com/suse-caasp/single-html/caasp-admin/#RBD-dynamic-persistent-volumes
https://kubernetes.io/docs/concepts/storage/volumes/#nfs
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource

Then verify the storage class is available by running

tux > kubectl get storageclass

If operators do not want to use the default storage class or one does not exist, a storage class must
be specified by setting the kube.storage_class value in your kubecf-config-values.yaml
configuration le to the name of the storage class as seen in this example.

kube:
 storage_class: my-storage-class

4.5 Deployment Configuration
SUSE Cloud Application Platform is configured using Helm values (see https://helm.sh/docs/

chart_template_guide/values_files/ . Helm values can be set as either command line parameters
or using a values.yaml le. The following values.yaml le, called kubecf-config-val-
ues.yaml in this guide, provides an example of a SUSE Cloud Application Platform configura-
tion.

Warning: kubecf-config-values.yaml changes
The format of the kubecf-config-values.yaml le has been restructured completely in
Cloud Application Platform 2.x. Do not re-use the Cloud Application Platform 1.x version
of the le. Instead, see the default le in the appendix in Section A.1, “Complete suse/kubecf

values.yaml File” and pick parameters according to your needs.

Ensure system_domain maps to the load balancer configured for your SUSE CaaS Platform
cluster (see https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#loadbal-

ancer).

Warning: Supported Domains
When selecting a domain, SUSE Cloud Application Platform expects system_domain to
be either a subdomain or a root domain. Setting system_domain to a top-level domain,
such as suse , is not supported.

Example deployment configuration file

24 Deployment Configuration SUSE Cloud Applic… 2.1.1

https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/
https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#loadbalancer
https://documentation.suse.com/suse-caasp/single-html/caasp-deployment/#loadbalancer

kubecf-config-values.yaml

system_domain: example.com

credentials:
 cf_admin_password: changeme
 uaa_admin_client_secret: alsochangeme

This block is required due to the log-cache issue described below
properties:
 log-cache:
 log-cache:
 memory_limit_percent: 3

This block is required due to the log-cache issue described below
###
The value for key may need to be replaced depending on
how notes in your cluster are labeled
###
The value(s) listed under values may need to be
replaced depending on how notes in your cluster are labeled
operations:
 inline:
 - type: replace
 path: /instance_groups/name=log-cache/env?/bosh/agent/settings/affinity
 value:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - LABEL_VALUE_OF_NODE

4.5.1 Log-cache Memory Allocation

The log-cache component currently has a memory allocation issue where the node memory
available is reported instead of the one assigned to the container under cgroups. In such a
situation, log-cache would start allocating memory based on these values, causing a varying
range of issues (OOMKills, performance degradation, etc.). To address this issue, node affinity
must be used to tie log-cache to nodes of a uniform size, and then declaring the cache percentage
based on that number. A limit of 3% has been identified as sufficient.

25 Log-cache Memory Allocation SUSE Cloud Applic… 2.1.1

In the node affinity configuration, the values for key and values may need to be changed
depending on how notes in your cluster are labeled. For more information on labels, see https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

4.5.2 Diego Cell Affinities and Tainted Nodes

Note that the diego-cell pods used by the Diego standard scheduler are

privileged

use large local emptyDir volumes (i.e. require node disk storage)

and set kernel parameters on the node

These things all mean that these pods should not live next to other Kubernetes workloads. They
should all be placed on their own dedicated nodes instead where possible.

This can be done by setting affinities and tolerations, as explained in the associated tutorial at
https://kubecf.io/docs/deployment/affinities-and-tolerations/ .

4.6 Certificates
This section describes the process to secure traffic passing through your SUSE Cloud Application
Platform deployment. This is achieved by using certificates to set up Transport Layer Security
(TLS) for the router component. Providing certificates for the router traffic is optional. In a
default deployment, without operator-provided certificates, generated certificates will be used.

4.6.1 Certificate Characteristics

Ensure the certificates you use have the following characteristics:

The certificate is encoded in the PEM format.

The certificate is signed by an external Certificate Authority (CA).

The certificate's Subject Alternative Names (SAN) include the domain *.example.com ,
where example.com is replaced with the system_domain in your kubecf-config-val-
ues.yaml .

26 Diego Cell Affinities and Tainted Nodes SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubecf.io/docs/deployment/affinities-and-tolerations/

4.6.2 Deployment Configuration

The certificate used to secure your deployment is passed through the kubecf-config-val-
ues.yaml configuration le. To specify a certificate, set the value of the certificate and its cor-
responding private key using the router.tls.crt and router.tls.key Helm values in the
settings: section.

settings:
 router:
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIEEjCCAfoCCQCWC4NErLzy3jANBgkqhkiG9w0BAQsFADBGMQswCQYDVQQGEwJD
 QTETMBEGA1UECAwKU29tZS1TdGF0ZTEOMAwGA1UECgwFTXlPcmcxEjAQBgNVBAMM
 CU15Q0Euc2l0ZTAeFw0xODA5MDYxNzA1MTRaFw0yMDAxMTkxNzA1MTRaMFAxCzAJ
 ...
 xtNNDwl2rnA+U0Q48uZIPSy6UzSmiNaP3PDR+cOak/mV8s1/7oUXM5ivqkz8pEJo
 M3KrIxZ7+MbdTvDOh8lQplvFTeGgjmUDd587Gs4JsormqOsGwKd1BLzQbGELryV9
 1usMOVbUuL8mSKVvgqhbz7vJlW1+zwmrpMV3qgTMoHoJWGx2n5g=
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEpAIBAAKCAQEAm4JMchGSqbZuqc4LdryJpX2HnarWPOW0hUkm60DL53f6ehPK
 T5Dtb2s+CoDX9A0iTjGZWRD7WwjpiiuXUcyszm8y9bJjP3sIcTnHWSgL/6Bb3KN5
 G5D8GHz7eMYkZBviFvygCqEs1hmfGCVNtgiTbAwgBTNsrmyx2NygnF5uy4KlkgwI
 ...
 GORpbQKBgQDB1/nLPjKxBqJmZ/JymBl6iBnhIgVkuUMuvmqES2nqqMI+r60EAKpX
 M5CD+pq71TuBtbo9hbjy5Buh0+QSIbJaNIOdJxU7idEf200+4anzdaipyCWXdZU+
 MPdJf40awgSWpGdiSv6hoj0AOm+lf4AsH6yAqw/eIHXNzhWLRvnqgA==
 -----END RSA PRIVATE KEY----

4.7 Using an Ingress Controller

This section describes how to use an ingress controller (see https://kubernetes.io/docs/con-

cepts/services-networking/ingress/) to manage access to the services in the cluster. Using an
ingress controller is optional. In a default deployment, load balancers are used instead.

Note that only the NGINX Ingress Controller has been verified to be compatible with Cloud
Application Platform. Other Ingress controller alternatives may work, but compatibility with
Cloud Application Platform is not supported.

27 Deployment Configuration SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

4.7.1 Install and Configure the NGINX Ingress Controller

1. Create a configuration le with the section below. The le is called nginx-ingress.yaml
in this example. When using Eirini instead of Diego, replace the rst line with 2222:
"kubecf/eirinix-ssh-proxy:2222" .

tcp:
 2222: "kubecf/scheduler:2222"
 20000: "kubecf/tcp-router:20000"
 20001: "kubecf/tcp-router:20001"
 20002: "kubecf/tcp-router:20002"
 20003: "kubecf/tcp-router:20003"
 20004: "kubecf/tcp-router:20004"
 20005: "kubecf/tcp-router:20005"
 20006: "kubecf/tcp-router:20006"
 20007: "kubecf/tcp-router:20007"
 20008: "kubecf/tcp-router:20008"

2. Create the namespace.

tux > kubectl create namespace nginx-ingress

3. Install the NGINX Ingress Controller.

tux > helm install nginx-ingress suse/nginx-ingress \
--namespace nginx-ingress \
--values nginx-ingress.yaml

4. Monitor the progess of the deployment:

tux > watch --color 'kubectl get pods --namespace nginx-ingress'

5. After the deployment completes, the Ingress controller service will be deployed with either
an external IP or a hostname.
Find the external IP or hostname.

tux > kubectl get services nginx-ingress-controller --namespace nginx-ingress

You will get output similar to the following.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-ingress-controller LoadBalancer 10.63.248.70 35.233.191.177 80:30344/
TCP,443:31386/TCP

28 Install and Configure the NGINX Ingress Controller SUSE Cloud Applic… 2.1.1

6. Set up DNS records corresponding to the controller service IP or hostname and map it to
the system_domain defined in your kubecf-config-values.yaml .

7. Obtain a PEM formatted certificate that is associated with the system_domain defined in
your kubecf-config-values.yaml

8. In your kubecf-config-values.yaml configuration le, enable the ingress feature and
set the tls.crt and tls.key for the certificate from the previous step.

features:
 ingress:
 enabled: true
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIE8jCCAtqgAwIBAgIUT/Yu/Sv8AUl5zHXXEKCy5RKJqmYwDQYJKoZIhvcMOQMM
 [...]
 xC8x/+zB7XlvcRJRio6kk670+25ABP==
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIE8jCCAtqgAwIBAgIUSI02lj2b2ImLy/zMrjNgW5d8EygwQSVJKoZIhvcYEGAW
 [...]
 to2WV7rPMb9W9fd2vVUXKKHTc+PiNg==
 -----END RSA PRIVATE KEY-----

4.8 Affinity and Anti-affinity

Important
This feature requires SUSE Cloud Application Platform 2.0.1 or newer.

Operators can set affinity/anti-affinity rules to restrict how the scheduler determines the
placement of a given pod on a given node. This can be achieved through node affinity/an-
ti-affinity, where placement is determined by node labels (see https://kubernetes.io/docs/

concepts/scheduling-eviction/assign-pod-node/#node-affinity), or pod affinity/anti-affinity,
where pod placement is determined by labels on pods that are already running on the
node (see https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-

affinity-and-anti-affinity).

29 Affinity and Anti-affinity SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

In SUSE Cloud Application Platform, a default configuration will have following affinity/an-
ti-affinity rules already in place:

Instance groups have anti-affinity against themselves. This applies to all instance groups,
including database , but not to the bits , eirini , and eirini-extensions subcharts.

The diego-cell and router instance groups have anti-affinity against each other.

Note that to ensure an optimal spread of the pods across worker nodes we recommend running
5 or more worker nodes to satisfy both of the default anti-affinity constraints. An operator can
also specify custom affinity rules via the sizing.instance-group.affinity helm parameter
and any affinity rules specified here will overwrite the default rule, not merge with it.

4.8.1 Configuring Rules

To add or override affinity/anti-affinity settings, add a sizing.INSTANCE_GROUP.affinity
block to your kubecf-config-values.yaml . Repeat as necessary for each instance group
where affinity/anti-affinity settings need to be applied. For information on the available elds
and valid values within the affinity: block, see https://kubernetes.io/docs/concepts/schedul-

ing-eviction/assign-pod-node/#affinity-and-anti-affinity . Repeat as necessary for each instance
group where affinity/anti-affinity settings need to be applied.

Example 1, node affinity.

Using this configuration, the Kubernetes scheduler would place both the asactors and asapi
instance groups on a node with a label where the key is topology.kubernetes.io/zone and
the value is 0 .

sizing:
 asactors:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0
 asapi:
 affinity:
 nodeAffinity:

30 Configuring Rules SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0

Example 2, pod anti-affinity.

sizing:
 api:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname
 database:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname

Example 1 above uses topology.kubernetes.io/zone as its label, which is one of the standard
labels that get attached to nodes by default. The list of standard labels can be found at https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

In addition to the standard labels, custom labels can be specified as in Example 2. To use custom
labels, following the process described in this section https://kubernetes.io/docs/concepts/sched-

uling-eviction/assign-pod-node/#nodeselector .

31 Configuring Rules SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector

4.9 High Availability

4.9.1 Configuring Cloud Application Platform for High Availability

High availability mode is optional. In a default deployment, SUSE Cloud Application Platform
is deployed in single availability mode.

There are two ways to make your SUSE Cloud Application Platform deployment highly available.
The rst method is to set the high_availability parameter in your deployment configuration
le to true . The second method is to create custom configuration les with your own sizing
values.

4.9.1.1 Finding Default and Allowable Sizing Values

The sizing: section in the Helm values.yaml les for the kubecf chart describes which
roles can be scaled, and the scaling options for each role. You may use helm inspect to read
the sizing: section in the Helm chart:

tux > helm show suse/kubecf | less +/sizing:

Another way is to use Perl to extract the information for each role from the sizing: section.

tux > helm inspect values suse/kubecf | \
perl -ne '/^sizing/..0 and do { print $.,":",$_ if /^ [a-z]/ || /high avail|scale|
count/ }'

The default values.yaml les are also included in this guide at Section A.1, “Complete suse/kubecf

values.yaml File”.

4.9.1.2 Using the high_availability Helm Property

One way to make your SUSE Cloud Application Platform deployment highly available is to use
the high_availability Helm property. In your kubecf-config-values.yaml , set this prop-
erty to true . This changes the size of all roles to the minimum required for a highly avail-
able deployment. Your configuration le, kubecf-config-values.yaml , should include the
following.

high_availability: true

32 High Availability SUSE Cloud Applic… 2.1.1

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

4.9.1.3 Using Custom Sizing Configurations

Another method to make your SUSE Cloud Application Platform deployment highly available is
to explicitly configure the instance count of an instance group.

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

To see the full list of configurable instance groups, refer to default KubeCF values.yaml le
in the appendix at Section A.1, “Complete suse/kubecf values.yaml File”.

The following is an example High Availability configuration. The example values are not meant
to be copied, as these depend on your particular deployment and requirements.

sizing:
 adapter:
 instances: 2
 api:
 instances: 2
 asactors:
 instances: 2
 asapi:
 instances: 2
 asmetrics:
 instances: 2
 asnozzle:
 instances: 2
 auctioneer:
 instances: 2
 bits:
 instances: 2
 cc_worker:
 instances: 2
 credhub:
 instances: 2

33 Configuring Cloud Application Platform for High Availability SUSE Cloud Applic… 2.1.1

 database:
 instances: 1
 diego_api:
 instances: 2
 diego_cell:
 instances: 2
 doppler:
 instances: 2
 eirini:
 instances: 3
 log_api:
 instances: 2
 nats:
 instances: 2
 router:
 instances: 2
 routing_api:
 instances: 2
 scheduler:
 instances: 2
 uaa:
 instances: 2
 tcp_router:
 instances: 2

4.10 External Blobstore

Cloud Foundry Application Runtime (CFAR) uses a blobstore (see https://docs.cloud-

foundry.org/concepts/cc-blobstore.html) to store the source code that developers push, stage,
and run. This section explains how to configure an external blobstore for the Cloud Controller
component of your SUSE Cloud Application Platform deployment. Using an external blobstore
is optional. In a default deployment, an internal blobstore is used.

SUSE Cloud Application Platform relies on ops files (see https://github.com/cloudfoundry/cf-

deployment/blob/master/operations/README.md) provided by cf-deployment (see https://

github.com/cloudfoundry/cf-deployment) releases for external blobstore configurations. The
default configuration for the blobstore is singleton .

34 External Blobstore SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment
https://github.com/cloudfoundry/cf-deployment

4.10.1 Configuration

Currently SUSE Cloud Application Platform supports Amazon Simple Storage Service (Amazon
S3, see https://aws.amazon.com/s3/) as an external blobstore.

1. Using the Amazon S3 service, create four buckets. A bucket should be created for
app packages, buildpacks, droplets, and resources. For instructions on how to create
Amazone S3 buckets, see https://docs.aws.amazon.com/AmazonS3/latest/user-guide/cre-

ate-bucket.html .

2. To grant proper access to the create buckets, configure an additional IAM role as
described in the rst step of https://docs.cloudfoundry.org/deploying/common/cc-blob-

store-config.html#fog-aws-iam .

3. Set the following in your kubecf-config-values.yaml le and replace the example
values.

features:
 blobstore:
 provider: s3
 s3:
 aws_region: "us-east-1"
 blobstore_access_key_id: AWS-ACCESS-KEY-ID
 blobstore_secret_access_key: AWS-SECRET-ACCESS-KEY>
 # User provided value for the blobstore admin password.
 blobstore_admin_users_password: PASSWORD
 # The following values are used as S3 bucket names. The buckets are
 automatically created if not present.
 app_package_directory_key: APP-BUCKET-NAME
 buildpack_directory_key: BUILDPACK-BUCKET-NAME
 droplet_directory_key: DROPLET-BUCKET-NAME
 resource_directory_key: RESOURCE-BUCKET-NAME

4.11 External Database

SUSE Cloud Application Platform can be configured to use an external database system, such
as a data service offered by a cloud service provider or an existing high availability database
server. In a default deployment, an internal single availability database is used.

To configure your deployment to use an external database, please follow the instructions below.

35 Configuration SUSE Cloud Applic… 2.1.1

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam

The current SUSE Cloud Application Platform release is compatible with the following types
and versions of external databases:

MySQL 5.7

4.11.1 Configuration

This section describes how to enable and configure your deployment to connect to an exter-
nal database. The configuration options are specified through Helm values inside the kubecf-
config-values.yaml . The deployment and configuration of the external database itself is the
responsibility of the operator and beyond the scope of this documentation. It is assumed the
external database has been deployed and accessible.

Important: Configuration during Initial Install Only
Configuration of SUSE Cloud Application Platform to use an external database must be
done during the initial installation and cannot be changed afterwards.

All the databases listed in the config snippet below need to exist before installing KubeCF. One
way of doing that is manually running CREATE DATABASE IF NOT EXISTS database-name
for each database.

The following snippet of the kubecf-config-values.yaml contains an example of an external
database configuration.

features:
 embedded_database:
 enabled: false
 external_database:
 enabled: true
 require_ssl: false
 ca_cert: ~
 type: mysql
 host: hostname
 port: 3306
 databases:
 uaa:
 name: uaa
 password: root
 username: root
 cc:

36 Configuration SUSE Cloud Applic… 2.1.1

 name: cloud_controller
 password: root
 username: root
 bbs:
 name: diego
 password: root
 username: root
 routing_api:
 name: routing-api
 password: root
 username: root
 policy_server:
 name: network_policy
 password: root
 username: root
 silk_controller:
 name: network_connectivity
 password: root
 username: root
 locket:
 name: locket
 password: root
 username: root
 credhub:
 name: credhub
 password: root
 username: root

4.12 Add the Kubernetes Charts Repository
Download the SUSE Kubernetes charts repository with Helm:

tux > helm repo add suse https://kubernetes-charts.suse.com/

You may replace the example suse name with any name. Verify with helm :

tux > helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
suse https://kubernetes-charts.suse.com/

List your chart names, as you will need these for some operations:

tux > helm search repo suse

37 Add the Kubernetes Charts Repository SUSE Cloud Applic… 2.1.1

NAME CHART VERSION APP VERSION DESCRIPTION
suse/cf-operator 7.2.1+0.gaeb6ef3 2.1.1 A Helm chart for cf-
operator, the k8s operator
suse/console 4.4.1 2.1.1 A Helm chart for
 deploying SUSE Stratos Console
suse/kubecf 2.7.13 2.1.1 A Helm chart for
 KubeCF
suse/metrics 1.3.0 2.1.1 A Helm chart for
 Stratos Metrics
suse/minibroker 1.2.0 A minibroker for your
 minikube
suse/nginx-ingress 0.28.4 0.15.0 An nginx Ingress
 controller that uses ConfigMap to store ...
...

4.13 Deploying SUSE Cloud Application Platform

Warning: KubeCF and cf-operator versions
KubeCF and cf-operator interoperate closely. Before you deploy a specific version com-
bination, make sure they were confirmed to work. For more information see Section 3.4,

“Releases and Associated Versions”.

4.13.1 Deploy the Operator

1. First, create the namespace for the operator.

tux > kubectl create namespace cf-operator

2. Install the operator.
The value of global.operator.watchNamespace indicates the namespace the operator
will monitor for a KubeCF deployment. This namespace should be separate from the name-
space used by the operator. In this example, this means KubeCF will be deployed into a
namespace called kubecf .

tux > helm install cf-operator suse/cf-operator \
--namespace cf-operator \
--set "global.singleNamespace.name=kubecf" \
--version 7.2.1+0.gaeb6ef3

38 Deploying SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

3. Wait until cf-operator is successfully deployed before proceeding. Monitor the status of
your cf-operator deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace cf-operator'

4.13.2 Deploy KubeCF

1. Use Helm to deploy KubeCF.
Note that you do not need to manually create the namespace for KubeCF.

tux > helm install kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

2. Monitor the status of your KubeCF deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace kubecf'

3. Find the value of EXTERNAL-IP for each of the public services.

tux > kubectl get service --namespace kubecf router-public

tux > kubectl get service --namespace kubecf tcp-router-public

tux > kubectl get service --namespace kubecf ssh-proxy-public

4. Create DNS A records for the public services.

a. For the router-public service, create a record mapping the EXTERNAL-IP value
to <system_domain> .

b. For the router-public service, create a record mapping the EXTERNAL-IP value
to *.<system_domain> .

c. For the tcp-router-public service, create a record mapping the EXTERNAL-IP
value to tcp.<system_domain> .

d. For the ssh-proxy-public service, create a record mapping the EXTERNAL-IP val-
ue to ssh.<system_domain> .

5. When all pods are fully ready, verify your deployment. See Section 3.2, “Status of Pods during

Deployment” for more information.

39 Deploy KubeCF SUSE Cloud Applic… 2.1.1

Connect and authenticate to the cluster.

tux > cf api --skip-ssl-validation "https://api.<system_domain>"

Use the cf_admin_password set in kubecf-config-values.yaml
tux > cf auth admin changeme

4.14 LDAP Integration

SUSE Cloud Application Platform can be integrated with identity providers (https://docs.cloud-

foundry.org/uaa/identity-providers.html) to help manage authentication of users. Integrating
SUSE Cloud Application Platform with other identity providers is optional. In a default deploy-
ment, a built-in UAA server (https://docs.cloudfoundry.org/uaa/uaa-overview.html) is used to
manage user accounts and authentication.

The Lightweight Directory Access Protocol (LDAP) is an example of an identity provider that
Cloud Application Platform integrates with. This section describes the necessary components and
steps in order to configure the integration. See User Account and Authentication LDAP Integration

(https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md) for more information.

4.14.1 Prerequisites

The following prerequisites are required in order to complete an LDAP integration with SUSE
Cloud Application Platform.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

40 LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/uaa-overview.html
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

uaac , the Cloud Foundry uaa command line client (UAAC). See https://docs.cloud-

foundry.org/uaa/uaa-user-management.html for more information and installation in-
structions.
On SUSE Linux Enterprise systems, ensure the ruby-devel and gcc-c++ packages have
been installed before installing the cf-uaac gem.

tux > sudo zypper install ruby-devel gcc-c++

An LDAP server and the credentials for a user/service account with permissions to search
the directory.

4.14.2 Example LDAP Integration

Run the following commands to complete the integration of your Cloud Application Platform
deployment and LDAP server.

1. Use UAAC to target your uaa server.

tux > uaac target --skip-ssl-validation https://uaa.example.com

2. Authenticate to the uaa server as admin using the uaa_admin_client_secret set in
your kubecf-config-values.yaml le.

tux > uaac token client get admin --secret PASSWORD

3. List the current identity providers.

tux > uaac curl /identity-providers --insecure

4. From the output, locate the default ldap entry and take note of its id . The entry will
be similar to the following.

{
 "type": "ldap",
 "config": "{\"emailDomain\":null,\"additionalConfiguration\":null,
\"providerDescription\":null,\"externalGroupsWhitelist\":[],\"attributeMappings
\":{},\"addShadowUserOnLogin\":true,\"storeCustomAttributes\":true,

41 Example LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

\"ldapProfileFile\":\"ldap/ldap-search-and-bind.xml\",\"baseUrl\":
\"ldap://localhost:389/\",\"referral\":null,\"skipSSLVerification\":false,
\"userDNPattern\":null,\"userDNPatternDelimiter\":null,\"bindUserDn\":
\"cn=admin,dc=test,dc=com\",\"userSearchBase\":\"dc=test,dc=com\",\"userSearchFilter
\":\"cn={0}\",\"passwordAttributeName\":null,\"passwordEncoder\":null,
\"localPasswordCompare\":null,\"mailAttributeName\":\"mail\",\"mailSubstitute
\":null,\"mailSubstituteOverridesLdap\":false,\"ldapGroupFile\":null,
\"groupSearchBase\":null,\"groupSearchFilter\":null,\"groupsIgnorePartialResults
\":null,\"autoAddGroups\":true,\"groupSearchSubTree\":true,\"maxGroupSearchDepth
\":10,\"groupRoleAttribute\":null,\"tlsConfiguration\":\"none\"}",
 "id": "53gc6671-2996-407k-b085-2346e216a1p0",
 "originKey": "ldap",
 "name": "UAA LDAP Provider",
 "version": 3,
 "created": 946684800000,
 "last_modified": 1602208214000,
 "active": false,
 "identityZoneId": "uaa"
},

5. Delete the default ldap identity provider. If the default entry is not removed, adding
another identity provider of type ldap will result in a 409 Conflict response. Replace
the example id with one found in the previous step.

tux > uaac curl /identity-providers/53gc6671-2996-407k-b085-2346e216a1p0 \
 --request DELETE \
 --insecure

6. Create your own LDAP identity provider. A 201 Created response will be returned when
the identity provider is successfully created. See the UAA API Reference (http://docs.cloud-

foundry.org/api/uaa/version/4.21.0/index.html#ldap) and Cloud Foundry UAA-LDAP Doc-

umentation (https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md) for in-
formation regarding the request parameters and additional options available to configure
your identity provider.
The following is an example of a uaac curl command and its request parameters used
to create an identity provider. Specify the parameters according to your LDAP server's
credentials and directory structure. Ensure the user specifed in the bindUserDn has per-
missions to search the directory.

tux > uaac curl /identity-providers?rawConfig=true \
 --request POST \
 --insecure \
 --header 'Content-Type: application/json' \
 --data '{

42 Example LDAP Integration SUSE Cloud Applic… 2.1.1

http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md

 "type" : "ldap",
 "config" : {
 "ldapProfileFile" : "ldap/ldap-search-and-bind.xml",
 "baseUrl" : "ldap://ldap.example.com:389",
 "bindUserDn" : "cn=admin,dc=example,dc=com",
 "bindPassword" : "password",
 "userSearchBase" : "dc=example,dc=com",
 "userSearchFilter" : "uid={0}",
 "ldapGroupFile" : "ldap/ldap-groups-map-to-scopes.xml",
 "groupSearchBase" : "dc=example,dc=com",
 "groupSearchFilter" : "member={0}"
 },
 "originKey" : "ldap",
 "name" : "My LDAP Server",
 "active" : true
 }'

7. Verify the LDAP identify provider has been created. The output should now contain an
entry for the ldap type you created.

tux > uaac curl /identity-providers --insecure

8. Use the cf CLI to target your SUSE Cloud Application Platform deployment.

tux > cf api --skip-ssl-validation https://api.example.com

9. Log in as an administrator.

tux > cf login
API endpoint: https://api.example.com

Email> admin

Password>
Authenticating...
OK

10. Create users associated with your LDAP identity provider.

tux > cf create-user username --origin ldap
Creating user username...
OK

TIP: Assign roles with 'cf set-org-role' and 'cf set-space-role'.

43 Example LDAP Integration SUSE Cloud Applic… 2.1.1

11. Assign the user a role. Roles define the permissions a user has for a given org or space
and a user can be assigned multiple roles. See Orgs, Spaces, Roles, and Permissions (https://

docs.cloudfoundry.org/concepts/roles.html) for available roles and their corresponding
permissions. The following example assumes that an org named Org and a space named
Space have already been created.

tux > cf set-space-role username Org Space SpaceDeveloper
Assigning role RoleSpaceDeveloper to user username in org Org / space Space as
 admin...
OK
tux > cf set-org-role username Org OrgManager
Assigning role OrgManager to user username in org Org as admin...
OK

12. Verify the user can log into your SUSE Cloud Application Platform deployment using their
associated LDAP server credentials.

tux > cf login
API endpoint: https://api.example.com

Email> username

Password>
Authenticating...
OK

API endpoint: https://api.example.com (API version: 2.115.0)
User: username@ldap.example.com

4.15 Expanding Capacity of a Cloud Application
Platform Deployment on SUSE® CaaS Platform

If the current capacity of your Cloud Application Platform deployment is insufficient for your
workloads, you can expand the capacity using the procedure in this section.

These instructions assume you have followed the procedure in Chapter 4, Deploying SUSE Cloud

Application Platform on SUSE CaaS Platform and have a running Cloud Application Platform de-
ployment on SUSE® CaaS Platform.

44

Expanding Capacity of a Cloud Application Platform Deployment on SUSE® CaaS Plat-

form SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/roles.html
https://docs.cloudfoundry.org/concepts/roles.html

1. Add additional nodes to your SUSE® CaaS Platform cluster as described in https://docu-

mentation.suse.com/suse-caasp/html/caasp-admin/#adding_nodes .

2. Verify the new nodes are in a Ready state before proceeding.

tux > kubectl get nodes

3. Add or update the following in your kubecf-config-values.yaml le to increase the
number of diego-cell in your Cloud Application Platform deployment. Replace the ex-
ample value with the number required by your workflow.

sizing:
 diego_cell:
 instances: 5

4. Perform a helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

5. Monitor progress of the additional diego-cell pods:

tux > watch --color 'kubectl get pods --namespace kubecf'

45

Expanding Capacity of a Cloud Application Platform Deployment on SUSE® CaaS Plat-

form SUSE Cloud Applic… 2.1.1

https://documentation.suse.com/suse-caasp/html/caasp-admin/#adding_nodes
https://documentation.suse.com/suse-caasp/html/caasp-admin/#adding_nodes

5 Deploying SUSE Cloud Application Platform on Mi-
crosoft Azure Kubernetes Service (AKS)

Important
Before you start deploying SUSE Cloud Application Platform, review the following doc-
uments:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

SUSE Cloud Application Platform supports deployment on Microsoft Azure Kubernetes Service
(AKS), Microsoft's managed Kubernetes service. This chapter describes the steps for preparing
Azure for a SUSE Cloud Application Platform deployment, deployed with the default Azure
Standard SKU load balancer (see https://docs.microsoft.com/en-us/azure/aks/load-balancer-stan-

dard).

In Kubernetes terminology a node used to be a minion, which was the name for a worker
node. Now the correct term is simply node (see https://kubernetes.io/docs/concepts/architec-

ture/nodes/). This can be confusing, as computing nodes have traditionally been defined as
any device in a network that has an IP address. In Azure they are called agent nodes. In this
chapter we call them agent nodes or Kubernetes nodes.

5.1 Prerequisites

The following are required to deploy and use SUSE Cloud Application Platform on AKS:

az , the Azure command line client. See https://docs.microsoft.com/en-us/cli/azure/?

view=azure-cli-latest for more information and installation instructions.

A Microsoft Azure account. For details, refer to https://azure.microsoft.com .

46 Prerequisites SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://docs.microsoft.com/en-us/azure/aks/load-balancer-standard
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest
https://azure.microsoft.com

Your Azure account has sufficient quota. The minimal installation described in this
chapter require 24 vCPUs. If your account has insufficient quota, you can request a
quota increase by going to https://docs.microsoft.com/en-us/azure/azure-supportability/re-

source-manager-core-quotas-request .

A SSH key that can be used for access to the nodes of the cluster.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

kubectl , the Kubernetes command line tool. For more information, refer to https://kuber-

netes.io/docs/reference/kubectl/overview/ .
For SLE 12 SP3 or 15 SP1 systems, install the package kubernetes-client from the Public
Cloud module.
For other systems, follow the instructions at https://kubernetes.io/docs/tasks/tools/in-

stall-kubectl/ .

jq , a command line JSON processor. See https://stedolan.github.io/jq/ for more infor-
mation and installation instructions.

curl , the Client URL (cURL) command line tool.

sed , the stream editor.

5.2 Create Resource Group and AKS Instance
Log in to your Azure account, which should have the Contributor role.

tux > az login

47 Create Resource Group and AKS Instance SUSE Cloud Applic… 2.1.1

https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request
https://docs.microsoft.com/en-us/azure/azure-supportability/resource-manager-core-quotas-request
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://stedolan.github.io/jq/

You can set up an AKS cluster with an automatically generated service principal. Note that to
be be able to create a service principal your user account must have permissions to register
an application with your Azure Active Directory tenant, and to assign the application to a role
in your subscription. For details, see https://docs.microsoft.com/en-us/azure/aks/kubernetes-ser-

vice-principal#automatically-create-and-use-a-service-principal .

Alternatively, you can specify an existing service principal but the service principal must have
sufficient rights to be able to create resources at the appropriate level, for example resource
group, subscription etc. For more details please see:

Create a service principal: https://docs.microsoft.com/en-us/azure/aks/kubernetes-ser-

vice-principal#manually-create-a-service-principal

Create a role assignment for the service principal, at the subscription or resource group
level: https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#delegate-ac-

cess-to-other-azure-resources

Create the cluster with the service principal: https://docs.microsoft.com/en-us/azure/aks/

kubernetes-service-principal#specify-a-service-principal-for-an-aks-cluster

Specify the following additional parameters for creating the cluster: node count, a username
for SSH access to the nodes, SSH key, VM type, VM disk size and optionally, the Kubernetes
version and a nodepool name.

tux > az aks create --resource-group my-resource-group --name cap-aks \
 --node-count 3 --admin-username cap-user \
 --ssh-key-value /path/to/some_key.pub --node-vm-size Standard_DS4_v2 \
 --node-osdisk-size 100 --nodepool-name mypool

For more az aks create options see https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-

cli-latest#az-aks-create .

This takes a few minutes. When it is completed, fetch your kubectl credentials. The default
behavior for az aks get-credentials is to merge the new credentials with the existing default
configuration, and to set the new credentials as as the current Kubernetes context. The context
name is your AKS_NAME value. You should rst backup your current configuration, or move it
to a different location, then fetch the new credentials:

tux > az aks get-credentials --resource-group $RG_NAME --name $AKS_NAME
 Merged "cap-aks" as current context in /home/tux/.kube/config

Verify that you can connect to your cluster:

tux > kubectl get nodes

48 Create Resource Group and AKS Instance SUSE Cloud Applic… 2.1.1

https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#automatically-create-and-use-a-service-principal
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#automatically-create-and-use-a-service-principal
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#manually-create-a-service-principal
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#manually-create-a-service-principal
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#delegate-access-to-other-azure-resources
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#delegate-access-to-other-azure-resources
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#specify-a-service-principal-for-an-aks-cluster
https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#specify-a-service-principal-for-an-aks-cluster
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-create
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-create

When all nodes are in a ready state and all pods are running, proceed to the next steps.

5.3 Install the Helm Client

Helm is a Kubernetes package manager used to install and manage SUSE Cloud Application
Platform. This requires installing the Helm client, helm , on your remote management worksta-
tion. Cloud Application Platform requires Helm 3. For more information regarding Helm, refer
to the documentation at https://helm.sh/docs/ .

Warning
Make sure that you are installing and using Helm 3 and not Helm 2.

If your remote management workstation has the SUSE CaaS Platform package repository, install
helm by running

tux > sudo zypper install helm3
tux > sudo update-alternatives --set helm /usr/bin/helm3

Otherwise, helm can be installed by referring to the documentation at https://helm.sh/docs/

intro/install/ .

5.4 Storage Class

In some SUSE Cloud Application Platform instance groups, such as bits , database , diego-
cell , and singleton-blobstore require a storage class for persistent data. To learn more
about storage classes, see https://kubernetes.io/docs/concepts/storage/storage-classes/ .

By default, SUSE Cloud Application Platform will use the cluster's default storage class. To desig-
nate or change the default storage class, refer to https://kubernetes.io/docs/tasks/administer-clus-

ter/change-default-storage-class/ for instructions.

In some cases, the default and predefined storage classes may not be suitable for certain work-
loads. If this is the case, operators can define their own custom StorageClass resource according
to the specification at https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storage-

class-resource .

49 Install the Helm Client SUSE Cloud Applic… 2.1.1

https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource

With the storage class defined, run:

tux > kubectl create --filename my-storage-class.yaml

Then verify the storage class is available by running

tux > kubectl get storageclass

If operators do no want to use the default storage class or one does not exist, a storage class must
be specified by setting the kube.storage_class value in your kubecf-config-values.yaml
configuration le to the name of the storage class as seen in this example.

kube:
 storage_class: my-storage-class

5.5 Deployment Configuration
The following le, kubecf-config-values.yaml , provides a minimal example deployment
configuration.

Warning: kubecf-config-values.yaml changes
The format of the kubecf-config-values.yaml le has been restructured completely in
Cloud Application Platform 2.x. Do not re-use the Cloud Application Platform 1.x version
of the le. Instead, see the default le in the appendix in Section A.1, “Complete suse/kubecf

values.yaml File” and pick parameters according to your needs.

Warning: Supported Domains
When selecting a domain, SUSE Cloud Application Platform expects system_domain to
be either a subdomain or a root domain. Setting system_domain to a top-level domain,
such as suse , is not supported.

