
SUSE Edge Documentation

SUSE Edge Documentation

Publication Date: 2024-12-12

https://documentation.suse.com

https://documentation.suse.com

Contents

SUSE Edge Documentation xv
1 What is SUSE Edge? xv

2 Design Philosophy xv

3 Which Quick Start should you use? xvi

Directed network provisioning xvi • "Phone home" network

provisioning xvii • Image-based provisioning xvii

4 Components used in SUSE Edge xviii

I QUICK STARTS 1

1 BMC automated deployments with Metal3 2
1.1 Why use this method 2

1.2 High-level architecture 3

1.3 Prerequisites 4

Setup Management Cluster 4 • Installing Metal3

dependencies 5 • Installing cluster API dependencies 7 • Prepare

downstream cluster image 8 • Adding BareMetalHost

inventory 11 • Creating downstream clusters 15 • Control plane

deployment 15 • Worker/Compute deployment 18 • Cluster

deprovisioning 21

1.4 Known issues 22

1.5 Planned changes 22

1.6 Additional resources 22

Single-node configuration 23 • Disabling TLS for virtualmedia ISO

attachment 23

iii SUSE Edge Documentation

2 Remote host onboarding with Elemental 24

2.1 High-level architecture 25

2.2 Resources needed 26

2.3 How to use Elemental 27

Build bootstrap cluster 27 • Install Rancher 28 • Install

Elemental 29 • Build the installation media 42 • Boot the downstream

nodes 43 • Create downstream clusters 43

2.4 Node Reset 46

2.5 Next steps 47

3 Standalone clusters with Edge Image Builder 48

3.1 Prerequisites 48

Getting the EIB Image 48

3.2 Creating the image configuration directory 49

3.3 Creating the image definition file 49

Configuring OS Users 50 • Configuring RPM packages 51 • Configuring

Kubernetes cluster and user workloads 53 • Configuring the network 55

3.4 Building the image 57

3.5 Debugging the image build process 60

3.6 Testing your newly built image 60

II COMPONENTS USED 61

4 Rancher 62
4.1 Key Features of Rancher 62

4.2 Rancher’s use in SUSE Edge 62

Centralized Kubernetes management 62 • Simplified

cluster deployment 63 • Application deployment and

management 63 • Security and policy enforcement 63

iv SUSE Edge Documentation

4.3 Best practices 63

GitOps 63 • Observability 63

4.4 Installing with Edge Image Builder 63

4.5 Additional Resources 64

5 Rancher Dashboard Extensions 65

5.1 Prerequisites 65

5.2 Installation 65

Installing with Helm 65 • Installing with Fleet 66

5.3 KubeVirt Dashboard Extension 69

5.4 Akri Dashboard Extension 69

6 Fleet 70

6.1 Installing Fleet with Helm 70

6.2 Using Fleet with Rancher 70

6.3 Accessing Fleet in the Rancher UI 70

Dashboard 71 • Git repos 72 • Clusters 72 • Cluster

groups 72 • Advanced 72

6.4 Example of installing KubeVirt with Rancher and Fleet using Rancher
dashboard 72

6.5 Debugging and troubleshooting 77

6.6 Fleet examples 80

7 SLE Micro 81

7.1 How does SUSE Edge use SLE Micro? 81

7.2 Best practices 81

Installation media 81 • Local administration 81

7.3 Known issues 82

v SUSE Edge Documentation

8 Metal3 83

8.1 How does SUSE Edge use Metal3? 83

8.2 Known issues 83

9 Edge Image Builder 84

9.1 How does SUSE Edge use Edge Image Builder? 84

9.2 Getting started 85

9.3 Known issues 85

10 Edge Networking 86

10.1 Overview of NetworkManager 86

10.2 Overview of nmstate 86

10.3 Enter: NetworkManager Configurator (nmc) 86

10.4 How does SUSE Edge use NetworkManager Configurator? 87

10.5 Configuring with Edge Image Builder 87

Prerequisites 87 • Getting the Edge Image Builder container

image 87 • Creating the image configuration directory 88 • Creating

the image definition file 88 • Defining the network

configurations 89 • Building the OS image 94 • Provisioning the

edge nodes 95 • Unified node configurations 102 • Custom network

configurations 105

11 Elemental 109

11.1 How does SUSE Edge use Elemental? 109

11.2 Best practices 110

Installation media 110 • Labels 110

11.3 Known issues 110

vi SUSE Edge Documentation

12 Akri 111

12.1 How does SUSE Edge use Akri? 111

Installing Akri 111 • Configuring Akri 111 • Writing and deploying

additional Discovery Handlers 113 • Akri Rancher Dashboard Extension 113

13 K3s 120

13.1 How does SUSE Edge use K3s 120

13.2 Best practices 120

Installation 120 • Fleet for GitOps workflow 120 • Storage

management 120 • Load balancing and HA 121

14 RKE2 122

14.1 RKE2 vs K3s 122

14.2 How does SUSE Edge use RKE2? 122

14.3 Best practices 123

Installation 123 • High

availability 123 • Networking 124 • Storage 124

15 Longhorn 125

15.1 Prerequisites 125

15.2 Manual installation of Longhorn 125

Installing Open-iSCSI 125 • Installing Longhorn 126

15.3 Creating Longhorn volumes 127

15.4 Accessing the UI 130

15.5 Installing with Edge Image Builder 130

16 NeuVector 133

16.1 How does SUSE Edge use NeuVector? 134

16.2 Important notes 134

16.3 Installing with Edge Image Builder 134

vii SUSE Edge Documentation

17 MetalLB 135

17.1 How does SUSE Edge use MetalLB? 135

17.2 Best practices 136

17.3 Known issues 136

18 Edge Virtualization 137

18.1 KubeVirt overview 137

18.2 Prerequisites 138

18.3 Manual installation of Edge Virtualization 138

18.4 Deploying virtual machines 142

18.5 Using virtctl 145

18.6 Simple ingress networking 147

18.7 Using the Rancher UI extension 149

Installation 149 • Using KubeVirt Rancher Dashboard Extension 149

18.8 Installing with Edge Image Builder 153

III HOW-TO GUIDES 154

19 MetalLB on K3s (using L2) 155
19.1 Why use this method 155

19.2 MetalLB on K3s (using L2) 155

19.3 Prerequisites 156

Deployment 156 • Configuration 157 • Traefik and

MetalLB 158 • Usage 158

19.4 Ingress with MetalLB 161

20 MetalLB in front of the Kubernetes API server 164

20.1 Prerequisites 164

20.2 Installing RKE2/K3s 164

viii SUSE Edge Documentation

20.3 Configuring an existing cluster 166

20.4 Installing MetalLB 166

20.5 Installing the Endpoint Copier Operator 167

20.6 Adding control-plane nodes 169

21 Air-gapped deployments with Edge Image
Builder 171

21.1 Intro 171

21.2 Prerequisites 171

21.3 Libvirt Network Configuration 172

21.4 Base Directory Configuration 172

21.5 Base Definition File 174

21.6 Rancher Installation 175

21.7 NeuVector Installation 187

21.8 Longhorn Installation 189

21.9 KubeVirt and CDI Installation 193

21.10 Troubleshooting 196

IV THIRD-PARTY INTEGRATION 197

22 NATS 198
22.1 Architecture 198

NATS client applications 198 • NATS service infrastructure 198 • Simple

messaging design 199 • NATS JetStream 199

22.2 Installation 199

Installing NATS on top of K3s 199 • NATS as a back-end for K3s 201

23 NVIDIA GPUs on SLE Micro 203

23.1 Intro 203

ix SUSE Edge Documentation

23.2 Prerequisites 204

23.3 Manual installation 204

23.4 Further validation of the manual installation 209

23.5 Implementation with Kubernetes 212

23.6 Bringing it together via Edge Image Builder 215

23.7 Resolving issues 218

nvidia-smi does not find the GPU 218

V DAY 2 OPERATIONS 219

24 Management Cluster 220
24.1 RKE2 upgrade 220

24.2 OS upgrade 221

24.3 Helm upgrade 222

EIB deployed helm chart 222 • Non-EIB deployed helm chart 228

24.4 Cluster API upgrade 231

25 Downstream clusters 232

25.1 Introduction 232

Components 232 • Determine your use-case 234 • Day 2 workflow 235

25.2 System upgrade controller deployment guide 235

Deployment 236 • Monitor SUC resources using Rancher 241

25.3 OS package update 250

Components 250 • Requirements 251 • Update procedure 253 • OS

package update - SUC Plan deployment 257

25.4 Kubernetes version upgrade 262

Components 262 • Requirements 263 • Upgrade

procedure 264 • Kubernetes version upgrade - SUC Plan deployment 269

x SUSE Edge Documentation

25.5 Helm chart upgrade 275

Components 275 • Preparation for air-gapped

environments 275 • Upgrade procedure 279

VI PRODUCT DOCUMENTATION 303

26 SUSE Adaptive Telco Infrastructure Platform
(ATIP) 304

27 Concept & Architecture 305

27.1 ATIP Architecture 306

27.2 Components 307

27.3 Example deployment flows 308

Example 1: Deploying a new management cluster with all components

installed 308 • Example 2: Deploying a single-node downstream cluster with

Telco profiles to enable it to run Telco workloads 309 • Example 3: Deploying

a high availability downstream cluster using MetalLB as a Load Balancer 310

28 Requirements & Assumptions 313

28.1 Hardware 313

28.2 Network 314

28.3 Services (DHCP, DNS, etc.) 315

28.4 Disabling rebootmgr 316

29 Setting up the management cluster 317

29.1 Introduction 317

29.2 Steps to set up the management cluster 318

29.3 Image preparation for connected environments 321

Directory structure 321 • Management cluster definition

file 322 • Custom folder 328 • Kubernetes folder 336 • Networking

folder 341

xi SUSE Edge Documentation

29.4 Image preparation for air-gap environments 343

Directory structure for air-gap environments 343 • Modifications in the

definition file 344 • Modifications in the custom folder 349

29.5 Image creation 354

29.6 Provision the management cluster 354

30 Telco features configuration 355

30.1 Kernel image for real time 356

30.2 CPU tuned configuration 357

30.3 CNI Configuration 359

Cilium 359

30.4 SR-IOV 360

30.5 DPDK 370

30.6 vRAN acceleration (Intel ACC100/ACC200) 372

30.7 Huge pages 374

30.8 CPU pinning configuration 376

30.9 NUMA-aware scheduling 378

Identifying NUMA nodes 378

30.10 Metal LB 379

30.11 Private registry configuration 380

31 Fully automated directed network provisioning 383

31.1 Introduction 383

31.2 Prepare downstream cluster image for connected scenarios 384

Prerequisites for connected scenarios 384 • Image configuration for

connected scenarios 384 • Image creation 389

31.3 Prepare downstream cluster image for air-gap scenarios 389

Prerequisites for air-gap scenarios 389 • Image configuration for air-gap

scenarios 390 • Image creation for air-gap scenarios 394

xii SUSE Edge Documentation

31.4 Downstream cluster provisioning with Directed network provisioning
(single-node) 395

31.5 Downstream cluster provisioning with Directed network provisioning
(multi-node) 402

31.6 Advanced Network Configuration 411

31.7 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA,
etc.) 415

31.8 Private registry 424

31.9 Downstream cluster provisioning in air-gapped scenarios 427

Requirements for air-gapped scenarios 427 • Enroll the bare-metal hosts

in air-gap scenarios 427 • Provision the downstream cluster in air-gap

scenarios 428

32 Lifecycle actions 436

32.1 Management cluster upgrades 436

32.2 Downstream cluster upgrades 436

VII APPENDIX 440

33 Release Notes 441
33.1 Abstract 441

33.2 About 442

33.3 Release 3.0.3 442

Bug & Security Fixes 443 • Components Versions 443

33.4 Release 3.0.2 452

New Features 453 • Bug & Security Fixes 453 • Components

Versions 453

33.5 Release 3.0.1 463

New Features 463 • Bug & Security Fixes 463 • Components

Versions 463

xiii SUSE Edge Documentation

33.6 Release 3.0.0 473

New Features 473 • Bug & Security Fixes 473 • Components

Versions 473

33.7 Components Verification 482

33.8 Upgrade Steps 483

33.9 Known Limitations 483

33.10 Product Support Lifecycle 484

33.11 Obtaining source code 485

33.12 Legal notices 485

xiv SUSE Edge Documentation

SUSE Edge Documentation

Welcome to the SUSE Edge documentation. You will nd quick start guides, validated designs,
guidance on using components, third-party integrations, and best practices for managing your
edge computing infrastructure and workloads.

1 What is SUSE Edge?

SUSE Edge is a purpose-built, tightly integrated, and comprehensively validated end-to-end so-
lution for addressing the unique challenges of the deployment of infrastructure and cloud-native
applications at the edge. Its driving focus is to provide an opinionated, yet highly flexible, highly
scalable, and secure platform that spans initial deployment image building, node provisioning
and onboarding, application deployment, observability, and complete lifecycle operations. The
platform is built on best-of-breed open source software from the ground up, consistent with
both our 30-year history in delivering secure, stable, and certified SUSE Linux platforms and
our experience in providing highly scalable and feature-rich Kubernetes management with our
Rancher portfolio. SUSE Edge builds on-top of these capabilities to deliver functionality that can
address a wide number of market segments, including retail, medical, transportation, logistics,
telecommunications, smart manufacturing, and Industrial IoT.

2 Design Philosophy

The solution is designed with the notion that there is no "one-size-ts-all" edge platform due to
customers’ widely varying requirements and expectations. Edge deployments push us to solve,
and continually evolve, some of the most challenging problems, including massive scalability,
restricted network availability, physical space constraints, new security threats and attack vec-
tors, variations in hardware architecture and system resources, the requirement to deploy and
interface with legacy infrastructure and applications, and customer solutions that have extend-
ed lifespans. Since many of these challenges are different from traditional ways of thinking,
e.g. deployment of infrastructure and applications within data centers or in the public cloud,
we have to look into the design in much more granular detail, and rethinking many common
assumptions.

xv What is SUSE Edge?

For example, we nd value in minimalism, modularity, and ease of operations. Minimalism is
important for edge environments since the more complex a system is, the more likely it is to
break. When looking at hundreds of locations, up to hundreds of thousands, complex systems will
break in complex ways. Modularity in our solution allows for more user choice while removing
unneeded complexity in the deployed platform. We also need to balance these with the ease of
operations. Humans may make mistakes when repeating a process thousands of times, so the
platform should make sure any potential mistakes are recoverable, eliminating the need for on-
site technician visits, but also strive for consistency and standardization.

3 Which Quick Start should you use?

Due to the varying set of operating environments and lifecycle requirements, we’ve implemented
support for a number of distinct deployment patterns that loosely align to market segments and
use-cases that SUSE Edge operates in. We have documented a quickstart guide for each of these
deployment patterns to help you get familiar with the SUSE Edge platform based around your
needs. The three deployment patterns that we support today are described below, with a link
to the respective quickstart page.

3.1 Directed network provisioning

Directed network provisioning is where you know the details of the hardware you wish to deploy
to and have direct access to the out-of-band management interface to orchestrate and automate
the entire provisioning process. In this scenario, our customers expect a solution to be able to
provision edge sites fully automated from a centralized location, going much further than the
creation of a boot image by minimizing the manual operations at the edge location; simply rack,
power, and attach the required networks to the physical hardware, and the automation process
powers up the machine via the out-of-band management (e.g. via the Redfish API) and handles
the provisioning, onboarding, and deployment of infrastructure without user intervention. The
key for this to work is that the systems are known to the administrators; they know which
hardware is in which location, and that deployment is expected to be handled centrally.

This solution is the most robust since you are directly interacting with the hardware’s manage-
ment interface, are dealing with known hardware, and have fewer constraints on network avail-
ability. Functionality wise, this solution extensively uses Cluster API and Metal3 for automated
provisioning from baremetal, through operating system, Kubernetes, and layered applications,

xvi Which Quick Start should you use?

and provides the ability to link into the rest of the common lifecycle management capabilities
of SUSE Edge post-deployment. The quickstart for this solution can be found in Chapter 1, BMC

automated deployments with Metal3.

3.2 "Phone home" network provisioning

Sometimes you are operating in an environment where the central management cluster cannot
manage the hardware directly (for example, your remote network is behind a firewall or there is
no out-of-band management interface; common in "PC" type hardware often found at the edge).
In this scenario, we provide tooling to remotely provision clusters and their workloads with
no need to know where hardware is being shipped when it is bootstrapped. This is what most
people think of when they think about edge computing; it’s the thousands or tens of thousands of
somewhat unknown systems booting up at edge locations and securely phoning home, validating
who they are, and receiving their instructions on what they’re supposed to do. Our requirements
here expect provisioning and lifecycle management with very little user-intervention other than
either pre-imaging the machine at the factory, or simply attaching a boot image, e.g. via USB, and
switching the system on. The primary challenges in this space are addressing scale, consistency,
security, and lifecycle of these devices in the wild.

This solution provides a great deal of flexibility and consistency in the way that systems are
provisioned and on-boarded, regardless of their location, system type or specification, or when
they’re powered on for the rst time. SUSE Edge enables full flexibility and customization of the
system via Edge Image Builder, and leverages the registration capabilities Rancher’s Elemental
offering for node on-boarding and Kubernetes provisioning, along with SUSE Manager for op-
erating system patching. The quick start for this solution can be found in Chapter 2, Remote host

onboarding with Elemental.

3.3 Image-based provisioning

For customers that need to operate in standalone, air-gapped, or network limited environments,
SUSE Edge provides a solution that enables customers to generate fully customized installation
media that contains all of the required deployment artifacts to enable both single-node and mul-
ti-node highly-available Kubernetes clusters at the edge, including any workloads or additional
layered components required, all without any network connectivity to the outside world, and
without the intervention of a centralized management platform. The user-experience follows
closely to the "phone home" solution in that installation media is provided to the target systems,

xvii "Phone home" network provisioning

but the solution will "bootstrap in-place". In this scenario, it’s possible to attach the resulting
clusters into Rancher for ongoing management (i.e. going from a "disconnected" to "connected"
mode of operation without major reconfiguration or redeployment), or can continue to operate
in isolation. Note that in both cases the same consistent mechanism for automating lifecycle
operations can be applied.

Furthermore, this solution can be used to quickly create management clusters that may host
the centralized infrastructure that supports both the "directed network provisioning" and "phone
home network provisioning" models as it can be the quickest and most simple way to provision
all types of Edge infrastructure. This solution heavily utilizes the capabilities of SUSE Edge
Image Builder to create fully customized and unattended installation media; the quickstart can
be found in Chapter 3, Standalone clusters with Edge Image Builder.

4 Components used in SUSE Edge
SUSE Edge is comprised of both existing SUSE components, including those from the Linux and
Rancher teams, along with additional features and components built by the Edge team to enable
SUSE to address both the infrastructure requirements and intricacies. The list of components,
along with a link to a high-level description of each and how it’s used in SUSE Edge can be
found below:

Rancher (Chapter 4, Rancher)

Rancher Dashboard Extensions (Chapter 5, Rancher Dashboard Extensions)

Fleet (Chapter 6, Fleet)

SLE Micro (Chapter 7, SLE Micro)

Metal³ (Chapter 8, Metal3)

Edge Image Builder (Chapter 9, Edge Image Builder)

NetworkManager Configurator (Chapter 10, Edge Networking)

Elemental (Chapter 11, Elemental)

Akri (Chapter 12, Akri)

K3s (Chapter 13, K3s)

RKE2 (Chapter 14, RKE2)

xviii Components used in SUSE Edge

Longhorn (Chapter 15, Longhorn)

NeuVector (Chapter 16, NeuVector)

MetalLB (Chapter 17, MetalLB)

KubeVirt (Chapter 18, Edge Virtualization)

xix Components used in SUSE Edge

I Quick Starts

1 BMC automated deployments with Metal3 2

2 Remote host onboarding with Elemental 24

3 Standalone clusters with Edge Image Builder 48

Quick Starts here

1 BMC automated deployments with Metal3

Metal3 is a CNCF project (https://metal3.io/) which provides bare-metal infrastructure manage-
ment capabilities for Kubernetes.

Metal3 provides Kubernetes-native resources to manage the lifecycle of bare-metal servers which
support management via out-of-band protocols such as Redfish (https://www.dmtf.org/stan-

dards/redfish) .

It also has mature support for Cluster API (CAPI) (https://cluster-api.sigs.k8s.io/) which enables
management of infrastructure resources across multiple infrastructure providers via broadly
adopted vendor-neutral APIs.

1.1 Why use this method

This method is useful for scenarios where the target hardware supports out-of-band manage-
ment, and a fully automated infrastructure management ow is desired.

A management cluster is configured to provide declarative APIs that enable inventory and state
management of downstream cluster bare-metal servers, including automated inspection, clean-
ing and provisioning/deprovisioning.

2 Why use this method

https://metal3.io/
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish
https://cluster-api.sigs.k8s.io/

1.2 High-level architecture

3 High-level architecture

1.3 Prerequisites
There are some specific constraints related to the downstream cluster server hardware and net-
working:

Management cluster

Must have network connectivity to the target server management/BMC API

Must have network connectivity to the target server control plane network

For multi-node management clusters, an additional reserved IP address is required

Hosts to be controlled

Must support out-of-band management via Redfish, iDRAC or iLO interfaces

Must support deployment via virtual media (PXE is not currently supported)

Must have network connectivity to the management cluster for access to the Metal3

provisioning APIs

Some tools are required, these can be installed either on the management cluster, or on a host
which can access it.

Kubectl (https://kubernetes.io/docs/reference/kubectl/kubectl/) , Helm (https://helm.sh)

and Clusterctl (https://cluster-api.sigs.k8s.io/user/quick-start.html#install-clusterctl)

A container runtime such as Podman (https://podman.io) or Rancher Desktop (https://

rancherdesktop.io)

The SLE-Micro.x86_64-5.5.0-Default-GM.raw.xz OS image le must be downloaded
from the SUSE Customer Center (https://scc.suse.com/) or the SUSE Download page (https://

www.suse.com/download/sle-micro/) .

1.3.1 Setup Management Cluster

The basic steps to install a management cluster and use Metal3 are:

1. Install an RKE2 management cluster

2. Install Rancher

4 Prerequisites

https://kubernetes.io/docs/reference/kubectl/kubectl/
https://helm.sh
https://cluster-api.sigs.k8s.io/user/quick-start.html#install-clusterctl
https://podman.io
https://rancherdesktop.io
https://rancherdesktop.io
https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

3. Install a storage provider

4. Install the Metal3 dependencies

5. Install CAPI dependencies

6. Build a SLEMicro OS image for downstream cluster hosts

7. Register BareMetalHost CRs to define the bare-metal inventory

8. Create a downstream cluster by defining CAPI resources

This guide assumes an existing RKE2 cluster and Rancher (including cert-manager) has been
installed, for example by using Edge Image Builder (Chapter 9, Edge Image Builder).

Tip
The steps here can also be fully automated as described in the ATIP management cluster
documentation (Chapter 29, Setting up the management cluster).

1.3.2 Installing Metal3 dependencies

If not already installed as part of the Rancher installation, cert-manager must be installed and
running.

A persistent storage provider must be installed. Longhorn is recommended but local-path can
also be used for dev/PoC environments. The instructions below assume a StorageClass has
been marked as default (https://kubernetes.io/docs/tasks/administer-cluster/change-default-stor-

age-class/) , otherwise additional configuration for the Metal3 chart is required.

An additional IP is required, which is managed by MetalLB (https://metallb.universe.tf/) to pro-
vide a consistent endpoint for the Metal3 management services. This IP must be part of the con-
trol plane subnet and reserved for static configuration (not part of any DHCP pool).

Tip
If the management cluster is a single node, the requirement for an additional floating IP
managed via MetalLB can be avoided, see Single-node configuration (Section 1.6.1, “Sin-

gle-node configuration”)

5 Installing Metal3 dependencies

https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://metallb.universe.tf/

1. First, we install MetalLB:

helm install \
 metallb oci://registry.suse.com/edge/metallb-chart \
 --namespace metallb-system \
 --create-namespace

2. Then we define an IPAddressPool and L2Advertisment using the reserved IP, defined
as STATIC_IRONIC_IP below:

export STATIC_IRONIC_IP=<STATIC_IRONIC_IP>

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: ironic-ip-pool
 namespace: metallb-system
spec:
 addresses:
 - ${STATIC_IRONIC_IP}/32
 serviceAllocation:
 priority: 100
 serviceSelectors:
 - matchExpressions:
 - {key: app.kubernetes.io/name, operator: In, values: [metal3-ironic]}
EOF

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ironic-ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ironic-ip-pool
EOF

3. Now Metal3 can be installed:

helm install \
 metal3 oci://registry.suse.com/edge/metal3-chart \
 --namespace metal3-system \
 --create-namespace \

6 Installing Metal3 dependencies

 --set global.ironicIP="${STATIC_IRONIC_IP}"

4. It can take around two minutes for the initContainer to run on this deployment, so ensure
the pods are all running before proceeding:

kubectl get pods -n metal3-system
NAME READY STATUS RESTARTS
 AGE
baremetal-operator-controller-manager-85756794b-fz98d 2/2 Running 0
 15m
metal3-metal3-ironic-677bc5c8cc-55shd 4/4 Running 0
 15m
metal3-metal3-mariadb-7c7d6fdbd8-64c7l 1/1 Running 0
 15m

Warning
Do not proceed to the following steps until all pods in the metal3-system namespace
are running

1.3.3 Installing cluster API dependencies

First, we need to disable the Rancher-embedded CAPI controller:

cat <<-EOF | kubectl apply -f -
apiVersion: management.cattle.io/v3
kind: Feature
metadata:
 name: embedded-cluster-api
spec:
 value: false
EOF

kubectl delete mutatingwebhookconfiguration.admissionregistration.k8s.io mutating-
webhook-configuration
kubectl delete validatingwebhookconfigurations.admissionregistration.k8s.io validating-
webhook-configuration
kubectl wait --for=delete namespace/cattle-provisioning-capi-system --timeout=300s

Then, to use the SUSE images, a configuration le is needed:

mkdir ~/.cluster-api
cat > ~/.cluster-api/clusterctl.yaml <<EOF

7 Installing cluster API dependencies

images:
 all:
 repository: registry.suse.com/edge
EOF

Install clusterctl (https://cluster-api.sigs.k8s.io/user/quick-start.html#install-clusterctl) 1.6.x, af-
ter which we will install the core, infrastructure, bootstrap and control plane providers as fol-
lows:

clusterctl init --core "cluster-api:v1.6.2" --infrastructure "metal3:v1.6.0" --bootstrap
 "rke2:v0.4.1" --control-plane "rke2:v0.4.1"

After some time, the controller pods should be running in the capi-system , capm3-system ,
rke2-bootstrap-system and rke2-control-plane-system namespaces.

1.3.4 Prepare downstream cluster image

Edge Image Builder (Chapter 9, Edge Image Builder) is used to prepare a modified SLEMicro base
image which is provisioned on downstream cluster hosts.

In this guide, we cover the minimal configuration necessary to deploy the downstream cluster.

1.3.4.1 Image configuration

When running Edge Image Builder, a directory is mounted from the host, so it is necessary to
create a directory structure to store the configuration les used to define the target image.

downstream-cluster-config.yaml is the image definition le, see Chapter 3, Standalone

clusters with Edge Image Builder for more details.

The base image when downloaded is xz compressed, which must be uncompressed with
unxz and copied/moved under the base-images folder.

The network folder is optional, see Section 1.3.5.1.1, “Additional script for static network con-

figuration” for more details.

The custom/scripts directory contains scripts to be run on rst-boot; currently a growf-
s.sh script is required to resize the OS root partition on deployment

├── downstream-cluster-config.yaml
├── base-images/

8 Prepare downstream cluster image

https://cluster-api.sigs.k8s.io/user/quick-start.html#install-clusterctl

│ └ SLE-Micro.x86_64-5.5.0-Default-GM.raw
├── network/
| └ configure-network.sh
└── custom/
 └ scripts/
 └ growfs.sh

1.3.4.1.1 Downstream cluster image definition file

The downstream-cluster-config.yaml le is the main configuration le for the downstream
cluster image. The following is a minimal example for deployment via Metal3:

apiVersion: 1.0
image:
 imageType: RAW
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-GM.raw
 outputImageName: SLE-Micro-eib-output.raw
operatingSystem:
 kernelArgs:
 - ignition.platform.id=openstack
 - net.ifnames=1
 systemd:
 disable:
 - rebootmgr
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 sshKeys:
 - ${USERKEY1}

${ROOT_PASSWORD} is the encrypted password for the root user, which can be useful for test/
debugging. It can be generated with the openssl passwd -6 PASSWORD command

For the production environments, it is recommended to use the SSH keys that can be added to
the users block replacing the ${USERKEY1} with the real SSH keys.

Note
net.ifnames=1 enables Predictable Network Interface Naming (https://documenta-

tion.suse.com/smart/network/html/network-interface-predictable-naming/index.html)

This matches the default configuration for the metal3 chart, but the setting must match
the configured chart predictableNicNames value.

9 Prepare downstream cluster image

https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html
https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html

Also note ignition.platform.id=openstack is mandatory, without this argument
SLEMicro configuration via ignition will fail in the Metal3 automated ow.

1.3.4.1.2 Growfs script

Currently is a custom script (custom/scripts/growfs.sh) which is required to grow the le
system to the match the disk size on rst-boot after provisioning. The growfs.sh script contains
the following information:

#!/bin/bash
growfs() {
 mnt="$1"
 dev="$(findmnt --fstab --target ${mnt} --evaluate --real --output SOURCE --noheadings)"
 # /dev/sda3 -> /dev/sda, /dev/nvme0n1p3 -> /dev/nvme0n1
 parent_dev="/dev/$(lsblk --nodeps -rno PKNAME "${dev}")"
 # Last number in the device name: /dev/nvme0n1p42 -> 42
 partnum="$(echo "${dev}" | sed 's/^.*[^0-9]\([0-9]\+\)$/\1/')"
 ret=0
 growpart "$parent_dev" "$partnum" || ret=$?
 [$ret -eq 0] || [$ret -eq 1] || exit 1
 /usr/lib/systemd/systemd-growfs "$mnt"
}
growfs /

Note
Add your own custom scripts to be executed during the provisioning process using the
same approach. For more information, see Chapter 3, Standalone clusters with Edge Image

Builder.

1.3.4.2 Image creation

Once the directory structure is prepared following the previous sections, run the following com-
mand to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/edge-image-builder:1.0.2 \
 build --definition-file downstream-cluster-config.yaml

This creates the output image le named SLE-Micro-eib-output.raw , based on the definition
described above.

10 Prepare downstream cluster image

The output image must then be made available via a webserver, either the media-server con-
tainer enabled via the Metal3 chart (Note) or some other locally accessible server. In the exam-
ples below, we refer to this server as imagecache.local:8080

1.3.5 Adding BareMetalHost inventory

Registering bare-metal servers for automated deployment requires creating two resources: a
Secret storing BMC access credentials and a Metal3 BareMetalHost resource defining the BMC
connection and other details:

apiVersion: v1
kind: Secret
metadata:
 name: controlplane-0-credentials
type: Opaque
data:
 username: YWRtaW4=
 password: cGFzc3dvcmQ=

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: controlplane-0
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: "00:f3:65:8a:a3:b0"
 bmc:
 address: redfish-virtualmedia://192.168.125.1:8000/redfish/v1/Systems/68bd0fb6-
d124-4d17-a904-cdf33efe83ab
 disableCertificateVerification: true
 credentialsName: controlplane-0-credentials

Note the following:

The Secret username/password must be base64 encoded. Note this should not include any
trailing newlines (for example, use echo -n , not just echo !)

The cluster-role label may be set now or later on cluster creation. In the example
below, we expect control-plane or worker

bootMACAddress must be a valid MAC that matches the control plane NIC of the host

11 Adding BareMetalHost inventory

The bmc address is the connection to the BMC management API, the following are sup-
ported:

redfish-virtualmedia://<IP ADDRESS>/redfish/v1/Systems/<SYSTEM ID> :
Redfish virtual media, for example, SuperMicro

idrac-virtualmedia://<IP ADDRESS>/redfish/v1/Systems/System.Embed-

ded.1 : Dell iDRAC

See the Upstream API docs (https://github.com/metal3-io/baremetal-operator/blob/main/

docs/api.md) for more details on the BareMetalHost API

1.3.5.1 Configuring Static IPs

The BareMetalHost example above assumes DHCP provides the controlplane network configu-
ration, but for scenarios where manual configuration is needed such as static IPs it is possible
to provide additional configuration, as described below.

1.3.5.1.1 Additional script for static network configuration

When creating the base image with Edge Image Builder, in the network folder, create the
following configure-network.sh le.

This consumes configuration drive data on rst-boot, and configures the host networking using
the NM Configurator tool (https://github.com/suse-edge/nm-configurator) .

#!/bin/bash

set -eux

Attempt to statically configure a NIC in the case where we find a network_data.json
In a configuration drive

CONFIG_DRIVE=$(blkid --label config-2 || true)
if [-z "${CONFIG_DRIVE}"]; then
 echo "No config-2 device found, skipping network configuration"
 exit 0
fi

mount -o ro $CONFIG_DRIVE /mnt

NETWORK_DATA_FILE="/mnt/openstack/latest/network_data.json"

12 Adding BareMetalHost inventory

https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md
https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md
https://github.com/suse-edge/nm-configurator

if [! -f "${NETWORK_DATA_FILE}"]; then
 umount /mnt
 echo "No network_data.json found, skipping network configuration"
 exit 0
fi

DESIRED_HOSTNAME=$(cat /mnt/openstack/latest/meta_data.json | tr ',{}' '\n' | grep
 '\"metal3-name\"' | sed 's/.*\"metal3-name\": \"\(.*\)\"/\1/')
echo "${DESIRED_HOSTNAME}" > /etc/hostname

mkdir -p /tmp/nmc/{desired,generated}
cp ${NETWORK_DATA_FILE} /tmp/nmc/desired/_all.yaml
umount /mnt

./nmc generate --config-dir /tmp/nmc/desired --output-dir /tmp/nmc/generated

./nmc apply --config-dir /tmp/nmc/generated

1.3.5.1.2 Additional secret with host network configuration

An additional secret containing data in the nmstate (https://nmstate.io/) format supported by
NM Configurator (Chapter 10, Edge Networking) can be defined for each host.

The secret is then referenced in the BareMetalHost resource via the preprovisioningNet-
workDataName spec eld.

apiVersion: v1
kind: Secret
metadata:
 name: controlplane-0-networkdata
type: Opaque
stringData:
 networkData: |
 interfaces:
 - name: enp1s0
 type: ethernet
 state: up
 mac-address: "00:f3:65:8a:a3:b0"
 ipv4:
 address:
 - ip: 192.168.125.200
 prefix-length: 24
 enabled: true
 dhcp: false
 dns-resolver:
 config:

13 Adding BareMetalHost inventory

https://nmstate.io/

 server:
 - 192.168.125.1
 routes:
 config:
 - destination: 0.0.0.0/0
 next-hop-address: 192.168.125.1
 next-hop-interface: enp1s0

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: controlplane-0
 labels:
 cluster-role: control-plane
spec:
 preprovisioningNetworkDataName: controlplane-0-networkdata
Remaining content as in previous example

Note
In some circumstances the mac-address may be omitted but the configure-network.sh
script must use the _all.yaml filename described above to enable Unified node config-
uration (Section 10.5.8, “Unified node configurations”) in nm-configurator.

1.3.5.2 BareMetalHost preparation

After creating the BareMetalHost resource and associated secrets as described above, a host
preparation workflow is triggered:

A ramdisk image is booted by virtualmedia attachment to the target host BMC

The ramdisk inspects hardware details, and prepares the host for provisioning (for example
by cleaning disks of previous data)

On completion of this process, hardware details in the BareMetalHost status.hardware
eld are updated and can be verified

This process can take several minutes, but when completed you should see the BareMetalHost
state become available :

% kubectl get baremetalhost
NAME STATE CONSUMER ONLINE ERROR AGE
controlplane-0 available true 9m44s

14 Adding BareMetalHost inventory

worker-0 available true 9m44s

1.3.6 Creating downstream clusters

We now create Cluster API resources which define the downstream cluster, and Machine re-
sources which will cause the BareMetalHost resources to be provisioned, then bootstrapped to
form an RKE2 cluster.

1.3.7 Control plane deployment

To deploy the controlplane we define a yaml manifest similar to the one below, which contains
the following resources:

Cluster resource defines the cluster name, networks, and type of controlplane/infrastruc-
ture provider (in this case RKE2/Metal3)

Metal3Cluster defines the controlplane endpoint (host IP for single-node, LoadBalancer
endpoint for multi-node, this example assumes single-node)

RKE2ControlPlane defines the RKE2 version and any additional configuration needed dur-
ing cluster bootstrapping

Metal3MachineTemplate defines the OS Image to be applied to the BareMetalHost re-
sources, and the hostSelector defines which BareMetalHosts to consume

Metal3DataTemplate defines additional metaData to be passed to the BareMetalHost (note
networkData is not currently supported in the Edge solution)

Note for simplicity this example assumes a single-node controlplane, where the BareMetalHost
is configured with an IP of 192.168.125.200 - for more advanced multi-node examples please
see the ATIP documentation (Chapter 31, Fully automated directed network provisioning)

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 name: sample-cluster
 namespace: default
spec:
 clusterNetwork:
 pods:
 cidrBlocks:
 - 192.168.0.0/18

15 Creating downstream clusters

 services:
 cidrBlocks:
 - 10.96.0.0/12
 controlPlaneRef:
 apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
 kind: RKE2ControlPlane
 name: sample-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3Cluster
 name: sample-cluster

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3Cluster
metadata:
 name: sample-cluster
 namespace: default
spec:
 controlPlaneEndpoint:
 host: 192.168.125.200
 port: 6443
 noCloudProvider: true

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: sample-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: sample-cluster-controlplane
 replicas: 1
 agentConfig:
 format: ignition
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true

16 Control plane deployment

 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 version: v1.28.13+rke2r1

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: sample-cluster-controlplane
 namespace: default
spec:
 template:
 spec:
 dataTemplate:
 name: sample-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/SLE-Micro-eib-output.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/SLE-Micro-eib-output.raw

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: sample-cluster-controlplane-template
 namespace: default
spec:
 clusterName: sample-cluster
 metaData:
 objectNames:

17 Control plane deployment

 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname
 object: machine

When the example above has been copied and adapted to suit your environment, it can be
applied via kubectl then the cluster status can be monitored with clusterctl

% kubectl apply -f rke2-control-plane.yaml

Wait for the cluster to be provisioned - status can be checked via clusterctl
% clusterctl describe cluster sample-cluster
NAME READY SEVERITY REASON SINCE
 MESSAGE
Cluster/sample-cluster True 22m
├─ClusterInfrastructure - Metal3Cluster/sample-cluster True 27m
├─ControlPlane - RKE2ControlPlane/sample-cluster True 22m
│ └─Machine/sample-cluster-chflc True 23m

1.3.8 Worker/Compute deployment

Similar to the controlplane we define a yaml manifest, which contains the following resources:

MachineDeployment defines the number of replicas (hosts) and the bootstrap/infrastruc-
ture provider (in this case RKE2/Metal3)

RKE2ConfigTemplate describes the RKE2 version and rst-boot configuration for agent
host bootstrapping

Metal3MachineTemplate defines the OS Image to be applied to the BareMetalHost re-
sources, and the hostSelector defines which BareMetalHosts to consume

Metal3DataTemplate defines additional metaData to be passed to the BareMetalHost (note
networkData is not currently supported in the Edge solution)

apiVersion: cluster.x-k8s.io/v1beta1
kind: MachineDeployment
metadata:
 labels:
 cluster.x-k8s.io/cluster-name: sample-cluster
 name: sample-cluster
 namespace: default
spec:

18 Worker/Compute deployment

 clusterName: sample-cluster
 replicas: 1
 selector:
 matchLabels:
 cluster.x-k8s.io/cluster-name: sample-cluster
 template:
 metadata:
 labels:
 cluster.x-k8s.io/cluster-name: sample-cluster
 spec:
 bootstrap:
 configRef:
 apiVersion: bootstrap.cluster.x-k8s.io/v1alpha1
 kind: RKE2ConfigTemplate
 name: sample-cluster-workers
 clusterName: sample-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: sample-cluster-workers
 nodeDrainTimeout: 0s
 version: v1.28.13+rke2r1

apiVersion: bootstrap.cluster.x-k8s.io/v1alpha1
kind: RKE2ConfigTemplate
metadata:
 name: sample-cluster-workers
 namespace: default
spec:
 template:
 spec:
 agentConfig:
 format: ignition
 version: v1.28.13+rke2r1
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]

19 Worker/Compute deployment

 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /
mnt/openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: sample-cluster-workers
 namespace: default
spec:
 template:
 spec:
 dataTemplate:
 name: sample-cluster-workers-template
 hostSelector:
 matchLabels:
 cluster-role: worker
 image:
 checksum: http://imagecache.local:8080/SLE-Micro-eib-output.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/SLE-Micro-eib-output.raw

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: sample-cluster-workers-template
 namespace: default
spec:
 clusterName: sample-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname

20 Worker/Compute deployment

 object: machine
 - key: local_hostname
 object: machine

When the example above has been copied and adapted to suit your environment, it can be
applied via kubectl then the cluster status can be monitored with clusterctl

% kubectl apply -f rke2-agent.yaml

Wait some time for the compute/agent hosts to be provisioned
% clusterctl describe cluster sample-cluster
NAME READY SEVERITY REASON SINCE
 MESSAGE
Cluster/sample-cluster True 25m
├─ClusterInfrastructure - Metal3Cluster/sample-cluster True 30m
├─ControlPlane - RKE2ControlPlane/sample-cluster True 25m
│ └─Machine/sample-cluster-chflc True 27m
└─Workers
 └─MachineDeployment/sample-cluster True 22m
 └─Machine/sample-cluster-56df5b4499-zfljj True 23m

1.3.9 Cluster deprovisioning

The downstream cluster may be deprovisioned by deleting the resources applied in the creation
steps above:

% kubectl delete -f rke2-agent.yaml
% kubectl delete -f rke2-control-plane.yaml

This triggers deprovisioning of the BareMetalHost resources, which may take several minutes,
after which they should be in available state again:

% kubectl get bmh
NAME STATE CONSUMER ONLINE ERROR
 AGE
controlplane-0 deprovisioning sample-cluster-controlplane-vlrt6 false
 10m
worker-0 deprovisioning sample-cluster-workers-785x5 false
 10m

...

% kubectl get bmh
NAME STATE CONSUMER ONLINE ERROR AGE

21 Cluster deprovisioning

controlplane-0 available false 15m
worker-0 available false 15m

1.4 Known issues

The upstream IP Address Management controller (https://github.com/metal3-io/ip-ad-

dress-manager) is currently not supported, because it’s not yet compatible with our
choice of network configuration tooling and rst-boot toolchain in SLEMicro.

Relatedly, the IPAM resources and Metal3DataTemplate networkData elds are not cur-
rently supported.

Only deployment via redfish-virtualmedia is currently supported.

Deployed clusters are not currently imported into Rancher

Due to disabling the Rancher embedded CAPI controller, a management cluster configured
for Metal3 as described above cannot also be used for other cluster provisioning methods
such as Elemental (Chapter 11, Elemental)

1.5 Planned changes

Deployed clusters imported into Rancher, this is planned via Rancher Turtles (https://tur-

tles.docs.rancher.com/) in future

Aligning with Rancher Turtles is also expected to remove the requirement to disable the
Rancher embedded CAPI, so other cluster methods should be possible via the management
cluster.

Enable support of the IPAM resources and configuration via networkData elds

1.6 Additional resources

The ATIP Documentation (Chapter 26, SUSE Adaptive Telco Infrastructure Platform (ATIP)) has exam-
ples of more advanced usage of Metal3 for telco use-cases.

22 Known issues

https://github.com/metal3-io/ip-address-manager
https://github.com/metal3-io/ip-address-manager
https://turtles.docs.rancher.com/
https://turtles.docs.rancher.com/

1.6.1 Single-node configuration

For test/PoC environments where the management cluster is a single node, it is possible to avoid
the requirement for an additional floating IP managed via MetalLB.

In this mode, the endpoint for the management cluster APIs is the IP of the management cluster,
therefore it should be reserved when using DHCP or statically configured to ensure the manage-
ment cluster IP does not change - referred to as <MANAGEMENT_CLUSTER_IP> below.

To enable this scenario the metal3 chart values required are as follows:

global:
 ironicIP: <MANAGEMENT_CLUSTER_IP>
metal3-ironic:
 service:
 type: NodePort

1.6.2 Disabling TLS for virtualmedia ISO attachment

Some server vendors verify the SSL connection when attaching virtual-media ISO images to the
BMC, which can cause a problem because the generated certificates for the Metal3 deployment
are self-signed, to work around this issue it’s possible to disable TLS only for the virtualmedia
disk attachment with metal3 chart values as follows:

global:
 enable_vmedia_tls: false

An alternative solution is to configure the BMCs with the CA cert - in this case you can read the
certificates from the cluster using kubectl :

kubectl get secret -n metal3-system ironic-vmedia-cert -o yaml

The certificate can then be configured on the server BMC console, although the process for that
is vendor specific (and not possible for all vendors, in which case the enable_vmedia_tls ag
may be required).

23 Single-node configuration

2 Remote host onboarding with Elemental

This section documents the "phone home network provisioning" solution as part of SUSE Edge,
where we use Elemental to assist with node onboarding. Elemental is a software stack enabling
remote host registration and centralized full cloud-native OS management with Kubernetes. In
the SUSE Edge stack we use the registration feature of Elemental to enable remote host onboard-
ing into Rancher so that hosts can be integrated into a centralized management platform and
from there, deploy and manage Kubernetes clusters along with layered components, applica-
tions, and their lifecycle, all from a common place.

This approach can be useful in scenarios where the devices that you want to control are not on
the same network as the upstream cluster or do not have a out-of-band management controller
onboard to allow more direct control, and where you’re booting many different "unknown"
systems at the edge, and need to securely onboard and manage them at scale. This is a common
scenario for use cases in retail, industrial IoT, or other spaces where you have little control over
the network your devices are being installed in.

24

2.1 High-level architecture

25 High-level architecture

2.2 Resources needed

The following describes the minimum system and environmental requirements to run through
this quickstart:

A host for the centralized management cluster (the one hosting Rancher and Elemental):

Minimum 8 GB RAM and 20 GB disk space for development or testing (see
here (https://ranchermanager.docs.rancher.com/pages-for-subheaders/installation-re-

quirements#hardware-requirements) for production use)

A target node to be provisioned, i.e. the edge device (a virtual machine can be used for
demoing or testing purposes)

Minimum 4GB RAM, 2 CPU cores, and 20 GB disk

A resolvable host name for the management cluster or a static IP address to use with a
service like sslip.io

A host to build the installation media via Edge Image Builder

Running SLES 15 SP5, openSUSE Leap 15.5, or another compatible operating system
that supports Podman.

With Kubectl (https://kubernetes.io/docs/reference/kubectl/kubectl/) , Podman

(https://podman.io) , and Helm (https://helm.sh) installed

A USB ash drive to boot from (if using physical hardware)

Note
Existing data found on target machines will be overwritten as part of the process, please
make sure you backup any data on any USB storage devices and disks attached to target
deployment nodes.

This guide is created using a Digital Ocean droplet to host the upstream cluster and an Intel NUC
as the downstream device. For building the installation media, SUSE Linux Enterprise Server
is used.

26 Resources needed

https://ranchermanager.docs.rancher.com/pages-for-subheaders/installation-requirements#hardware-requirements
https://ranchermanager.docs.rancher.com/pages-for-subheaders/installation-requirements#hardware-requirements
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://podman.io
https://podman.io
https://helm.sh

2.3 How to use Elemental

The basic steps to install and use Elemental are:

Section 2.3.1, “Build bootstrap cluster”

Section 2.3.2, “Install Rancher”

Section 2.3.3, “Install Elemental”

Section 2.3.4, “Build the installation media”

Section 2.3.5, “Boot the downstream nodes”

Section 2.3.6, “Create downstream clusters”

2.3.1 Build bootstrap cluster

Start by creating a cluster capable of hosting Rancher and Elemental. This cluster needs to be
routable from the network that the downstream nodes are connected to.

2.3.1.1 Create Kubernetes cluster

If you are using a hyperscaler (such as Azure, AWS or Google Cloud), the easiest way to set up
a cluster is using their built-in tools. For the sake of conciseness in this guide, we do not detail
the process of each of these options.

If you are installing onto bare-metal or another hosting service where you need to also provide
the Kubernetes distribution itself, we recommend using RKE2 (https://docs.rke2.io/install/quick-

start) .

2.3.1.2 Set up DNS

Before continuing, you need to set up access to your cluster. As with the setup of the cluster
itself, how you configure DNS will be different depending on where it is being hosted.

27 How to use Elemental

https://docs.rke2.io/install/quickstart
https://docs.rke2.io/install/quickstart

Tip
If you do not want to handle setting up DNS records (for example, this is just an ephemeral
test server), you can use a service like sslip.io (https://sslip.io) instead. With this service,
you can resolve any IP address with <address>.sslip.io .

2.3.2 Install Rancher

To install Rancher, you need to get access to the Kubernetes API of the cluster you just created.
This looks differently depending on what distribution of Kubernetes is being used.

For RKE2, the kubeconfig le will have been written to /etc/rancher/rke2/rke2.yaml . Save
this le as ~/.kube/config on your local system. You may need to edit the le to include the
correct externally routable IP address or host name.

Install Rancher easily with the commands from the Rancher Documentation (https://rancherman-

ager.docs.rancher.com/pages-for-subheaders/install-upgrade-on-a-kubernetes-cluster) :

1. Install cert-manager (https://cert-manager.io) :

helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --create-namespace \
 --set crds.enabled=true

2. Then install Rancher itself:

helm repo add rancher-prime https://charts.rancher.com/server-charts/prime
helm repo update
helm install rancher rancher-prime/rancher \
 --namespace cattle-system \
 --create-namespace \
 --set hostname=<DNS or sslip from above> \
 --set replicas=1 \
 --set bootstrapPassword=<PASSWORD_FOR_RANCHER_ADMIN> \
 --version 2.8.8

28 Install Rancher

https://sslip.io
https://ranchermanager.docs.rancher.com/pages-for-subheaders/install-upgrade-on-a-kubernetes-cluster
https://ranchermanager.docs.rancher.com/pages-for-subheaders/install-upgrade-on-a-kubernetes-cluster
https://cert-manager.io

Note
If this is intended to be a production system, please use cert-manager to configure a real
certificate (such as one from Let’s Encrypt).

Browse to the host name you set up and log in to Rancher with the bootstrapPassword you
used. You will be guided through a short setup process.

2.3.3 Install Elemental

With Rancher installed, you can now install the Elemental operator and required CRD’s. The
Helm chart for Elemental is published as an OCI artifact so the installation is a little simpler
than other charts. It can be installed from either the same shell you used to install Rancher or
in the browser from within Rancher’s shell.

helm install --create-namespace -n cattle-elemental-system \
 elemental-operator-crds \
 oci://registry.suse.com/rancher/elemental-operator-crds-chart \
 --version 1.4.4

helm install -n cattle-elemental-system \
 elemental-operator \
 oci://registry.suse.com/rancher/elemental-operator-chart \
 --version 1.4.4

29 Install Elemental

2.3.3.1 (Optionally) Install the Elemental UI extension

1. To use the Elemental UI, log in to your Rancher instance, click the three-dot menu in the
upper left:

2. From the "Available" tab on this page, click "Install" on the Elemental card:

30 Install Elemental

3. Confirm that you want to install the extension:

31 Install Elemental

4. After it installs, you will be prompted to reload the page.

32 Install Elemental

5. Once you reload, you can access the Elemental extension through the "OS Management"
global app.

33 Install Elemental

34 Install Elemental

2.3.3.2 Configure Elemental

For simplicity, we recommend setting the variable $ELEM to the full path of where you want
the configuration directory:

export ELEM=$HOME/elemental
mkdir -p $ELEM

To allow machines to register to Elemental, we need to create a MachineRegistration object
in the fleet-default namespace.

Let us create a basic version of this object:

cat << EOF > $ELEM/registration.yaml
apiVersion: elemental.cattle.io/v1beta1
kind: MachineRegistration
metadata:
 name: ele-quickstart-nodes
 namespace: fleet-default
spec:
 machineName: "\${System Information/Manufacturer}-\${System Information/UUID}"
 machineInventoryLabels:
 manufacturer: "\${System Information/Manufacturer}"
 productName: "\${System Information/Product Name}"
EOF

kubectl apply -f $ELEM/registration.yaml

Note
The cat command escapes each $ with a backslash (\) so that Bash does not template
them. Remove the backslashes if copying manually.

Once the object is created, nd and note the endpoint that gets assigned:

REGISURL=$(kubectl get machineregistration ele-quickstart-nodes -n fleet-default -o
 jsonpath='{.status.registrationURL}')

Alternatively, this can also be done from the UI.

35 Install Elemental

UI Extension

1. From the OS Management extension, click "Create Registration Endpoint":

2. Give this configuration a name.

36 Install Elemental

37 Install Elemental

Note
You can ignore the Cloud Configuration eld as the data here is overridden by
the following steps with Edge Image Builder.

3. Next, scroll down and click "Add Label" for each label you want to be on the resource
that gets created when a machine registers. This is useful for distinguishing machines.

38 Install Elemental

4. Lastly, click "Create" to save the configuration.

39 Install Elemental

40 Install Elemental

UI Extension

If you just created the configuration, you should see the Registration URL listed and can
click "Copy" to copy the address:

41 Install Elemental

Tip
If you clicked away from that screen, you can click "Registration Endpoints" in the
left menu, then click the name of the endpoint you just created.

This URL is used in the next step.

2.3.4 Build the installation media

While the current version of Elemental has a way to build its own installation media, in SUSE
Edge 3.0 we do this with the Edge Image Builder instead, so the resulting system is built with
SLE Micro (https://www.suse.com/products/micro/) as the base Operating System.

Tip
For more details on the Edge Image Builder, check out the Getting Started Guide for it
(Chapter 3, Standalone clusters with Edge Image Builder) and also the Component Documen-
tation (Chapter 9, Edge Image Builder).

From a Linux system with Podman installed, run:

mkdir -p $ELEM/eib_quickstart/base-images
mkdir -p $ELEM/eib_quickstart/elemental

curl $REGISURL -o $ELEM/eib_quickstart/elemental/elemental_config.yaml

cat << EOF > $ELEM/eib_quickstart/eib-config.yaml
apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 outputImageName: elemental-image.iso
operatingSystem:
 isoConfiguration:
 installDevice: /dev/vda
 users:
 - username: root
 encryptedPassword: \$6\$jHugJNNd3HElGsUZ\
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/

42 Build the installation media

https://www.suse.com/products/micro/

EOF

Note

The unencoded password is eib .

The cat command escapes each $ with a backslash (\) so that Bash does not
template them. Remove the backslashes if copying manually.

The installation device will be wiped during the installation.

podman run --privileged --rm -it -v $ELEM/eib_quickstart/:/eib \
 registry.suse.com/edge/edge-image-builder:1.0.2 \
 build --definition-file eib-config.yaml

If you are booting a physical device, we need to burn the image to a USB ash drive. This can
be done with:

sudo dd if=/eib_quickstart/elemental-image.iso of=/dev/<PATH_TO_DISK_DEVICE>
 status=progress

2.3.5 Boot the downstream nodes

Now that we have created the installation media, we can boot our downstream nodes with it.

For each of the systems that you want to control with Elemental, add the installation media and
boot the device. After installation, it will reboot and register itself.

If you are using the UI extension, you should see your node appear in the "Inventory of Ma-
chines."

Note
Do not remove the installation medium until you’ve seen the login prompt; during rst-
boot les are still accessed on the USB stick.