Example deployment configuration file
kubecf-config-values.yaml

system_domain: example.com

50 Deployment Configuration SUSE Cloud Applic… 2.1.1

credentials:
 cf_admin_password: changeme
 uaa_admin_client_secret: alsochangeme

This block is required due to the log-cache issue described below
properties:
 log-cache:
 log-cache:
 memory_limit_percent: 3

This block is required due to the log-cache issue described below
###
The value for key may need to be replaced depending on
how notes in your cluster are labeled
###
The value(s) listed under values may need to be
replaced depending on how notes in your cluster are labeled
operations:
 inline:
 - type: replace
 path: /instance_groups/name=log-cache/env?/bosh/agent/settings/affinity
 value:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - LABEL_VALUE_OF_NODE

5.5.1 Log-cache Memory Allocation

The log-cache component currently has a memory allocation issue where the node memory
available is reported instead of the one assigned to the container under cgroups. In such a
situation, log-cache would start allocating memory based on these values, causing a varying
range of issues (OOMKills, performance degradation, etc.). To address this issue, node affinity
must be used to tie log-cache to nodes of a uniform size, and then declaring the cache percentage
based on that number. A limit of 3% has been identified as sufficient.

In the node affinity configuration, the values for key and values may need to be changed
depending on how notes in your cluster are labeled. For more information on labels, see https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

51 Log-cache Memory Allocation SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels

5.5.2 Diego Cell Affinities and Tainted Nodes

Note that the diego-cell pods used by the Diego standard scheduler are

privileged

use large local emptyDir volumes (i.e. require node disk storage)

and set kernel parameters on the node

These things all mean that these pods should not live next to other Kubernetes workloads. They
should all be placed on their own dedicated nodes instead where possible.

This can be done by setting affinities and tolerations, as explained in the associated tutorial at
https://kubecf.io/docs/deployment/affinities-and-tolerations/ .

5.6 Certificates

This section describes the process to secure traffic passing through your SUSE Cloud Application
Platform deployment. This is achieved by using certificates to set up Transport Layer Security
(TLS) for the router component. Providing certificates for the router traffic is optional. In a
default deployment, without operator-provided certificates, generated certificates will be used.

5.6.1 Certificate Characteristics

Ensure the certificates you use have the following characteristics:

The certificate is encoded in the PEM format.

The certificate is signed by an external Certificate Authority (CA).

The certificate's Subject Alternative Names (SAN) include the domain *.example.com ,
where example.com is replaced with the system_domain in your kubecf-config-val-
ues.yaml .

52 Diego Cell Affinities and Tainted Nodes SUSE Cloud Applic… 2.1.1

https://kubecf.io/docs/deployment/affinities-and-tolerations/

5.6.2 Deployment Configuration

The certificate used to secure your deployment is passed through the kubecf-config-val-
ues.yaml configuration le. To specify a certificate, set the value of the certificate and its cor-
responding private key using the router.tls.crt and router.tls.key Helm values in the
settings: section.

settings:
 router:
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIEEjCCAfoCCQCWC4NErLzy3jANBgkqhkiG9w0BAQsFADBGMQswCQYDVQQGEwJD
 QTETMBEGA1UECAwKU29tZS1TdGF0ZTEOMAwGA1UECgwFTXlPcmcxEjAQBgNVBAMM
 CU15Q0Euc2l0ZTAeFw0xODA5MDYxNzA1MTRaFw0yMDAxMTkxNzA1MTRaMFAxCzAJ
 ...
 xtNNDwl2rnA+U0Q48uZIPSy6UzSmiNaP3PDR+cOak/mV8s1/7oUXM5ivqkz8pEJo
 M3KrIxZ7+MbdTvDOh8lQplvFTeGgjmUDd587Gs4JsormqOsGwKd1BLzQbGELryV9
 1usMOVbUuL8mSKVvgqhbz7vJlW1+zwmrpMV3qgTMoHoJWGx2n5g=
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEpAIBAAKCAQEAm4JMchGSqbZuqc4LdryJpX2HnarWPOW0hUkm60DL53f6ehPK
 T5Dtb2s+CoDX9A0iTjGZWRD7WwjpiiuXUcyszm8y9bJjP3sIcTnHWSgL/6Bb3KN5
 G5D8GHz7eMYkZBviFvygCqEs1hmfGCVNtgiTbAwgBTNsrmyx2NygnF5uy4KlkgwI
 ...
 GORpbQKBgQDB1/nLPjKxBqJmZ/JymBl6iBnhIgVkuUMuvmqES2nqqMI+r60EAKpX
 M5CD+pq71TuBtbo9hbjy5Buh0+QSIbJaNIOdJxU7idEf200+4anzdaipyCWXdZU+
 MPdJf40awgSWpGdiSv6hoj0AOm+lf4AsH6yAqw/eIHXNzhWLRvnqgA==
 -----END RSA PRIVATE KEY----

5.7 Using an Ingress Controller

This section describes how to use an ingress controller (see https://kubernetes.io/docs/con-

cepts/services-networking/ingress/) to manage access to the services in the cluster. Using an
ingress controller is optional. In a default deployment, load balancers are used instead.

Note that only the NGINX Ingress Controller has been verified to be compatible with Cloud
Application Platform. Other Ingress controller alternatives may work, but compatibility with
Cloud Application Platform is not supported.

53 Deployment Configuration SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

5.7.1 Install and Configure the NGINX Ingress Controller

1. Create a configuration le with the section below. The le is called nginx-ingress.yaml
in this example. When using Eirini instead of Diego, replace the rst line with 2222:
"kubecf/eirinix-ssh-proxy:2222" .

tcp:
 2222: "kubecf/scheduler:2222"
 20000: "kubecf/tcp-router:20000"
 20001: "kubecf/tcp-router:20001"
 20002: "kubecf/tcp-router:20002"
 20003: "kubecf/tcp-router:20003"
 20004: "kubecf/tcp-router:20004"
 20005: "kubecf/tcp-router:20005"
 20006: "kubecf/tcp-router:20006"
 20007: "kubecf/tcp-router:20007"
 20008: "kubecf/tcp-router:20008"

2. Create the namespace.

tux > kubectl create namespace nginx-ingress

3. Install the NGINX Ingress Controller.

tux > helm install nginx-ingress suse/nginx-ingress \
--namespace nginx-ingress \
--values nginx-ingress.yaml

4. Monitor the progess of the deployment:

tux > watch --color 'kubectl get pods --namespace nginx-ingress'

5. After the deployment completes, the Ingress controller service will be deployed with either
an external IP or a hostname.
Find the external IP or hostname.

tux > kubectl get services nginx-ingress-controller --namespace nginx-ingress

You will get output similar to the following.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-ingress-controller LoadBalancer 10.63.248.70 35.233.191.177 80:30344/
TCP,443:31386/TCP

54 Install and Configure the NGINX Ingress Controller SUSE Cloud Applic… 2.1.1

6. Set up DNS records corresponding to the controller service IP or hostname and map it to
the system_domain defined in your kubecf-config-values.yaml .

7. Obtain a PEM formatted certificate that is associated with the system_domain defined in
your kubecf-config-values.yaml

8. In your kubecf-config-values.yaml configuration le, enable the ingress feature and
set the tls.crt and tls.key for the certificate from the previous step.

features:
 ingress:
 enabled: true
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIE8jCCAtqgAwIBAgIUT/Yu/Sv8AUl5zHXXEKCy5RKJqmYwDQYJKoZIhvcMOQMM
 [...]
 xC8x/+zB7XlvcRJRio6kk670+25ABP==
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIE8jCCAtqgAwIBAgIUSI02lj2b2ImLy/zMrjNgW5d8EygwQSVJKoZIhvcYEGAW
 [...]
 to2WV7rPMb9W9fd2vVUXKKHTc+PiNg==
 -----END RSA PRIVATE KEY-----

5.8 Affinity and Anti-affinity

Important
This feature requires SUSE Cloud Application Platform 2.0.1 or newer.

Operators can set affinity/anti-affinity rules to restrict how the scheduler determines the
placement of a given pod on a given node. This can be achieved through node affinity/an-
ti-affinity, where placement is determined by node labels (see https://kubernetes.io/docs/

concepts/scheduling-eviction/assign-pod-node/#node-affinity), or pod affinity/anti-affinity,
where pod placement is determined by labels on pods that are already running on the
node (see https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-

affinity-and-anti-affinity).

55 Affinity and Anti-affinity SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

In SUSE Cloud Application Platform, a default configuration will have following affinity/an-
ti-affinity rules already in place:

Instance groups have anti-affinity against themselves. This applies to all instance groups,
including database , but not to the bits , eirini , and eirini-extensions subcharts.

The diego-cell and router instance groups have anti-affinity against each other.

Note that to ensure an optimal spread of the pods across worker nodes we recommend running
5 or more worker nodes to satisfy both of the default anti-affinity constraints. An operator can
also specify custom affinity rules via the sizing.instance-group.affinity helm parameter
and any affinity rules specified here will overwrite the default rule, not merge with it.

5.8.1 Configuring Rules

To add or override affinity/anti-affinity settings, add a sizing.INSTANCE_GROUP.affinity
block to your kubecf-config-values.yaml . Repeat as necessary for each instance group
where affinity/anti-affinity settings need to be applied. For information on the available elds
and valid values within the affinity: block, see https://kubernetes.io/docs/concepts/schedul-

ing-eviction/assign-pod-node/#affinity-and-anti-affinity . Repeat as necessary for each instance
group where affinity/anti-affinity settings need to be applied.

Example 1, node affinity.

Using this configuration, the Kubernetes scheduler would place both the asactors and asapi
instance groups on a node with a label where the key is topology.kubernetes.io/zone and
the value is 0 .

sizing:
 asactors:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0
 asapi:
 affinity:
 nodeAffinity:

56 Configuring Rules SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0

Example 2, pod anti-affinity.

sizing:
 api:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname
 database:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname

Example 1 above uses topology.kubernetes.io/zone as its label, which is one of the standard
labels that get attached to nodes by default. The list of standard labels can be found at https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

In addition to the standard labels, custom labels can be specified as in Example 2. To use custom
labels, following the process described in this section https://kubernetes.io/docs/concepts/sched-

uling-eviction/assign-pod-node/#nodeselector .

57 Configuring Rules SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector

5.9 High Availability

5.9.1 Configuring Cloud Application Platform for High Availability

High availability mode is optional. In a default deployment, SUSE Cloud Application Platform
is deployed in single availability mode.

There are two ways to make your SUSE Cloud Application Platform deployment highly available.
The rst method is to set the high_availability parameter in your deployment configuration
le to true . The second method is to create custom configuration les with your own sizing
values.

5.9.1.1 Finding Default and Allowable Sizing Values

The sizing: section in the Helm values.yaml les for the kubecf chart describes which
roles can be scaled, and the scaling options for each role. You may use helm inspect to read
the sizing: section in the Helm chart:

tux > helm show suse/kubecf | less +/sizing:

Another way is to use Perl to extract the information for each role from the sizing: section.

tux > helm inspect values suse/kubecf | \
perl -ne '/^sizing/..0 and do { print $.,":",$_ if /^ [a-z]/ || /high avail|scale|
count/ }'

The default values.yaml les are also included in this guide at Section A.1, “Complete suse/kubecf

values.yaml File”.

5.9.1.2 Using the high_availability Helm Property

One way to make your SUSE Cloud Application Platform deployment highly available is to use
the high_availability Helm property. In your kubecf-config-values.yaml , set this prop-
erty to true . This changes the size of all roles to the minimum required for a highly avail-
able deployment. Your configuration le, kubecf-config-values.yaml , should include the
following.

high_availability: true

58 High Availability SUSE Cloud Applic… 2.1.1

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

5.9.1.3 Using Custom Sizing Configurations

Another method to make your SUSE Cloud Application Platform deployment highly available is
to explicitly configure the instance count of an instance group.

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

To see the full list of configurable instance groups, refer to default KubeCF values.yaml le
in the appendix at Section A.1, “Complete suse/kubecf values.yaml File”.

The following is an example High Availability configuration. The example values are not meant
to be copied, as these depend on your particular deployment and requirements.

sizing:
 adapter:
 instances: 2
 api:
 instances: 2
 asactors:
 instances: 2
 asapi:
 instances: 2
 asmetrics:
 instances: 2
 asnozzle:
 instances: 2
 auctioneer:
 instances: 2
 bits:
 instances: 2
 cc_worker:
 instances: 2
 credhub:
 instances: 2

59 Configuring Cloud Application Platform for High Availability SUSE Cloud Applic… 2.1.1

 database:
 instances: 1
 diego_api:
 instances: 2
 diego_cell:
 instances: 2
 doppler:
 instances: 2
 eirini:
 instances: 3
 log_api:
 instances: 2
 nats:
 instances: 2
 router:
 instances: 2
 routing_api:
 instances: 2
 scheduler:
 instances: 2
 uaa:
 instances: 2
 tcp_router:
 instances: 2

5.10 External Blobstore

Cloud Foundry Application Runtime (CFAR) uses a blobstore (see https://docs.cloud-

foundry.org/concepts/cc-blobstore.html) to store the source code that developers push, stage,
and run. This section explains how to configure an external blobstore for the Cloud Controller
component of your SUSE Cloud Application Platform deployment. Using an external blobstore
is optional. In a default deployment, an internal blobstore is used.

SUSE Cloud Application Platform relies on ops files (see https://github.com/cloudfoundry/cf-

deployment/blob/master/operations/README.md) provided by cf-deployment (see https://

github.com/cloudfoundry/cf-deployment) releases for external blobstore configurations. The
default configuration for the blobstore is singleton .

60 External Blobstore SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment
https://github.com/cloudfoundry/cf-deployment

5.10.1 Configuration

Currently SUSE Cloud Application Platform supports Amazon Simple Storage Service (Amazon
S3, see https://aws.amazon.com/s3/) as an external blobstore.

1. Using the Amazon S3 service, create four buckets. A bucket should be created for
app packages, buildpacks, droplets, and resources. For instructions on how to create
Amazone S3 buckets, see https://docs.aws.amazon.com/AmazonS3/latest/user-guide/cre-

ate-bucket.html .

2. To grant proper access to the create buckets, configure an additional IAM role as
described in the rst step of https://docs.cloudfoundry.org/deploying/common/cc-blob-

store-config.html#fog-aws-iam .

3. Set the following in your kubecf-config-values.yaml le and replace the example
values.

features:
 blobstore:
 provider: s3
 s3:
 aws_region: "us-east-1"
 blobstore_access_key_id: AWS-ACCESS-KEY-ID
 blobstore_secret_access_key: AWS-SECRET-ACCESS-KEY>
 # User provided value for the blobstore admin password.
 blobstore_admin_users_password: PASSWORD
 # The following values are used as S3 bucket names. The buckets are
 automatically created if not present.
 app_package_directory_key: APP-BUCKET-NAME
 buildpack_directory_key: BUILDPACK-BUCKET-NAME
 droplet_directory_key: DROPLET-BUCKET-NAME
 resource_directory_key: RESOURCE-BUCKET-NAME

5.11 External Database

SUSE Cloud Application Platform can be configured to use an external database system, such
as a data service offered by a cloud service provider or an existing high availability database
server. In a default deployment, an internal single availability database is used.

To configure your deployment to use an external database, please follow the instructions below.

61 Configuration SUSE Cloud Applic… 2.1.1

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam

The current SUSE Cloud Application Platform release is compatible with the following types
and versions of external databases:

MySQL 5.7

5.11.1 Configuration

This section describes how to enable and configure your deployment to connect to an exter-
nal database. The configuration options are specified through Helm values inside the kubecf-
config-values.yaml . The deployment and configuration of the external database itself is the
responsibility of the operator and beyond the scope of this documentation. It is assumed the
external database has been deployed and accessible.

Important: Configuration during Initial Install Only
Configuration of SUSE Cloud Application Platform to use an external database must be
done during the initial installation and cannot be changed afterwards.

All the databases listed in the config snippet below need to exist before installing KubeCF. One
way of doing that is manually running CREATE DATABASE IF NOT EXISTS database-name
for each database.

The following snippet of the kubecf-config-values.yaml contains an example of an external
database configuration.

features:
 embedded_database:
 enabled: false
 external_database:
 enabled: true
 require_ssl: false
 ca_cert: ~
 type: mysql
 host: hostname
 port: 3306
 databases:
 uaa:
 name: uaa
 password: root
 username: root
 cc:

62 Configuration SUSE Cloud Applic… 2.1.1

 name: cloud_controller
 password: root
 username: root
 bbs:
 name: diego
 password: root
 username: root
 routing_api:
 name: routing-api
 password: root
 username: root
 policy_server:
 name: network_policy
 password: root
 username: root
 silk_controller:
 name: network_connectivity
 password: root
 username: root
 locket:
 name: locket
 password: root
 username: root
 credhub:
 name: credhub
 password: root
 username: root

5.12 Add the Kubernetes Charts Repository
Download the SUSE Kubernetes charts repository with Helm:

tux > helm repo add suse https://kubernetes-charts.suse.com/

You may replace the example suse name with any name. Verify with helm :

tux > helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
suse https://kubernetes-charts.suse.com/

List your chart names, as you will need these for some operations:

tux > helm search repo suse
NAME CHART VERSION APP VERSION DESCRIPTION

63 Add the Kubernetes Charts Repository SUSE Cloud Applic… 2.1.1

suse/cf-operator 7.2.1+0.gaeb6ef3 2.1.1 A Helm chart for cf-
operator, the k8s operator
suse/console 4.4.1 2.1.1 A Helm chart for
 deploying SUSE Stratos Console
suse/kubecf 2.7.13 2.1.1 A Helm chart for
 KubeCF
suse/metrics 1.3.0 2.1.1 A Helm chart for
 Stratos Metrics
suse/minibroker 1.2.0 A minibroker for your
 minikube
suse/nginx-ingress 0.28.4 0.15.0 An nginx Ingress
 controller that uses ConfigMap to store ...
...

5.13 Deploying SUSE Cloud Application Platform
This section describes how to deploy SUSE Cloud Application Platform with a Azure Standard
SKU load balancer.

Warning: KubeCF and cf-operator versions
KubeCF and cf-operator interoperate closely. Before you deploy a specific version com-
bination, make sure they were confirmed to work. For more information see Section 3.4,

“Releases and Associated Versions”.

5.13.1 Deploy the Operator

1. First, create the namespace for the operator.

tux > kubectl create namespace cf-operator

2. Install the operator.
The value of global.operator.watchNamespace indicates the namespace the operator
will monitor for a KubeCF deployment. This namespace should be separate from the name-
space used by the operator. In this example, this means KubeCF will be deployed into a
namespace called kubecf .

tux > helm install cf-operator suse/cf-operator \
--namespace cf-operator \

64 Deploying SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

--set "global.singleNamespace.name=kubecf" \
--version 7.2.1+0.gaeb6ef3

3. Wait until cf-operator is successfully deployed before proceeding. Monitor the status of
your cf-operator deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace cf-operator'

5.13.2 Deploy KubeCF

1. Use Helm to deploy KubeCF.
Note that you do not need to manually create the namespace for KubeCF.

tux > helm install kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

2. Monitor the status of your KubeCF deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace kubecf'

3. Find the value of EXTERNAL-IP for each of the public services.

tux > kubectl get service --namespace kubecf router-public

tux > kubectl get service --namespace kubecf tcp-router-public

tux > kubectl get service --namespace kubecf ssh-proxy-public

4. Create DNS A records for the public services.

a. For the router-public service, create a record mapping the EXTERNAL-IP value
to <system_domain> .

b. For the router-public service, create a record mapping the EXTERNAL-IP value
to *.<system_domain> .

c. For the tcp-router-public service, create a record mapping the EXTERNAL-IP
value to tcp.<system_domain> .

d. For the ssh-proxy-public service, create a record mapping the EXTERNAL-IP val-
ue to ssh.<system_domain> .

65 Deploy KubeCF SUSE Cloud Applic… 2.1.1

5. When all pods are fully ready, verify your deployment. See Section 3.2, “Status of Pods during

Deployment” for more information.
Connect and authenticate to the cluster.

tux > cf api --skip-ssl-validation "https://api.<system_domain>"

Use the cf_admin_password set in kubecf-config-values.yaml
tux > cf auth admin changeme

5.14 LDAP Integration

SUSE Cloud Application Platform can be integrated with identity providers (https://docs.cloud-

foundry.org/uaa/identity-providers.html) to help manage authentication of users. Integrating
SUSE Cloud Application Platform with other identity providers is optional. In a default deploy-
ment, a built-in UAA server (https://docs.cloudfoundry.org/uaa/uaa-overview.html) is used to
manage user accounts and authentication.

The Lightweight Directory Access Protocol (LDAP) is an example of an identity provider that
Cloud Application Platform integrates with. This section describes the necessary components and
steps in order to configure the integration. See User Account and Authentication LDAP Integration

(https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md) for more information.

5.14.1 Prerequisites

The following prerequisites are required in order to complete an LDAP integration with SUSE
Cloud Application Platform.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

66 LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/uaa-overview.html
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

uaac , the Cloud Foundry uaa command line client (UAAC). See https://docs.cloud-

foundry.org/uaa/uaa-user-management.html for more information and installation in-
structions.
On SUSE Linux Enterprise systems, ensure the ruby-devel and gcc-c++ packages have
been installed before installing the cf-uaac gem.

tux > sudo zypper install ruby-devel gcc-c++

An LDAP server and the credentials for a user/service account with permissions to search
the directory.

5.14.2 Example LDAP Integration

Run the following commands to complete the integration of your Cloud Application Platform
deployment and LDAP server.

1. Use UAAC to target your uaa server.

tux > uaac target --skip-ssl-validation https://uaa.example.com

2. Authenticate to the uaa server as admin using the uaa_admin_client_secret set in
your kubecf-config-values.yaml le.

tux > uaac token client get admin --secret PASSWORD

3. List the current identity providers.

tux > uaac curl /identity-providers --insecure

4. From the output, locate the default ldap entry and take note of its id . The entry will
be similar to the following.

{
 "type": "ldap",
 "config": "{\"emailDomain\":null,\"additionalConfiguration\":null,
\"providerDescription\":null,\"externalGroupsWhitelist\":[],\"attributeMappings
\":{},\"addShadowUserOnLogin\":true,\"storeCustomAttributes\":true,

67 Example LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

\"ldapProfileFile\":\"ldap/ldap-search-and-bind.xml\",\"baseUrl\":
\"ldap://localhost:389/\",\"referral\":null,\"skipSSLVerification\":false,
\"userDNPattern\":null,\"userDNPatternDelimiter\":null,\"bindUserDn\":
\"cn=admin,dc=test,dc=com\",\"userSearchBase\":\"dc=test,dc=com\",\"userSearchFilter
\":\"cn={0}\",\"passwordAttributeName\":null,\"passwordEncoder\":null,
\"localPasswordCompare\":null,\"mailAttributeName\":\"mail\",\"mailSubstitute
\":null,\"mailSubstituteOverridesLdap\":false,\"ldapGroupFile\":null,
\"groupSearchBase\":null,\"groupSearchFilter\":null,\"groupsIgnorePartialResults
\":null,\"autoAddGroups\":true,\"groupSearchSubTree\":true,\"maxGroupSearchDepth
\":10,\"groupRoleAttribute\":null,\"tlsConfiguration\":\"none\"}",
 "id": "53gc6671-2996-407k-b085-2346e216a1p0",
 "originKey": "ldap",
 "name": "UAA LDAP Provider",
 "version": 3,
 "created": 946684800000,
 "last_modified": 1602208214000,
 "active": false,
 "identityZoneId": "uaa"
},

5. Delete the default ldap identity provider. If the default entry is not removed, adding
another identity provider of type ldap will result in a 409 Conflict response. Replace
the example id with one found in the previous step.

tux > uaac curl /identity-providers/53gc6671-2996-407k-b085-2346e216a1p0 \
 --request DELETE \
 --insecure

6. Create your own LDAP identity provider. A 201 Created response will be returned when
the identity provider is successfully created. See the UAA API Reference (http://docs.cloud-

foundry.org/api/uaa/version/4.21.0/index.html#ldap) and Cloud Foundry UAA-LDAP Doc-

umentation (https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md) for in-
formation regarding the request parameters and additional options available to configure
your identity provider.
The following is an example of a uaac curl command and its request parameters used
to create an identity provider. Specify the parameters according to your LDAP server's
credentials and directory structure. Ensure the user specifed in the bindUserDn has per-
missions to search the directory.

tux > uaac curl /identity-providers?rawConfig=true \
 --request POST \
 --insecure \
 --header 'Content-Type: application/json' \
 --data '{

68 Example LDAP Integration SUSE Cloud Applic… 2.1.1

http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md

 "type" : "ldap",
 "config" : {
 "ldapProfileFile" : "ldap/ldap-search-and-bind.xml",
 "baseUrl" : "ldap://ldap.example.com:389",
 "bindUserDn" : "cn=admin,dc=example,dc=com",
 "bindPassword" : "password",
 "userSearchBase" : "dc=example,dc=com",
 "userSearchFilter" : "uid={0}",
 "ldapGroupFile" : "ldap/ldap-groups-map-to-scopes.xml",
 "groupSearchBase" : "dc=example,dc=com",
 "groupSearchFilter" : "member={0}"
 },
 "originKey" : "ldap",
 "name" : "My LDAP Server",
 "active" : true
 }'

7. Verify the LDAP identify provider has been created. The output should now contain an
entry for the ldap type you created.

tux > uaac curl /identity-providers --insecure

8. Use the cf CLI to target your SUSE Cloud Application Platform deployment.

tux > cf api --skip-ssl-validation https://api.example.com

9. Log in as an administrator.

tux > cf login
API endpoint: https://api.example.com

Email> admin

Password>
Authenticating...
OK

10. Create users associated with your LDAP identity provider.

tux > cf create-user username --origin ldap
Creating user username...
OK

TIP: Assign roles with 'cf set-org-role' and 'cf set-space-role'.

69 Example LDAP Integration SUSE Cloud Applic… 2.1.1

11. Assign the user a role. Roles define the permissions a user has for a given org or space
and a user can be assigned multiple roles. See Orgs, Spaces, Roles, and Permissions (https://

docs.cloudfoundry.org/concepts/roles.html) for available roles and their corresponding
permissions. The following example assumes that an org named Org and a space named
Space have already been created.

tux > cf set-space-role username Org Space SpaceDeveloper
Assigning role RoleSpaceDeveloper to user username in org Org / space Space as
 admin...
OK
tux > cf set-org-role username Org OrgManager
Assigning role OrgManager to user username in org Org as admin...
OK

12. Verify the user can log into your SUSE Cloud Application Platform deployment using their
associated LDAP server credentials.

tux > cf login
API endpoint: https://api.example.com

Email> username

Password>
Authenticating...
OK

API endpoint: https://api.example.com (API version: 2.115.0)
User: username@ldap.example.com

5.15 Expanding Capacity of a Cloud Application
Platform Deployment on Microsoft AKS
If the current capacity of your Cloud Application Platform deployment is insufficient for your
workloads, you can expand the capacity using the procedure in this section.

These instructions assume you have followed the procedure in Chapter 5, Deploying SUSE Cloud Ap-

plication Platform on Microsoft Azure Kubernetes Service (AKS) and have a running Cloud Application
Platform deployment on Microsoft AKS. The instructions below will use environment variables
defined in Section 5.2, “Create Resource Group and AKS Instance”.

70

Expanding Capacity of a Cloud Application Platform Deployment on Microsoft AKS SUSE

Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/roles.html
https://docs.cloudfoundry.org/concepts/roles.html

1. Get the current number of Kubernetes nodes in the cluster.

tux > export OLD_NODE_COUNT=$(kubectl get nodes --output json | jq '.items |
 length')

2. Set the number of Kubernetes nodes the cluster will be expanded to. Replace the example
value with the number of nodes required for your workload.

tux > export NEW_NODE_COUNT=5

3. Increase the Kubernetes node count in the cluster.

tux > az aks scale --resource-group $RG_NAME --name $AKS_NAME \
--node-count $NEW_NODE_COUNT \
--nodepool-name $NODEPOOL_NAME

4. Verify the new nodes are in a Ready state before proceeding.

tux > kubectl get nodes

5. Add or update the following in your kubecf-config-values.yaml le to increase the
number of diego-cell in your Cloud Application Platform deployment. Replace the ex-
ample value with the number required by your workflow.

sizing:
 diego_cell:
 instances: 5

6. Perform a helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

7. Monitor progress of the additional diego-cell pods:

tux > watch --color 'kubectl get pods --namespace kubecf'

71

Expanding Capacity of a Cloud Application Platform Deployment on Microsoft AKS SUSE

Cloud Applic… 2.1.1

6 Deploying SUSE Cloud Application Platform on
Amazon Elastic Kubernetes Service (EKS)

Important

Important
Before you start deploying SUSE Cloud Application Platform, review the following
documents:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

This chapter describes how to deploy SUSE Cloud Application Platform on Amazon Elastic Ku-
bernetes Service (EKS), using Amazon's Elastic Load Balancer to provide fault-tolerant access
to your cluster.

6.1 Prerequisites
The following are required to deploy and use SUSE Cloud Application Platform on EKS:

An Amazon AWS account with sufficient permissions. For details, refer to https://doc-

s.aws.com/eks/latest/userguide/security-iam.html .

eksctl , a command line client to create and manage Kubernetes clusters on Amazon
EKS. See https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html

for more information and installation instructions.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

72 Prerequisites SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://docs.aws.com/eks/latest/userguide/security-iam.html
https://docs.aws.com/eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

kubectl , the Kubernetes command line tool. For more information, refer to https://kuber-

netes.io/docs/reference/kubectl/overview/ .
For SLE 12 SP3 or 15 SP1 systems, install the package kubernetes-client from the Public
Cloud module.
For other systems, follow the instructions at https://kubernetes.io/docs/tasks/tools/in-

stall-kubectl/ .

curl , the Client URL (cURL) command line tool.

6.2 Create an EKS Cluster

Now you can create an EKS cluster using eksctl . Be sure to keep in mind the following mini-
mum requirements of the cluster.

Node sizes are at least t3.xlarge .

The NodeVolumeSize must be a minimum of 100 GB.

The Kubernetes version is at least 1.14.

As a minimal example, the following command will create an EKS cluster. To see additional
configuration parameters, see eksctl create cluster --help .

tux > eksctl create cluster --name kubecf --version 1.14 \
--nodegroup-name standard-workers --node-type t3.xlarge \
--nodes 3 --node-volume-size 100 \
--region us-east-2 --managed \
--ssh-access --ssh-public-key /path/to/some_key.pub

73 Create an EKS Cluster SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

6.3 Install the Helm Client
Helm is a Kubernetes package manager used to install and manage SUSE Cloud Application
Platform. This requires installing the Helm client, helm , on your remote management worksta-
tion. Cloud Application Platform requires Helm 3. For more information regarding Helm, refer
to the documentation at https://helm.sh/docs/ .

Warning
Make sure that you are installing and using Helm 3 and not Helm 2.

If your remote management workstation has the SUSE CaaS Platform package repository, install
helm by running

tux > sudo zypper install helm3
tux > sudo update-alternatives --set helm /usr/bin/helm3

Otherwise, helm can be installed by referring to the documentation at https://helm.sh/docs/

intro/install/ .

6.4 Storage Class
In some SUSE Cloud Application Platform instance groups, such as bits , database , diego-
cell , and singleton-blobstore require a storage class for persistent data. To learn more
about storage classes, see https://kubernetes.io/docs/concepts/storage/storage-classes/ .

By default, SUSE Cloud Application Platform will use the cluster's default storage class. To desig-
nate or change the default storage class, refer to https://kubernetes.io/docs/tasks/administer-clus-

ter/change-default-storage-class/ for instructions.

In some cases, the default and predefined storage classes may not be suitable for certain work-
loads. If this is the case, operators can define their own custom StorageClass resource according
to the specification at https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storage-

class-resource .

With the storage class defined, run:

tux > kubectl create --filename my-storage-class.yaml

Then verify the storage class is available by running

tux > kubectl get storageclass

74 Install the Helm Client SUSE Cloud Applic… 2.1.1

https://helm.sh/docs/
https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource

If operators do no want to use the default storage class or one does not exist, a storage class must
be specified by setting the kube.storage_class value in your kubecf-config-values.yaml
configuration le to the name of the storage class as seen in this example.

kube:
 storage_class: my-storage-class

6.5 Deployment Configuration
Use this example kubecf-config-values.yaml as a template for your configuration.

Warning: kubecf-config-values.yaml changes
The format of the kubecf-config-values.yaml le has been restructured completely in
Cloud Application Platform 2.x. Do not re-use the Cloud Application Platform 1.x version
of the le. Instead, see the default le in the appendix in Section A.1, “Complete suse/kubecf

values.yaml File” and pick parameters according to your needs.

Warning: Supported Domains
When selecting a domain, SUSE Cloud Application Platform expects system_domain to
be either a subdomain or a root domain. Setting system_domain to a top-level domain,
such as suse , is not supported.

Example deployment configuration file
kubecf-config-values.yaml

system_domain: example.com

credentials:
 cf_admin_password: changeme
 uaa_admin_client_secret: alsochangeme

This block is required due to the log-cache issue described below
properties:
 log-cache:
 log-cache:
 memory_limit_percent: 3

This block is required due to the log-cache issue described below

75 Deployment Configuration SUSE Cloud Applic… 2.1.1

###
The value for key may need to be replaced depending on
how notes in your cluster are labeled
###
The value(s) listed under values may need to be
replaced depending on how notes in your cluster are labeled
operations:
 inline:
 - type: replace
 path: /instance_groups/name=log-cache/env?/bosh/agent/settings/affinity
 value:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - LABEL_VALUE_OF_NODE

6.5.1 Log-cache Memory Allocation

The log-cache component currently has a memory allocation issue where the node memory
available is reported instead of the one assigned to the container under cgroups. In such a
situation, log-cache would start allocating memory based on these values, causing a varying
range of issues (OOMKills, performance degradation, etc.). To address this issue, node affinity
must be used to tie log-cache to nodes of a uniform size, and then declaring the cache percentage
based on that number. A limit of 3% has been identified as sufficient.

In the node affinity configuration, the values for key and values may need to be changed
depending on how notes in your cluster are labeled. For more information on labels, see https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

6.5.2 Diego Cell Affinities and Tainted Nodes

Note that the diego-cell pods used by the Diego standard scheduler are

privileged

use large local emptyDir volumes (i.e. require node disk storage)

and set kernel parameters on the node

76 Log-cache Memory Allocation SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels

These things all mean that these pods should not live next to other Kubernetes workloads. They
should all be placed on their own dedicated nodes instead where possible.

This can be done by setting affinities and tolerations, as explained in the associated tutorial at
https://kubecf.io/docs/deployment/affinities-and-tolerations/ .

6.6 Certificates
This section describes the process to secure traffic passing through your SUSE Cloud Application
Platform deployment. This is achieved by using certificates to set up Transport Layer Security
(TLS) for the router component. Providing certificates for the router traffic is optional. In a
default deployment, without operator-provided certificates, generated certificates will be used.

6.6.1 Certificate Characteristics

Ensure the certificates you use have the following characteristics:

The certificate is encoded in the PEM format.

The certificate is signed by an external Certificate Authority (CA).

The certificate's Subject Alternative Names (SAN) include the domain *.example.com ,
where example.com is replaced with the system_domain in your kubecf-config-val-
ues.yaml .

6.6.2 Deployment Configuration

The certificate used to secure your deployment is passed through the kubecf-config-val-
ues.yaml configuration le. To specify a certificate, set the value of the certificate and its cor-
responding private key using the router.tls.crt and router.tls.key Helm values in the
settings: section.

settings:
 router:
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----

77 Certificates SUSE Cloud Applic… 2.1.1

https://kubecf.io/docs/deployment/affinities-and-tolerations/

 MIIEEjCCAfoCCQCWC4NErLzy3jANBgkqhkiG9w0BAQsFADBGMQswCQYDVQQGEwJD
 QTETMBEGA1UECAwKU29tZS1TdGF0ZTEOMAwGA1UECgwFTXlPcmcxEjAQBgNVBAMM
 CU15Q0Euc2l0ZTAeFw0xODA5MDYxNzA1MTRaFw0yMDAxMTkxNzA1MTRaMFAxCzAJ
 ...
 xtNNDwl2rnA+U0Q48uZIPSy6UzSmiNaP3PDR+cOak/mV8s1/7oUXM5ivqkz8pEJo
 M3KrIxZ7+MbdTvDOh8lQplvFTeGgjmUDd587Gs4JsormqOsGwKd1BLzQbGELryV9
 1usMOVbUuL8mSKVvgqhbz7vJlW1+zwmrpMV3qgTMoHoJWGx2n5g=
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEpAIBAAKCAQEAm4JMchGSqbZuqc4LdryJpX2HnarWPOW0hUkm60DL53f6ehPK
 T5Dtb2s+CoDX9A0iTjGZWRD7WwjpiiuXUcyszm8y9bJjP3sIcTnHWSgL/6Bb3KN5
 G5D8GHz7eMYkZBviFvygCqEs1hmfGCVNtgiTbAwgBTNsrmyx2NygnF5uy4KlkgwI
 ...
 GORpbQKBgQDB1/nLPjKxBqJmZ/JymBl6iBnhIgVkuUMuvmqES2nqqMI+r60EAKpX
 M5CD+pq71TuBtbo9hbjy5Buh0+QSIbJaNIOdJxU7idEf200+4anzdaipyCWXdZU+
 MPdJf40awgSWpGdiSv6hoj0AOm+lf4AsH6yAqw/eIHXNzhWLRvnqgA==
 -----END RSA PRIVATE KEY----

6.7 Using an Ingress Controller
This section describes how to use an ingress controller (see https://kubernetes.io/docs/con-

cepts/services-networking/ingress/) to manage access to the services in the cluster. Using an
ingress controller is optional. In a default deployment, load balancers are used instead.

Note that only the NGINX Ingress Controller has been verified to be compatible with Cloud
Application Platform. Other Ingress controller alternatives may work, but compatibility with
Cloud Application Platform is not supported.

6.7.1 Install and Configure the NGINX Ingress Controller

1. Create a configuration le with the section below. The le is called nginx-ingress.yaml
in this example. When using Eirini instead of Diego, replace the rst line with 2222:
"kubecf/eirinix-ssh-proxy:2222" .

tcp:
 2222: "kubecf/scheduler:2222"
 20000: "kubecf/tcp-router:20000"
 20001: "kubecf/tcp-router:20001"
 20002: "kubecf/tcp-router:20002"
 20003: "kubecf/tcp-router:20003"

78 Using an Ingress Controller SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

 20004: "kubecf/tcp-router:20004"
 20005: "kubecf/tcp-router:20005"
 20006: "kubecf/tcp-router:20006"
 20007: "kubecf/tcp-router:20007"
 20008: "kubecf/tcp-router:20008"

2. Create the namespace.

tux > kubectl create namespace nginx-ingress

3. Install the NGINX Ingress Controller.

tux > helm install nginx-ingress suse/nginx-ingress \
--namespace nginx-ingress \
--values nginx-ingress.yaml

4. Monitor the progess of the deployment:

tux > watch --color 'kubectl get pods --namespace nginx-ingress'

5. After the deployment completes, the Ingress controller service will be deployed with either
an external IP or a hostname.
Find the external IP or hostname.

tux > kubectl get services nginx-ingress-controller --namespace nginx-ingress

You will get output similar to the following.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-ingress-controller LoadBalancer 10.63.248.70 35.233.191.177 80:30344/
TCP,443:31386/TCP

6. Set up DNS records corresponding to the controller service IP or hostname and map it to
the system_domain defined in your kubecf-config-values.yaml .

7. Obtain a PEM formatted certificate that is associated with the system_domain defined in
your kubecf-config-values.yaml

8. In your kubecf-config-values.yaml configuration le, enable the ingress feature and
set the tls.crt and tls.key for the certificate from the previous step.

features:
 ingress:
 enabled: true

79 Install and Configure the NGINX Ingress Controller SUSE Cloud Applic… 2.1.1

 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIE8jCCAtqgAwIBAgIUT/Yu/Sv8AUl5zHXXEKCy5RKJqmYwDQYJKoZIhvcMOQMM
 [...]
 xC8x/+zB7XlvcRJRio6kk670+25ABP==
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIE8jCCAtqgAwIBAgIUSI02lj2b2ImLy/zMrjNgW5d8EygwQSVJKoZIhvcYEGAW
 [...]
 to2WV7rPMb9W9fd2vVUXKKHTc+PiNg==
 -----END RSA PRIVATE KEY-----

6.8 Affinity and Anti-affinity

Important
This feature requires SUSE Cloud Application Platform 2.0.1 or newer.

Operators can set affinity/anti-affinity rules to restrict how the scheduler determines the
placement of a given pod on a given node. This can be achieved through node affinity/an-
ti-affinity, where placement is determined by node labels (see https://kubernetes.io/docs/

concepts/scheduling-eviction/assign-pod-node/#node-affinity), or pod affinity/anti-affinity,
where pod placement is determined by labels on pods that are already running on the
node (see https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-

affinity-and-anti-affinity).

In SUSE Cloud Application Platform, a default configuration will have following affinity/an-
ti-affinity rules already in place:

Instance groups have anti-affinity against themselves. This applies to all instance groups,
including database , but not to the bits , eirini , and eirini-extensions subcharts.

The diego-cell and router instance groups have anti-affinity against each other.

Note that to ensure an optimal spread of the pods across worker nodes we recommend running
5 or more worker nodes to satisfy both of the default anti-affinity constraints. An operator can
also specify custom affinity rules via the sizing.instance-group.affinity helm parameter
and any affinity rules specified here will overwrite the default rule, not merge with it.

80 Affinity and Anti-affinity SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

6.8.1 Configuring Rules

To add or override affinity/anti-affinity settings, add a sizing.INSTANCE_GROUP.affinity
block to your kubecf-config-values.yaml . Repeat as necessary for each instance group
where affinity/anti-affinity settings need to be applied. For information on the available elds
and valid values within the affinity: block, see https://kubernetes.io/docs/concepts/schedul-

ing-eviction/assign-pod-node/#affinity-and-anti-affinity . Repeat as necessary for each instance
group where affinity/anti-affinity settings need to be applied.

Example 1, node affinity.

Using this configuration, the Kubernetes scheduler would place both the asactors and asapi
instance groups on a node with a label where the key is topology.kubernetes.io/zone and
the value is 0 .

sizing:
 asactors:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0
 asapi:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0

Example 2, pod anti-affinity.

sizing:
 api:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:

81 Configuring Rules SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname
 database:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname

Example 1 above uses topology.kubernetes.io/zone as its label, which is one of the standard
labels that get attached to nodes by default. The list of standard labels can be found at https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

In addition to the standard labels, custom labels can be specified as in Example 2. To use custom
labels, following the process described in this section https://kubernetes.io/docs/concepts/sched-

uling-eviction/assign-pod-node/#nodeselector .

6.9 High Availability

6.9.1 Configuring Cloud Application Platform for High Availability

High availability mode is optional. In a default deployment, SUSE Cloud Application Platform
is deployed in single availability mode.

There are two ways to make your SUSE Cloud Application Platform deployment highly available.
The rst method is to set the high_availability parameter in your deployment configuration
le to true . The second method is to create custom configuration les with your own sizing
values.

82 High Availability SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector

6.9.1.1 Finding Default and Allowable Sizing Values

The sizing: section in the Helm values.yaml les for the kubecf chart describes which
roles can be scaled, and the scaling options for each role. You may use helm inspect to read
the sizing: section in the Helm chart:

tux > helm show suse/kubecf | less +/sizing:

Another way is to use Perl to extract the information for each role from the sizing: section.

tux > helm inspect values suse/kubecf | \
perl -ne '/^sizing/..0 and do { print $.,":",$_ if /^ [a-z]/ || /high avail|scale|
count/ }'

The default values.yaml les are also included in this guide at Section A.1, “Complete suse/kubecf

values.yaml File”.

6.9.1.2 Using the high_availability Helm Property

One way to make your SUSE Cloud Application Platform deployment highly available is to use
the high_availability Helm property. In your kubecf-config-values.yaml , set this prop-
erty to true . This changes the size of all roles to the minimum required for a highly avail-
able deployment. Your configuration le, kubecf-config-values.yaml , should include the
following.

high_availability: true

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

6.9.1.3 Using Custom Sizing Configurations

Another method to make your SUSE Cloud Application Platform deployment highly available is
to explicitly configure the instance count of an instance group.

83 Configuring Cloud Application Platform for High Availability SUSE Cloud Applic… 2.1.1

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

To see the full list of configurable instance groups, refer to default KubeCF values.yaml le
in the appendix at Section A.1, “Complete suse/kubecf values.yaml File”.

The following is an example High Availability configuration. The example values are not meant
to be copied, as these depend on your particular deployment and requirements.

sizing:
 adapter:
 instances: 2
 api:
 instances: 2
 asactors:
 instances: 2
 asapi:
 instances: 2
 asmetrics:
 instances: 2
 asnozzle:
 instances: 2
 auctioneer:
 instances: 2
 bits:
 instances: 2
 cc_worker:
 instances: 2
 credhub:
 instances: 2
 database:
 instances: 1
 diego_api:
 instances: 2
 diego_cell:
 instances: 2
 doppler:
 instances: 2
 eirini:
 instances: 3
 log_api:
 instances: 2
 nats:

84 Configuring Cloud Application Platform for High Availability SUSE Cloud Applic… 2.1.1

 instances: 2
 router:
 instances: 2
 routing_api:
 instances: 2
 scheduler:
 instances: 2
 uaa:
 instances: 2
 tcp_router:
 instances: 2

6.10 External Blobstore

Cloud Foundry Application Runtime (CFAR) uses a blobstore (see https://docs.cloud-

foundry.org/concepts/cc-blobstore.html) to store the source code that developers push, stage,
and run. This section explains how to configure an external blobstore for the Cloud Controller
component of your SUSE Cloud Application Platform deployment. Using an external blobstore
is optional. In a default deployment, an internal blobstore is used.

SUSE Cloud Application Platform relies on ops files (see https://github.com/cloudfoundry/cf-

deployment/blob/master/operations/README.md) provided by cf-deployment (see https://

github.com/cloudfoundry/cf-deployment) releases for external blobstore configurations. The
default configuration for the blobstore is singleton .

6.10.1 Configuration

Currently SUSE Cloud Application Platform supports Amazon Simple Storage Service (Amazon
S3, see https://aws.amazon.com/s3/) as an external blobstore.

1. Using the Amazon S3 service, create four buckets. A bucket should be created for
app packages, buildpacks, droplets, and resources. For instructions on how to create
Amazone S3 buckets, see https://docs.aws.amazon.com/AmazonS3/latest/user-guide/cre-

ate-bucket.html .

2. To grant proper access to the create buckets, configure an additional IAM role as
described in the rst step of https://docs.cloudfoundry.org/deploying/common/cc-blob-

store-config.html#fog-aws-iam .

85 External Blobstore SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment
https://github.com/cloudfoundry/cf-deployment
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam

3. Set the following in your kubecf-config-values.yaml le and replace the example
values.

features:
 blobstore:
 provider: s3
 s3:
 aws_region: "us-east-1"
 blobstore_access_key_id: AWS-ACCESS-KEY-ID
 blobstore_secret_access_key: AWS-SECRET-ACCESS-KEY>
 # User provided value for the blobstore admin password.
 blobstore_admin_users_password: PASSWORD
 # The following values are used as S3 bucket names. The buckets are
 automatically created if not present.
 app_package_directory_key: APP-BUCKET-NAME
 buildpack_directory_key: BUILDPACK-BUCKET-NAME
 droplet_directory_key: DROPLET-BUCKET-NAME
 resource_directory_key: RESOURCE-BUCKET-NAME

6.11 External Database

SUSE Cloud Application Platform can be configured to use an external database system, such
as a data service offered by a cloud service provider or an existing high availability database
server. In a default deployment, an internal single availability database is used.

To configure your deployment to use an external database, please follow the instructions below.

The current SUSE Cloud Application Platform release is compatible with the following types
and versions of external databases:

MySQL 5.7

6.11.1 Configuration

This section describes how to enable and configure your deployment to connect to an exter-
nal database. The configuration options are specified through Helm values inside the kubecf-
config-values.yaml . The deployment and configuration of the external database itself is the
responsibility of the operator and beyond the scope of this documentation. It is assumed the
external database has been deployed and accessible.

86 External Database SUSE Cloud Applic… 2.1.1

Important: Configuration during Initial Install Only
Configuration of SUSE Cloud Application Platform to use an external database must be
done during the initial installation and cannot be changed afterwards.

All the databases listed in the config snippet below need to exist before installing KubeCF. One
way of doing that is manually running CREATE DATABASE IF NOT EXISTS database-name
for each database.

The following snippet of the kubecf-config-values.yaml contains an example of an external
database configuration.

features:
 embedded_database:
 enabled: false
 external_database:
 enabled: true
 require_ssl: false
 ca_cert: ~
 type: mysql
 host: hostname
 port: 3306
 databases:
 uaa:
 name: uaa
 password: root
 username: root
 cc:
 name: cloud_controller
 password: root
 username: root
 bbs:
 name: diego
 password: root
 username: root
 routing_api:
 name: routing-api
 password: root
 username: root
 policy_server:
 name: network_policy
 password: root
 username: root
 silk_controller:
 name: network_connectivity

87 Configuration SUSE Cloud Applic… 2.1.1

 password: root
 username: root
 locket:
 name: locket
 password: root
 username: root
 credhub:
 name: credhub
 password: root
 username: root

6.12 Add the Kubernetes Charts Repository

Download the SUSE Kubernetes charts repository with Helm:

tux > helm repo add suse https://kubernetes-charts.suse.com/

You may replace the example suse name with any name. Verify with helm :

tux > helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
suse https://kubernetes-charts.suse.com/

List your chart names, as you will need these for some operations:

tux > helm search repo suse
NAME CHART VERSION APP VERSION DESCRIPTION
suse/cf-operator 7.2.1+0.gaeb6ef3 2.1.1 A Helm chart for cf-
operator, the k8s operator
suse/console 4.4.1 2.1.1 A Helm chart for
 deploying SUSE Stratos Console
suse/kubecf 2.7.13 2.1.1 A Helm chart for
 KubeCF
suse/metrics 1.3.0 2.1.1 A Helm chart for
 Stratos Metrics
suse/minibroker 1.2.0 A minibroker for your
 minikube
suse/nginx-ingress 0.28.4 0.15.0 An nginx Ingress
 controller that uses ConfigMap to store ...
...

88 Add the Kubernetes Charts Repository SUSE Cloud Applic… 2.1.1

6.13 Deploying SUSE Cloud Application Platform
This section describes how to deploy SUSE Cloud Application Platform on Amazon EKS.

Warning: KubeCF and cf-operator versions
KubeCF and cf-operator interoperate closely. Before you deploy a specific version com-
bination, make sure they were confirmed to work. For more information see Section 3.4,

“Releases and Associated Versions”.

6.13.1 Deploy the Operator

1. First, create the namespace for the operator.

tux > kubectl create namespace cf-operator

2. Install the operator.
The value of global.operator.watchNamespace indicates the namespace the operator
will monitor for a KubeCF deployment. This namespace should be separate from the name-
space used by the operator. In this example, this means KubeCF will be deployed into a
namespace called kubecf .

tux > helm install cf-operator suse/cf-operator \
--namespace cf-operator \
--set "global.singleNamespace.name=kubecf" \
--version 7.2.1+0.gaeb6ef3

3. Wait until cf-operator is successfully deployed before proceeding. Monitor the status of
your cf-operator deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace cf-operator'

6.13.2 Deploy KubeCF

1. Use Helm to deploy KubeCF.
Note that you do not need to manually create the namespace for KubeCF.

tux > helm install kubecf suse/kubecf \

89 Deploying SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

2. Monitor the status of your KubeCF deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace kubecf'

3. Find the value of EXTERNAL-IP for each of the public services.

tux > kubectl get service --namespace kubecf router-public

tux > kubectl get service --namespace kubecf tcp-router-public

tux > kubectl get service --namespace kubecf ssh-proxy-public

4. Create DNS CNAME records for the public services.

a. For the router-public service, create a record mapping the EXTERNAL-IP value
to <system_domain> .

b. For the router-public service, create a record mapping the EXTERNAL-IP value
to *.<system_domain> .

c. For the tcp-router-public service, create a record mapping the EXTERNAL-IP
value to tcp.<system_domain> .

d. For the ssh-proxy-public service, create a record mapping the EXTERNAL-IP val-
ue to ssh.<system_domain> .

5. When all pods are fully ready, verify your deployment. See Section 3.2, “Status of Pods during

Deployment” for more information.
Connect and authenticate to the cluster.

tux > cf api --skip-ssl-validation "https://api.<system_domain>"

Use the cf_admin_password set in kubecf-config-values.yaml
tux > cf auth admin changeme

90 Deploy KubeCF SUSE Cloud Applic… 2.1.1

6.14 LDAP Integration

SUSE Cloud Application Platform can be integrated with identity providers (https://docs.cloud-

foundry.org/uaa/identity-providers.html) to help manage authentication of users. Integrating
SUSE Cloud Application Platform with other identity providers is optional. In a default deploy-
ment, a built-in UAA server (https://docs.cloudfoundry.org/uaa/uaa-overview.html) is used to
manage user accounts and authentication.

The Lightweight Directory Access Protocol (LDAP) is an example of an identity provider that
Cloud Application Platform integrates with. This section describes the necessary components and
steps in order to configure the integration. See User Account and Authentication LDAP Integration

(https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md) for more information.

6.14.1 Prerequisites

The following prerequisites are required in order to complete an LDAP integration with SUSE
Cloud Application Platform.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

uaac , the Cloud Foundry uaa command line client (UAAC). See https://docs.cloud-

foundry.org/uaa/uaa-user-management.html for more information and installation in-
structions.
On SUSE Linux Enterprise systems, ensure the ruby-devel and gcc-c++ packages have
been installed before installing the cf-uaac gem.

91 LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/uaa-overview.html
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

tux > sudo zypper install ruby-devel gcc-c++

An LDAP server and the credentials for a user/service account with permissions to search
the directory.

6.14.2 Example LDAP Integration

Run the following commands to complete the integration of your Cloud Application Platform
deployment and LDAP server.

1. Use UAAC to target your uaa server.

tux > uaac target --skip-ssl-validation https://uaa.example.com

2. Authenticate to the uaa server as admin using the uaa_admin_client_secret set in
your kubecf-config-values.yaml le.

tux > uaac token client get admin --secret PASSWORD

3. List the current identity providers.

tux > uaac curl /identity-providers --insecure

4. From the output, locate the default ldap entry and take note of its id . The entry will
be similar to the following.

{
 "type": "ldap",
 "config": "{\"emailDomain\":null,\"additionalConfiguration\":null,
\"providerDescription\":null,\"externalGroupsWhitelist\":[],\"attributeMappings
\":{},\"addShadowUserOnLogin\":true,\"storeCustomAttributes\":true,
\"ldapProfileFile\":\"ldap/ldap-search-and-bind.xml\",\"baseUrl\":
\"ldap://localhost:389/\",\"referral\":null,\"skipSSLVerification\":false,
\"userDNPattern\":null,\"userDNPatternDelimiter\":null,\"bindUserDn\":
\"cn=admin,dc=test,dc=com\",\"userSearchBase\":\"dc=test,dc=com\",\"userSearchFilter
\":\"cn={0}\",\"passwordAttributeName\":null,\"passwordEncoder\":null,
\"localPasswordCompare\":null,\"mailAttributeName\":\"mail\",\"mailSubstitute
\":null,\"mailSubstituteOverridesLdap\":false,\"ldapGroupFile\":null,
\"groupSearchBase\":null,\"groupSearchFilter\":null,\"groupsIgnorePartialResults
\":null,\"autoAddGroups\":true,\"groupSearchSubTree\":true,\"maxGroupSearchDepth
\":10,\"groupRoleAttribute\":null,\"tlsConfiguration\":\"none\"}",
 "id": "53gc6671-2996-407k-b085-2346e216a1p0",
 "originKey": "ldap",

92 Example LDAP Integration SUSE Cloud Applic… 2.1.1

 "name": "UAA LDAP Provider",
 "version": 3,
 "created": 946684800000,
 "last_modified": 1602208214000,
 "active": false,
 "identityZoneId": "uaa"
},

5. Delete the default ldap identity provider. If the default entry is not removed, adding
another identity provider of type ldap will result in a 409 Conflict response. Replace
the example id with one found in the previous step.

tux > uaac curl /identity-providers/53gc6671-2996-407k-b085-2346e216a1p0 \
 --request DELETE \
 --insecure

6. Create your own LDAP identity provider. A 201 Created response will be returned when
the identity provider is successfully created. See the UAA API Reference (http://docs.cloud-

foundry.org/api/uaa/version/4.21.0/index.html#ldap) and Cloud Foundry UAA-LDAP Doc-

umentation (https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md) for in-
formation regarding the request parameters and additional options available to configure
your identity provider.
The following is an example of a uaac curl command and its request parameters used
to create an identity provider. Specify the parameters according to your LDAP server's
credentials and directory structure. Ensure the user specifed in the bindUserDn has per-
missions to search the directory.

tux > uaac curl /identity-providers?rawConfig=true \
 --request POST \
 --insecure \
 --header 'Content-Type: application/json' \
 --data '{
 "type" : "ldap",
 "config" : {
 "ldapProfileFile" : "ldap/ldap-search-and-bind.xml",
 "baseUrl" : "ldap://ldap.example.com:389",
 "bindUserDn" : "cn=admin,dc=example,dc=com",
 "bindPassword" : "password",
 "userSearchBase" : "dc=example,dc=com",
 "userSearchFilter" : "uid={0}",
 "ldapGroupFile" : "ldap/ldap-groups-map-to-scopes.xml",
 "groupSearchBase" : "dc=example,dc=com",
 "groupSearchFilter" : "member={0}"
 },

93 Example LDAP Integration SUSE Cloud Applic… 2.1.1

http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md

 "originKey" : "ldap",
 "name" : "My LDAP Server",
 "active" : true
 }'

7. Verify the LDAP identify provider has been created. The output should now contain an
entry for the ldap type you created.

tux > uaac curl /identity-providers --insecure

8. Use the cf CLI to target your SUSE Cloud Application Platform deployment.

tux > cf api --skip-ssl-validation https://api.example.com

9. Log in as an administrator.

tux > cf login
API endpoint: https://api.example.com

Email> admin

Password>
Authenticating...
OK

10. Create users associated with your LDAP identity provider.

tux > cf create-user username --origin ldap
Creating user username...
OK

TIP: Assign roles with 'cf set-org-role' and 'cf set-space-role'.

11. Assign the user a role. Roles define the permissions a user has for a given org or space
and a user can be assigned multiple roles. See Orgs, Spaces, Roles, and Permissions (https://

docs.cloudfoundry.org/concepts/roles.html) for available roles and their corresponding
permissions. The following example assumes that an org named Org and a space named
Space have already been created.

tux > cf set-space-role username Org Space SpaceDeveloper
Assigning role RoleSpaceDeveloper to user username in org Org / space Space as
 admin...
OK
tux > cf set-org-role username Org OrgManager
Assigning role OrgManager to user username in org Org as admin...

94 Example LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/roles.html
https://docs.cloudfoundry.org/concepts/roles.html

OK

12. Verify the user can log into your SUSE Cloud Application Platform deployment using their
associated LDAP server credentials.

tux > cf login
API endpoint: https://api.example.com

Email> username

Password>
Authenticating...
OK

API endpoint: https://api.example.com (API version: 2.115.0)
User: username@ldap.example.com

6.15 Expanding Capacity of a Cloud Application
Platform Deployment on Amazon EKS
If the current capacity of your Cloud Application Platform deployment is insufficient for your
workloads, you can expand the capacity using the procedure in this section.

These instructions assume you have followed the procedure in Chapter 6, Deploying SUSE Cloud

Application Platform on Amazon Elastic Kubernetes Service (EKS) and have a running Cloud Applica-
tion Platform deployment on Amazon EKS.

1. Get the current number of Kubernetes nodes in the cluster.

tux > eksctl get nodegroup --name standard-workers \
--cluster kubecf \
--region us-east-2

2. Scale the nodegroup to the desired node count.

tux > eksctl scale nodegroup --name standard-workers \
--cluster kubecf \
--nodes 4 \
--region us-east-2

3. Verify the new nodes are in a Ready state before proceeding.

95

Expanding Capacity of a Cloud Application Platform Deployment on Amazon EKS SUSE

Cloud Applic… 2.1.1

tux > kubectl get nodes

4. Add or update the following in your kubecf-config-values.yaml le to increase the
number of diego-cell in your Cloud Application Platform deployment. Replace the ex-
ample value with the number required by your workflow.

sizing:
 diego_cell:
 instances: 5

5. Perform a helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

6. Monitor progress of the additional diego-cell pods:

tux > watch --color 'kubectl get pods --namespace
kubecf'

96

Expanding Capacity of a Cloud Application Platform Deployment on Amazon EKS SUSE

Cloud Applic… 2.1.1

7 Deploying SUSE Cloud Application Platform on
Google Kubernetes Engine (GKE)

Important
Before you start deploying SUSE Cloud Application Platform, review the following doc-
uments:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

SUSE Cloud Application Platform supports deployment on Google Kubernetes Engine (GKE).
This chapter describes the steps to prepare a SUSE Cloud Application Platform deployment on
GKE using its integrated network load balancers. See https://cloud.google.com/kubernetes-en-

gine/ for more information on GKE.

7.1 Prerequisites

The following are required to deploy and use SUSE Cloud Application Platform on GKE:

A Google Cloud Platform (GCP) user account or a service account with the following IAM
roles. If you do not have an account, visit https://console.cloud.google.com/ to create one.

97 Prerequisites SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://console.cloud.google.com/

compute.admin . For details regarding this role, refer to https://cloud.google.com/

iam/docs/understanding-roles#compute-engine-roles .

container.admin . For details regarding this role, refer to https://cloud.google.com/

kubernetes-engine/docs/how-to/iam#predefined .

iam.serviceAccountUser . For details regarding this role, refer to https://

cloud.google.com/kubernetes-engine/docs/how-to/iam#primitive .

Access to a GCP project with the Kubernetes Engine API enabled. If a project
needs to be created, refer to https://cloud.google.com/apis/docs/getting-started#creat-

ing_a_google_project . To enable access to the API, refer to https://cloud.google.com/apis/

docs/getting-started#enabling_apis .

gcloud , the primary command line interface to Google Cloud Platform. See https://

cloud.google.com/sdk/gcloud/ for more information and installation instructions.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

kubectl , the Kubernetes command line tool. For more information, refer to https://kuber-

netes.io/docs/reference/kubectl/overview/ .
For SLE 12 SP3 or 15 SP1 systems, install the package kubernetes-client from the Public
Cloud module.
For other systems, follow the instructions at https://kubernetes.io/docs/tasks/tools/in-

stall-kubectl/ .

jq , a command line JSON processor. See https://stedolan.github.io/jq/ for more infor-
mation and installation instructions.

98 Prerequisites SUSE Cloud Applic… 2.1.1

https://cloud.google.com/iam/docs/understanding-roles#compute-engine-roles
https://cloud.google.com/iam/docs/understanding-roles#compute-engine-roles
https://cloud.google.com/kubernetes-engine/docs/how-to/iam#predefined
https://cloud.google.com/kubernetes-engine/docs/how-to/iam#predefined
https://cloud.google.com/kubernetes-engine/docs/how-to/iam#primitive
https://cloud.google.com/kubernetes-engine/docs/how-to/iam#primitive
https://cloud.google.com/apis/docs/getting-started#creating_a_google_project
https://cloud.google.com/apis/docs/getting-started#creating_a_google_project
https://cloud.google.com/apis/docs/getting-started#enabling_apis
https://cloud.google.com/apis/docs/getting-started#enabling_apis
https://cloud.google.com/sdk/gcloud/
https://cloud.google.com/sdk/gcloud/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://stedolan.github.io/jq/

curl , the Client URL (cURL) command line tool.

sed , the stream editor.

7.2 Creating a GKE cluster
In order to deploy SUSE Cloud Application Platform, create a cluster that:

Is a Zonal or Regional type. Do not use a Alpha cluster.

Uses Ubuntu as the host operating system. If using the gcloud CLI, include --im-
age-type=UBUNTU during the cluster creation.

Allows access to all Cloud APIs (in order for storage to work correctly).

Has at least 3 nodes of machine type n1-standard-4 . If using the gcloud CLI, in-
clude --machine-type=n1-standard-4 and --num-nodes=3 during the cluster cre-
ation. For details, see https://cloud.google.com/compute/docs/machine-types#standard_ma-

chine_types .

Has at least 100 GB local storage per node.

(Optional) Uses preemptible nodes to keep costs low. For details, see https://

cloud.google.com/kubernetes-engine/docs/how-to/preemptible-vms .

1. Set a name for your cluster:

tux > export CLUSTER_NAME="cap"

2. Set the zone for your cluster:

tux > export CLUSTER_ZONE="us-west1-a"

3. Set the number of nodes for your cluster:

tux > export NODE_COUNT=3

4. Create the cluster:

tux > gcloud container clusters create ${CLUSTER_NAME} \
--image-type=UBUNTU \
--machine-type=n1-standard-4 \

99 Creating a GKE cluster SUSE Cloud Applic… 2.1.1

https://cloud.google.com/compute/docs/machine-types#standard_machine_types
https://cloud.google.com/compute/docs/machine-types#standard_machine_types
https://cloud.google.com/kubernetes-engine/docs/how-to/preemptible-vms
https://cloud.google.com/kubernetes-engine/docs/how-to/preemptible-vms

--zone ${CLUSTER_ZONE} \
--num-nodes=$NODE_COUNT \
--no-enable-basic-auth \
--no-issue-client-certificate \
--no-enable-autoupgrade

Specify the --no-enable-basic-auth and --no-issue-client-certificate
ags so that kubectl does not use basic or client certificate authentication, but uses
OAuth Bearer Tokens instead. Configure the ags to suit your desired authentication
mechanism.

Specify --no-enable-autoupgrade to disable automatic upgrades.

Disable legacy metadata server endpoints using --metadata disable-lega-
cy-endpoints=true as a best practice as indicated in https://cloud.google.com/com-

pute/docs/storing-retrieving-metadata#default .

7.3 Get kubeconfig File
Get the kubeconfig le for your cluster.

tux > gcloud container clusters get-credentials --zone ${CLUSTER_ZONE:?required}
 ${CLUSTER_NAME:?required} --project example-project

7.4 Install the Helm Client
Helm is a Kubernetes package manager used to install and manage SUSE Cloud Application
Platform. This requires installing the Helm client, helm , on your remote management worksta-
tion. Cloud Application Platform requires Helm 3. For more information regarding Helm, refer
to the documentation at https://helm.sh/docs/ .

Warning
Make sure that you are installing and using Helm 3 and not Helm 2.

If your remote management workstation has the SUSE CaaS Platform package repository, install
helm by running

100 Get kubeconfig File SUSE Cloud Applic… 2.1.1

https://cloud.google.com/compute/docs/storing-retrieving-metadata#default
https://cloud.google.com/compute/docs/storing-retrieving-metadata#default
https://helm.sh/docs/

tux > sudo zypper install helm3
tux > sudo update-alternatives --set helm /usr/bin/helm3

Otherwise, helm can be installed by referring to the documentation at https://helm.sh/docs/

intro/install/ .

7.5 Storage Class
In some SUSE Cloud Application Platform instance groups, such as bits , database , diego-
cell , and singleton-blobstore require a storage class for persistent data. To learn more
about storage classes, see https://kubernetes.io/docs/concepts/storage/storage-classes/ .

By default, SUSE Cloud Application Platform will use the cluster's default storage class. To desig-
nate or change the default storage class, refer to https://kubernetes.io/docs/tasks/administer-clus-

ter/change-default-storage-class/ for instructions.

In some cases, the default and predefined storage classes may not be suitable for certain work-
loads. If this is the case, operators can define their own custom StorageClass resource according
to the specification at https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storage-

class-resource .

With the storage class defined, run:

tux > kubectl create --filename my-storage-class.yaml

Then verify the storage class is available by running

tux > kubectl get storageclass

If operators do no want to use the default storage class or one does not exist, a storage class must
be specified by setting the kube.storage_class value in your kubecf-config-values.yaml
configuration le to the name of the storage class as seen in this example.

kube:
 storage_class: my-storage-class

7.6 Deployment Configuration
The following le, kubecf-config-values.yaml , provides a minimal example deployment
configuration.

101 Storage Class SUSE Cloud Applic… 2.1.1

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource
https://kubernetes.io/docs/concepts/storage/storage-classes/#the-storageclass-resource

Warning: kubecf-config-values.yaml changes
The format of the kubecf-config-values.yaml le has been restructured completely in
Cloud Application Platform 2.x. Do not re-use the Cloud Application Platform 1.x version
of the le. Instead, see the default le in the appendix in Section A.1, “Complete suse/kubecf

values.yaml File” and pick parameters according to your needs.

Warning: Supported Domains
When selecting a domain, SUSE Cloud Application Platform expects system_domain to
be either a subdomain or a root domain. Setting system_domain to a top-level domain,
such as suse , is not supported.

Example deployment configuration file
kubecf-config-values.yaml

system_domain: example.com

credentials:
 cf_admin_password: changeme
 uaa_admin_client_secret: alsochangeme

This block is required due to the log-cache issue described below
properties:
 log-cache:
 log-cache:
 memory_limit_percent: 3

This block is required due to the log-cache issue described below
###
The value for key may need to be replaced depending on
how notes in your cluster are labeled
###
The value(s) listed under values may need to be
replaced depending on how notes in your cluster are labeled
operations:
 inline:
 - type: replace
 path: /instance_groups/name=log-cache/env?/bosh/agent/settings/affinity
 value:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:

102 Deployment Configuration SUSE Cloud Applic… 2.1.1

 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - LABEL_VALUE_OF_NODE

7.6.1 Log-cache Memory Allocation

The log-cache component currently has a memory allocation issue where the node memory
available is reported instead of the one assigned to the container under cgroups. In such a
situation, log-cache would start allocating memory based on these values, causing a varying
range of issues (OOMKills, performance degradation, etc.). To address this issue, node affinity
must be used to tie log-cache to nodes of a uniform size, and then declaring the cache percentage
based on that number. A limit of 3% has been identified as sufficient.

In the node affinity configuration, the values for key and values may need to be changed
depending on how notes in your cluster are labeled. For more information on labels, see https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

7.6.2 Diego Cell Affinities and Tainted Nodes

Note that the diego-cell pods used by the Diego standard scheduler are

privileged

use large local emptyDir volumes (i.e. require node disk storage)

and set kernel parameters on the node

These things all mean that these pods should not live next to other Kubernetes workloads. They
should all be placed on their own dedicated nodes instead where possible.

This can be done by setting affinities and tolerations, as explained in the associated tutorial at
https://kubecf.io/docs/deployment/affinities-and-tolerations/ .

103 Log-cache Memory Allocation SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubecf.io/docs/deployment/affinities-and-tolerations/

7.7 Certificates
This section describes the process to secure traffic passing through your SUSE Cloud Application
Platform deployment. This is achieved by using certificates to set up Transport Layer Security
(TLS) for the router component. Providing certificates for the router traffic is optional. In a
default deployment, without operator-provided certificates, generated certificates will be used.

7.7.1 Certificate Characteristics

Ensure the certificates you use have the following characteristics:

The certificate is encoded in the PEM format.

The certificate is signed by an external Certificate Authority (CA).

The certificate's Subject Alternative Names (SAN) include the domain *.example.com ,
where example.com is replaced with the system_domain in your kubecf-config-val-
ues.yaml .

7.7.2 Deployment Configuration

The certificate used to secure your deployment is passed through the kubecf-config-val-
ues.yaml configuration le. To specify a certificate, set the value of the certificate and its cor-
responding private key using the router.tls.crt and router.tls.key Helm values in the
settings: section.

settings:
 router:
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIEEjCCAfoCCQCWC4NErLzy3jANBgkqhkiG9w0BAQsFADBGMQswCQYDVQQGEwJD
 QTETMBEGA1UECAwKU29tZS1TdGF0ZTEOMAwGA1UECgwFTXlPcmcxEjAQBgNVBAMM
 CU15Q0Euc2l0ZTAeFw0xODA5MDYxNzA1MTRaFw0yMDAxMTkxNzA1MTRaMFAxCzAJ
 ...
 xtNNDwl2rnA+U0Q48uZIPSy6UzSmiNaP3PDR+cOak/mV8s1/7oUXM5ivqkz8pEJo
 M3KrIxZ7+MbdTvDOh8lQplvFTeGgjmUDd587Gs4JsormqOsGwKd1BLzQbGELryV9
 1usMOVbUuL8mSKVvgqhbz7vJlW1+zwmrpMV3qgTMoHoJWGx2n5g=
 -----END CERTIFICATE-----
 key: |

104 Certificates SUSE Cloud Applic… 2.1.1

 -----BEGIN RSA PRIVATE KEY-----
 MIIEpAIBAAKCAQEAm4JMchGSqbZuqc4LdryJpX2HnarWPOW0hUkm60DL53f6ehPK
 T5Dtb2s+CoDX9A0iTjGZWRD7WwjpiiuXUcyszm8y9bJjP3sIcTnHWSgL/6Bb3KN5
 G5D8GHz7eMYkZBviFvygCqEs1hmfGCVNtgiTbAwgBTNsrmyx2NygnF5uy4KlkgwI
 ...
 GORpbQKBgQDB1/nLPjKxBqJmZ/JymBl6iBnhIgVkuUMuvmqES2nqqMI+r60EAKpX
 M5CD+pq71TuBtbo9hbjy5Buh0+QSIbJaNIOdJxU7idEf200+4anzdaipyCWXdZU+
 MPdJf40awgSWpGdiSv6hoj0AOm+lf4AsH6yAqw/eIHXNzhWLRvnqgA==
 -----END RSA PRIVATE KEY----

7.8 Using an Ingress Controller
This section describes how to use an ingress controller (see https://kubernetes.io/docs/con-

cepts/services-networking/ingress/) to manage access to the services in the cluster. Using an
ingress controller is optional. In a default deployment, load balancers are used instead.