2.3.6 Create downstream clusters

There are two objects we need to create when provisioning a new cluster using Elemental.

43 Boot the downstream nodes

Linux

The rst is the MachineInventorySelectorTemplate . This object allows us to specify a
mapping between clusters and the machines in the inventory.

1. Create a selector which will match any machine in the inventory with a label:

cat << EOF > $ELEM/selector.yaml
apiVersion: elemental.cattle.io/v1beta1
kind: MachineInventorySelectorTemplate
metadata:
 name: location-123-selector
 namespace: fleet-default
spec:
 template:
 spec:
 selector:
 matchLabels:
 locationID: '123'
EOF

2. Apply the resource to the cluster:

kubectl apply -f $ELEM/selector.yaml

3. Obtain the name of the machine and add the matching label:

MACHINENAME=$(kubectl get MachineInventory -n fleet-default | awk 'NR>1 {print
 $1}')

kubectl label MachineInventory -n fleet-default \
 $MACHINENAME locationID=123

4. Create a simple single-node K3s cluster resource and apply it to the cluster:

cat << EOF > $ELEM/cluster.yaml
apiVersion: provisioning.cattle.io/v1
kind: Cluster
metadata:
 name: location-123
 namespace: fleet-default
spec:
 kubernetesVersion: v1.28.13+k3s1
 rkeConfig:
 machinePools:
 - name: pool1
 quantity: 1

44 Create downstream clusters

 etcdRole: true
 controlPlaneRole: true
 workerRole: true
 machineConfigRef:
 kind: MachineInventorySelectorTemplate
 name: location-123-selector
 apiVersion: elemental.cattle.io/v1beta1
EOF

kubectl apply -f $ELEM/cluster.yaml

UI Extension

The UI extension allows for a few shortcuts to be taken. Note that managing multiple
locations may involve too much manual work.

1. As before, open the left three-dot menu and select "OS Management." This brings you
back to the main screen for managing your Elemental systems.

2. On the left sidebar, click "Inventory of Machines." This opens the inventory of ma-
chines that have registered.

3. To create a cluster from these machines, select the systems you want, click the "Ac-
tions" drop-down list, then "Create Elemental Cluster." This opens the Cluster Creation
dialog while also creating a MachineSelectorTemplate to use in the background.

4. On this screen, configure the cluster you want to be built. For this quick start, K3s
v1.28.13+k3s1 is selected and the rest of the options are left as is.

Tip
You may need to scroll down to see more options.

After creating these objects, you should see a new Kubernetes cluster spin up using the new
node you just installed with.

Tip
To allow for easier grouping of systems, you could add a startup script that nds some-
thing in the environment that is known to be unique to that location.

For example, if you know that each location will have a unique subnet, you can write
a script that nds the network prefix and adds a label to the corresponding MachineIn-
ventory.

45 Create downstream clusters

This would typically be custom to your system’s design but could look like:

INET=`ip addr show dev eth0 | grep "inet\ "`
elemental-register --label "network=$INET" \
 --label "network=$INET" /oem/registration

2.4 Node Reset
SUSE Rancher Elemental supports the ability to perform a "node reset" which can optionally
trigger when either a whole cluster is deleted from Rancher, a single node is deleted from a
cluster, or a node is manually deleted from the machine inventory. This is useful when you
want to reset and clean-up any orphaned resources and want to automatically bring the cleaned
node back into the machine inventory so it can be reused. This is not enabled by default, and
thus any system that is removed, will not be cleaned up (i.e. data will not be removed, and any
Kubernetes cluster resources will continue to operate on the downstream clusters) and it will
require manual intervention to wipe data and re-register the machine to Rancher via Elemental.

If you wish for this functionality to be enabled by default, you need to make sure that your
MachineRegistration explicitly enables this by adding config.elemental.reset.enabled:
true , for example:

config:
 elemental:
 registration:
 auth: tpm
 reset:
 enabled: true

Then, all systems registered with this MachineRegistration will automatically receive the
elemental.cattle.io/resettable: 'true' annotation in their configuration. If you wish to
do this manually on individual nodes, e.g. because you’ve got an existing MachineInventory
that doesn’t have this annotation, or you have already deployed nodes, you can modify the
MachineInventory and add the resettable configuration, for example:

apiVersion: elemental.cattle.io/v1beta1
kind: MachineInventory
metadata:
 annotations:
 elemental.cattle.io/os.unmanaged: 'true'
 elemental.cattle.io/resettable: 'true'

46 Node Reset

In SUSE Edge 3.0, the Elemental Operator puts down a marker on the operating system that
will trigger the cleanup process automatically; it will stop all Kubernetes services, remove all
persistent data, uninstall all Kubernetes services, cleanup any remaining Kubernetes/Rancher
directories, and force a re-registration to Rancher via the original Elemental MachineRegis-
tration configuration. This happens automaticaly, there is no need for any manual interven-
tion. The script that gets called can be found in /opt/edge/elemental_node_cleanup.sh and
is triggered via systemd.path upon the placement of the marker, so its execution is immediate.

Warning
Using the resettable functionality assumes that the desired behavior when removing a
node/cluster from Rancher is to wipe data and force a re-registration. Data loss is guar-
anteed in this situation, so only use this if you’re sure that you want automatic reset to
be performed.

2.5 Next steps
Here are some recommended resources to research after using this guide:

End-to-end automation in Chapter 6, Fleet

Additional network configuration options in Chapter 10, Edge Networking

47 Next steps

3 Standalone clusters with Edge Image Builder

Edge Image Builder (EIB) is a tool that streamlines the process of generating Customized, Ready-
to-Boot (CRB) disk images for bootstrapping machines, even in fully air-gapped scenarios. EIB
is used to create deployment images for use in all three of the SUSE Edge deployment foot-
prints, as it’s flexible enough to offer the smallest customizations, e.g. adding a user or setting
the timezone, through offering a comprehensively configured image that sets up, for example,
complex networking configurations, deploys multi-node Kubernetes clusters, deploys customer
workloads, and registers to the centralized management platform via Rancher/Elemental and
SUSE Manager. EIB runs as in a container image, making it incredibly portable across platforms
and ensuring that all of the required dependencies are self-contained, having a very minimal
impact on the installed packages of the system that’s being used to operate the tool.

For more information, read the Edge Image Builder Introduction (Chapter 9, Edge Image Builder).

3.1 Prerequisites

An x86_64 physical host (or virtual machine) running SLES 15 SP5, openSUSE Leap 15.5,
or openSUSE Tumbleweed.

An available container runtime (e.g. Podman)

A downloaded copy of the latest SLE Micro 5.5 SelfInstall "GM2" ISO image found here

(https://www.suse.com/download/sle-micro/) .

Note
Other operating systems may function so long as a compatible container runtime is avail-
able, but testing on other platforms has not been extensive. The documentation focuses
on Podman, but the same functionality should be able to be achieved with Docker.

3.1.1 Getting the EIB Image

The EIB container image is publicly available and can be downloaded from the SUSE Edge
registry by running the following command on your image build host:

podman pull registry.suse.com/edge/edge-image-builder:1.0.2

48 Prerequisites

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

3.2 Creating the image configuration directory
As EIB runs within a container, we need to mount a configuration directory from the host,
enabling you to specify your desired configuration, and during the build process EIB has access to
any required input les and supporting artifacts. This directory must follow a specific structure.
Let’s create it, assuming that this directory will exist in your home directory, and called "eib":

export CONFIG_DIR=$HOME/eib
mkdir -p $CONFIG_DIR/base-images

In the previous step we created a "base-images" directory that will host the SLE Micro 5.5 input
image, let’s ensure that the downloaded image is copied over to the configuration directory:

cp /path/to/downloads/SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 $CONFIG_DIR/base-images/slemicro.iso

Note
During the EIB run, the original base image is not modified; a new and customized version
is created with the desired configuration in the root of the EIB config directory.

The configuration directory at this point should look like the following:

└── base-images/
 └── slemicro.iso

3.3 Creating the image definition file
The definition le describes the majority of configurable options that the Edge Image Builder
supports, a full example of options can be found here (https://github.com/suse-edge/edge-im-

age-builder/blob/release-1.0/pkg/image/testdata/full-valid-example.yaml) , and we would recom-
mend that you take a look at the upstream building images guide (https://github.com/suse-edge/

edge-image-builder/blob/release-1.0/docs/building-images.md) for more comprehensive exam-
ples than the one we’re going to run through below. Let’s start with a very basic definition le
for our OS image:

cat << EOF > $CONFIG_DIR/iso-definition.yaml
apiVersion: 1.0
image:

49 Creating the image configuration directory

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/pkg/image/testdata/full-valid-example.yaml
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/pkg/image/testdata/full-valid-example.yaml
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md

 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
EOF

This definition specifies that we’re generating an output image for an x86_64 based system.
The image that will be used as the base for further modification is an iso image named slemi-
cro.iso , expected to be located at $CONFIG_DIR/base-images/slemicro.iso . It also outlines
that after EIB finishes modifying the image, the output image will be named eib-image.iso ,
and by default will reside in $CONFIG_DIR .

Now our directory structure should look like:

├── iso-definition.yaml
└── base-images/
 └── slemicro.iso

In the following sections we’ll walk through a few examples of common operations:

3.3.1 Configuring OS Users

EIB allows you to preconfigure users with login information, such as passwords or SSH keys,
including setting a xed root password. As part of this example we’re going to x the root
password, and the rst step is to use OpenSSL to create a one-way encrypted password:

openssl passwd -6 SecurePassword

This will output something similar to:

6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1

We can then add a section in the definition le called operatingSystem with a users array
inside it. The resulting le should look like:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:

50 Configuring OS Users

 - username: root
 encryptedPassword:
 6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1

Note
It’s also possible to add additional users, create the home directories, set user-id’s, add
ssh-key authentication, and modify group information. Please refer to the upstream build-

ing images guide (https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/

building-images.md) for further examples.

3.3.2 Configuring RPM packages

One of the major features of EIB is to provide a mechanism to add additional software packages
to the image, so when the installation completes the system is able to leverage the installed
packages right away. EIB permits users to specify the following:

Packages by their name within a list in the image definition

Network repositories to search for these packages in

SUSE Customer Center (SCC) credentials to search official SUSE repositories for the listed
packages

Via an $CONFIG_DIR/rpms directory, side-load custom RPM’s that don’t exist in network
repositories

Via the same directory ($CONFIG_DIR/rpms/gpg-keys), GPG-keys to enable validation
of third party packages

EIB will then run through a package resolution process at image build time, taking the base
image as the input, and attempts to pull and install all supplied packages, either specified via
the list or provided locally. EIB downloads all of the packages, including any dependencies into
a repository that exists within the output image and instructs the system to install these during
the rst boot process. Doing this process during the image build guarantees that the packages
will successfully install during rst-boot on the desired platform, e.g. the node at the edge. This
is also advantageous in environments where you want to bake the additional packages into the
image rather than pull them over the network when in operation, e.g. for air-gapped or restricted
network environments.

51 Configuring RPM packages

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md

As a simple example to demonstrate this, we are going to install the nvidia-container-toolk-
it RPM package found in the third party vendor-supported NVIDIA repository:

 packages:
 packageList:
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64

The resulting definition le looks like:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword:
 6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1
 packages:
 packageList:
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64

The above is a simple example, but for completeness, download the NVIDIA package signing
key before running the image generation:

$ mkdir -p $CONFIG_DIR/rpms/gpg-keys
$ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey > rpms/gpg-keys/
nvidia.gpg

Warning
Adding in additional RPM’s via this method is meant for the addition of supported third
party components or user-supplied (and maintained) packages; this mechanism should
not be used to add packages that would not usually be supported on SLE Micro. If this
mechanism is used to add components from openSUSE repositories (which are not sup-
ported), including from newer releases or service packs, you may end up with an unsup-
ported configuration, especially when dependency resolution results in core parts of the

52 Configuring RPM packages

operating system being replaced, even though the resulting system may appear to func-
tion as expected. If you’re unsure, contact your SUSE representative for assistance in de-
termining the supportability of your desired configuration.

Note
A more comprehensive guide with additional examples can be found in the up-

stream installing packages guide (https://github.com/suse-edge/edge-image-builder/blob/re-

lease-1.0/docs/installing-packages.md) .

3.3.3 Configuring Kubernetes cluster and user workloads

Another feature of EIB is the ability to use it to automate the deployment of both single-node and
multi-node highly-available Kubernetes clusters that "bootstrap in place", i.e. don’t require any
form of centralized management infrastructure to coordinate. The primary driver behind this
approach is for air-gapped deployments, or network restricted environments, but it also serves
as a way of quickly bootstrapping standalone clusters, even if full and unrestricted network
access is available.

This method enables not only the deployment of the customized operating system, but also the
ability to specify Kubernetes configuration, any additional layered components via Helm charts,
and any user workloads via supplied Kubernetes manifests. However, the design principle behind
using this method is that we default to assuming that the user is wanting to air-gap and therefore
any items specified in the image definition will be pulled into the image, which includes user-
supplied workloads, where EIB will make sure that any discovered images that are required by
definitions supplied are copied locally, and are served by the embedded image registry in the
resulting deployed system.

In this next example, we’re going to take our existing image definition and will specify a Ku-
bernetes configuration (in this example it doesn’t list the systems and their roles, so we default
to assuming single-node), which will instruct EIB to provision a single-node RKE2 Kubernetes
cluster. To show the automation of both the deployment of both user-supplied workloads (via
manifest) and layered components (via Helm), we are going to install KubeVirt via the SUSE
Edge Helm chart, as well as NGINX via a Kubernetes manifest. The additional configuration we
need to append to the existing image definition is as follows:

kubernetes:

53 Configuring Kubernetes cluster and user workloads

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/installing-packages.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/installing-packages.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/installing-packages.md

 version: v1.28.13+rke2r1
 manifests:
 urls:
 - https://k8s.io/examples/application/nginx-app.yaml
 helm:
 charts:
 - name: kubevirt-chart
 version: 0.2.4
 repositoryName: suse-edge
 repositories:
 - name: suse-edge
 url: oci://registry.suse.com/edge

The resulting full definition le should now look like:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword:
 6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1
 packages:
 packageList:
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64
kubernetes:
 version: v1.28.13+rke2r1
 manifests:
 urls:
 - https://k8s.io/examples/application/nginx-app.yaml
 helm:
 charts:
 - name: kubevirt-chart
 version: 0.2.4
 repositoryName: suse-edge
 repositories:
 - name: suse-edge
 url: oci://registry.suse.com/edge

54 Configuring Kubernetes cluster and user workloads

Note
Further examples of options such as multi-node deployments, custom net-
working, and Helm chart options/values can be found in the upstream doc-

umentation (https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/build-

ing-images.md#kubernetes) .

3.3.4 Configuring the network

In the last example in this quickstart, let’s configure the network that will be brought up when a
system is provisioned with the image generated by EIB. It’s important to understand that unless
a network configuration is supplied, the default model is that DHCP will be used on all interfaces
discovered at boot time. However, this is not always a desirable configuration, especially if
DHCP is not available and you need to provide static configurations, or you need to set up
more complex networking constructs, e.g. bonds, LACP, and VLAN’s, or need to override certain
parameters, e.g. hostnames, DNS servers, and routes.

EIB provides the ability to provide either per-node configurations (where the system in question
is uniquely identified by its MAC address), or an override for supplying an identical configura-
tion to each machine, which is more useful when the system MAC addresses aren’t known. An
additional tool is used by EIB called Network Manager Configurator, or nmc for short, which
is a tool built by the SUSE Edge team to allow custom networking configurations to be applied
based on the nmstate.io (https://nmstate.io/) declarative network schema, and at boot time will
identify the node it’s booting on and will apply the desired network configuration prior to any
services coming up.

We’ll now apply a static network configuration for a system with a single interface by describing
the desired network state in a node-specific le (based on the desired hostname) in the required
network directory:

mkdir $CONFIG_DIR/network

cat << EOF > $CONFIG_DIR/network/host1.local.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: eth0
 table-id: 254

55 Configuring the network

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#kubernetes
https://nmstate.io/

 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E7
 ipv4:
 address:
 - ip: 192.168.122.50
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
EOF

Warning
The above example is set up for the default 192.168.122.0/24 subnet assuming that
testing is being executed on a virtual machine, please adapt to suit your environment,
not forgetting the MAC address. As the same image can be used to provision multiple
nodes, networking configured by EIB (via nmc) is dependent on it being able to uniquely
identify the node by its MAC address, and hence during boot nmc will apply the correct
networking configuration to each machine. This means that you’ll need to know the MAC
addresses of the systems you want to install onto. Alternatively, the default behavior is to
rely on DHCP, but you can utilize the configure-network.sh hook to apply a common
configuration to all nodes - see the networking guide (Chapter 10, Edge Networking) for
further details.

The resulting le structure should look like:

├── iso-definition.yaml
├── base-images/
│ └── slemicro.iso

56 Configuring the network

└── network/
 └── host1.local.yaml

The network configuration we just created will be parsed and the necessary NetworkManager
connection les will be automatically generated and inserted into the new installation image
that EIB will create. These les will be applied during the provisioning of the host, resulting in
a complete network configuration.

Note
Please refer to the Edge Networking component (Chapter 10, Edge Networking) for a more
comprehensive explanation of the above configuration and examples of this feature.

3.4 Building the image
Now that we’ve got a base image and an image definition for EIB to consume, let’s go ahead
and build the image. For this, we simply use podman to call the EIB container with the "build"
command, specifying the definition le:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/edge-image-builder:1.0.2 \
build --definition-file iso-definition.yaml

The output of the command should be similar to:

Setting up Podman API listener...
Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Resolving package dependencies...
Rpm [SUCCESS]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Downloading file: dl-manifest-1.yaml 100% (498/498 B, 5.9 MB/s)
Populating Embedded Artifact Registry... 100% (3/3, 11 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]

57 Building the image

Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Downloading file: rke2-images-core.linux-amd64.tar.zst 100% (782/782 MB, 98 MB/s)
Downloading file: rke2-images-cilium.linux-amd64.tar.zst 100% (367/367 MB, 100 MB/s)
Downloading file: rke2.linux-amd64.tar.gz 100% (34/34 MB, 101 MB/s)
Downloading file: sha256sum-amd64.txt 100% (3.9/3.9 kB, 1.5 MB/s)
Downloading file: dl-manifest-1.yaml 100% (498/498 B, 7.2 MB/s)
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Image build complete!

The built ISO image is stored at $CONFIG_DIR/eib-image.iso :

├── iso-definition.yaml
├── eib-image.iso
├── _build
│ └── cache/
│ └── ...
│ └── build-<timestamp>/
│ └── ...
├── base-images/
│ └── slemicro.iso
└── network/
 └── host1.local.yaml

Each build creates a time-stamped folder in $CONFIG_DIR/_build/ that includes the logs of
the build, the artifacts used during the build, and the combustion and artefacts directories
which contain all the scripts and artifacts that are added to the CRB image.

The contents of this directory should look like:

├── build-<timestamp>/
│ │── combustion/
│ │ ├── 05-configure-network.sh
│ │ ├── 10-rpm-install.sh
│ │ ├── 12-keymap-setup.sh
│ │ ├── 13b-add-users.sh
│ │ ├── 20-k8s-install.sh
│ │ ├── 26-embedded-registry.sh
│ │ ├── 48-message.sh
│ │ ├── network/
│ │ │ ├── host1.local/
│ │ │ │ └── eth0.nmconnection
│ │ │ └── host_config.yaml
│ │ ├── nmc

58 Building the image

│ │ └── script
│ │── artefacts/
│ │ │── registry/
│ │ │ ├── hauler
│ │ │ ├── nginx:1.14.2-registry.tar.zst
│ │ │ ├── rancher_kubectl:v1.28.7-registry.tar.zst
│ │ │ └── registry.suse.com_suse_sles_15.5_virt-operator:1.1.1-150500.8.12.1-
registry.tar.zst
│ │ │── rpms/
│ │ │ └── rpm-repo
│ │ │ ├── addrepo0
│ │ │ │ └── x86_64
│ │ │ │ ├── nvidia-container-toolkit-1.15.0-1.x86_64.rpm
│ │ │ │ ├── ...
│ │ │ ├── repodata
│ │ │ │ ├── ...
│ │ │ └── zypper-success
│ │ └── kubernetes/
│ │ ├── rke2_installer.sh
│ │ ├── registries.yaml
│ │ ├── server.yaml
│ │ ├── images/
│ │ │ ├── rke2-images-cilium.linux-amd64.tar.zst
│ │ │ └── rke2-images-core.linux-amd64.tar.zst
│ │ ├── install/
│ │ │ ├── rke2.linux-amd64.tar.gz
│ │ │ └── sha256sum-amd64.txt
│ │ └── manifests/
│ │ ├── dl-manifest-1.yaml
│ │ └── kubevirt-chart.yaml
│ ├── createrepo.log
│ ├── eib-build.log
│ ├── embedded-registry.log
│ ├── helm
│ │ └── kubevirt-chart
│ │ └── kubevirt-0.2.4.tgz
│ ├── helm-pull.log
│ ├── helm-template.log
│ ├── iso-build.log
│ ├── iso-build.sh
│ ├── iso-extract
│ │ └── ...
│ ├── iso-extract.log
│ ├── iso-extract.sh
│ ├── modify-raw-image.sh
│ ├── network-config.log
│ ├── podman-image-build.log

59 Building the image

│ ├── podman-system-service.log
│ ├── prepare-resolver-base-tarball-image.log
│ ├── prepare-resolver-base-tarball-image.sh
│ ├── raw-build.log
│ ├── raw-extract
│ │ └── ...
│ └── resolver-image-build
│ └──...
└── cache
 └── ...

If the build fails, eib-build.log is the rst log that contains information. From there, it will
direct you to the component that failed for debugging.

At this point, you should have a ready-to-use image that will:

1. Deploy SLE Micro 5.5

2. Configure the root password

3. Install the nvidia-container-toolkit package

4. Configure an embedded container registry to serve content locally

5. Install single-node RKE2

6. Configure static networking

7. Install KubeVirt

8. Deploy a user-supplied manifest

3.5 Debugging the image build process
If the image build process fails, refer to the upstream debugging guide (https://github.com/suse-

edge/edge-image-builder/blob/release-1.0/docs/debugging.md) .

3.6 Testing your newly built image
For instructions on how to test the newly built CRB image, refer to the upstream

image testing guide (https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/test-

ing-guide.md) .

60 Debugging the image build process

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/debugging.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/debugging.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/testing-guide.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/testing-guide.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/testing-guide.md

II Components Used

4 Rancher 62

5 Rancher Dashboard Extensions 65

6 Fleet 70

7 SLE Micro 81

8 Metal3 83

9 Edge Image Builder 84

10 Edge Networking 86

11 Elemental 109

12 Akri 111

13 K3s 120

14 RKE2 122

15 Longhorn 125

16 NeuVector 133

17 MetalLB 135

18 Edge Virtualization 137

List of components for Edge

4 Rancher

See Rancher upstream documentation at https://ranchermanager.docs.rancher.com .

Rancher is a powerful open-source Kubernetes management platform that stream-
lines the deployment, operations and monitoring of Kubernetes clusters across
multiple environments. Whether you manage clusters on premises, in the cloud,
or at the edge, Rancher provides a unified and centralized platform for all your
Kubernetes needs.

4.1 Key Features of Rancher

Multi-cluster management: Rancher’s intuitive interface lets you manage Kubernetes
clusters from anywhere—public clouds, private data centers and edge locations.

Security and compliance: Rancher enforces security policies, role-based access control
(RBAC), and compliance standards across your Kubernetes landscape.

Simplified cluster operations: Rancher automates cluster provisioning, upgrades and
troubleshooting, simplifying Kubernetes operations for teams of all sizes.

Centralized application catalog: The Rancher application catalog offers a diverse range
of Helm charts and Kubernetes Operators, making it easy to deploy and manage container-
ized applications.

Continuous delivery: Rancher supports GitOps and CI/CD pipelines, enabling automated
and streamlined application delivery processes.

4.2 Rancher’s use in SUSE Edge
Rancher provides several core functionalities to the SUSE Edge stack:

4.2.1 Centralized Kubernetes management

In typical edge deployments with numerous distributed clusters, Rancher acts as a central con-
trol plane for managing these Kubernetes clusters. It offers a unified interface for provisioning,
upgrading, monitoring, and troubleshooting, simplifying operations, and ensuring consistency.

62 Key Features of Rancher

https://ranchermanager.docs.rancher.com

4.2.2 Simplified cluster deployment

Rancher streamlines Kubernetes cluster creation on the lightweight SLE Micro (SUSE Linux En-
terprise Micro) operating system, easing the rollout of edge infrastructure with robust Kuber-
netes capabilities.

4.2.3 Application deployment and management

The integrated Rancher application catalog can simplify deploying and managing containerized
applications across SUSE Edge clusters, enabling seamless edge workload deployment.

4.2.4 Security and policy enforcement

Rancher provides policy-based governance tools, role-based access control (RBAC), and integra-
tion with external authentication providers. This helps SUSE Edge deployments maintain secu-
rity and compliance, critical in distributed environments.

4.3 Best practices

4.3.1 GitOps

Rancher includes Fleet as a built-in component to allow manage cluster configurations and
application deployments with code stored in git.

4.3.2 Observability

Rancher includes built-in monitoring and logging tools like Prometheus and Grafana for com-
prehensive insights into your cluster health and performance.

4.4 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
Follow Section 21.6, “Rancher Installation” for an air-gapped installation of Rancher on top of Ku-
bernetes clusters provisioned by EIB.

63 Simplified cluster deployment

4.5 Additional Resources

Rancher Documentation (https://rancher.com/docs/)

Rancher Academy (https://www.rancher.academy/)

Rancher Community (https://rancher.com/community/)

Helm Charts (https://helm.sh/)

Kubernetes Operators (https://operatorhub.io/)

64 Additional Resources

https://rancher.com/docs/
https://www.rancher.academy/
https://rancher.com/community/
https://helm.sh/
https://operatorhub.io/

5 Rancher Dashboard Extensions

Extensions allow users, developers, partners, and customers to extend and enhance the Rancher
UI. SUSE Edge 3.0 provides KubeVirt and Akri dashboard extensions.

See Rancher documentation for general information about Rancher Dashboard Extensions.

5.1 Prerequisites
To enable extensions Rancher requires ui-plugin operator to be installed. When using the Ranch-
er Dashboard UI, navigate to Extensions in the left navigation Configuration section. If the
ui-plugin operator is not installed you’ll get a prompt asking to enable the extensions support
as described here .

The operator can be also installed using Helm:

helm repo add rancher-charts https://charts.rancher.io/
helm upgrade --create-namespace -n cattle-ui-plugin-system \
 --install ui-plugin-operator rancher-charts/ui-plugin-operator
helm upgrade --create-namespace -n cattle-ui-plugin-system \
 --install ui-plugin-operator-crd rancher-charts/ui-plugin-operator-crd

Or with Fleet by creating a dedicated GitRepo resource. For more information see Fleet (Chap-

ter 6, Fleet) section and fleet-examples repository.

5.2 Installation
All SUSE Edge 3.0 components including dashboard extensions are distributed as OCI artifacts.
Rancher Dashboard Apps/Marketplace does not support OCI based Helm repositories yet .
Therefore, to install SUSE Edge Extensions you can use Helm or Fleet:

5.2.1 Installing with Helm

KubeVirt extension
helm install kubevirt-dashboard-extension oci://registry.suse.com/edge/kubevirt-
dashboard-extension-chart --version 1.0.0 --namespace cattle-ui-plugin-system

65 Prerequisites

Akri extension
helm install akri-dashboard-extension oci://registry.suse.com/edge/akri-dashboard-
extension-chart --version 1.0.0 --namespace cattle-ui-plugin-system

Note
The extensions need to be installed in cattle-ui-plugin-system namespace.

Note
After an extension is installed, Rancher Dashboard UI needs to be reloaded.

5.2.2 Installing with Fleet

Installing Dashboard Extensions with Fleet requires defining a gitRepo resource which points
to a Git repository with custom fleet.yaml bundle configuration le(s).

KubeVirt extension fleet.yaml
defaultNamespace: cattle-ui-plugin-system
helm:
 releaseName: kubevirt-dashboard-extension
 chart: oci://registry.suse.com/edge/akri-dashboard-extension-chart
 version: "1.0.0"

Akri extension fleet.yaml
defaultNamespace: cattle-ui-plugin-system
helm:
 releaseName: akri-dashboard-extension
 chart: oci://registry.suse.com/edge/akri-dashboard-extension-chart
 version: "1.0.0"

Note
The releaseName property is required and needs to match the extension name to get the
extension correctly installed by ui-plugin-operator.

cat <<- EOF | kubectl apply -f -
apiVersion: fleet.cattle.io/v1alpha1
metadata:

66 Installing with Fleet

 name: edge-dashboard-extensions
 namespace: fleet-local
spec:
 repo: https://github.com/suse-edge/fleet-examples.git
 branch: main
 paths:
 - fleets/kubevirt-dashboard-extension/
 - fleets/akri-dashboard-extension/
EOF

For more information see Fleet (Chapter 6, Fleet) section and fleet-examples repository.

Once the Extensions are installed they are listed in Extensions section under Installed tabs.
Since they are not installed via Apps/Marketplace, they are marked with Third-Party label.

67 Installing with Fleet

68 Installing with Fleet

5.3 KubeVirt Dashboard Extension
KubeVirt Extension provides basic virtual machine management for Rancher dashboard UI. Its
capabilities are described in Using KubeVirt Rancher Dashboard Extension (Section 18.7.2, “Using

KubeVirt Rancher Dashboard Extension”).

5.4 Akri Dashboard Extension
Akri is a Kubernetes Resource Interface that lets you easily expose heterogeneous leaf devices
(such as IP cameras and USB devices) as resources in a Kubernetes cluster, while also supporting
the exposure of embedded hardware resources such as GPUs and FPGAs. Akri continually detects
nodes that have access to these devices and schedules workloads based on them.

Akri Dashboard Extension allows you to use Rancher Dashboard user interface to manage and
monitor leaf devices and run workloads once these devices are discovered.

Extension capabilities are further described in Akri section (Section 12.1.4, “Akri Rancher Dashboard

Extension”).

69 KubeVirt Dashboard Extension

6 Fleet

Fleet (https://fleet.rancher.io) is a container management and deployment engine designed to
offer users more control on the local cluster and constant monitoring through GitOps. Fleet
focuses not only on the ability to scale, but it also gives users a high degree of control and
visibility to monitor exactly what is installed on the cluster.

Fleet can manage deployments from Git of raw Kubernetes YAML, Helm charts, Kustomize, or
any combination of the three. Regardless of the source, all resources are dynamically turned
into Helm charts, and Helm is used as the engine to deploy all resources in the cluster. As a
result, users can enjoy a high degree of control, consistency and auditability of their clusters.

For information about how Fleet works, see this page (https://ranchermanager.docs.ranch-

er.com/integrations-in-rancher/fleet/architecture) .

6.1 Installing Fleet with Helm

Fleet comes built-in to Rancher, but it can be also installed (https://fleet.rancher.io/installation)

as a standalone application on any Kubernetes cluster using Helm.

6.2 Using Fleet with Rancher

Rancher uses Fleet to deploy applications across managed clusters. Continuous delivery with
Fleet introduces GitOps at scale, designed to manage applications running on large numbers
of clusters.

Fleet shines as an integrated part of Rancher. Clusters managed with Rancher automatically get
the Fleet agent deployed as part of the installation/import process and the cluster is immediately
available to be managed by Fleet.

6.3 Accessing Fleet in the Rancher UI

Fleet comes preinstalled in Rancher and is managed by the Continuous Delivery option in the
Rancher UI. For additional information on Continuous Delivery and other Fleet troubleshooting
tips, refer here (https://fleet.rancher.io/troubleshooting) .

70 Installing Fleet with Helm

https://fleet.rancher.io
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/architecture
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/architecture
https://fleet.rancher.io/installation
https://fleet.rancher.io/troubleshooting

Continuous Delivery section consists of following items:

6.3.1 Dashboard

An overview page of all GitOps repositories across all workspaces. Only the workspaces with
repositories are displayed.

71 Dashboard

6.3.2 Git repos

A list of GitOps repositories in the selected workspace. Select the active workspace using the
drop-down list at the top of the page.

6.3.3 Clusters

A list of managed clusters. By default, all Rancher-managed clusters are added to the fleet-
default workspace. fleet-local workspace includes the local (management) cluster. From
here, it is possible to Pause or Force update the clusters or move the cluster into another
workspace. Editing the cluster allows to update labels and annotations used for grouping the
clusters.

6.3.4 Cluster groups

This section allows custom grouping of the clusters within the workspace using selectors.

6.3.5 Advanced

The "Advanced" section allows to manage workspaces and other related Fleet resources.

6.4 Example of installing KubeVirt with Rancher and
Fleet using Rancher dashboard

1. Create a Git repository containing the fleet.yaml le:

defaultNamespace: kubevirt
helm:
 chart: "oci://registry.suse.com/edge/kubevirt-chart"
 version: "0.2.4"
 # kubevirt namespace is created by kubevirt as well, we need to take ownership of
 it
 takeOwnership: true

2. In the Rancher dashboard, navigate to # > Continuous Delivery > Git Repos and click
Add Repository .

72 Git repos

3. The Repository creation wizard guides through creation of the Git repo. Provide Name,
Repository URL (referencing the Git repository created in the previous step) and select
the appropriate branch or revision. In the case of a more complex repository, specify Paths
to use multiple directories in a single repository.

73 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

74 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

4. Click Next .

5. In the next step, you can define where the workloads will get deployed. Cluster selection
offers several basic options: you can select no clusters, all clusters, or directly choose a
specific managed cluster or cluster group (if defined). The "Advanced" option allows to
directly edit the selectors via YAML.

75 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

6. Click Create . The repository gets created. From now on, the workloads are installed and
kept in sync on the clusters matching the repository definition.

76 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

6.5 Debugging and troubleshooting

The "Advanced" navigation section provides overviews of lower-level Fleet resources. A bundle

(https://fleet.rancher.io/ref-bundle-stages) is an internal resource used for the orchestration of
resources from Git. When a Git repo is scanned, it produces one or more bundles.

To nd bundles relevant to a specific repository, go to the Git repo detail page and click the
Bundles tab.

77 Debugging and troubleshooting

https://fleet.rancher.io/ref-bundle-stages
https://fleet.rancher.io/ref-bundle-stages

For each cluster, the bundle is applied to a BundleDeployment resource that is created. To view
BundleDeployment details, click the Graph button in the upper right of the Git repo detail page.
A graph of Repo > Bundles > BundleDeployments is loaded. Click the BundleDeployment
in the graph to see its details and click the Id to view the BundleDeployment YAML.

78 Debugging and troubleshooting

79 Debugging and troubleshooting

For additional information on Fleet troubleshooting tips, refer here (https://fleet.rancher.io/trou-

bleshooting) .

6.6 Fleet examples
The Edge team maintains a repository (https://github.com/suse-edge/fleet-examples) with ex-
amples of installing Edge projects with Fleet.

The Fleet project includes a fleet-examples (https://github.com/rancher/fleet-examples) repos-
itory that covers all use cases for Git repository structure (https://fleet.rancher.io/gitrepo-con-

tent) .

80 Fleet examples

https://fleet.rancher.io/troubleshooting
https://fleet.rancher.io/troubleshooting
https://github.com/suse-edge/fleet-examples
https://github.com/rancher/fleet-examples
https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

7 SLE Micro

See SLE Micro official documentation (https://documentation.suse.com/sle-micro/5.5/)

SUSE Linux Enterprise Micro is a lightweight and secure operating system for the
edge. It merges the enterprise-hardened components of SUSE Linux Enterprise
with the features that developers want in a modern, immutable operating system.
As a result, you get a reliable infrastructure platform with best-in-class compli-
ance that is also simple to use.

7.1 How does SUSE Edge use SLE Micro?

We use SLE Micro as the base operating system for our platform stack. This provides us with a
secure, stable and minimal base for building upon.

SLE Micro is unique in its use of le system (Btrfs) snapshots to allow for easy rollbacks in case
something goes wrong with an upgrade. This allows for secure remote upgrades for the entire
platform even without physical access in case of issues.

7.2 Best practices

7.2.1 Installation media

SUSE Edge uses the Edge Image Builder (Chapter 9, Edge Image Builder) to preconfigure the SLE
Micro self-install installation image.

7.2.2 Local administration

SLE Micro comes with Cockpit to allow the local management of the host through a Web ap-
plication.

This service is disabled by default but can be started by enabling the systemd service cock-
pit.socket .

81 How does SUSE Edge use SLE Micro?

https://documentation.suse.com/sle-micro/5.5/

7.3 Known issues

There is no desktop environment available in SLE Micro at the moment but a containerized
solution is in development.

82 Known issues

8 Metal3

Metal3 (https://metal3.io/) is a CNCF project which provides bare-metal infrastructure manage-
ment capabilities for Kubernetes.

Metal3 provides Kubernetes-native resources to manage the lifecycle of bare-metal servers which
support management via out-of-band protocols such as Redfish (https://www.dmtf.org/stan-

dards/redfish) .

It also has mature support for Cluster API (CAPI) (https://cluster-api.sigs.k8s.io/) which enables
management of infrastructure resources across multiple infrastructure providers via broadly
adopted vendor-neutral APIs.

8.1 How does SUSE Edge use Metal3?
This method is useful for scenarios where the target hardware supports out-of-band manage-
ment, and a fully automated infrastructure management ow is desired.

This method provides declarative APIs that enable inventory and state management of bare-
metal servers, including automated inspection, cleaning and provisioning/deprovisioning.

8.2 Known issues

The upstream IP Address Management controller (https://github.com/metal3-io/ip-ad-

dress-manager) is currently not supported, because it is not yet compatible with our
choice of network configuration tooling.

Relatedly, the IPAM resources and Metal3DataTemplate networkData elds are not sup-
ported.

Only deployment via redfish-virtualmedia is currently supported.

83 How does SUSE Edge use Metal3?

https://metal3.io/
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish
https://cluster-api.sigs.k8s.io/
https://github.com/metal3-io/ip-address-manager
https://github.com/metal3-io/ip-address-manager

9 Edge Image Builder

See the Official Repository (https://github.com/suse-edge/edge-image-builder) .

Edge Image Builder (EIB) is a tool that streamlines the generation of Customized, Ready-to-Boot
(CRB) disk images for bootstrapping machines. These images enable the end-to-end deployment
of the entire SUSE software stack with a single image.

Whilst EIB can create CRB images for all provisioning scenarios, EIB demonstrates a tremendous
value in air-gapped deployments with limited or completely isolated networks.

9.1 How does SUSE Edge use Edge Image Builder?
SUSE Edge uses EIB for the simplified and quick configuration of customized SLE Micro images
for a variety of scenarios. These scenarios include the bootstrapping of virtual and bare-metal
machines with:

Fully air-gapped deployments of K3s/RKE2 Kubernetes (single & multi-node)

Fully air-gapped Helm chart and Kubernetes manifest deployments

Registration to Rancher via Elemental API

Metal3

Customized networking (for example, static IP, host name, VLAN’s, bonding, etc.)

Customized operating system configurations (for example, users, groups, passwords, SSH
keys, proxies, NTP, custom SSL certificates, etc.)

Air-gapped installation of host-level and side-loaded RPM packages (including dependency
resolution)

Registration to SUSE Manager for OS management

Embedded container images

Kernel command-line arguments

Systemd units to be enabled/disabled at boot time

Custom scripts and les for any manual tasks

84 How does SUSE Edge use Edge Image Builder?

https://github.com/suse-edge/edge-image-builder

9.2 Getting started
Comprehensive documentation for the usage and testing of Edge Image Builder can be found
here (https://github.com/suse-edge/edge-image-builder/tree/release-1.0/docs) .

Additionally, here is a quick start guide (Chapter 3, Standalone clusters with Edge Image Builder) for
Edge Image Builder covering a basic deployment scenario.

9.3 Known issues

EIB air-gaps Helm charts through templating the Helm charts and parsing all the images
within the template. If a Helm chart does not keep all of its images within the template and
instead side-loads the images, EIB will not be able to air-gap those images automatically.
The solution to this is to manually add any undetected images to the embeddedArtifac-
tRegistry section of the definition le.

85 Getting started

https://github.com/suse-edge/edge-image-builder/tree/release-1.0/docs

10 Edge Networking

This section describes the approach to network configuration in the SUSE Edge solution. We
will show how to configure NetworkManager on SLE Micro in a declarative manner, and explain
how the related tools are integrated.

10.1 Overview of NetworkManager

NetworkManager is a tool that manages the primary network connection and other connection
interfaces.

NetworkManager stores network configurations as connection les that contain the desired state.
These connections are stored as les in the /etc/NetworkManager/system-connections/ di-
rectory.

Details about NetworkManager can be found in the upstream SLE Micro documentation (https://

documentation.suse.com/sle-micro/5.5/html/SLE-Micro-all/cha-nm-configuration.html) .

10.2 Overview of nmstate

nmstate is a widely adopted library (with an accompanying CLI tool) which offers a declarative
API for network configurations via a predefined schema.

Details about nmstate can be found in the upstream documentation (https://nmstate.io/) .

10.3 Enter: NetworkManager Configurator (nmc)

The network customization options available in SUSE Edge are achieved via a CLI tool called
NetworkManager Configurator or nmc for short. It is leveraging the functionality provided by the
nmstate library and, as such, it is fully capable of configuring static IP addresses, DNS servers,
VLANs, bonding, bridges, etc. This tool allows us to generate network configurations from pre-
defined desired states and to apply those across many different nodes in an automated fashion.

Details about the NetworkManager Configurator (nmc) can be found in the upstream repository

(https://github.com/suse-edge/nm-configurator) .

86 Overview of NetworkManager

https://documentation.suse.com/sle-micro/5.5/html/SLE-Micro-all/cha-nm-configuration.html
https://documentation.suse.com/sle-micro/5.5/html/SLE-Micro-all/cha-nm-configuration.html
https://nmstate.io/
https://github.com/suse-edge/nm-configurator
https://github.com/suse-edge/nm-configurator

10.4 How does SUSE Edge use NetworkManager
Configurator?
SUSE Edge utilizes nmc for the network customizations in the various different provisioning
models:

Custom network configurations in the Directed Network Provisioning scenarios (Chapter 1,

BMC automated deployments with Metal3)

Declarative static configurations in the Image Based Provisioning scenarios (Chapter 3,

Standalone clusters with Edge Image Builder)

10.5 Configuring with Edge Image Builder
Edge Image Builder (EIB) is a tool which enables configuring multiple hosts with a single OS
image. In this section we’ll show how you can use a declarative approach to describe the desired
network states, how those are converted to the respective NetworkManager connections, and
are then applied during the provisioning process.

10.5.1 Prerequisites

If you’re following this guide, it’s assumed that you’ve got the following already available:

An x86_64 physical host (or virtual machine) running SLES 15 SP5 or openSUSE Leap 15.5

An available container runtime (e.g. Podman)

A copy of the SLE Micro 5.5 RAW image found here (https://www.suse.com/download/sle-

micro/)

10.5.2 Getting the Edge Image Builder container image

The EIB container image is publicly available and can be downloaded from the SUSE Edge
registry by running:

podman pull registry.suse.com/edge/edge-image-builder:1.0.2

87 How does SUSE Edge use NetworkManager Configurator?

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

10.5.3 Creating the image configuration directory

Let’s start with creating the configuration directory:

export CONFIG_DIR=$HOME/eib
mkdir -p $CONFIG_DIR/base-images

We will now ensure that the downloaded base image copy is moved over to the configuration
directory:

mv /path/to/downloads/SLE-Micro.x86_64-5.5.0-Default-GM.raw $CONFIG_DIR/base-images/

Note
EIB is never going to modify the base image input.

The configuration directory at this point should look like the following:

└── base-images/
 └── SLE-Micro.x86_64-5.5.0-Default-GM.raw

10.5.4 Creating the image definition file

The definition le describes the majority of configurable options that the Edge Image Builder
supports.

Let’s start with a very basic definition le for our OS image:

cat << EOF > $CONFIG_DIR/definition.yaml
apiVersion: 1.0
image:
 arch: x86_64
 imageType: raw
 baseImage: SLE-Micro.x86_64-5.5.0-Default-GM.raw
 outputImageName: modified-image.raw
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
EOF

88 Creating the image configuration directory

The image section is required, and it specifies the input image, its architecture and type, as well
as what the output image will be called. The operatingSystem section is optional, and contains
configuration to enable login on the provisioned systems with the root/eib username/pass-
word.

Note
Feel free to use your own encrypted password by running openssl passwd
-6 <password> .

The configuration directory at this point should look like the following:

├── definition.yaml
└── base-images/
 └── SLE-Micro.x86_64-5.5.0-Default-GM.raw

10.5.5 Defining the network configurations

The desired network configurations are not part of the image definition le that we just created.
We’ll now populate those under the special network/ directory. Let’s create it:

mkdir -p $CONFIG_DIR/network

As previously mentioned, the NetworkManager Configurator (nmc) tool expects an input in the
form of predefined schema. You can nd how to set up a wide variety of different networking
options in the upstream NMState examples documentation (https://nmstate.io/examples.html) .

This guide will explain how to configure the networking on three different nodes:

A node which uses two Ethernet interfaces

A node which uses network bonding

A node which uses a network bridge

Warning
Using completely different network setups is not recommended in production builds, es-
pecially if configuring Kubernetes clusters. Networking configurations should generally
be homogeneous amongst nodes or at least amongst roles within a given cluster. This
guide is including various different options only to serve as an example reference.

89 Defining the network configurations

https://nmstate.io/examples.html

Note
The following assumes a default libvirt network with an IP address
range 192.168.122.1/24 . Adjust accordingly if this differs in your envi-
ronment.

Let’s create the desired states for the rst node which we will call node1.suse.com :

cat << EOF > $CONFIG_DIR/network/node1.suse.com.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: eth0
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
 - name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E1
 ipv4:
 address:
 - ip: 192.168.122.50
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
 - name: eth3
 type: ethernet
 state: down
 mac-address: 34:8A:B1:4B:16:E2
 ipv4:
 address:

90 Defining the network configurations

 - ip: 192.168.122.55
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
EOF

In this example we define a desired state of two Ethernet interfaces (eth0 and eth3), their re-
quested IP addresses, routing, and DNS resolution.

Warning
You must ensure that the MAC addresses of all Ethernet interfaces are listed. Those are
used during the provisioning process as the identifiers of the nodes and serve to determine
which configurations should be applied. This is how we are able to configure multiple
nodes using a single ISO or RAW image.

Next up is the second node which we will call node2.suse.com and which will use network
bonding:

cat << EOF > $CONFIG_DIR/network/node2.suse.com.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: bond99
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: bond99
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
 - name: bond99
 type: bond
 state: up
 ipv4:

91 Defining the network configurations

 address:
 - ip: 192.168.122.60
 prefix-length: 24
 enabled: true
 link-aggregation:
 mode: balance-rr
 options:
 miimon: '140'
 port:
 - eth0
 - eth1
 - name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E3
 ipv4:
 enabled: false
 ipv6:
 enabled: false
 - name: eth1
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E4
 ipv4:
 enabled: false
 ipv6:
 enabled: false
EOF

In this example we define a desired state of two Ethernet interfaces (eth0 and eth1) which are
not enabling IP addressing, as well as a bond with a round-robin policy and its respective address
which is going to be used to forward the network traffic.

Lastly, we’ll create the third and final desired state le which will be utilizing a network bridge
and which we’ll call node3.suse.com :

cat << EOF > $CONFIG_DIR/network/node3.suse.com.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: linux-br0
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:

92 Defining the network configurations

 next-hop-interface: linux-br0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
 - name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E5
 ipv4:
 enabled: false
 ipv6:
 enabled: false
 - name: linux-br0
 type: linux-bridge
 state: up
 ipv4:
 address:
 - ip: 192.168.122.70
 prefix-length: 24
 dhcp: false
 enabled: true
 bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: true
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: eth0
 stp-hairpin-mode: false
 stp-path-cost: 100
 stp-priority: 32
EOF

The configuration directory at this point should look like the following:

├── definition.yaml
├── network/
│ │── node1.suse.com.yaml

93 Defining the network configurations

│ │── node2.suse.com.yaml
│ └── node3.suse.com.yaml
└── base-images/
 └── SLE-Micro.x86_64-5.5.0-Default-GM.raw

Note
The names of the les under the network/ directory are intentional. They
correspond to the hostnames which will be set during the provisioning
process.

10.5.6 Building the OS image

Now that all the necessary configurations are in place, we can build the image by simply running:

podman run --rm -it -v $CONFIG_DIR:/eib registry.suse.com/edge/edge-image-builder:1.0.2
 build --definition-file definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Embedded Artifact Registry ... [SKIPPED]
Keymap [SUCCESS]
Kubernetes [SKIPPED]
Certificates [SKIPPED]
Building RAW image...
Kernel Params [SKIPPED]
Image build complete!

The snippet above tells us that the Network component has successfully been configured, and
we can proceed with provisioning our edge nodes.

94 Building the OS image

Note
A log le (network-config.log) and the respective NetworkManager
connection les can be inspected in the resulting _build directory under
a timestamped directory for the image run.

10.5.7 Provisioning the edge nodes

Let’s copy the resulting RAW image:

mkdir edge-nodes && cd edge-nodes
for i in {1..4}; do cp $CONFIG_DIR/modified-image.raw node$i.raw; done

You will notice that we copied the built image four times but only specified the network con-
figurations for three nodes. This is because we also want to showcase what will happen if we
provision a node which does not match any of the desired configurations.

Note
This guide will use virtualization for the node provisioning ex-
amples. Ensure the necessary extensions are enabled in the BIOS
(see here (https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-

virt-support.html#sec-kvm-requires-hardware) for details).

We will be using virt-install to create virtual machines using the copied raw disks. Each
virtual machine will be using 10 GB of RAM and 6 vCPUs.

10.5.7.1 Provisioning the first node

Let’s create the virtual machine:

virt-install --name node1 --ram 10000 --vcpus 6 --disk path=node1.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default,mac=34:8A:B1:4B:16:E1 --network default,mac=34:8A:B1:4B:16:E2 --virt-type kvm --
import

95 Provisioning the edge nodes

https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware
https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware

Note
It is important that we create the network interfaces with the same MAC
addresses as the ones in the desired state we described above.

Once the operation is complete, we will see something similar to the following:

Starting install...
Creating domain...

Running text console command: virsh --connect qemu:///system console node1
Connected to domain 'node1'
Escape character is ^] (Ctrl +])

Welcome to SUSE Linux Enterprise Micro 5.5 (x86_64) - Kernel 5.14.21-150500.55.19-
default (ttyS0).

SSH host key: SHA256:XN/R5Tw43reG+QsOw480LxCnhkc/1uqMdwlI6KUBY70 (RSA)
SSH host key: SHA256:/96yGrPGKlhn04f1rb9cXv/2WJt4TtrIN5yEcN66r3s (DSA)
SSH host key: SHA256:Dy/YjBQ7LwjZGaaVcMhTWZNSOstxXBsPsvgJTJq5t00 (ECDSA)
SSH host key: SHA256:TNGqY1LRddpxD/jn/8dkT/9YmVl9hiwulqmayP+wOWQ (ED25519)
eth0: 192.168.122.50
eth1:

Configured with the Edge Image Builder
Activate the web console with: systemctl enable --now cockpit.socket

node1 login:

We’re now able to log in with the root:eib credentials pair. We’re also able to SSH into the
host if we prefer that over the virsh console we’re presented with here.

Once logged in, let’s confirm that all the settings are in place.

Verify that the hostname is properly set:

node1:~ # hostnamectl
 Static hostname: node1.suse.com
 ...

Verify that the routing is properly configured:

node1:~ # ip r
default via 192.168.122.1 dev eth0 proto static metric 100
192.168.122.0/24 dev eth0 proto static scope link metric 100

96 Provisioning the edge nodes

192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.50 metric 100

Verify that Internet connection is available:

node1:~ # ping google.com
PING google.com (142.250.72.78) 56(84) bytes of data.
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=1 ttl=56 time=13.2 ms
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=2 ttl=56 time=13.4 ms
^C
--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 13.248/13.304/13.361/0.056 ms

Verify that exactly two Ethernet interfaces are configured and only one of those is active:

node1:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e1 brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
 inet 192.168.122.50/24 brd 192.168.122.255 scope global noprefixroute eth0
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e2 brd ff:ff:ff:ff:ff:ff
 altname enp0s3
 altname ens3

node1:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/system-
connections/eth0.nmconnection
eth1 7e211aea-3d14-59cf-a4fa-be91dac5dbba ethernet -- /etc/NetworkManager/system-
connections/eth1.nmconnection

You’ll notice that the second interface is eth1 instead of the predefined eth3 in our desired
networking state. This is the case because the NetworkManager Configurator (nmc) is able to de-
tect that the OS has given a different name for the NIC with MAC address 34:8a:b1:4b:16:e2
and it adjusts its settings accordingly.

97 Provisioning the edge nodes

Verify this has indeed happened by inspecting the Combustion phase of the provisioning:

node1:~ # journalctl -u combustion | grep nmc
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Identified host: node1.suse.com
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Set hostname: node1.suse.com
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Processing interface 'eth0'...
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Processing interface 'eth3'...
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Using interface name 'eth1' instead of the preconfigured 'eth3'
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO nmc]
 Successfully applied config

We will now provision the rest of the nodes, but we will only show the differences in the final
configuration. Feel free to apply any or all of the above checks for all nodes you are about to
provision.

10.5.7.2 Provisioning the second node

Let’s create the virtual machine:

virt-install --name node2 --ram 10000 --vcpus 6 --disk path=node2.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default,mac=34:8A:B1:4B:16:E3 --network default,mac=34:8A:B1:4B:16:E4 --virt-type kvm --
import

Once the virtual machine is up and running, we can confirm that this node is using bonded
interfaces:

node2:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond99
 state UP group default qlen 1000
 link/ether 34:8a:b1:4b:16:e3 brd ff:ff:ff:ff:ff:ff
 altname enp0s2

98 Provisioning the edge nodes

 altname ens2
3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond99
 state UP group default qlen 1000
 link/ether 34:8a:b1:4b:16:e3 brd ff:ff:ff:ff:ff:ff permaddr 34:8a:b1:4b:16:e4
 altname enp0s3
 altname ens3
4: bond99: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e3 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.60/24 brd 192.168.122.255 scope global noprefixroute bond99
 valid_lft forever preferred_lft forever

Confirm that the routing is using the bond:

node2:~ # ip r
default via 192.168.122.1 dev bond99 proto static metric 100
192.168.122.0/24 dev bond99 proto static scope link metric 100
192.168.122.0/24 dev bond99 proto kernel scope link src 192.168.122.60 metric 300

Ensure that the static connection les are properly utilized:

node2:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
bond99 4a920503-4862-5505-80fd-4738d07f44c6 bond bond99 /etc/NetworkManager/
system-connections/bond99.nmconnection
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/
system-connections/eth0.nmconnection
eth1 0523c0a1-5f5e-5603-bcf2-68155d5d322e ethernet eth1 /etc/NetworkManager/
system-connections/eth1.nmconnection

10.5.7.3 Provisioning the third node

Let’s create the virtual machine:

virt-install --name node3 --ram 10000 --vcpus 6 --disk path=node3.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default,mac=34:8A:B1:4B:16:E5 --virt-type kvm --import

Once the virtual machine is up and running, we can confirm that this node is using a network
bridge:

node3:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

99 Provisioning the edge nodes

 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master linux-br0
 state UP group default qlen 1000
 link/ether 34:8a:b1:4b:16:e5 brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
3: linux-br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e5 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.70/24 brd 192.168.122.255 scope global noprefixroute linux-br0
 valid_lft forever preferred_lft forever

Confirm that the routing is using the bridge:

node3:~ # ip r
default via 192.168.122.1 dev linux-br0 proto static metric 100
192.168.122.0/24 dev linux-br0 proto static scope link metric 100
192.168.122.0/24 dev linux-br0 proto kernel scope link src 192.168.122.70 metric 425

Ensure that the static connection les are properly utilized:

node3:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
linux-br0 1f8f1469-ed20-5f2c-bacb-a6767bee9bc0 bridge linux-br0 /etc/
NetworkManager/system-connections/linux-br0.nmconnection
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/
NetworkManager/system-connections/eth0.nmconnection

10.5.7.4 Provisioning the fourth node

Lastly, we will provision a node which will not match any of the predefined configurations by
a MAC address. In these cases, we will default to DHCP to configure the network interfaces.