Note that only the NGINX Ingress Controller has been verified to be compatible with Cloud
Application Platform. Other Ingress controller alternatives may work, but compatibility with
Cloud Application Platform is not supported.

7.8.1 Install and Configure the NGINX Ingress Controller

1. Create a configuration le with the section below. The le is called nginx-ingress.yaml
in this example. When using Eirini instead of Diego, replace the rst line with 2222:
"kubecf/eirinix-ssh-proxy:2222" .

tcp:
 2222: "kubecf/scheduler:2222"
 20000: "kubecf/tcp-router:20000"
 20001: "kubecf/tcp-router:20001"
 20002: "kubecf/tcp-router:20002"
 20003: "kubecf/tcp-router:20003"
 20004: "kubecf/tcp-router:20004"
 20005: "kubecf/tcp-router:20005"
 20006: "kubecf/tcp-router:20006"
 20007: "kubecf/tcp-router:20007"
 20008: "kubecf/tcp-router:20008"

2. Create the namespace.

tux > kubectl create namespace nginx-ingress

105 Using an Ingress Controller SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

3. Install the NGINX Ingress Controller.

tux > helm install nginx-ingress suse/nginx-ingress \
--namespace nginx-ingress \
--values nginx-ingress.yaml

4. Monitor the progess of the deployment:

tux > watch --color 'kubectl get pods --namespace nginx-ingress'

5. After the deployment completes, the Ingress controller service will be deployed with either
an external IP or a hostname.
Find the external IP or hostname.

tux > kubectl get services nginx-ingress-controller --namespace nginx-ingress

You will get output similar to the following.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
nginx-ingress-controller LoadBalancer 10.63.248.70 35.233.191.177 80:30344/
TCP,443:31386/TCP

6. Set up DNS records corresponding to the controller service IP or hostname and map it to
the system_domain defined in your kubecf-config-values.yaml .

7. Obtain a PEM formatted certificate that is associated with the system_domain defined in
your kubecf-config-values.yaml

8. In your kubecf-config-values.yaml configuration le, enable the ingress feature and
set the tls.crt and tls.key for the certificate from the previous step.

features:
 ingress:
 enabled: true
 tls:
 crt: |
 -----BEGIN CERTIFICATE-----
 MIIE8jCCAtqgAwIBAgIUT/Yu/Sv8AUl5zHXXEKCy5RKJqmYwDQYJKoZIhvcMOQMM
 [...]
 xC8x/+zB7XlvcRJRio6kk670+25ABP==
 -----END CERTIFICATE-----
 key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIE8jCCAtqgAwIBAgIUSI02lj2b2ImLy/zMrjNgW5d8EygwQSVJKoZIhvcYEGAW
 [...]

106 Install and Configure the NGINX Ingress Controller SUSE Cloud Applic… 2.1.1

 to2WV7rPMb9W9fd2vVUXKKHTc+PiNg==
 -----END RSA PRIVATE KEY-----

7.9 Affinity and Anti-affinity

Important
This feature requires SUSE Cloud Application Platform 2.0.1 or newer.

Operators can set affinity/anti-affinity rules to restrict how the scheduler determines the
placement of a given pod on a given node. This can be achieved through node affinity/an-
ti-affinity, where placement is determined by node labels (see https://kubernetes.io/docs/

concepts/scheduling-eviction/assign-pod-node/#node-affinity), or pod affinity/anti-affinity,
where pod placement is determined by labels on pods that are already running on the
node (see https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-

affinity-and-anti-affinity).

In SUSE Cloud Application Platform, a default configuration will have following affinity/an-
ti-affinity rules already in place:

Instance groups have anti-affinity against themselves. This applies to all instance groups,
including database , but not to the bits , eirini , and eirini-extensions subcharts.

The diego-cell and router instance groups have anti-affinity against each other.

Note that to ensure an optimal spread of the pods across worker nodes we recommend running
5 or more worker nodes to satisfy both of the default anti-affinity constraints. An operator can
also specify custom affinity rules via the sizing.instance-group.affinity helm parameter
and any affinity rules specified here will overwrite the default rule, not merge with it.

7.9.1 Configuring Rules

To add or override affinity/anti-affinity settings, add a sizing.INSTANCE_GROUP.affinity
block to your kubecf-config-values.yaml . Repeat as necessary for each instance group
where affinity/anti-affinity settings need to be applied. For information on the available elds

107 Affinity and Anti-affinity SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

and valid values within the affinity: block, see https://kubernetes.io/docs/concepts/schedul-

ing-eviction/assign-pod-node/#affinity-and-anti-affinity . Repeat as necessary for each instance
group where affinity/anti-affinity settings need to be applied.

Example 1, node affinity.

Using this configuration, the Kubernetes scheduler would place both the asactors and asapi
instance groups on a node with a label where the key is topology.kubernetes.io/zone and
the value is 0 .

sizing:
 asactors:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0
 asapi:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: topology.kubernetes.io/zone
 operator: In
 values:
 - 0

Example 2, pod anti-affinity.

sizing:
 api:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group

108 Configuring Rules SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

 topologyKey: kubernetes.io/hostname
 database:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: quarks.cloudfoundry.org/quarks-statefulset-name
 operator: In
 values:
 - sample_group
 topologyKey: kubernetes.io/hostname

Example 1 above uses topology.kubernetes.io/zone as its label, which is one of the standard
labels that get attached to nodes by default. The list of standard labels can be found at https://

kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels .

In addition to the standard labels, custom labels can be specified as in Example 2. To use custom
labels, following the process described in this section https://kubernetes.io/docs/concepts/sched-

uling-eviction/assign-pod-node/#nodeselector .

7.10 High Availability

7.10.1 Configuring Cloud Application Platform for High Availability

High availability mode is optional. In a default deployment, SUSE Cloud Application Platform
is deployed in single availability mode.

There are two ways to make your SUSE Cloud Application Platform deployment highly available.
The rst method is to set the high_availability parameter in your deployment configuration
le to true . The second method is to create custom configuration les with your own sizing
values.

109 High Availability SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector

7.10.1.1 Finding Default and Allowable Sizing Values

The sizing: section in the Helm values.yaml les for the kubecf chart describes which
roles can be scaled, and the scaling options for each role. You may use helm inspect to read
the sizing: section in the Helm chart:

tux > helm show suse/kubecf | less +/sizing:

Another way is to use Perl to extract the information for each role from the sizing: section.

tux > helm inspect values suse/kubecf | \
perl -ne '/^sizing/..0 and do { print $.,":",$_ if /^ [a-z]/ || /high avail|scale|
count/ }'

The default values.yaml les are also included in this guide at Section A.1, “Complete suse/kubecf

values.yaml File”.

7.10.1.2 Using the high_availability Helm Property

One way to make your SUSE Cloud Application Platform deployment highly available is to use
the high_availability Helm property. In your kubecf-config-values.yaml , set this prop-
erty to true . This changes the size of all roles to the minimum required for a highly avail-
able deployment. Your configuration le, kubecf-config-values.yaml , should include the
following.

high_availability: true

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

7.10.1.3 Using Custom Sizing Configurations

Another method to make your SUSE Cloud Application Platform deployment highly available is
to explicitly configure the instance count of an instance group.

110 Configuring Cloud Application Platform for High Availability SUSE Cloud Applic… 2.1.1

Important: Sizing Priority
When sizing values are specified, it takes precedence over the high_availability prop-
erty.

To see the full list of configurable instance groups, refer to default KubeCF values.yaml le
in the appendix at Section A.1, “Complete suse/kubecf values.yaml File”.

The following is an example High Availability configuration. The example values are not meant
to be copied, as these depend on your particular deployment and requirements.

sizing:
 adapter:
 instances: 2
 api:
 instances: 2
 asactors:
 instances: 2
 asapi:
 instances: 2
 asmetrics:
 instances: 2
 asnozzle:
 instances: 2
 auctioneer:
 instances: 2
 bits:
 instances: 2
 cc_worker:
 instances: 2
 credhub:
 instances: 2
 database:
 instances: 1
 diego_api:
 instances: 2
 diego_cell:
 instances: 2
 doppler:
 instances: 2
 eirini:
 instances: 3
 log_api:
 instances: 2
 nats:

111 Configuring Cloud Application Platform for High Availability SUSE Cloud Applic… 2.1.1

 instances: 2
 router:
 instances: 2
 routing_api:
 instances: 2
 scheduler:
 instances: 2
 uaa:
 instances: 2
 tcp_router:
 instances: 2

7.11 External Blobstore

Cloud Foundry Application Runtime (CFAR) uses a blobstore (see https://docs.cloud-

foundry.org/concepts/cc-blobstore.html) to store the source code that developers push, stage,
and run. This section explains how to configure an external blobstore for the Cloud Controller
component of your SUSE Cloud Application Platform deployment. Using an external blobstore
is optional. In a default deployment, an internal blobstore is used.

SUSE Cloud Application Platform relies on ops files (see https://github.com/cloudfoundry/cf-

deployment/blob/master/operations/README.md) provided by cf-deployment (see https://

github.com/cloudfoundry/cf-deployment) releases for external blobstore configurations. The
default configuration for the blobstore is singleton .

7.11.1 Configuration

Currently SUSE Cloud Application Platform supports Amazon Simple Storage Service (Amazon
S3, see https://aws.amazon.com/s3/) as an external blobstore.

1. Using the Amazon S3 service, create four buckets. A bucket should be created for
app packages, buildpacks, droplets, and resources. For instructions on how to create
Amazone S3 buckets, see https://docs.aws.amazon.com/AmazonS3/latest/user-guide/cre-

ate-bucket.html .

2. To grant proper access to the create buckets, configure an additional IAM role as
described in the rst step of https://docs.cloudfoundry.org/deploying/common/cc-blob-

store-config.html#fog-aws-iam .

112 External Blobstore SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://docs.cloudfoundry.org/concepts/cc-blobstore.html
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment/blob/master/operations/README.md
https://github.com/cloudfoundry/cf-deployment
https://github.com/cloudfoundry/cf-deployment
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam
https://docs.cloudfoundry.org/deploying/common/cc-blobstore-config.html#fog-aws-iam

3. Set the following in your kubecf-config-values.yaml le and replace the example
values.

features:
 blobstore:
 provider: s3
 s3:
 aws_region: "us-east-1"
 blobstore_access_key_id: AWS-ACCESS-KEY-ID
 blobstore_secret_access_key: AWS-SECRET-ACCESS-KEY>
 # User provided value for the blobstore admin password.
 blobstore_admin_users_password: PASSWORD
 # The following values are used as S3 bucket names. The buckets are
 automatically created if not present.
 app_package_directory_key: APP-BUCKET-NAME
 buildpack_directory_key: BUILDPACK-BUCKET-NAME
 droplet_directory_key: DROPLET-BUCKET-NAME
 resource_directory_key: RESOURCE-BUCKET-NAME

7.12 External Database

SUSE Cloud Application Platform can be configured to use an external database system, such
as a data service offered by a cloud service provider or an existing high availability database
server. In a default deployment, an internal single availability database is used.

To configure your deployment to use an external database, please follow the instructions below.

The current SUSE Cloud Application Platform release is compatible with the following types
and versions of external databases:

MySQL 5.7

7.12.1 Configuration

This section describes how to enable and configure your deployment to connect to an exter-
nal database. The configuration options are specified through Helm values inside the kubecf-
config-values.yaml . The deployment and configuration of the external database itself is the
responsibility of the operator and beyond the scope of this documentation. It is assumed the
external database has been deployed and accessible.

113 External Database SUSE Cloud Applic… 2.1.1

Important: Configuration during Initial Install Only
Configuration of SUSE Cloud Application Platform to use an external database must be
done during the initial installation and cannot be changed afterwards.

All the databases listed in the config snippet below need to exist before installing KubeCF. One
way of doing that is manually running CREATE DATABASE IF NOT EXISTS database-name
for each database.

The following snippet of the kubecf-config-values.yaml contains an example of an external
database configuration.

features:
 embedded_database:
 enabled: false
 external_database:
 enabled: true
 require_ssl: false
 ca_cert: ~
 type: mysql
 host: hostname
 port: 3306
 databases:
 uaa:
 name: uaa
 password: root
 username: root
 cc:
 name: cloud_controller
 password: root
 username: root
 bbs:
 name: diego
 password: root
 username: root
 routing_api:
 name: routing-api
 password: root
 username: root
 policy_server:
 name: network_policy
 password: root
 username: root
 silk_controller:
 name: network_connectivity

114 Configuration SUSE Cloud Applic… 2.1.1

 password: root
 username: root
 locket:
 name: locket
 password: root
 username: root
 credhub:
 name: credhub
 password: root
 username: root

7.13 Add the Kubernetes charts repository

Download the SUSE Kubernetes charts repository with Helm:

tux > helm repo add suse https://kubernetes-charts.suse.com/

You may replace the example suse name with any name. Verify with helm :

tux > helm repo list
NAME URL
stable https://kubernetes-charts.storage.googleapis.com
local http://127.0.0.1:8879/charts
suse https://kubernetes-charts.suse.com/

List your chart names, as you will need these for some operations:

tux > helm search repo suse
NAME CHART VERSION APP VERSION DESCRIPTION
suse/cf-operator 7.2.1+0.gaeb6ef3 2.1.1 A Helm chart for cf-
operator, the k8s operator
suse/console 4.4.1 2.1.1 A Helm chart for
 deploying SUSE Stratos Console
suse/kubecf 2.7.13 2.1.1 A Helm chart for
 KubeCF
suse/metrics 1.3.0 2.1.1 A Helm chart for
 Stratos Metrics
suse/minibroker 1.2.0 A minibroker for your
 minikube
suse/nginx-ingress 0.28.4 0.15.0 An nginx Ingress
 controller that uses ConfigMap to store ...
...

115 Add the Kubernetes charts repository SUSE Cloud Applic… 2.1.1

7.14 Deploying SUSE Cloud Application Platform
This section describes how to deploy SUSE Cloud Application Platform on Google GKE, and how
to configure your DNS records.

Warning: KubeCF and cf-operator versions
KubeCF and cf-operator interoperate closely. Before you deploy a specific version com-
bination, make sure they were confirmed to work. For more information see Section 3.4,

“Releases and Associated Versions”.

7.14.1 Deploy the Operator

1. First, create the namespace for the operator.

tux > kubectl create namespace cf-operator

2. Install the operator.
The value of global.operator.watchNamespace indicates the namespace the operator
will monitor for a KubeCF deployment. This namespace should be separate from the name-
space used by the operator. In this example, this means KubeCF will be deployed into a
namespace called kubecf .

tux > helm install cf-operator suse/cf-operator \
--namespace cf-operator \
--set "global.singleNamespace.name=kubecf" \
--version 7.2.1+0.gaeb6ef3

3. Wait until cf-operator is successfully deployed before proceeding. Monitor the status of
your cf-operator deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace cf-operator'

7.14.2 Deploy KubeCF

1. Use Helm to deploy KubeCF.
Note that you do not need to manually create the namespace for KubeCF.

116 Deploying SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

tux > helm install kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

2. Monitor the status of your KubeCF deployment using the watch command.

tux > watch --color 'kubectl get pods --namespace kubecf'

3. Find the value of EXTERNAL-IP for each of the public services.

tux > kubectl get service --namespace kubecf router-public

tux > kubectl get service --namespace kubecf tcp-router-public

tux > kubectl get service --namespace kubecf ssh-proxy-public

4. Create DNS A records for the public services.

a. For the router-public service, create a record mapping the EXTERNAL-IP value
to <system_domain> .

b. For the router-public service, create a record mapping the EXTERNAL-IP value
to *.<system_domain> .

c. For the tcp-router-public service, create a record mapping the EXTERNAL-IP
value to tcp.<system_domain> .

d. For the ssh-proxy-public service, create a record mapping the EXTERNAL-IP val-
ue to ssh.<system_domain> .

5. When all pods are fully ready, verify your deployment. See Section 3.2, “Status of Pods during

Deployment” for more information.
Connect and authenticate to the cluster.

tux > cf api --skip-ssl-validation "https://api.<system_domain>"

Use the cf_admin_password set in kubecf-config-values.yaml
tux > cf auth admin changeme

117 Deploy KubeCF SUSE Cloud Applic… 2.1.1

7.15 LDAP Integration

SUSE Cloud Application Platform can be integrated with identity providers (https://docs.cloud-

foundry.org/uaa/identity-providers.html) to help manage authentication of users. Integrating
SUSE Cloud Application Platform with other identity providers is optional. In a default deploy-
ment, a built-in UAA server (https://docs.cloudfoundry.org/uaa/uaa-overview.html) is used to
manage user accounts and authentication.

The Lightweight Directory Access Protocol (LDAP) is an example of an identity provider that
Cloud Application Platform integrates with. This section describes the necessary components and
steps in order to configure the integration. See User Account and Authentication LDAP Integration

(https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md) for more information.

7.15.1 Prerequisites

The following prerequisites are required in order to complete an LDAP integration with SUSE
Cloud Application Platform.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

uaac , the Cloud Foundry uaa command line client (UAAC). See https://docs.cloud-

foundry.org/uaa/uaa-user-management.html for more information and installation in-
structions.
On SUSE Linux Enterprise systems, ensure the ruby-devel and gcc-c++ packages have
been installed before installing the cf-uaac gem.

118 LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/identity-providers.html
https://docs.cloudfoundry.org/uaa/uaa-overview.html
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/master/docs/UAA-LDAP.md
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

tux > sudo zypper install ruby-devel gcc-c++

An LDAP server and the credentials for a user/service account with permissions to search
the directory.

7.15.2 Example LDAP Integration

Run the following commands to complete the integration of your Cloud Application Platform
deployment and LDAP server.

1. Use UAAC to target your uaa server.

tux > uaac target --skip-ssl-validation https://uaa.example.com

2. Authenticate to the uaa server as admin using the uaa_admin_client_secret set in
your kubecf-config-values.yaml le.

tux > uaac token client get admin --secret PASSWORD

3. List the current identity providers.

tux > uaac curl /identity-providers --insecure

4. From the output, locate the default ldap entry and take note of its id . The entry will
be similar to the following.

{
 "type": "ldap",
 "config": "{\"emailDomain\":null,\"additionalConfiguration\":null,
\"providerDescription\":null,\"externalGroupsWhitelist\":[],\"attributeMappings
\":{},\"addShadowUserOnLogin\":true,\"storeCustomAttributes\":true,
\"ldapProfileFile\":\"ldap/ldap-search-and-bind.xml\",\"baseUrl\":
\"ldap://localhost:389/\",\"referral\":null,\"skipSSLVerification\":false,
\"userDNPattern\":null,\"userDNPatternDelimiter\":null,\"bindUserDn\":
\"cn=admin,dc=test,dc=com\",\"userSearchBase\":\"dc=test,dc=com\",\"userSearchFilter
\":\"cn={0}\",\"passwordAttributeName\":null,\"passwordEncoder\":null,
\"localPasswordCompare\":null,\"mailAttributeName\":\"mail\",\"mailSubstitute
\":null,\"mailSubstituteOverridesLdap\":false,\"ldapGroupFile\":null,
\"groupSearchBase\":null,\"groupSearchFilter\":null,\"groupsIgnorePartialResults
\":null,\"autoAddGroups\":true,\"groupSearchSubTree\":true,\"maxGroupSearchDepth
\":10,\"groupRoleAttribute\":null,\"tlsConfiguration\":\"none\"}",
 "id": "53gc6671-2996-407k-b085-2346e216a1p0",

119 Example LDAP Integration SUSE Cloud Applic… 2.1.1

 "originKey": "ldap",
 "name": "UAA LDAP Provider",
 "version": 3,
 "created": 946684800000,
 "last_modified": 1602208214000,
 "active": false,
 "identityZoneId": "uaa"
},

5. Delete the default ldap identity provider. If the default entry is not removed, adding
another identity provider of type ldap will result in a 409 Conflict response. Replace
the example id with one found in the previous step.

tux > uaac curl /identity-providers/53gc6671-2996-407k-b085-2346e216a1p0 \
 --request DELETE \
 --insecure

6. Create your own LDAP identity provider. A 201 Created response will be returned when
the identity provider is successfully created. See the UAA API Reference (http://docs.cloud-

foundry.org/api/uaa/version/4.21.0/index.html#ldap) and Cloud Foundry UAA-LDAP Doc-

umentation (https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md) for in-
formation regarding the request parameters and additional options available to configure
your identity provider.
The following is an example of a uaac curl command and its request parameters used
to create an identity provider. Specify the parameters according to your LDAP server's
credentials and directory structure. Ensure the user specifed in the bindUserDn has per-
missions to search the directory.

tux > uaac curl /identity-providers?rawConfig=true \
 --request POST \
 --insecure \
 --header 'Content-Type: application/json' \
 --data '{
 "type" : "ldap",
 "config" : {
 "ldapProfileFile" : "ldap/ldap-search-and-bind.xml",
 "baseUrl" : "ldap://ldap.example.com:389",
 "bindUserDn" : "cn=admin,dc=example,dc=com",
 "bindPassword" : "password",
 "userSearchBase" : "dc=example,dc=com",
 "userSearchFilter" : "uid={0}",
 "ldapGroupFile" : "ldap/ldap-groups-map-to-scopes.xml",
 "groupSearchBase" : "dc=example,dc=com",
 "groupSearchFilter" : "member={0}"

120 Example LDAP Integration SUSE Cloud Applic… 2.1.1

http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
http://docs.cloudfoundry.org/api/uaa/version/4.21.0/index.html#ldap
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md
https://github.com/cloudfoundry/uaa/blob/4.21.0/docs/UAA-LDAP.md

 },
 "originKey" : "ldap",
 "name" : "My LDAP Server",
 "active" : true
 }'

7. Verify the LDAP identify provider has been created. The output should now contain an
entry for the ldap type you created.

tux > uaac curl /identity-providers --insecure

8. Use the cf CLI to target your SUSE Cloud Application Platform deployment.

tux > cf api --skip-ssl-validation https://api.example.com

9. Log in as an administrator.

tux > cf login
API endpoint: https://api.example.com

Email> admin

Password>
Authenticating...
OK

10. Create users associated with your LDAP identity provider.

tux > cf create-user username --origin ldap
Creating user username...
OK

TIP: Assign roles with 'cf set-org-role' and 'cf set-space-role'.

11. Assign the user a role. Roles define the permissions a user has for a given org or space
and a user can be assigned multiple roles. See Orgs, Spaces, Roles, and Permissions (https://

docs.cloudfoundry.org/concepts/roles.html) for available roles and their corresponding
permissions. The following example assumes that an org named Org and a space named
Space have already been created.

tux > cf set-space-role username Org Space SpaceDeveloper
Assigning role RoleSpaceDeveloper to user username in org Org / space Space as
 admin...
OK
tux > cf set-org-role username Org OrgManager

121 Example LDAP Integration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/roles.html
https://docs.cloudfoundry.org/concepts/roles.html

Assigning role OrgManager to user username in org Org as admin...
OK

12. Verify the user can log into your SUSE Cloud Application Platform deployment using their
associated LDAP server credentials.

tux > cf login
API endpoint: https://api.example.com

Email> username

Password>
Authenticating...
OK

API endpoint: https://api.example.com (API version: 2.115.0)
User: username@ldap.example.com

7.16 Expanding Capacity of a Cloud Application
Platform Deployment on Google GKE
If the current capacity of your Cloud Application Platform deployment is insufficient for your
workloads, you can expand the capacity using the procedure in this section.

These instructions assume you have followed the procedure in Chapter 7, Deploying SUSE Cloud

Application Platform on Google Kubernetes Engine (GKE) and have a running Cloud Application Plat-
form deployment on Microsoft AKS. The instructions below will use environment variables de-
fined in Section 7.2, “Creating a GKE cluster”.

1. Get the most recently created node in the cluster.

tux > RECENT_VM_NODE=$(gcloud compute instances list --filter=name~${CLUSTER_NAME:?
required} --format json | jq --raw-output '[sort_by(.creationTimestamp) | .
[].creationTimestamp] | last | .[0:19] | strptime("%Y-%m-%dT%H:%M:%S") | mktime')

2. Increase the Kubernetes node count in the cluster. Replace the example value with the
number of nodes required for your workload.

tux > gcloud container clusters resize $CLUSTER_NAME \
--num-nodes 5

122

Expanding Capacity of a Cloud Application Platform Deployment on Google GKE SUSE

Cloud Applic… 2.1.1

3. Verify the new nodes are in a Ready state before proceeding.

tux > kubectl get nodes

4. Add or update the following in your kubecf-config-values.yaml le to increase the
number of diego-cell in your Cloud Application Platform deployment. Replace the ex-
ample value with the number required by your workflow.

sizing:
 diego_cell:
 instances: 5

5. Perform a helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

6. Monitor progress of the additional diego-cell pods:

tux > watch --color 'kubectl get pods --namespace kubecf'

123

Expanding Capacity of a Cloud Application Platform Deployment on Google GKE SUSE

Cloud Applic… 2.1.1

8 Installing the Stratos Web Console

The Stratos user interface (UI) is a modern web-based management application for Cloud
Foundry. It provides a graphical management console for both developers and system admin-
istrators.

8.1 Deploy Stratos on SUSE® CaaS Platform
The steps in this section describe how to install Stratos on SUSE® CaaS Platform without an
external load balancer, instead mapping a worker node to your SUSE Cloud Application Platform
domain as described in Section 4.5, “Deployment Configuration”. These instructions assume you
have followed the procedure in Chapter 4, Deploying SUSE Cloud Application Platform on SUSE CaaS

Platform, have deployed kubecf successfully, and have created a default storage class.

If you are using SUSE Enterprise Storage as your storage back-end, copy the secret into the
Stratos namespace:

tux > kubectl get secret ceph-secret-admin --output json --namespace default | \
sed 's/"namespace": "default"/"namespace": "stratos"/' | kubectl create --filename -

You should already have the Stratos charts when you downloaded the SUSE charts repository
(see Section 4.12, “Add the Kubernetes Charts Repository”). Search your Helm repository to verify
that you have the suse/console chart:

tux > helm search repo suse
NAME CHART VERSION APP VERSION DESCRIPTION
suse/cf-operator 7.2.1+0.gaeb6ef3 2.1.1 A Helm chart for cf-
operator, the k8s operator
suse/console 4.4.1 2.1.1 A Helm chart for
 deploying SUSE Stratos Console
suse/kubecf 2.7.13 2.1.1 A Helm chart for
 KubeCF
suse/metrics 1.3.0 2.1.1 A Helm chart for
 Stratos Metrics
suse/minibroker 1.2.0 A minibroker for your
 minikube
suse/nginx-ingress 0.28.4 0.15.0 An nginx Ingress
 controller that uses ConfigMap to store ...
...

Create a YAML le, called stratos-config-values.yaml in this example, and use it to make
configurations to the Stratos Helm chart.

124 Deploy Stratos on SUSE® CaaS Platform SUSE Cloud Applic… 2.1.1

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 # Use local admin user instead of UAA
 localAdminPassword: changeme

Note: Technology Preview Features
Some Stratos releases may include features as part of a technology preview. Technology
preview features are for evaluation purposes only and not supported for production use.
To see the technology preview features available for a given release, refer to https://

github.com/SUSE/stratos/blob/master/CHANGELOG.md .

To enable technology preview features, add the console.techPreview Helm value to
your stratos-config-values.yaml and set it to true .

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 techPreview: true

Create a namespace for your Stratos deployment.

tux > kubectl create namespace stratos

Deploy Stratos using Helm.

tux > helm install susecf-console suse/console \
--namespace stratos \
--values stratos-config-values.yaml

You can monitor the status of your stratos deployment with the watch command:

tux > watch --color 'kubectl get pods --namespace stratos'

When stratos is successfully deployed, the following is observed:

For the volume-migration pod, the STATUS is Completed and the READY column is at
0/1 .

All other pods have a Running STATUS and a READY value of n/n .

125 Deploy Stratos on SUSE® CaaS Platform SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/stratos/blob/master/CHANGELOG.md
https://github.com/SUSE/stratos/blob/master/CHANGELOG.md

Press Ctrl – C to exit the watch command.

When the stratos deployment completes, query with Helm to view your release information:

tux > helm status susecf-console
LAST DEPLOYED: Wed Mar 27 06:51:36 2019
NAMESPACE: stratos
STATUS: DEPLOYED

RESOURCES:
==> v1/Secret
NAME TYPE DATA AGE
susecf-console-secret Opaque 2 3h
susecf-console-mariadb-secret Opaque 2 3h

==> v1/PersistentVolumeClaim
NAME STATUS VOLUME
 CAPACITY ACCESSMODES STORAGECLASS AGE
susecf-console-upgrade-volume Bound pvc-711380d4-5097-11e9-89eb-fa163e15acf0
 20Mi RWO persistent 3h
susecf-console-encryption-key-volume Bound pvc-711b5275-5097-11e9-89eb-fa163e15acf0
 20Mi RWO persistent 3h
console-mariadb Bound pvc-7122200c-5097-11e9-89eb-fa163e15acf0
 1Gi RWO persistent 3h

==> v1/Service
NAME CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
susecf-console-mariadb 172.24.137.195 <none>
 3306/TCP 3h
susecf-console-ui-ext 172.24.80.22
 10.86.101.115,172.28.0.31,172.28.0.36,172.28.0.7,172.28.0.22 8443/TCP 3h

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
stratos-db 1 1 1 1 3h

==> v1beta1/StatefulSet
NAME DESIRED CURRENT AGE
stratos 1 1 3h

Find the external IP address with kubectl get service susecf-console-ui-
ext --namespace stratos to access your new Stratos Web console, for example
https://10.86.101.115:8443, or use the domain you created for it, and its port, for example
https://example.com:8443. Proceed past the warnings about the self-signed certificates and log
in as admin with the password you created in stratos-config-values.yaml

126 Deploy Stratos on SUSE® CaaS Platform SUSE Cloud Applic… 2.1.1

FIGURE 8.1: STRATOS UI CLOUD FOUNDRY CONSOLE

8.1.1 Connecting SUSE® CaaS Platform to Stratos

Stratos can show information from your SUSE® CaaS Platform environment.

To enable this, you must register and connect your SUSE® CaaS Platform environment with
Stratos.

In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon in the
top-right of the view - you should be shown the "Register new Endpoint" view.

1. In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon
in the top-right of the view.

2. On the Register a new Endpoint view, click the SUSE CaaS Platform button.

3. Enter a memorable name for your SUSE® CaaS Platform environment in the Name eld.
For example, my-endpoint .

4. Enter the URL of the API server for your Kubernetes environment in the Endpoint Address
eld. Run kubectl cluster-info and use the value of Kubernetes master as the URL.

tux > kubectl cluster-info

5. Activate the Skip SSL validation for the endpoint check box if using self-signed certificates.

127 Connecting SUSE® CaaS Platform to Stratos SUSE Cloud Applic… 2.1.1

6. Click Register.

7. Activate the Connect to my-endpoint now (optional). check box.

8. Provide a valid kubeconfig le for your SUSE® CaaS Platform environment.

9. Click Connect.

10. In the Stratos UI, go to Kubernetes in the left-hand side navigation. Information for your
SUSE® CaaS Platform environment should now be displayed as in the following figure.

FIGURE 8.2: KUBERNETES ENVIRONMENT INFORMATION ON STRATOS

8.2 Deploy Stratos on Amazon EKS
Before deploying Stratos, ensure kubecf has been successfully deployed on Amazon EKS (see
Chapter 6, Deploying SUSE Cloud Application Platform on Amazon Elastic Kubernetes Service (EKS)).

Configure a scoped storage class for your Stratos deployment. Create a configuration le, called
scoped-storage-class.yaml in this example, using the following as a template. Specify the
region you are using as the zone and be sure to include the letter (for example, the letter a in
us-west-2a) identifier to indicate the Availability Zone used:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: gp2scoped
provisioner: kubernetes.io/aws-ebs
parameters:

128 Deploy Stratos on Amazon EKS SUSE Cloud Applic… 2.1.1

 type: gp2
 zone: "us-west-2a"
reclaimPolicy: Retain
mountOptions:
 - debug

Create the storage class using the scoped-storage-class.yaml configuration le:

tux > kubectl create --filename scoped-storage-class.yaml

Verify the storage class has been created:

tux > kubectl get storageclass
NAME PROVISIONER AGE
gp2 (default) kubernetes.io/aws-ebs 1d
gp2scoped kubernetes.io/aws-ebs 1d

Create a YAML le, called stratos-config-values.yaml in this example, and use it to make
configurations to the Stratos Helm chart.

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 # Use local admin user instead of UAA
 localAdminPassword: changeme

services:
 loadbalanced: true

kube:
 storage_class:
 persistent: gp2scoped

Note: Technology Preview Features
Some Stratos releases may include features as part of a technology preview. Technology
preview features are for evaluation purposes only and not supported for production use.
To see the technology preview features available for a given release, refer to https://

github.com/SUSE/stratos/blob/master/CHANGELOG.md .

To enable technology preview features, add the console.techPreview Helm value to
your stratos-config-values.yaml and set it to true .

example Stratos deployment configuration file

129 Deploy Stratos on Amazon EKS SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/stratos/blob/master/CHANGELOG.md
https://github.com/SUSE/stratos/blob/master/CHANGELOG.md

stratos-config-values.yaml

console:
 techPreview: true

Create a namespace for your Stratos deployment.

tux > kubectl create namespace stratos

Deploy Stratos using Helm.

tux > helm install susecf-console suse/console
\
--namespace stratos \
--values stratos-config-values.yaml

You can monitor the status of your stratos deployment with the watch command:

tux > watch --color 'kubectl get pods --namespace stratos'

When stratos is successfully deployed, the following is observed:

For the volume-migration pod, the STATUS is Completed and the READY column is at
0/1 .

All other pods have a Running STATUS and a READY value of n/n .

Press Ctrl – C to exit the watch command.

Obtain the host name of the service exposed through the public load balancer:

tux > kubectl get service susecf-console-ui-ext --namespace stratos

Use this host name to create a CNAME record. After the record is created, access the console in
a web browser by navigating to the domain mapped to the host name of the service retrieved
from the kubectl get service step. Upon successfully logging in, you should see something
similar to the following figure.

130 Deploy Stratos on Amazon EKS SUSE Cloud Applic… 2.1.1

FIGURE 8.3: STRATOS UI CLOUD FOUNDRY CONSOLE

8.2.1 Connecting Amazon EKS to Stratos

Stratos can show information from your Amazon EKS environment.

To enable this, you must register and connect your Amazon EKS environment with Stratos.

In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon in the
top-right of the view - you should be shown the "Register new Endpoint" view.

1. In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon
in the top-right of the view.

2. On the Register a new Endpoint view, click the Amazon EKS button.

3. Enter a memorable name for your Amazon EKS environment in the Name eld. For exam-
ple, my-endpoint .

4. Enter the URL of the API server for your Kubernetes environment in the Endpoint Address
eld. Run kubectl cluster-info and use the value of Kubernetes master as the URL.

tux > kubectl cluster-info

5. Activate the Skip SSL validation for the endpoint check box if using self-signed certificates.

6. Click Register.

131 Connecting Amazon EKS to Stratos SUSE Cloud Applic… 2.1.1

7. Activate the Connect to my-endpoint now (optional). check box.

8. Enter the name of your Amazon EKS cluster in the Cluster eld.

9. Enter your AWS Access Key ID in the Access Key ID eld.

10. Enter your AWS Secret Access Key in the Secret Access Key eld.

11. Click Connect.

12. In the Stratos UI, go to Kubernetes in the left-hand side navigation. Information for your
Amazon EKS environment should now be displayed as in the following figure.

FIGURE 8.4: KUBERNETES ENVIRONMENT INFORMATION ON STRATOS

8.3 Deploy Stratos on Microsoft AKS
Before deploying Stratos, ensure kubecf has been successfully deployed on Microsoft AKS (see
Chapter 5, Deploying SUSE Cloud Application Platform on Microsoft Azure Kubernetes Service (AKS)).

Create a YAML le, called stratos-config-values.yaml in this example, and use it to make
configurations to the Stratos Helm chart.

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 # Use local admin user instead of UAA

132 Deploy Stratos on Microsoft AKS SUSE Cloud Applic… 2.1.1

 localAdminPassword: changeme

services:
 loadbalanced: true

Note: Technology Preview Features
Some Stratos releases may include features as part of a technology preview. Technology
preview features are for evaluation purposes only and not supported for production use.
To see the technology preview features available for a given release, refer to https://

github.com/SUSE/stratos/blob/master/CHANGELOG.md .

To enable technology preview features, add the console.techPreview Helm value to
your stratos-config-values.yaml and set it to true .

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 techPreview: true

Create a namespace for your Stratos deployment.

tux > kubectl create namespace stratos

Deploy Stratos using Helm.

tux > helm install susecf-console suse/console
\
--namespace stratos \
--values stratos-config-values.yaml

You can monitor the status of your stratos deployment with the watch command:

tux > watch --color 'kubectl get pods --namespace stratos'

When stratos is successfully deployed, the following is observed:

For the volume-migration pod, the STATUS is Completed and the READY column is at
0/1 .

All other pods have a Running STATUS and a READY value of n/n .

133 Deploy Stratos on Microsoft AKS SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/stratos/blob/master/CHANGELOG.md
https://github.com/SUSE/stratos/blob/master/CHANGELOG.md

Press Ctrl – C to exit the watch command.

Obtain the IP address of the service exposed through the public load balancer:

tux > kubectl get service susecf-console-ui-ext --namespace stratos

Use this IP address to create an A record. After the record is created, access the console in a web
browser by navigating to the domain mapped to the IP address of the service retrieved from the
kubectl get service step. Upon successfully logging in, you should see something similar
to the following figure.

FIGURE 8.5: STRATOS UI CLOUD FOUNDRY CONSOLE

8.3.1 Connecting Microsoft AKS to Stratos

Stratos can show information from your Microsoft AKS environment.

To enable this, you must register and connect your Microsoft AKS environment with Stratos.

In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon in the
top-right of the view - you should be shown the "Register new Endpoint" view.

1. In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon
in the top-right of the view.

2. On the Register a new Endpoint view, click the Azure AKS button.

134 Connecting Microsoft AKS to Stratos SUSE Cloud Applic… 2.1.1

3. Enter a memorable name for your Microsoft AKS environment in the Name eld. For ex-
ample, my-endpoint .

4. Enter the URL of the API server for your Kubernetes environment in the Endpoint Address
eld. Run kubectl cluster-info and use the value of Kubernetes master as the URL.

tux > kubectl cluster-info

5. Activate the Skip SSL validation for the endpoint check box if using self-signed certificates.

6. Click Register.

7. Activate the Connect to my-endpoint now (optional). check box.

8. Provide a valid kubeconfig le for your Microsoft AKS environment.

9. Click Connect.

10. In the Stratos UI, go to Kubernetes in the left-hand side navigation. Information for your
Microsoft AKS environment should now be displayed as in the following figure.

FIGURE 8.6: KUBERNETES ENVIRONMENT INFORMATION ON STRATOS

8.4 Deploy Stratos on Google GKE
Before deploying Stratos, ensure kubecf has been successfully deployed on Google GKE (see
Chapter 7, Deploying SUSE Cloud Application Platform on Google Kubernetes Engine (GKE)).

135 Deploy Stratos on Google GKE SUSE Cloud Applic… 2.1.1

Create a YAML le, called stratos-config-values.yaml in this example, and use it to make
configurations to the Stratos Helm chart.

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 # Use local admin user instead of UAA
 localAdminPassword: changeme

services:
 loadbalanced: true

Note: Technology Preview Features
Some Stratos releases may include features as part of a technology preview. Technology
preview features are for evaluation purposes only and not supported for production use.
To see the technology preview features available for a given release, refer to https://

github.com/SUSE/stratos/blob/master/CHANGELOG.md .

To enable technology preview features, add the console.techPreview Helm value to
your stratos-config-values.yaml and set it to true .

example Stratos deployment configuration file
stratos-config-values.yaml

console:
 techPreview: true

Create a namespace for your Stratos deployment.

tux > kubectl create namespace stratos

Deploy Stratos using Helm.

tux > helm install susecf-console suse/console
\
--namespace stratos \
--values stratos-config-values.yaml

You can monitor the status of your stratos deployment with the watch command:

tux > watch --color 'kubectl get pods --namespace stratos'

136 Deploy Stratos on Google GKE SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/stratos/blob/master/CHANGELOG.md
https://github.com/SUSE/stratos/blob/master/CHANGELOG.md

When stratos is successfully deployed, the following is observed:

For the volume-migration pod, the STATUS is Completed and the READY column is at
0/1 .

All other pods have a Running STATUS and a READY value of n/n .

Press Ctrl – C to exit the watch command.

Obtain the IP address of the service exposed through the public load balancer:

tux > kubectl get service susecf-console-ui-ext --namespace stratos

Use this IP address to create an A record. After the record is created, access the console in a web
browser by navigating to the domain mapped to the IP address of the service retrieved from the
kubectl get service step. Upon successfully logging in, you should see something similar
to the following figure.

FIGURE 8.7: STRATOS UI CLOUD FOUNDRY CONSOLE

8.4.1 Connecting Google GKE to Stratos

Stratos can show information from your Google GKE environment.

To enable this, you must register and connect your Google GKE environment with Stratos.

In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon in the
top-right of the view - you should be shown the "Register new Endpoint" view.

137 Connecting Google GKE to Stratos SUSE Cloud Applic… 2.1.1

1. In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon
in the top-right of the view.

2. On the Register a new Endpoint view, click the Google Kubernetes Engine button.

3. Enter a memorable name for your Microsoft AKS environment in the Name eld. For ex-
ample, my-endpoint .

4. Enter the URL of the API server for your Kubernetes environment in the Endpoint Address
eld. Run kubectl cluster-info and use the value of Kubernetes master as the URL.

tux > kubectl cluster-info

5. Activate the Skip SSL validation for the endpoint check box if using self-signed certificates.

6. Click Register.

7. Activate the Connect to my-endpoint now (optional). check box.

8. Provide a valid Application Default Credentials le for your Google GKE environ-
ment. Generate the le using the command below. The command saves the credentials to
a le named application_default_credentials.json and outputs the path of the le.

tux > gcloud auth application-default login

9. Click Connect.

10. In the Stratos UI, go to Kubernetes in the left-hand side navigation. Information for your
Google GKE environment should now be displayed as in the following figure.

FIGURE 8.8: KUBERNETES ENVIRONMENT INFORMATION ON STRATOS

138 Connecting Google GKE to Stratos SUSE Cloud Applic… 2.1.1

8.5 Upgrading Stratos

For instructions to upgrade Stratos, follow the process described in Chapter 13, Upgrading SUSE

Cloud Application Platform. Take note that kubecf is upgraded prior to upgrading Stratos.

8.6 Stratos Metrics

Stratos Metrics provides a Helm chart for deploying Prometheus (see https://prometheus.io/)
and the following metrics exporters to Kubernetes:

Cloud Foundry Firehose Exporter (enabled by default)

Cloud Foundry Exporter (disabled by default)

Kubernetes State Metrics Exporter (disabled by default)

The Stratos Metrics Helm chart deploys a Prometheus server and the configured Exporters and
fronts the Prometheus server with an nginx server to provide authenticated access to Prometheus
(currently basic authentication over HTTPS).

When required by configuration, it also contains an initialization script that will setup users in
the UAA that have correct scopes/permissions to be able to read data from the Cloud Foundry
Firehose and/or API.

Lastly, the Helm chart generates a small metadata le in the root of the nginx server that is used
by Stratos to determine which Cloud Foundry and Kubernetes clusters the Prometheus server
is providing Metrics for.

To learn more about Stratos Metrics and its full list of configuration options, see https://

github.com/SUSE/stratos-metrics .

8.6.1 Exporter Configuration

8.6.1.1 Firehose Exporter

This exporter can be enabled/disabled via the Helm value firehoseExporter.enabled . By
default this exporter is enabled.

139 Upgrading Stratos SUSE Cloud Applic… 2.1.1

https://prometheus.io/
https://github.com/SUSE/stratos-metrics
https://github.com/SUSE/stratos-metrics

You must provide the following Helm chart values for this Exporter to work correctly:

cloudFoundry.apiEndpoint - API Endpoint of the Cloud Foundry API Server

cloudFoundry.uaaAdminClient - Admin client of the UAA used by the Cloud Foundry
server

cloudFoundry.uaaAdminClientSecret - Admin client secret of the UAA used by the
Cloud Foundry server

cloudFoundry.skipSslVerification - Whether to skip SSL verification when commu-
nicating with Cloud Foundry and the UAA APIs

You can scale the firehose nozzle in Stratos Metrics by specifying the following override:

firehoseExporter:
 instances: 1

Please note, the number of firehose nozzles should be proportional to the number of Traffic
Controllers in your Cloud Foundry (see docs at https://docs.cloudfoundry.org/loggregator/log-

ops-guide.html). Otherwise, Loggregator will not split the firehose between the nozzles.

8.6.1.2 Cloud Foundry Exporter

This exporter can be enabled/disabled via the Helm value cfExporter.enabled . By default
this exporter is disabled.

You must provide the following Helm chart values for this Exporter to work correctly:

cloudFoundry.apiEndpoint - API Endpoint of the Cloud Foundry API Server

cloudFoundry.uaaAdminClient - Admin client of the UAA used by the Cloud Foundry
server

cloudFoundry.uaaAdminClientSecret - Admin client secret of the UAA used by the
Cloud Foundry server

cloudFoundry.skipSslVerification - Whether to skip SSL verification when commu-
nicating with Cloud Foundry and the UAA APIs

140 Exporter Configuration SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/loggregator/log-ops-guide.html
https://docs.cloudfoundry.org/loggregator/log-ops-guide.html

8.6.1.3 Kubernetes Monitoring

This exporter can be enabled/disabled via the Helm value prometheus.kubeStateMetric-
s.enabled . By default this exporter is disabled.

You must provide the following Helm chart values for this Exporter to work correctly:

kubernetes.apiEndpoint - The API Endpoint of the Kubernetes API Server

8.6.2 Install Stratos Metrics with Helm

In order to display metrics data with Stratos, you need to deploy the stratos-metrics Helm
chart. As with othe examples in this guide, a YAML le is defined to change configurations of
the Helm chart.

Create a new YAML le. In this example, it is named stratos-metrics-values.yaml and it
contains configuration options specific to Stratos Metrics.

The following is an example stratos-metrics-values.yaml le.

cloudFoundry:
 apiEndpoint: https://api.example.com
 uaaAdminClient: admin
 uaaAdminClientSecret: password
 skipSslVerification: "true"
env:
 DOPPLER_PORT: 443
kubernetes:
 apiEndpoint: kube_server_address.example.com
metrics:
 username: username
 password: password
prometheus:
 kubeStateMetrics:
 enabled: true
 server:
 storageClass: "persistent"
services:
 loadbalanced: true

141 Install Stratos Metrics with Helm SUSE Cloud Applic… 2.1.1

where:

kubernetes.apiEndpoint is the same URL that you used when registering your Kuber-
netes environment with Stratos (the Kubernetes API Server URL).

prometheus.server.storageClass is the storage class to be used by Stratos Metrics. If
a storage class is not assigned, the default storage class will be used. If a storage class is
not specified and there is no default storage class, the prometheus pod will fail to start.

metrics.username is the username used to authenticate with the nginx server that fronts
Prometheus. This username is also used during the Section 8.6.3, “Connecting Stratos Metrics”)
process.

metrics.password is the password used to authenticate with the nginx server that fronts
Prometheus. This password is also used during the Section 8.6.3, “Connecting Stratos Metrics”)
process. Ensure a secure password is chosen.

services.loadbalanced is set to true if your Kubernetes deployment supports auto-
matic configuration of a load balancer (for example, AKS, EKS, and GKE).

If you are using SUSE Enterprise Storage, you must copy the Ceph admin secret to the metrics
namespace:

tux > kubectl get secret ceph-secret-admin --output json --namespace default | \
sed 's/"namespace": "default"/"namespace": "metrics"/' | kubectl create --filename -

Install Metrics with:

tux > kubectl create namespace metrics

tux > helm install susecf-metrics suse/metrics \
--namespace metrics \
--values kubecf-config-values.yaml \
--values stratos-metrics-values.yaml

Monitor progress:

$ watch --color 'kubectl get pods --namespace metrics'

When all statuses show Ready , press Ctrl – C to exit and to view your release information.

142 Install Stratos Metrics with Helm SUSE Cloud Applic… 2.1.1

8.6.3 Connecting Stratos Metrics

When Stratos Metrics is connected to Stratos, additional views are enabled that show metrics
metadata that has been ingested into the Stratos Metrics Prometheus server.

To enable this, you must register and connect your Stratos Metrics instance with Stratos.

In the Stratos UI, go to Endpoints in the left-hand side navigation and click on the + icon in the
top-right of the view - you should be shown the "Register new Endpoint" view. Next:

1. Select Metrics from the Endpoint Type dropdown.

2. Enter a memorable name for your environment in the Name eld.

3. Enter the Endpoint Address. Use the following to nd the endpoint value.

tux > kubectl get service susecf-metrics-metrics-nginx --namespace metrics

For Microsoft AKS, Amazon EKS, and Google GKE deployments which use a load
balancer, the output will be similar to the following:

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
susecf-metrics-metrics-nginx LoadBalancer 10.0.202.180 52.170.253.229
 443:30263/TCP 21h

Preprend https:// to the public IP of the load balancer, and enter it in-
to the Endpoint Address eld. Using the values from the example above,
https://52.170.253.229 is entered as the endpoint address.

For SUSE CaaS Platform deployments which do not use a load balancer, the output
will be similar to the following:

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
susecf-metrics-metrics-nginx NodePort 172.28.107.209
 10.86.101.115,172.28.0.31 443:30685/TCP 21h

Prepend https:// to the external IP of your node, followed by the nodePort , and
enter it into the Endpoint Address eld. Using the values from the example above,
https://10.86.101.115:30685 is entered as the endpoint address.

4. Check the Skip SSL validation for the endpoint checkbox if using self-signed certificates.

5. Click Finish.

143 Connecting Stratos Metrics SUSE Cloud Applic… 2.1.1

The view will refresh to show the new endpoint in the disconnected state. Next you will need
to connect to this endpoint.

In the table of endpoints, click the overflow menu icon alongside the endpoint that you added
above, then:

1. Click on Connect in the dropdown menu.

2. Enter the username for your Stratos Metrics instance. This will be the metrics.username
defined in your stratos-metrics-values.yaml le.

3. Enter the password for your Stratos Metrics instance. This will be the metrics.password
defined in your stratos-metrics-values.yaml le.

4. Click Connect.

Once connected, you should see that the name of your Metrics endpoint is a hyperlink and
clicking on it should show basic metadata about the Stratos Metrics endpoint.

Metrics data and views should now be available in the Stratos UI, for example:

On the Instances tab for an Application, the table should show an additional Cell column to
indicate which Diego Cell the instance is running on. This should be clickable to navigate
to a Cell view showing Cell information and metrics.

FIGURE 8.9: CELL COLUMN ON APPLICATION INSTANCE TAB AFTER CONNECTING STRATOS METRICS

On the view for an Application there should be a new Metrics tab that shows Application
metrics.

144 Connecting Stratos Metrics SUSE Cloud Applic… 2.1.1

FIGURE 8.10: APPLICATION METRICS TAB AFTER CONNECTING STRATOS METRICS

On the Kubernetes views, views such as the Node view should show an additional Metrics
tab with metric information.

FIGURE 8.11: NODE METRICS ON THE STRATOS KUBERNETES VIEW

145 Connecting Stratos Metrics SUSE Cloud Applic… 2.1.1

9 Eirini

Eirini, an alternative to Diego, is a scheduler for the Cloud Foundry Application Runtime (CFAR)
that runs Cloud Foundry user applications in Kubernetes. For details about Eirini, see https://

www.cloudfoundry.org/project-eirini/ and http://eirini.cf

Different schedulers and stacks have different memory requirements for applications. Not every
combination is tested so there is no universal memory setting for Cloud Application Platform,
and because it depends on the application deployed, it is up to the user to adjust the setting
based on their application.

9.1 Limitations and Other Considerations

When using Eirini, it is important to take into consideration:

If you are upgrading from SUSE Cloud Application Platform 2.0.1 to 2.1.0 and plan to
convert from Diego to Eirini, please upgrade your Diego environment to SUSE Cloud Ap-
plication Platform 2.1.0 rst and then migrate to Eirini as the earlier CAP versions relied
a technical preview version of Eirini.
In this situation, your current applications relying on the cflinuxfs3 stack need to be
converted to the sle15 stack. You can re-push your applications with cf push APP_NAME
-s sle15 to do so, otherwise your applications will crash on Eirini.

Applications on Eirini will require slightly more memory than on Diego. From testing, add
an additional 32 MB to your application's manifest. The increase may vary, depending on
your application.

TCP routing is not available in Eirini deployments at this time.

Eirini requires the k8s-metrics-server to be installed on the Kubernetes environment
where SUSE Cloud Application Platform is installed in order for Stratos Metrics to work.

Stratos Metrics will not show disk stats on Eirini.

When there is a Kubernetes outage, Eirini will not automatically restart applications upon
its return. You will need to manually start them up at present.

146 Limitations and Other Considerations SUSE Cloud Applic… 2.1.1

https://www.cloudfoundry.org/project-eirini/
https://www.cloudfoundry.org/project-eirini/
http://eirini.cf

9.2 Enabling Eirini

1. To enable Eirini, and disable Diego, add the following to your kubecf-config-val-
ues.yaml le.

features:
 eirini:
 enabled: true

When Eirini is enabled, both features.suse_default_stack and fea-

tures.suse_buildpacks must be enabled as well. A cinuxfs3 Eirini image is current-
ly not available, and the SUSE stack must be used. By default, both the SUSE stack and
buildpacks are enabled.

Note

After enabling Eirini, you will still see the diego-api pod. This is normal
behavior because the Diego pod has a component required by Eirini.

Eirini will only work on a cluster that has the parameter --cluster-domain
set to cluster.local .

2. Deploy kubecf .
Refer to the following for platform-specific instructions:

For SUSE® CaaS Platform, see Chapter 4, Deploying SUSE Cloud Application Platform on

SUSE CaaS Platform.

For Microsoft Azure Kubernetes Service, see Chapter 5, Deploying SUSE Cloud Application

Platform on Microsoft Azure Kubernetes Service (AKS).

For Amazon Elastic Kubernetes Service, see Chapter 6, Deploying SUSE Cloud Application

Platform on Amazon Elastic Kubernetes Service (EKS).

For Google Kubernetes Engine, see Chapter 7, Deploying SUSE Cloud Application Platform

on Google Kubernetes Engine (GKE).

3. In order for Eirini to report application metrics, Metrics Server (link xlink:href="http-
s://github.com/kubernetes-sigs/metrics-server"/> must be installed.

147 Enabling Eirini SUSE Cloud Applic… 2.1.1

Note that --kubelet-insecure-tls is not recommended for production usage, but can
be useful in test clusters with self-signed Kubelet serving certificates. For production, use
--tls-private-key-file .

tux > helm install metrics-server stable/metrics-server --set args[0]="--kubelet-
preferred-address-types=InternalIP" --set args[1]="--kubelet-insecure-tls"

148 Enabling Eirini SUSE Cloud Applic… 2.1.1

10 Deploying SUSE Cloud Application Platform Using
Terraform

Important
Before you start deploying SUSE Cloud Application Platform, review the following doc-
uments:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

In addition to the manual deployment methods mentioned earlier in this guide, operators have
the option to deploy SUSE Cloud Application Platform on AWS, Azure, or GCP using Terraform.
The Terraform scripts will deploy the entirety of SUSE Cloud Application Platform, including
KubeCF, cf-operator, Stratos, and Stratos Metrics. Operators can deploy using Terraform by
following the instructions from https://github.com/SUSE/cap-terraform .

149 SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://github.com/SUSE/cap-terraform

11 Setting Up a Registry for an Air Gapped Environ-
ment

Important
Before you start deploying SUSE Cloud Application Platform, review the following doc-
uments:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

Cloud Application Platform, which consists of Docker images, is deployed to a Kubernetes cluster
through Helm. These images are hosted on a Docker registry at registry.suse.com . In an
air gapped environment, registry.suse.com will not be accessible. You will need to create a
registry, and populate it will the images used by Cloud Application Platform.

This chapter describes how to load your registry with the necessary images to deploy Cloud
Application Platform in an air gapped environment.

11.1 Prerequisites
The following prerequisites are required:

The Docker Command Line. See https://docs.docker.com/engine/reference/command-

line/cli/ for more information.

A Docker registry has been created in your air gapped environment. Refer to the Docker
documentation at https://docs.docker.com/registry/ for instructions.

11.2 Mirror Images to Registry
All the Cloud Application Platform Helm charts include an imagelist.txt le that lists all im-
ages from the registry.suse.com registry under the cap organization. They can be mirrored
to a local registry with the following script.

150 Prerequisites SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/registry/

Replace the value of MIRROR with your registry's domain.

#!/bin/bash

MIRROR=MY_REGISTRY.COM

set -ex

function mirror {
 CHART=$1
 CHARTDIR=$(mktemp -d)
 helm fetch suse/$1 --untar --untardir=${CHARTDIR}
 IMAGES=$(cat ${CHARTDIR}/**/imagelist.txt)
 for IMAGE in ${IMAGES}; do
 echo $IMAGE
 docker pull registry.suse.com/cap/$IMAGE
 docker tag registry.suse.com/cap/$IMAGE $MIRROR/cap/$IMAGE
 docker push $MIRROR/cap/$IMAGE
 done
 docker save -o ${CHART}-images.tar.gz \
 $(perl -E "say qq(registry.suse.com/cap/\$_) for @ARGV" ${IMAGES})
 rm -r ${CHARTDIR}
}

mirror cf-operator
mirror kubecf
mirror console
mirror metrics
mirror minibroker

The script above will both mirror to a local registry and save the images in a local tarball that
can be restored with docker load foo-images.tgz . In general only one of these mechanisms
will be needed.

Also take note of the following regarding the script provided above.

The nginx-ingress chart is not supported by this mechanism because it is not part of the
cap organization (and cannot be configured with the kube.registry.hostname setting
at deploy time either).
Instead manually parse the Helm chart for the image names and do a manual docker pull
&& docker tag && docker push on them.

Before deploying Cloud Application Platform using helm install , ensure the following in
your kubecf-config-values.yaml has been updated to point to your registry, and not reg-
istry.suse.com .

151 Mirror Images to Registry SUSE Cloud Applic… 2.1.1

kube:
 registry:
 # example registry domain
 hostname: "MY_REGISTRY.COM"
 username: ""
 password: ""
 organization: "cap"

152 Mirror Images to Registry SUSE Cloud Applic… 2.1.1

12 SUSE Private Registry

Important
Before you start deploying SUSE Cloud Application Platform, review the following doc-
uments:

SUSE Cloud Application Platform Release Notes (https://www.suse.com/re-

leasenotes/x86_64/SUSE-CAP/2.0/)

Chapter 3, Deployment and Administration Notes

SUSE Cloud Application Platform offers SUSE Private Registry as an Open Container Initiative
(OCI) registry solution to store, replicate, manage, and secure OCI images and artifacts. Opera-
tors who opt to use SUSE Private Registry can follow the configuration and installation instruc-
tions from https://documentation.suse.com/sbp/all/single-html/SBP-Private-Registry .

153 SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2.0/
https://documentation.suse.com/sbp/all/single-html/SBP-Private-Registry

III SUSE Cloud Application Platform
Administration

13 Upgrading SUSE Cloud Application Platform 155

14 Configuration Changes 158

15 Creating Admin Users 160

16 Managing Passwords 163

17 Accessing the UAA User Interface 165

18 Container Memory Limits and Requests 167

19 Cloud Controller Database Secret Rotation 171

20 Rotating Automatically Generated Secrets 174

21 Backup and Restore 176

22 Service Brokers 187

23 App-AutoScaler 195

24 Integrating CredHub with SUSE Cloud Application Platform 201

25 Buildpacks 204

13 Upgrading SUSE Cloud Application Platform

SUSE Cloud Application Platform upgrades are delivered as container images from the SUSE
registry and applied with Helm.

For additional upgrade information, always review the release notes published at https://

www.suse.com/releasenotes/x86_64/SUSE-CAP/2/ .

13.1 Important Considerations

Before performing an upgrade, be sure to take note of the following:

Perform Upgrades in Sequence

Cloud Application Platform only supports upgrading releases in sequential order. If there
are any intermediate releases between your current release and your target release, they
must be installed. Skipping releases is not supported.

Preserve Helm Value Changes during Upgrades

During a helm upgrade , always ensure your kubecf-config-values.yaml le is passed.
This will preserve any previously set Helm values while allowing additional Helm value
changes to be made.

helm rollback Is Not Supported

helm rollback is not supported in SUSE Cloud Application Platform or in upstream Cloud
Foundry, and may break your cluster completely, because database migrations only run
forward and cannot be reversed. Database schema can change over time. During upgrades
both pods of the current and the next release may run concurrently, so the schema must
stay compatible with the immediately previous release. But there is no way to guarantee
such compatibility for future upgrades. One way to address this is to perform a full raw
data backup and restore. (See Section 21.2, “Disaster Recovery through Raw Data Backup and

Restore”)

155 Important Considerations SUSE Cloud Applic… 2.1.1

https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2/
https://www.suse.com/releasenotes/x86_64/SUSE-CAP/2/

13.2 Upgrading SUSE Cloud Application Platform
The supported upgrade method is to install all upgrades, in order. Skipping releases is not sup-
ported. This table matches the Helm chart versions to each release:

CAP Re-
lease

cf-
opera-
tor
Helm
Chart
Version

KubeCF
Helm
Chart
Version

Stratos
Helm
Chart
Version

Stratos
Metrics
Helm
Chart
Version

Mini-
mum
Kuber-
netes
Version
Re-
quired

CF API
Imple-
mented

Known
Com-
patible
CF CLI
Version

CF CLI
URL

2.1.1
(current
release)

7.2.1+0.gae-
b6ef3

2.7.13 4.4.1 1.3.0 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

2.1.0 6.1.17+0.gec409fd72.5.8 4.2.0 1.3.0 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

2.0.1 4.5.13+.gd47387122.2.3 4.0.1 1.2.1 1.14 2.144.0 6.49.0 https://

github.com/

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

2.0 4.5.6+0.gf-
fc6f942

2.2.2 3.2.1 1.2.1 1.14 2.144.0 6.49.0 https://

github.com/

156 Upgrading SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0

CAP Re-
lease

cf-
opera-
tor
Helm
Chart
Version

KubeCF
Helm
Chart
Version

Stratos
Helm
Chart
Version

Stratos
Metrics
Helm
Chart
Version

Mini-
mum
Kuber-
netes
Version
Re-
quired

CF API
Imple-
mented

Known
Com-
patible
CF CLI
Version

CF CLI
URL

cloud-

foundry/cli/

releas-

es/tag/

v6.49.0

Use helm list to see the version of your installed release . Perform sequential upgrades until
you reach the desired SUSE Cloud Application Platform release.

The example procedure below demonstrates how to upgrade to the current release. If you are not
upgrading to the current release, replace the version with the version you intend to upgrade to.

1. Begin by upgrading cf-operator.

tux > helm upgrade cf-operator suse/cf-operator \
--namespace cf-operator \
--set "global.singleNamespace.name=kubecf" \
--version 7.2.1+0.gaeb6ef3

2. Wait until cf-operator is successfully upgraded before proceeding. Monitor the status of
your cf-operator upgrade using the watch command.

tux > watch --color 'kubectl get pods --namespace cf-operator'

3. When the cf-operator upgrade is completed, upgrade KubeCF.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

4. Monitor the status of your KubeCF upgrade using the watch command.

tux > watch --color 'kubectl get pods --namespace kubecf'

157 Upgrading SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0
https://github.com/cloudfoundry/cli/releases/tag/v6.49.0

14 Configuration Changes

After the initial deployment of Cloud Application Platform, any changes made to your Helm
chart values, whether through your kubecf-config-values.yaml le or directly using Helm's
--set ag, are applied using the helm upgrade command.

Warning: Do Not Make Changes to Pod Counts During a Version
Upgrade
The helm upgrade command can be used to apply configuration changes as well as
perform version upgrades to Cloud Application Platform. A change to the pod count con-
figuration should not be applied simultaneously with a version upgrade. Sizing changes
should be made separately, either before or after, from a version upgrade.

14.1 Configuration Change Example

Consider an example where you want to enable the App-AutoScaler.

The entry below is added to your kubecf-config-values.yaml le and set with enabled set
to true .

features:
 autoscaler:
 enabled: true

The changed is then applied with the helm upgrade command. This example assumes the
suse/kubecf Helm chart deployed was named kubecf .

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

When all pods are in a READY state, the configuration change will also be reflected. Assuming
the chart was deployed to the kubecf namespace, progress can be monitored with:

tux > watch --color 'kubectl get pods --namespace kubecf'

158 Configuration Change Example SUSE Cloud Applic… 2.1.1

14.2 Other Examples
The following are other examples of using helm upgrade to make configuration changes:

Secrets rotation (see Chapter 20, Rotating Automatically Generated Secrets)

Enabling additional services (see Section 23.2, “Enabling and Disabling the App-AutoScaler Ser-

vice”)

159 Other Examples SUSE Cloud Applic… 2.1.1

15 Creating Admin Users

This chapter provides an overview on how to create additional administrators for your Cloud
Application Platform cluster.

15.1 Prerequisites

The following prerequisites are required in order to create additional Cloud Application Platform
cluster administrators:

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

uaac , the Cloud Foundry uaa command line client (UAAC). See https://docs.cloud-

foundry.org/uaa/uaa-user-management.html for more information and installation in-
structions.
On SUSE Linux Enterprise systems, ensure the ruby-devel and gcc-c++ packages have
been installed before installing the cf-uaac gem.

tux > sudo zypper install ruby-devel gcc-c++

160 Prerequisites SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

15.2 Creating an Example Cloud Application Platform
Cluster Administrator
The following example demonstrates the steps required to create a new administrator user for
your Cloud Application Platform cluster. Note that creating administrator accounts must be done
using the UAAC and cannot be done using the cf CLI.

1. Use UAAC to target your uaa server.

tux > uaac target --skip-ssl-validation https://uaa.example.com

2. Authenticate to the uaa server as admin using the uaa_admin_client_secret set in
your kubecf-config-values.yaml le.

tux > uaac token client get admin --secret PASSWORD

3. Create a new user:

tux > uaac user add NEW_ADMIN --password PASSWORD --emails new-admin@example.com --
zone kubecf

4. Add the new user to the following groups to grant administrator privileges to the cluster
(see https://docs.cloudfoundry.org/concepts/architecture/uaa.html#uaa-scopes for infor-
mation on privileges provided by each group):

tux > uaac member add scim.write NEW_ADMIN --zone kubecf

tux > uaac member add scim.read NEW_ADMIN --zone kubecf

tux > uaac member add cloud_controller.admin NEW_ADMIN --zone kubecf

tux > uaac member add clients.read NEW_ADMIN --zone kubecf

tux > uaac member add clients.write NEW_ADMIN --zone kubecf

tux > uaac member add doppler.firehose NEW_ADMIN --zone kubecf

tux > uaac member add routing.router_groups.read NEW_ADMIN --zone kubecf

tux > uaac member add routing.router_groups.write NEW_ADMIN --zone kubecf

5. Log into your Cloud Application Platform deployment as the newly created administrator:

tux > cf api --skip-ssl-validation https://api.example.com

161

Creating an Example Cloud Application Platform Cluster Administrator SUSE Cloud Ap-

plic… 2.1.1

https://docs.cloudfoundry.org/concepts/architecture/uaa.html#uaa-scopes

tux > cf login -u NEW_ADMIN

6. The following commands can be used to verify the new administrator account has suffi-
cient permissions:

tux > cf create-shared-domain TEST_DOMAIN.COM

tux > cf set-org-role NEW_ADMIN org OrgManager

tux > cf create-buildpack TEST_BUILDPACK /tmp/ruby_buildpack-cached-sle15-
v1.7.30.1.zip 1

If the account has sufficient permissions, you should not receive any authorization message
similar to the following:

FAILED
Server error, status code: 403, error code: 10003, message: You are not authorized
 to perform the requested action

See https://docs.cloudfoundry.org/cf-cli/cf-help.html for other administrator-specific com-
mands that can be run to confirm sufficient permissions are provided.

162

Creating an Example Cloud Application Platform Cluster Administrator SUSE Cloud Ap-

plic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/cf-help.html

16 Managing Passwords

The various components of SUSE Cloud Application Platform authenticate to each other using
passwords that are automatically managed by the Cloud Application Platform secrets-generator.
The only passwords managed by the cluster administrator are passwords for human users. The
administrator may create and remove user logins, but cannot change user passwords.

The cluster administrator password is initially defined in the deployment's values.yaml
le with CLUSTER_ADMIN_PASSWORD

The Stratos Web UI provides a form for users, including the administrator, to change their
own passwords

User logins are created (and removed) with the Cloud Foundry Client, cf CLI

16.1 Password Management with the Cloud Foundry
Client
The administrator cannot change other users' passwords. Only users may change their own
passwords, and password changes require the current password:

tux > cf passwd
Current Password>
New Password>
Verify Password>
Changing password...
OK
Please log in again

The administrator can create a new user:

tux > cf create-user NEW_USER PASSWORD

and delete a user:

tux > cf delete-user NEW_USER PASSWORD

Use the cf CLI to assign space and org roles. Run cf help -a for a complete command listing,
or see Creating and Managing Users with the cf CLI (https://docs.cloudfoundry.org/adminguide/cli-

user-management.html) .

163 Password Management with the Cloud Foundry Client SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/adminguide/cli-user-management.html
https://docs.cloudfoundry.org/adminguide/cli-user-management.html

16.2 Changing User Passwords with Stratos
The Stratos Web UI provides a form for changing passwords on your profile page. Click the
overflow menu button on the top right to access your profile, then click the edit button on your
profile page. You can manage your password and username on this page.

FIGURE 16.1: STRATOS PROFILE PAGE

FIGURE 16.2: STRATOS EDIT PROFILE PAGE

164 Changing User Passwords with Stratos SUSE Cloud Applic… 2.1.1

17 Accessing the UAA User Interface

After UAA is deployed successfully, users will not be able to log in to the UAA user interface
(UI) with the admin user and the UAA_ADMIN_CLIENT_SECRET credentials. This user is only an
OAuth client that is authorized to call UAA REST APIs and will need to create a separate user
in the UAA server by using the UAAC utility.

17.1 Prerequisites
The following prerequisites are required in order to access the UAA UI.

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

uaac , the Cloud Foundry uaa command line client (UAAC). See https://docs.cloud-

foundry.org/uaa/uaa-user-management.html for more information and installation in-
structions.
On SUSE Linux Enterprise systems, ensure the ruby-devel and gcc-c++ packages have
been installed before installing the cf-uaac gem.

tux > sudo zypper install ruby-devel gcc-c++

UAA has been successfully deployed.

17.2 Procedure

1. Use UAAC to target your uaa server.

165 Prerequisites SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html
https://docs.cloudfoundry.org/uaa/uaa-user-management.html

tux > uaac target --skip-ssl-validation https://uaa.example.com

2. Authenticate to the uaa server as admin using the uaa_admin_client_secret set in
your kubecf-config-values.yaml le.

tux > uaac token client get admin --secret PASSWORD

3. Create a new user.

tux > uaac user add NEW-USER -p PASSWORD --emails NEW-USER-EMAIL

4. Go to the UAA UI at https://uaa.example.com:2793/login , replacing example.com with
your domain.

5. Log in using the the newly created user. Use the username and password as the credentials.

166 Procedure SUSE Cloud Applic… 2.1.1

https://uaa.example.com:2793/login

18 Container Memory Limits and Requests

In SUSE Cloud Application Platform, containers have predefined memory limits and request
sizes. Depending on the workload, these may need to be adjusted in some cases.

18.1 Enabling and Disabling Memory Limits and
Request Sizes

By default, memory limits and request sizes are enabled. To disable it, add the following block
to your kubecf-config-values.yaml le.

features:
 memory_limits:
 enabled: false

To enable memory limits again, update the above block in your kubecf-config-values.yaml
so that enabled is set to true .

After making the change above, and any other configuration changes, apply the update by doing
the following:

For an initial deployment, continue to the deployment steps for your platform:

For SUSE CaaS Platform, see Section 4.13, “Deploying SUSE Cloud Application Platform”.

For Microsoft AKS, see Section 5.13, “Deploying SUSE Cloud Application Platform”.

For Amazon EKS, see Section 6.13, “Deploying SUSE Cloud Application Platform”.

For Google GKE, see Section 7.14, “Deploying SUSE Cloud Application Platform”.