Let’s create the virtual machine:

virt-install --name node4 --ram 10000 --vcpus 6 --disk path=node4.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default --virt-type kvm --import

Once the virtual machine is up and running, we can confirm that this node is using a random
IP address for its network interface:

localhost:~ # ip a

100 Provisioning the edge nodes

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:56:63:71 brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
 inet 192.168.122.86/24 brd 192.168.122.255 scope global dynamic noprefixroute eth0
 valid_lft 3542sec preferred_lft 3542sec
 inet6 fe80::5054:ff:fe56:6371/64 scope link noprefixroute
 valid_lft forever preferred_lft forever

Verify that nmc failed to apply static configurations for this node:

localhost:~ # journalctl -u combustion | grep nmc
Apr 23 12:15:45 localhost.localdomain combustion[1357]: [2024-04-23T12:15:45Z ERROR nmc]
 Applying config failed: None of the preconfigured hosts match local NICs

Verify that the Ethernet interface was configured via DHCP:

localhost:~ # journalctl | grep eth0
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7801]
 manager: (eth0): new Ethernet device (/org/freedesktop/NetworkManager/Devices/2)
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7802]
 device (eth0): state change: unmanaged -> unavailable (reason 'managed', sys-iface-
state: 'external')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7929]
 device (eth0): carrier: link connected
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7931]
 device (eth0): state change: unavailable -> disconnected (reason 'carrier-changed', sys-
iface-state: 'managed')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info>
 [1713874529.7944] device (eth0): Activation: starting connection 'Wired
 Connection' (300ed658-08d4-4281-9f8c-d1b8882d29b9)
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7945]
 device (eth0): state change: disconnected -> prepare (reason 'none', sys-iface-state:
 'managed')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7947]
 device (eth0): state change: prepare -> config (reason 'none', sys-iface-state:
 'managed')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7953]
 device (eth0): state change: config -> ip-config (reason 'none', sys-iface-state:
 'managed')

101 Provisioning the edge nodes

Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7964]
 dhcp4 (eth0): activation: beginning transaction (timeout in 90 seconds)
Apr 23 12:15:33 localhost.localdomain NetworkManager[704]: <info> [1713874533.1272]
 dhcp4 (eth0): state changed new lease, address=192.168.122.86

localhost:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
Wired Connection 300ed658-08d4-4281-9f8c-d1b8882d29b9 ethernet eth0 /var/run/
NetworkManager/system-connections/default_connection.nmconnection

10.5.8 Unified node configurations

There are occasions where relying on known MAC addresses is not an option. In these cases we
can opt for the so-called unified configuration which allows us to specify settings in an _all.yaml
le which will then be applied across all provisioned nodes.

We will build and provision an edge node using different configuration structure. Follow all
steps starting from Section 10.5.3, “Creating the image configuration directory” up until Section 10.5.5,

“Defining the network configurations”.

In this example we define a desired state of two Ethernet interfaces (eth0 and eth1) - one using
DHCP, and one assigned a static IP address.

mkdir -p $CONFIG_DIR/network

cat <<- EOF > $CONFIG_DIR/network/_all.yaml
interfaces:
- name: eth0
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
 ipv6:
 enabled: false
- name: eth1
 type: ethernet
 state: up
 ipv4:
 address:
 - ip: 10.0.0.1
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:

102 Unified node configurations

 enabled: false
EOF

Let’s build the image:

podman run --rm -it -v $CONFIG_DIR:/eib registry.suse.com/edge/edge-image-builder:1.0.2
 build --definition-file definition.yaml

Once the image is successfully built, let’s create a virtual machine using it:

virt-install --name node1 --ram 10000 --vcpus 6 --disk path=$CONFIG_DIR/modified-
image.raw,format=raw --osinfo detect=on,name=sle-unknown --graphics none --console
 pty,target_type=serial --network default --network default --virt-type kvm --import

The provisioning process might take a few minutes. Once it’s finished, log in to the system with
the provided credentials.

Verify that the routing is properly configured:

localhost:~ # ip r
default via 192.168.122.1 dev eth0 proto dhcp src 192.168.122.100 metric 100
10.0.0.0/24 dev eth1 proto kernel scope link src 10.0.0.1 metric 101
192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.100 metric 100

Verify that Internet connection is available:

localhost:~ # ping google.com
PING google.com (142.250.72.46) 56(84) bytes of data.
64 bytes from den16s08-in-f14.1e100.net (142.250.72.46): icmp_seq=1 ttl=56 time=14.3 ms
64 bytes from den16s08-in-f14.1e100.net (142.250.72.46): icmp_seq=2 ttl=56 time=14.2 ms
^C
--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 14.196/14.260/14.324/0.064 ms

Verify that the Ethernet interfaces are configured and active:

localhost:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:26:44:7a brd ff:ff:ff:ff:ff:ff
 altname enp1s0
 inet 192.168.122.100/24 brd 192.168.122.255 scope global dynamic noprefixroute eth0

103 Unified node configurations

 valid_lft 3505sec preferred_lft 3505sec
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:ec:57:9e brd ff:ff:ff:ff:ff:ff
 altname enp7s0
 inet 10.0.0.1/24 brd 10.0.0.255 scope global noprefixroute eth1
 valid_lft forever preferred_lft forever

localhost:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/system-
connections/eth0.nmconnection
eth1 0523c0a1-5f5e-5603-bcf2-68155d5d322e ethernet eth1 /etc/NetworkManager/system-
connections/eth1.nmconnection

localhost:~ # cat /etc/NetworkManager/system-connections/eth0.nmconnection
[connection]
autoconnect=true
autoconnect-slaves=-1
id=eth0
interface-name=eth0
type=802-3-ethernet
uuid=dfd202f5-562f-5f07-8f2a-a7717756fb70

[ipv4]
dhcp-client-id=mac
dhcp-send-hostname=true
dhcp-timeout=2147483647
ignore-auto-dns=false
ignore-auto-routes=false
method=auto
never-default=false

[ipv6]
addr-gen-mode=0
dhcp-timeout=2147483647
method=disabled

localhost:~ # cat /etc/NetworkManager/system-connections/eth1.nmconnection
[connection]
autoconnect=true
autoconnect-slaves=-1
id=eth1
interface-name=eth1
type=802-3-ethernet
uuid=0523c0a1-5f5e-5603-bcf2-68155d5d322e

104 Unified node configurations

[ipv4]
address0=10.0.0.1/24
dhcp-timeout=2147483647
method=manual

[ipv6]
addr-gen-mode=0
dhcp-timeout=2147483647
method=disabled

10.5.9 Custom network configurations

We have already covered the default network configuration for Edge Image Builder which relies
on the NetworkManager Configurator. However, there is also the option to modify it via a custom
script. Whilst this option is very flexible and is also not MAC address dependant, its limitation
stems from the fact that using it is much less convenient when bootstrapping multiple nodes
with a single image.

Note
It is recommended to use the default network configuration via les de-
scribing the desired network states under the /network directory. Only
opt for custom scripting when that behaviour is not applicable to your use
case.

We will build and provision an edge node using different configuration structure. Follow all
steps starting from Section 10.5.3, “Creating the image configuration directory” up until Section 10.5.5,

“Defining the network configurations”.

In this example, we will create a custom script which applies static configuration for the eth0
interface on all provisioned nodes, as well as removing and disabling the automatically created
wired connections by NetworkManager. This is beneficial in situations where you want to make
sure that every node in your cluster has an identical networking configuration, and as such you
do not need to be concerned with the MAC address of each node prior to image creation.

Let’s start by storing the connection le in the /custom/files directory:

mkdir -p $CONFIG_DIR/custom/files

cat << EOF > $CONFIG_DIR/custom/files/eth0.nmconnection

105 Custom network configurations

[connection]
autoconnect=true
autoconnect-slaves=-1
autoconnect-retries=1
id=eth0
interface-name=eth0
type=802-3-ethernet
uuid=dfd202f5-562f-5f07-8f2a-a7717756fb70
wait-device-timeout=60000

[ipv4]
dhcp-timeout=2147483647
method=auto

[ipv6]
addr-gen-mode=eui64
dhcp-timeout=2147483647
method=disabled
EOF

Now that the static configuration is created, we will also create our custom network script:

mkdir -p $CONFIG_DIR/network

cat << EOF > $CONFIG_DIR/network/configure-network.sh
#!/bin/bash
set -eux

Remove and disable wired connections
mkdir -p /etc/NetworkManager/conf.d/
printf "[main]\nno-auto-default=*\n" > /etc/NetworkManager/conf.d/no-auto-default.conf
rm -f /var/run/NetworkManager/system-connections/* || true

Copy pre-configured network configuration files into NetworkManager
mkdir -p /etc/NetworkManager/system-connections/
cp eth0.nmconnection /etc/NetworkManager/system-connections/
chmod 600 /etc/NetworkManager/system-connections/*.nmconnection
EOF

chmod a+x $CONFIG_DIR/network/configure-network.sh

Note
The nmc binary will still be included by default, so it can also be used in
the configure-network.sh script if necessary.

106 Custom network configurations

Warning
The custom script must always be provided under /network/configure-network.sh in
the configuration directory. If present, all other les will be ignored. It is NOT possible
to configure a network by working with both static configurations in YAML format and
a custom script simultaneously.

The configuration directory at this point should look like the following:

├── definition.yaml
├── custom/
│ └── files/
│ └── eth0.nmconnection
├── network/
│ └── configure-network.sh
└── base-images/
 └── SLE-Micro.x86_64-5.5.0-Default-GM.raw

Let’s build the image:

podman run --rm -it -v $CONFIG_DIR:/eib registry.suse.com/edge/edge-image-builder:1.0.2
 build --definition-file definition.yaml

Once the image is successfully built, let’s create a virtual machine using it:

virt-install --name node1 --ram 10000 --vcpus 6 --disk path=$CONFIG_DIR/modified-
image.raw,format=raw --osinfo detect=on,name=sle-unknown --graphics none --console
 pty,target_type=serial --network default --virt-type kvm --import

The provisioning process might take a few minutes. Once it’s finished, log in to the system with
the provided credentials.

Verify that the routing is properly configured:

localhost:~ # ip r
default via 192.168.122.1 dev eth0 proto dhcp src 192.168.122.185 metric 100
192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.185 metric 100

Verify that Internet connection is available:

localhost:~ # ping google.com
PING google.com (142.250.72.78) 56(84) bytes of data.
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=1 ttl=56 time=13.6 ms
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=2 ttl=56 time=13.6 ms
^C

107 Custom network configurations

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 13.592/13.599/13.606/0.007 ms

Verify that an Ethernet interface is statically configured using our connection le and is active:

localhost:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:31:d0:1b brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
 inet 192.168.122.185/24 brd 192.168.122.255 scope global dynamic noprefixroute eth0

localhost:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/system-
connections/eth0.nmconnection

localhost:~ # cat /etc/NetworkManager/system-connections/eth0.nmconnection
[connection]
autoconnect=true
autoconnect-slaves=-1
autoconnect-retries=1
id=eth0
interface-name=eth0
type=802-3-ethernet
uuid=dfd202f5-562f-5f07-8f2a-a7717756fb70
wait-device-timeout=60000

[ipv4]
dhcp-timeout=2147483647
method=auto

[ipv6]
addr-gen-mode=eui64
dhcp-timeout=2147483647
method=disabled

108 Custom network configurations

11 Elemental

Elemental is a software stack enabling centralized and full cloud-native OS management with
Kubernetes. The Elemental stack consists of a number of components that either reside on Ranch-
er itself, or on the edge nodes. The core components are:

elemental-operator - The core operator that resides on Rancher and handles registration
requests from clients.

elemental-register - The client that runs on the edge nodes allowing registration via the
elemental-operator .

elemental-system-agent - An agent that resides on the edge nodes; its configuration is
fed from elemental-register and it receives a plan for configuring the rancher-sys-
tem-agent

rancher-system-agent - Once the edge node has fully registered, this takes over from
elemental-system-agent and waits for further plans from Rancher Manager (e.g. for
Kubernetes installation).

See Elemental upstream documentation (https://elemental.docs.rancher.com/) for full informa-
tion about Elemental and its relationship to Rancher.

11.1 How does SUSE Edge use Elemental?

We use portions of Elemental for managing remote devices where Metal3 is not an option (for
example, there is no BMC, or the device is behind a NAT gateway). This tooling allows for
an operator to bootstrap their devices in a lab before knowing when or where they will be
shipped to. Namely, we leverage the elemental-register and elemental-system-agent
components to enable the onboarding of SLE Micro hosts to Rancher for "phone home" network
provisioning use-cases. When using Edge Image Builder (EIB) to create deployment images,
the automatic registration through Rancher via Elemental can be achieved by specifying the
registration configuration in the configuration directory for EIB.

109 How does SUSE Edge use Elemental?

https://elemental.docs.rancher.com/

Note
In SUSE Edge 3.0 we do not leverage the operating system management aspects of El-
emental, and therefore it’s not possible to manage your operating system patching via
Rancher. Instead of using the Elemental tools to build deployment images, SUSE Edge
uses the Edge Image Builder tooling, which consumes the registration configuration.

11.2 Best practices

11.2.1 Installation media

The SUSE Edge recommended way of building deployments image that can leverage Elemental
for registration to Rancher in the "phone home network provisioning" deployment footprint is to
follow the instructions detailed in the remote host onboarding with Elemental (Chapter 2, Remote

host onboarding with Elemental) quickstart.

11.2.2 Labels

Elemental tracks its inventory with the MachineInventory CRD and provides a way to select
inventory, e.g. for selecting machines to deploy Kubernetes clusters to, based on labels. This pro-
vides a way for users to predefine most (if not all) of their infrastructure needs prior to hardware
even being purchased. Also, since nodes can add/remove labels on their respective inventory
object (by re-running elemental-register with the additional ag --label "FOO=BAR"), we
can write scripts that will discover and let Rancher know where a node is booted.

11.3 Known issues

The Elemental UI does not currently know how to build installation media or update
non-"Elemental Teal" operating systems. This should be addressed in future releases.

110 Best practices

12 Akri

Akri is a CNCF-Sandbox project that aims to discover leaf devices to present those as Kubernetes
native resource. It also allows scheduling a pod or a job for each discovered device. Devices can
be node-local or networked, and can use a wide variety of protocols.

Akri’s upstream documentation is available at: https://docs.akri.sh

12.1 How does SUSE Edge use Akri?

Warning
Akri is currently tech-preview in the SUSE Edge stack.

Akri is available as part of the Edge Stack whenever there is a need to discover and schedule
workload against leaf devices.

12.1.1 Installing Akri

Akri is available as a Helm chart within the Edge Helm repository. The recommended way of
configuring Akri is by using the given Helm chart to deploy the different components (agent,
controller, discovery-handlers), and then use your preferred deployment mechanism to deploy
Akri’s Configuration CRDs.

12.1.2 Configuring Akri

Akri is configured using a akri.sh/Configuration object, this object takes in all information
about how to discover the devices, as well as what to do when a matching one is discovered.

Here is an example configuration breakdown with all elds explained:

apiVersion: akri.sh/v0
kind: Configuration
metadata:
 name: sample-configuration
spec:

111 How does SUSE Edge use Akri?

https://docs.akri.sh

This part describes the configuration of the discovery handler, you have to specify its name (the
handlers available as part of Akri’s chart are udev , opcua , onvif). The discoveryDetails
is handler specific, refer to the handler’s documentation on how to configure it.

 discoveryHandler:
 name: debugEcho
 discoveryDetails: |+
 descriptions:
 - "foo"
 - "bar"

This section defines the workload to be deployed for every discovered device. The example
shows a minimal version of a Pod configuration in brokerPodSpec , all usual elds of a Pod’s
spec can be used here. It also shows the Akri specific syntax to request the device in the re-
sources section.

You can alternatively use a Job instead of a Pod, using the brokerJobSpec key instead, and
providing the spec part of a Job to it.

 brokerSpec:
 brokerPodSpec:
 containers:
 - name: broker-container
 image: rancher/hello-world
 resources:
 requests:
 "{{PLACEHOLDER}}" : "1"
 limits:
 "{{PLACEHOLDER}}" : "1"

These two sections show how to configure Akri to deploy a service per broker (instanceSer-
vice), or pointing to all brokers (configurationService). These are containing all elements
pertaining to a usual Service.

 instanceServiceSpec:
 type: ClusterIp
 ports:
 - name: http
 port: 80
 protocol: tcp
 targetPort: 80
 configurationServiceSpec:
 type: ClusterIp
 ports:
 - name: https

112 Configuring Akri

 port: 443
 protocol: tcp
 targetPort: 443

The brokerProperties eld is a key/value store that will be exposed as additional environ-
ment variables to any pod requesting a discovered device.

The capacity is the allowed number of concurrent users of a discovered device.

 brokerProperties:
 key: value
 capacity: 1

12.1.3 Writing and deploying additional Discovery Handlers

In case the protocol used by your device isn’t covered by an existing discovery handler, you can
write your own using this guide (https://docs.akri.sh/development/handler-development)

12.1.4 Akri Rancher Dashboard Extension

Akri Dashboard Extension allows you to use Rancher Dashboard user interface to manage and
monitor leaf devices and run workloads once these devices are discovered.

Once the extension is installed you can navigate to any Akri-enabled managed cluster using
cluster explorer. Under Akri navigation group you can see Configurations and Instances sections.

113 Writing and deploying additional Discovery Handlers

https://docs.akri.sh/development/handler-development

The configurations list provides information about Configuration Discovery Handler and number
of instances. Clicking the name opens a configuration detail page.

114 Akri Rancher Dashboard Extension

115 Akri Rancher Dashboard Extension

You can also edit or create a new Configuration. Extension allows you to select discovery han-
dler, set up Broker Pod or Job, configure Configuration and Instance services and set the Con-
figuration capacity.

116 Akri Rancher Dashboard Extension

117 Akri Rancher Dashboard Extension

Discovered devices are listed in the Instances list.

Clicking the Instance name opens a detail page allowing to view the workloads and instance
service.

118 Akri Rancher Dashboard Extension

119 Akri Rancher Dashboard Extension

13 K3s

K3s (https://k3s.io/) is a highly available, certified Kubernetes distribution designed for produc-
tion workloads in unattended, resource-constrained, remote locations or inside IoT appliances.

It is packaged as a single and small binary, so installations and updates are fast and easy.

13.1 How does SUSE Edge use K3s
K3s can be used as the Kubernetes distribution backing the SUSE Edge stack. It is meant to be
installed on a SLE Micro operating system.

Using K3s as the SUSE Edge stack Kubernetes distribution is only recommended when etcd as a
backend does not t your constraints. If etcd as a backend is possible, it is better to use RKE2
(Chapter 14, RKE2).

13.2 Best practices

13.2.1 Installation

The recommended way of installing K3s as part of the SUSE Edge stack is by using Edge Image
Builder (EIB). See its documentation (Chapter 9, Edge Image Builder) for more details on how to
configure it to deploy K3s.

It automatically supports HA setup, as well as Elemental setup.

13.2.2 Fleet for GitOps workflow

The SUSE Edge stack uses Fleet as its preferred GitOps tool. For more information around its
installation and use, refer to the Fleet section (Chapter 6, Fleet) in this documentation.

13.2.3 Storage management

K3s comes with local-path storage preconfigured, which is suitable for single-node clusters. For
clusters spanning over multiple nodes, we recommend using Longhorn (Chapter 15, Longhorn).

120 How does SUSE Edge use K3s

https://k3s.io/

13.2.4 Load balancing and HA

If you installed K3s using EIB, this part is already covered by the EIB documentation in the
HA section.

Otherwise, you need to install and configure MetalLB as per our MetalLB documentation (Chap-

ter 19, MetalLB on K3s (using L2)).

121 Load balancing and HA

14 RKE2

See RKE2 official documentation (https://docs.rke2.io/) .

RKE2 is a fully conformant Kubernetes distribution that focuses on security and compliance by:

Providing defaults and configuration options that allow clusters to pass the CIS Kubernetes
Benchmark v1.6 or v1.23 with minimal operator intervention

Enabling FIPS 140-2 compliance

Regularly scanning components for CVEs using trivy (https://trivy.dev) in the RKE2 build
pipeline

RKE2 launches control plane components as static pods, managed by kubelet. The embedded
container runtime is containerd.

Note: RKE2 is also known as RKE Government in order to convey another use case and sector
it currently targets.

14.1 RKE2 vs K3s

K3s is a fully compliant and lightweight Kubernetes distribution focused on Edge, IoT, ARM -
optimized for ease of use and resource constrained environments.

RKE2 combines the best of both worlds from the 1.x version of RKE (hereafter referred to as
RKE1) and K3s.

From K3s, it inherits the usability, ease of operation and deployment model.

From RKE1, it inherits close alignment with upstream Kubernetes. In places, K3s has diverged
from upstream Kubernetes in order to optimize for edge deployments, but RKE1 and RKE2 can
stay closely aligned with upstream.

14.2 How does SUSE Edge use RKE2?

RKE2 is a fundamental piece of the SUSE Edge stack. It sits on top of SUSE Linux Micro (Chapter 7,

SLE Micro), providing a standard Kubernetes interface required to deploy Edge workloads.

122 RKE2 vs K3s

https://docs.rke2.io/
https://trivy.dev

14.3 Best practices

14.3.1 Installation

The recommended way of installing RKE2 as part of the SUSE Edge stack is by using Edge Image
Builder (EIB). See the EIB documentation (Chapter 9, Edge Image Builder) for more details on how
to configure it to deploy RKE2.

EIB is flexible enough to support any parameter required by RKE2, such as specifying the
RKE2 version, the servers (https://docs.rke2.io/reference/server_config) or the agents (https://

docs.rke2.io/reference/linux_agent_config) configuration, covering all the Edge use cases.

For other use cases involving Metal3, RKE2 is also being used and installed. In those particu-
lar cases, the Cluster API Provider RKE2 (https://github.com/rancher-sandbox/cluster-api-provider-

rke2) automatically deploys RKE2 on clusters being provisioned with Metal3 using the Edge
Stack.

In those cases, the RKE2 configuration must be applied on the different CRDs involved. An
example of how to provide a different CNI using the RKE2ControlPlane CRD looks like:

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 serverConfig:
 cni: calico
 cniMultusEnable: true
...

For more information about the Metal3 use cases, see Chapter 8, Metal3.

14.3.2 High availability

For HA deployments, EIB automatically deploys and configures MetalLB (Chapter 17, MetalLB)
and the Endpoint Copier Operator (https://github.com/suse-edge/endpoint-copier-operator) to
expose the RKE2 API endpoint externally.

123 Best practices

https://docs.rke2.io/reference/server_config
https://docs.rke2.io/reference/linux_agent_config
https://docs.rke2.io/reference/linux_agent_config
https://github.com/rancher-sandbox/cluster-api-provider-rke2
https://github.com/rancher-sandbox/cluster-api-provider-rke2
https://github.com/suse-edge/endpoint-copier-operator

14.3.3 Networking

The supported CNI for the Edge Stack is Cilium (https://docs.cilium.io/en/stable/) with optional-
ly adding the meta-plugin Multus (https://github.com/k8snetworkplumbingwg/multus-cni) , but
RKE2 supports a few others (https://docs.rke2.io/install/network_options) as well.

14.3.4 Storage

RKE2 does not provide any kind of persistent storage class or operators. For clusters spanning
over multiple nodes, it is recommended to use Longhorn (Chapter 15, Longhorn).

124 Networking

https://docs.cilium.io/en/stable/
https://github.com/k8snetworkplumbingwg/multus-cni
https://docs.rke2.io/install/network_options

15 Longhorn

Longhorn is a lightweight, reliable and user-friendly distributed block storage system designed
for Kubernetes. As an open source project, Longhorn was initially developed by Rancher Labs
and is currently incubated under the CNCF.

15.1 Prerequisites

If you are following this guide, it assumes that you have the following already available:

At least one host with SLE Micro 5.5 installed; this can be physical or virtual

A Kubernetes cluster installed; either K3s or RKE2

Helm

15.2 Manual installation of Longhorn

15.2.1 Installing Open-iSCSI

A core requirement of deploying and using Longhorn is the installation of the open-iscsi
package and the iscsid daemon running on all Kubernetes nodes. This is necessary, since
Longhorn relies on iscsiadm on the host to provide persistent volumes to Kubernetes.

Let’s install it:

transactional-update pkg install open-iscsi

It is important to note that once the operation is completed, the package is only installed into
a new snapshot as SLE Micro is an immutable operating system. In order to load it and for the
iscsid daemon to start running, we must reboot into that new snapshot that we just created.
Issue the reboot command when you are ready:

reboot

125 Prerequisites

Tip
For additional help installing open-iscsi, refer to the official Longhorn documentation

(https://longhorn.io/docs/1.6.1/deploy/install/#installing-open-iscsi) .

15.2.2 Installing Longhorn

There are several ways to install Longhorn on your Kubernetes clusters. This guide will follow
through the Helm installation, however feel free to follow the official documentation (https://

longhorn.io/docs/1.6.1/deploy/install/) if another approach is desired.

1. Add the Longhorn Helm repository:

helm repo add longhorn https://charts.longhorn.io

2. Fetch the latest charts from the repository:

helm repo update

3. Install Longhorn in the longhorn-system namespace:

helm install longhorn longhorn/longhorn --namespace longhorn-system --create-
namespace --version 1.6.1

4. Confirm that the deployment succeeded:

kubectl -n longhorn-system get pods

localhost:~ # kubectl -n longhorn-system get pod
NAMESPACE NAME READY STATUS
 RESTARTS AGE
longhorn-system longhorn-ui-5fc9fb76db-z5dc9 1/1
 Running 0 90s
longhorn-system longhorn-ui-5fc9fb76db-dcb65 1/1
 Running 0 90s
longhorn-system longhorn-manager-wts2v 1/1
 Running 1 (77s ago) 90s
longhorn-system longhorn-driver-deployer-5d4f79ddd-fxgcs 1/1
 Running 0 90s
longhorn-system instance-manager-a9bf65a7808a1acd6616bcd4c03d925b 1/1
 Running 0 70s
longhorn-system engine-image-ei-acb7590c-htqmp 1/1
 Running 0 70s

126 Installing Longhorn

https://longhorn.io/docs/1.6.1/deploy/install/#installing-open-iscsi
https://longhorn.io/docs/1.6.1/deploy/install/#installing-open-iscsi
https://longhorn.io/docs/1.6.1/deploy/install/
https://longhorn.io/docs/1.6.1/deploy/install/

longhorn-system csi-attacher-5c4bfdcf59-j8xww 1/1
 Running 0 50s
longhorn-system csi-provisioner-667796df57-l69vh 1/1
 Running 0 50s
longhorn-system csi-attacher-5c4bfdcf59-xgd5z 1/1
 Running 0 50s
longhorn-system csi-provisioner-667796df57-dqkfr 1/1
 Running 0 50s
longhorn-system csi-attacher-5c4bfdcf59-wckt8 1/1
 Running 0 50s
longhorn-system csi-resizer-694f8f5f64-7n2kq 1/1
 Running 0 50s
longhorn-system csi-snapshotter-959b69d4b-rp4gk 1/1
 Running 0 50s
longhorn-system csi-resizer-694f8f5f64-r6ljc 1/1
 Running 0 50s
longhorn-system csi-resizer-694f8f5f64-k7429 1/1
 Running 0 50s
longhorn-system csi-snapshotter-959b69d4b-5k8pg 1/1
 Running 0 50s
longhorn-system csi-provisioner-667796df57-n5w9s 1/1
 Running 0 50s
longhorn-system csi-snapshotter-959b69d4b-x7b7t 1/1
 Running 0 50s
longhorn-system longhorn-csi-plugin-bsc8c 3/3
 Running 0 50s

15.3 Creating Longhorn volumes
Longhorn utilizes Kubernetes resources called StorageClass in order to automatically provi-
sion PersistentVolume objects for pods. Think of StorageClass as a way for administrators
to describe the classes or profiles of storage they offer.

Let’s create a StorageClass with some default options:

kubectl apply -f - <<EOF
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: longhorn-example
provisioner: driver.longhorn.io
allowVolumeExpansion: true
parameters:
 numberOfReplicas: "3"
 staleReplicaTimeout: "2880" # 48 hours in minutes

127 Creating Longhorn volumes

 fromBackup: ""
 fsType: "ext4"
EOF

Now that we have our StorageClass in place, we need a PersistentVolumeClaim referenc-
ing it. A PersistentVolumeClaim (PVC) is a request for storage by a user. PVCs consume Per-
sistentVolume resources. Claims can request specific sizes and access modes (e.g., they can be
mounted once read/write or many times read-only).

Let’s create a PersistentVolumeClaim :

kubectl apply -f - <<EOF
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: longhorn-volv-pvc
 namespace: longhorn-system
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: longhorn-example
 resources:
 requests:
 storage: 2Gi
EOF

That’s it! Once we have the PersistentVolumeClaim created, we can proceed with attaching
it to a Pod . When the Pod is deployed, Kubernetes creates the Longhorn volume and binds it
to the Pod if storage is available.

kubectl apply -f - <<EOF
apiVersion: v1
kind: Pod
metadata:
 name: volume-test
 namespace: longhorn-system
spec:
 containers:
 - name: volume-test
 image: nginx:stable-alpine
 imagePullPolicy: IfNotPresent
 volumeMounts:
 - name: volv
 mountPath: /data
 ports:
 - containerPort: 80
 volumes:

128 Creating Longhorn volumes

 - name: volv
 persistentVolumeClaim:
 claimName: longhorn-volv-pvc
EOF

Tip
The concept of storage in Kubernetes is a complex, but important topic. We briey men-
tioned some of the most common Kubernetes resources, however, we suggest to familiar-
ize yourself with the terminology documentation (https://longhorn.io/docs/1.6.1/terminol-

ogy/) that Longhorn offers.

In this example, the result should look something like this:

localhost:~ # kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
 ALLOWVOLUMEEXPANSION AGE
longhorn (default) driver.longhorn.io Delete Immediate true
 12m
longhorn-example driver.longhorn.io Delete Immediate true
 24s

localhost:~ # kubectl get pvc -n longhorn-system
NAME STATUS VOLUME CAPACITY ACCESS
 MODES STORAGECLASS AGE
longhorn-volv-pvc Bound pvc-f663a92e-ac32-49ae-b8e5-8a6cc29a7d1e 2Gi RWO
 longhorn-example 54s

localhost:~ # kubectl get pods -n longhorn-system
NAME READY STATUS RESTARTS AGE
csi-attacher-5c4bfdcf59-qmjtz 1/1 Running 0 14m
csi-attacher-5c4bfdcf59-s7n65 1/1 Running 0 14m
csi-attacher-5c4bfdcf59-w9xgs 1/1 Running 0 14m
csi-provisioner-667796df57-fmz2d 1/1 Running 0 14m
csi-provisioner-667796df57-p7rjr 1/1 Running 0 14m
csi-provisioner-667796df57-w9fdq 1/1 Running 0 14m
csi-resizer-694f8f5f64-2rb8v 1/1 Running 0 14m
csi-resizer-694f8f5f64-z9v9x 1/1 Running 0 14m
csi-resizer-694f8f5f64-zlncz 1/1 Running 0 14m
csi-snapshotter-959b69d4b-5dpvj 1/1 Running 0 14m
csi-snapshotter-959b69d4b-lwwkv 1/1 Running 0 14m
csi-snapshotter-959b69d4b-tzhwc 1/1 Running 0 14m
engine-image-ei-5cefaf2b-hvdv5 1/1 Running 0 14m
instance-manager-0ee452a2e9583753e35ad00602250c5b 1/1 Running 0 14m
longhorn-csi-plugin-gd2jx 3/3 Running 0 14m

129 Creating Longhorn volumes

https://longhorn.io/docs/1.6.1/terminology/
https://longhorn.io/docs/1.6.1/terminology/

longhorn-driver-deployer-9f4fc86-j6h2b 1/1 Running 0 15m
longhorn-manager-z4lnl 1/1 Running 0 15m
longhorn-ui-5f4b7bbf69-bln7h 1/1 Running 3 (14m ago) 15m
longhorn-ui-5f4b7bbf69-lh97n 1/1 Running 3 (14m ago) 15m
volume-test 1/1 Running 0 26s

15.4 Accessing the UI
If you installed Longhorn with kubectl or Helm, you need to set up an Ingress controller to
allow external traffic into the cluster. Authentication is not enabled by default. If the Rancher
catalog app was used, Rancher automatically created an Ingress controller with access control
(the rancher-proxy).

1. Get the Longhorn’s external service IP address:

kubectl -n longhorn-system get svc

2. Once you have retrieved the longhorn-frontend IP address, you can start using the UI
by navigating to it in your browser.

15.5 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
We are going to demonstrate how to do so for provisioning an RKE2 cluster with Longhorn on
top of it.

Let’s create the definition le:

export CONFIG_DIR=$HOME/eib
mkdir -p $CONFIG_DIR

cat << EOF > $CONFIG_DIR/iso-definition.yaml
apiVersion: 1.0
image:
 imageType: iso
 baseImage: SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 arch: x86_64
 outputImageName: eib-image.iso
kubernetes:
 version: v1.28.13+rke2r1
 helm:

130 Accessing the UI

 charts:
 - name: longhorn
 version: 1.6.1
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 repositories:
 - name: longhorn
 url: https://charts.longhorn.io
operatingSystem:
 packages:
 sccRegistrationCode: <reg-code>
 packageList:
 - open-iscsi
 users:
 - username: root
 encryptedPassword: \$6\$jHugJNNd3HElGsUZ\
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
EOF

Note
Customizing any of the Helm chart values is possible via a separate le
provided under helm.charts[].valuesFile . Refer to the upstream documenta-

tion (https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-im-

ages.md#kubernetes) for details.

Let’s build the image:

podman run --rm --privileged -it -v $CONFIG_DIR:/eib registry.suse.com/edge/edge-image-
builder:1.0.2 build --definition-file $CONFIG_DIR/iso-definition.yaml

After the image is built, you can use it to install your OS on a physical or virtual host. Once the
provisioning is complete, you are able to log in to the system using the root:eib credentials
pair.

Ensure that Longhorn has been successfully deployed:

localhost:~ # /var/lib/rancher/rke2/bin/kubectl --kubeconfig /etc/rancher/rke2/rke2.yaml
 -n longhorn-system get pods
NAME READY STATUS RESTARTS AGE
csi-attacher-5c4bfdcf59-qmjtz 1/1 Running 0
 103s

131 Installing with Edge Image Builder

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#kubernetes

csi-attacher-5c4bfdcf59-s7n65 1/1 Running 0
 103s
csi-attacher-5c4bfdcf59-w9xgs 1/1 Running 0
 103s
csi-provisioner-667796df57-fmz2d 1/1 Running 0
 103s
csi-provisioner-667796df57-p7rjr 1/1 Running 0
 103s
csi-provisioner-667796df57-w9fdq 1/1 Running 0
 103s
csi-resizer-694f8f5f64-2rb8v 1/1 Running 0
 103s
csi-resizer-694f8f5f64-z9v9x 1/1 Running 0
 103s
csi-resizer-694f8f5f64-zlncz 1/1 Running 0
 103s
csi-snapshotter-959b69d4b-5dpvj 1/1 Running 0
 103s
csi-snapshotter-959b69d4b-lwwkv 1/1 Running 0
 103s
csi-snapshotter-959b69d4b-tzhwc 1/1 Running 0
 103s
engine-image-ei-5cefaf2b-hvdv5 1/1 Running 0
 109s
instance-manager-0ee452a2e9583753e35ad00602250c5b 1/1 Running 0
 109s
longhorn-csi-plugin-gd2jx 3/3 Running 0
 103s
longhorn-driver-deployer-9f4fc86-j6h2b 1/1 Running 0
 2m28s
longhorn-manager-z4lnl 1/1 Running 0
 2m28s
longhorn-ui-5f4b7bbf69-bln7h 1/1 Running 3 (2m7s ago)
 2m28s
longhorn-ui-5f4b7bbf69-lh97n 1/1 Running 3 (2m10s ago)
 2m28s

Note
This installation will not work for completely air-gapped environments. In those cases,
please refer to Section 21.8, “Longhorn Installation”.

132 Installing with Edge Image Builder

16 NeuVector

NeuVector is a security solution for Kubernetes that provides L7 network security, runtime se-
curity, supply chain security, and compliance checks in a cohesive package.

NeuVector is deployed as a platform of several containers that communicate with each other on
various ports and interfaces. The following are the different containers deployed:

Manager. A stateless container which presents the Web-based console. Typically, only one
is needed and this can run anywhere. Failure of the Manager does not affect any of the
operations of the controller or enforcer. However, certain notifications (events) and recent
connection data are cached in memory by the Manager so viewing of these would be
affected.

Controller. The ‘control plane’ for NeuVector must be deployed in an HA configuration, so
configuration is not lost in a node failure. These can run anywhere, although customers
often choose to place these on ‘management’, master or infra nodes because of their crit-
icality.

Enforcer. This container is deployed as a DaemonSet so one Enforcer is on every node to
be protected. Typically deploys to every worker node but scheduling can be enabled for
master and infra nodes to deploy there as well. Note: If the Enforcer is not on a cluster node
and connections come from a pod on that node, NeuVector labels them as ‘unmanaged’
workloads.

Scanner. Performs the vulnerability scanning using the built-in CVE database, as directed
by the Controller. Multiple scanners can be deployed to increase scanning capacity. Scan-
ners can run anywhere but are often run on the nodes where the controllers run. See below
for sizing considerations of scanner nodes. A scanner can also be invoked independently
when used for build-phase scanning, for example, within a pipeline that triggers a scan,
retrieves the results, and stops the scanner. The scanner contains the latest CVE database
so should be updated daily.

Updater. The updater triggers an update of the scanner through a Kubernetes cron job
when an update of the CVE database is desired. Please be sure to configure this for your
environment.

A more in-depth NeuVector onboarding and best practices documentation can be found here

(https://open-docs.neuvector.com/deploying/production/NV_Onboarding_5.0.pdf) .

133

https://open-docs.neuvector.com/deploying/production/NV_Onboarding_5.0.pdf
https://open-docs.neuvector.com/deploying/production/NV_Onboarding_5.0.pdf

16.1 How does SUSE Edge use NeuVector?
SUSE Edge provides a leaner configuration of NeuVector as a starting point for edge deploy-
ments.

Find the NeuVector configuration changes here (https://github.com/suse-edge/charts/blob/main/

packages/neuvector-core/generated-changes/patch/values.yaml.patch) .

16.2 Important notes

The Scanner container must have enough memory to pull the image to be scanned into
memory and expand it. To scan images exceeding 1 GB, increase the scanner’s memory to
slightly above the largest expected image size.

High network connections expected in Protect mode. The Enforcer requires CPU and
memory when in Protect (inline firewall blocking) mode to hold and inspect connections
and possible payload (DLP). Increasing memory and dedicating a CPU core to the En-
forcer can ensure adequate packet filtering capacity.

16.3 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
Follow Section 21.7, “NeuVector Installation” for an air-gapped installation of NeuVector on top of
Kubernetes clusters provisioned by EIB.

134 How does SUSE Edge use NeuVector?

https://github.com/suse-edge/charts/blob/main/packages/neuvector-core/generated-changes/patch/values.yaml.patch
https://github.com/suse-edge/charts/blob/main/packages/neuvector-core/generated-changes/patch/values.yaml.patch

17 MetalLB

See MetalLB official documentation (https://metallb.universe.tf/) .

MetalLB is a load-balancer implementation for bare-metal Kubernetes clusters,
using standard routing protocols.

In bare-metal environments, setting up network load balancers is notably more
complex than in cloud environments. Unlike the straightforward API calls in cloud
setups, bare-metal requires either dedicated network appliances or a combination
of load balancers and Virtual IP (VIP) configurations to manage High Availability
(HA) or address the potential Single Point of Failure (SPOF) inherent in a single
node load balancer. These configurations are not easily automated, posing chal-
lenges in Kubernetes deployments where components dynamically scale up and
down.

MetalLB addresses these challenges by harnessing the Kubernetes model to create
LoadBalancer type services as if they were operating in a cloud environment,
even on bare-metal setups.

There are two different approaches, via L2 mode (https://metallb.universe.tf/con-

cepts/layer2/) (using ARP tricks) or via BGP (https://metallb.universe.tf/con-

cepts/bgp/) . Mainly L2 does not need any special network gear but BGP is in
general better. It depends on the use cases.

17.1 How does SUSE Edge use MetalLB?
SUSE Edge uses MetalLB in two key ways:

As a Load Balancer Solution: MetalLB serves as the Load Balancer solution for bare-metal
machines.

For an HA K3s/RKE2 Setup: MetalLB allows for load balancing the Kubernetes API using
a Virtual IP address.

Note
In order to be able to expose the API, the endpoint-copier-operator is used to keep
in sync the K8s API endpoints from the 'kubernetes' service to a 'kubernetes-vip' LoadBal-
ancer service.

135 How does SUSE Edge use MetalLB?

https://metallb.universe.tf/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/concepts/bgp/
https://metallb.universe.tf/concepts/bgp/

17.2 Best practices
Installation of MetalLB in L2 mode is detailed in the MetalLB guide (Chapter 19, MetalLB on K3s

(using L2)).

A guide on installing MetalLB in front of the kube-api-server to achieve HA setups can be found
in the MetalLB in front of the Kubernetes API server (Chapter 20, MetalLB in front of the Kubernetes

API server) tutorial.

17.3 Known issues

K3S LoadBalancer Solution: K3S comes with its Load Balancer solution, Klipper . To use
MetalLB, Klipper must be disabled. This can be done by starting the K3s server with the --
disable servicelb option, as described in the K3s documentation (https://docs.k3s.io/net-

working) .

136 Best practices

https://docs.k3s.io/networking
https://docs.k3s.io/networking

18 Edge Virtualization

This section describes how you can use Edge Virtualization to run virtual machines on your edge
nodes. It is important to point out that Edge Virtualization is not a comprehensive solution and
has limited features; it attempts to solve requirements for lightweight virtualization where basic
virtual machine capabilities are required. SUSE provides a more comprehensive virtualization
(and hyperconverged infrastructure) solution with Harvester (https://harvesterhci.io/) .

SUSE Edge Virtualization supports two methods of running virtual machines:

1. Deploying the virtual machines manually via libvirt+qemu-kvm at the host level

2. Deploying the KubeVirt operator for Kubernetes-based management of virtual machines

Both options are valid, but only the second one is covered below. If you want to use the
standard out-of-the box virtualization mechanisms provided by SLE Micro, a comprehensive
guide can be found here (https://documentation.suse.com/sles/15-SP5/html/SLES-all/chap-virtual-

ization-introduction.html) , and whilst it was primarily written for SUSE Linux Enterprise Serv-
er, the concepts are almost identical.

This guide initially explains how to deploy the additional virtualization components onto a
system that has already been pre-deployed, but follows with a section that describes how to
embed this configuration in the initial deployment via Edge Image Builder. If you do not want
to run through the basics and set things up manually, skip right ahead to that section.

18.1 KubeVirt overview

KubeVirt allows for managing Virtual Machines with Kubernetes alongside the rest of your con-
tainerized workloads. It does this by running the user space portion of the Linux virtualization
stack in a container. This minimizes the requirements on the host system, allowing for easier
setup and management.

Details about KubeVirt’s architecture can be found in the upstream documentation. (https://kube-

virt.io/user-guide/architecture/)

137 KubeVirt overview

https://harvesterhci.io/
https://documentation.suse.com/sles/15-SP5/html/SLES-all/chap-virtualization-introduction.html
https://documentation.suse.com/sles/15-SP5/html/SLES-all/chap-virtualization-introduction.html
https://kubevirt.io/user-guide/architecture/
https://kubevirt.io/user-guide/architecture/

18.2 Prerequisites

If you are following this guide, we assume you have the following already available:

At least one physical host with SLE Micro 5.5+ installed, and with virtualization extensions
enabled in the BIOS (see here (https://documentation.suse.com/sles/15-SP5/html/SLES-all/

cha-virt-support.html#sec-kvm-requires-hardware) for details).

Across your nodes, a K3s/RKE2 Kubernetes cluster already deployed and with an appro-
priate kubeconfig that enables superuser access to the cluster.

Access to the root user — these instructions assume you are the root user, and not escalating
your privileges via sudo .

You have Helm (https://helm.sh/docs/intro/install/) available locally with an adequate net-
work connection to be able to push configurations to your Kubernetes cluster and down-
load the required images.

18.3 Manual installation of Edge Virtualization

This guide will not walk you through the deployment of Kubernetes, but it assumes that you
have either installed the SUSE Edge-appropriate version of K3s (https://k3s.io/) or RKE2 (https://

docs.rke2.io/install/quickstart) and that you have your kubeconfig configured accordingly so
that standard kubectl commands can be executed as the superuser. We assume your node
forms a single-node cluster, although there are no significant differences expected for multi-node
deployments.

138 Prerequisites

https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware
https://documentation.suse.com/sles/15-SP5/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware
https://helm.sh/docs/intro/install/
https://k3s.io/
https://docs.rke2.io/install/quickstart
https://docs.rke2.io/install/quickstart

SUSE Edge Virtualization is deployed via three separate Helm charts, specifically:

KubeVirt: The core virtualization components, that is, Kubernetes CRDs, operators and
other components required for enabling Kubernetes to deploy and manage virtual ma-
chines.

KubeVirt Dashboard Extension: An optional Rancher UI extension that allows basic vir-
tual machine management, for example, starting/stopping of virtual machines as well as
accessing the console.

Containerized Data Importer (CDI): An additional component that enables persis-
tent-storage integration for KubeVirt, providing capabilities for virtual machines to use
existing Kubernetes storage back-ends for data, but also allowing users to import or clone
data volumes for virtual machines.

Each of these Helm charts is versioned according to the SUSE Edge release you are currently
using. For production/supported usage, employ the artifacts that can be found in the SUSE
Registry.

First, ensure that your kubectl access is working:

$ kubectl get nodes

This should show something similar to the following:

NAME STATUS ROLES AGE VERSION
node1.edge.rdo.wales Ready control-plane,etcd,master 4h20m v1.28.13+rke2r1
node2.edge.rdo.wales Ready control-plane,etcd,master 4h15m v1.28.13+rke2r1
node3.edge.rdo.wales Ready control-plane,etcd,master 4h15m v1.28.13+rke2r1

Now you can proceed to install the KubeVirt and Containerized Data Importer (CDI) Helm
charts:

$ helm install kubevirt oci://registry.suse.com/edge/kubevirt-chart --namespace kubevirt-
system --create-namespace
$ helm install cdi oci://registry.suse.com/edge/cdi-chart --namespace cdi-system --
create-namespace

In a few minutes, you should have all KubeVirt and CDI components deployed. You can vali-
date this by checking all the deployed resources in the kubevirt-system and cdi-system
namespace.

Verify KubeVirt resources:

$ kubectl get all -n kubevirt-system

139 Manual installation of Edge Virtualization

This should show something similar to the following:

NAME READY STATUS RESTARTS AGE
pod/virt-operator-5fbcf48d58-p7xpm 1/1 Running 0 2m24s
pod/virt-operator-5fbcf48d58-wnf6s 1/1 Running 0 2m24s
pod/virt-handler-t594x 1/1 Running 0 93s
pod/virt-controller-5f84c69884-cwjvd 1/1 Running 1 (64s ago) 93s
pod/virt-controller-5f84c69884-xxw6q 1/1 Running 1 (64s ago) 93s
pod/virt-api-7dfc54cf95-v8kcl 1/1 Running 1 (59s ago) 118s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
service/kubevirt-prometheus-metrics ClusterIP None <none> 443/TCP
 2m1s
service/virt-api ClusterIP 10.43.56.140 <none> 443/TCP
 2m1s
service/kubevirt-operator-webhook ClusterIP 10.43.201.121 <none> 443/TCP
 2m1s
service/virt-exportproxy ClusterIP 10.43.83.23 <none> 443/TCP
 2m1s

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
 SELECTOR AGE
daemonset.apps/virt-handler 1 1 1 1 1
 kubernetes.io/os=linux 93s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virt-operator 2/2 2 2 2m24s
deployment.apps/virt-controller 2/2 2 2 93s
deployment.apps/virt-api 1/1 1 1 118s

NAME DESIRED CURRENT READY AGE
replicaset.apps/virt-operator-5fbcf48d58 2 2 2 2m24s
replicaset.apps/virt-controller-5f84c69884 2 2 2 93s
replicaset.apps/virt-api-7dfc54cf95 1 1 1 118s

NAME AGE PHASE
kubevirt.kubevirt.io/kubevirt 2m24s Deployed

Verify CDI resources:

$ kubectl get all -n cdi-system

This should show something similar to the following:

NAME READY STATUS RESTARTS AGE
pod/cdi-operator-55c74f4b86-692xb 1/1 Running 0 2m24s

140 Manual installation of Edge Virtualization

pod/cdi-apiserver-db465b888-62lvr 1/1 Running 0 2m21s
pod/cdi-deployment-56c7d74995-mgkfn 1/1 Running 0 2m21s
pod/cdi-uploadproxy-7d7b94b968-6kxc2 1/1 Running 0 2m22s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cdi-uploadproxy ClusterIP 10.43.117.7 <none> 443/TCP
 2m22s
service/cdi-api ClusterIP 10.43.20.101 <none> 443/TCP
 2m22s
service/cdi-prometheus-metrics ClusterIP 10.43.39.153 <none> 8080/TCP
 2m21s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/cdi-operator 1/1 1 1 2m24s
deployment.apps/cdi-apiserver 1/1 1 1 2m22s
deployment.apps/cdi-deployment 1/1 1 1 2m21s
deployment.apps/cdi-uploadproxy 1/1 1 1 2m22s

NAME DESIRED CURRENT READY AGE
replicaset.apps/cdi-operator-55c74f4b86 1 1 1 2m24s
replicaset.apps/cdi-apiserver-db465b888 1 1 1 2m21s
replicaset.apps/cdi-deployment-56c7d74995 1 1 1 2m21s
replicaset.apps/cdi-uploadproxy-7d7b94b968 1 1 1 2m22s

To verify that the VirtualMachine custom resource definitions (CRDs) are deployed, you can
validate with:

$ kubectl explain virtualmachine

This should print out the definition of the VirtualMachine object, which should print as fol-
lows:

GROUP: kubevirt.io
KIND: VirtualMachine
VERSION: v1

DESCRIPTION:
 VirtualMachine handles the VirtualMachines that are not running or are in a
 stopped state The VirtualMachine contains the template to create the
 VirtualMachineInstance. It also mirrors the running state of the created
 VirtualMachineInstance in its status.
(snip)

141 Manual installation of Edge Virtualization

18.4 Deploying virtual machines
Now that KubeVirt and CDI are deployed, let us define a simple virtual machine based on
openSUSE Tumbleweed (https://get.opensuse.org/tumbleweed/) . This virtual machine has the
most simple of configurations, using standard "pod networking" for a networking configura-
tion identical to any other pod. It also employs non-persistent storage, ensuring the storage is
ephemeral, just like in any container that does not have a PVC (https://kubernetes.io/docs/con-

cepts/storage/persistent-volumes/) .

$ kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: tumbleweed
 namespace: default
spec:
 runStrategy: Always
 template:
 spec:
 domain:
 devices: {}
 machine:
 type: q35
 memory:
 guest: 2Gi
 resources: {}
 volumes:
 - containerDisk:
 image: registry.opensuse.org/home/roxenham/tumbleweed-container-disk/
containerfile/cloud-image:latest
 name: tumbleweed-containerdisk-0
 - cloudInitNoCloud:
 userDataBase64:
 I2Nsb3VkLWNvbmZpZwpkaXNhYmxlX3Jvb3Q6IGZhbHNlCnNzaF9wd2F1dGg6IFRydWUKdXNlcnM6CiAgLSBkZWZhdWx0CiAgLSBuYW1lOiBzdXNlCiAgICBncm91cHM6IHN1ZG8KICAgIHNoZWxsOiAvYmluL2Jhc2gKICAgIHN1ZG86ICBBTEw9KEFMTCkgTk9QQVNTV0Q6QUxMCiAgICBsb2NrX3Bhc3N3ZDogRmFsc2UKICAgIHBsYWluX3RleHRfcGFzc3dkOiAnc3VzZScK
 name: cloudinitdisk
EOF

This should print that a VirtualMachine was created:

virtualmachine.kubevirt.io/tumbleweed created

This VirtualMachine definition is minimal, specifying little about the configuration. It sim-
ply outlines that it is a machine type "q35 (https://wiki.qemu.org/Features/Q35) " with 2 GB of
memory that uses a disk image based on an ephemeral containerDisk (that is, a disk image

142 Deploying virtual machines

https://get.opensuse.org/tumbleweed/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://wiki.qemu.org/Features/Q35

that is stored in a container image from a remote image repository), and specifies a base64
encoded cloudInit disk, which we only use for user creation and password enforcement at boot
time (use base64 -d to decode it).

Note
This virtual machine image is only for testing. The image is not officially
supported and is only meant as a documentation example.

This machine takes a few minutes to boot as it needs to download the openSUSE Tumbleweed
disk image, but once it has done so, you can view further details about the virtual machine by
checking the virtual machine information:

$ kubectl get vmi

This should print the node that the virtual machine was started on, and the IP address of the
virtual machine. Remember, since it uses pod networking, the reported IP address will be just
like any other pod, and routable as such:

NAME AGE PHASE IP NODENAME READY
tumbleweed 4m24s Running 10.42.2.98 node3.edge.rdo.wales True

When running these commands on the Kubernetes cluster nodes themselves, with a CNI that
routes traffic directly to pods (for example, Cilium), you should be able to ssh directly to the
machine itself. Substitute the following IP address with the one that was assigned to your virtual
machine:

$ ssh suse@10.42.2.98
(password is "suse")

Once you are in this virtual machine, you can play around, but remember that it is limited in
terms of resources, and only has 1 GB disk space. When you are finished, Ctrl-D or exit to
disconnect from the SSH session.