For an existing deployment, use helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

167 Enabling and Disabling Memory Limits and Request Sizes SUSE Cloud Applic… 2.1.1

18.2 Configuring Memory Limits and Request Sizes
Configuring memory limits and request sizes requires that feature.memory_limits is
enabled. The default memory limits and request sizes can be found by examining
the resources block at https://github.com/SUSE/kubernetes-charts-suse-com/blob/master/sta-

ble/kubecf/config/resources.yaml . To configure memory limits and request sizes, add a re-
sources block to your kubecf-config-values.yaml . It contains a mapping of instance groups
to jobs to processes. The process then contains a resource definition with limits and requests. All
values are integers and represent the number of megabytes (Mi) for the given limit or request.
A fully expanded tree looks like:

resources:
 some_ig:
 some_job:
 some_process:
 memory:
 limit: ~
 request: ~

Each level can define a $defaults resource definition that will be applied to all processes below
it, that don't have their own definition (or a default further down the tree closer to them):

resources:
 '$defaults':
 memory:
 limit: ~
 request: ~
 some_ig:
 '$defaults': { ... }
 some_job:
 '$defaults': { ... }
 some_process: ~

For convenience a $defaults value can be just an integer. This

resources:
 '$defaults': 32

is a shortcut for:

resources:
 '$defaults': {memory: {limit: 32, request: ~}, cpu: {limit: ~, request:~}}

In addition, an instance group, job, or process can also be set to just an integer. This:

resources:

168 Configuring Memory Limits and Request Sizes SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/kubernetes-charts-suse-com/blob/master/stable/kubecf/config/resources.yaml
https://github.com/SUSE/kubernetes-charts-suse-com/blob/master/stable/kubecf/config/resources.yaml

 some_ig: 32

is a shortcut for:

resources:
 some_ig:
 $defaults': 32

Of course this means that any lower level jobs and processes will have to share this specific
resource definition, as there is no way to explicitly enumerate the jobs or processes when the
value is just an integer and not a map.

Note that there is a difference between this

resources:
 '$defaults': 32
 some_ig: 64

and this:

resources:
 '$defaults': 32
 some_ig:
 some_job: 64

The former definitions sets the memory limit of all jobs under some_ig while the latter only
specifies the limit for some_job . If there are more jobs in some_ig , then they will use the
global limit (32) and only some_job will use the specific limit (64).

Memory requests will have a calculated default value, which is a configurable percentage of
the limit, at least some configurable minimum value, and never higher than the limit itself.
The default is always at least a minimum value, but never larger than the limit itself. These
defaults can be configured by using features.memory_limits.default_request_minimum
and features.memory_limits.default_request_in_percent . The following is an example
configuration where the example values are the respective defaults.

features:
 memory_limits:
 default_request_minimum: 32
 default_request_in_percent: 25

169 Configuring Memory Limits and Request Sizes SUSE Cloud Applic… 2.1.1

After making the change above, and any other configuration changes, apply the update by doing
the following:

For an initial deployment, continue to the deployment steps for your platform:

For SUSE CaaS Platform, see Section 4.13, “Deploying SUSE Cloud Application Platform”.

For Microsoft AKS, see Section 5.13, “Deploying SUSE Cloud Application Platform”.

For Amazon EKS, see Section 6.13, “Deploying SUSE Cloud Application Platform”.

For Google GKE, see Section 7.14, “Deploying SUSE Cloud Application Platform”.

For an existing deployment, use helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

170 Configuring Memory Limits and Request Sizes SUSE Cloud Applic… 2.1.1

19 Cloud Controller Database Secret Rotation

The Cloud Controller Database (CCDB) encrypts sensitive information like passwords. The en-
cryption key is generated when KubeCF is deployed. If it is compromised or needs to be rotated
for any other reason, new keys can be added. Note that existing encrypted information will not
be updated. The encrypted information must be set again to have them re-encrypted with the
new key. The old key cannot be dropped until all references to it are removed from the database.

Updating these secrets is a manual process that involves decrypting the current contents of
the database using the old key and re-encrypting the contents using a new key. The following
procedure outlines how this is done.

1. For each label under key_labels , KubeCF will generate an encryption key. The curren-
t_key_label indicates which key is currently being used.

ccdb:
 encryption:
 rotation:
 key_labels:
 - encryption_key_0
 current_key_label: encryption_key_0

2. In order to rotate the CCDB encryption key, add a new label to key_labels (keeping the
old labels), and mark the current_key_label with the newly added label:

ccdb:
 encryption:
 rotation:
 key_labels:
 - encryption_key_0
 - encryption_key_1
 current_key_label: encryption_key_1

3. Save the above information into a le, for example rotate-secret.yaml , and perform
the rotation:

a. Update the KubeCF Helm installation:

tux > helm upgrade kubecf --namespace kubecf --values rotate-secret.yaml --
reuse-values

171 SUSE Cloud Applic… 2.1.1

b. After Helm finishes its updates, trigger the rotate-cc-database-key errand:

tux > kubectl patch qjob kubecf-rotate-cc-database-key \
--namespace kubecf \
--type merge \
--patch '{"spec":{"trigger":{"strategy":"now"}}}'

19.1 Tables with Encrypted Information
The CCDB contains several tables with encrypted information as follows:

apps

Environment variables

buildpack_lifecycle_buildpacks

Buildpack URLs may contain passwords

buildpack_lifecycle_data

Buildpack URLs may contain passwords

droplets

May contain Docker registry passwords

env_groups

Environment variables

packages

May contain Docker registry passwords

service_bindings

Contains service credentials

service_brokers

Contains service credentials

service_instances

Contains service credentials

service_keys

Contains service credentials

172 Tables with Encrypted Information SUSE Cloud Applic… 2.1.1

tasks

Environment variables

19.1.1 Update Existing Data with New Encryption Key

To ensure the encryption key is updated for existing data, the command (or its update- equiv-
alent) can be run again with the same parameters. Some commands need to be deleted/recre-
ated to update the label.

apps

Run cf set-env again

buildpack_lifecycle_buildpacks, buildpack_lifecycle_data, droplets

cf restage the app

packages

cf delete , then cf push the app (Docker apps with registry password)

env_groups

Run cf set-staging-environment-variable-group or cf set-running-environ-
ment-variable-group again

service_bindings

Run cf unbind-service and cf bind-service again

service_brokers

Run cf update-service-broker with the appropriate credentials

service_instances

Run cf update-service with the appropriate credentials

service_keys

Run cf delete-service-key and cf create-service-key again

tasks

While tasks have an encryption key label, they are generally meant to be a one-o event,
and left to run to completion. If there is a task still running, it could be stopped with cf
terminate-task , then run again with cf run-task .

173 Update Existing Data with New Encryption Key SUSE Cloud Applic… 2.1.1

20 Rotating Automatically Generated Secrets

Cloud Application Platform uses a number of automatically generated secrets (passwords and
certificates) for use internally provided by cf-operator. This removes the burden from human
operators while allowing for secure communication. From time to time, operators may wish to
change such secrets, either manually or on a schedule. This is called rotating a secret.

20.1 Finding Secrets
Retrieve the list of all secrets maintained by KubeCF:

tux > kubectl get quarkssecret --namespace kubecf

To see information about a specific secret, for example the NATS password:

tux > kubectl get quarkssecret --namespace kubecf kubecf.var-nats-password --output yaml

Note that each quarkssecret has a corresponding regular Kubernetes secret that it controls:

tux > kubectl get secret --namespace kubecf
tux > kubectl get secret --namespace kubecf kubecf.var-nats-password --output yaml

20.2 Rotating Specific Secrets
To rotate a secret, for example kubecf.var-nats-password :

1. Create a YAML le for a ConfigMap of the form:

apiVersion: v1
kind: ConfigMap
metadata:
 name: rotate-kubecf.var-nats-password
 labels:
 quarks.cloudfoundry.org/secret-rotation: "true"
data:
 secrets: '["kubecf.var-nats-password"]'

The name of the ConfigMap can be anything allowed by Kubernetes syntax but we recom-
mend using a name derived from the name of the secret itself.

174 Finding Secrets SUSE Cloud Applic… 2.1.1

Also, the example above rotates only a single secret but the data.secrets key accepts
an array of secret names, allowing simultaneous rotation of many secrets.

2. Apply the ConfigMap:

tux > kubectl apply --namespace kubecf -f /path/to/your/yaml/file

The result can be seen in the cf-operator's log.

3. After the rotation is complete, that is after secrets have been changed and all affected pods
have been restarted, delete the config map again:

tux > kubectl delete --namespace kubecf -f /path/to/your/yaml/file

175 Rotating Specific Secrets SUSE Cloud Applic… 2.1.1

21 Backup and Restore

21.1 Backup and Restore Using cf-plugin-backup
cf-plugin-backup backs up and restores your Cloud Controller Database (CCDB), using the
Cloud Foundry command line interface (cf CLI). (See Section 26.1, “Using the cf CLI with SUSE Cloud

Application Platform”.)

cf-plugin-backup is not a general-purpose backup and restore plugin. It is designed to save
the state of a KubeCF instance before making changes to it. If the changes cause problems,
use cf-plugin-backup to restore the instance from scratch. Do not use it to restore to a non-
pristine KubeCF instance. Some of the limitations for applying the backup to a non-pristine
KubeCF instance are:

Application configuration is not restored to running applications, as the plugin does not
have the ability to determine which applications should be restarted to load the restored
configurations.

User information is managed by the User Account and Authentication (uaa) Server, not
the Cloud Controller (CC). As the plugin talks only to the CC it cannot save full user infor-
mation, nor restore users. Saving and restoring users must be performed separately, and
user restoration must be performed before the backup plugin is invoked.

The set of available stacks is part of the KubeCF instance setup, and is not part of the
CC configuration. Trying to restore applications using stacks not available on the target
KubeCF instance will fail. Setting up the necessary stacks must be performed separately
before the backup plugin is invoked.

Buildpacks are not saved. Applications using custom buildpacks not available on the target
KubeCF instance will not be restored. Custom buildpacks must be managed separately, and
relevant buildpacks must be in place before the affected applications are restored.

21.1.1 Installing the cf-plugin-backup

Download the plugin from https://github.com/SUSE/cf-plugin-backup/releases .

Then install it with cf , using the name of the plugin binary that you downloaded:

tux > cf install-plugin cf-plugin-backup-1.0.8.0.g9e8438e.linux-amd64

176 Backup and Restore Using cf-plugin-backup SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/cf-plugin-backup/releases

 Attention: Plugins are binaries written by potentially untrusted authors.
 Install and use plugins at your own risk.
 Do you want to install the plugin
 backup-plugin/cf-plugin-backup-1.0.8.0.g9e8438e.linux-amd64? [yN]: y
 Installing plugin backup...
 OK
 Plugin backup 1.0.8 successfully installed.

Verify installation by listing installed plugins:

tux > cf plugins
 Listing installed plugins...

 plugin version command name command help
 backup 1.0.8 backup-info Show information about the current snapshot
 backup 1.0.8 backup-restore Restore the CloudFoundry state from a
 backup created with the snapshot command
 backup 1.0.8 backup-snapshot Create a new CloudFoundry backup snapshot
 to a local file

 Use 'cf repo-plugins' to list plugins in registered repos available to install.

21.1.2 Using cf-plugin-backup

The plugin has three commands:

backup-info

backup-snapshot

backup-restore

View the online help for any command, like this example:

tux > cf backup-info --help
 NAME:
 backup-info - Show information about the current snapshot

 USAGE:
 cf backup-info

Create a backup of your SUSE Cloud Application Platform data and applications. The command
outputs progress messages until it is completed:

tux > cf backup-snapshot

177 Using cf-plugin-backup SUSE Cloud Applic… 2.1.1

 2018/08/18 12:48:27 Retrieving resource /v2/quota_definitions
 2018/08/18 12:48:30 org quota definitions done
 2018/08/18 12:48:30 Retrieving resource /v2/space_quota_definitions
 2018/08/18 12:48:32 space quota definitions done
 2018/08/18 12:48:32 Retrieving resource /v2/organizations
 [...]

Your Cloud Application Platform data is saved in the current directory in cf-backup.json ,
and application data in the app-bits/ directory.

View the current backup:

tux > cf backup-info
 - Org system

Restore from backup:

tux > cf backup-restore

There are two additional restore options: --include-security-groups and --include-quo-
ta-definitions .

21.1.3 Scope of Backup

The following table lists the scope of the cf-plugin-backup backup. Organization and space
users are backed up at the SUSE Cloud Application Platform level. The user account in uaa /
LDAP, the service instances and their application bindings, and buildpacks are not backed up.
The sections following the table goes into more detail.

Scope Restore

Orgs Yes

Org auditors Yes

Org billing-manager Yes

Quota definitions Optional

Spaces Yes

Space developers Yes

Space auditors Yes

178 Scope of Backup SUSE Cloud Applic… 2.1.1

Scope Restore

Space managers Yes

Apps Yes

App binaries Yes

Routes Yes

Route mappings Yes

Domains Yes

Private domains Yes

Stacks not available

Feature ags Yes

Security groups Optional

Custom buildpacks No

cf backup-info reads the cf-backup.json snapshot le found in the current working direc-
tory, and reports summary statistics on the content.

cf backup-snapshot extracts and saves the following information from the CC into a cf-
backup.json snapshot le. Note that it does not save user information, but only the references
needed for the roles. The full user information is handled by the uaa server, and the plugin
talks only to the CC. The following list provides a summary of what each plugin command does.

Org Quota Definitions

Space Quota Definitions

Shared Domains

Security Groups

Feature Flags

Application droplets (zip les holding the staged app)

Orgs

Spaces

179 Scope of Backup SUSE Cloud Applic… 2.1.1

Applications

Users' references (role in the space)

cf backup-restore reads the cf-backup.json snapshot le found in the current working
directory, and then talks to the targeted KubeCF instance to upload the following information,
in the specified order:

Shared domains

Feature ags

Quota Definitions (i --include-quota-definitions)

Orgs

Space Quotas (i --include-quota-definitions)

UserRoles

(private) Domains

Spaces

UserRoles

Applications (+ droplet)

Bound Routes

Security Groups (i --include-security-groups)

The following list provides more details of each action.

Shared Domains

Attempts to create domains from the backup. Existing domains are retained, and not over-
written.

Feature Flags

Attempts to update ags from the backup.

Quota Definitions

Existing quotas are overwritten from the backup (deleted, re-created).

180 Scope of Backup SUSE Cloud Applic… 2.1.1

Orgs

Attempts to create orgs from the backup. Attempts to update existing orgs from the backup.

Space Quota Definitions

Existing quotas are overwritten from the backup (deleted, re-created).

User roles

Expect the referenced user to exist. Will fail when the user is already associated with the
space, in the given role.

(private) Domains

Attempts to create domains from the backup. Existing domains are retained, and not over-
written.

Spaces

Attempts to create spaces from the backup. Attempts to update existing spaces from the
backup.

User roles

Expect the referenced user to exist. Will fail when the user is already associated with the
space, in the given role.

Apps

Attempts to create apps from the backup. Attempts to update existing apps from the backup
(memory, instances, buildpack, state, ...)

Security groups

Existing groups are overwritten from the backup

21.2 Disaster Recovery through Raw Data Backup
and Restore

An existing SUSE Cloud Application Platform deployment's data can be migrated to a new SUSE
Cloud Application Platform deployment through a backup and restore of its raw data. The
process involves performing a backup and restore of the kubecf components respectively. This
procedure is agnostic of the underlying Kubernetes infrastructure and can be included as part
of your disaster recovery solution.

181 Disaster Recovery through Raw Data Backup and Restore SUSE Cloud Applic… 2.1.1

21.2.1 Prerequisites
In order to complete a raw data backup and restore, the following are required:

Access to a running deployment of kubecf to create backups with

Access to a new deployment of kubecf (deployed with a kubecf-config-values.yaml
configured according to Step 1 of Section 21.2.4, “Performing a Raw Data Restore”) to perform
the restore to

21.2.2 Scope of Raw Data Backup and Restore
The following lists the data that is included as part of the backup (and restore) procedure:

The Cloud Controller Database (CCDB). In addition to what is encompassed by the CCDB
listed in Section 21.1.3, “Scope of Backup”, this will include service binding data as well.

The Cloud Controller blobstore, which includes the types of binary large object
(blob) les listed below. (See https://docs.cloudfoundry.org/concepts/architecture/cloud-

controller.html#blob-store to learn more about each blob type.)

App Packages

Buildpacks

Resource Cache

Buildpack Cache

Droplets

User data

21.2.3 Performing a Raw Data Backup

Note: Restore to the Same Version
This process is intended for backing up and restoring to a target deployment with the
same version as the source deployment. For example, data from a backup of SUSE Cloud
Application Platform 2.1.1 should be restored to a SUSE Cloud Application Platform 2.1.1
deployment.

182 Prerequisites SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/architecture/cloud-controller.html#blob-store
https://docs.cloudfoundry.org/concepts/architecture/cloud-controller.html#blob-store

Perform the following steps to create a backup of your source SUSE Cloud Application Platform
deployment.

1. Export the blobstore into a le.

tux > kubectl exec --namespace kubecf singleton-blobstore-0 --
tar cfz - --exclude=/var/vcap/store/shared/tmp /var/vcap/store/shared >
blob.tgz

2. The current UAA database configuration does not allow exporting of a mysqldump, so
need to be more permissive.

tux > cat <<EOF | kubectl exec --stdin database-0 --namespace kubecf
-- mysql
SET GLOBAL pxc_strict_mode=PERMISSIVE;
SET GLOBAL
sql_mode='STRICT_ALL_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
set GLOBAL innodb_strict_mode='OFF';
EOF

3. Export the UAA database into a le.

tux > kubectl exec --stdin database-0 --namespace kubecf --
mysqldump uaa > uaadb-src.sql

4. Export the Cloud Controller Database (CCDB) into a le.

tux > kubectl exec --stdin database-0 --namespace kubecf --
mysqldump cloud_controller > ccdb-src.sql

5. Save the CCDB encryption key(s). Adjust the A ag as needed to include all keys.

tux > kubectl exec --stdin --tty --namespace kubecf api-0 -- bash
-c "cat /var/vcap/jobs/cloud_controller_ng/config/cloud_controller_ng.yml | grep
-A 10 db_encryption" > enc_key

183 Performing a Raw Data Backup SUSE Cloud Applic… 2.1.1

21.2.4 Performing a Raw Data Restore

Important: Ensure Access to the Correct Deployment
Working with multiple Kubernetes clusters simultaneously can be confusing. En-
sure you are communicating with the desired cluster by setting $KUBECONFIG

correctly (https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-mul-

tiple-clusters/#set-the-kubeconfig-environment-variable) .

Perform the following steps to restore your backed up data to the target SUSE Cloud Application
Platform deployment.

1. Deploy the target SUSE Cloud Application Platform cluster following the steps for your
platform.

For SUSE® CaaS Platform, see Chapter 4, Deploying SUSE Cloud Application Platform on

SUSE CaaS Platform.

For Microsoft Azure Kubernetes Service, see Chapter 5, Deploying SUSE Cloud Application

Platform on Microsoft Azure Kubernetes Service (AKS).

For Amazon Elastic Kubernetes Service, see Chapter 6, Deploying SUSE Cloud Application

Platform on Amazon Elastic Kubernetes Service (EKS).

For Google Kubernetes Engine, see Chapter 7, Deploying SUSE Cloud Application Platform

on Google Kubernetes Engine (GKE).

2. The current UAA database configuration does not allow importing of a mysqldump, so
needs to be made more permissive.

tux > cat <<EOF | kubectl exec --stdin database-0 --namespace kubecf
-- mysql
SET GLOBAL pxc_strict_mode=PERMISSIVE;
SET GLOBAL
sql_mode='STRICT_ALL_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION';
set GLOBAL innodb_strict_mode='OFF';
EOF

3. Import the UAA database.

tux > kubectl exec --stdin database-0 --namespace kubecf -- mysql
uaa < uaadb-src.sql

184 Performing a Raw Data Restore SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/#set-the-kubeconfig-environment-variable

Verify the import is successful. The output should list the users from the deployment the
backup was taken from.

tux > echo "select username from uaa.users;" | kubectl exec -i
database-0 --namespace kubecf -- mysql

4. Import the blobstore and restart the pod for changes to take affect.

tux > kubectl exec --stdin singleton-blobstore-0 --namespace kubecf -- tar xfz - -C
/ < blob.tgz

tux > kubectl delete pod --namespace kubecf singleton-blobstore-0

5. Drop the current CCDB and create a new instance.

tux > echo "drop database cloud_controller; create database
cloud_controller;" | \
 kubectl exec -i database-0 --namespace kubecf -- mysql

6. Import the CCDB.

tux > kubectl exec --stdin database-0 --namespace kubecf -- mysql
cloud_controller < ccdb-src.sql

7. Update the encryption key.

a. Create a YAML configuration le containing the encryption key information. The
le structure should look similar to the following example, called enc_key_val-
ues.yaml . Replace the example values using the values from the enc_key le gen-
erated earlier. Depending on the state of the cluster the encryption keys were re-
trieved from, the key labels may differ and not be encryption_key_0 .

ccdb:
 encryption:
 rotation:
 key_labels:
 - encryption_key_0
 current_key_label: encryption_key_0

credentials:
 cc_db_encryption_key:
elqdi7TARO6NYELa9cUr6WwMYIvqaG4U0nMyfL1loDYi02C1Rrneov6fxxfd64je
 ccdb_key_label_encryption_key_0:
tPhZZbMNYVWKs0II8e8pMxsJMokeReUrJAnQNdLaXEheTZVv5OpMe7vdyThhrkEP

185 Performing a Raw Data Restore SUSE Cloud Applic… 2.1.1

In the above, the key credentials.ccdb_key_label_encryption_key_0 is based
on the generic form credentials.ccdb_key_label_XYZ . The XYZ should be re-
placed with the value of the current_key_label .
For example, if the current_key_label is new_key , then credentials.ccd-
b_key_label_new_key should be used.

b. Perform a helm upgrade for the changes to take affect.

tux > helm upgrade kubecf suse/kubecf
\
--namespace kubecf \
--values kubecf-config-values.yaml \
--values enc_key_values.yaml \
--version 2.7.13

8. When all pods are fully running, verify the restore is successful. Example commands to
run include cf apps , cf marketplace , or cf services .

186 Performing a Raw Data Restore SUSE Cloud Applic… 2.1.1

22 Service Brokers

The Open Service Broker API provides (OSBAPI) your SUSE Cloud Application Platform appli-
cations with access to external dependencies and platform-level capabilities, such as databases,
filesystems, external repositories, and messaging systems. These resources are called services.
Services are created, used, and deleted as needed, and provisioned on demand. This chapter
focuses on Minibroker but there are others.

Use the following guideline to determine which service broker is most suitable for your situation.

When you want services deployed on demand to Kubernetes, use Minibroker. See Sec-

tion 22.1, “Provisioning Services with Minibroker” for more information.

When you want a service that is not one of the above, note that 3rd party OSBAPI brokers
will work with SUSE Cloud Application Platform. Refer to the Cloud Foundry documenta-
tion at https://docs.cloudfoundry.org/services/managing-service-brokers.html for configu-
ration instructions.

22.1 Provisioning Services with Minibroker

Minibroker (https://github.com/SUSE/minibroker) is an OSBAPI compliant broker (https://

www.openservicebrokerapi.org/) created by members of the Microsoft Azure team (https://

github.com/osbkit) . It provides a simple method to provision service brokers on Kubernetes
clusters.

Important: Minibroker Upstream Services
The services deployed by Minibroker are sourced from the stable upstream charts reposi-
tory, see https://github.com/helm/charts/tree/master/stable , and maintained by contrib-
utors to the Helm project. Though SUSE supports Minibroker itself, it does not support
the service charts it deploys. Operators should inspect the charts and images exposed by
the service plans before deciding to use them in a production environment.

187 Provisioning Services with Minibroker SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/services/managing-service-brokers.html
https://github.com/SUSE/minibroker
https://www.openservicebrokerapi.org/
https://www.openservicebrokerapi.org/
https://github.com/osbkit
https://github.com/osbkit
https://github.com/helm/charts/tree/master/stable

22.1.1 Deploy Minibroker

1. Minibroker is deployed using a Helm chart. Ensure your SUSE Helm chart repository con-
tains the most recent Minibroker chart:

tux > helm repo update

2. Use Helm to deploy Minibroker:

tux > kubectl create namespace minibroker

tux > helm install minibroker suse/minibroker \
--namespace minibroker \
--set "deployServiceCatalog=false" \
--set "defaultNamespace=minibroker" \
--values minibroker-values.yaml

If you are using SUSE Enterprise Storage, you must copy the Ceph admin secret to the
minibroker namespace:

tux > kubectl get secret ceph-secret-admin --output json
--namespace default | \
sed 's/"namespace": "default"/"namespace": "minibroker"/' | kubectl create
--filename -

Note
Platform users provisioning service instances will be able to set arbitrary parame-
ters, which can be potentially dangerous, e.g. if setting a high number of replicas.
To prevent this, it is possible to define override parameters per service in the ac-
cording elds of the provisioning chart value. If defined, the user-defined para-
meters are dropped and the override parameters are used instead.

The below is an example values.yaml le where the provisioning chart value
contains a series of override definitions for different services. When the override
parameters (or other configurations) are defined in a values.yaml le, ensure the
le is used by including --values FILE in the helm install command.

Example configuration file
minibroker-values.yaml

provisioning:
 mariadb:

188 Deploy Minibroker SUSE Cloud Applic… 2.1.1

 overrideParams:
 db:
 user: "dbuser"
 name: "default"
 replication:
 enabled: false
 metrics:
 enabled: false
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 postgresql:
 overrideParams:
 postgresqlUsername: "dbuser"
 postgresqlDatabase: "default"
 replication:
 enabled: false
 metrics:
 enabled: false
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 redis:
 overrideParams:
 cluster:
 enabled: false
 networkPolicy:
 enabled: false
 securityContext:
 enabled: true
 sentinel:
 enabled: false
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi

189 Deploy Minibroker SUSE Cloud Applic… 2.1.1

 rabbitmq:
 overrideParams:
 rabbitmq:
 username: "dbuser"
 replicas: 1
 networkPolicy:
 enabled: false
 ingress:
 enabled: false
 metrics:
 enabled: false
 forceBoot:
 enabled: false
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi
 mongodb:
 overrideParams:
 volumePermissions:
 enabled: false
 service:
 type: ClusterIP
 replicaSet:
 enabled: false
 ingress:
 enabled: false
 metrics:
 enabled: false
 resources:
 limits:
 cpu: 500m
 memory: 512Mi
 requests:
 cpu: 200m
 memory: 256Mi

The following tables list the services provided by Minibroker, along with the latest chart
and application version combination known to work with Minibroker.
If your deployment uses Kubernetes 1.15 or earlier, use the following versions.

190 Deploy Minibroker SUSE Cloud Applic… 2.1.1

Service Version appVersion

MariaDB 4.3.0 10.1.34

MongoDB 5.3.3 4.0.6

PostgreSQL 6.2.1 11.5.0

Redis 3.7.2 4.0.10

If your deployment uses Kubernetes 1.16 or later, use the following versions.

Service Version appVersion

MariaDB 7.0.0 10.3.18

MongoDB 7.2.9 4.0.12

PostgreSQL 7.0.0 11.5.0

Redis 9.1.12 5.0.5

3. Monitor the deployment progress. Wait until all pods are in a ready state before proceed-
ing:

tux > watch --color 'kubectl get pods --namespace minibroker'

22.1.2 Setting Up the Environment for Minibroker Usage

1. Begin by logging into your Cloud Application Platform deployment. Select an organization
and space to work with, creating them if needed. Be sure to replace example.com with
the system_domain set in your kubecf-config-values.yaml .

tux > cf api --skip-ssl-validation https://api.example.com
 tux > cf login -u admin -p PASSWORD
 tux > cf create-org MY_ORG
 tux > cf create-space MY_SPACE -o MY_ORG
 tux > cf target -o MY_ORG -s MY_SPACE

191 Setting Up the Environment for Minibroker Usage SUSE Cloud Applic… 2.1.1

2. Create the service broker. Note that Minibroker does not require authentication and the
USERNAME and PASSWORD parameters act as dummy values to pass to the cf command.
These parameters do not need to be customized for the Cloud Application Platform instal-
lation:

tux > cf create-service-broker minibroker USERNAME PASSWORD http://minibroker-
minibroker.minibroker.svc.cluster.local

After the service broker is ready, it can be seen on your deployment:

tux > cf service-brokers
 Getting service brokers as admin...

 name url
 minibroker http://minibroker-minibroker.minibroker.svc.cluster.local

3. List the services and their associated plans the Minibroker has access to:

tux > cf service-access -b minibroker

4. Enable access to a service. Refer to the table in Section 22.1.1, “Deploy Minibroker” for service
plans known to be working with Minibroker.
This example enables access to the Redis service:

tux > cf enable-service-access redis -b minibroker -p 5-0-5

Use cf marketplace to verify the service has been enabled:

tux > cf marketplace
 Getting services from marketplace in org org / space space as admin...
 OK

 service plans description
 redis 5-0-5 Helm Chart for redis

 TIP: Use 'cf marketplace -s SERVICE' to view descriptions of individual plans of a
 given service.

5. Define your Application Security Group (ASG) (https://docs.cloudfoundry.org/concepts/as-

g.html) rules in a JSON le. Using the defined rules, create an ASG and bind it to an
organization and space:

tux > echo > redis.json '[{ "protocol": "tcp", "destination": "10.0.0.0/8", "ports":
 "6379", "description": "Allow Redis traffic" }]'

192 Setting Up the Environment for Minibroker Usage SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/concepts/asg.html
https://docs.cloudfoundry.org/concepts/asg.html

 tux > cf create-security-group redis_networking redis.json
 tux > cf bind-security-group redis_networking org space

Use following ports to define your ASG for the given service:

Service Port

MariaDB 3306

MongoDB 27017

PostgreSQL 5432

Redis 6379

6. Create an instance of the Redis service. The cf marketplace or cf marketplace -s
redis commands can be used to see the available plans for the service:

tux > cf create-service redis 5-0-5 redis-example-service

Monitor the progress of the pods and wait until all pods are in a ready state. The example
below shows the additional redis pods with a randomly generated name that have been
created in the minibroker namespace:

tux > watch --color 'kubectl get pods --namespace minibroker'
 NAME READY STATUS
 RESTARTS AGE
 alternating-frog-redis-master-0 1/1 Running 2
 1h
 alternating-frog-redis-slave-7f7444978d-z86nr 1/1 Running 0
 1h
 minibroker-minibroker-5865f66bb8-6dxm7 2/2 Running 0
 1h

22.1.3 Using Minibroker with Applications

This section demonstrates how to use Minibroker services with your applications. The example
below uses the Redis service instance created in the previous section.

1. Obtain the demo application from Github and use cf push with the --no-start ag to
deploy the application without starting it:

tux > git clone https://github.com/scf-samples/cf-redis-example-app

193 Using Minibroker with Applications SUSE Cloud Applic… 2.1.1

 tux > cd cf-redis-example-app
 tux > cf push --no-start

2. Bind the service to your application and start the application:

tux > cf bind-service redis-example-app redis-example-service
 tux > cf start redis-example-app

3. When the application is ready, it can be tested by storing a value into the Redis service. Be
sure to replace example.com with the system_domain set in your kubecf-config-val-
ues.yaml .

tux > export APP=redis-example-app.example.com
 tux > curl --request GET $APP/foo
 tux > curl --request PUT $APP/foo --data 'data=bar'
 tux > curl --request GET $APP/foo

The rst GET will return key not present . After storing a value, it will return bar .

Important: Database Names for PostgreSQL and MariaDB
Instances
By default, Minibroker creates PostgreSQL and MariaDB server instances without a named
database. A named database is required for normal usage with these and will need to
be added during the cf create-service step using the -c ag. To nd out the exact
parameter to be used, reference the values.yaml le in the upstream Helm charts at
https://github.com/helm/charts located in the stable directory.

194 Using Minibroker with Applications SUSE Cloud Applic… 2.1.1

https://github.com/helm/charts

23 App-AutoScaler

The App-AutoScaler service is used for automatically managing an application's instance count
when deployed on KubeCF. The scaling behavior is determined by a set of criteria defined in
a policy (See Section 23.4, “Policies”).

23.1 Prerequisites

Using the App-AutoScaler service requires:

A running deployment of kubecf

cf , the Cloud Foundry command line interface. For more information, see https://doc-

s.cloudfoundry.org/cf-cli/ .
For SUSE Linux Enterprise and openSUSE systems, install using zypper .

tux > sudo zypper install cf-cli

For SLE, ensure the SUSE Cloud Application Platform Tools Module has been added. Add
the module using YaST or SUSEConnect.

tux > SUSEConnect --product sle-module-cap-tools/15.1/x86_64

For other systems, follow the instructions at https://docs.cloudfoundry.org/cf-cli/install-go-

cli.html .

The Cloud Foundry CLI AutoScaler Plug-in, see https://github.com/cloudfoundry/app-au-

toscaler-cli-plugin

The plugin can be installed by running the following command:

tux > cf install-plugin -r CF-Community app-autoscaler-plugin

If the plugin repo is not found, add it rst:

tux > cf add-plugin-repo CF-Community https://plugins.cloudfoundry.org

195 Prerequisites SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://docs.cloudfoundry.org/cf-cli/install-go-cli.html
https://github.com/cloudfoundry/app-autoscaler-cli-plugin
https://github.com/cloudfoundry/app-autoscaler-cli-plugin

23.2 Enabling and Disabling the App-AutoScaler
Service
App-AutoScaler is disabled by default. To enable it, add the following the following block to
your kubecf-config-values.yaml le.

features:
 autoscaler:
 enabled: true

To disable App-AutoScaler again, update the above block in your kubecf-config-val-

ues.yaml so that enabled is set to false .

After making the change above, and any other configuration changes, apply the update by doing
the following:

For an initial deployment, continue to the deployment steps for your platform:

For SUSE CaaS Platform, see Section 4.13, “Deploying SUSE Cloud Application Platform”.

For Microsoft AKS, see Section 5.13, “Deploying SUSE Cloud Application Platform”.

For Amazon EKS, see Section 6.13, “Deploying SUSE Cloud Application Platform”.

For Google GKE, see Section 7.14, “Deploying SUSE Cloud Application Platform”.

For an existing deployment, use helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

23.3 Using the App-AutoScaler Service
Push the application without starting it rst:

tux > cf push MY_APPLICATION --no-start

Attach autoscaling policy to the application:

tux > cf attach-autoscaling-policyMY_APPLICATION MY_POLICY.json

196 Enabling and Disabling the App-AutoScaler Service SUSE Cloud Applic… 2.1.1

The policy is defined as a JSON le (See Section 23.4, “Policies”) in a proper format (See https://

github.com/cloudfoundry/app-autoscaler/blob/develop/docs/policy.md).

Start the application:

tux > cf start MY_APPLICATION

Autoscaling policies can be managed using cf CLI with the App-AutoScaler plugin as above (See
Section 23.3.1, “The App-AutoScaler cf CLI Plugin”) or using the App-AutoScaler API (See Section 23.3.2,

“App-AutoScaler API”).

23.3.1 The App-AutoScaler cf CLI Plugin

The App-AutoScaler plugin is used for managing the service with your applications and pro-
vides the following commands (with shortcuts in brackets). Refer to https://github.com/cloud-

foundry/app-autoscaler-cli-plugin#command-list for details about each command:

autoscaling-api (asa)

Set or view AutoScaler service API endpoint. See https://github.com/cloudfoundry/app-au-

toscaler-cli-plugin#cf-autoscaling-api for more information.

autoscaling-policy (asp)

Retrieve the scaling policy of an application. See https://github.com/cloudfoundry/app-au-

toscaler-cli-plugin#cf-autoscaling-policy for more information.

attach-autoscaling-policy (aasp)

Attach a scaling policy to an application. See https://github.com/cloudfoundry/app-au-

toscaler-cli-plugin#cf-attach-autoscaling-policy for more information.

detach-autoscaling-policy (dasp)

Detach the scaling policy from an application. See https://github.com/cloudfoundry/app-

autoscaler-cli-plugin#cf-detach-autoscaling-policy for more information.

create-autoscaling-credential (casc)

Create custom metric credential for an application. See https://github.com/cloud-

foundry/app-autoscaler-cli-plugin#cf-create-autoscaling-credential for more information.

delete-autoscaling-credential (dasc)

Delete the custom metric credential of an application. See https://github.com/cloud-

foundry/app-autoscaler-cli-plugin#cf-delete-autoscaling-credential for more information.

197 The App-AutoScaler cf CLI Plugin SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/policy.md
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/policy.md
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#command-list
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#command-list
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-api
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-api
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-policy
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-policy
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-attach-autoscaling-policy
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-attach-autoscaling-policy
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-detach-autoscaling-policy
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-detach-autoscaling-policy
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-create-autoscaling-credential
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-create-autoscaling-credential
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-delete-autoscaling-credential
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-delete-autoscaling-credential

autoscaling-metrics (asm)

Retrieve the metrics of an application. See https://github.com/cloudfoundry/app-au-

toscaler-cli-plugin#cf-autoscaling-metrics for more information.

autoscaling-history (ash)

Retrieve the scaling history of an application. See https://github.com/cloudfoundry/app-

autoscaler-cli-plugin#cf-autoscaling-history for more information.