The virtual machine process is still wrapped in a standard Kubernetes pod. The VirtualMa-
chine CRD is a representation of the desired virtual machine, but the process in which the
virtual machine is actually started is via the virt-launcher pod, a standard Kubernetes pod,
just like any other application. For every virtual machine started, you can see there is a virt-
launcher pod:

$ kubectl get pods

143 Deploying virtual machines

This should then show the one virt-launcher pod for the Tumbleweed machine that we have
defined:

NAME READY STATUS RESTARTS AGE
virt-launcher-tumbleweed-8gcn4 3/3 Running 0 10m

If we take a look into this virt-launcher pod, you see it is executing libvirt and qemu-kvm
processes. We can enter the pod itself and have a look under the covers, noting that you need
to adapt the following command for your pod name:

$ kubectl exec -it virt-launcher-tumbleweed-8gcn4 -- bash

Once you are in the pod, try running virsh commands along with looking at the processes. You
will see the qemu-system-x86_64 binary running, along with certain processes for monitoring
the virtual machine. You will also see the location of the disk image and how the networking
is plugged (as a tap device):

qemu@tumbleweed:/> ps ax
 PID TTY STAT TIME COMMAND
 1 ? Ssl 0:00 /usr/bin/virt-launcher-monitor --qemu-timeout 269s --name
 tumbleweed --uid b9655c11-38f7-4fa8-8f5d-bfe987dab42c --namespace default --kubevirt-
share-dir /var/run/kubevirt --ephemeral-disk-dir /var/run/kubevirt-ephemeral-disks --
container-disk-dir /var/run/kube
 12 ? Sl 0:01 /usr/bin/virt-launcher --qemu-timeout 269s --name tumbleweed
 --uid b9655c11-38f7-4fa8-8f5d-bfe987dab42c --namespace default --kubevirt-share-dir /
var/run/kubevirt --ephemeral-disk-dir /var/run/kubevirt-ephemeral-disks --container-disk-
dir /var/run/kubevirt/con
 24 ? Sl 0:00 /usr/sbin/virtlogd -f /etc/libvirt/virtlogd.conf
 25 ? Sl 0:01 /usr/sbin/virtqemud -f /var/run/libvirt/virtqemud.conf
 83 ? Sl 0:31 /usr/bin/qemu-system-x86_64 -name
 guest=default_tumbleweed,debug-threads=on -S -object {"qom-
type":"secret","id":"masterKey0","format":"raw","file":"/var/run/kubevirt-private/
libvirt/qemu/lib/domain-1-default_tumbleweed/master-key.aes"} -machine pc-q35-7.1,usb
 286 pts/0 Ss 0:00 bash
 320 pts/0 R+ 0:00 ps ax

qemu@tumbleweed:/> virsh list --all
 Id Name State

 1 default_tumbleweed running

qemu@tumbleweed:/> virsh domblklist 1
 Target Source

 sda /var/run/kubevirt-ephemeral-disks/disk-data/tumbleweed-containerdisk-0/
disk.qcow2

144 Deploying virtual machines

 sdb /var/run/kubevirt-ephemeral-disks/cloud-init-data/default/tumbleweed/
noCloud.iso

qemu@tumbleweed:/> virsh domiflist 1
 Interface Type Source Model MAC
--
 tap0 ethernet - virtio-non-transitional e6:e9:1a:05:c0:92

qemu@tumbleweed:/> exit
exit

Finally, let us delete this virtual machine to clean up:

$ kubectl delete vm/tumbleweed
virtualmachine.kubevirt.io "tumbleweed" deleted

18.5 Using virtctl
Along with the standard Kubernetes CLI tooling, that is, kubectl , KubeVirt comes with an
accompanying CLI utility that allows you to interface with your cluster in a way that bridges
some gaps between the virtualization world and the world that Kubernetes was designed for. For
example, the virtctl tool provides the capability of managing the lifecycle of virtual machines
(starting, stopping, restarting, etc.), providing access to the virtual consoles, uploading virtual
machine images, as well as interfacing with Kubernetes constructs such as services, without
using the API or CRDs directly.

Let us download the latest stable version of the virtctl tool:

$ export VERSION=v1.1.0
$ wget https://github.com/kubevirt/kubevirt/releases/download/${VERSION}/virtctl-
${VERSION}-linux-amd64

If you are using a different architecture or a non-Linux machine, you can nd other releases
here (https://github.com/kubevirt/kubevirt/releases) . You need to make this executable before
proceeding, and it may be useful to move it to a location within your $PATH :

$ mv virtctl-${VERSION}-linux-amd64 /usr/local/bin/virtctl
$ chmod a+x /usr/local/bin/virtctl

You can then use the virtctl command-line tool to create virtual machines. Let us replicate
our previous virtual machine, noting that we are piping the output directly into kubectl apply :

$ virtctl create vm --name virtctl-example --memory=1Gi \

145 Using virtctl

https://github.com/kubevirt/kubevirt/releases

 --volume-containerdisk=src:registry.opensuse.org/home/roxenham/tumbleweed-container-
disk/containerfile/cloud-image:latest \
 --cloud-init-user-data
 "I2Nsb3VkLWNvbmZpZwpkaXNhYmxlX3Jvb3Q6IGZhbHNlCnNzaF9wd2F1dGg6IFRydWUKdXNlcnM6CiAgLSBkZWZhdWx0CiAgLSBuYW1lOiBzdXNlCiAgICBncm91cHM6IHN1ZG8KICAgIHNoZWxsOiAvYmluL2Jhc2gKICAgIHN1ZG86ICBBTEw9KEFMTCkgTk9QQVNTV0Q6QUxMCiAgICBsb2NrX3Bhc3N3ZDogRmFsc2UKICAgIHBsYWluX3RleHRfcGFzc3dkOiAnc3VzZScK"
 | kubectl apply -f -

This should then show the virtual machine running (it should start a lot quicker this time given
that the container image will be cached):

$ kubectl get vmi
NAME AGE PHASE IP NODENAME READY
virtctl-example 52s Running 10.42.2.29 node3.edge.rdo.wales True

Now we can use virtctl to connect directly to the virtual machine:

$ virtctl ssh suse@virtctl-example
(password is "suse" - Ctrl-D to exit)

There are plenty of other commands that can be used by virtctl . For example, virtctl
console can give you access to the serial console if networking is not working, and you can
use virtctl guestosinfo to get comprehensive OS information, subject to the guest having
the qemu-guest-agent installed and running.

Finally, let us pause and resume the virtual machine:

$ virtctl pause vm virtctl-example
VMI virtctl-example was scheduled to pause

You nd that the VirtualMachine object shows as Paused and the VirtualMachineInstance
object shows as Running but READY=False:

$ kubectl get vm
NAME AGE STATUS READY
virtctl-example 8m14s Paused False

$ kubectl get vmi
NAME AGE PHASE IP NODENAME READY
virtctl-example 8m15s Running 10.42.2.29 node3.edge.rdo.wales False

You also nd that you can no longer connect to the virtual machine:

$ virtctl ssh suse@virtctl-example
can't access VMI virtctl-example: Operation cannot be fulfilled on
 virtualmachineinstance.kubevirt.io "virtctl-example": VMI is paused

Let us resume the virtual machine and try again:

$ virtctl unpause vm virtctl-example

146 Using virtctl

VMI virtctl-example was scheduled to unpause

Now we should be able to re-establish a connection:

$ virtctl ssh suse@virtctl-example
suse@vmi/virtctl-example.default's password:
suse@virtctl-example:~> exit
logout

Finally, let us remove the virtual machine:

$ kubectl delete vm/virtctl-example
virtualmachine.kubevirt.io "virtctl-example" deleted

18.6 Simple ingress networking
In this section, we show how you can expose virtual machines as standard Kubernetes services
and make them available via the Kubernetes ingress service, for example, NGINX with RKE2

(https://docs.rke2.io/networking/networking_services#nginx-ingress-controller) or Traefik with

K3s (https://docs.k3s.io/networking/networking-services#traefik-ingress-controller) . This docu-
ment assumes that these components are already configured appropriately and that you have
an appropriate DNS pointer, for example, via a wild card, to point at your Kubernetes server
nodes or your ingress virtual IP for proper ingress resolution.

Note
In SUSE Edge 3.0+, if you are using K3s in a multi-server node configura-
tion, you might have needed to configure a MetalLB-based VIP for Ingress;
this is not required for RKE2.

In the example environment, another openSUSE Tumbleweed virtual machine is deployed,
cloud-init is used to install NGINX as a simple Web server at boot time, and a simple message
is configured to be returned to verify that it works as expected when a call is made. To see how
this is done, simply base64 -d the cloud-init section in the output below.

Let us create this virtual machine now:

$ kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1

147 Simple ingress networking

https://docs.rke2.io/networking/networking_services#nginx-ingress-controller
https://docs.rke2.io/networking/networking_services#nginx-ingress-controller
https://docs.k3s.io/networking/networking-services#traefik-ingress-controller
https://docs.k3s.io/networking/networking-services#traefik-ingress-controller

kind: VirtualMachine
metadata:
 name: ingress-example
 namespace: default
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 app: nginx
 spec:
 domain:
 devices: {}
 machine:
 type: q35
 memory:
 guest: 2Gi
 resources: {}
 volumes:
 - containerDisk:
 image: registry.opensuse.org/home/roxenham/tumbleweed-container-disk/
containerfile/cloud-image:latest
 name: tumbleweed-containerdisk-0
 - cloudInitNoCloud:
 userDataBase64:
 I2Nsb3VkLWNvbmZpZwpkaXNhYmxlX3Jvb3Q6IGZhbHNlCnNzaF9wd2F1dGg6IFRydWUKdXNlcnM6CiAgLSBkZWZhdWx0CiAgLSBuYW1lOiBzdXNlCiAgICBncm91cHM6IHN1ZG8KICAgIHNoZWxsOiAvYmluL2Jhc2gKICAgIHN1ZG86ICBBTEw9KEFMTCkgTk9QQVNTV0Q6QUxMCiAgICBsb2NrX3Bhc3N3ZDogRmFsc2UKICAgIHBsYWluX3RleHRfcGFzc3dkOiAnc3VzZScKcnVuY21kOgogIC0genlwcGVyIGluIC15IG5naW54CiAgLSBzeXN0ZW1jdGwgZW5hYmxlIC0tbm93IG5naW54CiAgLSBlY2hvICJJdCB3b3JrcyEiID4gL3Nydi93d3cvaHRkb2NzL2luZGV4Lmh0bQo=
 name: cloudinitdisk
EOF

When this virtual machine has successfully started, we can use the virtctl command to expose
the VirtualMachineInstance with an external port of 8080 and a target port of 80 (where
NGINX listens by default). We use the virtctl command here as it understands the mapping
between the virtual machine object and the pod. This creates a new service for us:

$ virtctl expose vmi ingress-example --port=8080 --target-port=80 --name=ingress-example
Service ingress-example successfully exposed for vmi ingress-example

We will then have an appropriate service automatically created:

$ kubectl get svc/ingress-example
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
ingress-example ClusterIP 10.43.217.19 <none> 8080/TCP
 9s

148 Simple ingress networking

Next, if you then use kubectl create ingress , we can create an ingress object that points
to this service. Adapt the URL (known as the "host" in the ingress (https://kubernetes.io/docs/

reference/kubectl/generated/kubectl_create/kubectl_create_ingress/) object) here to match your
DNS configuration and ensure that you point it to port 8080 :

$ kubectl create ingress ingress-example --rule=ingress-example.suse.local/=ingress-
example:8080

With DNS being configured correctly, you should be able to curl the URL immediately:

$ curl ingress-example.suse.local
It works!

Let us clean up by removing this virtual machine and its service and ingress resources:

$ kubectl delete vm/ingress-example svc/ingress-example ingress/ingress-example
virtualmachine.kubevirt.io "ingress-example" deleted
service "ingress-example" deleted
ingress.networking.k8s.io "ingress-example" deleted

18.7 Using the Rancher UI extension
SUSE Edge Virtualization provides a UI extension for Rancher Manager, enabling basic virtual
machine management using the Rancher dashboard UI.

18.7.1 Installation

See Rancher Dashboard Extensions (Chapter 5, Rancher Dashboard Extensions) for installation guid-
ance.

18.7.2 Using KubeVirt Rancher Dashboard Extension

The extension introduces a new KubeVirt section to the Cluster Explorer. This section is added
to any managed cluster which has KubeVirt installed.

The extension allows you to directly interact with two KubeVirt resources:

1. Virtual Machine instances — A resource representing a single running virtual machine
instance.

2. Virtual Machines — A resource used to manage virtual machines lifecycle.

149 Using the Rancher UI extension

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_create/kubectl_create_ingress/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_create/kubectl_create_ingress/

18.7.2.1 Creating a virtual machine

1. Navigate to Cluster Explorer clicking KubeVirt-enabled managed cluster in the left nav-
igation.

2. Navigate to KubeVirt > Virtual Machines page and click Create from YAML in the
upper right of the screen.

3. Fill in or paste a virtual machine definition and press Create . Use virtual machine defin-
ition from Deploying Virtual Machines section as an inspiration.

150 Using KubeVirt Rancher Dashboard Extension

18.7.2.2 Starting and stopping virtual machines

Start and stop virtual machines using the action menu accessed from the # drop-down list to
the right of each virtual machine or use group actions at the top of the list by selecting virtual
machines to perform the action on.

It is possible to run start and stop actions only on the virtual machines which have spec.run-
ning property defined. In case when spec.runStrategy is used, it is not possible to directly
start and stop such a machine. For more information, see KubeVirt documentation (https://kube-

virt.io/user-guide/virtual_machines/run_strategies/#run-strategies) .

18.7.2.3 Accessing virtual machine console

The "Virtual machines" list provides a Console drop-down list that allows to connect to the
machine using VNC or Serial Console. This action is only available to running machines.

In some cases, it takes a short while before the console is accessible on a freshly started virtual
machine.

151 Using KubeVirt Rancher Dashboard Extension

https://kubevirt.io/user-guide/virtual_machines/run_strategies/#run-strategies
https://kubevirt.io/user-guide/virtual_machines/run_strategies/#run-strategies

152 Using KubeVirt Rancher Dashboard Extension

18.8 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
Follow Section 21.9, “KubeVirt and CDI Installation” for an air-gapped installation of both KubeVirt
and CDI on top of Kubernetes clusters provisioned by EIB.

153 Installing with Edge Image Builder

III How-To Guides

19 MetalLB on K3s (using L2) 155

20 MetalLB in front of the Kubernetes API server 164

21 Air-gapped deployments with Edge Image Builder 171

How-to guides and best practices

19 MetalLB on K3s (using L2)

MetalLB is a load-balancer implementation for bare-metal Kubernetes clusters, using standard
routing protocols.

In this guide, we demonstrate how to deploy MetalLB in layer 2 mode.

19.1 Why use this method
MetalLB is a compelling choice for load balancing in bare-metal Kubernetes clusters for several
reasons:

1. Native Integration with Kubernetes: MetalLB seamlessly integrates with Kubernetes, mak-
ing it easy to deploy and manage using familiar Kubernetes tools and practices.

2. Bare-Metal Compatibility: Unlike cloud-based load balancers, MetalLB is designed specifi-
cally for on-premises deployments where traditional load balancers might not be available
or feasible.

3. Supports Multiple Protocols: MetalLB supports both Layer 2 and BGP (Border Gateway Pro-
tocol) modes, providing flexibility for different network architectures and requirements.

4. High Availability: By distributing load-balancing responsibilities across multiple nodes,
MetalLB ensures high availability and reliability for your services.

5. Scalability: MetalLB can handle large-scale deployments, scaling alongside your Kuber-
netes cluster to meet increasing demand.

In layer 2 mode, one node assumes the responsibility of advertising a service to the local network.
From the network’s perspective, it simply looks like that machine has multiple IP addresses
assigned to its network interface.

The major advantage of the layer 2 mode is its universality: it works on any Ethernet network,
with no special hardware required, not even fancy routers.

19.2 MetalLB on K3s (using L2)
In this quick start, L2 mode will be used, so it means we do not need any special network gear
but just a couple of free IPs in our network range, ideally outside of the DHCP pool so they
are not assigned.

155 Why use this method

In this example, our DHCP pool is 192.168.122.100-192.168.122.200 (yes, three IPs, see
Traefik and MetalLB (Section 19.3.3, “Traefik and MetalLB”) for the reason of the extra IP) for a
192.168.122.0/24 network, so anything outside this range is OK (besides the gateway and
other hosts that can be already running!)

19.3 Prerequisites

A K3s cluster where MetalLB is going to be deployed.

Warning
K3S comes with its own service load balancer named Klipper. You need to disable it to run

MetalLB (https://metallb.universe.tf/configuration/k3s/) . To disable Klipper, K3s needs to
be installed using the --disable=servicelb ag.

Helm

A couple of free IPs in our network range. In this case, 192.168.122.10-192.168.122.12

19.3.1 Deployment

MetalLB leverages Helm (and other methods as well), so:

helm install \
 metallb oci://registry.suse.com/edge/metallb-chart \
 --namespace metallb-system \
 --create-namespace

while ! kubectl wait --for condition=ready -n metallb-system $(kubectl get\
 pods -n metallb-system -l app.kubernetes.io/component=controller -o name)\
 --timeout=10s; do
 sleep 2
done

156 Prerequisites

https://metallb.universe.tf/configuration/k3s/
https://metallb.universe.tf/configuration/k3s/

19.3.2 Configuration

At this point, the installation is completed. Now it is time to configure (https://metallb.uni-

verse.tf/configuration/) using our example values:

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: ip-pool
 namespace: metallb-system
spec:
 addresses:
 - 192.168.122.10/32
 - 192.168.122.11/32
 - 192.168.122.12/32
EOF

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ip-pool
EOF

Now, it is ready to be used. You can customize many things for L2 mode, such as:

IPv6 And Dual Stack Services (https://metallb.universe.tf/usage/#ipv6-and-dual-stack-ser-

vices)

Control automatic address allocation (https://metallb.universe.tf/configuration/_advanced_i-

paddresspool_configuration/#controlling-automatic-address-allocation)

Reduce the scope of address allocation to specific namespaces and ser-

vices (https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#re-

duce-scope-of-address-allocation-to-specific-namespace-and-service)

157 Configuration

https://metallb.universe.tf/configuration/
https://metallb.universe.tf/configuration/
https://metallb.universe.tf/usage/#ipv6-and-dual-stack-services
https://metallb.universe.tf/usage/#ipv6-and-dual-stack-services
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#controlling-automatic-address-allocation
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#controlling-automatic-address-allocation
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#reduce-scope-of-address-allocation-to-specific-namespace-and-service
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#reduce-scope-of-address-allocation-to-specific-namespace-and-service
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#reduce-scope-of-address-allocation-to-specific-namespace-and-service

Limiting the set of nodes where the service can be announced

from (https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-

of-nodes-where-the-service-can-be-announced-from)

Specify network interfaces that LB IP can be announced

from (https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-net-

work-interfaces-that-lb-ip-can-be-announced-from)

And a lot more for BGP (https://metallb.universe.tf/configuration/_advanced_bgp_configura-

tion/) .

19.3.3 Traefik and MetalLB

Traefik is deployed by default with K3s (it can be disabled (https://docs.k3s.io/networking#trae-

fik-ingress-controller) with --disable=traefik) and it is by default exposed as LoadBal-
ancer (to be used with Klipper). However, as Klipper needs to be disabled, Traefik service for
ingress is still a LoadBalancer type. So at the moment of deploying MetalLB, the rst IP will
be assigned automatically to Traefik Ingress.

Before deploying MetalLB
kubectl get svc -n kube-system traefik
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
traefik LoadBalancer 10.43.44.113 <pending> 80:31093/TCP,443:32095/TCP 28s
After deploying MetalLB
kubectl get svc -n kube-system traefik
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
traefik LoadBalancer 10.43.44.113 192.168.122.10 80:31093/TCP,443:32095/TCP
 3m10s

This will be applied later (Section 19.4, “Ingress with MetalLB”) in the process.

19.3.4 Usage

Let us create an example deployment:

cat <<- EOF | kubectl apply -f -

apiVersion: v1
kind: Namespace
metadata:
 name: hello-kubernetes

158 Traefik and MetalLB

https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-of-nodes-where-the-service-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-of-nodes-where-the-service-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-of-nodes-where-the-service-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_bgp_configuration/
https://metallb.universe.tf/configuration/_advanced_bgp_configuration/
https://docs.k3s.io/networking#traefik-ingress-controller
https://docs.k3s.io/networking#traefik-ingress-controller

apiVersion: v1
kind: ServiceAccount
metadata:
 name: hello-kubernetes
 namespace: hello-kubernetes
 labels:
 app.kubernetes.io/name: hello-kubernetes

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-kubernetes
 namespace: hello-kubernetes
 labels:
 app.kubernetes.io/name: hello-kubernetes
spec:
 replicas: 2
 selector:
 matchLabels:
 app.kubernetes.io/name: hello-kubernetes
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello-kubernetes
 spec:
 serviceAccountName: hello-kubernetes
 containers:
 - name: hello-kubernetes
 image: "paulbouwer/hello-kubernetes:1.10"
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8080
 protocol: TCP
 livenessProbe:
 httpGet:
 path: /
 port: http
 readinessProbe:
 httpGet:
 path: /
 port: http
 env:
 - name: HANDLER_PATH_PREFIX
 value: ""
 - name: RENDER_PATH_PREFIX
 value: ""

159 Usage

 - name: KUBERNETES_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: KUBERNETES_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: KUBERNETES_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: CONTAINER_IMAGE
 value: "paulbouwer/hello-kubernetes:1.10"
EOF

And finally, the service:

cat <<- EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: hello-kubernetes
 namespace: hello-kubernetes
 labels:
 app.kubernetes.io/name: hello-kubernetes
spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: http
 protocol: TCP
 name: http
 selector:
 app.kubernetes.io/name: hello-kubernetes
EOF

Let us see it in action:

kubectl get svc -n hello-kubernetes
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-kubernetes LoadBalancer 10.43.127.75 192.168.122.11 80:31461/TCP 8s

curl http://192.168.122.11
<!DOCTYPE html>
<html>
<head>
 <title>Hello Kubernetes!</title>

160 Usage

 <link rel="stylesheet" type="text/css" href="/css/main.css">
 <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Ubuntu:300" >
</head>
<body>

 <div class="main">

 <div class="content">
 <div id="message">
 Hello world!
</div>
<div id="info">
 <table>
 <tr>
 <th>namespace:</th>
 <td>hello-kubernetes</td>
 </tr>
 <tr>
 <th>pod:</th>
 <td>hello-kubernetes-7c8575c848-2c6ps</td>
 </tr>
 <tr>
 <th>node:</th>
 <td>allinone (Linux 5.14.21-150400.24.46-default)</td>
 </tr>
 </table>
</div>
<div id="footer">
 paulbouwer/hello-kubernetes:1.10 (linux/amd64)
</div>
 </div>
 </div>

</body>
</html>

19.4 Ingress with MetalLB
As Traefik is already serving as an ingress controller, we can expose any HTTP/HTTPS traffic
via an Ingress object such as:

IP=$(kubectl get svc -n kube-system traefik -o
 jsonpath="{.status.loadBalancer.ingress[0].ip}")
cat <<- EOF | kubectl apply -f -
apiVersion: networking.k8s.io/v1

161 Ingress with MetalLB

kind: Ingress
metadata:
 name: hello-kubernetes-ingress
 namespace: hello-kubernetes
spec:
 rules:
 - host: hellok3s.${IP}.sslip.io
 http:
 paths:
 - path: "/"
 pathType: Prefix
 backend:
 service:
 name: hello-kubernetes
 port:
 name: http
EOF

And then:

curl http://hellok3s.${IP}.sslip.io
<!DOCTYPE html>
<html>
<head>
 <title>Hello Kubernetes!</title>
 <link rel="stylesheet" type="text/css" href="/css/main.css">
 <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Ubuntu:300" >
</head>
<body>

 <div class="main">

 <div class="content">
 <div id="message">
 Hello world!
</div>
<div id="info">
 <table>
 <tr>
 <th>namespace:</th>
 <td>hello-kubernetes</td>
 </tr>
 <tr>
 <th>pod:</th>
 <td>hello-kubernetes-7c8575c848-fvqm2</td>
 </tr>
 <tr>
 <th>node:</th>

162 Ingress with MetalLB

 <td>allinone (Linux 5.14.21-150400.24.46-default)</td>
 </tr>
 </table>
</div>
<div id="footer">
 paulbouwer/hello-kubernetes:1.10 (linux/amd64)
</div>
 </div>
 </div>

</body>
</html>

Also, to verify that MetalLB works correctly, arping can be used as:

arping hellok3s.${IP}.sslip.io

Expected result:

ARPING 192.168.64.210
60 bytes from 92:12:36:00:d3:58 (192.168.64.210): index=0 time=1.169 msec
60 bytes from 92:12:36:00:d3:58 (192.168.64.210): index=1 time=2.992 msec
60 bytes from 92:12:36:00:d3:58 (192.168.64.210): index=2 time=2.884 msec

In the example above, the traffic ows as follows:

1. hellok3s.${IP}.sslip.io is resolved to the actual IP.

2. Then the traffic is handled by the metallb-speaker pod.

3. metallb-speaker redirects the traffic to the traefik controller.

4. Finally, Traefik forwards the request to the hello-kubernetes service.

163 Ingress with MetalLB

20 MetalLB in front of the Kubernetes API server

This guide demonstrates using a MetalLB service to expose the RKE2/K3s API externally on an
HA cluster with three control-plane nodes. To achieve this, a Kubernetes Service of type Load-
Balancer and Endpoints will be manually created. The Endpoints keep the IPs of all control
plane nodes available in the cluster. For the Endpoint to be continuously synchronized with the
events occurring in the cluster (adding/removing a node or a node goes offline), the Endpoint

Copier Operator (https://github.com/suse-edge/endpoint-copier-operator) will be deployed. The
operator monitors the events happening in the default kubernetes Endpoint and updates the
managed one automatically to keep them in sync. Since the managed Service is of type Load-
Balancer , MetalLB assigns it a static ExternalIP . This ExternalIP will be used to commu-
nicate with the API Server.

20.1 Prerequisites

Three hosts to deploy RKE2/K3s on top.

Ensure the hosts have different host names.

For testing, these could be virtual machines

At least 2 available IPs in the network (one for the Traefik/Nginx and one for the managed
service).

Helm

20.2 Installing RKE2/K3s

Note
If you do not want to use a fresh cluster but want to use an existing one, skip this step
and proceed to the next one.

First, a free IP in the network must be reserved that will be used later for ExternalIP of the
managed Service.

164 Prerequisites

https://github.com/suse-edge/endpoint-copier-operator
https://github.com/suse-edge/endpoint-copier-operator

SSH to the rst host and install the wanted distribution in cluster mode.

For RKE2:

Export the free IP mentioned above
export VIP_SERVICE_IP=<ip>

curl -sfL https://get.rke2.io | INSTALL_RKE2_EXEC="server \
 --write-kubeconfig-mode=644 --tls-san=${VIP_SERVICE_IP} \
 --tls-san=https://${VIP_SERVICE_IP}.sslip.io" sh -

systemctl enable rke2-server.service
systemctl start rke2-server.service

Fetch the cluster token:
RKE2_TOKEN=$(tr -d '\n' < /var/lib/rancher/rke2/server/node-token)

For K3s:

Export the free IP mentioned above
export VIP_SERVICE_IP=<ip>
export INSTALL_K3S_SKIP_START=false

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="server --cluster-init \
 --disable=servicelb --write-kubeconfig-mode=644 --tls-san=${VIP_SERVICE_IP} \
 --tls-san=https://${VIP_SERVICE_IP}.sslip.io" K3S_TOKEN=foobar sh -

Note
Make sure that --disable=servicelb ag is provided in the k3s server command.

Important
From now on, the commands should be run on the local machine.

To access the API server from outside, the IP of the RKE2/K3s VM will be used.

Replace <node-ip> with the actual IP of the machine
export NODE_IP=<node-ip>
export KUBE_DISTRIBUTION=<k3s/rke2>

scp ${NODE_IP}:/etc/rancher/${KUBE_DISTRIBUTION}/${KUBE_DISTRIBUTION}.yaml ~/.kube/config
 && sed \
 -i '' "s/127.0.0.1/${NODE_IP}/g" ~/.kube/config && chmod 600 ~/.kube/config

165 Installing RKE2/K3s

20.3 Configuring an existing cluster

Note
This step is valid only if you intend to use an existing RKE2/K3s cluster.

To use an existing cluster the tls-san ags should be modified and also, servicelb LB should
be disabled for K3s.

To change the ags for RKE2 or K3s servers, you need to modify either the /etc/systemd/sys-
tem/rke2.service or /etc/systemd/system/k3s.service le on all the VMs in the cluster,
depending on the distribution.

The ags should be inserted in the ExecStart . For example:

For RKE2:

Replace the <vip-service-ip> with the actual ip
ExecStart=/usr/local/bin/rke2 \
 server \
 '--write-kubeconfig-mode=644' \
 '--tls-san=<vip-service-ip>' \
 '--tls-san=https://<vip-service-ip>.sslip.io' \

For K3s:

Replace the <vip-service-ip> with the actual ip
ExecStart=/usr/local/bin/k3s \
 server \
 '--cluster-init' \
 '--write-kubeconfig-mode=644' \
 '--disable=servicelb' \
 '--tls-san=<vip-service-ip>' \
 '--tls-san=https://<vip-service-ip>.sslip.io' \

Then the following commands should be executed to load the new configurations:

systemctl daemon-reload
systemctl restart ${KUBE_DISTRIBUTION}

20.4 Installing MetalLB
To deploy MetalLB , the MetalLB on K3s (https://suse-edge.github.io/docs/quickstart/metallb)

guide can be used.

166 Configuring an existing cluster

https://suse-edge.github.io/docs/quickstart/metallb

NOTE: Ensure that the IP addresses of the ip-pool IPAddressPool do not overlap with the IP
addresses previously selected for the LoadBalancer service.

Create a separate IpAddressPool that will be used only for the managed Service.

Export the VIP_SERVICE_IP on the local machine
Replace with the actual IP
export VIP_SERVICE_IP=<ip>

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: kubernetes-vip-ip-pool
 namespace: metallb-system
spec:
 addresses:
 - ${VIP_SERVICE_IP}/32
 serviceAllocation:
 priority: 100
 namespaces:
 - default
EOF

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ip-pool
 - kubernetes-vip-ip-pool
EOF

20.5 Installing the Endpoint Copier Operator

helm install \
endpoint-copier-operator oci://registry.suse.com/edge/endpoint-copier-operator-chart \
--namespace endpoint-copier-operator \
--create-namespace

167 Installing the Endpoint Copier Operator

The command above will deploy the endpoint-copier-operator operator Deployment with
two replicas. One will be the leader and the other will take over the leader role if needed.

Now, the kubernetes-vip Service should be deployed, which will be reconciled by the operator
and an Endpoint with the configured ports and IP will be created.

For RKE2:

cat <<-EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: kubernetes-vip
 namespace: default
spec:
 ports:
 - name: rke2-api
 port: 9345
 protocol: TCP
 targetPort: 9345
 - name: k8s-api
 port: 6443
 protocol: TCP
 targetPort: 6443
 type: LoadBalancer
EOF

For K3s:

cat <<-EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: kubernetes-vip
 namespace: default
spec:
 internalTrafficPolicy: Cluster
 ipFamilies:
 - IPv4
 ipFamilyPolicy: SingleStack
 ports:
 - name: https
 port: 443
 protocol: TCP
 targetPort: 6443
 sessionAffinity: None
 type: LoadBalancer

168 Installing the Endpoint Copier Operator

EOF

Verify that the kubernetes-vip Service has the correct IP address:

kubectl get service kubernetes-vip -n default \
 -o=jsonpath='{.status.loadBalancer.ingress[0].ip}'

Ensure that the kubernetes-vip and kubernetes Endpoints resources in the default name-
space point to the same IPs.

kubectl get endpoints kubernetes kubernetes-vip

If everything is correct, the last thing left is to use the VIP_SERVICE_IP in our Kubeconfig .

sed -i '' "s/${NODE_IP}/${VIP_SERVICE_IP}/g" ~/.kube/config

From now on, all the kubectl will go through the kubernetes-vip service.

20.6 Adding control-plane nodes
To monitor the entire process, two more terminal tabs can be opened.

First terminal:

watch kubectl get nodes

Second terminal:

watch kubectl get endpoints

Now execute the commands below on the second and third nodes.

For RKE2:

Export the VIP_SERVICE_IP in the VM
Replace with the actual IP
export VIP_SERVICE_IP=<ip>

curl -sfL https://get.rke2.io | INSTALL_RKE2_TYPE="server" sh -
systemctl enable rke2-server.service

mkdir -p /etc/rancher/rke2/
cat <<EOF > /etc/rancher/rke2/config.yaml
server: https://${VIP_SERVICE_IP}:9345

169 Adding control-plane nodes

token: ${RKE2_TOKEN}
EOF

systemctl start rke2-server.service

For K3s:

Export the VIP_SERVICE_IP in the VM
Replace with the actual IP
export VIP_SERVICE_IP=<ip>
export INSTALL_K3S_SKIP_START=false

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="server \
 --server https://${VIP_SERVICE_IP}:6443 --disable=servicelb \
 --write-kubeconfig-mode=644" K3S_TOKEN=foobar sh -

170 Adding control-plane nodes

21 Air-gapped deployments with Edge Image Builder

21.1 Intro

This guide will show how to deploy several of the SUSE Edge components completely air-gapped
on SLE Micro 5.5 utilizing Edge Image Builder(EIB) (Chapter 9, Edge Image Builder). With this,
you’ll be able to boot into a customized, ready to boot (CRB) image created by EIB and have the
specified components deployed on either a RKE2 or K3s cluster without an Internet connection
or any manual steps. This configuration is highly desirable for customers that want to pre-bake
all artifacts required for deployment into their OS image, so they are immediately available on
boot.

We will cover an air-gapped installation of:

Chapter 4, Rancher

Chapter 16, NeuVector

Chapter 15, Longhorn

Chapter 18, Edge Virtualization

Warning
EIB will parse and pre-download all images referenced in the provided Helm charts and
Kubernetes manifests. However, some of those may be attempting to pull container im-
ages and create Kubernetes resources based on those at runtime. In these cases we have
to manually specify the necessary images in the definition le if we want to set up a
completely air-gapped environment.

21.2 Prerequisites

If you’re following this guide, it’s assumed that you are already familiar with EIB (Chapter 9,

Edge Image Builder). If not, please follow the quick start guide (Chapter 3, Standalone clusters with

Edge Image Builder) to better understand the concepts shown in practice below.

171 Intro

21.3 Libvirt Network Configuration

Note
To demo the air-gapped deployment, this guide will be done using a simulated air-gapped
libvirt network and the following configuration will be tailored to that. For your own
deployments, you may have to modify the host1.local.yaml configuration that will
be introduced in the next step.

If you would like to use the same libvirt network configuration, follow along. If not, skip to
Section 21.4, “Base Directory Configuration”.

Let’s create an isolated network configuration with an IP address range 192.168.100.2/24 for
DHCP:

cat << EOF > isolatednetwork.xml
<network>
 <name>isolatednetwork</name>
 <bridge name='virbr1' stp='on' delay='0'/>
 <ip address='192.168.100.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.100.2' end='192.168.100.254'/>
 </dhcp>
 </ip>
</network>
EOF

Now, the only thing left is to create the network and start it:

virsh net-define isolatednetwork.xml
virsh net-start isolatednetwork

21.4 Base Directory Configuration
The base directory configuration is the same across all different components, so we will set it
up here.

We will rst create the necessary subdirectories:

export CONFIG_DIR=$HOME/config
mkdir -p $CONFIG_DIR/base-images

172 Libvirt Network Configuration

mkdir -p $CONFIG_DIR/network
mkdir -p $CONFIG_DIR/kubernetes/helm/values

Make sure to add whichever base image you plan to use into the base-images directory. This
guide will focus on the Self Install ISO found here (https://www.suse.com/download/sle-micro/) .

Let’s copy the downloaded image:

cp SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso $CONFIG_DIR/base-images/
slemicro.iso

Note
EIB is never going to modify the base image input.

Let’s create a le containing the desired network configuration:

cat << EOF > $CONFIG_DIR/network/host1.local.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.100.1
 next-hop-interface: eth0
 table-id: 254
 - destination: 192.168.100.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.100.1
 - 8.8.8.8
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E7
 ipv4:
 address:
 - ip: 192.168.100.50
 prefix-length: 24
 dhcp: false
 enabled: true

173 Base Directory Configuration

https://www.suse.com/download/sle-micro/

 ipv6:
 enabled: false
EOF

This configuration ensures the following are present on the provisioned systems (using the spec-
ified MAC address):

an Ethernet interface with a static IP address

routing

DNS

hostname (host1.local)

The resulting le structure should now look like:

├── kubernetes/
│ └── helm/
│ └── values/
├── base-images/
│ └── slemicro.iso
└── network/
 └── host1.local.yaml

21.5 Base Definition File
Edge Image Builder is using definition les to modify the SLE Micro images. These les contain
the majority of configurable options. Many of these options will be repeated across the different
component sections, so we will list and explain those here.

Tip
Full list of customization options in the definition le can be found in the upstream doc-

umentation (https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/build-

ing-images.md#image-definition-file)

We will take a look at the following elds which will be present in all definition les:

apiVersion: 1.0
image:
 imageType: iso

174 Base Definition File

https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#image-definition-file
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#image-definition-file
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md#image-definition-file

 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.28.13+rke2r1
embeddedArtifactRegistry:
 images:
 - ...

The image section is required, and it specifies the input image, its architecture and type, as
well as what the output image will be called.

The operatingSystem section is optional, and contains configuration to enable login on the
provisioned systems with the root/eib username/password.

The kubernetes section is optional, and it defines the Kubernetes type and version. We
are going to use Kubernetes 1.28.13 and RKE2 by default. Use kubernetes.version:

v1.28.13+k3s1 if K3s is desired instead. Unless explicitly configured via the kubernetes.n-
odes eld, all clusters we bootstrap in this guide will be single-node ones.

The embeddedArtifactRegistry section will include all images which are only referenced and
pulled at runtime for the specific component.

21.6 Rancher Installation

Note
The Rancher (Chapter 4, Rancher) deployment that will be demonstrated will be highly
slimmed down for demonstration purposes. For your actual deployments, additional ar-
tifacts may be necessary depending on your configuration.

The Rancher v2.8.8 (https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt) container
images le lists all the images required for an air-gapped installation.

There are over 600 container images in total which means that the resulting CRB image would be
roughly 30GB. For our Rancher installation, we will strip down that list to the smallest working
configuration. From there, you can add back any images you may need for your deployments.

175 Rancher Installation

https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt

We will create the definition le and include the stripped down image list:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.28.13+rke2r1
 network:
 apiVIP: 192.168.100.151
 manifests:
 urls:
 - https://github.com/cert-manager/cert-manager/releases/download/v1.14.2/cert-
manager.crds.yaml
 helm:
 charts:
 - name: rancher
 version: 2.8.8
 repositoryName: rancher-prime
 valuesFile: rancher-values.yaml
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 - name: cert-manager
 installationNamespace: kube-system
 createNamespace: true
 repositoryName: jetstack
 targetNamespace: cert-manager
 version: 1.14.2
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
embeddedArtifactRegistry:
 images:
 - name: registry.rancher.com/rancher/backup-restore-operator:v4.0.3
 - name: registry.rancher.com/rancher/calico-cni:v3.27.4-rancher1
 - name: registry.rancher.com/rancher/cis-operator:v1.0.15
 - name: registry.rancher.com/rancher/coreos-kube-state-metrics:v1.9.7

176 Rancher Installation

 - name: registry.rancher.com/rancher/coreos-prometheus-config-reloader:v0.38.1
 - name: registry.rancher.com/rancher/coreos-prometheus-operator:v0.38.1
 - name: registry.rancher.com/rancher/flannel-cni:v0.3.0-rancher9
 - name: registry.rancher.com/rancher/fleet-agent:v0.9.9
 - name: registry.rancher.com/rancher/fleet:v0.9.9
 - name: registry.rancher.com/rancher/gitjob:v0.9.13
 - name: registry.rancher.com/rancher/grafana-grafana:7.1.5
 - name: registry.rancher.com/rancher/hardened-addon-resizer:1.8.20-build20240410
 - name: registry.rancher.com/rancher/hardened-calico:v3.28.1-build20240806
 - name: registry.rancher.com/rancher/hardened-cluster-autoscaler:v1.8.10-
build20240124
 - name: registry.rancher.com/rancher/hardened-cni-plugins:v1.5.1-build20240805
 - name: registry.rancher.com/rancher/hardened-coredns:v1.11.1-build20240305
 - name: registry.rancher.com/rancher/hardened-dns-node-cache:1.22.28-build20240125
 - name: registry.rancher.com/rancher/hardened-etcd:v3.5.13-k3s1-build20240531
 - name: registry.rancher.com/rancher/hardened-flannel:v0.25.5-build20240801
 - name: registry.rancher.com/rancher/hardened-k8s-metrics-server:v0.7.1-build20240401
 - name: registry.rancher.com/rancher/hardened-kubernetes:v1.28.13-rke2r1-
build20240815
 - name: registry.rancher.com/rancher/hardened-multus-cni:v4.0.2-build20240612
 - name: registry.rancher.com/rancher/hardened-node-feature-discovery:v0.15.4-
build20240513
 - name: registry.rancher.com/rancher/hardened-whereabouts:v0.7.0-build20240429
 - name: registry.rancher.com/rancher/helm-project-operator:v0.2.1
 - name: registry.rancher.com/rancher/istio-kubectl:1.5.10
 - name: registry.rancher.com/rancher/jimmidyson-configmap-reload:v0.3.0
 - name: registry.rancher.com/rancher/k3s-upgrade:v1.28.13-k3s1
 - name: registry.rancher.com/rancher/klipper-helm:v0.8.4-build20240523
 - name: registry.rancher.com/rancher/klipper-lb:v0.4.9
 - name: registry.rancher.com/rancher/kube-api-auth:v0.2.1
 - name: registry.rancher.com/rancher/kubectl:v1.28.12
 - name: registry.rancher.com/rancher/library-nginx:1.19.2-alpine
 - name: registry.rancher.com/rancher/local-path-provisioner:v0.0.28
 - name: registry.rancher.com/rancher/machine:v0.15.0-rancher116
 - name: registry.rancher.com/rancher/mirrored-cluster-api-controller:v1.4.4
 - name: registry.rancher.com/rancher/nginx-ingress-controller:v1.10.4-hardened2
 - name: registry.rancher.com/rancher/pause:3.6
 - name: registry.rancher.com/rancher/prom-alertmanager:v0.21.0
 - name: registry.rancher.com/rancher/prom-node-exporter:v1.0.1
 - name: registry.rancher.com/rancher/prom-prometheus:v2.18.2
 - name: registry.rancher.com/rancher/prometheus-auth:v0.2.2
 - name: registry.rancher.com/rancher/prometheus-federator:v0.3.4
 - name: registry.rancher.com/rancher/pushprox-client:v0.1.3-rancher2-client
 - name: registry.rancher.com/rancher/pushprox-proxy:v0.1.3-rancher2-proxy
 - name: registry.rancher.com/rancher/rancher-agent:v2.8.8
 - name: registry.rancher.com/rancher/rancher-csp-adapter:v3.0.1
 - name: registry.rancher.com/rancher/rancher-webhook:v0.4.11

177 Rancher Installation

 - name: registry.rancher.com/rancher/rancher:v2.8.8
 - name: registry.rancher.com/rancher/rke-tools:v0.1.102
 - name: registry.rancher.com/rancher/rke2-cloud-provider:v1.29.3-build20240515
 - name: registry.rancher.com/rancher/rke2-runtime:v1.28.13-rke2r1
 - name: registry.rancher.com/rancher/rke2-upgrade:v1.28.13-rke2r1
 - name: registry.rancher.com/rancher/security-scan:v0.2.17
 - name: registry.rancher.com/rancher/shell:v0.1.26
 - name: registry.rancher.com/rancher/system-agent-installer-k3s:v1.28.13-k3s1
 - name: registry.rancher.com/rancher/system-agent-installer-rke2:v1.28.13-rke2r1
 - name: registry.rancher.com/rancher/system-agent:v0.3.9-suc
 - name: registry.rancher.com/rancher/system-upgrade-controller:v0.13.4
 - name: registry.rancher.com/rancher/ui-plugin-catalog:2.1.0
 - name: registry.rancher.com/rancher/ui-plugin-operator:v0.1.1
 - name: registry.rancher.com/rancher/webhook-receiver:v0.2.5
 - name: registry.rancher.com/rancher/kubectl:v1.20.2
 - name: registry.rancher.com/rancher/shell:v0.1.24
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v1.4.1
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20221220-controller-v1.5.1-58-g787ea74b6
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20230312-helm-chart-4.5.2-28-g66a760794
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231011-8b53cabe0
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231226-1a7112e06

As compared to the full list of 602 container images, this slimmed down version only contains
62 which makes the new CRB image only about 7GB.

We also need to create a Helm values le for Rancher:

cat << EOF > $CONFIG_DIR/kubernetes/helm/values/rancher-values.yaml
hostname: 192.168.100.50.sslip.io
replicas: 1
bootstrapPassword: "adminadminadmin"
systemDefaultRegistry: registry.rancher.com
useBundledSystemChart: true
EOF

Warning
Setting the systemDefaultRegistry to registry.rancher.com allows Rancher to au-
tomatically look for images in the embedded artifact registry started within the CRB image
at boot. Omitting this eld may result in failure to nd the container images on the node.

178 Rancher Installation

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/edge-image-builder:1.0.2 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Downloading file: dl-manifest-1.yaml 100% (437/437 kB, 17 MB/s)
Populating Embedded Artifact Registry... 100% (69/69, 26 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Downloading file: rke2-images-core.linux-amd64.tar.zst 100% (780/780 MB, 115 MB/s)
Downloading file: rke2-images-cilium.linux-amd64.tar.zst 100% (367/367 MB, 108 MB/s)
Downloading file: rke2.linux-amd64.tar.gz 100% (34/34 MB, 117 MB/s)
Downloading file: sha256sum-amd64.txt 100% (3.9/3.9 kB, 34 MB/s)
Downloading file: dl-manifest-1.yaml 100% (437/437 kB, 106 MB/s)
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Image build complete!

Once a node using the built image is provisioned, we can verify the Rancher installation:

/var/lib/rancher/rke2/bin/kubectl get all -A --kubeconfig /etc/rancher/rke2/rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAMESPACE NAME
 READY STATUS RESTARTS AGE

179 Rancher Installation

cattle-fleet-local-system pod/fleet-agent-68f4d5d5f7-tdlk7
 1/1 Running 0 34s
cattle-fleet-system pod/fleet-controller-85564cc978-pbtvk
 1/1 Running 0 5m51s
cattle-fleet-system pod/gitjob-9dc58fb5b-7cwsw
 1/1 Running 0 5m51s
cattle-provisioning-capi-system pod/capi-controller-manager-5c57b4b8f7-wlp5k
 1/1 Running 0 4m52s
cattle-system pod/helm-operation-4fk5c
 0/2 Completed 0 37s
cattle-system pod/helm-operation-6zgbq
 0/2 Completed 0 4m54s
cattle-system pod/helm-operation-cjds5
 0/2 Completed 0 5m37s
cattle-system pod/helm-operation-kt5c2
 0/2 Completed 0 5m21s
cattle-system pod/helm-operation-ppgtw
 0/2 Completed 0 5m30s
cattle-system pod/helm-operation-tvcwk
 0/2 Completed 0 5m54s
cattle-system pod/helm-operation-wpxd4
 0/2 Completed 0 53s
cattle-system pod/rancher-58575f9575-svrg2
 1/1 Running 0 6m34s
cattle-system pod/rancher-webhook-5c6556f7ff-vgmkt
 1/1 Running 0 5m19s
cert-manager pod/cert-manager-6c69f9f796-fkm8f
 1/1 Running 0 7m14s
cert-manager pod/cert-manager-cainjector-584f44558c-wg7p6
 1/1 Running 0 7m14s
cert-manager pod/cert-manager-webhook-76f9945d6f-lv2nv
 1/1 Running 0 7m14s
endpoint-copier-operator pod/endpoint-copier-operator-58964b659b-l64dk
 1/1 Running 0 7m16s
endpoint-copier-operator pod/endpoint-copier-operator-58964b659b-z9t9d
 1/1 Running 0 7m16s
kube-system pod/cilium-fht55
 1/1 Running 0 7m32s
kube-system pod/cilium-operator-558bbf6cfd-gwfwf
 1/1 Running 0 7m32s
kube-system pod/cilium-operator-558bbf6cfd-qsxb5
 0/1 Pending 0 7m32s
kube-system pod/cloud-controller-manager-host1.local
 1/1 Running 0 7m21s
kube-system pod/etcd-host1.local
 1/1 Running 0 7m8s

180 Rancher Installation

kube-system pod/helm-install-cert-manager-fvbtt
 0/1 Completed 0 8m12s
kube-system pod/helm-install-endpoint-copier-operator-5kkgw
 0/1 Completed 0 8m12s
kube-system pod/helm-install-metallb-zfphb
 0/1 Completed 0 8m12s
kube-system pod/helm-install-rancher-nc4nt
 0/1 Completed 2 8m12s
kube-system pod/helm-install-rke2-cilium-7wq87
 0/1 Completed 0 8m12s
kube-system pod/helm-install-rke2-coredns-nl4gc
 0/1 Completed 0 8m12s
kube-system pod/helm-install-rke2-ingress-nginx-svjqd
 0/1 Completed 0 8m12s
kube-system pod/helm-install-rke2-metrics-server-gqgqz
 0/1 Completed 0 8m12s
kube-system pod/helm-install-rke2-snapshot-controller-crd-r6b5p
 0/1 Completed 0 8m12s
kube-system pod/helm-install-rke2-snapshot-controller-ss9v4
 0/1 Completed 1 8m12s
kube-system pod/helm-install-rke2-snapshot-validation-webhook-vlkpn
 0/1 Completed 0 8m12s
kube-system pod/kube-apiserver-host1.local
 1/1 Running 0 7m29s
kube-system pod/kube-controller-manager-host1.local
 1/1 Running 0 7m30s
kube-system pod/kube-proxy-host1.local
 1/1 Running 0 7m30s
kube-system pod/kube-scheduler-host1.local
 1/1 Running 0 7m42s
kube-system pod/rke2-coredns-rke2-coredns-6c8d9bb6d-qlwc8
 1/1 Running 0 7m31s
kube-system pod/rke2-coredns-rke2-coredns-autoscaler-55fb4bbbcf-
j5r2z 1/1 Running 0 7m31s
kube-system pod/rke2-ingress-nginx-controller-4h2mm
 1/1 Running 0 7m3s
kube-system pod/rke2-metrics-server-544c8c66fc-lsrc6
 1/1 Running 0 7m15s
kube-system pod/rke2-snapshot-controller-59cc9cd8f4-4wx75
 1/1 Running 0 7m14s
kube-system pod/rke2-snapshot-validation-webhook-54c5989b65-5kp2x
 1/1 Running 0 7m15s
metallb-system pod/metallb-controller-5895d8446d-z54lm
 1/1 Running 0 7m15s
metallb-system pod/metallb-speaker-fxwgk
 1/1 Running 0 7m15s

181 Rancher Installation

NAMESPACE NAME TYPE
 CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
cattle-fleet-system service/gitjob
 ClusterIP 10.43.30.8 <none> 80/TCP
 5m51s
cattle-provisioning-capi-system service/capi-webhook-service
 ClusterIP 10.43.7.100 <none> 443/TCP
 4m52s
cattle-system service/rancher
 ClusterIP 10.43.100.229 <none> 80/TCP,443/TCP
 6m34s
cattle-system service/rancher-webhook
 ClusterIP 10.43.121.133 <none> 443/TCP
 5m19s
cert-manager service/cert-manager
 ClusterIP 10.43.140.65 <none> 9402/TCP
 7m14s
cert-manager service/cert-manager-webhook
 ClusterIP 10.43.108.158 <none> 443/TCP
 7m14s
default service/kubernetes
 ClusterIP 10.43.0.1 <none> 443/TCP
 8m26s
default service/kubernetes-vip
 LoadBalancer 10.43.138.138 192.168.100.151 9345:31006/TCP,6443:31599/TCP 8m21s
kube-system service/cilium-agent
 ClusterIP None <none> 9964/TCP
 7m32s
kube-system service/rke2-coredns-rke2-coredns
 ClusterIP 10.43.0.10 <none> 53/UDP,53/TCP
 7m31s
kube-system service/rke2-ingress-nginx-controller-admission
 ClusterIP 10.43.157.19 <none> 443/TCP
 7m3s
kube-system service/rke2-metrics-server
 ClusterIP 10.43.4.123 <none> 443/TCP
 7m15s
kube-system service/rke2-snapshot-validation-webhook
 ClusterIP 10.43.91.161 <none> 443/TCP
 7m16s
metallb-system service/metallb-webhook-service
 ClusterIP 10.43.71.192 <none> 443/TCP
 7m15s

NAMESPACE NAME DESIRED CURRENT READY
 UP-TO-DATE AVAILABLE NODE SELECTOR AGE

182 Rancher Installation

kube-system daemonset.apps/cilium 1 1 1
 1 1 kubernetes.io/os=linux 7m32s
kube-system daemonset.apps/rke2-ingress-nginx-controller 1 1 1
 1 1 kubernetes.io/os=linux 7m3s
metallb-system daemonset.apps/metallb-speaker 1 1 1
 1 1 kubernetes.io/os=linux 7m15s

NAMESPACE NAME
 READY UP-TO-DATE AVAILABLE AGE
cattle-fleet-local-system deployment.apps/fleet-agent
 1/1 1 1 34s
cattle-fleet-system deployment.apps/fleet-controller
 1/1 1 1 5m51s
cattle-fleet-system deployment.apps/gitjob
 1/1 1 1 5m51s
cattle-provisioning-capi-system deployment.apps/capi-controller-manager
 1/1 1 1 4m52s
cattle-system deployment.apps/rancher
 1/1 1 1 6m34s
cattle-system deployment.apps/rancher-webhook
 1/1 1 1 5m19s
cert-manager deployment.apps/cert-manager
 1/1 1 1 7m14s
cert-manager deployment.apps/cert-manager-cainjector
 1/1 1 1 7m14s
cert-manager deployment.apps/cert-manager-webhook
 1/1 1 1 7m14s
endpoint-copier-operator deployment.apps/endpoint-copier-operator
 2/2 2 2 7m16s
kube-system deployment.apps/cilium-operator
 1/2 2 1 7m32s
kube-system deployment.apps/rke2-coredns-rke2-coredns
 1/1 1 1 7m31s
kube-system deployment.apps/rke2-coredns-rke2-coredns-autoscaler
 1/1 1 1 7m31s
kube-system deployment.apps/rke2-metrics-server
 1/1 1 1 7m15s
kube-system deployment.apps/rke2-snapshot-controller
 1/1 1 1 7m14s
kube-system deployment.apps/rke2-snapshot-validation-webhook
 1/1 1 1 7m15s
metallb-system deployment.apps/metallb-controller
 1/1 1 1 7m15s

NAMESPACE NAME
 DESIRED CURRENT READY AGE

183 Rancher Installation

cattle-fleet-local-system replicaset.apps/fleet-agent-68f4d5d5f7
 1 1 1 34s
cattle-fleet-system replicaset.apps/fleet-controller-85564cc978
 1 1 1 5m51s
cattle-fleet-system replicaset.apps/gitjob-9dc58fb5b
 1 1 1 5m51s
cattle-provisioning-capi-system replicaset.apps/capi-controller-manager-5c57b4b8f7
 1 1 1 4m52s
cattle-system replicaset.apps/rancher-58575f9575
 1 1 1 6m34s
cattle-system replicaset.apps/rancher-webhook-5c6556f7ff
 1 1 1 5m19s
cert-manager replicaset.apps/cert-manager-6c69f9f796
 1 1 1 7m14s
cert-manager replicaset.apps/cert-manager-cainjector-584f44558c
 1 1 1 7m14s
cert-manager replicaset.apps/cert-manager-webhook-76f9945d6f
 1 1 1 7m14s
endpoint-copier-operator replicaset.apps/endpoint-copier-operator-58964b659b
 2 2 2 7m16s
kube-system replicaset.apps/cilium-operator-558bbf6cfd
 2 2 1 7m32s
kube-system replicaset.apps/rke2-coredns-rke2-coredns-6c8d9bb6d
 1 1 1 7m31s
kube-system replicaset.apps/rke2-coredns-rke2-coredns-
autoscaler-55fb4bbbcf 1 1 1 7m31s
kube-system replicaset.apps/rke2-metrics-server-544c8c66fc
 1 1 1 7m15s
kube-system replicaset.apps/rke2-snapshot-controller-59cc9cd8f4
 1 1 1 7m14s
kube-system replicaset.apps/rke2-snapshot-validation-
webhook-54c5989b65 1 1 1 7m15s
metallb-system replicaset.apps/metallb-controller-5895d8446d
 1 1 1 7m15s

NAMESPACE NAME COMPLETIONS
 DURATION AGE
kube-system job.batch/helm-install-cert-manager 1/1 85s
 8m21s
kube-system job.batch/helm-install-endpoint-copier-operator 1/1 59s
 8m21s
kube-system job.batch/helm-install-metallb 1/1 60s
 8m21s
kube-system job.batch/helm-install-rancher 1/1
 100s 8m21s
kube-system job.batch/helm-install-rke2-cilium 1/1 44s
 8m18s

184 Rancher Installation

kube-system job.batch/helm-install-rke2-coredns 1/1 45s
 8m18s
kube-system job.batch/helm-install-rke2-ingress-nginx 1/1 76s
 8m16s
kube-system job.batch/helm-install-rke2-metrics-server 1/1 60s
 8m16s
kube-system job.batch/helm-install-rke2-snapshot-controller 1/1 61s
 8m15s
kube-system job.batch/helm-install-rke2-snapshot-controller-crd 1/1 60s
 8m16s
kube-system job.batch/helm-install-rke2-snapshot-validation-webhook 1/1 60s
 8m14s

185 Rancher Installation

And when we go to https://192.168.100.50.sslip.io and log in with the adminadminad-
min password that we set earlier, we are greeted with the Rancher dashboard:

186 Rancher Installation

21.7 NeuVector Installation
Unlike the Rancher installation, the NeuVector installation does not require any special handling
in EIB. EIB will automatically air-gap every image required by NeuVector.