23.3.2 App-AutoScaler API

The App-AutoScaler service provides a Public API with detailed usage information, see https://

github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst . It includes requests
to:

List scaling history of an application. For details,
refer to https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Pub-

lic_API.rst#list-scaling-history-of-an-application

List instance metrics of an application. For details, refer
to https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-in-

stance-metrics-of-an-application

List aggregated metrics of an application. For details, refer
to https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-ag-

gregated-metrics-of-an-application

Policy api. For details, refer to https://github.com/cloudfoundry/app-autoscaler/blob/devel-

op/docs/Public_API.rst#policy-api

Delete policy. For details, refer to https://github.com/cloudfoundry/app-autoscaler/blob/de-

velop/docs/Public_API.rst#delete-policy

Get policy. For details, refer to https://github.com/cloudfoundry/app-autoscaler/blob/devel-

op/docs/Public_API.rst#get-policy

198 App-AutoScaler API SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-metrics
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-metrics
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-history
https://github.com/cloudfoundry/app-autoscaler-cli-plugin#cf-autoscaling-history
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-scaling-history-of-an-application
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-scaling-history-of-an-application
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-instance-metrics-of-an-application
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-instance-metrics-of-an-application
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-aggregated-metrics-of-an-application
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#list-aggregated-metrics-of-an-application
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#policy-api
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#policy-api
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#delete-policy
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#delete-policy
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#get-policy
https://github.com/cloudfoundry/app-autoscaler/blob/develop/docs/Public_API.rst#get-policy

23.4 Policies

A policy identifies characteristics including minimum instance count, maximum instance count,
and the rules used to determine when the number of application instances is scaled up or down.
These rules are categorized into two types, scheduled scaling and dynamic scaling. (See Sec-

tion 23.4.1, “Scaling Types”). Multiple scaling rules can be specified in a policy, but App-AutoScaler
does not detect or handle conflicts that may occur. Ensure there are no conflicting rules to avoid
unintended scaling behavior.

Policies are defined using the JSON format and can be attached to an application either by
passing the path to the policy le or directly as a parameter.

The following is an example of a policy le, called my-policy.json .

{
 "instance_min_count": 1,
 "instance_max_count": 4,
 "scaling_rules": [{
 "metric_type": "memoryused",
 "stat_window_secs": 60,
 "breach_duration_secs": 60,
 "threshold": 10,
 "operator": ">=",
 "cool_down_secs": 300,
 "adjustment": "+1"
 }]
}

For an example that demonstrates defining multiple scaling rules in a single policy, refer to
the sample of a policy le at https://github.com/cloudfoundry/app-autoscaler/blob/develop/src/

integration/fakePolicyWithSchedule.json . The complete list of configurable policy values can be
found at https://github.com/cloudfoundry/app-autoscaler/blob/master/docs/policy.md .

23.4.1 Scaling Types

Scheduled Scaling

Modifies an application's instance count at a predetermined time. This option is suitable
for workloads with predictable resource usage.

199 Policies SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/app-autoscaler/blob/develop/src/integration/fakePolicyWithSchedule.json
https://github.com/cloudfoundry/app-autoscaler/blob/develop/src/integration/fakePolicyWithSchedule.json
https://github.com/cloudfoundry/app-autoscaler/blob/master/docs/policy.md

Dynamic Scaling

Modifies an application's instance count based on metrics criteria. This option is suitable
for workloads with dynamic resource usage. The following metrics are available:

memoryused

memoryutil

cpu

responsetime

throughput

custom metric

See https://github.com/cloudfoundry/app-autoscaler/tree/develop/docs#scaling-type for addi-
tional details.

200 Scaling Types SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry/app-autoscaler/tree/develop/docs#scaling-type

24 Integrating CredHub with SUSE Cloud Application
Platform

SUSE Cloud Application Platform supports CredHub integration. You should already have a
working CredHub instance, a CredHub service on your cluster, then apply the steps in this
chapter to connect SUSE Cloud Application Platform.

24.1 Installing the CredHub Client
Start by creating a new directory for the CredHub client on your local workstation, then down-
load and unpack the CredHub client. The following example is for the 2.2.0 Linux release.
For other platforms and current releases, see the cloudfoundry-incubator/credhub-cli at https://

github.com/cloudfoundry-incubator/credhub-cli/releases

tux > mkdir chclient
tux > cd chclient
tux > wget https://github.com/cloudfoundry-incubator/credhub-cli/releases/download/2.2.0/
credhub-linux-2.2.0.tgz
tux > tar zxf credhub-linux-2.2.0.tgz

24.2 Enabling and Disabling CredHub
CredHub is enabled by default. To disable it, add the following the following block to your
kubecf-config-values.yaml le.

features:
 credhub:
 enabled: false

To enable CredHub again, update the above block in your kubecf-config-values.yaml so
that enabled is set to true .

After making the change above, and any other configuration changes, apply the update by doing
the following:

For an initial deployment, continue to the deployment steps for your platform:

For SUSE CaaS Platform, see Section 4.13, “Deploying SUSE Cloud Application Platform”.

For Microsoft AKS, see Section 5.13, “Deploying SUSE Cloud Application Platform”.

201 Installing the CredHub Client SUSE Cloud Applic… 2.1.1

https://github.com/cloudfoundry-incubator/credhub-cli/releases
https://github.com/cloudfoundry-incubator/credhub-cli/releases

For Amazon EKS, see Section 6.13, “Deploying SUSE Cloud Application Platform”.

For Google GKE, see Section 7.14, “Deploying SUSE Cloud Application Platform”.

For an existing deployment, use helm upgrade to apply the change.

tux > helm upgrade kubecf suse/kubecf \
--namespace kubecf \
--values kubecf-config-values.yaml \
--version 2.7.13

Warning
On occasion, the credhub pod may fail to start due to database migration failures; this
has been spotted intermittently on Microsoft Azure Kubernetes Service and to a lesser
extent, other public clouds. In these situations, manual intervention is required to track
the last completed transaction in credhub_user database and update the flyway schema
history table with the record of the last completed transaction. Please contact support
for further instructions.

24.3 Connecting to the CredHub Service
Set environment variables for the CredHub client, your CredHub service location, and Cloud
Application Platform namespace. In these guides the example namespace is kubecf :

tux > CH_CLI=~/chclient/credhub
tux > CH_SERVICE=https://credhub.example.com
tux > NAMESPACE=kubecf

Set up the CredHub service location:

tux > SECRET="$(kubectl get secrets --namespace "${NAMESPACE}" | awk '/^secrets-/ { print
 $1 }')"
tux > CH_SECRET="$(kubectl get secrets --namespace "${NAMESPACE}" "${SECRET}" --output
 jsonpath="{.data['uaa-clients-credhub-user-cli-secret']}"|base64 --decode)"
tux > CH_CLIENT=credhub_user_cli
tux > echo Service@ $CH_SERVICE
tux > echo CH cli Secret @ $CH_SECRET

Set the CredHub target through its Kubernetes service, then log into CredHub:

tux > "${CH_CLI}" api --skip-tls-validation --server "${CH_SERVICE}"

202 Connecting to the CredHub Service SUSE Cloud Applic… 2.1.1

tux > "${CH_CLI}" login --client-name="${CH_CLIENT}" --client-secret="${CH_SECRET}"

Test your new connection by inserting and retrieving some fake credentials:

tux > "${CH_CLI}" set --name FOX --type value --value 'fox over lazy dog'
tux > "${CH_CLI}" set --name DOG --type user --username dog --password fox
tux > "${CH_CLI}" get --name FOX
tux > "${CH_CLI}" get --name DOG

203 Connecting to the CredHub Service SUSE Cloud Applic… 2.1.1

25 Buildpacks

Buildpacks (https://docs.cloudfoundry.org/buildpacks) are used to construct the environment
needed to run your applications, including any required runtimes or frameworks as well as other
dependencies. When you deploy an application, a buildpack can be specified or automatically
detected by cycling through all available buildpacks to nd one that is applicable. When there
is a suitable buildpack for your application, the buildpack will then download any necessary
dependencies during the staging process.

25.1 System Buildpacks
SUSE Cloud Application Platform releases include a set of system, or built-in, buildpacks for
common languages and frameworks. These system buildpacks are based on the upstream ver-
sions of the buildpack, but are made compatible with the SLE-based stack(s) found in SUSE
Cloud Application Platform.

The following table lists the default system buildpacks and their associated versions included as
part of the SUSE Cloud Application Platform 2.1.1 release.

Buildpack Version Github Repository

Staticfile 1.5.5 https://github.com/SUSE/cf-

staticfile-buildpack

NGINX 1.1.7 https://github.com/SUSE/cf-

nginx-buildpack

Java 4.29.1 https://github.com/SUSE/cf-

java-buildpack

Ruby 1.8.15 https://github.com/SUSE/cf-

ruby-buildpack

Node.js 1.7.17 https://github.com/SUSE/cf-

nodejs-buildpack

Go 1.9.11 https://github.com/SUSE/cf-

go-buildpack

204 System Buildpacks SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/buildpacks
https://github.com/SUSE/cf-staticfile-buildpack
https://github.com/SUSE/cf-staticfile-buildpack
https://github.com/SUSE/cf-nginx-buildpack
https://github.com/SUSE/cf-nginx-buildpack
https://github.com/SUSE/cf-java-buildpack
https://github.com/SUSE/cf-java-buildpack
https://github.com/SUSE/cf-ruby-buildpack
https://github.com/SUSE/cf-ruby-buildpack
https://github.com/SUSE/cf-nodejs-buildpack
https://github.com/SUSE/cf-nodejs-buildpack
https://github.com/SUSE/cf-go-buildpack
https://github.com/SUSE/cf-go-buildpack

Buildpack Version Github Repository

Python 1.7.12 https://github.com/SUSE/cf-

python-buildpack

PHP 4.4.12 https://github.com/SUSE/cf-

php-buildpack

Binary 1.0.36 https://github.com/SUSE/cf-

binary-builder

.NET Core 2.3.9 https://github.com/SUSE/cf-

dotnet-core-buildpack

25.2 Using Buildpacks
When deploying an application, a buildpack can be selected by passing the buildpack's name
through one of the following methods:

Using the -b option during the cf push command, for example:

tux > cf push 12factor -b ruby_buildpack

Using the buildpacks attribute in your application's manifest.yml . For more infor-
mation, see https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.htm-

l#buildpack .

applications:
- name: 12factor
 buildpacks:
 - ruby_buildpack

Using buildpack detection.
Buildpack detection occurs when an application is pushed and a buildpack has not been
specified using any of the other methods. The application is checked aginst the detection
criteria of a buildpack to verify whether its compatible. Each buildpack has its own detec-
tion criteria, defined in the /bin/detect le. The Ruby buildpack, for example, considers
an application compatible if it contains a Gemfile le and Gemfile.lock le in its root
directory.

205 Using Buildpacks SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/cf-python-buildpack
https://github.com/SUSE/cf-python-buildpack
https://github.com/SUSE/cf-php-buildpack
https://github.com/SUSE/cf-php-buildpack
https://github.com/SUSE/cf-binary-builder
https://github.com/SUSE/cf-binary-builder
https://github.com/SUSE/cf-dotnet-core-buildpack
https://github.com/SUSE/cf-dotnet-core-buildpack
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.html#buildpack
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.html#buildpack

The detection process begins with the rst buildpack in the detection priority list. If the
buildpack is compatible with the application, the staging process continues. If the build-
pack is not compatible with the application, the buildpack in the next position is checked.
To see the detection priority list, run cf buildpacks and examine the position eld.
If there are no compatible buildpacks, the cf push command will fail.
For more information, see https://docs.cloudfoundry.org/buildpacks/understand-buildpack-

s.html#buildpack-detection .

In the above, ruby_buildpack can be replaced with:

The name of a buildpack. To list the currently available buildpacks, including any that
were created or updated, examine the buildpack eld after running:

tux > cf buildpacks

The Git URL of a buildpack. For example, https://github.com/SUSE/cf-ruby-build-
pack .

The Git URL of a buildpack with a specific branch or tag. For example, https://
github.com/SUSE/cf-ruby-buildpack#1.7.40 .

For more information about using buildpacks, see https://docs.cloudfoundry.org/buildpacks/#us-

ing-buildpacks .

25.3 Adding Buildpacks
Additional buildpacks can be added to your SUSE Cloud Application Platform deployment to
complement the ones already installed.

1. List the currently installed buildpacks.

tux > cf buildpacks
Getting buildpacks...

buildpack position enabled locked filename
 stack
staticfile_buildpack 1 true false staticfile-buildpack-
v1.4.43.1-1.1-53227ab3.zip
nginx_buildpack 2 true false nginx-buildpack-
v1.0.15.1-1.1-868e3dbf.zip
java_buildpack 3 true false java-buildpack-
v4.20.0.1-7b3efeee.zip

206 Adding Buildpacks SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/buildpacks/understand-buildpacks.html#buildpack-detection
https://docs.cloudfoundry.org/buildpacks/understand-buildpacks.html#buildpack-detection
https://docs.cloudfoundry.org/buildpacks/#using-buildpacks
https://docs.cloudfoundry.org/buildpacks/#using-buildpacks

ruby_buildpack 4 true false ruby-buildpack-
v1.7.42.1-1.1-897dec18.zip
nodejs_buildpack 5 true false nodejs-buildpack-
v1.6.53.1-1.1-ca7738ac.zip
go_buildpack 6 true false go-buildpack-v1.8.42.1-1.1-
c93d1f83.zip
python_buildpack 7 true false python-buildpack-
v1.6.36.1-1.1-4c0057b7.zip
php_buildpack 8 true false php-buildpack-
v4.3.80.1-6.1-613615bf.zip
binary_buildpack 9 true false binary-buildpack-
v1.0.33.1-1.1-a53fa79d.zip
dotnet-core_buildpack 10 true false dotnet-core-buildpack-
v2.2.13.1-1.1-cf41131a.zip

2. Add a new buildpack using the cf create-buildpack command.

tux > cf create-buildpack ANOTHER_RUBY_BUILDPACK https://cf-buildpacks.suse.com/
ruby-buildpack-v1.7.41.1-1.1-c4cd5fed.zip 10

Where:

ANOTHER_RUBY_BUILDPACK is the name of the buildpack.

https://cf-buildpacks.suse.com/ruby-buildpack-v1.7.41.1-1.1-

c4cd5fed.zip is the path to the buildpack release. It should be a zip le, a URL to
a zip le, or a local directory.

10 is the position of the buildpack and used to determine priority. A lower value
indicates a higher priority.

To see all available options, run:

tux > cf create-buildpack -h

3. Verify the new buildpack has been added.

tux > cf buildpacks
Getting buildpacks...

buildpack position enabled locked filename
 stack
staticfile_buildpack 1 true false staticfile-buildpack-
v1.4.43.1-1.1-53227ab3.zip
nginx_buildpack 2 true false nginx-buildpack-
v1.0.15.1-1.1-868e3dbf.zip

207 Adding Buildpacks SUSE Cloud Applic… 2.1.1

java_buildpack 3 true false java-buildpack-
v4.20.0.1-7b3efeee.zip
ruby_buildpack 4 true false ruby-buildpack-
v1.7.42.1-1.1-897dec18.zip
nodejs_buildpack 5 true false nodejs-buildpack-
v1.6.53.1-1.1-ca7738ac.zip
go_buildpack 6 true false go-buildpack-v1.8.42.1-1.1-
c93d1f83.zip
python_buildpack 7 true false python-buildpack-
v1.6.36.1-1.1-4c0057b7.zip
php_buildpack 8 true false php-buildpack-
v4.3.80.1-6.1-613615bf.zip
binary_buildpack 9 true false binary-buildpack-
v1.0.33.1-1.1-a53fa79d.zip
ANOTHER_RUBY_BUILDPACK 10 true false ruby-buildpack-v1.7.41.1-1.1-
c4cd5fed.zip
dotnet-core_buildpack 11 true false dotnet-core-buildpack-
v2.2.13.1-1.1-cf41131a.zip

25.4 Updating Buildpacks
Currently installed buildpacks can be updated using the cf update-buildpack command. To
see all values that can be updated, run cf update-buildpack -h .

1. List the currently installed buildpacks that can be updated.

tux > cf buildpacks
Getting buildpacks...

buildpack position enabled locked filename
 stack
staticfile_buildpack 1 true false staticfile-buildpack-
v1.4.43.1-1.1-53227ab3.zip
nginx_buildpack 2 true false nginx-buildpack-
v1.0.15.1-1.1-868e3dbf.zip
java_buildpack 3 true false java-buildpack-
v4.20.0.1-7b3efeee.zip
ruby_buildpack 4 true false ruby-buildpack-
v1.7.42.1-1.1-897dec18.zip
nodejs_buildpack 5 true false nodejs-buildpack-
v1.6.53.1-1.1-ca7738ac.zip
go_buildpack 6 true false go-buildpack-v1.8.42.1-1.1-
c93d1f83.zip
python_buildpack 7 true false python-buildpack-
v1.6.36.1-1.1-4c0057b7.zip

208 Updating Buildpacks SUSE Cloud Applic… 2.1.1

php_buildpack 8 true false php-buildpack-
v4.3.80.1-6.1-613615bf.zip
binary_buildpack 9 true false binary-buildpack-
v1.0.33.1-1.1-a53fa79d.zip
ANOTHER_RUBY_BUILDPACK 10 true false ruby-buildpack-v1.7.41.1-1.1-
c4cd5fed.zip
dotnet-core_buildpack 11 true false dotnet-core-buildpack-
v2.2.13.1-1.1-cf41131a.zip

2. Use the cf update-buildpack command to update a buildpack.

tux > cf update-buildpack ANOTHER_RUBY_BUILDPACK -i 11

To see all available options, run:

tux > cf update-buildpack -h

3. Verify the new buildpack has been updated.

tux > cf buildpacks
Getting buildpacks...

buildpack position enabled locked filename
 stack
staticfile_buildpack 1 true false staticfile-buildpack-
v1.4.43.1-1.1-53227ab3.zip
nginx_buildpack 2 true false nginx-buildpack-
v1.0.15.1-1.1-868e3dbf.zip
java_buildpack 3 true false java-buildpack-
v4.20.0.1-7b3efeee.zip
ruby_buildpack 4 true false ruby-buildpack-
v1.7.42.1-1.1-897dec18.zip
nodejs_buildpack 5 true false nodejs-buildpack-
v1.6.53.1-1.1-ca7738ac.zip
go_buildpack 6 true false go-buildpack-v1.8.42.1-1.1-
c93d1f83.zip
python_buildpack 7 true false python-buildpack-
v1.6.36.1-1.1-4c0057b7.zip
php_buildpack 8 true false php-buildpack-
v4.3.80.1-6.1-613615bf.zip
binary_buildpack 9 true false binary-buildpack-
v1.0.33.1-1.1-a53fa79d.zip
dotnet-core_buildpack 10 true false dotnet-core-buildpack-
v2.2.13.1-1.1-cf41131a.zip
ANOTHER_RUBY_BUILDPACK 11 true false ruby-buildpack-v1.7.41.1-1.1-
c4cd5fed.zip

209 Updating Buildpacks SUSE Cloud Applic… 2.1.1

25.5 Offline Buildpacks
An offline, or cached, buildpack packages the runtimes, frameworks, and dependencies needed
to run your applications into an archive that is then uploaded to your Cloud Application Platform
deployment. When an application is deployed using an offline buildpack, access to the Internet
to download dependencies is no longer required. This has the benefit of providing improved
staging performance and allows for staging to take place on air-gapped environments.

25.5.1 Creating an Offline Buildpack

Offline buildpacks can be created using the cf-buildpack-packager-docker (https://github.com/

SUSE/cf-buildpack-packager-docker) tool, which is available as a Docker (https://www.dock-

er.com/) image. The only requirement to use this tool is a system with Docker support.

Important: Disclaimer
Some Cloud Foundry buildpacks can reference binaries with proprietary or mutually in-
compatible open source licenses which cannot be distributed together as offline/cached
buildpack archives. Operators who wish to package and maintain offline buildpacks will
be responsible for any required licensing or export compliance obligations.

For automation purposes, you can use the --accept-external-binaries option to ac-
cept this disclaimer without the interactive prompt.

Usage (https://github.com/SUSE/cf-buildpack-packager-docker#usage) of the tool is as follows:

package [--accept-external-binaries] org [all [stack] | language [tag] [stack]]

Where:

org is the Github organization hosting the buildpack repositories, such as "cloudfoundry"

(https://github.com/cloudfoundry) or "SUSE" (https://github.com/SUSE)

A tag cannot be specified when using all as the language because the tag is different
for each language

tag is not optional if a stack is specified. To specify the latest release, use "" as the tag

A maximum of one stack can be specified

210 Offline Buildpacks SUSE Cloud Applic… 2.1.1

https://github.com/SUSE/cf-buildpack-packager-docker
https://github.com/SUSE/cf-buildpack-packager-docker
https://www.docker.com/
https://www.docker.com/
https://github.com/SUSE/cf-buildpack-packager-docker#usage
https://github.com/cloudfoundry
https://github.com/cloudfoundry
https://github.com/SUSE

The following example demonstrates packaging an offline Ruby buildpack and uploading it to
your Cloud Application Platform deployment to use. The packaged buildpack will be a Zip le
placed in the current working directory, $PWD .

1. Build the latest released SUSE Ruby buildpack for the SUSE Linux Enterprise 15 stack:

tux > docker run --interactive --tty --rm -v $PWD:/out splatform/cf-buildpack-
packager SUSE ruby "" sle15

2. Verify the archive has been created in your current working directory:

tux > ls
ruby_buildpack-cached-sle15-v1.7.30.1.zip

3. Log into your Cloud Application Platform deployment. Select an organization and space
to work with, creating them if needed:

tux > cf api --skip-ssl-validation https://api.example.com
tux > cf login -u admin -p password
tux > cf create-org MY_ORG
tux > cf create-space MY_SPACE -o MY_ORG
tux > cf target -o MY_ORG -s MY_SPACE

4. List the currently available buildpacks:

tux > cf buildpacks
Getting buildpacks...

buildpack position enabled locked filename
staticfile_buildpack 1 true false staticfile_buildpack-
v1.4.34.1-1.1-1dd6386a.zip
java_buildpack 2 true false java-buildpack-v4.16.1-
e638145.zip
ruby_buildpack 3 true false ruby_buildpack-v1.7.26.1-1.1-
c2218d66.zip
nodejs_buildpack 4 true false nodejs_buildpack-
v1.6.34.1-3.1-c794e433.zip
go_buildpack 5 true false go_buildpack-
v1.8.28.1-1.1-7508400b.zip
python_buildpack 6 true false python_buildpack-
v1.6.23.1-1.1-99388428.zip
php_buildpack 7 true false php_buildpack-
v4.3.63.1-1.1-2515c4f4.zip
binary_buildpack 8 true false binary_buildpack-
v1.0.27.1-3.1-dc23dfe2.zip

211 Creating an Offline Buildpack SUSE Cloud Applic… 2.1.1

dotnet-core_buildpack 9 true false dotnet-core-buildpack-
v2.0.3.zip

5. Upload your packaged offline buildpack to your Cloud Application Platform deployment:

tux > cf create-buildpack RUBY_BUILDPACK_CACHED /tmp/ruby_buildpack-cached-sle15-
v1.7.30.1.zip 1 --enable
Creating buildpack RUBY_BUILDPACK_CACHED...
OK

Uploading buildpack RUBY_BUILDPACK_CACHED...
Done uploading
OK

6. Verify your buildpack is available:

tux > cf buildpacks
Getting buildpacks...

buildpack position enabled locked filename
RUBY_BUILDPACK_CACHED 1 true false ruby_buildpack-cached-sle15-
v1.7.30.1.zip
staticfile_buildpack 2 true false staticfile_buildpack-
v1.4.34.1-1.1-1dd6386a.zip
java_buildpack 3 true false java-buildpack-v4.16.1-
e638145.zip
ruby_buildpack 4 true false ruby_buildpack-v1.7.26.1-1.1-
c2218d66.zip
nodejs_buildpack 5 true false nodejs_buildpack-
v1.6.34.1-3.1-c794e433.zip
go_buildpack 6 true false go_buildpack-
v1.8.28.1-1.1-7508400b.zip
python_buildpack 7 true false python_buildpack-
v1.6.23.1-1.1-99388428.zip
php_buildpack 8 true false php_buildpack-
v4.3.63.1-1.1-2515c4f4.zip
binary_buildpack 9 true false binary_buildpack-
v1.0.27.1-3.1-dc23dfe2.zip
dotnet-core_buildpack 10 true false dotnet-core-buildpack-
v2.0.3.zip

7. Deploy a sample Rails app using the new buildpack:

tux > git clone https://github.com/scf-samples/12factor
tux > cd 12factor
tux > cf push 12factor -b RUBY_BUILDPACK_CACHED

212 Creating an Offline Buildpack SUSE Cloud Applic… 2.1.1

Warning: Deprecation of cflinuxfs2 and sle12 Stacks
As of SUSE Cloud Foundry 2.18.0, since our cf-deployment version is 9.5 , the
cflinuxfs2 stack is no longer supported, as was advised in SUSE Cloud Foundry 2.17.1
or Cloud Application Platform 1.4.1. The cflinuxfs2 buildpack is no longer shipped,
but if you are upgrading from an earlier version, cflinuxfs2 will not be removed. How-
ever, for migration purposes, we encourage all admins to move to cflinuxfs3 or sle15
as newer buildpacks will not work with the deprecated cflinuxfs2 . If you still want to
use the older stack, you will need to build an older version of a buildpack to continue for
the application to work, but you will be unsupported. (If you are running on sle12 , we
will be retiring that stack in a future version so start planning your migration to sle15 .
The procedure is described below.)

Migrate applications to the new stack using one of the methods listed. Note that both
methods will cause application downtime. Downtime can be avoided by following
a Blue-Green Deployment strategy. See https://docs.cloudfoundry.org/devguide/de-

ploy-apps/blue-green.html for details.
Note that stack association support is available as of cf CLI v6.39.0.

Option 1 - Migrating applications using the Stack Auditor plugin.
Stack Auditor rebuilds the application onto the new stack without a change
in the application source code. If you want to move to a new stack with up-
dated code, please follow Option 2 below. For additional information about
the Stack Auditor plugin, see https://docs.cloudfoundry.org/adminguide/stack-

auditor.html .

1. Install the Stack Auditor plugin for the cf CLI. For instructions, see
https://docs.cloudfoundry.org/adminguide/stack-auditor.html#install .

2. Identify the stack applications are using. The audit lists all applications
in orgs you have access to. To list all applications in your Cloud Appli-
cation Platform deployment, ensure you are logged in as a user with
access to all orgs.

tux > cf audit-stack

For each application requiring migration, perform the steps below.

3. If necessary, switch to the org and space the application is deployed to.

213 Creating an Offline Buildpack SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html
https://docs.cloudfoundry.org/devguide/deploy-apps/blue-green.html
https://docs.cloudfoundry.org/adminguide/stack-auditor.html
https://docs.cloudfoundry.org/adminguide/stack-auditor.html
https://docs.cloudfoundry.org/adminguide/stack-auditor.html#install

tux > cf target ORG SPACE

4. Change the stack to sle15 .

tux > cf change-stack APP_NAME sle15

5. Identify all buildpacks associated with the sle12 and cflinuxfs2
stacks.

tux > cf buildpacks

6. Remove all buildpacks associated with the sle12 and cflinuxfs2
stacks.

tux > cf delete-buildpack BUILDPACK -s sle12

tux > cf delete-buildpack BUILDPACK -s cflinuxfs2

7. Remove the sle12 and cflinuxfs2 stacks.

tux > cf delete-stack sle12

tux > cf delete-stack cflinuxfs2

Option 2 - Migrating applications using the cf CLI.
Perform the following for all orgs and spaces in your Cloud Application Plat-
form deployment. Ensure you are logged in as a user with access to all orgs.

1. Target an org and space.

tux > cf target ORG SPACE

2. Identify the stack an applications in the org and space is using.

tux > cf app APP_NAME

3. Re-push the app with the sle15 stack using one of the following meth-
ods.

Push the application with the stack option, -s passed.

214 Creating an Offline Buildpack SUSE Cloud Applic… 2.1.1

tux > cf push APP_NAME -s sle15

1. Update the application manifest le to include
stack: sle15 . See https://docs.cloudfoundry.org/de-

vguide/deploy-apps/manifest-attributes.html#stack for de-
tails.

 ...
 stack: sle15

2. Push the application.

tux > cf push APP_NAME

4. Identify all buildpacks associated with the sle12 and cflinuxfs2
stacks.

tux > cf buildpacks

5. Remove all buildpacks associated with the sle12 and cflinuxfs2
stacks.

tux > cf delete-buildpack BUILDPACK -s sle12

tux > cf delete-buildpack BUILDPACK -s cflinuxfs2

6. Remove the sle12 and cflinuxfs2 stacks using the CF API. See https://

apidocs.cloudfoundry.org/7.11.0/#stacks for details.
List all stacks then nd the GUID of the sle12 cflinuxfs2 stacks.

tux > cf curl /v2/stacks

Delete the sle12 and cflinuxfs2 stacks.

tux > cf curl -X DELETE /v2/stacks/SLE12_STACK_GUID

tux > cf curl -X DELETE /v2/stacks/CFLINUXFS2_STACK_GUID

215 Creating an Offline Buildpack SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.html#stack
https://docs.cloudfoundry.org/devguide/deploy-apps/manifest-attributes.html#stack
https://apidocs.cloudfoundry.org/7.11.0/#stacks
https://apidocs.cloudfoundry.org/7.11.0/#stacks

IV SUSE Cloud Application Platform User
Guide

26 Deploying and Managing Applications with the Cloud Foundry
Client 217

26 Deploying and Managing Applications with the
Cloud Foundry Client

26.1 Using the cf CLI with SUSE Cloud Application
Platform

The Cloud Foundry command line interface (cf CLI) is for deploying and managing your appli-
cations. You may use it for all the orgs and spaces that you are a member of. Install the client
on a workstation for remote administration of your SUSE Cloud Foundry instances.

The complete guide is at Using the Cloud Foundry Command Line Interface (https://docs.cloud-

foundry.org/cf-cli/) , and source code with a demo video is on GitHub at Cloud Foundry CLI

(https://github.com/cloudfoundry/cli/blob/master/README.md) .

The following examples demonstrate some of the commonly-used commands. The rst task is to
log into your new Cloud Application Platform instance. You need to provide the API endpoint of
your SUSE Cloud Application Platform instance to log in. The API endpoint is the system_do-
main value you provided in kubecf-config-values.yaml , plus the api. prefix, as it shows
in the above welcome screen. Set your endpoint, and use --skip-ssl-validation when you
have self-signed SSL certificates. It asks for an e-mail address, but you must enter admin instead
(you cannot change this to a different username, though you may create additional users), and
the password is the one you created in kubecf-config-values.yaml :

tux > cf login --skip-ssl-validation -a https://api.example.com
API endpoint: https://api.example.com

Email> admin

Password>
Authenticating...
OK

Targeted org system

API endpoint: https://api.example.com (API version: 2.134.0)
User: admin
Org: system
Space: No space targeted, use 'cf target -s SPACE'

217 Using the cf CLI with SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

https://docs.cloudfoundry.org/cf-cli/
https://docs.cloudfoundry.org/cf-cli/
https://github.com/cloudfoundry/cli/blob/master/README.md
https://github.com/cloudfoundry/cli/blob/master/README.md

cf help displays a list of commands and options. cf help [command] provides information
on specific commands.

You may pass in your credentials and set the API endpoint in a single command:

tux > cf login -u admin -p PASSWORD --skip-ssl-validation -a https://api.example.com

Log out with cf logout .

Change the admin password:

tux > cf passwd
Current Password>
New Password>
Verify Password>
Changing password...
OK
Please log in again

View your current API endpoint, user, org, and space:

tux > cf target

Switch to a different org or space:

tux > cf target -o MY_ORG
tux > cf target -s MY_SPACE

List all apps in the current space:

tux > cf apps

Query the health and status of a particular app:

tux > cf app MY_APP

View app logs. The rst example tails the log of a running app. The --recent option dumps
recent logs instead of tailing, which is useful for stopped and crashed apps:

tux > cf logs MY_APP
tux > cf logs --recent MY_APP

Restart all instances of an app:

tux > cf restart MY_APP

218 Using the cf CLI with SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

Restart a single instance of an app, identified by its index number, and restart it with the same
index number:

tux > cf restart-app-instance MY_APP APP_INSTANCE

After you have set up a service broker (see Chapter 22, Service Brokers), create new services:

tux > cf create-service SERVICE_NAME default MY_DB

Then you may bind a service instance to an app:

tux > cf bind-service MY_APP SERVICE_INSTANCE

The most-used command is cf push , for pushing new apps and changes to existing apps.

tux > cf push NEW_APP -b buildpack

If you need to debug your application or run one-o tasks, start an SSH session into your ap-
plication container.

tux > cf ssh MY_APP

When the SSH connection is established, run the following to have the environment match that
of the application and its associated buildpack.

tux > /tmp/lifecycle/shell

219 Using the cf CLI with SUSE Cloud Application Platform SUSE Cloud Applic… 2.1.1

V Troubleshooting

27 Troubleshooting 221

27 Troubleshooting

Cloud stacks are complex, and debugging deployment issues often requires digging through
multiple layers to nd the information you need. Remember that the KubeCF releases must be
deployed in the correct order, and that each release must deploy successfully, with no failed
pods, before deploying the next release.

Before proceeding with in depth troubleshooting, ensure the following have been met as defined
in the Support Statement at Section 5.2, “Platform Support”.

1. The Kubernetes cluster satisfies the Requirements listed here
at https://documentation.suse.com/suse-cap/2.1.1/html/cap-guides/cha-cap-depl-kube-re-

quirements.html#sec-cap-changes-kube-reqs .

2. The kube-ready-state-check.sh script has been run on the target Kubernetes cluster
and does not show any configuration problems.

3. A SUSE Services or Sales Engineer has verified that SUSE Cloud Application Platform works
correctly on the target Kubernetes cluster.

27.1 Logging
There are two types of logs in a deployment of SUSE Cloud Application Platform, applications
logs and component logs. The following provides a brief overview of each log type and how to
retrieve them for monitoring and debugging use.

Application logs provide information specific to a given application that has been deployed
to your Cloud Application Platform cluster and can be accessed through:

The cf CLI using the cf logs command

The application's log stream within the Stratos console

Access to logs for a given component of your Cloud Application Platform deployment can
be obtained by:

The kubectl logs command
The following example retrieves the logs of the router container of router-0 pod
in the kubecf namespace

221 Logging SUSE Cloud Applic… 2.1.1

https://documentation.suse.com/suse-cap/2.1.1/html/cap-guides/cha-cap-depl-kube-requirements.html#sec-cap-changes-kube-reqs
https://documentation.suse.com/suse-cap/2.1.1/html/cap-guides/cha-cap-depl-kube-requirements.html#sec-cap-changes-kube-reqs

tux > kubectl logs --namespace kubecf router-0 router

Direct access to the log les using the following:

1. Open a shell to the container of the component using the kubectl exec com-
mand

2. Navigate to the logs directory at /var/vcap/sys/logs , at which point there
will be subdirectories containing the log les for access.

tux > kubectl exec --stdin --tty --namespace kubecf router-0 /bin/bash

router/0:/# cd /var/vcap/sys/log

router/0:/var/vcap/sys/log# ls -R
.:
gorouter loggregator_agent

./gorouter:
access.log gorouter.err.log gorouter.log post-start.err.log post-
start.log

./loggregator_agent:
agent.log

27.2 Using Supportconfig

If you ever need to request support, or just want to generate detailed system information and
logs, use the supportconfig utility. Run it with no options to collect basic system information,
and also cluster logs including Docker, etcd, flannel, and Velum. supportconfig may give you
all the information you need.

supportconfig -h prints the options. Read the "Gathering System Information for Support"
chapter in any SUSE Linux Enterprise Administration Guide to learn more.

222 Using Supportconfig SUSE Cloud Applic… 2.1.1

27.3 Deployment Is Taking Too Long
A deployment step seems to take too long, or you see that some pods are not in a ready state
hours after all the others are ready, or a pod shows a lot of restarts. This example shows not-
ready pods many hours after the others have become ready:

tux > kubectl get pods --namespace kubecf
NAME READY STATUS RESTARTS AGE
router-3137013061-wlhxb 0/1 Running 0 16h
routing-api-0 0/1 Running 0 16h

The Running status means the pod is bound to a node and all of its containers have been created.
However, it is not Ready , which means it is not ready to service requests. Use kubectl to print
a detailed description of pod events and status:

tux > kubectl describe pod --namespace kubecf router-0

This prints a lot of information, including IP addresses, routine events, warnings, and errors.
You should nd the reason for the failure in this output.

Important
During deployment, pods are spawned over time, starting with a single pod whose name
stars with ig- . This pod will eventually disappear and will be replaced by other pods
whose progress then can be followed as usual.

The whole process can take around 20—30 minutes to finish.

The initial stage may look like this:

tux > kubectl get pods --namespace kubecf
ig-kubecf-f9085246244fbe70-jvg4z 1/21 Running 0 8m28s

Later the progress may look like this:

NAME READY STATUS RESTARTS AGE
adapter-0 4/4 Running 0 6m45s
api-0 0/15 Init:30/63 0 6m38s
bits-0 0/6 Init:8/15 0 6m34s
bosh-dns-7787b4bb88-2wg9s 1/1 Running 0 7m7s
bosh-dns-7787b4bb88-t42mh 1/1 Running 0 7m7s
cc-worker-0 0/4 Init:5/9 0 6m36s
credhub-0 0/5 Init:6/11 0 6m33s
database-0 2/2 Running 0 6m36s

223 Deployment Is Taking Too Long SUSE Cloud Applic… 2.1.1

diego-api-0 6/6 Running 2 6m38s
doppler-0 0/9 Init:7/16 0 6m40s
eirini-0 9/9 Running 0 6m37s
log-api-0 0/7 Init:6/13 0 6m35s
nats-0 4/4 Running 0 6m39s
router-0 0/5 Init:5/11 0 6m33s
routing-api-0 0/4 Init:5/10 0 6m42s
scheduler-0 0/8 Init:8/17 0 6m35s
singleton-blobstore-0 0/6 Init:6/11 0 6m46s
tcp-router-0 0/5 Init:5/11 0 6m37s
uaa-0 0/6 Init:8/13 0 6m36s

27.4 Deleting and Rebuilding a Deployment
There may be times when you want to delete and rebuild a deployment, for example when there
are errors in your kubecf-config-values.yaml le, you wish to test configuration changes,
or a deployment fails and you want to try it again.

1. Remove the kubecf release. All resources associated with the release of the suse/kubecf
chart will be removed. Replace the example release name with the one used during your
installation.

tux > helm uninstall kubecf

2. Remove the kubecf namespace. Replace with the namespace where the suse/kubecf
chart was installed.

tux > kubectl delete namespace kubecf

3. Remove the cf-operator release. All resources associated with the release of the suse/
cf-operator chart will be removed. Replace the example release name with the one used
during your installation.

tux > helm uninstall cf-operator

4. Remove the cf-operator namespace. Replace with the namespace where the suse/cf-
operator chart was installed.

tux > kubectl delete namespace cf-operator

5. Verify all of the releases are removed.

224 Deleting and Rebuilding a Deployment SUSE Cloud Applic… 2.1.1

tux > helm list --all-namespaces

6. Verify all of the namespaces are removed.

tux > kubectl get namespaces

27.5 Querying with Kubectl
You can safely query with kubectl to get information about resources inside your Kubernetes
cluster. kubectl cluster-info dump | tee clusterinfo.txt outputs a large amount of
information about the Kubernetes master and cluster services to a text le.

The following commands give more targeted information about your cluster.

List all cluster resources:

tux > kubectl get all --all-namespaces

List all of your running pods:

tux > kubectl get pods --all-namespaces

List all of your running pods, their internal IP addresses, and which Kubernetes nodes they
are running on:

tux > kubectl get pods --all-namespaces --output wide

See all pods, including those with Completed or Failed statuses:

tux > kubectl get pods --show-all --all-namespaces

List pods in one namespace:

tux > kubectl get pods --namespace kubecf

Get detailed information about one pod:

tux > kubectl describe --namespace kubecf po/diego-cell-0

Read the log le of a pod:

tux > kubectl logs --namespace kubecf po/diego-cell-0

225 Querying with Kubectl SUSE Cloud Applic… 2.1.1

List all Kubernetes nodes, then print detailed information about a single node:

tux > kubectl get nodes
tux > kubectl describe node 6a2752b6fab54bb889029f60de6fa4d5.infra.caasp.local

List all containers in all namespaces, formatted for readability:

tux > kubectl get pods --all-namespaces --output jsonpath="{..image}" |\
tr -s '[[:space:]]' '\n' |\
sort |\
uniq -c

These two commands check node capacities, to verify that there are enough resources for
the pods:

tux > kubectl get nodes --output yaml | grep '\sname\|cpu\|memory'
tux > kubectl get nodes --output json | \
jq '.items[] | {name: .metadata.name, cap: .status.capacity}'

27.6 Admission webhook denied
When switching back to Diego from Eirini, the error below can occur:

tux > helm install kubecf suse/kubecf --namespace kubecf --values kubecf-config-
values.yaml
Error: admission webhook "validate-boshdeployment.quarks.cloudfoundry.org" denied the
 request: Failed to resolve manifest: Failed to interpolate ops 'kubecf-user-provided-
properties' for manifest 'kubecf': Applying ops on manifest obj failed in interpolator:
 Expected to find exactly one matching array item for path '/instance_groups/name=eirini'
 but found 0

To avoid this error, remove the eirini-persi-broker configuration before running the com-
mand.

27.7 Namespace does not exist
When running a Helm command, an error occurs stating that a namespace does not exist. To
avoid this error, create the namespace manually with kubectl ; before running the command:

tux > kubectl create namespace name

226 Admission webhook denied SUSE Cloud Applic… 2.1.1

27.8 Log-cache Memory Allocation Issue
The log-cache component currently has a memory allocation issue where the node memory
available is reported instead of the one assigned to the container under cgroups. In such a
situation, log-cache would start allocating memory based on these values, causing a varying
range of issues (OOMKills, performance degradation, etc.). To address this issue, node affinity
must be used to tie log-cache to nodes of a uniform size, and then declaring the cache percentage
based on that number. A limit of 3% has been identified as sufficient.

Add the following to your kubecf-config-values.yaml . In the node affinity configuration,
the values for key and values may need to be changed depending on how notes in your clus-
ter are labeled. For more information on labels, see https://kubernetes.io/docs/concepts/sched-

uling-eviction/assign-pod-node/#built-in-node-labels .

properties:
 log-cache:
 log-cache:
 memory_limit_percent: 3

operations:
 inline:
 - type: replace
 path: /instance_groups/name=log-cache/env?/bosh/agent/settings/affinity
 value:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - LABEL_VALUE_OF_NODE

227 Log-cache Memory Allocation Issue SUSE Cloud Applic… 2.1.1

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#built-in-node-labels

A Appendix

A.1 Complete suse/kubecf values.yaml File
This is the complete output of helm inspect values suse/kubecf for the current SUSE Cloud
Application Platform 2.1.1 release.

REQUIRED: the domain that the deployment will be visible to the user.
system_domain: example.com

List of stacks to install; the first one will be used as the default.
A stack is a prebuilt root file system that supports a specific
operating system with a corresponding set of buildpacks.
install_stacks: [sle15, cflinuxfs3]

Set or override job properties. The first level of the map is the instance group name.
 The second
level of the map is the job name. E.g.:
properties:
adapter:
adapter:
scalablesyslog:
adapter:
logs:
addr: kubecf-log-api:8082
#
properties: {}

Override credentials to not be auto-generated. The credentials can either be
specified as a nested mapping, or with a dot-separated key. For example:
credentials:
cf_admin_password: changeme
credhub_tls.ca: credhub-real-ca
credhub_tls:
certificate: the-cert
credentials: {}

Override variable values to not be auto-generated. The variables are a simple
mapping with keys/values. Note that the `system_domain` domain is handled
differently and must be set via the top-level key (which is required).
For example:
variables:
key: value
variables: {}

228 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

kube:
 # The storage class to be used for the instance groups that need it (e.g. bits,
 database and
 # singleton-blobstore). If it's not set, the default storage class will be used.
 storage_class: ~
 # The psp key contains the configuration related to Pod Security Policies. By default,
 a PSP will
 # be generated with the necessary permissions for running KubeCF. To pass an existing
 PSP and
 # prevent KubeCF from creating a new one, set the kube.psp.default with the PSP name.
 psp:
 default: ~
 # The global list of image pull secret names. The secrets themselves will have to be
 created by
 # the user before installing kubecf.
 image_pull_secrets: []

Set to true to enable support for multiple availability zones.
multi_az: false

Set to true to enable high availability mode, where pods are replicated in
order to prevent downtime when a node is temporarily unavailable.
high_availability: false

Instance sizing takes precedence over the high_availability property. I.e. setting the
instance count for an instance group greater than 1 will make it highly available.
#
It is also possible to specify custom affinity rules for each instance group. If no
 rule
is provided, then each group as anti-affinity to itself, to try to spread the pods
 between
different nodes. In addition diego-cell and router also have anti-affinity to each
 other.
#
The default rules look like this:
#
sizing:
sample_group:
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: quarks.cloudfoundry.org/quarks-statefulset-name

229 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

operator: In
values:
- sample_group
topologyKey: kubernetes.io/hostname
#
Any affinity rules specified here will *overwrite* the default rule and not merge with
 it.

sizing:
 adapter:
 instances: ~
 api:
 instances: ~
 apps_dns:
 instances: ~
 asactors:
 instances: ~
 asapi:
 instances: ~
 asmetrics:
 instances: ~
 asnozzle:
 instances: ~
 auctioneer:
 instances: ~
 bits:
 instances: ~
 cc_worker:
 instances: ~
 credhub:
 instances: ~
 database:
 persistence:
 size: 20Gi
 diego_api:
 instances: ~
 diego_cell:
 ephemeral_disk:
 # Size of the ephemeral disk used to store applications in MB
 size: 40960
 # IMPORTANT! Only set this if you understand the consequences of using a PVC as
 ephemeral
 # storage for diego cells. The storage class should be high performance, and not
 based on NFS.
 # Do not set this value in production environments unless you've tested your
 storage class with
 # diego cells and have found no problems.

230 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 # The name of the storage class used for the ephemeral disk PVC.
 storage_class: ~
 instances: ~
 doppler:
 instances: ~
 eirini:
 instances: ~
 log_api:
 instances: ~
 nats:
 instances: ~
 router:
 instances: ~
 routing_api:
 instances: ~
 scheduler:
 instances: ~
 uaa:
 instances: ~
 tcp_router:
 instances: ~

External endpoints are created for the instance groups only if
 features.ingress.enabled is false.
services:
 router:
 annotations: {}
 type: LoadBalancer
 externalIPs: []
 clusterIP: ~
 loadBalancerIP: ~
 ssh-proxy:
 annotations: {}
 type: LoadBalancer
 externalIPs: []
 clusterIP: ~
 loadBalancerIP: ~
 tcp-router:
 annotations: {}
 type: LoadBalancer
 externalIPs: []
 clusterIP: ~
 loadBalancerIP: ~
 port_range:
 start: 20000
 end: 20008

231 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

CPU and memory resources can be configured via the `resources` tree when
 features.cpu_limits.enabled
or features.memory_limits.enabled are set respectively. Each setting covers both limit
 and request
settings for their resource type.
#
The helm chart includes default memory limits for all processes, and some explicit
 requests. When no
request size is specified, a default is calculated as a percentage of the limit, but at
 least some
minimum threshold, but never more than the limit itself. See the features.memory_limits
 setting to
finetune this algorithm.
#
All values are integers; cpu values are in millicpus (m) and memory is in megabytes
 (Mi).
#
More information about the `resources` structure can be found in the config/
resources.yaml file
inside this helm chart.

resources:
 diego-cell:
 garden:
 garden: {memory: {limit: 524288, request: 16}}

settings:
 router:
 # tls sets up the public TLS for the router. The tls keys:
 # crt: the certificate in the PEM format. Required.
 # key: the private key in the PEM format. Required.
 tls: {}
 # crt: |
 # -----BEGIN CERTIFICATE-----
 # ...
 # -----END CERTIFICATE-----
 # key: |
 # -----BEGIN PRIVATE KEY-----
 # ...
 # -----END PRIVATE KEY-----

features:
 # Set default memory limits and requests for all containers
 memory_limits:
 enabled: true
 # The memory request size default is calculated as a percentage of the limit.

232 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 # The default is always at least a minimum value, but never larger than the limit
 itself.
 default_request_minimum: 32
 default_request_in_percent: 25
 eirini:
 enabled: false
 # To support multi-clusters, deploy diego-cell separately please set control_plane is
 false and cell_segment is true
 multiple_cluster_mode:
 control_plane:
 enabled: false
 cell_segment:
 enabled: false
 # To support multi-clusters, services for diego-cell deployed separately
 control_plane_workers:
 uaa:
 name: uaa
 addresses:
 - ip: ~
 diego_api:
 name: diego-api
 addresses:
 - ip: ~
 api:
 name: api
 addresses:
 - ip: ~
 singleton_blobstore:
 name: singleton-blobstore
 addresses:
 - ip: ~
 # To support multi-clusters, provider link secrets for diego-cell deployed separately
 provider_link_service:
 nats:
 secret_name: minion-link-nats
 service_name: minion-service-nats
 addresses:
 - ip: ~
 # To support multi-clusters, fill the provider link secrets context of nats, for
 example:
 # link: |
 # ---
 # nats.user: "nats"
 # nats.password: "xxxxxx"
 # nats.hostname: "nats"
 # nats.port: 4222
 link: ~

233 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 nats_tls:
 secret_name: minion-link-nats-tls
 service_name: minion-service-nats-tls
 addresses:
 - ip: ~
 # To support multi-clusters, fill the provider link secrets context of nats_tls,
 for example:
 # link: |
 # ---
 # nats.user: "nats"
 # nats.password: "xxxxxx"
 # nats.hostname: "nats"
 # nats.port: 4223
 # nats.external.tls.ca: ""
 link: ~
 routing_api:
 secret_name: minion-link-routing-api
 service_name: minion-service-routing-api
 addresses:
 - ip: ~
 # To support multi-clusters, fill the provider link secrets context of routing-
api, for example:
 # link: |
 # routing_api.clients: ~
 # routing_api.system_domain: "xxx.xxx.xxx"
 # routing_api.port: 3000
 # routing_api.mtls_port: 3001
 # routing_api.mtls_ca: |
 # -----BEGIN CERTIFICATE-----
 # xxxxxx
 # -----END CERTIFICATE-----
 #
 link: ~
 doppler:
 secret_name: minion-link-doppler
 service_name: minion-service-doppler
 addresses:
 - ip: ~
 # To support multi-clusters, fill the provider link secrets context of doppler,
 for example:
 # link: |
 # doppler.grpc_port: 8082
 link: ~
 loggregator:
 secret_name: minion-link-loggregator
 service_name: minion-service-loggregator
 addresses:

234 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 - ip: ~
 # To support multi-clusters, fill the provider link secrets context of
 loggregator, for example:
 # link: |
 # loggregator.tls.ca_cert: |
 # -----BEGIN CERTIFICATE-----
 # xxxxxx
 # -----END CERTIFICATE-----
 #
 link: ~
 cloud_controller:
 secret_name: minion-link-cloud-controller
 service_name: minion-service-cloud-controller
 addresses:
 - ip: ~
 # To support multi-clusters, fill the provider link secrets context of cloud-
controller, for example:
 # link: |
 # system_domain: "{{ .Values.system_domain }}"
 # app_domains: []
 link: ~
 cloud_controller_container_networking_info:
 secret_name: minion-link-cloud-controller-container-networking-info
 service_name: minion-service-cloud-controller-container-networking-info
 addresses:
 - ip: ~
 # link: |
 # cc.internal_route_vip_range: "127.128.0.0/9"
 link: ~
 cf_network:
 secret_name: minion-link-cf-network
 service_name: minion-service-cf-network
 addresses:
 - ip: ~
 # link: |
 # network: "10.255.0.0/16"
 # subnet_prefix_length: 24
 link: ~
 # CA certs from control plane to generate certs required by diego cell
 control_plane_ca:
 service_cf_internal_ca:
 name: service-cf-internal-ca
 certificate: ~
 private_key: ~
 application_ca:
 name: application-ca
 certificate: ~

235 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 private_key: ~
 loggregator_ca:
 name: loggregator-ca
 certificate: ~
 private_key: ~
 metric_scraper_ca:
 name: metric-scraper-ca
 certificate: ~
 private_key: ~
 silk_ca:
 name: silk-ca
 certificate: ~
 private_key: ~
 network_policy_ca:
 name: network-policy-ca
 certificate: ~
 private_key: ~
 cf_app_sd_ca:
 name: cf-app-sd-ca
 certificate: ~
 private_key: ~
 nats_ca:
 name: nats-ca
 certificate: ~
 private_key: ~
 ingress:
 enabled: false
 tls:
 # TLS certificate for the ingress controller. This should be a wildcard
 certificate for the
 # system domain (*.example.com, where api.example.com is the API endpoint). It
 should also
 # include the full certificate chain (that is, include the intermediate
 certificates).
 crt: ~
 # TLS certificate private key for the ingress controller, matching
 features.ingress.tls.crt.
 key: ~
 annotations: {}
 labels: {}
 autoscaler:
 # Enable the application autoscaler. The autoscaler service must be manually
 registered; see
 # https://github.com/cloudfoundry/app-autoscaler-release#register-service for
 details.
 enabled: false
 mysql:

236 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 enabled: false
 credhub:
 # Enable credhub; this is only used as a service broker for applications, and is not
 used for
 # authentication with the Cloud Foundry deployment.
 enabled: true
 routing_api:
 # Enable the routing API. Disabling this will also disable TCP routing, which is
 used for TCP
 # port forwarding.
 # Enabled by default, except under Eirini, where the routing-api is not (yet)
 supported.
 enabled: ~
 embedded_database:
 # Enable the embedded database. If this is disabled, then features.external_database
 should be
 # configured to use an external database.
 enabled: true
 # Number of seconds to wait for the database to be ready, per iteration of the waiter
 loop
 connect_timeout: 3
 blobstore:
 # Possible values for provider: fog or singleton.
 provider: singleton
 # fog:
 # app_package_directory_key: YOUR-APP-PACKAGE-BUCKET
 # buildpack_directory_key: YOUR-BUILDPACK-BUCKET
 # droplet_directory_key: YOUR-DROPLET-BUCKET
 # resource_directory_key: YOUR-RESOURCE-BUCKET
 #
 # Example config for S3
 # ---------------------
 # connection:
 # provider: AWS
 # aws_access_key_id: S3-ACCESS-KEY
 # aws_secret_access_key: S3-SECRET-ACCESS-KEY
 # region: ""
 #
 # Additional settings for e.g. MinIO
 # ----------------------------------
 # aws_signature_version: '2'
 # endpoint: https://custom-s3-endpoint.example.com
 # # path_style is only supported by Diego, but not by Eirini (bits-service).
 # # MinIO can be configured to use vhost addressing using MINIO_DOMAIN and a
 wildcard cert.
 # path_style: true
 #

237 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 # Example config for Google Cloud Storage
 # ---------------------------------------
 # connection:
 # provider: Google
 # google_storage_access_key_id: GCS-ACCESS-KEY
 # google_storage_secret_access_key: GCS-SECRET-ACCESS-KEY
 #
 # Example config for Azure Cloud Storage
 # --------------------------------------
 # connection:
 # provider: AzureRM
 # environment: AzureCloud
 # azure_storage_account_name: YOUR-AZURE-STORAGE-ACCOUNT-NAME
 # azure_storage_access_key: YOUR-AZURE-STORAGE-ACCESS-KEY

 # Configuration for the external database; see also features.embedded_database. Please
 refer to
 # https://kubecf.io/docs/deployment/advanced-topics/#external-database for details.
 external_database:
 enabled: false
 require_ssl: false
 ca_cert: ~
 # The external database type; it can be either 'mysql' or 'postgres'.
 type: ~
 host: ~
 port: ~
 # Number of seconds to wait for the database to be ready, per iteration of the waiter
 loop
 connect_timeout: 3
 # If seed is set to true, we will initialize the database using the provided
 # root password (see `.variables.pxc-root-password`); in that case it is not
 # necessary to provide the configuration for the individual databases.
 seed: false
 databases:
 uaa:
 name: uaa
 password: ~
 username: ~
 cc:
 name: cloud_controller
 password: ~
 username: ~
 bbs:
 name: diego
 password: ~
 username: ~
 routing_api:

238 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 name: routing-api
 password: ~
 username: ~
 policy_server:
 name: network_policy
 password: ~
 username: ~
 silk_controller:
 name: network_connectivity
 password: ~
 username: ~
 locket:
 name: locket
 password: ~
 username: ~
 credhub:
 name: credhub
 password: ~
 username: ~

Enable or disable instance groups for the different test suites.
Only smoke tests should be run in production environments.
testing:
 # __ATTENTION__: The brain tests do things with the cluster which
 # required them to have `cluster-admin` permissions (i.e. root).
 # Enabling them is thus potentially insecure. They should only be
 # activated for isolated testing.
 brain_tests:
 enabled: false
 # Delete the testing pod after completion (default: false)
 delete_pod: false
 cf_acceptance_tests:
 enabled: false
 # Delete the testing pod after completion (default: false)
 delete_pod: false
 smoke_tests:
 enabled: true
 # Delete the testing pod after completion (default: false)
 delete_pod: false
 sync_integration_tests:
 enabled: false
 # Delete the testing pod after completion (default: false)
 delete_pod: false

ccdb:
 encryption:
 # Configure CCDB key rotation. Please see

239 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

 # https://kubecf.io/docs/tasks/secrets/#rotating-the-ccdb-encryption-keys for
 details.
 rotation:
 # Key labels must be <= 240 characters long.
 key_labels:
 - encryption_key_0
 current_key_label: encryption_key_0

operations:
 # A list of configmap names that should be applied to the BOSH manifest.
 custom: []
 # Inlined operations that get into generated ConfigMaps. E.g. adding a password
 variable:
 # operations:
 # inline:
 # - type: replace
 # path: /variables/-
 # value:
 # name: my_password
 # type: password
 inline: []

hooks:
 # Image that contains kubectl to be used in helm upgrade and delete hook scripts
 image: registry.suse.com/cap/kubecf-kubectl:v1.19.2

eirinix:
 persi-broker:
 # Service plans for Eirini persistant storage support
 service-plans:
 - id: default
 name: "default"
 description: "Existing default storage class"
 kube_storage_class: ~
 free: true
 default_size: "1Gi"
 description: Eirini persistence broker
 long_description: Eirini persistence broker to provide Kubernete storage classes
 provider_display_name: Eirini broker
 documentation_url: https://github.com/SUSE/eirini-persi-broker
 support_url: https://github.com/SUSE/eirini-persi-broker/issues
 display_name: Eirini broker
 icon_image: Eirini broker
 secrets:
 auth-password: ~ # Password is randomly generated if not given

240 Complete suse/kubecf values.yaml File SUSE Cloud Applic… 2.1.1

A.2 Complete suse/cf-operator values.yaml File

This is the complete output of helm inspect values suse/cf-operator for the current SUSE
Cloud Application Platform 2.1.1 release.

Default values for Quarks Operator Helm Chart.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

applyCRD is a boolean to control the installation of CRD's.
applyCRD: true

cluster:
 # domain is the the Kubernetes cluster domain
 domain: "cluster.local"

fullnameOverride overrides the release name
fullnameOverride: ""

image is the docker image of quarks job.
image:
 # repository that provides the operator docker image.
 repository: quarks-operator
 # org that provides the operator docker image.
 org: registry.suse.com/cap
 # tag of the operator docker image
 tag: v7.2.1-0.gaeb6ef3

creates a service account for coredns-quarks, the must be unique as it is used for the
 cluster role too.
corednsServiceAccount:
 create: true
 name: coredns-quarks

logrotateInterval is the time between logrotate calls for instance groups in minutes
logrotateInterval: 1440

logLevel defines from which level the logs should be printed (trace,debug,info,warn).
logLevel: debug

nameOverride overrides the chart name part of the release name
nameOverride: ""

workers are the int values for running maximum number of workers of the respective
 controller.

241 Complete suse/cf-operator values.yaml File SUSE Cloud Applic… 2.1.1

workers:
 boshdeployment: 1

operator:
 webhook:
 # host under which the webhook server can be reached from the cluster
 host: ~
 # port the webhook server listens on
 port: "2999"
 # boshDNSDockerImage is the docker image used for emulating bosh DNS (a CoreDNS image).
 boshDNSDockerImage: "registry.suse.com/cap/coredns:0.1.0-1.6.7-bp152.1.19"
 hookDockerImage: "registry.suse.com/cap/kubecf-kubectl:v1.20.2"

serviceAccount contains the configuration
values of the service account used by quarks-operator.
serviceAccount:
 # create is a boolean to control the creation of service account name.
 create: true
 # name of the service account.
 name:

global:
 # Context Timeout for each K8's API request in seconds.
 contextTimeout: 300
 # MeltdownDuration is the duration (in seconds) of the meltdown period, in which we
 # postpone further reconciles for the same resource
 meltdownDuration: 60
 # MeltdownRequeueAfter is the duration (in seconds) for which we delay the requeuing of
 the reconcile
 meltdownRequeueAfter: 30
 image:
 # pullPolicy defines the policy used for pulling docker images.
 pullPolicy: IfNotPresent
 # credentials is used for pulling docker images.
 credentials: ~
 # username:
 # password:
 # servername:
 # monitoredID is a string that has to match the content of the 'monitored' label in
 each monitored namespace.
 monitoredID: cfo
 operator:
 webhook:
 # useServiceReference is a boolean to control the use of the
 # service reference in the webhook spec instead of a url.
 useServiceReference: true
 rbac:

242 Complete suse/cf-operator values.yaml File SUSE Cloud Applic… 2.1.1

 # create is a boolean to control the installation of rbac resources.
 create: true
 singleNamespace:
 # create is a boolean to control the creation of resources for a simplified setup
 create: true
 # name is the name of the single namespace, being watched for BOSH deployments.
 name: kubecf

quarks-job:
 logLevel: info
 serviceAccount:
 # create is a boolean to control the creation of service account name.
 create: true
 # name of the service account.
 name:
 persistOutputClusterRole:
 # create is a boolean to control the creation of the persist output cluster role
 create: true
 # name of the cluster role.
 name: qjob-persist-output
 singleNamespace:
 createNamespace: false

quarks-secret:
 logLevel: info

quarks-statefulset:
 logLevel: info

243 Complete suse/cf-operator values.yaml File SUSE Cloud Applic… 2.1.1

B GNU Licenses
This appendix contains the GNU Free Docu-
mentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

244 SUSE Cloud Applic… 2.1.1

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

245 SUSE Cloud Applic… 2.1.1

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/

copyleft/ .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

246 SUSE Cloud Applic… 2.1.1

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

	Deployment, Administration, and User Guides
	About This Guide
	1. Required Background
	2. Available Documentation
	3. Feedback
	4. Documentation Conventions
	5. Support Statement for SUSE Cloud Application Platform
	5.1. Version Support
	5.2. Platform Support
	5.3. Technology Previews

	6. About the Making of This Documentation

	Part I. Overview of SUSE Cloud Application Platform
	Chapter 1. About SUSE Cloud Application Platform
	1.1. SUSE Cloud Application Platform Overview
	1.2. SUSE Cloud Application Platform Architecture
	1.2.1. KubeCF Components
	1.2.2. KubeCF Containers
	1.2.3. KubeCF Service Diagram
	1.2.4. Detailed Services Diagram

	Chapter 2. Other Kubernetes Systems
	2.1. Kubernetes Requirements

	Part II. Deploying SUSE Cloud Application Platform
	Chapter 3. Deployment and Administration Notes
	3.1. Important Changes
	3.2. Status of Pods during Deployment
	3.3. Length of Release Names
	3.4. Releases and Associated Versions

	Chapter 4. Deploying SUSE Cloud Application Platform on SUSE CaaS Platform
	4.1. Prerequisites
	4.2. Creating a SUSE CaaS Platform Cluster
	4.3. Install the Helm Client
	4.4. Storage Class
	4.5. Deployment Configuration
	4.5.1. Log-cache Memory Allocation
	4.5.2. Diego Cell Affinities and Tainted Nodes

	4.6. Certificates
	4.6.1. Certificate Characteristics
	4.6.2. Deployment Configuration

	4.7. Using an Ingress Controller
	4.7.1. Install and Configure the NGINX Ingress Controller

	4.8. Affinity and Anti-affinity
	4.8.1. Configuring Rules

	4.9. High Availability
	4.9.1. Configuring Cloud Application Platform for High Availability
	4.9.1.1. Finding Default and Allowable Sizing Values
	4.9.1.2. Using the high_availability Helm Property
	4.9.1.3. Using Custom Sizing Configurations

	4.10. External Blobstore
	4.10.1. Configuration

	4.11. External Database
	4.11.1. Configuration

	4.12. Add the Kubernetes Charts Repository
	4.13. Deploying SUSE Cloud Application Platform
	4.13.1. Deploy the Operator
	4.13.2. Deploy KubeCF

	4.14. LDAP Integration
	4.14.1. Prerequisites
	4.14.2. Example LDAP Integration

	4.15. Expanding Capacity of a Cloud Application Platform Deployment on SUSE® CaaS Platform

	Chapter 5. Deploying SUSE Cloud Application Platform on Microsoft Azure Kubernetes Service (AKS)
	5.1. Prerequisites
	5.2. Create Resource Group and AKS Instance
	5.3. Install the Helm Client
	5.4. Storage Class
	5.5. Deployment Configuration
	5.5.1. Log-cache Memory Allocation
	5.5.2. Diego Cell Affinities and Tainted Nodes

	5.6. Certificates
	5.6.1. Certificate Characteristics
	5.6.2. Deployment Configuration

	5.7. Using an Ingress Controller
	5.7.1. Install and Configure the NGINX Ingress Controller

	5.8. Affinity and Anti-affinity
	5.8.1. Configuring Rules

	5.9. High Availability
	5.9.1. Configuring Cloud Application Platform for High Availability
	5.9.1.1. Finding Default and Allowable Sizing Values
	5.9.1.2. Using the high_availability Helm Property
	5.9.1.3. Using Custom Sizing Configurations

	5.10. External Blobstore
	5.10.1. Configuration

	5.11. External Database
	5.11.1. Configuration

	5.12. Add the Kubernetes Charts Repository
	5.13. Deploying SUSE Cloud Application Platform
	5.13.1. Deploy the Operator
	5.13.2. Deploy KubeCF

	5.14. LDAP Integration
	5.14.1. Prerequisites
	5.14.2. Example LDAP Integration

	5.15. Expanding Capacity of a Cloud Application Platform Deployment on Microsoft AKS

	Chapter 6. Deploying SUSE Cloud Application Platform on Amazon Elastic Kubernetes Service (EKS)
	6.1. Prerequisites
	6.2. Create an EKS Cluster
	6.3. Install the Helm Client
	6.4. Storage Class
	6.5. Deployment Configuration
	6.5.1. Log-cache Memory Allocation
	6.5.2. Diego Cell Affinities and Tainted Nodes

	6.6. Certificates
	6.6.1. Certificate Characteristics
	6.6.2. Deployment Configuration

	6.7. Using an Ingress Controller
	6.7.1. Install and Configure the NGINX Ingress Controller

	6.8. Affinity and Anti-affinity
	6.8.1. Configuring Rules

	6.9. High Availability
	6.9.1. Configuring Cloud Application Platform for High Availability
	6.9.1.1. Finding Default and Allowable Sizing Values
	6.9.1.2. Using the high_availability Helm Property
	6.9.1.3. Using Custom Sizing Configurations

	6.10. External Blobstore
	6.10.1. Configuration

	6.11. External Database
	6.11.1. Configuration

	6.12. Add the Kubernetes Charts Repository
	6.13. Deploying SUSE Cloud Application Platform
	6.13.1. Deploy the Operator
	6.13.2. Deploy KubeCF

	6.14. LDAP Integration
	6.14.1. Prerequisites
	6.14.2. Example LDAP Integration

	6.15. Expanding Capacity of a Cloud Application Platform Deployment on Amazon EKS

	Chapter 7. Deploying SUSE Cloud Application Platform on Google Kubernetes Engine (GKE)
	7.1. Prerequisites
	7.2. Creating a GKE cluster
	7.3. Get kubeconfig File
	7.4. Install the Helm Client
	7.5. Storage Class
	7.6. Deployment Configuration
	7.6.1. Log-cache Memory Allocation
	7.6.2. Diego Cell Affinities and Tainted Nodes

	7.7. Certificates
	7.7.1. Certificate Characteristics
	7.7.2. Deployment Configuration

	7.8. Using an Ingress Controller
	7.8.1. Install and Configure the NGINX Ingress Controller

	7.9. Affinity and Anti-affinity
	7.9.1. Configuring Rules

	7.10. High Availability
	7.10.1. Configuring Cloud Application Platform for High Availability
	7.10.1.1. Finding Default and Allowable Sizing Values
	7.10.1.2. Using the high_availability Helm Property
	7.10.1.3. Using Custom Sizing Configurations

	7.11. External Blobstore
	7.11.1. Configuration

	7.12. External Database
	7.12.1. Configuration

	7.13. Add the Kubernetes charts repository
	7.14. Deploying SUSE Cloud Application Platform
	7.14.1. Deploy the Operator
	7.14.2. Deploy KubeCF

	7.15. LDAP Integration
	7.15.1. Prerequisites
	7.15.2. Example LDAP Integration

	7.16. Expanding Capacity of a Cloud Application Platform Deployment on Google GKE

	Chapter 8. Installing the Stratos Web Console
	8.1. Deploy Stratos on SUSE® CaaS Platform
	8.1.1. Connecting SUSE® CaaS Platform to Stratos

	8.2. Deploy Stratos on Amazon EKS
	8.2.1. Connecting Amazon EKS to Stratos

	8.3. Deploy Stratos on Microsoft AKS
	8.3.1. Connecting Microsoft AKS to Stratos

	8.4. Deploy Stratos on Google GKE
	8.4.1. Connecting Google GKE to Stratos

	8.5. Upgrading Stratos
	8.6. Stratos Metrics
	8.6.1. Exporter Configuration
	8.6.1.1. Firehose Exporter
	8.6.1.2. Cloud Foundry Exporter
	8.6.1.3. Kubernetes Monitoring

	8.6.2. Install Stratos Metrics with Helm
	8.6.3. Connecting Stratos Metrics

	Chapter 9. Eirini
	9.1. Limitations and Other Considerations
	9.2. Enabling Eirini

	Chapter 10. Deploying SUSE Cloud Application Platform Using Terraform
	Chapter 11. Setting Up a Registry for an Air Gapped Environment
	11.1. Prerequisites
	11.2. Mirror Images to Registry

	Chapter 12. SUSE Private Registry

	Part III. SUSE Cloud Application Platform Administration
	Chapter 13. Upgrading SUSE Cloud Application Platform
	13.1. Important Considerations
	13.2. Upgrading SUSE Cloud Application Platform

	Chapter 14. Configuration Changes
	14.1. Configuration Change Example
	14.2. Other Examples

	Chapter 15. Creating Admin Users
	15.1. Prerequisites
	15.2. Creating an Example Cloud Application Platform Cluster Administrator

	Chapter 16. Managing Passwords
	16.1. Password Management with the Cloud Foundry Client
	16.2. Changing User Passwords with Stratos

	Chapter 17. Accessing the UAA User Interface
	17.1. Prerequisites
	17.2. Procedure

	Chapter 18. Container Memory Limits and Requests
	18.1. Enabling and Disabling Memory Limits and Request Sizes
	18.2. Configuring Memory Limits and Request Sizes

	Chapter 19. Cloud Controller Database Secret Rotation
	19.1. Tables with Encrypted Information
	19.1.1. Update Existing Data with New Encryption Key

	Chapter 20. Rotating Automatically Generated Secrets
	20.1. Finding Secrets
	20.2. Rotating Specific Secrets

	Chapter 21. Backup and Restore
	21.1. Backup and Restore Using cf-plugin-backup
	21.1.1. Installing the cf-plugin-backup
	21.1.2. Using cf-plugin-backup
	21.1.3. Scope of Backup

	21.2. Disaster Recovery through Raw Data Backup and Restore
	21.2.1. Prerequisites
	21.2.2. Scope of Raw Data Backup and Restore
	21.2.3. Performing a Raw Data Backup
	21.2.4. Performing a Raw Data Restore

	Chapter 22. Service Brokers
	22.1. Provisioning Services with Minibroker
	22.1.1. Deploy Minibroker
	22.1.2. Setting Up the Environment for Minibroker Usage
	22.1.3. Using Minibroker with Applications

	Chapter 23. App-AutoScaler
	23.1. Prerequisites
	23.2. Enabling and Disabling the App-AutoScaler Service
	23.3. Using the App-AutoScaler Service
	23.3.1. The App-AutoScaler cf CLI Plugin
	23.3.2. App-AutoScaler API

	23.4. Policies
	23.4.1. Scaling Types

	Chapter 24. Integrating CredHub with SUSE Cloud Application Platform
	24.1. Installing the CredHub Client
	24.2. Enabling and Disabling CredHub
	24.3. Connecting to the CredHub Service

	Chapter 25. Buildpacks
	25.1. System Buildpacks
	25.2. Using Buildpacks
	25.3. Adding Buildpacks
	25.4. Updating Buildpacks
	25.5. Offline Buildpacks
	25.5.1. Creating an Offline Buildpack

	Part IV. SUSE Cloud Application Platform User Guide
	Chapter 26. Deploying and Managing Applications with the Cloud Foundry Client
	26.1. Using the cf CLI with SUSE Cloud Application Platform

	Part V. Troubleshooting
	Chapter 27. Troubleshooting
	27.1. Logging
	27.2. Using Supportconfig
	27.3. Deployment Is Taking Too Long
	27.4. Deleting and Rebuilding a Deployment
	27.5. Querying with Kubectl
	27.6. Admission webhook denied
	27.7. Namespace does not exist
	27.8. Log-cache Memory Allocation Issue

	Appendix A. Appendix
	A.1. Complete suse/kubecf values.yaml File
	A.2. Complete suse/cf-operator values.yaml File

	Appendix B. GNU Licenses
	B.1. GNU Free Documentation License