We will create the definition le:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.28.13+rke2r1
 helm:
 charts:
 - name: neuvector-crd
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector-values.yaml
 - name: neuvector
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector-values.yaml
 repositories:
 - name: rancher-charts
 url: https://charts.rancher.io/

We will also create a Helm values le for NeuVector:

cat << EOF > $CONFIG_DIR/kubernetes/helm/values/neuvector-values.yaml
controller:
 replicas: 1
manager:
 enabled: false

187 NeuVector Installation

cve:
 scanner:
 enabled: false
 replicas: 1
k3s:
 enabled: true
crdwebhook:
 enabled: false
EOF

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/edge-image-builder:1.0.2 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% (6/6, 20 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Image build complete!

Once a node using the built image is provisioned, we can verify the NeuVector installation:

/var/lib/rancher/rke2/bin/kubectl get all -n neuvector --kubeconfig /etc/rancher/rke2/
rke2.yaml

188 NeuVector Installation

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/neuvector-controller-pod-bc74745cf-x9fsc 1/1 Running 0 13m
pod/neuvector-enforcer-pod-vzw7t 1/1 Running 0 13m

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
service/neuvector-svc-admission-webhook ClusterIP 10.43.240.25 <none> 443/
TCP 13m
service/neuvector-svc-controller ClusterIP None <none> 18300/
TCP,18301/TCP,18301/UDP 13m

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
daemonset.apps/neuvector-enforcer-pod 1 1 1 1 1
 <none> 13m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/neuvector-controller-pod 1/1 1 1 13m

NAME DESIRED CURRENT READY AGE
replicaset.apps/neuvector-controller-pod-bc74745cf 1 1 1 13m

NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cronjob.batch/neuvector-updater-pod 0 0 * * * False 0 <none> 13m

21.8 Longhorn Installation

The official documentation (https://longhorn.io/docs/1.6.1/deploy/install/airgap/) for Longhorn
contains a longhorn-images.txt le which lists all the images required for an air-gapped
installation. We will be including them in our definition le. Let’s create it:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root

189 Longhorn Installation

https://longhorn.io/docs/1.6.1/deploy/install/airgap/

 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.28.13+rke2r1
 helm:
 charts:
 - name: longhorn
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 version: 1.6.1
 repositories:
 - name: longhorn
 url: https://charts.longhorn.io
embeddedArtifactRegistry:
 images:
 - name: longhornio/csi-attacher:v4.4.2
 - name: longhornio/csi-provisioner:v3.6.2
 - name: longhornio/csi-resizer:v1.9.2
 - name: longhornio/csi-snapshotter:v6.3.2
 - name: longhornio/csi-node-driver-registrar:v2.9.2
 - name: longhornio/livenessprobe:v2.12.0
 - name: longhornio/backing-image-manager:v1.6.1
 - name: longhornio/longhorn-engine:v1.6.1
 - name: longhornio/longhorn-instance-manager:v1.6.1
 - name: longhornio/longhorn-manager:v1.6.1
 - name: longhornio/longhorn-share-manager:v1.6.1
 - name: longhornio/longhorn-ui:v1.6.1
 - name: longhornio/support-bundle-kit:v0.0.36

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/edge-image-builder:1.0.2 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]

190 Longhorn Installation

Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% (13/13, 20 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Downloading file: rke2-images-core.linux-amd64.tar.zst 100% (782/782 MB, 108 MB/s)
Downloading file: rke2-images-cilium.linux-amd64.tar.zst 100% (367/367 MB, 104 MB/s)
Downloading file: rke2.linux-amd64.tar.gz 100% (34/34 MB, 108 MB/s)
Downloading file: sha256sum-amd64.txt 100% (3.9/3.9 kB, 7.5 MB/s)
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Image build complete!

Once a node using the built image is provisioned, we can verify the Longhorn installation:

/var/lib/rancher/rke2/bin/kubectl get all -n longhorn-system --kubeconfig /etc/rancher/
rke2/rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS
 AGE
pod/csi-attacher-5c4bfdcf59-9hgvv 1/1 Running 0
 35s
pod/csi-attacher-5c4bfdcf59-dt6jl 1/1 Running 0
 35s
pod/csi-attacher-5c4bfdcf59-swpwq 1/1 Running 0
 35s
pod/csi-provisioner-667796df57-dfrzw 1/1 Running 0
 35s
pod/csi-provisioner-667796df57-tvsrt 1/1 Running 0
 35s
pod/csi-provisioner-667796df57-xszsx 1/1 Running 0
 35s
pod/csi-resizer-694f8f5f64-6khlb 1/1 Running 0
 35s
pod/csi-resizer-694f8f5f64-gnr45 1/1 Running 0
 35s
pod/csi-resizer-694f8f5f64-sbl4k 1/1 Running 0
 35s
pod/csi-snapshotter-959b69d4b-2k4v8 1/1 Running 0
 35s

191 Longhorn Installation

pod/csi-snapshotter-959b69d4b-9d8wl 1/1 Running 0
 35s
pod/csi-snapshotter-959b69d4b-l2w95 1/1 Running 0
 35s
pod/engine-image-ei-5cefaf2b-cwd8f 1/1 Running 0
 43s
pod/instance-manager-f0d17f96bc92f3cc44787a2a347f6a98 1/1 Running 0
 43s
pod/longhorn-csi-plugin-szv7t 3/3 Running 0
 35s
pod/longhorn-driver-deployer-9f4fc86-q8fz2 1/1 Running 0
 83s
pod/longhorn-manager-zp66l 1/1 Running 0
 83s
pod/longhorn-ui-5f4b7bbf69-k645d 1/1 Running 3 (65s ago)
 83s
pod/longhorn-ui-5f4b7bbf69-t7xt4 1/1 Running 3 (62s ago)
 83s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
service/longhorn-admission-webhook ClusterIP 10.43.74.59 <none> 9502/TCP
 83s
service/longhorn-backend ClusterIP 10.43.45.206 <none> 9500/TCP
 83s
service/longhorn-conversion-webhook ClusterIP 10.43.83.108 <none> 9501/TCP
 83s
service/longhorn-engine-manager ClusterIP None <none> <none>
 83s
service/longhorn-frontend ClusterIP 10.43.84.55 <none> 80/TCP
 83s
service/longhorn-recovery-backend ClusterIP 10.43.75.200 <none> 9503/TCP
 83s
service/longhorn-replica-manager ClusterIP None <none> <none>
 83s

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
daemonset.apps/engine-image-ei-5cefaf2b 1 1 1 1 1
 <none> 43s
daemonset.apps/longhorn-csi-plugin 1 1 1 1 1
 <none> 35s
daemonset.apps/longhorn-manager 1 1 1 1 1
 <none> 83s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/csi-attacher 3/3 3 3 35s

192 Longhorn Installation

deployment.apps/csi-provisioner 3/3 3 3 35s
deployment.apps/csi-resizer 3/3 3 3 35s
deployment.apps/csi-snapshotter 3/3 3 3 35s
deployment.apps/longhorn-driver-deployer 1/1 1 1 83s
deployment.apps/longhorn-ui 2/2 2 2 83s

NAME DESIRED CURRENT READY AGE
replicaset.apps/csi-attacher-5c4bfdcf59 3 3 3 35s
replicaset.apps/csi-provisioner-667796df57 3 3 3 35s
replicaset.apps/csi-resizer-694f8f5f64 3 3 3 35s
replicaset.apps/csi-snapshotter-959b69d4b 3 3 3 35s
replicaset.apps/longhorn-driver-deployer-9f4fc86 1 1 1 83s
replicaset.apps/longhorn-ui-5f4b7bbf69 2 2 2 83s

21.9 KubeVirt and CDI Installation

The Helm charts for both KubeVirt and CDI are only installing their respective operators. It is
up to the operators to deploy the rest of the systems which means we will have to include all
necessary container images in our definition le. Let’s create it:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.28.13+rke2r1
 helm:
 charts:
 - name: kubevirt-chart
 repositoryName: suse-edge
 version: 0.3.0
 targetNamespace: kubevirt-system
 createNamespace: true
 installationNamespace: kube-system
 - name: cdi-chart
 repositoryName: suse-edge
 version: 0.3.0

193 KubeVirt and CDI Installation

 targetNamespace: cdi-system
 createNamespace: true
 installationNamespace: kube-system
 repositories:
 - name: suse-edge
 url: oci://registry.suse.com/edge
embeddedArtifactRegistry:
 images:
 - name: registry.suse.com/suse/sles/15.5/cdi-uploadproxy:1.59.0-150500.6.18.1
 - name: registry.suse.com/suse/sles/15.5/cdi-uploadserver:1.59.0-150500.6.18.1
 - name: registry.suse.com/suse/sles/15.5/cdi-apiserver:1.59.0-150500.6.18.1
 - name: registry.suse.com/suse/sles/15.5/cdi-controller:1.59.0-150500.6.18.1
 - name: registry.suse.com/suse/sles/15.5/cdi-importer:1.59.0-150500.6.18.1
 - name: registry.suse.com/suse/sles/15.5/cdi-cloner:1.59.0-150500.6.18.1
 - name: registry.suse.com/suse/sles/15.5/virt-api:1.2.2-150500.8.21.1
 - name: registry.suse.com/suse/sles/15.5/virt-controller:1.2.2-150500.8.21.1
 - name: registry.suse.com/suse/sles/15.5/virt-launcher:1.2.2-150500.8.21.1
 - name: registry.suse.com/suse/sles/15.5/virt-handler:1.2.2-150500.8.21.1
 - name: registry.suse.com/suse/sles/15.5/virt-exportproxy:1.2.2-150500.8.21.1
 - name: registry.suse.com/suse/sles/15.5/virt-exportserver:1.2.2-150500.8.21.1

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/edge-image-builder:1.0.2 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% (13/13, 6 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Kubernetes [SUCCESS]

194 KubeVirt and CDI Installation

Certificates [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Image build complete!

Once a node using the built image is provisioned, we can verify the installation of both KubeVirt
and CDI.

Verify KubeVirt:

/var/lib/rancher/rke2/bin/kubectl get all -n kubevirt-system --kubeconfig /etc/rancher/
rke2/rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/virt-api-75dd5896c-ck24g 1/1 Running 0 2m11s
pod/virt-controller-54b46dffbc-8j8x9 1/1 Running 0 106s
pod/virt-controller-54b46dffbc-qhpkc 1/1 Running 0 106s
pod/virt-handler-qbbcq 1/1 Running 0 106s
pod/virt-operator-b599bcd7b-mq87d 1/1 Running 0 2m38s
pod/virt-operator-b599bcd7b-q7hkg 1/1 Running 0 2m38s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
service/kubevirt-operator-webhook ClusterIP 10.43.60.25 <none> 443/TCP
 2m14s
service/kubevirt-prometheus-metrics ClusterIP None <none> 443/TCP
 2m14s
service/virt-api ClusterIP 10.43.70.57 <none> 443/TCP
 2m14s
service/virt-exportproxy ClusterIP 10.43.255.129 <none> 443/TCP
 2m14s

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
 SELECTOR AGE
daemonset.apps/virt-handler 1 1 1 1 1
 kubernetes.io/os=linux 106s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virt-api 1/1 1 1 2m11s
deployment.apps/virt-controller 2/2 2 2 106s
deployment.apps/virt-operator 2/2 2 2 2m38s

NAME DESIRED CURRENT READY AGE
replicaset.apps/virt-api-75dd5896c 1 1 1 2m11s
replicaset.apps/virt-controller-54b46dffbc 2 2 2 106s

195 KubeVirt and CDI Installation

replicaset.apps/virt-operator-b599bcd7b 2 2 2 2m38s

NAME AGE PHASE
kubevirt.kubevirt.io/kubevirt 2m38s Deployed

Verify CDI:

/var/lib/rancher/rke2/bin/kubectl get all -n cdi-system --kubeconfig /etc/rancher/rke2/
rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/cdi-apiserver-85dff89756-7j97k 1/1 Running 0 2m56s
pod/cdi-deployment-66b96bf79f-6whvj 1/1 Running 0 2m56s
pod/cdi-operator-8f5f4654d-786rc 1/1 Running 0 3m
pod/cdi-uploadproxy-77db4ccd8-mzjz5 1/1 Running 0 2m56s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cdi-api ClusterIP 10.43.66.178 <none> 443/TCP
 2m56s
service/cdi-prometheus-metrics ClusterIP 10.43.99.119 <none> 8080/TCP
 2m56s
service/cdi-uploadproxy ClusterIP 10.43.207.154 <none> 443/TCP
 2m56s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/cdi-apiserver 1/1 1 1 2m56s
deployment.apps/cdi-deployment 1/1 1 1 2m56s
deployment.apps/cdi-operator 1/1 1 1 3m
deployment.apps/cdi-uploadproxy 1/1 1 1 2m56s

NAME DESIRED CURRENT READY AGE
replicaset.apps/cdi-apiserver-85dff89756 1 1 1 2m56s
replicaset.apps/cdi-deployment-66b96bf79f 1 1 1 2m56s
replicaset.apps/cdi-operator-8f5f4654d 1 1 1 3m
replicaset.apps/cdi-uploadproxy-77db4ccd8 1 1 1 2m56s

21.10 Troubleshooting
If you run into any issues while building the images or are looking to further test and debug
the process, please refer to the upstream documentation (https://github.com/suse-edge/edge-im-

age-builder/tree/release-1.0/docs) .

196 Troubleshooting

https://github.com/suse-edge/edge-image-builder/tree/release-1.0/docs
https://github.com/suse-edge/edge-image-builder/tree/release-1.0/docs

IV Third-Party Integration

22 NATS 198

23 NVIDIA GPUs on SLE Micro 203

How to integrate third-party tools

22 NATS

NATS (https://nats.io/) is a connective technology built for the ever-increasingly hyper-con-
nected world. It is a single technology that enables applications to securely communicate across
any combination of cloud vendors, on-premises, edge, Web and mobile devices. NATS consists
of a family of open-source products that are tightly integrated but can be deployed easily and
independently. NATS is being used globally by thousands of companies, spanning use cases in-
cluding microservices, edge computing, mobile and IoT, and can be used to augment or replace
traditional messaging.

22.1 Architecture

NATS is an infrastructure that allows data exchange between applications in the form of mes-
sages.

22.1.1 NATS client applications

NATS client libraries can be used to allow the applications to publish, subscribe, request and
reply between different instances. These applications are generally referred to as client ap-
plications .

22.1.2 NATS service infrastructure

The NATS services are provided by one or more NATS server processes that are configured
to interconnect with each other and provide a NATS service infrastructure. The NATS service
infrastructure can scale from a single NATS server process running on an end device to a public
global super-cluster of many clusters spanning all major cloud providers and all regions of the
world.

198 Architecture

https://nats.io/

22.1.3 Simple messaging design

NATS makes it easy for applications to communicate by sending and receiving messages. These
messages are addressed and identified by subject strings and do not depend on network location.
Data is encoded and framed as a message and sent by a publisher. The message is received,
decoded and processed by one or more subscribers.

22.1.4 NATS JetStream

NATS has a built-in distributed persistence system called JetStream. JetStream was created to
solve the problems identified with streaming in technology today — complexity, fragility and
a lack of scalability. JetStream also solves the problem with the coupling of the publisher and
the subscriber (the subscribers need to be up and running to receive the message when it is
published). More information about NATS JetStream can be found here (https://docs.nats.io/nats-

concepts/jetstream) .

22.2 Installation

22.2.1 Installing NATS on top of K3s

NATS is built for multiple architectures so it can easily be installed on K3s. (Chapter 13, K3s)

Let us create a values le to overwrite the default values of NATS.

cat > values.yaml <<EOF
cluster:
 # Enable the HA setup of the NATS
 enabled: true
 replicas: 3

nats:
 jetstream:
 # Enable JetStream
 enabled: true

 memStorage:
 enabled: true
 size: 2Gi

199 Simple messaging design

https://docs.nats.io/nats-concepts/jetstream
https://docs.nats.io/nats-concepts/jetstream

 fileStorage:
 enabled: true
 size: 1Gi
 storageDirectory: /data/
EOF

Now let us install NATS via Helm:

helm repo add nats https://nats-io.github.io/k8s/helm/charts/
helm install nats nats/nats --namespace nats --values values.yaml \
 --create-namespace

With the values.yaml le above, the following components will be in the nats namespace:

1. HA version of NATS Statefulset containing three containers: NATS server + Config re-
loader and Metrics sidecars.

2. NATS box container, which comes with a set of NATS utilities that can be used to verify
the setup.

3. JetStream also leverages its Key-Value back-end that comes with PVCs bounded to the
pods.

22.2.1.1 Testing the setup

kubectl exec -n nats -it deployment/nats-box -- /bin/sh -l

1. Create a subscription for the test subject:

nats sub test &

2. Send a message to the test subject:

nats pub test hi

22.2.1.2 Cleaning up

helm -n nats uninstall nats
rm values.yaml

200 Installing NATS on top of K3s

22.2.2 NATS as a back-end for K3s

One component K3s leverages is KINE (https://github.com/k3s-io/kine) , which is a shim enabling
the replacement of etcd with alternate storage back-ends originally targeting relational databas-
es. As JetStream provides a Key Value API, this makes it possible to have NATS as a back-end
for the K3s cluster.

There is an already merged PR which makes the built-in NATS in K3s straightforward, but the
change is still not included (https://github.com/k3s-io/k3s/issues/7410#issue-1692989394) in the
K3s releases.

For this reason, the K3s binary should be built manually.

In this tutorial, SLE Micro on OSX on Apple Silicon (UTM) (https://suse-edge.github.io/docs/quick-

start/slemicro-utm-aarch64) VM is used.

Note
Run the commands below on the OSX PC.

22.2.2.1 Building K3s

git clone --depth 1 https://github.com/k3s-io/k3s.git && cd k3s

The following command adds nats in the build tags to enable the NATS built-in feature in K3s:

sed -i '' 's/TAGS="ctrd/TAGS="nats ctrd/g' scripts/build
make local

Replace <node-ip> with the actual IP of the node where the K3s will be started:

export NODE_IP=<node-ip>
sudo scp dist/artifacts/k3s-arm64 ${NODE_IP}:/usr/local/bin/k3s

Note
Locally building K3s requires the buildx Docker CLI plugin. It can be manually installed

(https://github.com/docker/buildx#manual-download) if $ make local fails.

22.2.2.2 Installing NATS CLI

TMPDIR=$(mktemp -d)

201 NATS as a back-end for K3s

https://github.com/k3s-io/kine
https://github.com/k3s-io/k3s/issues/7410#issue-1692989394
https://suse-edge.github.io/docs/quickstart/slemicro-utm-aarch64
https://suse-edge.github.io/docs/quickstart/slemicro-utm-aarch64
https://github.com/docker/buildx#manual-download
https://github.com/docker/buildx#manual-download

nats_version="nats-0.0.35-linux-arm64"
curl -o "${TMPDIR}/nats.zip" -sfL https://github.com/nats-io/natscli/releases/download/
v0.0.35/${nats_version}.zip
unzip "${TMPDIR}/nats.zip" -d "${TMPDIR}"

sudo scp ${TMPDIR}/${nats_version}/nats ${NODE_IP}:/usr/local/bin/nats
rm -rf ${TMPDIR}

22.2.2.3 Running NATS as K3s back-end

Let us ssh on the node and run the K3s with the --datastore-endpoint ag pointing to nats .

Note
The command below starts K3s as a foreground process, so the logs can be easily followed
to see if there are any issues. To not block the current terminal, a & ag could be added
before the command to start it as a background process.

k3s server --datastore-endpoint=nats://

Note
For making the K3s server with the NATS back-end permanent on your slemicro VM, the
script below can be run, which creates a systemd service with the needed configurations.

export INSTALL_K3S_SKIP_START=false
export INSTALL_K3S_SKIP_DOWNLOAD=true

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="server \
 --datastore-endpoint=nats://" sh -

22.2.2.4 Troubleshooting

The following commands can be run on the node to verify that everything with the stream works
properly:

nats str report -a
nats str view -a

202 NATS as a back-end for K3s

23 NVIDIA GPUs on SLE Micro

23.1 Intro

This guide demonstrates how to implement host-level NVIDIA GPU support via the pre-built
open-source drivers (https://github.com/NVIDIA/open-gpu-kernel-modules) on SLE Micro 5.5.
These are drivers that are baked into the operating system rather than dynamically loaded by
NVIDIA’s GPU Operator (https://github.com/NVIDIA/gpu-operator) . This configuration is highly
desirable for customers that want to pre-bake all artifacts required for deployment into the im-
age, and where the dynamic selection of the driver version, that is, the user selecting the version
of the driver via Kubernetes, is not a requirement. This guide initially explains how to deploy
the additional components onto a system that has already been pre-deployed, but follows with
a section that describes how to embed this configuration into the initial deployment via Edge
Image Builder. If you do not want to run through the basics and set things up manually, skip
right ahead to that section.

It is important to call out that the support for these drivers is provided by both SUSE
and NVIDIA in tight collaboration, where the driver is built and shipped by SUSE as
part of the package repositories. However, if you have any concerns or questions about
the combination in which you use the drivers, ask your SUSE or NVIDIA account man-
agers for further assistance. If you plan to use NVIDIA AI Enterprise (https://www.nvidi-

a.com/en-gb/data-center/products/ai-enterprise/) (NVAIE), ensure that you are using an NVAIE

certified GPU (https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-sup-

port.html#supported-nvidia-gpus-and-systems) , which may require the use of proprietary
NVIDIA drivers. If you are unsure, speak with your NVIDIA representative.

Further information about NVIDIA GPU operator integration is not covered in this guide.
While integrating the NVIDIA GPU Operator for Kubernetes is not covered here, you can
still follow most of the steps in this guide to set up the underlying operating system
and simply enable the GPU operator to use the pre-installed drivers via the driver.en-
abled=false ag in the NVIDIA GPU Operator Helm chart, where it will simply pick
up the installed drivers on the host. More comprehensive instructions are available from
NVIDIA here (https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-op-

erator.html#chart-customization-options) . SUSE recently also made a Technical Reference Doc-

203 Intro

https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/gpu-operator
https://www.nvidia.com/en-gb/data-center/products/ai-enterprise/
https://www.nvidia.com/en-gb/data-center/products/ai-enterprise/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-nvidia-gpus-and-systems
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-nvidia-gpus-and-systems
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-nvidia-gpus-and-systems
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator.html#chart-customization-options
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator.html#chart-customization-options
https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-operator/

ument (https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-op-

erator/) (TRD) available that discusses how to use the GPU operator and the NVIDIA propri-
etary drivers, should this be a requirement for your use case.

23.2 Prerequisites
If you are following this guide, it assumes that you have the following already available:

At least one host with SLE Micro 5.5 installed; this can be physical or virtual.

Your hosts are attached to a subscription as this is required for package access — an eval-
uation is available here (https://www.suse.com/download/sle-micro/) .

A compatible NVIDIA GPU (https://github.com/NVIDIA/open-gpu-kernel-modules#compati-

ble-gpus) installed (or fully passed through to the virtual machine in which SLE Micro
is running).

Access to the root user — these instructions assume you are the root user, and not escalating
your privileges via sudo .

23.3 Manual installation
In this section, you are going to install the NVIDIA drivers directly onto the SLE Micro operating
system as the NVIDIA open-driver is now part of the core SLE Micro package repositories, which
makes it as easy as installing the required RPM packages. There is no compilation or download-
ing of executable packages required. Below we walk through deploying the "G06" generation
of driver, which supports the latest GPUs (see here (https://en.opensuse.org/SDB:NVIDIA_driver-

s#Install) for further information), so select an appropriate driver generation for the NVIDIA
GPU that your system has. For modern GPUs, the "G06" driver is the most common choice.

Before we begin, it is important to recognize that besides the NVIDIA open-driver that SUSE ships
as part of SLE Micro, you might also need additional NVIDIA components for your setup. These
could include OpenGL libraries, CUDA toolkits, command-line utilities such as nvidia-smi , and
container-integration components such as nvidia-container-toolkit . Many of these com-
ponents are not shipped by SUSE as they are proprietary NVIDIA software, or it makes no sense
for us to ship them instead of NVIDIA. Therefore, as part of the instructions, we are going to
configure additional repositories that give us access to said components and walk through cer-

204 Prerequisites

https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-operator/
https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-operator/
https://www.suse.com/download/sle-micro/
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://en.opensuse.org/SDB:NVIDIA_drivers#Install
https://en.opensuse.org/SDB:NVIDIA_drivers#Install

tain examples of how to use these tools, resulting in a fully functional system. It is important
to distinguish between SUSE repositories and NVIDIA repositories, as occasionally there can be
a mismatch between the package versions that NVIDIA makes available versus what SUSE has
built. This usually arises when SUSE makes a new version of the open-driver available, and it
takes a couple of days before the equivalent packages are made available in NVIDIA repositories
to match.

We recommend that you ensure that the driver version that you are selecting is compatible with
your GPU and meets any CUDA requirements that you may have by checking:

The CUDA release notes (https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/)

The driver version that you plan on deploying has a matching version in the NVIDIA SLE15-

SP5 repository (http://download.nvidia.com/suse/sle15sp5/x86_64/) and ensuring that you
have equivalent package versions for the supporting components available

Tip
To nd the NVIDIA open-driver versions, either run zypper se -s nvidia-open-driver
on the target machine or search the SUSE Customer Center for the "nvidia-open-driver"
in SLE Micro 5.5 for x86_64 (https://scc.suse.com/packages?name=SUSE%20Linux%20Enter-

prise%20Micro&version=5.5&arch=x86_64) .

205 Manual installation

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/
http://download.nvidia.com/suse/sle15sp5/x86_64/
http://download.nvidia.com/suse/sle15sp5/x86_64/
https://scc.suse.com/packages?name=SUSE%20Linux%20Enterprise%20Micro&version=5.5&arch=x86_64
https://scc.suse.com/packages?name=SUSE%20Linux%20Enterprise%20Micro&version=5.5&arch=x86_64

Here, you will see four versions available, with 545.29.06 being the newest:

206 Manual installation

When you have confirmed that an equivalent version is available in the NVIDIA repos, you
are ready to install the packages on the host operating system. For this, we need to open up a
transactional-update session, which creates a new read/write snapshot of the underlying
operating system so we can make changes to the immutable platform (for further instructions
on transactional-update , see here (https://documentation.suse.com/sle-micro/5.4/html/SLE-

Micro-all/sec-transactional-udate.html)):

transactional-update shell

When you are in your transactional-update shell, add an additional package repository from
NVIDIA. This allows us to pull in additional utilities, for example, nvidia-smi :

zypper ar https://download.nvidia.com/suse/sle15sp5/ nvidia-sle15sp5-main
zypper --gpg-auto-import-keys refresh

You can then install the driver and nvidia-compute-utils for additional utilities. If you do
not need the utilities, you can omit it, but for testing purposes, it is worth installing at this stage:

zypper install -y --auto-agree-with-licenses nvidia-open-driver-G06-signed-kmp nvidia-
compute-utils-G06

Note
If the installation fails, this might indicate a dependency mismatch between the selected
driver version and what NVIDIA ships in their repositories. Refer to the previous section to
verify that your versions match. Attempt to install a different driver version. For example,
if the NVIDIA repositories have an earlier version, you can try specifying nvidia-open-
driver-G06-signed-kmp=545.29.06 on your install command to specify a version that
aligns.

Next, if you are not using a supported GPU (remembering that the list can be found here

(https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus)), you can see if the dri-
ver works by enabling support at the module level, but your mileage may vary — skip this step
if you are using a supported GPU:

sed -i '/NVreg_OpenRmEnableUnsupportedGpus/s/^#//g' /etc/modprobe.d/50-nvidia-
default.conf

Now that you have installed these packages, it is time to exit the transactional-update ses-
sion:

exit

207 Manual installation

https://documentation.suse.com/sle-micro/5.4/html/SLE-Micro-all/sec-transactional-udate.html
https://documentation.suse.com/sle-micro/5.4/html/SLE-Micro-all/sec-transactional-udate.html
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus

Note
Make sure that you have exited the transactional-update session before proceeding.

Now that you have installed the drivers, it is time to reboot. As SLE Micro is an immutable
operating system, it needs to reboot into the new snapshot that you created in a previous step.
The drivers are only installed into this new snapshot, hence it is not possible to load the drivers
without rebooting into this new snapshot, which happens automatically. Issue the reboot com-
mand when you are ready:

reboot

Once the system has rebooted successfully, log back in and use the nvidia-smi tool to verify
that the driver is loaded successfully and that it can both access and enumerate your GPUs:

nvidia-smi

The output of this command should show you something similar to the following output, noting
that in the example below, we have two GPUs:

Wed Feb 28 12:31:06 2024
+---+
| NVIDIA-SMI 545.29.06 Driver Version: 545.29.06 CUDA Version: 12.3 |
|---+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===+======================+======================		
0 NVIDIA A100-PCIE-40GB Off	00000000:17:00.0 Off	0
N/A 29C P0 35W / 250W	4MiB / 40960MiB	0% Default
		Disabled
+---+----------------------+----------------------+		
1 NVIDIA A100-PCIE-40GB Off	00000000:CA:00.0 Off	0
N/A 30C P0 33W / 250W	4MiB / 40960MiB	0% Default
		Disabled
+---+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

208 Manual installation

This concludes the installation and verification process for the NVIDIA drivers on your SLE
Micro system.

23.4 Further validation of the manual installation
At this stage, all we have been able to verify is that, at the host level, the NVIDIA device
can be accessed and that the drivers are loading successfully. However, if we want to be
sure that it is functioning, a simple test would be to validate that the GPU can take in-
structions from a user-space application, ideally via a container, and through the CUDA li-
brary, as that is typically what a real workload would use. For this, we can make a further
modification to the host OS by installing the nvidia-container-toolkit (NVIDIA Container

Toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.htm-

l#installing-with-zypper)). First, open another transactional-update shell, noting that we
could have done this in a single transaction in the previous step, and see how to do this fully
automated in a later section:

transactional-update shell

Next, install the nvidia-container-toolkit package from the NVIDIA Container Toolkit repo:

The nvidia-container-toolkit.repo below contains a stable (nvidia-contain-
er-toolkit) and an experimental (nvidia-container-toolkit-experimental) repos-
itory. The stable repository is recommended for production use. The experimental repos-
itory is disabled by default.

zypper ar https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-
toolkit.repo
zypper --gpg-auto-import-keys install -y nvidia-container-toolkit

When you are ready, you can exit the transactional-update shell:

exit

…and reboot the machine into the new snapshot:

reboot

Note
As before, you need to ensure that you have exited the transactional-shell and re-
booted the machine for your changes to be enacted.

209 Further validation of the manual installation

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper

With the machine rebooted, you can verify that the system can successfully enumerate the de-
vices using the NVIDIA Container Toolkit. The output should be verbose, with INFO and WARN
messages, but no ERROR messages:

nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

This ensures that any container started on the machine can employ NVIDIA GPU devices that
have been discovered. When ready, you can then run a podman-based container. Doing this via
podman gives us a good way of validating access to the NVIDIA device from within a container,
which should give confidence for doing the same with Kubernetes at a later stage. Give podman
access to the labeled NVIDIA devices that were taken care of by the previous command, based
on SLE BCI (https://registry.suse.com/bci/bci-base-15sp5/index.html) , and simply run the Bash
command:

podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable -it
 registry.suse.com/bci/bci-base:latest bash

You will now execute commands from within a temporary podman container. It does not have
access to your underlying system and is ephemeral, so whatever we do here will not persist,
and you should not be able to break anything on the underlying host. As we are now in a con-
tainer, we can install the required CUDA libraries, again checking the correct CUDA version for
your driver here (https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/) , although the previ-
ous output of nvidia-smi should show the required CUDA version. In the example below, we
are installing CUDA 12.3 and pulling many examples, demos and development kits so you can
fully validate the GPU:

zypper ar http://developer.download.nvidia.com/compute/cuda/repos/sles15/x86_64/ cuda-
sle15-sp5
zypper in -y cuda-libraries-devel-12-3 cuda-minimal-build-12-3 cuda-demo-suite-12-3

Once this has been installed successfully, do not exit the container. We will run the device-
Query CUDA example, which comprehensively validates GPU access via CUDA, and from within
the container itself:

/usr/local/cuda-12/extras/demo_suite/deviceQuery

If successful, you should see output that shows similar to the following, noting the Result =
PASS message at the end of the command, and noting that in the output below, the system
correctly identifies two GPUs, whereas your environment may only have one:

/usr/local/cuda-12/extras/demo_suite/deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

210 Further validation of the manual installation

https://registry.suse.com/bci/bci-base-15sp5/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/

Detected 2 CUDA Capable device(s)

Device 0: "NVIDIA A100-PCIE-40GB"
 CUDA Driver Version / Runtime Version 12.2 / 12.1
 CUDA Capability Major/Minor version number: 8.0
 Total amount of global memory: 40339 MBytes (42298834944 bytes)
 (108) Multiprocessors, (64) CUDA Cores/MP: 6912 CUDA Cores
 GPU Max Clock rate: 1410 MHz (1.41 GHz)
 Memory Clock rate: 1215 Mhz
 Memory Bus Width: 5120-bit
 L2 Cache Size: 41943040 bytes
 Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),
 3D=(16384, 16384, 16384)
 Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 2048
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 3 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device supports Compute Preemption: Yes
 Supports Cooperative Kernel Launch: Yes
 Supports MultiDevice Co-op Kernel Launch: Yes
 Device PCI Domain ID / Bus ID / location ID: 0 / 23 / 0
 Compute Mode:
 < Default (multiple host threads can use ::cudaSetDevice() with device
 simultaneously) >

Device 1: <snip to reduce output for multiple devices>
 < Default (multiple host threads can use ::cudaSetDevice() with device
 simultaneously) >
> Peer access from NVIDIA A100-PCIE-40GB (GPU0) -> NVIDIA A100-PCIE-40GB (GPU1) : Yes
> Peer access from NVIDIA A100-PCIE-40GB (GPU1) -> NVIDIA A100-PCIE-40GB (GPU0) : Yes

211 Further validation of the manual installation

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.3, CUDA Runtime Version =
 12.3, NumDevs = 2, Device0 = NVIDIA A100-PCIE-40GB, Device1 = NVIDIA A100-PCIE-40GB
Result = PASS

From here, you can continue to run any other CUDA workload — use compilers and any other
aspect of the CUDA ecosystem to run further tests. When done, you can exit from the container,
noting that whatever you have installed in there is ephemeral (so will be lost!), and has not
impacted the underlying operating system:

exit

23.5 Implementation with Kubernetes
Now that we have proven the installation and use of the NVIDIA open-driver on SLE Micro, let us
explore configuring Kubernetes on the same machine. This guide does not walk you through de-
ploying Kubernetes, but it assumes that you have installed K3s (https://k3s.io/) or RKE2 (https://

docs.rke2.io/install/quickstart) and that your kubeconfig is configured accordingly, so that stan-
dard kubectl commands can be executed as the superuser. We assume that your node forms
a single-node cluster, although the core steps should be similar for multi-node clusters. First,
ensure that your kubectl access is working:

kubectl get nodes

This should show something similar to the following:

NAME STATUS ROLES AGE VERSION
node0001 Ready control-plane,etcd,master 13d v1.28.13+rke2r1

What you should nd is that your k3s/rke2 installation has detected the NVIDIA Container
Toolkit on the host and auto-configured the NVIDIA runtime integration into containerd (the
Container Runtime Interface that k3s/rke2 use). Confirm this by checking the containerd con-
fig.toml le:

tail -n8 /var/lib/rancher/rke2/agent/etc/containerd/config.toml

This must show something akin to the following. The equivalent K3s location is /var/lib/
rancher/k3s/agent/etc/containerd/config.toml :

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes."nvidia"]
 runtime_type = "io.containerd.runc.v2"
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes."nvidia".options]
 BinaryName = "/usr/bin/nvidia-container-runtime"

212 Implementation with Kubernetes

https://k3s.io/
https://docs.rke2.io/install/quickstart
https://docs.rke2.io/install/quickstart

Note
If these entries are not present, the detection might have failed. This could be due to the
machine or the Kubernetes services not being restarted. Add these manually as above,
if required.

Next, we need to configure the NVIDIA RuntimeClass as an additional Kubernetes runtime to
the default, ensuring that any user requests for pods that need access to the GPU can use the
NVIDIA Container Toolkit to do so, via the nvidia-container-runtime , as configured in the
containerd configuration:

kubectl apply -f - <<EOF
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: nvidia
handler: nvidia
EOF

The next step is to configure the NVIDIA Device Plugin (https://github.com/NVIDIA/k8s-device-plu-

gin) , which configures Kubernetes to leverage the NVIDIA GPUs as resources within the cluster
that can be used, working in combination with the NVIDIA Container Toolkit. This tool initially
detects all capabilities on the underlying host, including GPUs, drivers and other capabilities
(such as GL) and then allows you to request GPU resources and consume them as part of your
applications.

First, you need to add and update the Helm repository for the NVIDIA Device Plugin:

helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update

Now you can install the NVIDIA Device Plugin:

helm upgrade -i nvdp nvdp/nvidia-device-plugin --namespace nvidia-device-plugin --create-
namespace --version 0.14.5 --set runtimeClassName=nvidia

After a few minutes, you see a new pod running that will complete the detection on your avail-
able nodes and tag them with the number of GPUs that have been detected:

kubectl get pods -n nvidia-device-plugin
NAME READY STATUS RESTARTS AGE
nvdp-nvidia-device-plugin-jp697 1/1 Running 2 (12h ago) 6d3h

kubectl get node node0001 -o json | jq .status.capacity

213 Implementation with Kubernetes

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin

{
 "cpu": "128",
 "ephemeral-storage": "466889732Ki",
 "hugepages-1Gi": "0",
 "hugepages-2Mi": "0",
 "memory": "32545636Ki",
 "nvidia.com/gpu": "1", <----
 "pods": "110"
}

Now you are ready to create an NVIDIA pod that attempts to use this GPU. Let us try with the
CUDA Benchmark container:

kubectl apply -f - <<EOF
apiVersion: v1
kind: Pod
metadata:
 name: nbody-gpu-benchmark
 namespace: default
spec:
 restartPolicy: OnFailure
 runtimeClassName: nvidia
 containers:
 - name: cuda-container
 image: nvcr.io/nvidia/k8s/cuda-sample:nbody
 args: ["nbody", "-gpu", "-benchmark"]
 resources:
 limits:
 nvidia.com/gpu: 1
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: all
EOF

If all went well, you can look at the logs and see the benchmark information:

kubectl logs nbody-gpu-benchmark
Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
 -fullscreen (run n-body simulation in fullscreen mode)
 -fp64 (use double precision floating point values for simulation)
 -hostmem (stores simulation data in host memory)
 -benchmark (run benchmark to measure performance)
 -numbodies=<N> (number of bodies (>= 1) to run in simulation)
 -device=<d> (where d=0,1,2.... for the CUDA device to use)
 -numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)

214 Implementation with Kubernetes

 -compare (compares simulation results running once on the default GPU and once
 on the CPU)
 -cpu (run n-body simulation on the CPU)
 -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when
 GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "Turing" with compute capability 7.5

> Compute 7.5 CUDA device: [Tesla T4]
40960 bodies, total time for 10 iterations: 101.677 ms
= 165.005 billion interactions per second
= 3300.103 single-precision GFLOP/s at 20 flops per interaction

Finally, if your applications require OpenGL, you can install the required NVIDIA OpenGL li-
braries at the host level, and the NVIDIA Device Plugin and NVIDIA Container Toolkit can make
them available to containers. To do this, install the package as follows:

transactional-update pkg install nvidia-gl-G06

Note
You need to reboot to make this package available to your applications. The NVIDIA
Device Plugin should automatically redetect this via the NVIDIA Container Toolkit.

23.6 Bringing it together via Edge Image Builder
Okay, so you have demonstrated full functionality of your applications and GPUs on SLE Micro
and you now want to use Chapter 9, Edge Image Builder to provide it all together via a deploy-
able/consumable ISO or RAW disk image. This guide does not explain how to use Edge Image
Builder, but it provides the necessary configurations to build such image. Below you can nd
an example of an image definition, along with the necessary Kubernetes configuration les,
to ensure that all the required components are deployed out of the box. Here is the directory
structure of the Edge Image Builder directory for the example shown below:

.

215 Bringing it together via Edge Image Builder

├── base-images
│ └── SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
├── eib-config-iso.yaml
├── kubernetes
│ ├── config
│ │ └── server.yaml
│ ├── helm
│ │ └── values
│ │ └── nvidia-device-plugin.yaml
│ └── manifests
│ └── nvidia-runtime-class.yaml
└── rpms
 └── gpg-keys
 └── nvidia-container-toolkit.key

Let us explore those les. First, here is a sample image definition for a single-node cluster running
K3s that deploys the utilities and OpenGL packages, too (eib-config-iso.yaml):

apiVersion: 1.0
image:
 arch: x86_64
 imageType: iso
 baseImage: SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 outputImageName: deployimage.iso
operatingSystem:
 time:
 timezone: Europe/London
 ntp:
 pools:
 - 2.suse.pool.ntp.org
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: 6XcQN1xkuQKjWEtQG
$WbhV80rbveDLJDz1c93K5Ga9JDjt3mF.ZUnhYtsS7uE52FR8mmT8Cnii/JPeFk9jzQO6eapESYZesZHO9EslD1
 packages:
 packageList:
 - nvidia-open-driver-G06-signed-kmp-default
 - nvidia-compute-utils-G06
 - nvidia-gl-G06
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://download.nvidia.com/suse/sle15sp5/
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64
 sccRegistrationCode: <snip>
kubernetes:

216 Bringing it together via Edge Image Builder

 version: v1.28.13+k3s1
 helm:
 charts:
 - name: nvidia-device-plugin
 version: v0.14.5
 installationNamespace: kube-system
 targetNamespace: nvidia-device-plugin
 createNamespace: true
 valuesFile: nvidia-device-plugin.yaml
 repositoryName: nvidia
 repositories:
 - name: nvidia
 url: https://nvidia.github.io/k8s-device-plugin

Note
This is just an example. You may need to customize it to t your requirements and ex-
pectations. Additionally, if using SLE Micro, you need to provide your own sccRegis-
trationCode to resolve package dependencies and pull the NVIDIA drivers.

Besides this, we need to add additional components, so they get loaded by Kubernetes at boot
time. The EIB directory needs a kubernetes directory rst, with subdirectories for the config-
uration, Helm chart values and any additional manifests required:

mkdir -p kubernetes/config kubernetes/helm/values kubernetes/manifests

Let us now set up the (optional) Kubernetes configuration by choosing a CNI (which defaults to
Cilium if unselected) and enabling SELinux:

cat << EOF > kubernetes/config/server.yaml
cni: cilium
selinux: true
EOF

Now ensure that the NVIDIA RuntimeClass is created on the Kubernetes cluster:

cat << EOF > kubernetes/manifests/nvidia-runtime-class.yaml
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: nvidia
handler: nvidia
EOF

217 Bringing it together via Edge Image Builder

We use the built-in Helm Controller to deploy the NVIDIA Device Plugin through Kubernetes
itself. Let’s provide the runtime class in the values le for the chart:

cat << EOF > kubernetes/helm/values/nvidia-device-plugin.yaml
runtimeClassName: nvidia
EOF

We need to grab the NVIDIA Container Toolkit RPM public key before proceeding:

mkdir -p rpms/gpg-keys
curl -o rpms/gpg-keys/nvidia-container-toolkit.key https://nvidia.github.io/libnvidia-
container/gpgkey

All the required artifacts, including Kubernetes binary, container images, Helm charts (and any
referenced images), will be automatically air-gapped, meaning that the systems at deploy time
should require no Internet connectivity by default. Now you need only to grab the SLE Micro
ISO from the SUSE Downloads Page (https://www.suse.com/download/sle-micro/) (and place it
in the base-images directory), and you can call the Edge Image Builder tool to generate the
ISO for you. To complete the example, here is the command that was used to build the image:

podman run --rm --privileged -it -v /path/to/eib-files/:/eib \
registry.suse.com/edge/edge-image-builder:1.0.2 \
build --definition-file eib-config-iso.yaml

For further instructions, please see the documentation (https://github.com/suse-edge/edge-im-

age-builder/blob/release-1.0/docs/building-images.md) for Edge Image Builder.

23.7 Resolving issues

23.7.1 nvidia-smi does not find the GPU

Check the kernel messages using dmesg . If this indicates that it cannot allocate NvKMSKapDe-
vice , apply the unsupported GPU workaround:

sed -i '/NVreg_OpenRmEnableUnsupportedGpus/s/^#//g' /etc/modprobe.d/50-nvidia-
default.conf

NOTE: You will need to reload the kernel module, or reboot, if you change the
kernel module configuration in the above step for it to take effect.

218 Resolving issues

https://www.suse.com/download/sle-micro/
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.0/docs/building-images.md

V Day 2 Operations

24 Management Cluster 220

25 Downstream clusters 232

This section explains how administrators can handle different "Day Two" operation tasks both
on the management and on the downstream clusters.

24 Management Cluster

This section covers how to do various Day 2 operations on a management cluster .

24.1 RKE2 upgrade

Note
To ensure disaster recovery, we advise to do a backup of the RKE2 cluster data. For
information on how to do this, check here (https://docs.rke2.io/backup_restore) . The
default location for the rke2 binary is /opt/rke2/bin .

You can upgrade the RKE2 version using the RKE2 installation script as follows:

curl -sfL https://get.rke2.io | INSTALL_RKE2_VERSION=vX.Y.Z+rke2rN sh -

Remember to restart the rke2 process after installing:

For server nodes:
systemctl restart rke2-server

For agent nodes:
systemctl restart rke2-agent

Important
To avoid any unforseen upgrade problems, use the following node upgrade order:

1. Server nodes - should be upgraded one node at a time.

2. Agent nodes - should be upgraded after all server node upgrades have finished. Can
be upgraded in parallel.

For further information, see the RKE2 upgrade documentation (https://docs.rke2.io/upgrade/manu-

al_upgrade#upgrade-rke2-using-the-installation-script) .

220 RKE2 upgrade

https://docs.rke2.io/backup_restore
https://docs.rke2.io/upgrade/manual_upgrade#upgrade-rke2-using-the-installation-script
https://docs.rke2.io/upgrade/manual_upgrade#upgrade-rke2-using-the-installation-script

24.2 OS upgrade

Note
This section assumes that you have registered your system to https://scc.suse.com .

SUSE regularly releases new SLE Micro package updates. To retrieve the updated package
versions SLE Micro uses transactional-upgrade .

transactional-upgrade provides an application and library to update a Linux operating sys-
tem in a transactional way, i.e. the update will be performed in the background while the sys-
tem continues running as it is. Only after you reboot the system will the update take effect.
For further information, see the transactional-update GitHub (https://github.com/openSUSE/

transactional-update) GitHub page.

To update all packages in the system, execute:

transactional-update

Since rebooting the node will result in it being unavailable for some time, if you are
running a multi-node cluster, you can cordon (https://kubernetes.io/docs/reference/kubectl/

generated/kubectl_cordon/) and drain (https://kubernetes.io/docs/reference/kubectl/generat-

ed/kubectl_drain/) the node before the reboot.

To cordon a node, execute:

kubectl cordon <node>

This will result in the node being taken out of the default scheduling mechanism, ensuring that
no pods will be assigned to it by mistake.

To drain a node, execute:

kubectl drain <node>

This will ensure that all workloads on the node will be transferred to other available nodes.

Note
Depending on what workloads you are running on the node, you might also need to
provide additional ags (e.g. --delete-emptydir-data , --ignore-daemonsets) to the
command.

221 OS upgrade

https://scc.suse.com
https://github.com/openSUSE/transactional-update
https://github.com/openSUSE/transactional-update
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/

Reboot node:

sudo reboot

After a successful reboot, the packages on your node will be updated. The only thing left is
to bring the node back to the default scheduling mechanism with the uncordon (https://kuber-

netes.io/docs/reference/kubectl/generated/kubectl_uncordon/) command.

Uncordon node:

kubectl uncordon <node>

Note
In case you want to revert the update, use the above steps with the following transac-
tional-update command:

transactional-update rollback last

24.3 Helm upgrade

Note
This section assumes you have installed helm on your system. For helm installation
instructions, check here (https://helm.sh/docs/intro/install) .

This section covers how to upgrade both an EIB (Section 24.3.1, “EIB deployed helm chart”) and non-
EIB (Section 24.3.2, “Non-EIB deployed helm chart”) deployed helm chart.

24.3.1 EIB deployed helm chart

EIB deploys helm charts defined in it’s image definition le (Section 3.3, “Creating the image de-

finition file”) by using RKE2’s manifest auto-deploy (https://docs.rke2.io/advanced#auto-deploy-

ing-manifests) functionality.

In order to upgrade a chart that is deployed in such a manner, you need to upgrade the chart
manifest le that EIB will create under the /var/lib/rancher/rke2/server/manifests di-
rectory on your initializer node.

222 Helm upgrade

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncordon/
https://helm.sh/docs/intro/install
https://docs.rke2.io/advanced#auto-deploying-manifests
https://docs.rke2.io/advanced#auto-deploying-manifests

Note
To ensure disaster recovery, we advise that you always backup your chart manifest le
as well as follow any documentation related to disaster recovery that your chart offers.

To upgrade the chart manifest le, follow these steps:

1. Locate the initializer node

For multi-node clusters - in your EIB image definition le, you should have
specified the initializer: true property for one of your nodes. If you have not
specified this property, the initializer node will be the rst server node in your node
list.

For single-node clusters - the initializer is the currently running node.

2. SSH to the initializer node:

ssh root@<node_ip>

3. Pull (https://helm.sh/docs/helm/helm_pull/) the helm chart:

For helm charts hosted in a helm chart repository:

helm repo add <chart_repo_name> <chart_repo_urls>
helm pull <chart_repo_name>/<chart_name>

Alternatively if you want to pull a specific verison
helm pull <chart_repo_name>/<chart_name> --version=X.Y.Z

For OCI-based helm charts:

helm pull oci://<chart_oci_url>

Alternatively if you want to pull a specific verison
helm pull oci://<chart_oci_url> --version=X.Y.Z

4. Encode the pulled .tgz archive so that it can be passed to a HelmChart CR config:

base64 -w 0 <chart_name>-X.Y.Z.tgz > <chart_name>-X.Y.Z.txt

5. Make a copy of the chart manifest le that we will edit:

cp /var/lib/rancher/rke2/server/manifests/<chart_name>.yaml ./<chart_name>.yaml

223 EIB deployed helm chart

https://helm.sh/docs/helm/helm_pull/

6. Change the chartContent and version configurations of the bar.yaml le:

sed -i -e "s|chartContent:.*|chartContent: $(<chart-name-X.Y.Z.txt)|" -e "s|
version:.*|version: X.Y.Z|" <chart_name>.yaml

Note
If you need to do any additional upgrade changes to the chart (e.g. adding new
custom chart values), you need to manually edit the chart manifest le.

7. Replace the original chart manifest le:

cp <chart_name>.yaml /var/lib/rancher/rke2/server/manifests/

The above commands will trigger an upgrade of the helm chart. The upgrade will be handled
by the helm-controller (https://github.com/k3s-io/helm-controller#helm-controller) .

To track the helm chart upgrade you need to view the logs of the pod that the helm-controller
creates for the chart upgrade. Refer to the Examples (Section 24.3.1.1, “Examples”) section for more
information.

24.3.1.1 Examples

Note
The examples in this section assume that you have already located and connected to your
initializer node.

This section offer examples on how to upgrade a:

Rancher (Section 24.3.1.1.1, “Rancher upgrade”) helm chart

Metal3 (Section 24.3.1.1.2, “Metal3 upgrade”) helm chart

224 EIB deployed helm chart

https://github.com/k3s-io/helm-controller#helm-controller

24.3.1.1.1 Rancher upgrade

Note
To ensure disaster recovery, we advise to do a Rancher backup. For information on how
to do this, check here (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-

guides/backup-restore-and-disaster-recovery/back-up-rancher) .

This example shows how to upgrade Rancher to the 2.8.8 version.

1. Add the Rancher Prime Helm repository:

helm repo add rancher-prime https://charts.rancher.com/server-charts/prime

2. Pull the latest Rancher Prime helm chart version:

helm pull rancher-prime/rancher --version=2.8.8

3. Encode .tgz archive so that it can be passed to a HelmChart CR config:

base64 -w 0 rancher-2.8.8.tgz > rancher-2.8.8-encoded.txt

4. Make a copy of the rancher.yaml le that we will edit:

cp /var/lib/rancher/rke2/server/manifests/rancher.yaml ./rancher.yaml

5. Change the chartContent and version configurations of the rancher.yaml le:

sed -i -e "s|chartContent:.*|chartContent: $(<rancher-2.8.8-encoded.txt)|" -e "s|
version:.*|version: 2.8.8|" rancher.yaml

Note
If you need to do any additional upgrade changes to the chart (e.g. adding new
custom chart values), you need to manually edit the rancher.yaml le.

6. Replace the original rancher.yaml le:

cp rancher.yaml /var/lib/rancher/rke2/server/manifests/

225 EIB deployed helm chart

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/backup-restore-and-disaster-recovery/back-up-rancher
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/backup-restore-and-disaster-recovery/back-up-rancher

To verify the update:

1. List pods in default namespace:

kubectl get pods -n default

Example output
NAME READY STATUS RESTARTS AGE
helm-install-cert-manager-7v7nm 0/1 Completed 0 88m
helm-install-rancher-p99k5 0/1 Completed 0 3m21s

2. Look at the logs of the helm-install-rancher-* pod:

kubectl logs <helm_install_rancher_pod> -n default

Example
kubectl logs helm-install-rancher-p99k5 -n default

3. Verify Rancher pods are running:

kubectl get pods -n cattle-system

Example output
NAME READY STATUS RESTARTS AGE
helm-operation-mccvd 0/2 Completed 0 3m52s
helm-operation-np8kn 0/2 Completed 0 106s
helm-operation-q8lf7 0/2 Completed 0 2m53s
rancher-648d4fbc6c-qxfpj 1/1 Running 0 5m27s
rancher-648d4fbc6c-trdnf 1/1 Running 0 9m57s
rancher-648d4fbc6c-wvhbf 1/1 Running 0 9m57s
rancher-webhook-649dcc48b4-zqjs7 1/1 Running 0 100s

4. Verify Rancher version upgrade:

kubectl get settings.management.cattle.io server-version

Example output
NAME VALUE
server-version v2.8.8

24.3.1.1.2 Metal3 upgrade

This example shows how to upgrade Metal3 to the 0.7.4 version.

226 EIB deployed helm chart

1. Pull the latest Metal3 helm chart version:

helm pull oci://registry.suse.com/edge/metal3-chart --version 0.7.4

2. Encode .tgz archive so that it can be passed to a HelmChart CR config:

base64 -w 0 metal3-chart-0.7.4.tgz > metal3-chart-0.7.4-encoded.txt

3. Make a copy of the Metal3 manifest le that we will edit:

cp /var/lib/rancher/rke2/server/manifests/metal3.yaml ./metal3.yaml

4. Change the chartContent and version configurations of the Metal3 manifest le:

sed -i -e "s|chartContent:.*|chartContent: $(<metal3-chart-0.7.4-encoded.txt)|" -e
 "s|version:.*|version: 0.7.4|" metal3.yaml

Note
If you need to do any additional upgrade changes to the chart (e.g. adding new
custom chart values), you need to manually edit the metal3.yaml le.

5. Replace the original Metal3 manifest le:

cp metal3.yaml /var/lib/rancher/rke2/server/manifests/

To verify the update:

1. List pods in default namespace:

kubectl get pods -n default

Example output
NAME READY STATUS RESTARTS AGE
helm-install-metal3-7p7bl 0/1 Completed 0 27s

2. Look at the logs of the helm-install-rancher-* pod:

kubectl logs <helm_install_rancher_pod> -n default

Example
kubectl logs helm-install-metal3-7p7bl -n default

227 EIB deployed helm chart

3. Verify Metal3 pods are running:

kubectl get pods -n metal3-system

Example output
NAME READY STATUS RESTARTS
 AGE
baremetal-operator-controller-manager-785f99c884-9z87p 2/2 Running 2 (25m
 ago) 36m
metal3-metal3-ironic-96fb66cdd-lkss2 4/4 Running 0
 3m54s
metal3-metal3-mariadb-55fd44b648-q6zhk 1/1 Running 0
 36m

4. Verify the HelmChart resource version is upgraded:

kubectl get helmchart metal3 -n default

Example output
NAME JOB CHART TARGETNAMESPACE VERSION REPO
 HELMVERSION BOOTSTRAP
metal3 helm-install-metal3 metal3-system 0.7.4

24.3.2 Non-EIB deployed helm chart

1. Get the values for the currently running helm chart .yaml le and make any changes to
them if necessary:

helm get values <chart_name> -n <chart_namespace> -o yaml > <chart_name>-values.yaml

2. Update the helm chart:

For charts using a chart repository
helm upgrade <chart_name> <chart_repo_name>/<chart_name> \
 --namespace <chart_namespace> \
 -f <chart_name>-values.yaml \
 --version=X.Y.Z

For OCI based charts
helm upgrade <chart_name> oci://<oci_registry_url>/<chart_name> \
 --namespace <chart_namespace> \
 -f <chart_name>-values.yaml \

228 Non-EIB deployed helm chart

 --version=X.Y.Z

3. Verify the chart upgrade. Depending on the chart you may need to verify different re-
sources. For examples of chart upgrades, see the Examples (Section 24.3.2.1, “Examples”)
section.

24.3.2.1 Examples

This section offer examples on how to upgrade a:

Rancher (Section 24.3.2.1.1, “Rancher”) helm chart

Metal3 (Section 24.3.2.1.2, “Metal3”) helm chart

24.3.2.1.1 Rancher

Note
To ensure disaster recovery, we advise to do a Rancher backup. For information on how
to do this, check here (https://ranchermanager.docs.rancher.com/how-to-guides/new-user-

guides/backup-restore-and-disaster-recovery/back-up-rancher) .

This example shows how to upgrade Rancher to the 2.8.8 version.

1. Get the values for the current Rancher release and print them to a rancher-values.yaml
le:

helm get values rancher -n cattle-system -o yaml > rancher-values.yaml

2. Update the helm chart:

helm upgrade rancher rancher-prime/rancher \
 --namespace cattle-system \
 -f rancher-values.yaml \
 --version=2.8.8

3. Verify Rancher version upgrade:

kubectl get settings.management.cattle.io server-version

229 Non-EIB deployed helm chart

https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/backup-restore-and-disaster-recovery/back-up-rancher
https://ranchermanager.docs.rancher.com/how-to-guides/new-user-guides/backup-restore-and-disaster-recovery/back-up-rancher

Example output
NAME VALUE
server-version v2.8.8

For additional information on the Rancher helm chart upgrade,
check here (https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/in-

stall-upgrade-on-a-kubernetes-cluster/upgrades) .

24.3.2.1.2 Metal3

This example shows how to upgrade Metal3 to the 0.7.4 version.

1. Get the values for the current Rancher release and print them to a rancher-values.yaml
le:

helm get values metal3 -n metal3-system -o yaml > metal3-values.yaml

2. Update the helm chart:

helm upgrade metal3 oci://registry.suse.com/edge/metal3-chart \
 --namespace metal3-system \
 -f metal3-values.yaml \
 --version=0.7.4

3. Verify Metal3 pods are running:

kubectl get pods -n metal3-system

Example output
NAME READY STATUS RESTARTS
 AGE
baremetal-operator-controller-manager-785f99c884-fvsx4 2/2 Running 0
 12m
metal3-metal3-ironic-96fb66cdd-j9mgf 4/4 Running 0
 2m41s
metal3-metal3-mariadb-55fd44b648-7fmvk 1/1 Running 0
 12m

4. Verify Metal3 helm release version change:

helm ls -n metal3-system

Expected output

230 Non-EIB deployed helm chart

https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/install-upgrade-on-a-kubernetes-cluster/upgrades
https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/install-upgrade-on-a-kubernetes-cluster/upgrades

NAME NAMESPACE REVISION UPDATED STATUS
 CHART APP VERSION
metal3 metal3-system 2 2024-06-17 12:43:06.774802846 +0000 UTC deployed
 metal3-0.7.4 1.16.0

24.4 Cluster API upgrade
The Cluster API (CAPI) controllers on a Metal3 management cluster are not currently managed
via Helm, this section describes the upgrade process.

Note
This section assumes you have installed clusterctl and configured on your system as
described in the Metal3 quickstart (Chapter 1, BMC automated deployments with Metal3)

When upgrading to Edge 3.0.2 from any previous version it will be necessary to upgrade the
RKE2 providers:

clusterctl upgrade apply --bootstrap "rke2:v0.4.1" --control-plane "rke2:v0.4.1"

Warning
Please ensure the versions selected align with those described in the Release Notes (Chap-

ter 33, Release Notes), usage of other upstream releases is not supported.

231 Cluster API upgrade

25 Downstream clusters

This section covers how to do various Day 2 operations for different parts of your downstream
cluster using your management cluster .

25.1 Introduction
This section is meant to be a starting point for the Day 2 operations documentation. You can
nd the following information.

1. The default components (Section 25.1.1, “Components”) used to achieve Day 2 operations
over multiple downstream clusters.

2. Determining which Day 2 resources should you use for your specific use-case (Sec-

tion 25.1.2, “Determine your use-case”).

3. The suggested workflow sequence (Section 25.1.3, “Day 2 workflow”) for Day 2 operations.

25.1.1 Components

Below you can nd a description of the default components that should be setup on either your
management cluster or your downstream clusters so that you can successfully perform
Day 2 operations.

25.1.1.1 Rancher

Note
For use-cases where you want to utilise Fleet (Chapter 6, Fleet) without Rancher, you can
skip the Rancher component all together.

Responsible for the management of your downstream clusters . Should be deployed on your
management cluster .

For more information, see Chapter 4, Rancher.

232 Introduction

25.1.1.2 Fleet

Responsible for multi-cluster resource deployment.

Typically offered by the Rancher component. For use-cases where Rancher is not used, can
be deployed as a standalone component.

For more information on installing Fleet as a standalone component, see Fleet’s Installation De-

tails (https://fleet.rancher.io/installation) .

For more information regarding the Fleet component, see Chapter 6, Fleet.

Important
This documentation heavily relies on Fleet and more specifically on the GitRepo and
Bundle resources (more on this in Section 25.1.2, “Determine your use-case”) for establishing
a GitOps way of automating the deployment of resources related to Day 2 operations.

For use-cases, where a third party GitOps tool usage is desired, see:

1. For OS package updates - Section 25.3.4.3, “SUC Plan deployment - third-party GitOps

workflow”

2. For Kubernetes distribution upgrades - Section 25.4.4.3, “SUC Plan deployment

- third-party GitOps workflow”

3. For Helm chart upgrades - retrieve the chart version supported by the desired
Edge release from the Section 33.1, “Abstract” page and populate the chart version and
URL in your third party GitOps tool

25.1.1.3 System-upgrade-controller (SUC)

The system-upgrade-controller (SUC) is responsible for executing tasks on specified nodes
based on configuration data provided through a custom resource, called a Plan . Should be
located on each downstream cluster that requires some sort of a Day 2 operation.

For more information regarding SUC, see the upstream repository (https://github.com/ranch-

er/system-upgrade-controller) .

233 Components

https://fleet.rancher.io/installation
https://fleet.rancher.io/installation
https://github.com/rancher/system-upgrade-controller
https://github.com/rancher/system-upgrade-controller

For information on how to deploy SUC on your downstream clusters, rst determine your use-
case (Section 25.1.2, “Determine your use-case”) and then refer to either Section 25.2.1.1, “SUC deploy-

ment using a GitRepo resource”, or Section 25.2.1.2, “SUC deployment using a Bundle resource” for SUC
deployment information.

25.1.2 Determine your use-case

As mentioned previously, resources related to Day 2 operations are propagated to downstream
clusters using Fleet’s GitRepo and Bundle resources.

Below you can nd more information regarding what these resources do and for which use-
cases should they be used for Day 2 operations.

25.1.2.1 GitRepo

A GitRepo is a Fleet (Chapter 6, Fleet) resource that represents a Git repository from which
Fleet can create Bundles . Each Bundle is created based on configuration paths defined inside
of the GitRepo resource. For more information, see the GitRepo (https://fleet.rancher.io/gitre-

po-add) documentation.

In terms of Day 2 operations GitRepo resources are normally used to deploy SUC or SUC
Plans on non air-gapped environments that utilise a Fleet GitOps approach.

Alternatively, GitRepo resources can also be used to deploy SUC or SUC Plans on air-gapped
environments, if you mirror your repository setup through a local git server.

25.1.2.2 Bundle

Bundles hold raw Kubernetes resources that will be deployed on the targeted cluster. Usually
they are created from a GitRepo resource, but there are use-cases where they can be deployed
manually. For more information refer to the Bundle (https://fleet.rancher.io/bundle-add) doc-
umentation.

In terms of Day 2 operations Bundle resources are normally used to deploy SUC or SUC Plans
on air-gapped environments that do not use some form of local GitOps procedure (e.g. a local
git server).

234 Determine your use-case

https://fleet.rancher.io/gitrepo-add
https://fleet.rancher.io/gitrepo-add
https://fleet.rancher.io/bundle-add

Alternatively, if your use-case does not allow for a GitOps workflow (e.g. using a Git reposito-
ry), Bundle resources could also be used to deploy SUC or SUC Plans on non air-gapped
environments.

25.1.3 Day 2 workflow

The following is a Day 2 workflow that should be followed when upgrading a downstream
cluster to a specific Edge release.

1. OS package update (Section 25.3, “OS package update”)

2. Kubernetes version upgrade (Section 25.4, “Kubernetes version upgrade”)

3. Helm chart upgrade (Section 25.5, “Helm chart upgrade”)

25.2 System upgrade controller deployment guide

The system-upgrade-controller (SUC) is responsible for deploying resources on specific nodes
of a cluster based on configurations defined in a custom resource called a Plan. For more in-
formation, see the upstream (https://github.com/rancher/system-upgrade-controller) documen-
tation.

Note
This section focuses solely on deploying the system-upgrade-controller . Plan re-
sources should be deployed from the following documentations:

1. OS package update (Section 25.3, “OS package update”)

2. Kubernetes version upgrade (Section 25.4, “Kubernetes version upgrade”)

3. Helm chart upgrade (Section 25.5, “Helm chart upgrade”)

235 Day 2 workflow

https://github.com/rancher/system-upgrade-controller

25.2.1 Deployment

Note
This section assumes that you are going to use Fleet (Chapter 6, Fleet) to orchestrate the
SUC deployment. Users using a third-party GitOps workflow should see Section 25.2.1.3,

“Deploying system-upgrade-controller when using a third-party GitOps workflow” for information
on what resources they need to setup in their workflow.

To determine the resource to use, refer to Section 25.1.2, “Determine your use-case”.

25.2.1.1 SUC deployment using a GitRepo resource

This section covers how to create a GitRepo resource that will ship the needed SUC Plans for
a successful SUC deployment to your target downstream clusters.

The Edge team maintains a ready to use GitRepo resource for SUC in each of our suse-
edge/fleet-examples releases (https://github.com/suse-edge/fleet-examples/releases) under
gitrepos/day2/system-upgrade-controller-gitrepo.yaml .

Important
If using the suse-edge/fleet-examples repository, make sure you are using the re-
sources from a dedicated release (https://github.com/suse-edge/fleet-examples/releases)

tag.

GitRepo creation can be done in one of of the following ways:

Through the Rancher UI (Section 25.2.1.1.1, “GitRepo deployment - Rancher UI”) (when Ranch-
er is available)

By manually deploying (Section 25.2.1.1.2, “GitRepo creation - manual”) the resources to your
management cluster

Once created, Fleet will be responsible for picking up the resource and deploying the SUC
resources to all your target clusters. For information on how to track the deployment process,
see Section 25.2.2.1, “Monitor SUC deployment”.

236 Deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

25.2.1.1.1 GitRepo deployment - Rancher UI

1. In the upper left corner, # → Continuous Delivery

2. Go to Git Repos → Add Repository

If you use the suse-edge/fleet-examples repository:

1. Repository URL - https://github.com/suse-edge/fleet-examples.git

2. Watch → Revision - choose a release (https://github.com/suse-edge/fleet-examples/releas-

es) tag for the suse-edge/fleet-examples repository that you wish to use, e.g. re-
lease-3.0.1 .

3. Under Paths add the path to the system-upgrade-controller as seen in the release tag -
fleets/day2/system-upgrade-controller

4. Select Next to move to the target configuration section

5. Only select clusters for which you wish to deploy the system-upgrade-controller .
When you are satisfied with your configurations, click Create

Alternatively, if you decide to use your own repository to host these les, you would need to
provide your repo data above.

25.2.1.1.2 GitRepo creation - manual

1. Choose the desired Edge release (https://github.com/suse-edge/fleet-examples/releases)

tag that you wish to deploy the SUC GitRepo from (referenced below as ${REVISION}).

2. Pull the GitRepo resource:

curl -o system-upgrade-controller-gitrepo.yaml https://raw.githubusercontent.com/
suse-edge/fleet-examples/{REVISION}/gitrepos/day2/system-upgrade-controller-
gitrepo.yaml

3. Edit the GitRepo configurations, under spec.targets specify your desired target list. By
default, the GitRepo resources from the suse-edge/fleet-examples are NOT mapped
to any down stream clusters.

To match all clusters, change the default GitRepo target to:

spec:

237 Deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection, see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

4. Apply the GitRepo resource to your management cluster :

kubectl apply -f system-upgrade-controller-gitrepo.yaml

5. View the created GitRepo resource under the fleet-default namespace:

kubectl get gitrepo system-upgrade-controller -n fleet-default

Example output
NAME REPO
 COMMIT BUNDLEDEPLOYMENTS-READY STATUS
system-upgrade-controller https://github.com/suse-edge/fleet-examples.git
 release-3.0.1 0/0

25.2.1.2 SUC deployment using a Bundle resource

This section covers how to create a Bundle resource that will ship the needed SUC Plans for
a successful SUC deployment to your target downstream clusters.

The Edge team maintains a ready to use Bundle resources for SUC in each of our suse-edge/
fleet-examples releases (https://github.com/suse-edge/fleet-examples/releases) under bun-
dles/day2/system-upgrade-controller/controller-bundle.yaml .

Important
If using the suse-edge/fleet-examples repository, make sure you are using the re-
sources from a dedicated release (https://github.com/suse-edge/fleet-examples/releases)

tag.

Bundle creation can be done in one of of the following ways:

Through the Rancher UI (Section 25.2.1.2.1, “Bundle creation - Rancher UI”) (when Rancher
is available)

By manually deploying (Section 25.2.1.2.2, “Bundle creation - manual”) the resources to your
management cluster

238 Deployment

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

Once created, Fleet will be responsible for pickuping the resource and deploying the SUC
resources to all your target clusters. For information on how to track the deployment process,
see Section 25.2.2.1, “Monitor SUC deployment”.

25.2.1.2.1 Bundle creation - Rancher UI

1. In the upper left corner, # → Continuous Delivery

2. Go to Advanced > Bundles

3. Select Create from YAML

4. From here you can create the Bundle in one of the following ways:

By manually copying the le content to the Create from
YAML page. File content can be retrieved from this
url - https://raw.githubusercontent.com/suse-edge/fleet-examples/${REVISION}/bun-

dles/day2/system-upgrade-controller/controller-bundle.yaml . Where ${REVISION}
is the Edge release (https://github.com/suse-edge/fleet-examples/releases) tag that
you desire (e.g. release-3.0.1).

By cloning the suse-edge/fleet-examples repository to the desired release

(https://github.com/suse-edge/fleet-examples/releases) tag and selecting the Read
from File option in the Create from YAML page. From there, navigate to bun-
dles/day2/system-upgrade-controller directory and select controller-bun-
dle.yaml . This will auto-populate the Create from YAML page with the Bundle
content.

5. Change the target clusters for the Bundle :

To match all downstream clusters change the default Bundle .spec.targets to:

spec:
 targets:
 - clusterSelector: {}

For a more granular downstream cluster mappings, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets) .

6. Create

239 Deployment

https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller/controller-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller/controller-bundle.yaml
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

25.2.1.2.2 Bundle creation - manual

1. Choose the desired Edge release (https://github.com/suse-edge/fleet-examples/releases)

tag that you wish to deploy the SUC Bundle from (referenced below as ${REVISION}).

2. Pull the Bundle resource:

curl -o controller-bundle.yaml https://raw.githubusercontent.com/suse-edge/fleet-
examples/${REVISION}/bundles/day2/system-upgrade-controller/controller-bundle.yaml

3. Edit the Bundle target configurations, under spec.targets provide your desired target
list. By default the Bundle resources from the suse-edge/fleet-examples are NOT
mapped to any down stream clusters.

To match all clusters change the default Bundle target to:

spec:
 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection, see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

4. Apply the Bundle resource to your management cluster :

kubectl apply -f controller-bundle.yaml

5. View the created Bundle resource under the fleet-default namespace:

kubectl get bundles system-upgrade-controller -n fleet-default

Example output
NAME BUNDLEDEPLOYMENTS-READY STATUS
system-upgrade-controller 0/0

25.2.1.3 Deploying system-upgrade-controller when using a third-party
GitOps workflow

To deploy the system-upgrade-controller using a third-party GitOps tool, depending on the
tool, you might need information for the system-upgrade-controller Helm chart or Kuber-
netes resoruces, or both.

240 Deployment

https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

Choose a specific Edge release (https://github.com/suse-edge/fleet-examples/releases) from
which you wish to use the SUC from.

From there, the SUC Helm chart data can be found under the helm configuration section of the
fleets/day2/system-upgrade-controller/fleet.ymal le.

The SUC Kubernetes resources can be found under the SUC Bundle configuration un-
der .spec.resources.content . The location for the bundle is bundles/day2/system-up-
grade-controller/controller-bundle.yaml .

Use the above mentioned resoruces to populate the data that your third-party GitOps workflow
needs in order to deploy SUC.

25.2.2 Monitor SUC resources using Rancher

This section covers how to monitor the lifecycle of the SUC deployment and any deployed SUC
Plans using the Rancher UI.

25.2.2.1 Monitor SUC deployment

To check the SUC pod logs for a specific cluster:

1. In the upper left corner, # → <your-cluster-name>

2. Select Workloads → Pods

3. Under the namespace drop down menu select the cattle-system namespace

241 Monitor SUC resources using Rancher

https://github.com/suse-edge/fleet-examples/releases

242 Monitor SUC resources using Rancher

4. In the Pod filter bar, write the SUC name - system-upgrade-controller

5. On the right of the pod select # → View Logs

243 Monitor SUC resources using Rancher

6. The SUC logs should looks something similar to:

244 Monitor SUC resources using Rancher

25.2.2.2 Monitor SUC Plans

Important
The SUC Plan Pods are kept alive for 15 minutes. After that they are removed by the
corresponding Job that created them. To have access to the SUC Plan Pod logs, you
should enable logging for your cluster. For information on how to do this in Rancher, see
Rancher Integration with Logging Services (https://ranchermanager.docs.rancher.com/v2.8/

integrations-in-rancher/logging) .

To check Pod logs for the specific SUC plan:

1. In the upper left corner, # → <your-cluster-name>

2. Select Workloads → Pods

3. Under the namespace drop down menu select the cattle-system namespace

245 Monitor SUC resources using Rancher

https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/logging
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/logging

246 Monitor SUC resources using Rancher

4. In the Pod filter bar, write the name for your SUC Plan Pod. The name will be in the
following template format: apply-<plan_name>-on-<node_name>

247 Monitor SUC resources using Rancher

FIGURE 25.1: EXAMPLE KUBERNETES UPGRADE PLAN PODS

248 Monitor SUC resources using Rancher

Note how in Figure 1, we have one Pod in Completed and one in Unknown state. This is
expected and has happened due to the Kubernetes version upgrade on the node.

FIGURE 25.2: EXAMPLE OS PACAKGE UPDATE PLAN PODS

249 Monitor SUC resources using Rancher

FIGURE 25.3: EXAMPLE OF UPGRADE PLAN PODS FOR EIB DEPLOYED HELM CHARTS ON AN HA CLUSTER

5. Select the pod that you want to review the logs of and navigate to # → View Logs

25.3 OS package update

25.3.1 Components

This section covers the custom components that the OS package update process uses over the
default Day 2 components (Section 25.1.1, “Components”).

250 OS package update

25.3.1.1 edge-update.service

Systemd service responsible for performing the OS package update . Uses the transactional-up-

date (https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html) com-
mand to perform a distribution upgrade (https://en.opensuse.org/SDB:Zypper_usage#Distribu-

tion_upgrade) (dup).

Note
If you wish to use a normal upgrade (https://en.opensuse.org/SDB:Zypper_usage#Updat-

ing_packages) method, create a edge-update.conf le under /etc/edge/ on each
node. Inside this le, add the UPDATE_METHOD=up variable.

Shipped through a SUC plan, which should be located on each downstream cluster that is in
need of a OS package update.

25.3.2 Requirements

General:

1. SCC registered machine - All downstream cluster nodes should be registered to https://
scc.suse.com/ . This is needed so that the edge-update.service can successfully con-
nect to the needed OS RPM repositories.

2. Make sure that SUC Plan tolerations match node tolerations - If your Kubernetes clus-
ter nodes have custom taints, make sure to add tolerations (https://kubernetes.io/docs/con-

cepts/scheduling-eviction/taint-and-toleration/) for those taints in the SUC Plans. By de-
fault SUC Plans have tolerations only for control-plane nodes. Default tolerations include:

CriticalAddonsOnly=true:NoExecute

node-role.kubernetes.io/control-plane:NoSchedule

node-role.kubernetes.io/etcd:NoExecute

251 Requirements

https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html
https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html
https://en.opensuse.org/SDB:Zypper_usage#Distribution_upgrade
https://en.opensuse.org/SDB:Zypper_usage#Distribution_upgrade
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Note
Any additional tolerations must be added under the .spec.tolerations sec-
tion of each Plan. SUC Plans related to the OS package update can be found in
the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-examples)

repository under fleets/day2/system-upgrade-controller-plans/os-

pkg-update . Make sure you use the Plans from a valid repository release

(https://github.com/suse-edge/fleet-examples/releases) tag.

An example of defining custom tolerations for the control-plane SUC Plan,
would look like this:

apiVersion: upgrade.cattle.io/v1
kind: Plan
metadata:
 name: os-pkg-plan-control-plane
spec:
 ...
 tolerations:
 # default tolerations
 - key: "CriticalAddonsOnly"
 operator: "Equal"
 value: "true"
 effect: "NoExecute"
 - key: "node-role.kubernetes.io/control-plane"
 operator: "Equal"
 effect: "NoSchedule"
 - key: "node-role.kubernetes.io/etcd"
 operator: "Equal"
 effect: "NoExecute"
 # custom toleration
 - key: "foo"
 operator: "Equal"
 value: "bar"
 effect: "NoSchedule"
...

252 Requirements

https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

Air-gapped:

1. Mirror SUSE RPM repositories - OS RPM repositories should be locally mirrored so that
edge-update.service can have access to them. This can be achieved using RMT (https://

github.com/SUSE/rmt) .

25.3.3 Update procedure

Note
This section assumes you will be deploying the OS package update SUC Plan using
Fleet (Chapter 6, Fleet). If you intend to deploy the SUC Plan using a different approach,
refer to Section 25.3.4.3, “SUC Plan deployment - third-party GitOps workflow”.

The OS package update procedure revolves around deploying SUC Plans to downstream
clusters. These plans then hold information about how and on which nodes to deploy the
edge-update.service systemd.service. For information regarding the structure of a SUC
Plan, refer to the upstream (https://github.com/rancher/system-upgrade-controller?tab=readme-

ov-file#example-plans) documentation.

OS package update SUC Plans are shipped in the following ways:

Through a GitRepo resources - Section 25.3.4.1, “SUC Plan deployment - GitRepo resource”

Through a Bundle resource - Section 25.3.4.2, “SUC Plan deployment - Bundle resource”

To determine which resource you should use, refer to Section 25.1.2, “Determine your use-case”.

For a full overview of what happens during the update procedure, refer to the Section 25.3.3.1,

“Overview” section.

25.3.3.1 Overview

This section aims to describe the full workflow that the OS package update process goes throught
from start to finish.

253 Update procedure

https://github.com/SUSE/rmt
https://github.com/SUSE/rmt
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans

FIGURE 25.4: OS PACKAGE UPDATE WORKFLOW

254 Update procedure

OS pacakge update steps:

1. Based on his use-case, the user determines whether to use a GitRepo or a Bundle resource
for the deployment of the OS package update SUC Plans to the desired downstream
clusters. For information on how to map a GitRepo/Bundle to a specific set of downstream
clusters, see Mapping to Downstream Clusters (https://fleet.rancher.io/gitrepo-targets) .

a. If you are unsure whether you should use a GitRepo or a Bundle resource for the
SUC Plan deployment, refer to Section 25.1.2, “Determine your use-case”.

b. For GitRepo/Bundle configuration options, refer to Section 25.3.4.1, “SUC Plan deploy-

ment - GitRepo resource” or Section 25.3.4.2, “SUC Plan deployment - Bundle resource”.

2. The user deploys the configured GitRepo/Bundle resource to the fleet-default name-
space in his management cluster . This is done either manually or thorugh the Rancher
UI if such is available.

3. Fleet (Chapter 6, Fleet) constantly monitors the fleet-default namespace and immedi-
ately detects the newly deployed GitRepo/Bundle resource. For more information regard-
ing what namespaces does Fleet monitor, refer to Fleet’s Namespaces (https://fleet.ranch-

er.io/namespaces) documentation.

4. If the user has deployed a GitRepo resource, Fleet will reconcile the GitRepo and
based on its paths and eet.yaml configurations it will deploy a Bundle resource in
the fleet-default namespace. For more information, refer to Fleet’s GitRepo Contents

(https://fleet.rancher.io/gitrepo-content) documentation.

5. Fleet then proceeds to deploy the Kubernetes resources from this Bundle to all the
targeted downstream clusters . In the context of OS package updates , Fleet deploys
the following resources from the Bundle:

a. os-pkg-plan-agent SUC Plan - instructs SUC on how to do a package update on
cluster agent nodes. Will not be interpreted if the cluster consists only from con-
trol-plane nodes.

b. os-pkg-plan-control-plane SUC Plan - instructs SUC on how to do a package
update on cluster control-plane nodes.

c. os-pkg-update Secret - referenced in each SUC Plan; ships an update.sh script
responsible for creating the edge-update.service sustemd.service which will do
the actual package update.

255 Update procedure

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

Note
The above resources will be deployed in the cattle-system namespace of
each downstream cluster.

6. On the downstream cluster, SUC picks up the newly deployed SUC Plans and deploys an
Update Pod on each node that matches the node selector defined in the SUC Plan. For
information how to monitor the SUC Plan Pod, refer to Section 25.2.2.2, “Monitor SUC Plans”.

7. The Update Pod (deployed on each node) mounts the os-pkg-update Secret and exe-
cutes the update.sh script that the Secret ships.

8. The update.sh proceeds to do the following:

a. Create the edge-update.service - the service created will be of type oneshot and
will adopt the following workflow:

i. Update all package versions on the node OS, by executing:

transactional-update cleanup dup

ii. After a successful transactional-update , shedule a system reboot so that
the package version updates can take effect

Note
System reboot will be scheduled for 1 minute after a successful trans-
actional-update execution.

b. Start the edge-update.service and wait for it to complete

c. Cleanup the edge-update.service - after the systemd.service has done its job, it
is removed from the system in order to ensure that no accidental executions/reboots
happen in the future.

The OS package update procedure finishes with the system reboot. After the reboot all OS pack-
age versions should be updated to their respective latest version as seen in the available OS
RPM repositories.

256 Update procedure

25.3.4 OS package update - SUC Plan deployment

This section describes how to orchestrate the deployment of SUC Plans related OS package
updates using Fleet’s GitRepo and Bundle resources.

25.3.4.1 SUC Plan deployment - GitRepo resource

A GitRepo resource, that ships the needed OS package update SUC Plans, can be deployed
in one of the following ways:

1. Through the Rancher UI - Section 25.3.4.1.1, “GitRepo creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 25.3.4.1.2, “GitRepo creation - manual”) the resource to your
management cluster .

Once deployed, to monitor the OS package update process of the nodes of your targeted cluster,
refer to the Section 25.2.2.2, “Monitor SUC Plans” documentation.

25.3.4.1.1 GitRepo creation - Rancher UI

1. In the upper left corner, # → Continuous Delivery

2. Go to Git Repos → Add Repository

If you use the suse-edge/fleet-examples repository:

1. Repository URL - https://github.com/suse-edge/fleet-examples.git

2. Watch → Revision - choose a release (https://github.com/suse-edge/fleet-examples/releas-

es) tag for the suse-edge/fleet-examples repository that you wish to use

3. Under Paths add the path to the OS package update Fleets that you wish to use - fleets/
day2/system-upgrade-controller-plans/os-pkg-update

4. Select Next to move to the target configuration section. Only select clusters whose
node’s packages you wish to upgrade

5. Create

257 OS package update - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

Alternatively, if you decide to use your own repository to host these les, you would need to
provide your repo data above.

25.3.4.1.2 GitRepo creation - manual

1. Choose the desired Edge release (https://github.com/suse-edge/fleet-examples/releases)

tag that you wish to apply the OS SUC update Plans from (referenced below as
${REVISION}).

2. Pull the GitRepo resource:

curl -o os-pkg-update-gitrepo.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/${REVISION}/gitrepos/day2/os-pkg-update-gitrepo.yaml

3. Edit the GitRepo configuration, under spec.targets specify your desired target list. By
default the GitRepo resources from the suse-edge/fleet-examples are NOT mapped
to any down stream clusters.

To match all clusters change the default GitRepo target to:

spec:
 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

4. Apply the GitRepo resources to your management cluster :

kubectl apply -f os-pkg-update-gitrepo.yaml

5. View the created GitRepo resource under the fleet-default namespace:

kubectl get gitrepo os-pkg-update -n fleet-default

Example output
NAME REPO COMMIT
 BUNDLEDEPLOYMENTS-READY STATUS
os-pkg-update https://github.com/suse-edge/fleet-examples.git release-3.0.1 0/0

258 OS package update - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

25.3.4.2 SUC Plan deployment - Bundle resource

A Bundle resource, that ships the needed OS package update SUC Plans, can be deployed
in one of the following ways:

1. Through the Rancher UI - Section 25.3.4.2.1, “Bundle creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 25.3.4.2.2, “Bundle creation - manual”) the resource to your
management cluster .

Once deployed, to monitor the OS package update process of the nodes of your targeted cluster,
refer to the Section 25.2.2.2, “Monitor SUC Plans” documentation.

25.3.4.2.1 Bundle creation - Rancher UI

1. In the upper left corner, click # → Continuous Delivery

2. Go to Advanced > Bundles

3. Select Create from YAML

4. From here you can create the Bundle in one of the following ways:

a. By manually copying the Bundle content to the Cre-
ate from YAML page. Content can be retrieved
from https://raw.githubusercontent.com/suse-edge/fleet-examples/${REVISION}/bun-

dles/day2/system-upgrade-controller-plans/os-pkg-update/pkg-update-bundle.yaml ,
where ${REVISION} is the Edge release (https://github.com/suse-edge/fleet-exam-

ples/releases) that you are using

b. By cloning the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-exam-

ples.git) repository to the desired release (https://github.com/suse-edge/fleet-ex-

amples/releases) tag and selecting the Read from File option in the Create
from YAML page. From there, navigate to bundles/day2/system-upgrade-con-
troller-plans/os-pkg-update directory and select pkg-update-bundle.yaml .
This will auto-populate the Create from YAML page with the Bundle content.

259 OS package update - SUC Plan deployment

https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/os-pkg-update/pkg-update-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/os-pkg-update/pkg-update-bundle.yaml
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

5. Change the target clusters for the Bundle :

To match all downstream clusters change the default Bundle .spec.targets to:

spec:
 targets:
 - clusterSelector: {}

For a more granular downstream cluster mappings, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets) .

6. Select Create

25.3.4.2.2 Bundle creation - manual

1. Choose the desired Edge release (https://github.com/suse-edge/fleet-examples/releases)

tag that you wish to apply the OS package update SUC Plans from (referenced below as
${REVISION}).

2. Pull the Bundle resource:

curl -o pkg-update-bundle.yaml https://raw.githubusercontent.com/suse-edge/fleet-
examples/${REVISION}/bundles/day2/system-upgrade-controller-plans/os-pkg-update/pkg-
update-bundle.yaml

3. Edit the Bundle target configurations, under spec.targets provide your desired target
list. By default the Bundle resources from the suse-edge/fleet-examples are NOT
mapped to any down stream clusters.

To match all clusters change the default Bundle target to:

spec:
 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

260 OS package update - SUC Plan deployment

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

4. Apply the Bundle resources to your management cluster :

kubectl apply -f pkg-update-bundle.yaml

5. View the created Bundle resource under the fleet-default namespace:

kubectl get bundles os-pkg-update -n fleet-default

Example output
NAME BUNDLEDEPLOYMENTS-READY STATUS
os-pkg-update 0/0

25.3.4.3 SUC Plan deployment - third-party GitOps workflow

There might be use-cases where users would like to incorporate the OS package update SUC
Plans to their own third-party GitOps workflow (e.g. Flux).

To get the OS package update resources that you need, rst determine the Edge release (https://

github.com/suse-edge/fleet-examples/releases) tag of the suse-edge/fleet-examples (https://

github.com/suse-edge/fleet-examples.git) repository that you would like to use.

After that, resources can be found at fleets/day2/system-upgrade-controller-plans/os-
pkg-update , where:

plan-control-plane.yaml - system-upgrade-controller Plan resource for con-
trol-plane nodes

plan-agent.yaml - system-upgrade-controller Plan resource for agent nodes

secret.yaml - secret that ships a script that creates the edge-up-

date.service systemd.service (https://www.freedesktop.org/software/systemd/man/lat-

est/systemd.service.html)

Important
These Plan resources are interpreted by the system-upgrade-controller and should
be deployed on each downstream cluster that you wish to upgrade. For information
on how to deploy the system-upgrade-controller , see Section 25.2.1.3, “Deploying sys-

tem-upgrade-controller when using a third-party GitOps workflow”.

261 OS package update - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git
https://www.freedesktop.org/software/systemd/man/latest/systemd.service.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.service.html

To better understand how your GitOps workflow can be used to deploy the SUC Plans for OS
package update, it can be beneficial to take a look at the overview (Section 25.3.3.1, “Overview”)
of the update procedure using Fleet .

25.4 Kubernetes version upgrade

Important
This section covers Kubernetes upgrades for downstream clusters that have NOT been cre-
ated through a Rancher (Chapter 4, Rancher) instance. For information on how to upgrade
the Kubernetes version of Rancher created clusters, see Upgrading and Rolling Back Ku-

bernetes (https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-

upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version) .

25.4.1 Components

This section covers the custom components that the Kubernetes upgrade process uses over
the default Day 2 components (Section 25.1.1, “Components”).

25.4.1.1 rke2-upgrade

Image responsible for upgrading the RKE2 version of a specific node.

Shipped through a Pod created by SUC based on a SUC Plan. The Plan should be located on
each downstream cluster that is in need of a RKE2 upgrade.

For more information regarding how the rke2-upgrade image performs the upgrade, see the
upstream (https://github.com/rancher/rke2-upgrade/tree/master) documentation.

25.4.1.2 k3s-upgrade

Image responsible for upgrading the K3s version of a specific node.

Shipped through a Pod created by SUC based on a SUC Plan. The Plan should be located on
each downstream cluster that is in need of a K3s upgrade.

262 Kubernetes version upgrade

https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version
https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version
https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version
https://github.com/rancher/rke2-upgrade/tree/master

For more information regarding how the k3s-upgrade image performs the upgrade, see the
upstream (https://github.com/k3s-io/k3s-upgrade) documentation.

25.4.2 Requirements

1. Backup your Kubernetes distribution:

a. For imported RKE2 clusters, see the RKE2 Backup and Restore (https://doc-

s.rke2.io/backup_restore) documentation.

b. For imported K3s clusters, see the K3s Backup and Restore (https://docs.k3s.io/data-

store/backup-restore) documentation.

2. Make sure that SUC Plan tolerations match node tolerations - If your Kubernetes clus-
ter nodes have custom taints, make sure to add tolerations (https://kubernetes.io/docs/con-

cepts/scheduling-eviction/taint-and-toleration/) for those taints in the SUC Plans. By de-
fault SUC Plans have tolerations only for control-plane nodes. Default tolerations include:

CriticalAddonsOnly=true:NoExecute

node-role.kubernetes.io/control-plane:NoSchedule

node-role.kubernetes.io/etcd:NoExecute

Note
Any additional tolerations must be added under the .spec.tolerations sec-
tion of each Plan. SUC Plans related to the Kubernetes version upgrade can
be found in the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-

examples) repository under:

For RKE2 - fleets/day2/system-upgrade-controller-plans/rke2-
upgrade

For K3s - fleets/day2/system-upgrade-controller-plans/k3s-up-
grade

Make sure you use the Plans from a valid repository release (https://

github.com/suse-edge/fleet-examples/releases) tag.

263 Requirements

https://github.com/k3s-io/k3s-upgrade
https://docs.rke2.io/backup_restore
https://docs.rke2.io/backup_restore
https://docs.k3s.io/datastore/backup-restore
https://docs.k3s.io/datastore/backup-restore
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

An example of defining custom tolerations for the RKE2 control-plane SUC
Plan, would look like this:

apiVersion: upgrade.cattle.io/v1
kind: Plan
metadata:
 name: rke2-plan-control-plane
spec:
 ...
 tolerations:
 # default tolerations
 - key: "CriticalAddonsOnly"
 operator: "Equal"
 value: "true"
 effect: "NoExecute"
 - key: "node-role.kubernetes.io/control-plane"
 operator: "Equal"
 effect: "NoSchedule"
 - key: "node-role.kubernetes.io/etcd"
 operator: "Equal"
 effect: "NoExecute"
 # custom toleration
 - key: "foo"
 operator: "Equal"
 value: "bar"
 effect: "NoSchedule"
...

25.4.3 Upgrade procedure

Note
This section assumes you will be deploying SUC Plans using Fleet (Chapter 6, Fleet). If you
intend to deploy the SUC Plan using a different approach, refer to Section 25.4.4.3, “SUC

Plan deployment - third-party GitOps workflow”.

264 Upgrade procedure

The Kubernetes version upgrade procedure revolves around deploying SUC Plans to
downstream clusters. These plans hold information that instructs the SUC on which nodes
to create Pods which run the rke2/k3s-upgrade images. For information regarding the
structure of a SUC Plan, refer to the upstream (https://github.com/rancher/system-upgrade-con-

troller?tab=readme-ov-file#example-plans) documentation.

Kubernetes upgrade Plans are shipped in the following ways:

Through a GitRepo resources - Section 25.4.4.1, “SUC Plan deployment - GitRepo resource”

Through a Bundle resource - Section 25.4.4.2, “SUC Plan deployment - Bundle resource”

To determine which resource you should use, refer to Section 25.1.2, “Determine your use-case”.

For a full overview of what happens during the update procedure, refer to the Section 25.4.3.1,

“Overview” section.

25.4.3.1 Overview

This section aims to describe the full workflow that the Kubernetes version upgrade process
goes throught from start to finish.

265 Upgrade procedure

https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans

FIGURE 25.5: KUBERNETES VERSION UPGRADE WORKFLOW

266 Upgrade procedure

Kubernetes version upgrade steps:

1. Based on his use-case, the user determines whether to use a GitRepo or a Bundle resource
for the deployment of the Kubernetes upgrade SUC Plans to the desired downstream
clusters. For information on how to map a GitRepo/Bundle to a specific set of downstream
clusters, see Mapping to Downstream Clusters (https://fleet.rancher.io/gitrepo-targets) .

a. If you are unsure whether you should use a GitRepo or a Bundle resource for the
SUC Plan deployment, refer to Section 25.1.2, “Determine your use-case”.

b. For GitRepo/Bundle configuration options, refer to Section 25.4.4.1, “SUC Plan deploy-

ment - GitRepo resource” or Section 25.4.4.2, “SUC Plan deployment - Bundle resource”.

2. The user deploys the configured GitRepo/Bundle resource to the fleet-default name-
space in his management cluster . This is done either manually or thorugh the Rancher
UI if such is available.

3. Fleet (Chapter 6, Fleet) constantly monitors the fleet-default namespace and immedi-
ately detects the newly deployed GitRepo/Bundle resource. For more information regard-
ing what namespaces does Fleet monitor, refer to Fleet’s Namespaces (https://fleet.ranch-

er.io/namespaces) documentation.

4. If the user has deployed a GitRepo resource, Fleet will reconcile the GitRepo and
based on its paths and eet.yaml configurations it will deploy a Bundle resource in
the fleet-default namespace. For more information, refer to Fleet’s GitRepo Contents

(https://fleet.rancher.io/gitrepo-content) documentation.

5. Fleet then proceeds to deploy the Kubernetes resources from this Bundle to all the
targeted downstream clusters . In the context of the Kubernetes version upgrade ,
Fleet deploys the following resources from the Bundle (depending on the Kubernetes dis-
trubution):

a. rke2-plan-agent / k3s-plan-agent - instructs SUC on how to do a Kubernetes
upgrade on cluster agent nodes. Will not be interpreted if the cluster consists only
from control-plane nodes.

b. rke2-plan-control-plane / k3s-plan-control-plane - instructs SUC on how to
do a Kubernetes upgrade on cluster control-plane nodes.

267 Upgrade procedure

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

Note
The above SUC Plans will be deployed in the cattle-system namespace of
each downstream cluster.

6. On the downstream cluster, SUC picks up the newly deployed SUC Plans and deploys an
Update Pod on each node that matches the node selector defined in the SUC Plan. For
information how to monitor the SUC Plan Pod, refer to Section 25.2.2.2, “Monitor SUC Plans”.

7. Depending on which SUC Plans you have deployed, the Update Pod will run either a rke2-

upgrade (https://hub.docker.com/r/rancher/rke2-upgrade/tags) or a k3s-upgrade (https://

hub.docker.com/r/rancher/k3s-upgrade/tags) image and will execute the following work-
flow on each cluster node:

a. Cordon (https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/)

cluster node - to ensure that no pods are scheduled accidentally on this node while
it is being upgraded, we mark it as unschedulable .

b. Replace the rke2/k3s binary that is installed on the node OS with the binary shipped
by the rke2-upgrade/k3s-upgrade image that the Pod is currently running.

c. Kill the rke2/k3s process that is running on the node OS - this instructs the super-
visor to automatically restart the rke2/k3s process using the new version.

d. Uncordon (https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncor-

don/) cluster node - after the successful Kubernetes distribution upgrade, the node
is again marked as scheduable .

Note
For further information regarding how the rke2-upgrade and k3s-up-
grade images work, see the rke2-upgrade (https://github.com/rancher/rke2-up-

grade) and k3s-upgrade (https://github.com/k3s-io/k3s-upgrade) upstream
projects.

With the above steps executed, the Kubernetes version of each cluster node should have been up-
graded to the desired Edge compatible release (https://github.com/suse-edge/fleet-examples/re-

leases) .

268 Upgrade procedure

https://hub.docker.com/r/rancher/rke2-upgrade/tags
https://hub.docker.com/r/rancher/rke2-upgrade/tags
https://hub.docker.com/r/rancher/k3s-upgrade/tags
https://hub.docker.com/r/rancher/k3s-upgrade/tags
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncordon/
https://github.com/rancher/rke2-upgrade
https://github.com/rancher/rke2-upgrade
https://github.com/k3s-io/k3s-upgrade
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

25.4.4 Kubernetes version upgrade - SUC Plan deployment

25.4.4.1 SUC Plan deployment - GitRepo resource

A GitRepo resource, that ships the needed Kubernetes upgrade SUC Plans, can be deployed
in one of the following ways:

1. Through the Rancher UI - Section 25.4.4.1.1, “GitRepo creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 25.4.4.1.2, “GitRepo creation - manual”) the resource to your
management cluster .

Once deployed, to monitor the Kubernetes upgrade process of the nodes of your targeted cluster,
refer to the Section 25.2.2.2, “Monitor SUC Plans” documentation.

25.4.4.1.1 GitRepo creation - Rancher UI

1. In the upper left corner, # → Continuous Delivery

2. Go to Git Repos → Add Repository

If you use the suse-edge/fleet-examples repository:

1. Repository URL - https://github.com/suse-edge/fleet-examples.git

2. Watch → Revision - choose a release (https://github.com/suse-edge/fleet-examples/releas-

es) tag for the suse-edge/fleet-examples repository that you wish to use

3. Under Paths add the path to the Kubernetes distribution upgrade Fleets as seen in the
release tag:

a. For RKE2 - fleets/day2/system-upgrade-controller-plans/rke2-upgrade

b. For K3s - fleets/day2/system-upgrade-controller-plans/k3s-upgrade

4. Select Next to move to the target configuration section. Only select clusters for which
you wish to upgrade the desired Kubernetes distribution

5. Create

269 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

Alternatively, if you decide to use your own repository to host these les, you would need to
provide your repo data above.

25.4.4.1.2 GitRepo creation - manual

1. Choose the desired Edge release (https://github.com/suse-edge/fleet-examples/releases)

tag that you wish to apply the Kubernetes SUC upgrade Plans from (referenced below
as ${REVISION}).

2. Pull the GitRepo resource:

For RKE2 clusters:

curl -o rke2-upgrade-gitrepo.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/${REVISION}/gitrepos/day2/rke2-upgrade-gitrepo.yaml

For K3s clusters:

curl -o k3s-upgrade-gitrepo.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/${REVISION}/gitrepos/day2/k3s-upgrade-gitrepo.yaml

3. Edit the GitRepo configuration, under spec.targets specify your desired target list. By
default the GitRepo resources from the suse-edge/fleet-examples are NOT mapped
to any down stream clusters.

To match all clusters change the default GitRepo target to:

spec:
 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

4. Apply the GitRepo resources to your management cluster :

RKE2
kubectl apply -f rke2-upgrade-gitrepo.yaml

K3s

270 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

kubectl apply -f k3s-upgrade-gitrepo.yaml

5. View the created GitRepo resource under the fleet-default namespace:

RKE2
kubectl get gitrepo rke2-upgrade -n fleet-default

K3s
kubectl get gitrepo k3s-upgrade -n fleet-default

Example output
NAME REPO COMMIT
 BUNDLEDEPLOYMENTS-READY STATUS
k3s-upgrade https://github.com/suse-edge/fleet-examples.git release-3.0.1 0/0
rke2-upgrade https://github.com/suse-edge/fleet-examples.git release-3.0.1 0/0

25.4.4.2 SUC Plan deployment - Bundle resource

A Bundle resource, that ships the needed Kubernetes upgrade SUC Plans, can be deployed
in one of the following ways:

1. Through the Rancher UI - Section 25.4.4.2.1, “Bundle creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 25.4.4.2.2, “Bundle creation - manual”) the resource to your
management cluster .

Once deployed, to monitor the Kubernetes upgrade process of the nodes of your targeted cluster,
refer to the Section 25.2.2.2, “Monitor SUC Plans” documentation.

25.4.4.2.1 Bundle creation - Rancher UI

1. In the upper left corner, click # → Continuous Delivery

2. Go to Advanced > Bundles

3. Select Create from YAML

271 Kubernetes version upgrade - SUC Plan deployment

4. From here you can create the Bundle in one of the following ways:

a. By manually copying the Bundle content to the Create from YAML page. Content
can be retrieved:

i. For RKE2 - https://raw.githubusercontent.com/suse-edge/fleet-exam-

ples/${REVISION}/bundles/day2/system-upgrade-controller-plans/rke2-

upgrade/plan-bundle.yaml

ii. For K3s - https://raw.githubusercontent.com/suse-edge/fleet-exam-

ples/${REVISION}/bundles/day2/system-upgrade-controller-plans/k3s-

upgrade/plan-bundle.yaml

b. By cloning the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-ex-

amples.git) repository to the desired release (https://github.com/suse-edge/

fleet-examples/releases) tag and selecting the Read from File option
in the Create from YAML page. From there, navigate to the bundle
that you need (/bundles/day2/system-upgrade-controller-plans/rke2-up-
grade/plan-bundle.yaml for RKE2 and /bundles/day2/system-upgrade-con-
troller-plans/k3s-upgrade/plan-bundle.yaml for K3s). This will auto-populate
the Create from YAML page with the Bundle content

5. Change the target clusters for the Bundle :

To match all downstream clusters change the default Bundle .spec.targets to:

spec:
 targets:
 - clusterSelector: {}

For a more granular downstream cluster mappings, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets) .

6. Create

272 Kubernetes version upgrade - SUC Plan deployment

https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/$%7BREVISION%7D/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

25.4.4.2.2 Bundle creation - manual

1. Choose the desired Edge release (https://github.com/suse-edge/fleet-examples/releases)

tag that you wish to apply the Kubernetes SUC upgrade Plans from (referenced below
as ${REVISION}).

2. Pull the Bundle resources:

For RKE2 clusters:

curl -o rke2-plan-bundle.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/${REVISION}/bundles/day2/system-upgrade-controller-plans/rke2-
upgrade/plan-bundle.yaml

For K3s clusters:

curl -o k3s-plan-bundle.yaml https://raw.githubusercontent.com/suse-edge/fleet-
examples/${REVISION}/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/
plan-bundle.yaml

3. Edit the Bundle target configurations, under spec.targets provide your desired target
list. By default the Bundle resources from the suse-edge/fleet-examples are NOT
mapped to any down stream clusters.

To match all clusters change the default Bundle target to:

spec:
 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

4. Apply the Bundle resources to your management cluster :

For RKE2
kubectl apply -f rke2-plan-bundle.yaml

For K3s
kubectl apply -f k3s-plan-bundle.yaml

5. View the created Bundle resource under the fleet-default namespace:

For RKE2
kubectl get bundles rke2-upgrade -n fleet-default

273 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

For K3s
kubectl get bundles k3s-upgrade -n fleet-default

Example output
NAME BUNDLEDEPLOYMENTS-READY STATUS
k3s-upgrade 0/0
rke2-upgrade 0/0

25.4.4.3 SUC Plan deployment - third-party GitOps workflow

There might be use-cases where users would like to incorporate the Kubernetes upgrade re-
sources to their own third-party GitOps workflow (e.g. Flux).

To get the upgrade resources that you need, rst determine the he Edge release (https://

github.com/suse-edge/fleet-examples/releases) tag of the suse-edge/fleet-examples (https://

github.com/suse-edge/fleet-examples.git) repository that you would like to use.

After that, the resources can be found at:

For a RKE2 cluster upgrade:

For control-plane nodes - fleets/day2/system-upgrade-controller-plans/
rke2-upgrade/plan-control-plane.yaml

For agent nodes - fleets/day2/system-upgrade-controller-plans/rke2-up-
grade/plan-agent.yaml

For a K3s cluster upgrade:

For control-plane nodes - fleets/day2/system-upgrade-controller-plans/
k3s-upgrade/plan-control-plane.yaml

For agent nodes - fleets/day2/system-upgrade-controller-plans/k3s-up-
grade/plan-agent.yaml

Important
These Plan resources are interpreted by the system-upgrade-controller and should
be deployed on each downstream cluster that you wish to upgrade. For information
on how to deploy the system-upgrade-controller , see Section 25.2.1.3, “Deploying sys-

tem-upgrade-controller when using a third-party GitOps workflow”.

274 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git

To better understand how your GitOps workflow can be used to deploy the SUC Plans for
Kubernetes version upgrade, it can be beneficial to take a look at the overview (Section 25.4.3.1,

“Overview”) of the update procedure using Fleet .

25.5 Helm chart upgrade

Note
The below sections focus on using Fleet functionalities to achieve a Helm chart update.

Users adopting a third-party GitOps workflow, should take the configurations for
their desired helm chart from its fleet.yaml located at fleets/day2/chart-tem-
plates/<chart-name> . Make sure you are retrieving the chart data from a valid
"Day 2" Edge release (https://github.com/suse-edge/fleet-examples/releases) .

25.5.1 Components

Apart from the default Day 2 components (Section 25.1.1, “Components”), no other custom com-
ponents are needed for this operation.

25.5.2 Preparation for air-gapped environments

25.5.2.1 Ensure that you have access to your Helm chart’s upgrade
fleet.yaml file

Host the needed resources on a local git server that is accessible by your management cluster .

275 Helm chart upgrade

https://github.com/suse-edge/fleet-examples/releases

25.5.2.2 Find the required assets for your Edge release version

1. Go to the Day 2 release (https://github.com/suse-edge/fleet-examples/releases) page and
nd the Edge 3.X.Y release that you want to upgrade your chart to and click Assets.

2. From the release’s Assets section, download the following les, which are required for an
air-gapped upgrade of a SUSE supported helm chart:

Release File Description

edge-save-images.sh This script pulls the images in the edge-
release-images.txt le and saves them
to a '.tar.gz' archive that can then be used
in your air-gapped environment.

edge-save-oci-artefacts.sh This script pulls the SUSE OCI chart arte-
facts in the edge-release-helm-oci-
artefacts.txt le and creates a '.tar.gz'
archive of a directory containing all other
chart OCI archives.

edge-load-images.sh This script loads the images in the '.tar.gz'
archive generated by edge-save-im-
ages.sh , retags them and pushes them to
your private registry.

edge-load-oci-artefacts.sh This script takes a directory containing
'.tgz' SUSE OCI charts and loads all OCI
charts to your private registry. The direc-
tory is retrieved from the '.tar.gz' archive
that the edge-save-oci-artefacts.sh
script has generated.

edge-release-helm-oci-artefacts.txt This le contains a list of OCI artefacts for
the SUSE Edge release Helm charts.

edge-release-images.txt This le contains a list of images needed
by the Edge release Helm charts.

276 Preparation for air-gapped environments

https://github.com/suse-edge/fleet-examples/releases

25.5.2.3 Create the SUSE Edge release images archive

On a machine with internet access:

1. Make edge-save-images.sh executable:

chmod +x edge-save-images.sh

2. Use edge-save-images.sh script to create a Docker importable '.tar.gz' archive:

./edge-save-images.sh --source-registry registry.suse.com

3. This will create a ready to load edge-images.tar.gz (unless you have specified the -
i|--images option) archive with the needed images.

4. Copy this archive to your air-gapped machine

scp edge-images.tar.gz <user>@<machine_ip>:/path

25.5.2.4 Create a SUSE Edge Helm chart OCI images archive

On a machine with internet access:

1. Make edge-save-oci-artefacts.sh executable:

chmod +x edge-save-oci-artefacts.sh

2. Use edge-save-oci-artefacts.sh script to create a '.tar.gz' archive of all SUSE Edge
Helm chart OCI images:

./edge-save-oci-artefacts.sh --source-registry registry.suse.com

3. This will create a oci-artefacts.tar.gz archive containing all SUSE Edge Helm chart
OCI images

4. Copy this archive to your air-gapped machine

scp oci-artefacts.tar.gz <user>@<machine_ip>:/path

277 Preparation for air-gapped environments

25.5.2.5 Load SUSE Edge release images to your air-gapped machine

On your air-gapped machine:

1. Log into your private registry (if required):

podman login <REGISTRY.YOURDOMAIN.COM:PORT>

2. Make edge-load-images.sh executable:

chmod +x edge-load-images.sh

3. Use edge-load-images.sh to load the images from the copied edge-images.tar.gz
archive, retag them and push them to your private registry:

./edge-load-images.sh --source-registry registry.suse.com --registry
 <REGISTRY.YOURDOMAIN.COM:PORT> --images edge-images.tar.gz

25.5.2.6 Load SUSE Edge Helm chart OCI images to your air-gapped
machine

On your air-gapped machine:

1. Log into your private registry (if required):

podman login <REGISTRY.YOURDOMAIN.COM:PORT>

2. Make edge-load-oci-artefacts.sh executable:

chmod +x edge-load-oci-artefacts.sh

3. Untar the copied oci-artefacts.tar.gz archive:

tar -xvf oci-artefacts.tar.gz

278 Preparation for air-gapped environments

4. This will produce a directory with the naming template edge-release-oci-tgz-<date>

5. Pass this directory to the edge-load-oci-artefacts.sh script to load the SUSE Edge
helm chart OCI images to your private registry:

Note
This script assumes the helm CLI has been pre-installed on your environment.
For Helm installation instructions, see Installing Helm (https://helm.sh/docs/intro/in-

stall/) .

./edge-load-oci-artefacts.sh --archive-directory edge-release-oci-tgz-<date> --
registry <REGISTRY.YOURDOMAIN.COM:PORT> --source-registry registry.suse.com

25.5.2.7 Create registry mirrors pointing to your private registry for your
Kubernetes distribution

For RKE2, see Containerd Registry Configuration (https://docs.rke2.io/install/containerd_reg-

istry_configuration)

For K3s, see Embedded Registry Mirror (https://docs.k3s.io/installation/registry-mirror)

25.5.3 Upgrade procedure

Note
The below upgrade procedure utilises Rancher’s Fleet (Chapter 6, Fleet) funtionality. Users
using a third-party GitOps workflow should retrieve the chart versions supported by each
Edge release from the Section 33.1, “Abstract” and populate these versions to their third-
party GitOps workflow.

279 Upgrade procedure

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://docs.rke2.io/install/containerd_registry_configuration
https://docs.rke2.io/install/containerd_registry_configuration
https://docs.k3s.io/installation/registry-mirror

This section focuses on the following Helm upgrade procedure use-cases:

1. I have a new cluster and would like to deploy and manage a SUSE Helm chart (Sec-

tion 25.5.3.1, “I have a new cluster and would like to deploy and manage a SUSE Helm chart”)

2. I would like to upgrade a Fleet managed Helm chart (Section 25.5.3.2, “I would like to upgrade

a Fleet managed Helm chart”)

3. I would like to upgrade an EIB created Helm chart (Section 25.5.3.3, “I would like to upgrade

an EIB created Helm chart”)

Important
Manually deployed Helm charts cannot be reliably upgraded. We suggest to redeploy the
helm chart using the Section 25.5.3.1, “I have a new cluster and would like to deploy and manage

a SUSE Helm chart” method.

25.5.3.1 I have a new cluster and would like to deploy and manage a SUSE
Helm chart

For users that want to manage their Helm chart lifecycle through Fleet.

25.5.3.1.1 Prepare your Fleet resources

1. Acquire the Chart’s Fleet resources from the Edge release (https://github.com/suse-edge/

fleet-examples/releases) tag that you wish to use

a. From the selected Edge release tag revision, navigate to the Helm chart eet -
fleets/day2/chart-templates/<chart>

b. Copy the chart Fleet directory to the Git repository that you will be using for your
GitOps workflow

280 Upgrade procedure

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

c. Optionally, if the Helm chart requires configurations to its values, edit the
.helm.values configuration inside the fleet.yaml le of the copied directory

d. Optionally, there may be use-cases where you need to add additional resources to
your chart’s eet so that it can better t your environment. For information on how to
enhance your Fleet directory, see Git Repository Contents (https://fleet.rancher.io/gitre-

po-content)

An example for the longhorn helm chart would look like:

User Git repository strucutre:

<user_repository_root>
└── longhorn
 └── fleet.yaml

fleet.yaml content populated with user longhorn data:

defaultNamespace: longhorn-system

helm:
 releaseName: "longhorn"
 chart: "longhorn"
 repo: "https://charts.longhorn.io"
 version: "1.6.1"
 takeOwnership: true
 # custom chart value overrides
 values:
 # Example for user provided custom values content
 defaultSettings:
 deletingConfirmationFlag: true

https://fleet.rancher.io/bundle-diffs
diff:
 comparePatches:
 - apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 name: engineimages.longhorn.io
 operations:
 - {"op":"remove", "path":"/status/conditions"}
 - {"op":"remove", "path":"/status/storedVersions"}
 - {"op":"remove", "path":"/status/acceptedNames"}
 - apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 name: nodes.longhorn.io

281 Upgrade procedure

https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

 operations:
 - {"op":"remove", "path":"/status/conditions"}
 - {"op":"remove", "path":"/status/storedVersions"}
 - {"op":"remove", "path":"/status/acceptedNames"}
 - apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 name: volumes.longhorn.io
 operations:
 - {"op":"remove", "path":"/status/conditions"}
 - {"op":"remove", "path":"/status/storedVersions"}
 - {"op":"remove", "path":"/status/acceptedNames"}

Note
These are just example values that are used to illustrate custom configurations over
the longhorn chart. They should NOT be treated as deployment guidelines for the
longhorn chart.

25.5.3.1.2 Create the GitRepo

After populating your repository with the chart’s Fleet resources, you must create a GitRepo

(https://fleet.rancher.io/ref-gitrepo) resource. This resource will hold information on how to
access your chart’s Fleet resources and to which clusters it needs to apply those resources.

The GitRepo resource can be created through the Rancher UI, or by manually deploying the
resource to the management cluster .

For information on how to create and deploy the GitRepo resource manually, see Creating a

Deployment (https://fleet.rancher.io/tut-deployment) .

To create a GitRepo resource through the Rancher UI, see Accessing Fleet in the Rancher

UI (https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#access-

ing-fleet-in-the-rancher-ui) .

Example longhorn GitRepo resource for manual deployment:

apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
 name: longhorn-git-repo
 namespace: fleet-default
spec:
 # If using a tag
 # revision: <user_repository_tag>

282 Upgrade procedure

https://fleet.rancher.io/ref-gitrepo
https://fleet.rancher.io/ref-gitrepo
https://fleet.rancher.io/tut-deployment
https://fleet.rancher.io/tut-deployment
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui

 #
 # If using a branch
 # branch: <user_repository_branch>
 paths:
 # As seen in the 'Prepare your Fleet resources' example
 - longhorn
 repo: <user_repository_url>
 targets:
 # Match all clusters
 - clusterSelector: {}

25.5.3.1.3 Managing the deployed Helm chart

Once deployed with Fleet, for Helm chart upgrades, see Section 25.5.3.2, “I would like to upgrade

a Fleet managed Helm chart”.

25.5.3.2 I would like to upgrade a Fleet managed Helm chart

1. Determine the version to which you need to upgrade your chart so that it is compatible
with an Edge 3.X.Y release. Helm chart version per Edge release can be viewed from the
Section 33.1, “Abstract”.

2. In your Fleet monitored Git repository, edit the Helm chart’s fleet.yaml le with the
correct chart version and repository from the Section 33.1, “Abstract”.

3. After commiting and pushing the changes to your repository, this will trigger an upgrade
of the desired Helm chart

25.5.3.3 I would like to upgrade an EIB created Helm chart

Note
This section assumes that you have deployed the system-upgrade-controller (SUC) be-
forehand, if you have not done so, or are unsure why you need it, see the default Day 2
components (Section 25.1.1, “Components”) list.

EIB deploys Helm charts by utilizing the auto-deploy manifests functionality of
rke2 (https://docs.rke2.io/advanced#auto-deploying-manifests) /k3s (https://docs.k3s.io/installa-

tion/packaged-components#auto-deploying-manifests-addons) . It creates a HelmChart (https://

283 Upgrade procedure

https://docs.rke2.io/advanced#auto-deploying-manifests
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://github.com/k3s-io/helm-controller#helm-controller

github.com/k3s-io/helm-controller#helm-controller) resource definition manifest unter the /
var/lib/rancher/<rke2/k3s>/server/manifests location of the initialiser node and lets
rke2/k3s pick it up and auto-deploy it in the cluster.

From a Day 2 point of view this would mean that any upgrades of the Helm chart need to
happen by editing the HelmChart manifest le of the specific chart. To automate this process
for multiple clusters, this section uses SUC Plans.

Below you can nd information on:

The general overview (Section 25.5.3.3.1, “Overview”) of the helm chart upgrade workflow.

The necessary upgrade steps (Section 25.5.3.3.2, “Upgrade Steps”) needed for a successful
helm chart upgrade.

An example (Section 25.5.3.3.3, “Example”) showcasing a Longhorn (https://longhorn.io)

chart upgrade using the explained method.

How to use the upgrade process with a different GitOps tool (Section 25.5.3.3.4, “Helm chart

upgrade using a third-party GitOps tool”).

25.5.3.3.1 Overview

This section is meant to give a high overview of the workflow that the user goes through in
order to upgrade one or multiple Helm charts. For a detailed explanation of the steps needed
for a Helm chart upgrade, see Section 25.5.3.3.2, “Upgrade Steps”.

284 Upgrade procedure

https://github.com/k3s-io/helm-controller#helm-controller
https://longhorn.io

FIGURE 25.6: HELM CHART UPGRADE WORKFLOW

285 Upgrade procedure

1. The workflow begins with the user pulling (https://helm.sh/docs/helm/helm_pull/) the new
Helm chart archive(s) that he wishes to upgrade his chart(s) to.

2. The archive(s) should then be encoded and passed as configuration to the eib-chart-
upgrade-user-data.yaml le that is located under the eet directory for the related
SUC Plan. This is further explained in the upgrade steps (Section 25.5.3.3.2, “Upgrade Steps”)
section.

3. The user then proceeds to configure and deploy a GitRepo resource that will ship all the
needed resources (SUC Plan, secrets, etc.) to the downstream clusters.

a. The resource is deployed on the management cluster under the fleet-default
namespace.

4. Fleet (Chapter 6, Fleet) detects the deployed resource and deploys all the configured re-
sources to the specified downstream clusters. Deployed resources include:

a. The eib-chart-upgrade SUC Plan that will be used by SUC to create an Upgrade
Pod on each node.

b. The eib-chart-upgrade-script Secret that ships the upgrade script that the
Upgrade Pod will use to upgrade the HelmChart manifests on the initialiser node.

c. The eib-chart-upgrade-user-data Secret that ships the chart data that the up-
grade script will use in order to understand which chart manifests it needs to
upgrade.

5. Once the eib-chart-upgrade SUC Plan has been deployed, the SUC picks it up and cre-
ates a Job which deploys the Upgrade Pod.

6. Once deployed, the Upgrade Pod mounts the eib-chart-upgrade-script and eib-
chart-upgrade-user-data Secrets and executes the upgrade script that is shipped by
the eib-chart-upgrade-script Secret.

7. The upgrade script does the following:

a. Determine whether the Pod that the script is running on has been deployed on the
initialiser node. The initialiser node is the node that is hosting the Helm-
Chart manifests. For a single-node cluster it is the single control-plane node. For
HA clusters it is the node that you have marked as initializer when creating
the cluster in EIB. If you have not specified the initializer property, then the

286 Upgrade procedure

https://helm.sh/docs/helm/helm_pull/

rst node from the nodes list is marked as initializer . For more information,
see the upstream (https://github.com/suse-edge/edge-image-builder/blob/main/docs/

building-images.md#kubernetes) documentation for EIB.

Note
If the upgrade script is running on a non-initialiser node, it immediately
finishes its execution and does not go through the steps below.

b. Backup the manifests that will be edited in order to ensure disaster recover.

Note
By default backups of the manifests are stored under the /tmp/eib-helm-
chart-upgrade-<date> directory. If you wish to use a custom location you
can pass the MANIFEST_BACKUP_DIR enviroment variable to the Helm chart
upgrade SUC Plan (example in the Plan).

c. Edit the HelmChart manifests. As of this version, the following properties are
changed in order to trigger a chart upgrade:

i. The content of the chartContent property is replaced with the encoded
archive provided in the eib-chart-upgrade-user-data Secret.

ii. The value of the version property is replaced with the version provided in the
eib-chart-upgrade-user-data Secret.

8. After the successful execution of the upgrade script , the Helm integration for RKE2

(https://docs.rke2.io/helm) /K3s (https://docs.k3s.io/helm) will pickup the change and
automatically trigger an upgrade on the Helm chart.

25.5.3.3.2 Upgrade Steps

1. Determine an Edge relase tag (https://github.com/suse-edge/fleet-examples/releases) from
which you wish to copy the Helm chart upgrade logic.

2. Copy the fleets/day2/system-upgrade-controller-plans/eib-chart-upgrade eet
to the repository that your Fleet will be using to do GitOps from.

287 Upgrade procedure

https://github.com/suse-edge/edge-image-builder/blob/main/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/main/docs/building-images.md#kubernetes
https://docs.rke2.io/helm
https://docs.rke2.io/helm
https://docs.k3s.io/helm
https://github.com/suse-edge/fleet-examples/releases

3. Pull (https://helm.sh/docs/helm/helm_pull/) the Helm chart archive that you wish to up-
grade to:

helm pull [chart URL | repo/chartname]

Alternatively if you want to pull a specific version:
helm pull [chart URL | repo/chartname] --version 0.0.0

4. Encode the chart archive that you pulled:

Encode the archive and disable line wrapping
base64 -w 0 <chart-archive>.tgz

5. Configure the eib-chart-upgrade-user-data.yaml secret located under the eib-

chart-upgrade eet that you copied from step (2):

a. The secret ships a le called chart_upgrade_data.txt . This le holds the chart
upgrade data that the upgrade script will use to know which charts need to be up-
graded. The le expects one-line per chart entries in the following format "<name>|
<version>|<base64_encoded_archive>":

i. name - is the name of the helm chart as seen in the kubernetes.helm.chart-
s.name[] property of the EIB definition le.

ii. version - should hold the new version of the Helm chart. During the upgrade
this value will be used to replace the old version value of the HelmChart
manifest.

iii. base64_encoded_archive - pass the output of the base64 -w 0 <chart-
archive>.tgz here. During upgrade this value will be used to replace the old
chartContent value of the HelmChart manifest.

Note
The <name>|<version>|<base64_encoded_archive> line should
be removed from the le before you start adding your data. It serves as
an example of where and how you should configure your chart data.

6. Configure a GitRepo resource that will be shipping your chart upgrade fleet . For more
information on what a GitRepo is, see GitRepo Resource (https://fleet.rancher.io/ref-gitre-

po) .

288 Upgrade procedure

https://helm.sh/docs/helm/helm_pull/
https://fleet.rancher.io/ref-gitrepo
https://fleet.rancher.io/ref-gitrepo

a. Configure GitRepo through the Rancher UI:

i. In the upper left corner, # → Continuous Delivery

ii. Go to Git Repos → Add Repository

iii. Here pass your repository data and path to your chart upgrade fleet

iv. Select Next and specify the target clusters of which you want to upgrade the
configured charts

v. Create

b. If Rancher is not available on your setup, you can configure a GitRepo manually
on your management cluster :

i. Populate the following template with your data:

apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
 name: CHANGE_ME
 namespace: fleet-default
spec:
 # if running from a tag
 # revision: CHANGE_ME
 # if running from a branch
 # branch: CHANGE_ME
 paths:
 # path to your chart upgrade fleet relative to your repository
 - CHANGE_ME
 # your repository URL
 repo: CHANGE_ME
 targets:
 # Select target clusters
 - clusterSelector: CHANGE_ME
 # To match all clusters:
 # - clusterSelector: {}

For more information on how to setup and deploy a GitRepo resource, see
GitRepo Resource (https://fleet.rancher.io/ref-gitrepo) and Create a GitRepo Re-

source (https://fleet.rancher.io/gitrepo-add) .

289 Upgrade procedure

https://fleet.rancher.io/ref-gitrepo
https://fleet.rancher.io/gitrepo-add
https://fleet.rancher.io/gitrepo-add

For information on how to match taget clusters on a more granular level, see
Mapping to Downstream Clusters (https://fleet.rancher.io/gitrepo-targets) .

ii. Deploy the configured GitRepo resource to the fleet-default namespace of
the management cluster .

Executing this steps should result in a successfully created GitRepo resource. It will then be
picked up by Fleet and a Bundle will be created. This Bunlde will hold the raw Kubernetes
resources that the GitRepo has configured under its eet directory.

Fleet will then deploy all the Kubernetes resources from the Bundle to the specified downstream
clusters. One of this resources will be a SUC Plan that will trigger the chart upgrade. For a full
list of the resoruces that will be deployed and the workflow of the upgrade process, refer to the
overview (Section 25.5.3.3.1, “Overview”) section.

To track the upgrade process itself, refer to the Monitor SUC Plans (Section 25.2.2.2, “Monitor SUC

Plans”) section.

25.5.3.3.3 Example

The following section serves to provide a real life example to the Section 25.5.3.3.2, “Upgrade

Steps” section.

I have the following two EIB deployed clusters:

longhorn-single-k3s - single node K3s cluster

longhorn-ha-rke2 - HA RKE2 cluster

Both clusters are running Longhorn (https://longhorn.io) and have been deployed through EIB,
using the following image definition snippet:

kubernetes:
 # HA RKE2 cluster specific snippet
 # nodes:
 # - hostname: cp1rke2.example.com
 # initializer: true
 # type: server
 # - hostname: cp2rke2.example.com
 # type: server
 # - hostname: cp3rke2.example.com
 # type: server
 # - hostname: agent1rke2.example.com
 # type: agent

290 Upgrade procedure

https://fleet.rancher.io/gitrepo-targets
https://longhorn.io

 # - hostname: agent2rke2.example.com
 # type: agent
 # version depending on the distribution
 version: v1.28.13+k3s1/v1.28.13+rke2r1
 helm:
 charts:
 - name: longhorn
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 version: 1.5.5
 repositories:
 - name: longhorn
 url: https://charts.longhorn.io
...

291 Upgrade procedure

FIGURE 25.7: LONGHORN-SINGLE-K3S INSTALLED LONGHORN VERSION

292 Upgrade procedure

FIGURE 25.8: LONGHORN-HA-RKE2 INSTALLED LONGHORN VERSION

The problem with this is that currently longhorn-single-k3s and longhorn-ha-rke2 are
running with a Longhorn version that is not compatible with any Edge release.

We need to upgrade the chart on both clusters to a Edge supported Longhorn version.

To do this we follow these steps:

1. Determine the Edge relase tag (https://github.com/suse-edge/fleet-examples/releases)

from which we want to take the upgrade logic. For example, this example will use the
release-3.0.1 release tag for which the supported Longhorn version is 1.6.1 .

2. Clone the release-3.0.1 release tag and copy the fleets/day2/system-upgrade-con-
troller-plans/eib-chart-upgrade directory to our own repository.

293 Upgrade procedure

https://github.com/suse-edge/fleet-examples/releases

For simplicity this section works from a branch of the suse-edge/fleet-examples repos-
itory, so the directory structure is the same, but you can place the eib-chart-upgrade
eet anywhere in your repository.

Directory structure example.

.

...

|-- fleets

| `-- day2

| `-- system-upgrade-controller-plans

| `-- eib-chart-upgrade

| |-- eib-chart-upgrade-script.yaml

| |-- eib-chart-upgrade-user-data.yaml

| |-- fleet.yaml

| `-- plan.yaml

...

3. Add the Longhorn chart repository:

helm repo add longhorn https://charts.longhorn.io

4. Pull the Longhorn chart version 1.6.1 :

helm pull longhorn/longhorn --version 1.6.1

This will pull the longhorn as an archvie named longhorn-1.6.1.tgz .

5. Encode the Longhorn archive:

base64 -w 0 longhorn-1.6.1.tgz

This will output a long one-line base64 encoded string of the archive.

6. Now we have all the needed data to configure the eib-chart-upgrade-user-data.yaml
le. The le configuration should look like this:

apiVersion: v1
kind: Secret
metadata:
 name: eib-chart-upgrade-user-data
type: Opaque
stringData:
 # <name>|<version>|<base64_encoded_archive>
 chart_upgrade_data.txt: |

294 Upgrade procedure

 longhorn|1.6.1|H4sIFAAAAAAA/ykAK2FIUjBjSE02THk5NWIzV...

a. longhorn is the name of the chart as seen in my EIB definition le

b. 1.6.1 is the version to which I want to upgrade the version property of the Long-
horn HelmChart manifest

c. H4sIFAAAAAAA/ykAK2FIUjBjSE02THk5NWIzV… is a snippet of the encoded Longhorn
1.6.1 archive. A snippet has been added here for better readibility. You should
always provide the full base64 encoded archive string here.

Note
This example shows configuration for a single chart upgrade, but if your use-
case requires to upgrade multiple charts on multiple clusters, you can append
the additional chart data as seen below:

apiVersion: v1
kind: Secret
metadata:
 name: eib-chart-upgrade-user-data
type: Opaque
stringData:
 # <name>|<version>|<base64_encoded_archive>
 chart_upgrade_data.txt: |
 chartA|0.0.0|<chartA_base64_archive>
 chartB|0.0.0|<chartB_base64_archive>
 chartC|0.0.0|<chartC_base64_archive>
 ...

7. We also decided that we do not want to keep manifest backups at /tmp , so the following
configuration was added to the plan.yaml le:

apiVersion: upgrade.cattle.io/v1
kind: Plan
metadata:
 name: eib-chart-upgrade
spec:
 ...
 upgrade:
 ...
 # For when you want to backup your chart
 # manifest data under a specific directory

295 Upgrade procedure

 #
 envs:
 - name: MANIFEST_BACKUP_DIR
 value: "/root"

This will ensure that manifest backups will be saved under the /root directory instead
of /tmp .

8. Now that we have made all the needed configurations, what is left is to create the GitRepo
resource. This example creates the GitRepo resource through the Rancher UI .

9. Following the steps described in the Upgrade Steps (Section 25.5.3.3.2, “Upgrade Steps”), we:

a. Named the GitRepo "longhorn-upgrade".

b. Passed the URL to the repository that will be used - https://github.com/suse-edge/

fleet-examples.git

c. Passed the branch of the repository - "doc-example"

d. Passed the path to the eib-chart-upgrade eet as seen in the repo - fleets/day2/
system-upgrade-controller-plans/eib-chart-upgrade

e. Selected the target clusters and created the resource

296 Upgrade procedure

https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git

FIGURE 25.9: SUCCESSFULLY DEPLOYED SUC AND LONGHORN GITREPOS

Now we need to monitor the upgrade procedures on the clusters:

1. Check the status of the Upgrade Pods, following the directions from the SUC plan monitor
(Section 25.2.2.2, “Monitor SUC Plans”) section.

297 Upgrade procedure

a. A successfully completed Upgrade Pod that has been working on an intialiser
node should hold logs similar to:

FIGURE 25.10: UPGRADE POD RUNNING ON AN INITIALISER NODE

b. A successfully completed Upgrade Pod that has been working on a non-initialis-
er node should hold logs similar to:

FIGURE 25.11: UPGRADE POD RUNNING ON A NON-INITIALISER NODE

2. After a successful Upgrade Pod completion, we would also need to wait and monitor for
the pods that wil lbe created by the helm controller. These pods will do the actual upgrade
based on the le chagnes that the Upgrade Pod has done to the HelmChart manifest le.

a. In your cluster, go to Workloads → Pods and search for a pod that contains the
longhorn string in the default namespace. This should produce a pod with the
naming template helm-install-longhorn-* , view the logs of this pod.

298 Upgrade procedure

FIGURE 25.12: SUCCESSFULLY COMPLETED HELM-INSTALL POD

b. The logs should be similar to:

FIGURE 25.13: SUCCESSFULLY COMPLETED HELM-INSTALL POD LOGS

299 Upgrade procedure

Now that we have ensured that everything has completed succesfully, we need to verify the
version change:

1. On the clusters we need to go to More Resources → Helm → HelmCharts and in the
default namespace search for the longhorn HelmChart resource:

FIGURE 25.14: LONGHORN-SINGLE-K3S UPGRADED LONGHORN VERSION

300 Upgrade procedure

FIGURE 25.15: LONGHORN-HA-RKE2 UPGRADED LONGHORN VERSION

This ensures that the Longhorn helm chart has been successfully upgraded and concludes this
example.

If for some reason we would like to revert to the previous chart version of Longhorn, the previous
Longhorn manifest will be located under /root/longhorn.yaml on the initialiser node. This is
true, because we have specified the MANIFEST_BACKUP_DIR in the SUC Plan.

301 Upgrade procedure

25.5.3.3.4 Helm chart upgrade using a third-party GitOps tool

There might be use-cases where users would like to use this upgrade procedure with a GitOps
workflow other than Fleet (e.g. Flux).

To get the resources related to EIB deployed Helm chart upgrades you need to rst determine
the Edge release (https://github.com/suse-edge/fleet-examples/releases) tag of the suse-edge/

fleet-examples (https://github.com/suse-edge/fleet-examples.git) repository that you would like
to use.

After that, resources can be found at fleets/day2/system-upgrade-controller-plans/eib-
chart-upgrade , where:

plan.yaml - system-upgrade-controller Plan related to the upgrade procedure.

eib-chart-upgrade-script.yaml - Secret holding the upgrade script that is respon-
sible for editing and upgrade the HelmChart manifest les.

eib-chart-upgrade-user-data.yaml - Secret holding a le that is utilised by the up-
grade scritp ; populated by the user with relevat chart upgrade data beforehand.

Important
These Plan resources are interpreted by the system-upgrade-controller and should
be deployed on each downstream cluster that holds charts in need of an upgrade. For
information on how to deploy the system-upgrade-controller , see Section 25.2.1.3,

“Deploying system-upgrade-controller when using a third-party GitOps workflow”.

To better understand how your GitOps workflow can be used to deploy the SUC Plans for the
upgrade process, it can be beneficial to take a look at the overview (Section 25.5.3.3.1, “Overview”)
of the process using Fleet .

302 Upgrade procedure

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git

VI Product Documentation

26 SUSE Adaptive Telco Infrastructure Platform (ATIP) 304

27 Concept & Architecture 305

28 Requirements & Assumptions 313

29 Setting up the management cluster 317

30 Telco features configuration 355

31 Fully automated directed network provisioning 383

32 Lifecycle actions 436

Find the ATIP documentation here

26 SUSE Adaptive Telco Infrastructure Platform (ATIP)

SUSE Adaptive Telco Infrastructure Platform (ATIP) is a Telco-optimized edge computing plat-
form that enables telecom companies to innovate and accelerate the modernization of their
networks.

ATIP is a complete Telco cloud stack for hosting CNFs such as 5G Packet Core and Cloud RAN.

Automates zero-touch rollout and lifecycle management of complex edge stack configura-
tions at Telco scale.

Continuously assures quality on Telco-grade hardware, using Telco-specific configurations
and workloads.

Consists of components that are purpose-built for the edge and hence have smaller footprint
and higher performance per Watt.

Maintains a flexible platform strategy with vendor-neutral APIs and 100% open source.

304

27 Concept & Architecture

SUSE ATIP is a platform designed for hosting modern, cloud native, Telco applications at scale
from core to edge.

This page explains the architecture and components used in ATIP. Knowledge of this helps
deploy and use ATIP.

305

27.1 ATIP ArchitectureThe following diagram shows the high-level architecture of ATIP:

306 ATIP Architecture

27.2 Components

There are two different blocks, the management stack and the runtime stack:

Management stack: This is the part of ATIP that is used to manage the provision and
lifecycle of the runtime stacks. It includes the following components:

Multi-cluster management in public and private cloud environments with Rancher
(Chapter 4, Rancher)

Bare-metal support with Metal3 (Chapter 8, Metal3), MetalLB (Chapter 17, MetalLB) and
CAPI (Cluster API) infrastructure providers

Comprehensive tenant isolation and IDP (Identity Provider) integrations

Large marketplace of third-party integrations and extensions

Vendor-neutral API and rich ecosystem of providers

Control the SLE Micro transactional updates

GitOps Engine for managing the lifecycle of the clusters using Git repositories with
Fleet (Chapter 6, Fleet)

Runtime stack: This is the part of ATIP that is used to run the workloads.

Kubernetes with secure and lightweight distributions like K3s (Chapter 13, K3s) and
RKE2 (Chapter 14, RKE2) (RKE2 is hardened, certified and optimized for government
use and regulated industries).

NeuVector (Chapter 16, NeuVector) to enable security features like image vulnerability
scanning, deep packet inspection and automatic intra-cluster traffic control.

Block Storage with Longhorn (Chapter 15, Longhorn) to enable a simple and easy way
to use a cloud native storage solution.

Optimized Operating System with SLE Micro (Chapter 7, SLE Micro) to enable a secure,
lightweight and immutable (transactional le system) OS for running containers.
SLE Micro is available on aarch64 and x86_64 architectures, and it also supports
Real-Time Kernel for Telco and edge use cases.

307 Components

27.3 Example deployment flows
The following are high-level examples of workflows to understand the relationship between the
management and the runtime components.

Directed network provisioning is the workflow that enables the deployment of a new down-
stream cluster with all the components preconfigured and ready to run workloads with no man-
ual intervention.

27.3.1 Example 1: Deploying a new management cluster with all
components installed

Using the Edge Image Builder (Chapter 9, Edge Image Builder) to create a new ISO image with
the management stack included. You can then use this ISO image to install a new management
cluster on VMs or bare-metal.

Note
For more information about how to deploy a new management cluster, see the ATIP
Management Cluster guide (Chapter 29, Setting up the management cluster).

Note
For more information about how to use the Edge Image Builder, see the Edge Image
Builder guide (Chapter 3, Standalone clusters with Edge Image Builder).

308 Example deployment flows

27.3.2 Example 2: Deploying a single-node downstream cluster
with Telco profiles to enable it to run Telco workloads

Once we have the management cluster up and running, we can use it to deploy a single-node
downstream cluster with all Telco capabilities enabled and configured using the directed net-
work provisioning workflow.

The following diagram shows the high-level workflow to deploy it:

309

Example 2: Deploying a single-node downstream cluster with Telco profiles to enable it to run

Telco workloads

Note
For more information about how to deploy a downstream cluster, see the ATIP Automated
Provisioning guide. (Chapter 31, Fully automated directed network provisioning)

Note
For more information about Telco features, see the ATIP Telco Features guide. (Chapter 30,

Telco features configuration)

27.3.3 Example 3: Deploying a high availability downstream cluster
using MetalLB as a Load Balancer

Once we have the management cluster up and running, we can use it to deploy a high availability
downstream cluster with MetalLB as a load balancer using the directed network provisioning
workflow.

310 Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

The following diagram shows the high-level workflow to deploy it:

Note
For more information about how to deploy a downstream cluster, see the ATIP Automated
Provisioning guide. (Chapter 31, Fully automated directed network provisioning)

311 Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

Note
For more information about MetalLB , see here: (Chapter 17, MetalLB)

312 Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

28 Requirements & Assumptions

28.1 Hardware

The hardware requirements for the ATIP nodes are based on the following components:

Management cluster: The management cluster contains components like SLE Micro ,
RKE2 , Rancher Prime , Metal3 , and it is used to manage several downstream clusters.
Depending on the number of downstream clusters to be managed, the hardware require-
ments for the server could vary.

Minimum requirements for the server (VM or bare-metal) are:

RAM: 8 GB Minimum (we recommend at least 16 GB)

CPU: 2 Minimum (we recommend at least 4 CPU)

Downstream clusters: The downstream clusters are the clusters deployed on the ATIP
nodes to run Telco workloads. Specific requirements are needed to enable certain Telco
capabilities like SR-IOV , CPU Performance Optimization , etc.

SR-IOV: to attach VFs (Virtual Functions) in pass-through mode to CNFs/VNFs, the
NIC must support SR-IOV and VT-d/AMD-Vi be enabled in the BIOS.

CPU Processors: To run specific Telco workloads, the CPU Processor model should be
adapted to enable most of the features available in this reference table (Chapter 30,

Telco features configuration).

Firmware requirements for installing with virtual media:

Server Hardware BMC Model Management

Dell hardware 15th Generation iDRAC9

Supermicro hardware 01.00.25 Supermicro SMC - redfish

HPE hardware 1.50 iLO6

313 Hardware

28.2 Network
As a reference for the network architecture, the following diagram shows a typical network
architecture for a Telco environment:

314 Network

The network architecture is based on the following components:

Management network: This network is used for the management of the ATIP nodes. It is
used for the out-of-band management. Usually, this network is also connected to a separate
management switch, but it can be connected to the same service switch using VLANs to
isolate the traffic.

Control-plane network: This network is used for the communication between the ATIP
nodes and the services that are running on them. This network is also used for the commu-
nication between the ATIP nodes and the external services, like the DHCP or DNS servers.
In some cases, for connected environments, the switch/router can handle traffic through
the Internet.

Other networks: In some cases, the ATIP nodes could be connected to other networks for
specific customer purposes.

Note
To use the directed network provisioning workflow, the management cluster must have
network connectivity to the downstream cluster server Baseboard Management Controller
(BMC) so that host preparation and provisioning can be automated.

28.3 Services (DHCP, DNS, etc.)
Some external services like DHCP , DNS , etc. could be required depending on the kind of envi-
ronment where they are deployed:

Connected environment: In this case, the ATIP nodes will be connected to the Internet
(via routing L3 protocols) and the external services will be provided by the customer.

Disconnected / air-gap environment: In this case, the ATIP nodes will not have Internet
IP connectivity and additional services will be required to locally mirror content required
by the ATIP directed network provisioning workflow.

File server: A le server is used to store the ISO images to be provisioned on the ATIP
nodes during the directed network provisioning workflow. The metal3 Helm chart can
deploy a media server to store the ISO images — check the following section (Note), but
it is also possible to use an existing local webserver.

315 Services (DHCP, DNS, etc.)

28.4 Disabling rebootmgr
rebootmgr is a service which allows to configure a strategy for reboot when the system has
pending updates. For Telco workloads, it is really important to disable or configure properly the
rebootmgr service to avoid the reboot of the nodes in case of updates scheduled by the system,
to avoid any impact on the services running on the nodes.

Note
For more information about rebootmgr , see rebootmgr GitHub repository (https://

github.com/SUSE/rebootmgr) .

Verify the strategy being used by running:

cat /etc/rebootmgr.conf
[rebootmgr]
window-start=03:30
window-duration=1h30m
strategy=best-effort
lock-group=default

and you could disable it by running:

sed -i 's/strategy=best-effort/strategy=off/g' /etc/rebootmgr.conf

or using the rebootmgrctl command:

rebootmgrctl strategy off

Note
This configuration to set the rebootmgr strategy can be automated using the directed
network provisioning workflow. For more information, check the ATIP Automated Pro-
visioning documentation (Chapter 31, Fully automated directed network provisioning).

316 Disabling rebootmgr

https://github.com/SUSE/rebootmgr
https://github.com/SUSE/rebootmgr

29 Setting up the management cluster

29.1 Introduction

The management cluster is the part of ATIP that is used to manage the provision and lifecycle
of the runtime stacks. From a technical point of view, the management cluster contains the
following components:

SUSE Linux Enterprise Micro as the OS. Depending on the use case, some configura-
tions like networking, storage, users and kernel arguments can be customized.

RKE2 as the Kubernetes cluster. Depending on the use case, it can be configured to use
specific CNI plugins, such as Multus , Cilium , etc.

Rancher as the management platform to manage the lifecycle of the clusters.

Metal3 as the component to manage the lifecycle of the bare-metal nodes.

CAPI as the component to manage the lifecycle of the Kubernetes clusters (downstream
clusters). With ATIP, also the RKE2 CAPI Provider is used to manage the lifecycle of the
RKE2 clusters (downstream clusters).

With all components mentioned above, the management cluster can manage the lifecycle of
downstream clusters, using a declarative approach to manage the infrastructure and applica-
tions.

Note
For more information about SUSE Linux Enterprise Micro , see: SLE Micro (Chapter 7,

SLE Micro)

For more information about RKE2 , see: RKE2 (Chapter 14, RKE2)

For more information about Rancher , see: Rancher (Chapter 4, Rancher)

For more information about Metal3 , see: Metal3 (Chapter 8, Metal3)

317 Introduction

29.2 Steps to set up the management cluster

The following steps are necessary to set up the management cluster (using a single node):

The following are the main steps to set up the management cluster using a declarative approach:

1. Image preparation for connected environments (Section 29.3, “Image preparation for

connected environments”): The rst step is to prepare the manifests and les with all the
necessary configurations to be used in connected environments.

318 Steps to set up the management cluster

Directory structure for connected environments (Section 29.3.1, “Directory structure”):
This step creates a directory structure to be used by Edge Image Builder to store the
configuration les and the image itself.

Management cluster definition le (Section 29.3.2, “Management cluster definition file”):
The mgmt-cluster.yaml le is the main definition le for the management cluster.
It contains the following information about the image to be created:

Image Information: The information related to the image to be created using
the base image.

Operating system: The operating system configurations to be used in the image.

Kubernetes: Helm charts and repositories, kubernetes version, network config-
uration, and the nodes to be used in the cluster.

Custom folder (Section 29.3.3, “Custom folder”): The custom folder contains the con-
figuration les and scripts to be used by Edge Image Builder to deploy a fully func-
tional management cluster.

Files: Contains the configuration les to be used by the management cluster.

Scripts: Contains the scripts to be used by the management cluster.

Kubernetes folder (Section 29.3.4, “Kubernetes folder”): The kubernetes folder contains
the configuration les to be used by the management cluster.

Manifests: Contains the manifests to be used by the management cluster.

Helm: Contains the Helm charts to be used by the management cluster.

Config: Contains the configuration les to be used by the management cluster.

Network folder (Section 29.3.5, “Networking folder”): The network folder contains the
network configuration les to be used by the management cluster nodes.

2. Image preparation for air-gap environments (Section 29.4, “Image preparation for air-

gap environments”): The step is to show the differences to prepare the manifests and les
to be used in an air-gap scenario.

319 Steps to set up the management cluster

Directory structure for air-gap environments (Section 29.4.1, “Directory structure for air-

gap environments”): The directory structure must be modified to include the resources
needed to run the management cluster in an air-gap environment.

Modifications in the definition le (Section 29.4.2, “Modifications in the definition file”):
The mgmt-cluster.yaml le must be modified to include the embeddedArtifac-
tRegistry section with the images eld set to all container images to be included
into the EIB output image.

Modifications in the custom folder (Section 29.4.3, “Modifications in the custom folder”):
The custom folder must be modified to include the resources needed to run the
management cluster in an air-gap environment.

Register script: The custom/scripts/99-register.sh script must be re-
moved when you use an air-gap environment.

Air-gap resources: The custom/files/airgap-resources.tar.gz le must
be included in the custom/files folder with all the resources needed to run
the management cluster in an air-gap environment.

Scripts: The custom/scripts/99-mgmt-setup.sh script must be modified to
extract and copy the airgap-resources.tar.gz le to the final location. The
custom/files/metal3.sh script must be modified to use the local resources
included in the airgap-resources.tar.gz le instead of downloading them
from the internet.

3. Image creation (Section 29.5, “Image creation”): This step covers the creation of the image
using the Edge Image Builder tool (for both, connected and air-gap scenarios). Check the
prerequisites (Chapter 9, Edge Image Builder) to run the Edge Image Builder tool on your
system.

4. Management Cluster Provision (Section 29.6, “Provision the management cluster”): This
step covers the provisioning of the management cluster using the image created in the
previous step (for both, connected and air-gap scenarios). This step can be done using a
laptop, server, VM or any other x86_64 system with a USB port.

320 Steps to set up the management cluster

Note
For more information about Edge Image Builder, see Edge Image Builder (Chapter 9, Edge

Image Builder) and Edge Image Builder Quick Start (Chapter 3, Standalone clusters with Edge

Image Builder).

29.3 Image preparation for connected environments
Using Edge Image Builder to create the image for the management cluster, a lot of configurations
can be customized, but in this document, we cover the minimal configurations necessary to set
up the management cluster. Edge Image Builder is typically run from inside a container so, if
you do not already have a way to run containers, we need to start by installing a container
runtime such as Podman (https://podman.io) or Rancher Desktop (https://rancherdesktop.io) .
For this guide, we assume you already have a container runtime available.

Also, as a prerequisite to deploy a highly available management cluster, you need to reserve
three IPs in your network: - apiVIP for the API VIP Address (used to access the Kubernetes API
server). - ingressVIP for the Ingress VIP Address (consumed, for example, by the Rancher UI).
- metal3VIP for the Metal3 VIP Address.

29.3.1 Directory structure

When running EIB, a directory is mounted from the host, so the rst thing to do is to create a
directory structure to be used by EIB to store the configuration les and the image itself. This
directory has the following structure:

eib
├── mgmt-cluster.yaml
├── network
│ └── mgmt-cluster-node1.yaml
├── kubernetes
│ ├── manifests
│ │ ├── rke2-ingress-config.yaml
│ │ ├── neuvector-namespace.yaml
│ │ ├── ingress-l2-adv.yaml
│ │ └── ingress-ippool.yaml
│ ├── helm
│ │ └── values
│ │ ├── rancher.yaml

321 Image preparation for connected environments

https://podman.io
https://rancherdesktop.io

│ │ ├── neuvector.yaml
│ │ ├── metal3.yaml
│ │ └── certmanager.yaml
│ └── config
│ └── server.yaml
├── custom
│ ├── scripts
│ │ ├── 99-register.sh
│ │ ├── 99-mgmt-setup.sh
│ │ └── 99-alias.sh
│ └── files
│ ├── rancher.sh
│ ├── mgmt-stack-setup.service
│ ├── metal3.sh
│ └── basic-setup.sh
└── base-images

Note
The image SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso must
be downloaded from the SUSE Customer Center (https://scc.suse.com/) or the SUSE

Download page (https://www.suse.com/download/sle-micro/) , and it must be located un-
der the base-images folder.

You should check the SHA256 checksum of the image to ensure it has not been tampered
with. The checksum can be found in the same location where the image was downloaded.

An example of the directory structure can be found in the SUSE Edge GitHub repository

under the "telco-examples" folder (https://github.com/suse-edge/atip) .

29.3.2 Management cluster definition file

The mgmt-cluster.yaml le is the main definition le for the management cluster. It contains
the following information:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 outputImageName: eib-mgmt-cluster-image.iso
operatingSystem:
 isoConfiguration:

322 Management cluster definition file

https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://github.com/suse-edge/atip
https://github.com/suse-edge/atip

 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 packages:
 packageList:
 - git
 - jq
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}
kubernetes:
 version: ${KUBERNETES_VERSION}
 helm:
 charts:
 - name: cert-manager
 repositoryName: jetstack
 version: 1.14.2
 targetNamespace: cert-manager
 valuesFile: certmanager.yaml
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd
 version: 103.3.0+up1.6.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn
 version: 103.3.0+up1.6.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: metal3-chart
 version: 0.7.4
 repositoryName: suse-edge-charts
 targetNamespace: metal3-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: metal3.yaml
 - name: neuvector-crd
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: neuvector

323 Management cluster definition file

 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: rancher
 version: 2.8.8
 repositoryName: rancher-prime
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: rancher.yaml
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-charts
 url: https://charts.rancher.io/
 - name: suse-edge-charts
 url: oci://registry.suse.com/edge
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
 network:
 apiHost: ${API_HOST}
 apiVIP: ${API_VIP}
 nodes:
 - hostname: mgmt-cluster-node1
 initializer: true
 type: server
- hostname: mgmt-cluster-node2
type: server
- hostname: mgmt-cluster-node3
type: server

To explain the elds and values in the mgmt-cluster.yaml definition le, we have divided it
into the following sections.

Image section (definition le):

image:
 imageType: iso
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 outputImageName: eib-mgmt-cluster-image.iso

324 Management cluster definition file

where the baseImage is the original image you downloaded from the SUSE Customer Center
or the SUSE Download page. outputImageName is the name of the new image that will be used
to provision the management cluster.

Operating system section (definition le):

operatingSystem:
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 packages:
 packageList:
 - jq
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}

where the installDevice is the device to be used to install the operating system, the user-
name and encryptedPassword are the credentials to be used to access the system, the pack-
ageList is the list of packages to be installed (jq is required internally during the installation
process), and the sccRegistrationCode is the registration code used to get the packages and
dependencies at build time and can be obtained from the SUSE Customer Center. The encrypted
password can be generated using the openssl command as follows:

openssl passwd -6 MyPassword!123

This outputs something similar to:

6UrXB1sAGs46DOiSq$HSwi9GFJLCorm0J53nF2Sq8YEoyINhHcObHzX2R8h13mswUIsMwzx4eUzn/
rRx0QPV4JIb0eWCoNrxGiKH4R31

Kubernetes section (definition le):

kubernetes:
 version: ${KUBERNETES_VERSION}
 helm:
 charts:
 - name: cert-manager
 repositoryName: jetstack
 version: 1.14.2
 targetNamespace: cert-manager
 valuesFile: certmanager.yaml
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd

325 Management cluster definition file

 version: 103.3.0+up1.6.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn
 version: 103.3.0+up1.6.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: metal3-chart
 version: 0.7.4
 repositoryName: suse-edge-charts
 targetNamespace: metal3-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: metal3.yaml
 - name: neuvector-crd
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: neuvector
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: rancher
 version: 2.8.8
 repositoryName: rancher-prime
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: rancher.yaml
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-charts
 url: https://charts.rancher.io/
 - name: suse-edge-charts
 url: oci://registry.suse.com/edge
 - name: rancher-prime

326 Management cluster definition file

 url: https://charts.rancher.com/server-charts/prime
 network:
 apiHost: ${API_HOST}
 apiVIP: ${API_VIP}
 nodes:
 - hostname: mgmt-cluster-node1
 initializer: true
 type: server
- hostname: mgmt-cluster-node2
type: server
- hostname: mgmt-cluster-node3
type: server

where version is the version of Kubernetes to be installed. In our case, we are using an RKE2
cluster, so the version must be minor less than 1.29 to be compatible with Rancher (for example,
v1.28.13+rke2r1).

The helm section contains the list of Helm charts to be installed, the repositories to be used,
and the version configuration for all of them.

The network section contains the configuration for the network, like the apiHost and apiVIP
to be used by the RKE2 component. The apiVIP should be an IP address that is not used in the
network and should not be part of the DHCP pool (in case we use DHCP). Also, when we use the
apiVIP in a multi-node cluster, it is used to access the Kubernetes API server. The apiHost is
the name resolution to apiVIP to be used by the RKE2 component.

The nodes section contains the list of nodes to be used in the cluster. The nodes section contains
the list of nodes to be used in the cluster. In this example, a single-node cluster is being used, but
it can be extended to a multi-node cluster by adding more nodes to the list (by uncommenting
the lines).

Note

The names of the nodes must be unique in the cluster.

Optionally, use the initializer eld to specify the bootstrap host, otherwise it
will be the rst node in the list.

The names of the nodes must be the same as the host names defined in the Network
Folder (Section 29.3.5, “Networking folder”) when network configuration is required.

327 Management cluster definition file

29.3.3 Custom folder

The custom folder contains the following subfolders:

...
├── custom
│ ├── scripts
│ │ ├── 99-register.sh
│ │ ├── 99-mgmt-setup.sh
│ │ └── 99-alias.sh
│ └── files
│ ├── rancher.sh
│ ├── mgmt-stack-setup.service
│ ├── metal3.sh
│ └── basic-setup.sh
...

The custom/files folder contains the configuration les to be used by the management
cluster.

The custom/scripts folder contains the scripts to be used by the management cluster.

The custom/files folder contains the following les:

basic-setup.sh : contains the configuration parameters about the Metal3 version to be
used, as well as the Rancher and MetalLB basic parameters. Only modify this le if you
want to change the versions of the components or the namespaces to be used.

#!/bin/bash
Pre-requisites. Cluster already running
export KUBECTL="/var/lib/rancher/rke2/bin/kubectl"
export KUBECONFIG="/etc/rancher/rke2/rke2.yaml"

##################
METAL3 DETAILS
##################
export METAL3_CHART_TARGETNAMESPACE="metal3-system"
export METAL3_CLUSTERCTLVERSION="1.6.2"
export METAL3_CAPICOREVERSION="1.6.2"
export METAL3_CAPIMETAL3VERSION="1.6.0"
export METAL3_CAPIRKE2VERSION="0.4.1"
export METAL3_CAPIPROVIDER="rke2"
export METAL3_CAPISYSTEMNAMESPACE="capi-system"
export METAL3_RKE2BOOTSTRAPNAMESPACE="rke2-bootstrap-system"
export METAL3_CAPM3NAMESPACE="capm3-system"

328 Custom folder

export METAL3_RKE2CONTROLPLANENAMESPACE="rke2-control-plane-system"
export METAL3_CAPI_IMAGES="registry.suse.com/edge"
Or registry.opensuse.org/isv/suse/edge/clusterapi/containerfile/suse for the
 upstream ones

###########
METALLB
###########
export METALLBNAMESPACE="metallb-system"

###########
RANCHER
###########
export RANCHER_CHART_TARGETNAMESPACE="cattle-system"
export RANCHER_FINALPASSWORD="adminadminadmin"

die(){
 echo ${1} 1>&2
 exit ${2}
}

metal3.sh : contains the configuration for the Metal3 component to be used (no modi-
fications needed). In future versions, this script will be replaced to use instead Rancher
Turtles to make it easy.

#!/bin/bash
set -euo pipefail

BASEDIR="$(dirname "$0")"
source ${BASEDIR}/basic-setup.sh

METAL3LOCKNAMESPACE="default"
METAL3LOCKCMNAME="metal3-lock"

trap 'catch $? $LINENO' EXIT

catch() {
 if ["$1" != "0"]; then
 echo "Error $1 occurred on $2"
 ${KUBECTL} delete configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE}
 fi
}

Get or create the lock to run all those steps just in a single node
As the first node is created WAY before the others, this should be enough
TODO: Investigate if leases is better

329 Custom folder

if [$(${KUBECTL} get cm -n ${METAL3LOCKNAMESPACE} ${METAL3LOCKCMNAME} -o name | wc
 -l) -lt 1]; then
 ${KUBECTL} create configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE} --from-
literal foo=bar
else
 exit 0
fi

Wait for metal3
while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CHART_TARGETNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CHART_TARGETNAMESPACE} -l app.kubernetes.io/
name=metal3-ironic -o name) --timeout=10s; do sleep 2 ; done

Get the ironic IP
IRONICIP=$(${KUBECTL} get cm -n ${METAL3_CHART_TARGETNAMESPACE} ironic-bmo -o
 jsonpath='{.data.IRONIC_IP}')

If LoadBalancer, use metallb, else it is NodePort
if [$(${KUBECTL} get svc -n ${METAL3_CHART_TARGETNAMESPACE} metal3-metal3-ironic -o
 jsonpath='{.spec.type}') == "LoadBalancer"]; then
 # Wait for metallb
 while ! ${KUBECTL} wait --for condition=ready -n ${METALLBNAMESPACE} $(${KUBECTL}
 get pods -n ${METALLBNAMESPACE} -l app.kubernetes.io/component=controller -o name)
 --timeout=10s; do sleep 2 ; done

 # Do not create the ippool if already created
 ${KUBECTL} get ipaddresspool -n ${METALLBNAMESPACE} ironic-ip-pool -o name || cat
 <<-EOF | ${KUBECTL} apply -f -
 apiVersion: metallb.io/v1beta1
 kind: IPAddressPool
 metadata:
 name: ironic-ip-pool
 namespace: ${METALLBNAMESPACE}
 spec:
 addresses:
 - ${IRONICIP}/32
 serviceAllocation:
 priority: 100
 serviceSelectors:
 - matchExpressions:
 - {key: app.kubernetes.io/name, operator: In, values: [metal3-ironic]}
 EOF

 # Same for L2 Advs
 ${KUBECTL} get L2Advertisement -n ${METALLBNAMESPACE} ironic-ip-pool-l2-adv -o
 name || cat <<-EOF | ${KUBECTL} apply -f -
 apiVersion: metallb.io/v1beta1

330 Custom folder

 kind: L2Advertisement
 metadata:
 name: ironic-ip-pool-l2-adv
 namespace: ${METALLBNAMESPACE}
 spec:
 ipAddressPools:
 - ironic-ip-pool
 EOF
fi

If clusterctl is not installed, install it
if ! command -v clusterctl > /dev/null 2>&1; then
 LINUXARCH=$(uname -m)
 case $(uname -m) in
 "x86_64")
 export GOARCH="amd64" ;;
 "aarch64")
 export GOARCH="arm64" ;;
 "*")
 echo "Arch not found, asumming amd64"
 export GOARCH="amd64" ;;
 esac

 # Clusterctl bin
 # Maybe just use the binary from hauler if available
 curl -L https://github.com/kubernetes-sigs/cluster-api/releases/download/v
${METAL3_CLUSTERCTLVERSION}/clusterctl-linux-${GOARCH} -o /usr/local/bin/clusterctl
 chmod +x /usr/local/bin/clusterctl
fi

If rancher is deployed
if [$(${KUBECTL} get pods -n ${RANCHER_CHART_TARGETNAMESPACE} -l app=rancher -o
 name | wc -l) -ge 1]; then
 cat <<-EOF | ${KUBECTL} apply -f -
 apiVersion: management.cattle.io/v3
 kind: Feature
 metadata:
 name: embedded-cluster-api
 spec:
 value: false
 EOF

 # Disable Rancher webhooks for CAPI
 ${KUBECTL} delete mutatingwebhookconfiguration.admissionregistration.k8s.io
 mutating-webhook-configuration
 ${KUBECTL} delete validatingwebhookconfigurations.admissionregistration.k8s.io
 validating-webhook-configuration

331 Custom folder

 ${KUBECTL} wait --for=delete namespace/cattle-provisioning-capi-system --
timeout=300s
fi

Deploy CAPI
if [$(${KUBECTL} get pods -n ${METAL3_CAPISYSTEMNAMESPACE} -o name | wc -l) -lt
 1]; then

 # https://github.com/rancher-sandbox/cluster-api-provider-rke2#setting-up-
clusterctl
 mkdir -p ~/.cluster-api
 cat <<-EOF > ~/.cluster-api/clusterctl.yaml
 images:
 all:
 repository: ${METAL3_CAPI_IMAGES}
 EOF

 # Try this command 3 times just in case, stolen from https://stackoverflow.com/
a/33354419
 if ! (r=3; while ! clusterctl init \
 --core "cluster-api:v${METAL3_CAPICOREVERSION}"\
 --infrastructure "metal3:v${METAL3_CAPIMETAL3VERSION}"\
 --bootstrap "${METAL3_CAPIPROVIDER}:v${METAL3_CAPIRKE2VERSION}"\
 --control-plane "${METAL3_CAPIPROVIDER}:v${METAL3_CAPIRKE2VERSION}" ; do
 ((--r))||exit
 echo "Something went wrong, let's wait 10 seconds and retry"
 sleep 10;done) ; then
 echo "clusterctl failed"
 exit 1
 fi

 # Wait for capi-controller-manager
 while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CAPISYSTEMNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CAPISYSTEMNAMESPACE} -l cluster.x-k8s.io/
provider=cluster-api -o name) --timeout=10s; do sleep 2 ; done

 # Wait for capm3-controller-manager, there are two pods, the ipam and the capm3
 one, just wait for the first one
 while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CAPM3NAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CAPM3NAMESPACE} -l cluster.x-k8s.io/
provider=infrastructure-metal3 -o name | head -n1) --timeout=10s; do sleep 2 ; done

 # Wait for rke2-bootstrap-controller-manager
 while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_RKE2BOOTSTRAPNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_RKE2BOOTSTRAPNAMESPACE} -l cluster.x-k8s.io/
provider=bootstrap-rke2 -o name) --timeout=10s; do sleep 2 ; done

332 Custom folder

 # Wait for rke2-control-plane-controller-manager
 while ! ${KUBECTL} wait --for condition=ready -n
 ${METAL3_RKE2CONTROLPLANENAMESPACE} $(${KUBECTL} get pods -n
 ${METAL3_RKE2CONTROLPLANENAMESPACE} -l cluster.x-k8s.io/provider=control-plane-rke2
 -o name) --timeout=10s; do sleep 2 ; done

fi

Clean up the lock cm

${KUBECTL} delete configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE}

rancher.sh : contains the configuration for the Rancher component to be used (no
modifications needed).

#!/bin/bash
set -euo pipefail

BASEDIR="$(dirname "$0")"
source ${BASEDIR}/basic-setup.sh

RANCHERLOCKNAMESPACE="default"
RANCHERLOCKCMNAME="rancher-lock"

if [-z "${RANCHER_FINALPASSWORD}"]; then
 # If there is no final password, then finish the setup right away
 exit 0
fi

trap 'catch $? $LINENO' EXIT

catch() {
 if ["$1" != "0"]; then
 echo "Error $1 occurred on $2"
 ${KUBECTL} delete configmap ${RANCHERLOCKCMNAME} -n ${RANCHERLOCKNAMESPACE}
 fi
}

Get or create the lock to run all those steps just in a single node
As the first node is created WAY before the others, this should be enough
TODO: Investigate if leases is better
if [$(${KUBECTL} get cm -n ${RANCHERLOCKNAMESPACE} ${RANCHERLOCKCMNAME} -o
 name | wc -l) -lt 1]; then
 ${KUBECTL} create configmap ${RANCHERLOCKCMNAME} -n ${RANCHERLOCKNAMESPACE}
 --from-literal foo=bar
else

333 Custom folder

 exit 0
fi

Wait for rancher to be deployed
while ! ${KUBECTL} wait --for condition=ready -n
 ${RANCHER_CHART_TARGETNAMESPACE} $(${KUBECTL} get pods -n
 ${RANCHER_CHART_TARGETNAMESPACE} -l app=rancher -o name) --timeout=10s; do
 sleep 2 ; done
until ${KUBECTL} get ingress -n ${RANCHER_CHART_TARGETNAMESPACE} rancher > /
dev/null 2>&1; do sleep 10; done

RANCHERBOOTSTRAPPASSWORD=$(${KUBECTL} get secret -n
 ${RANCHER_CHART_TARGETNAMESPACE} bootstrap-secret -o
 jsonpath='{.data.bootstrapPassword}' | base64 -d)
RANCHERHOSTNAME=$(${KUBECTL} get ingress -n ${RANCHER_CHART_TARGETNAMESPACE}
 rancher -o jsonpath='{.spec.rules[0].host}')

Skip the whole process if things have been set already
if [-z $(${KUBECTL} get settings.management.cattle.io first-login -
ojsonpath='{.value}')]; then
 # Add the protocol
 RANCHERHOSTNAME="https://${RANCHERHOSTNAME}"
 TOKEN=""
 while [-z "${TOKEN}"]; do
 # Get token
 sleep 2
 TOKEN=$(curl -sk -X POST ${RANCHERHOSTNAME}/v3-public/localProviders/local?
action=login -H 'content-type: application/json' -d "{\"username\":\"admin\",
\"password\":\"${RANCHERBOOTSTRAPPASSWORD}\"}" | jq -r .token)
 done

 # Set password
 curl -sk ${RANCHERHOSTNAME}/v3/users?action=changepassword -H 'content-type:
 application/json' -H "Authorization: Bearer $TOKEN" -d "{\"currentPassword\":
\"${RANCHERBOOTSTRAPPASSWORD}\",\"newPassword\":\"${RANCHER_FINALPASSWORD}\"}"

 # Create a temporary API token (ttl=60 minutes)
 APITOKEN=$(curl -sk ${RANCHERHOSTNAME}/v3/token -H 'content-
type: application/json' -H "Authorization: Bearer ${TOKEN}" -d
 '{"type":"token","description":"automation","ttl":3600000}' | jq -r .token)

 curl -sk ${RANCHERHOSTNAME}/v3/settings/server-url -H 'content-type:
 application/json' -H "Authorization: Bearer ${APITOKEN}" -X PUT -d "{\"name\":
\"server-url\",\"value\":\"${RANCHERHOSTNAME}\"}"
 curl -sk ${RANCHERHOSTNAME}/v3/settings/telemetry-opt -X PUT -H 'content-
type: application/json' -H 'accept: application/json' -H "Authorization: Bearer
 ${APITOKEN}" -d '{"value":"out"}'

334 Custom folder

fi

Clean up the lock cm
${KUBECTL} delete configmap ${RANCHERLOCKCMNAME} -n ${RANCHERLOCKNAMESPACE}

mgmt-stack-setup.service : contains the configuration to create the systemd ser-
vice to run the scripts during the rst boot (no modifications needed).

[Unit]
Description=Setup Management stack components
Wants=network-online.target
It requires rke2 or k3s running, but it will not fail if those services are
 not present
After=network.target network-online.target rke2-server.service k3s.service
At least, the basic-setup.sh one needs to be present
ConditionPathExists=/opt/mgmt/bin/basic-setup.sh

[Service]
User=root
Type=forking
Metal3 can take A LOT to download the IPA image
TimeoutStartSec=1800

ExecStartPre=/bin/sh -c "echo 'Setting up Management components...'"
Scripts are executed in StartPre because Start can only run a single on
ExecStartPre=/opt/mgmt/bin/rancher.sh
ExecStartPre=/opt/mgmt/bin/metal3.sh
ExecStart=/bin/sh -c "echo 'Finished setting up Management components'"
RemainAfterExit=yes
KillMode=process
Disable & delete everything
ExecStartPost=rm -f /opt/mgmt/bin/rancher.sh
ExecStartPost=rm -f /opt/mgmt/bin/metal3.sh
ExecStartPost=rm -f /opt/mgmt/bin/basic-setup.sh
ExecStartPost=/bin/sh -c "systemctl disable mgmt-stack-setup.service"
ExecStartPost=rm -f /etc/systemd/system/mgmt-stack-setup.service

[Install]
WantedBy=multi-user.target

The custom/scripts folder contains the following les:

99-alias.sh script: contains the alias to be used by the management cluster to load the
kubeconfig le at rst boot (no modifications needed).

#!/bin/bash

335 Custom folder

echo "alias k=kubectl" >> /etc/profile.local
echo "alias kubectl=/var/lib/rancher/rke2/bin/kubectl" >> /etc/profile.local
echo "export KUBECONFIG=/etc/rancher/rke2/rke2.yaml" >> /etc/profile.local

99-mgmt-setup.sh script: contains the configuration to copy the scripts during the rst
boot (no modifications needed).

#!/bin/bash

Copy the scripts from combustion to the final location
mkdir -p /opt/mgmt/bin/
for script in basic-setup.sh rancher.sh metal3.sh; do
 cp ${script} /opt/mgmt/bin/
done

Copy the systemd unit file and enable it at boot
cp mgmt-stack-setup.service /etc/systemd/system/mgmt-stack-setup.service
systemctl enable mgmt-stack-setup.service

99-register.sh script: contains the configuration to register the system using the SCC
registration code. The ${SCC_ACCOUNT_EMAIL} and ${SCC_REGISTRATION_CODE} have
to be set properly to register the system with your account.

#!/bin/bash
set -euo pipefail

Registration https://www.suse.com/support/kb/doc/?id=000018564
if ! which SUSEConnect > /dev/null 2>&1; then
 zypper --non-interactive install suseconnect-ng
fi
SUSEConnect --email "${SCC_ACCOUNT_EMAIL}" --url "https://scc.suse.com" --regcode
 "${SCC_REGISTRATION_CODE}"

29.3.4 Kubernetes folder

The kubernetes folder contains the following subfolders:

...
├── kubernetes
│ ├── manifests
│ │ ├── rke2-ingress-config.yaml
│ │ ├── neuvector-namespace.yaml
│ │ ├── ingress-l2-adv.yaml
│ │ └── ingress-ippool.yaml

336 Kubernetes folder

│ ├── helm
│ │ └── values
│ │ ├── rancher.yaml
│ │ ├── neuvector.yaml
│ │ ├── metal3.yaml
│ │ └── certmanager.yaml
│ └── config
│ └── server.yaml
...

The kubernetes/config folder contains the following les:

server.yaml : By default, the CNI plug-in installed by default is Cilium , so you do not
need to create this folder and le. Just in case you need to customize the CNI plug-in,
you can use the server.yaml le under the kubernetes/config folder. It contains the
following information:

cni:
- multus
- cilium

Note
This is an optional le to define certain Kubernetes customization, like the CNI plug-
ins to be used or many options you can check in the official documentation (https://doc-

s.rke2.io/install/configuration) .

The kubernetes/manifests folder contains the following les:

rke2-ingress-config.yaml : contains the configuration to create the Ingress service
for the management cluster (no modifications needed).

apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
 name: rke2-ingress-nginx
 namespace: kube-system
spec:
 valuesContent: |-
 controller:
 config:
 use-forwarded-headers: "true"
 enable-real-ip: "true"

337 Kubernetes folder

https://docs.rke2.io/install/configuration
https://docs.rke2.io/install/configuration

 publishService:
 enabled: true
 service:
 enabled: true
 type: LoadBalancer
 externalTrafficPolicy: Local

neuvector-namespace.yaml : contains the configuration to create the NeuVector name-
space (no modifications needed).

apiVersion: v1
kind: Namespace
metadata:
 labels:
 pod-security.kubernetes.io/enforce: privileged
 name: neuvector

ingress-l2-adv.yaml : contains the configuration to create the L2Advertisement for
the MetalLB component (no modifications needed).

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ingress-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ingress-ippool

ingress-ippool.yaml : contains the configuration to create the IPAddressPool for the
rke2-ingress-nginx component. The ${INGRESS_VIP} has to be set properly to define
the IP address reserved to be used by the rke2-ingress-nginx component.

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: ingress-ippool
 namespace: metallb-system
spec:
 addresses:
 - ${INGRESS_VIP}/32
 serviceAllocation:
 priority: 100
 serviceSelectors:
 - matchExpressions:

338 Kubernetes folder

 - {key: app.kubernetes.io/name, operator: In, values: [rke2-ingress-
nginx]}

The kubernetes/helm/values folder contains the following les:

rancher.yaml : contains the configuration to create the Rancher component. The ${IN-
GRESS_VIP} must be set properly to define the IP address to be consumed by the Rancher
component. The URL to access the Rancher component will be https://rancher-${IN-
GRESS_VIP}.sslip.io .

hostname: rancher-${INGRESS_VIP}.sslip.io
bootstrapPassword: "foobar"
replicas: 1
global.cattle.psp.enabled: "false"

neuvector.yaml : contains the configuration to create the NeuVector component (no
modifications needed).

controller:
 replicas: 1
 ranchersso:
 enabled: true
manager:
 enabled: false
cve:
 scanner:
 enabled: false
 replicas: 1
k3s:
 enabled: true
crdwebhook:
 enabled: false

metal3.yaml : contains the configuration to create the Metal3 component. The ${MET-
AL3_VIP} must be set properly to define the IP address to be consumed by the Metal3
component.

global:
 ironicIP: ${METAL3_VIP}
 enable_vmedia_tls: false
 additionalTrustedCAs: false
metal3-ironic:
 global:
 predictableNicNames: "true"
 persistence:

339 Kubernetes folder

 ironic:
 size: "5Gi"

Note
The Media Server is an optional feature included in Metal3 (by default is disabled). To use
the Metal3 feature, you need to configure it on the previous manifest. To use the Metal3

media server, specify the following variable:

add the enable_metal3_media_server to true to enable the media server feature
in the global section.

include the following configuration about the media server where ${MEDIA_VOL-
UME_PATH} is the path to the media volume in the media (e.g /home/metal3/bmh-
image-cache)

metal3-media:
 mediaVolume:
 hostPath: ${MEDIA_VOLUME_PATH}

An external media server can be used to store the images, and in the case you want to
use it with TLS, you will need to modify the following configurations:

set to true the additionalTrustedCAs in the previous metal3.yaml le to en-
able the additional trusted CAs from the external media server.

include the following secret configuration in the folder kubernetes/mani-

fests/metal3-cacert-secret.yaml to store the CA certificate of the external me-
dia server.

apiVersion: v1
kind: Namespace
metadata:
 name: metal3-system

apiVersion: v1
kind: Secret
metadata:
 name: tls-ca-additional
 namespace: metal3-system
type: Opaque
data:
 ca-additional.crt: {{ additional_ca_cert | b64encode }}

340 Kubernetes folder

The additional_ca_cert is the base64-encoded CA certificate of the external media
server. You can use the following command to encode the certificate and generate the
secret doing manually:

kubectl -n meta3-system create secret generic tls-ca-additional --from-file=ca-
additional.crt=./ca-additional.crt

certmanager.yaml : contains the configuration to create the Cert-Manager component
(no modifications needed).

installCRDs: "true"

29.3.5 Networking folder

The network folder contains as many les as nodes in the management cluster. In our case, we
have only one node, so we have only one le called mgmt-cluster-node1.yaml . The name of
the le must match the host name defined in the mgmt-cluster.yaml definition le into the
network/node section described above.

If you need to customize the networking configuration, for example, to use a specific static
IP address (DHCP-less scenario), you can use the mgmt-cluster-node1.yaml le under the
network folder. It contains the following information:

${MGMT_GATEWAY} : The gateway IP address.

${MGMT_DNS} : The DNS server IP address.

${MGMT_MAC} : The MAC address of the network interface.

${MGMT_NODE_IP} : The IP address of the management cluster.

routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: ${MGMT_GATEWAY}
 next-hop-interface: eth0
 table-id: 254
dns-resolver:

341 Networking folder

 config:
 server:
 - ${MGMT_DNS}
 - 8.8.8.8
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: ${MGMT_MAC}
 ipv4:
 address:
 - ip: ${MGMT_NODE_IP}
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false

If you want to use DHCP to get the IP address, you can use the following configuration (the MAC
address must be set properly using the ${MGMT_MAC} variable):

This is an example of a dhcp network configuration for a management cluster
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: ${MGMT_MAC}
 ipv4:
 dhcp: true
 enabled: true
 ipv6:
 enabled: false

Note

Depending on the number of nodes in the management cluster, you can create more
les like mgmt-cluster-node2.yaml , mgmt-cluster-node3.yaml , etc. to config-
ure the rest of the nodes.

The routes section is used to define the routing table for the management cluster.

342 Networking folder

29.4 Image preparation for air-gap environments
This section describes how to prepare the image for air-gap environments showing only the
differences from the previous sections. The following changes to the previous section (Image
preparation for connected environments (Section 29.3, “Image preparation for connected environ-

ments”)) are required to prepare the image for air-gap environments:

The mgmt-cluster.yaml le must be modified to include the embeddedArtifactReg-
istry section with the images eld set to all container images to be included into the
EIB output image.

The custom/scripts/99-register.sh script must be removed when use an air-gap en-
vironment.

The custom/files/airgap-resources.tar.gz le must be included in the cus-

tom/files folder with all the resources needed to run the management cluster in an air-
gap environment.

The custom/scripts/99-mgmt-setup.sh script must be modified to extract and copy
the airgap-resources.tar.gz le to the final location.

The custom/files/metal3.sh script must be modified to use the local resources included
in the airgap-resources.tar.gz le instead of downloading them from the internet.

29.4.1 Directory structure for air-gap environments

The directory structure for air-gap environments is the same as for connected environments,
with the differences explained as follows:

eib
|-- base-images
| |-- SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
|-- custom
| |-- files
| | |-- airgap-resources.tar.gz
| | |-- basic-setup.sh
| | |-- metal3.sh
| | |-- mgmt-stack-setup.service
| | |-- rancher.sh
| |-- scripts
| |-- 99-alias.sh
| |-- 99-mgmt-setup.sh

343 Image preparation for air-gap environments

|-- kubernetes
| |-- config
| | |-- server.yaml
| |-- helm
| | |-- values
| | |-- certmanager.yaml
| | |-- metal3.yaml
| | |-- neuvector.yaml
| | |-- rancher.yaml
| |-- manifests
| |-- neuvector-namespace.yaml
|-- mgmt-cluster.yaml
|-- network
 |-- mgmt-cluster-network.yaml

Note
The image SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso must
be downloaded from the SUSE Customer Center (https://scc.suse.com/) or the SUSE

Download page (https://www.suse.com/download/sle-micro/) , and it must be located un-
der the base-images folder before starting with the process.

You should check the SHA256 checksum of the image to ensure it has not been tampered
with. The checksum can be found in the same location where the image was downloaded.

An example of the directory structure can be found in the SUSE Edge GitHub repository

under the "telco-examples" folder (https://github.com/suse-edge/atip) .

29.4.2 Modifications in the definition file

The mgmt-cluster.yaml le must be modified to include the embeddedArtifactRegistry
section with the images eld set to all container images to be included into the EIB output im-
age. The images eld must contain the list of all container images to be included in the output
image. The following is an example of the mgmt-cluster.yaml le with the embeddedArti-
factRegistry section included:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-SelfInstall-GM2.install.iso
 outputImageName: eib-mgmt-cluster-image.iso

344 Modifications in the definition file

https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://github.com/suse-edge/atip
https://github.com/suse-edge/atip

operatingSystem:
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 packages:
 packageList:
 - jq
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}
kubernetes:
 version: ${KUBERNETES_VERSION}
 helm:
 charts:
 - name: cert-manager
 repositoryName: jetstack
 version: 1.14.2
 targetNamespace: cert-manager
 valuesFile: certmanager.yaml
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd
 version: 103.3.0+up1.6.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn
 version: 103.3.0+up1.6.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: metal3-chart
 version: 0.7.4
 repositoryName: suse-edge-charts
 targetNamespace: metal3-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: metal3.yaml
 - name: neuvector-crd
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml

345 Modifications in the definition file

 - name: neuvector
 version: 103.0.3+up2.7.6
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: rancher
 version: 2.8.8
 repositoryName: rancher-prime
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: rancher.yaml
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-charts
 url: https://charts.rancher.io/
 - name: suse-edge-charts
 url: oci://registry.suse.com/edge
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
 network:
 apiHost: ${API_HOST}
 apiVIP: ${API_VIP}
 nodes:
 - hostname: mgmt-cluster-node1
 initializer: true
 type: server
- hostname: mgmt-cluster-node2
type: server
- hostname: mgmt-cluster-node3
type: server
type: server
embeddedArtifactRegistry:
 images:
 - name: registry.rancher.com/rancher/backup-restore-operator:v4.0.3
 - name: registry.rancher.com/rancher/calico-cni:v3.27.4-rancher1
 - name: registry.rancher.com/rancher/cis-operator:v1.0.15
 - name: registry.rancher.com/rancher/coreos-kube-state-metrics:v1.9.7
 - name: registry.rancher.com/rancher/coreos-prometheus-config-reloader:v0.38.1
 - name: registry.rancher.com/rancher/coreos-prometheus-operator:v0.38.1
 - name: registry.rancher.com/rancher/flannel-cni:v0.3.0-rancher9
 - name: registry.rancher.com/rancher/fleet-agent:v0.9.9
 - name: registry.rancher.com/rancher/fleet:v0.9.9
 - name: registry.rancher.com/rancher/gitjob:v0.9.13

346 Modifications in the definition file

 - name: registry.rancher.com/rancher/grafana-grafana:7.1.5
 - name: registry.rancher.com/rancher/hardened-addon-resizer:1.8.20-build20240410
 - name: registry.rancher.com/rancher/hardened-calico:v3.28.1-build20240806
 - name: registry.rancher.com/rancher/hardened-cluster-autoscaler:v1.8.10-
build20240124
 - name: registry.rancher.com/rancher/hardened-cni-plugins:v1.5.1-build20240805
 - name: registry.rancher.com/rancher/hardened-coredns:v1.11.1-build20240305
 - name: registry.rancher.com/rancher/hardened-dns-node-cache:1.22.28-build20240125
 - name: registry.rancher.com/rancher/hardened-etcd:v3.5.13-k3s1-build20240531
 - name: registry.rancher.com/rancher/hardened-flannel:v0.25.5-build20240801
 - name: registry.rancher.com/rancher/hardened-k8s-metrics-server:v0.7.1-build20240401
 - name: registry.rancher.com/rancher/hardened-kubernetes:v1.28.13-rke2r1-
build20240815
 - name: registry.rancher.com/rancher/hardened-multus-cni:v4.0.2-build20240612
 - name: registry.rancher.com/rancher/hardened-node-feature-discovery:v0.15.4-
build20240513
 - name: registry.rancher.com/rancher/hardened-whereabouts:v0.7.0-build20240429
 - name: registry.rancher.com/rancher/helm-project-operator:v0.2.1
 - name: registry.rancher.com/rancher/istio-kubectl:1.5.10
 - name: registry.rancher.com/rancher/jimmidyson-configmap-reload:v0.3.0
 - name: registry.rancher.com/rancher/k3s-upgrade:v1.28.13-k3s1
 - name: registry.rancher.com/rancher/klipper-helm:v0.8.4-build20240523
 - name: registry.rancher.com/rancher/klipper-lb:v0.4.9
 - name: registry.rancher.com/rancher/kube-api-auth:v0.2.1
 - name: registry.rancher.com/rancher/kubectl:v1.28.12
 - name: registry.rancher.com/rancher/library-nginx:1.19.2-alpine
 - name: registry.rancher.com/rancher/local-path-provisioner:v0.0.28
 - name: registry.rancher.com/rancher/machine:v0.15.0-rancher116
 - name: registry.rancher.com/rancher/mirrored-cluster-api-controller:v1.4.4
 - name: registry.rancher.com/rancher/nginx-ingress-controller:v1.10.4-hardened2
 - name: registry.rancher.com/rancher/pause:3.6
 - name: registry.rancher.com/rancher/prom-alertmanager:v0.21.0
 - name: registry.rancher.com/rancher/prom-node-exporter:v1.0.1
 - name: registry.rancher.com/rancher/prom-prometheus:v2.18.2
 - name: registry.rancher.com/rancher/prometheus-auth:v0.2.2
 - name: registry.rancher.com/rancher/prometheus-federator:v0.3.4
 - name: registry.rancher.com/rancher/pushprox-client:v0.1.3-rancher2-client
 - name: registry.rancher.com/rancher/pushprox-proxy:v0.1.3-rancher2-proxy
 - name: registry.rancher.com/rancher/rancher-agent:v2.8.8
 - name: registry.rancher.com/rancher/rancher-csp-adapter:v3.0.1
 - name: registry.rancher.com/rancher/rancher-webhook:v0.4.11
 - name: registry.rancher.com/rancher/rancher:v2.8.8
 - name: registry.rancher.com/rancher/rke-tools:v0.1.102
 - name: registry.rancher.com/rancher/rke2-cloud-provider:v1.29.3-build20240515
 - name: registry.rancher.com/rancher/rke2-runtime:v1.28.13-rke2r1
 - name: registry.rancher.com/rancher/rke2-upgrade:v1.28.13-rke2r1
 - name: registry.rancher.com/rancher/security-scan:v0.2.17

347 Modifications in the definition file

 - name: registry.rancher.com/rancher/shell:v0.1.26
 - name: registry.rancher.com/rancher/system-agent-installer-k3s:v1.28.13-k3s1
 - name: registry.rancher.com/rancher/system-agent-installer-rke2:v1.28.13-rke2r1
 - name: registry.rancher.com/rancher/system-agent:v0.3.9-suc
 - name: registry.rancher.com/rancher/system-upgrade-controller:v0.13.4
 - name: registry.rancher.com/rancher/ui-plugin-catalog:2.1.0
 - name: registry.rancher.com/rancher/ui-plugin-operator:v0.1.1
 - name: registry.rancher.com/rancher/webhook-receiver:v0.2.5
 - name: registry.rancher.com/rancher/kubectl:v1.20.2
 - name: registry.rancher.com/rancher/shell:v0.1.24
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v1.4.1
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20221220-controller-v1.5.1-58-g787ea74b6
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20230312-helm-chart-4.5.2-28-g66a760794
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231011-8b53cabe0
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231226-1a7112e06
 - name: registry.rancher.com/rancher/mirrored-longhornio-csi-attacher:v4.4.2
 - name: registry.rancher.com/rancher/mirrored-longhornio-csi-provisioner:v3.6.2
 - name: registry.rancher.com/rancher/mirrored-longhornio-csi-resizer:v1.9.2
 - name: registry.rancher.com/rancher/mirrored-longhornio-csi-snapshotter:v6.3.2
 - name: registry.rancher.com/rancher/mirrored-longhornio-csi-node-driver-
registrar:v2.9.2
 - name: registry.rancher.com/rancher/mirrored-longhornio-livenessprobe:v2.12.0
 - name: registry.rancher.com/rancher/mirrored-longhornio-backing-image-manager:v1.6.1
 - name: registry.rancher.com/rancher/mirrored-longhornio-longhorn-engine:v1.6.1
 - name: registry.rancher.com/rancher/mirrored-longhornio-longhorn-instance-
manager:v1.6.1
 - name: registry.rancher.com/rancher/mirrored-longhornio-longhorn-manager:v1.6.1
 - name: registry.rancher.com/rancher/mirrored-longhornio-longhorn-share-
manager:v1.6.1
 - name: registry.rancher.com/rancher/mirrored-longhornio-longhorn-ui:v1.6.1
 - name: registry.rancher.com/rancher/mirrored-longhornio-support-bundle-kit:v0.0.36
 - name: registry.suse.com/edge/cluster-api-provider-rke2-bootstrap:v0.4.1
 - name: registry.suse.com/edge/cluster-api-provider-rke2-controlplane:v0.4.1
 - name: registry.suse.com/edge/cluster-api-controller:v1.6.2
 - name: registry.suse.com/edge/cluster-api-provider-metal3:v1.6.0
 - name: registry.suse.com/edge/ip-address-manager:v1.6.0

348 Modifications in the definition file

29.4.3 Modifications in the custom folder

The custom/scripts/99-register.sh script must be removed when using an air-gap
environment. As you can see in the directory structure, the 99-register.sh script is not
included in the custom/scripts folder.

The custom/scripts/99-mgmt-setup.sh script must be modified to extract and copy
the airgap-resources.tar.gz le to the final location. The following is an example of
the 99-mgmt-setup.sh script with the modifications to extract and copy the airgap-re-
sources.tar.gz le:

#!/bin/bash

Copy the scripts from combustion to the final location
mkdir -p /opt/mgmt/bin/
for script in basic-setup.sh rancher.sh metal3.sh; do
 cp ${script} /opt/mgmt/bin/
done

Copy the systemd unit file and enable it at boot
cp mgmt-stack-setup.service /etc/systemd/system/mgmt-stack-setup.service
systemctl enable mgmt-stack-setup.service

Extract the airgap resources
tar zxf airgap-resources.tar.gz

Copy the clusterctl binary to the final location
cp airgap-resources/clusterctl /opt/mgmt/bin/ && chmod +x /opt/mgmt/bin/clusterctl

Copy the clusterctl.yaml and override
mkdir -p /root/cluster-api
cp -r airgap-resources/clusterctl.yaml airgap-resources/overrides /root/cluster-api/

The custom/files/metal3.sh script must be modified to use the local resources included
in the airgap-resources.tar.gz le instead of downloading them from the internet.
The following is an example of the metal3.sh script with the modifications to use the
local resources:

#!/bin/bash
set -euo pipefail

BASEDIR="$(dirname "$0")"
source ${BASEDIR}/basic-setup.sh

349 Modifications in the custom folder

METAL3LOCKNAMESPACE="default"
METAL3LOCKCMNAME="metal3-lock"

trap 'catch $? $LINENO' EXIT

catch() {
 if ["$1" != "0"]; then
 echo "Error $1 occurred on $2"
 ${KUBECTL} delete configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE}
 fi
}

Get or create the lock to run all those steps just in a single node
As the first node is created WAY before the others, this should be enough
TODO: Investigate if leases is better
if [$(${KUBECTL} get cm -n ${METAL3LOCKNAMESPACE} ${METAL3LOCKCMNAME} -o name | wc
 -l) -lt 1]; then
 ${KUBECTL} create configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE} --from-
literal foo=bar
else
 exit 0
fi

Wait for metal3
while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CHART_TARGETNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CHART_TARGETNAMESPACE} -l app.kubernetes.io/
name=metal3-ironic -o name) --timeout=10s; do sleep 2 ; done

If rancher is deployed
if [$(${KUBECTL} get pods -n ${RANCHER_CHART_TARGETNAMESPACE} -l app=rancher -o
 name | wc -l) -ge 1]; then
 cat <<-EOF | ${KUBECTL} apply -f -
 apiVersion: management.cattle.io/v3
 kind: Feature
 metadata:
 name: embedded-cluster-api
 spec:
 value: false
 EOF

 # Disable Rancher webhooks for CAPI
 ${KUBECTL} delete mutatingwebhookconfiguration.admissionregistration.k8s.io
 mutating-webhook-configuration
 ${KUBECTL} delete validatingwebhookconfigurations.admissionregistration.k8s.io
 validating-webhook-configuration
 ${KUBECTL} wait --for=delete namespace/cattle-provisioning-capi-system --
timeout=300s

350 Modifications in the custom folder

fi

Deploy CAPI
if [$(${KUBECTL} get pods -n ${METAL3_CAPISYSTEMNAMESPACE} -o name | wc -l) -lt
 1]; then

 # Try this command 3 times just in case, stolen from https://stackoverflow.com/
a/33354419
 if ! (r=3; while ! /opt/mgmt/bin/clusterctl init \
 --core "cluster-api:v${METAL3_CAPICOREVERSION}"\
 --infrastructure "metal3:v${METAL3_CAPIMETAL3VERSION}"\
 --bootstrap "${METAL3_CAPIPROVIDER}:v${METAL3_CAPIRKE2VERSION}"\
 --control-plane "${METAL3_CAPIPROVIDER}:v${METAL3_CAPIRKE2VERSION}"\
 --config /root/cluster-api/clusterctl.yaml ; do
 ((--r))||exit
 echo "Something went wrong, let's wait 10 seconds and retry"
 sleep 10;done) ; then
 echo "clusterctl failed"
 exit 1
 fi

 # Wait for capi-controller-manager
 while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CAPISYSTEMNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CAPISYSTEMNAMESPACE} -l cluster.x-k8s.io/
provider=cluster-api -o name) --timeout=10s; do sleep 2 ; done

 # Wait for capm3-controller-manager, there are two pods, the ipam and the capm3
 one, just wait for the first one
 while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CAPM3NAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CAPM3NAMESPACE} -l cluster.x-k8s.io/
provider=infrastructure-metal3 -o name | head -n1) --timeout=10s; do sleep 2 ; done

 # Wait for rke2-bootstrap-controller-manager
 while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_RKE2BOOTSTRAPNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_RKE2BOOTSTRAPNAMESPACE} -l cluster.x-k8s.io/
provider=bootstrap-rke2 -o name) --timeout=10s; do sleep 2 ; done

 # Wait for rke2-control-plane-controller-manager
 while ! ${KUBECTL} wait --for condition=ready -n
 ${METAL3_RKE2CONTROLPLANENAMESPACE} $(${KUBECTL} get pods -n
 ${METAL3_RKE2CONTROLPLANENAMESPACE} -l cluster.x-k8s.io/provider=control-plane-rke2
 -o name) --timeout=10s; do sleep 2 ; done

fi

Clean up the lock cm

351 Modifications in the custom folder

${KUBECTL} delete configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE}

The custom/files/airgap-resources.tar.gz le must be included in the cus-

tom/files folder with all the resources needed to run the management cluster in an
air-gap environment. This le must be prepared manually downloading all resources and
compressing them into this single le. The airgap-resources.tar.gz le contains the
following resources:

|-- clusterctl
|-- clusterctl.yaml
|-- overrides
 |-- bootstrap-rke2
 | |-- v0.4.1
 | |-- bootstrap-components.yaml
 | |-- metadata.yaml
 |-- cluster-api
 | |-- v1.6.2
 | |-- core-components.yaml
 | |-- metadata.yaml
 |-- control-plane-rke2
 | |-- v0.4.1
 | |-- control-plane-components.yaml
 | |-- metadata.yaml
 |-- infrastructure-metal3
 |-- v1.6.0
 |-- cluster-template.yaml
 |-- infrastructure-components.yaml
 |-- metadata.yaml

The clusterctl.yaml le contains the configuration to specify the images location and the
overrides to be used by the clusterctl tool. The overrides folder contains yaml le mani-
fests to be used instead of downloading them from the internet.

providers:
 # override a pre-defined provider
 - name: "cluster-api"
 url: "/root/cluster-api/overrides/cluster-api/v1.6.2/core-components.yaml"
 type: "CoreProvider"
 - name: "metal3"
 url: "/root/cluster-api/overrides/infrastructure-metal3/v1.6.0/infrastructure-
components.yaml"
 type: "InfrastructureProvider"
 - name: "rke2"
 url: "/root/cluster-api/overrides/bootstrap-rke2/v0.4.1/bootstrap-components.yaml"
 type: "BootstrapProvider"

352 Modifications in the custom folder

 - name: "rke2"
 url: "/root/cluster-api/overrides/control-plane-rke2/v0.4.1/control-plane-
components.yaml"
 type: "ControlPlaneProvider"
images:
 all:
 repository: registry.suse.com/edge

The clusterctl and the rest of the les included in the overrides folder can be downloaded
using the following curls commands:

clusterctl binary
curl -L https://github.com/kubernetes-sigs/cluster-api/releases/download/v1.6.2/
clusterctl-linux-${GOARCH} -o /usr/local/bin/clusterct

boostrap-components (boostrap-rke2)
curl -L https://github.com/rancher-sandbox/cluster-api-provider-rke2/releases/download/
v0.4.1/bootstrap-components.yaml
curl -L https://github.com/rancher-sandbox/cluster-api-provider-rke2/releases/download/
v0.4.1/metadata.yaml

control-plane-components (control-plane-rke2)
curl -L https://github.com/rancher-sandbox/cluster-api-provider-rke2/releases/download/
v0.4.1/control-plane-components.yaml
curl -L https://github.com/rancher-sandbox/cluster-api-provider-rke2/releases/download/
v0.4.1/metadata.yaml

cluster-api components
curl -L https://github.com/kubernetes-sigs/cluster-api/releases/download/v1.6.2/core-
components.yaml
curl -L https://github.com/kubernetes-sigs/cluster-api/releases/download/v1.6.2/
metadata.yaml

infrastructure-components (infrastructure-metal3)
curl -L https://github.com/metal3-io/cluster-api-provider-metal3/releases/download/
v1.6.0/infrastructure-components.yaml
curl -L https://github.com/metal3-io/cluster-api-provider-metal3/releases/download/
v1.6.0/metadata.yaml

Note
If you want to use different versions of the components, you can change the version in
the URL to download the specific version of the components.

353 Modifications in the custom folder

With the previous resources downloaded, you can compress them into a single le using the
following command:

tar -czvf airgap-resources.tar.gz clusterctl clusterctl.yaml overrides

29.5 Image creation
Once the directory structure is prepared following the previous sections (for both, connected
and air-gap scenarios), run the following command to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/edge-image-builder:1.0.2 \
 build --definition-file mgmt-cluster.yaml

This creates the ISO output image le that, in our case, based on the image definition described
above, is eib-mgmt-cluster-image.iso .

29.6 Provision the management cluster
The previous image contains all components explained above, and it can be used to provision
the management cluster using a virtual machine or a bare-metal server (using the virtual-media
feature).

354 Image creation

30 Telco features configuration

This section documents and explains the configuration of Telco-specific features on ATIP-de-
ployed clusters.

The directed network provisioning deployment method is used, as described in the ATIP Auto-
mated Provision (Chapter 31, Fully automated directed network provisioning) section.

The following topics are covered in this section:

Kernel image for real time (Section 30.1, “Kernel image for real time”): Kernel image to be used
by the real-time kernel.

CPU tuned configuration (Section 30.2, “CPU tuned configuration”): Tuned configuration to be
used by the real-time kernel.

CNI configuration (Section 30.3, “CNI Configuration”): CNI configuration to be used by the
Kubernetes cluster.

SR-IOV configuration (Section 30.4, “SR-IOV”): SR-IOV configuration to be used by the Ku-
bernetes workloads.

DPDK configuration (Section 30.5, “DPDK”): DPDK configuration to be used by the system.

vRAN acceleration card (Section 30.6, “vRAN acceleration (Intel ACC100/ACC200)”): Accel-
eration card configuration to be used by the Kubernetes workloads.

Huge pages (Section 30.7, “Huge pages”): Huge pages configuration to be used by the Kuber-
netes workloads.

CPU pinning configuration (Section 30.8, “CPU pinning configuration”): CPU pinning configu-
ration to be used by the Kubernetes workloads.

NUMA-aware scheduling configuration (Section 30.9, “NUMA-aware scheduling”): NU-
MA-aware scheduling configuration to be used by the Kubernetes workloads.

Metal LB configuration (Section 30.10, “Metal LB”): Metal LB configuration to be used by the
Kubernetes workloads.

Private registry configuration (Section 30.11, “Private registry configuration”): Private registry
configuration to be used by the Kubernetes workloads.

355

30.1 Kernel image for real time
The real-time kernel image is not necessarily better than a standard kernel. It is a different
kernel tuned to a specific use case. The real-time kernel is tuned for lower latency at the cost of
throughput. The real-time kernel is not recommended for general purpose use, but in our case,
this is the recommended kernel for Telco Workloads where latency is a key factor.

There are four top features:

Deterministic execution:
Get greater predictability — ensure critical business processes complete in time, every
time and deliver high-quality service, even under heavy system loads. By shielding key
system resources for high-priority processes, you can ensure greater predictability for time-
sensitive applications.

Low jitter:
The low jitter built upon the highly deterministic technology helps to keep applications
synchronized with the real world. This helps services that need ongoing and repeated
calculation.

Priority inheritance:
Priority inheritance refers to the ability of a lower priority process to assume a higher
priority when there is a higher priority process that requires the lower priority process
to finish before it can accomplish its task. SUSE Linux Enterprise Real Time solves these
priority inversion problems for mission-critical processes.

Thread interrupts:
Processes running in interrupt mode in a general-purpose operating system are not pre-
emptible. With SUSE Linux Enterprise Real Time, these interrupts have been encapsulated
by kernel threads, which are interruptible, and allow the hard and soft interrupts to be
preempted by user-defined higher priority processes.
In our case, if you have installed a real-time image like SLE Micro RT , kernel real time is
already installed. From the SUSE Customer Center (https://scc.suse.com/) , you can down-
load the real-time kernel image.

Note
For more information about the real-time kernel, visit SUSE Real Time (https://

www.suse.com/products/realtime/) .

356 Kernel image for real time

https://scc.suse.com/
https://www.suse.com/products/realtime/
https://www.suse.com/products/realtime/

30.2 CPU tuned configuration

The CPU Tuned configuration allows the possibility to isolate the CPU cores to be used by the
real-time kernel. It is important to prevent the OS from using the same cores as the real-time
kernel, because the OS could use the cores and increase the latency in the real-time kernel.

To enable and configure this feature, the rst thing is to create a profile for the CPU cores we
want to isolate. In this case, we are isolating the cores 1-30 and 33-62 .

$ echo "export tuned_params" >> /etc/grub.d/00_tuned

$ echo "isolated_cores=1-30,33-62" >> /etc/tuned/cpu-partitioning-variables.conf

$ tuned-adm profile cpu-partitioning
Tuned (re)started, changes applied.

Then we need to modify the GRUB option to isolate CPU cores and other important parameters
for CPU usage. The following options are important to be customized with your current hardware
specifications:

parameter value description

isolcpus 1-30,33-62 Isolate the cores 1-30 and
33-62

skew_tick 1 This option allows the kernel
to skew the timer interrupts
across the isolated CPUs.

nohz on This option allows the kernel
to run the timer tick on a sin-
gle CPU when the system is
idle.

nohz_full 1-30,33-62 kernel boot parameter is the
current main interface to
configure full dynticks along
with CPU Isolation.

357 CPU tuned configuration

parameter value description

rcu_nocbs 1-30,33-62 This option allows the kernel
to run the RCU callbacks on
a single CPU when the sys-
tem is idle.

kthread_cpus 0,31,32,63 This option allows the kernel
to run the kthreads on a sin-
gle CPU when the system is
idle.

irqaffinity 0,31,32,63 This option allows the kernel
to run the interrupts on a sin-
gle CPU when the system is
idle.

processor.max_cstate 1 This option prevents the CPU
from dropping into a sleep
state when idle

intel_idle.max_cstate 0 This option disables the in-
tel_idle driver and allows
acpi_idle to be used

With the values shown above, we are isolating 60 cores, and we are using four cores for the OS.

The following commands modify the GRUB configuration and apply the changes mentioned
above to be present on the next boot:

Edit the /etc/default/grub le and add the parameters mentioned above:

GRUB_CMDLINE_LINUX="intel_iommu=on intel_pstate=passive processor.max_cstate=1
 intel_idle.max_cstate=0 iommu=pt usbcore.autosuspend=-1 selinux=0 enforcing=0
 nmi_watchdog=0 crashkernel=auto softlockup_panic=0 audit=0 mce=off hugepagesz=1G
 hugepages=40 hugepagesz=2M hugepages=0 default_hugepagesz=1G kthread_cpus=0,31,32,63
 irqaffinity=0,31,32,63 isolcpus=1-30,33-62 skew_tick=1 nohz_full=1-30,33-62
 rcu_nocbs=1-30,33-62 rcu_nocb_poll"

Update the GRUB configuration:

$ transactional-update grub.cfg

358 CPU tuned configuration

$ reboot

To validate that the parameters are applied after the reboot, the following command can be
used to check the kernel command line:

$ cat /proc/cmdline

30.3 CNI Configuration

30.3.1 Cilium

Cilium is the default CNI plug-in for ATIP. To enable Cilium on RKE2 cluster as the default plug-
in, the following configurations are required in the /etc/rancher/rke2/config.yaml le:

cni:
- cilium

This can also be specified with command-line arguments, that is, --cni=cilium into the server
line in /etc/systemd/system/rke2-server le.

To use the SR-IOV network operator described in the next section (Section 30.4, “SR-

IOV” (page 365)), use Multus with another CNI plug-in, like Cilium or Calico , as a secondary
plug-in.

cni:
- multus
- cilium

Note
For more information about CNI plug-ins, visit Network Options (https://docs.rke2.io/in-

stall/network_options) .

359 CNI Configuration

https://docs.rke2.io/install/network_options
https://docs.rke2.io/install/network_options

30.4 SR-IOV
SR-IOV allows a device, such as a network adapter, to separate access to its resources among
various PCIe hardware functions. There are different ways to deploy SR-IOV , and here, we
show two different options:

Option 1: using the SR-IOV CNI device plug-ins and a config map to configure it properly.

Option 2 (recommended): using the SR-IOV Helm chart from Rancher Prime to make this
deployment easy.

Option 1 - Installation of SR-IOV CNI device plug-ins and a config map to configure it
properly

Prepare the config map for the device plug-in

Get the information to ll the config map from the lspci command:

$ lspci | grep -i acc
8a:00.0 Processing accelerators: Intel Corporation Device 0d5c

$ lspci | grep -i net
19:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
19:00.1 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
19:00.2 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
19:00.3 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
51:00.0 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev
 02)
51:00.1 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev
 02)
51:01.0 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:01.1 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:01.2 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:01.3 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:11.0 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:11.1 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)

360 SR-IOV

51:11.2 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:11.3 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)

The config map consists of a JSON le that describes devices using filters to discover, and creates
groups for the interfaces. The key is understanding filters and groups. The filters are used to
discover the devices and the groups are used to create the interfaces.

It could be possible to set filters:

vendorID: 8086 (Intel)

deviceID: 0d5c (Accelerator card)

driver: vfio-pci (driver)

pfNames: p2p1 (physical interface name)

It could be possible to also set filters to match more complex interface syntax, for example:

pfNames: ["eth1#1,2,3,4,5,6"] or [eth1#1-6] (physical interface name)

Related to the groups, we could create a group for the FEC card and another group for the
Intel card, even creating a prefix depending on our use case:

resourceName: pci_sriov_net_bh_dpdk

resourcePrefix: Rancher.io

There are a lot of combinations to discover and create the resource group to allocate some VFs
to the pods.

Note
For more information about the filters and groups, visit sr-iov network device plug-in

(https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin) .

After setting the filters and groups to match the interfaces depending on the hardware and the
use case, the following config map shows an example to be used:

apiVersion: v1
kind: ConfigMap
metadata:
 name: sriovdp-config
 namespace: kube-system

361 SR-IOV

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin

data:
 config.json: |
 {
 "resourceList": [
 {
 "resourceName": "intel_fec_5g",
 "devicetype": "accelerator",
 "selectors": {
 "vendors": ["8086"],
 "devices": ["0d5d"]
 }
 },
 {
 "resourceName": "intel_sriov_odu",
 "selectors": {
 "vendors": ["8086"],
 "devices": ["1889"],
 "drivers": ["vfio-pci"],
 "pfNames": ["p2p1"]
 }
 },
 {
 "resourceName": "intel_sriov_oru",
 "selectors": {
 "vendors": ["8086"],
 "devices": ["1889"],
 "drivers": ["vfio-pci"],
 "pfNames": ["p2p2"]
 }
 }
]
 }

Prepare the daemonset le to deploy the device plug-in.

The device plug-in supports several architectures (arm , amd , ppc64le), so the same le can
be used for different architectures deploying several daemonset for each architecture.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: sriov-device-plugin
 namespace: kube-system

apiVersion: apps/v1
kind: DaemonSet
metadata:

362 SR-IOV

 name: kube-sriov-device-plugin-amd64
 namespace: kube-system
 labels:
 tier: node
 app: sriovdp
spec:
 selector:
 matchLabels:
 name: sriov-device-plugin
 template:
 metadata:
 labels:
 name: sriov-device-plugin
 tier: node
 app: sriovdp
 spec:
 hostNetwork: true
 nodeSelector:
 kubernetes.io/arch: amd64
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule
 serviceAccountName: sriov-device-plugin
 containers:
 - name: kube-sriovdp
 image: rancher/hardened-sriov-network-device-plugin:v3.5.1-build20231009-amd64
 imagePullPolicy: IfNotPresent
 args:
 - --log-dir=sriovdp
 - --log-level=10
 securityContext:
 privileged: true
 resources:
 requests:
 cpu: "250m"
 memory: "40Mi"
 limits:
 cpu: 1
 memory: "200Mi"
 volumeMounts:
 - name: devicesock
 mountPath: /var/lib/kubelet/
 readOnly: false
 - name: log
 mountPath: /var/log
 - name: config-volume

363 SR-IOV

 mountPath: /etc/pcidp
 - name: device-info
 mountPath: /var/run/k8s.cni.cncf.io/devinfo/dp
 volumes:
 - name: devicesock
 hostPath:
 path: /var/lib/kubelet/
 - name: log
 hostPath:
 path: /var/log
 - name: device-info
 hostPath:
 path: /var/run/k8s.cni.cncf.io/devinfo/dp
 type: DirectoryOrCreate
 - name: config-volume
 configMap:
 name: sriovdp-config
 items:
 - key: config.json
 path: config.json

After applying the config map and the daemonset , the device plug-in will be deployed
and the interfaces will be discovered and available for the pods.

$ kubectl get pods -n kube-system | grep sriov
kube-system kube-sriov-device-plugin-amd64-twjfl 1/1 Running 0 2m

Check the interfaces discovered and available in the nodes to be used by the pods:

$ kubectl get $(kubectl get nodes -oname) -o jsonpath='{.status.allocatable}' | jq
{
 "cpu": "64",
 "ephemeral-storage": "256196109726",
 "hugepages-1Gi": "40Gi",
 "hugepages-2Mi": "0",
 "intel.com/intel_fec_5g": "1",
 "intel.com/intel_sriov_odu": "4",
 "intel.com/intel_sriov_oru": "4",
 "memory": "221396384Ki",
 "pods": "110"
}

The FEC is intel.com/intel_fec_5g and the value is 1.

The VF is intel.com/intel_sriov_odu or intel.com/intel_sriov_oru if you deploy
it with a device plug-in and the config map without Helm charts.

364 SR-IOV

Important
If there are no interfaces here, it makes little sense to continue because the interface will
not be available for pods. Review the config map and filters to solve the issue rst.

Option 2 (recommended) - Installation using Rancher using Helm chart for SR-IOV CNI
and device plug-ins

Get Helm if not present:

$ curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

Install SR-IOV.

This part could be done in two ways, using the CLI or using the Rancher UI .

Install Operator from CLI

helm repo add suse-edge https://suse-edge.github.io/charts
helm install sriov-crd suse-edge/sriov-crd -n sriov-network-operator
helm install install sriov-network-operator suse-edge/sriov-network-operator -n
 sriov-network-operator

Install Operator from Rancher UI

Once your cluster is installed, and you have access to the Rancher UI , you can install the
SR-IOV Operator from the Rancher UI from the apps tab:

Note
Make sure you select the right namespace to install the operator, for example, sri-
ov-network-operator .

+ image::features_sriov.png[sriov.png]

Check the deployed resources crd and pods:

$ kubectl get crd
$ kubectl -n sriov-network-operator get pods

365 SR-IOV

Check the label in the nodes.

With all resources running, the label appears automatically in your node:

$ kubectl get nodes -oyaml | grep feature.node.kubernetes.io/network-sriov.capable

feature.node.kubernetes.io/network-sriov.capable: "true"

Review the daemonset to see the new sriov-network-config-daemon and sri-

ov-rancher-nfd-worker as active and ready:

$ kubectl get daemonset -A
NAMESPACE NAME DESIRED CURRENT READY UP-TO-
DATE AVAILABLE NODE SELECTOR AGE
calico-system calico-node 1 1 1 1
 1 kubernetes.io/os=linux 15h
sriov-network-operator sriov-network-config-daemon 1 1 1 1
 1 feature.node.kubernetes.io/network-sriov.capable=true 45m
sriov-network-operator sriov-rancher-nfd-worker 1 1 1 1
 1 <none> 45m
kube-system rke2-ingress-nginx-controller 1 1 1 1
 1 kubernetes.io/os=linux 15h
kube-system rke2-multus-ds 1 1 1 1
 1 kubernetes.io/arch=amd64,kubernetes.io/os=linux 15h

In a few minutes (can take up to 10 min to be updated), the nodes are detected and configured
with the SR-IOV capabilities:

$ kubectl get sriovnetworknodestates.sriovnetwork.openshift.io -A
NAMESPACE NAME AGE
sriov-network-operator xr11-2 83s

Check the interfaces detected.

The interfaces discovered should be the PCI address of the network device. Check this informa-
tion with the lspci command in the host.

$ kubectl get sriovnetworknodestates.sriovnetwork.openshift.io -n kube-system -oyaml
apiVersion: v1
items:
- apiVersion: sriovnetwork.openshift.io/v1
 kind: SriovNetworkNodeState
 metadata:
 creationTimestamp: "2023-06-07T09:52:37Z"

366 SR-IOV

 generation: 1
 name: xr11-2
 namespace: sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
 uid: 80b72499-e26b-4072-a75c-f9a6218ec357
 resourceVersion: "356603"
 uid: e1f1654b-92b3-44d9-9f87-2571792cc1ad
 spec:
 dpConfigVersion: "356507"
 status:
 interfaces:
 - deviceID: "1592"
 driver: ice
 eSwitchMode: legacy
 linkType: ETH
 mac: 40:a6:b7:9b:35:f0
 mtu: 1500
 name: p2p1
 pciAddress: "0000:51:00.0"
 totalvfs: 128
 vendor: "8086"
 - deviceID: "1592"
 driver: ice
 eSwitchMode: legacy
 linkType: ETH
 mac: 40:a6:b7:9b:35:f1
 mtu: 1500
 name: p2p2
 pciAddress: "0000:51:00.1"
 totalvfs: 128
 vendor: "8086"
 syncStatus: Succeeded
kind: List
metadata:
 resourceVersion: ""

Note
If your interface is not detected here, ensure that it is present in the next config map:

$ kubectl get cm supported-nic-ids -oyaml -n sriov-network-operator

367 SR-IOV

If your device is not there, edit the config map, adding the right values to be discovered
(should be necessary to restart the sriov-network-config-daemon daemonset).

Create the NetworkNode Policy to configure the VFs .

Some VFs (numVfs) from the device (rootDevices) will be created, and it will be configured
with the driver deviceType and the MTU :

Note
The resourceName eld must not contain any special characters and must be unique
across the cluster. The example uses the deviceType: vfio-pci because dpdk will
be used in combination with sr-iov . If you don’t use dpdk , the deviceType should be
deviceType: netdevice (default value).

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-dpdk
 namespace: sriov-network-operator
spec:
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 resourceName: intelnicsDpdk
 deviceType: vfio-pci
 numVfs: 8
 mtu: 1500
 nicSelector:
 deviceID: "1592"
 vendor: "8086"
 rootDevices:
 - 0000:51:00.0

Validate configurations:

$ kubectl get $(kubectl get nodes -oname) -o jsonpath='{.status.allocatable}' | jq
{
 "cpu": "64",
 "ephemeral-storage": "256196109726",
 "hugepages-1Gi": "60Gi",
 "hugepages-2Mi": "0",

368 SR-IOV

 "intel.com/intel_fec_5g": "1",
 "memory": "200424836Ki",
 "pods": "110",
 "rancher.io/intelnicsDpdk": "8"
}

Create the sr-iov network (optional, just in case a different network is needed):

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: network-dpdk
 namespace: sriov-network-operator
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "192.168.0.0/24",
 "rangeStart": "192.168.0.20",
 "rangeEnd": "192.168.0.60",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "192.168.0.1"
 }
 vlan: 500
 resourceName: intelnicsDpdk

Check the network created:

$ kubectl get network-attachment-definitions.k8s.cni.cncf.io -A -oyaml

apiVersion: v1
items:
- apiVersion: k8s.cni.cncf.io/v1
 kind: NetworkAttachmentDefinition
 metadata:
 annotations:
 k8s.v1.cni.cncf.io/resourceName: rancher.io/intelnicsDpdk
 creationTimestamp: "2023-06-08T11:22:27Z"
 generation: 1
 name: network-dpdk
 namespace: sriov-network-operator
 resourceVersion: "13124"
 uid: df7c89f5-177c-4f30-ae72-7aef3294fb15
 spec:

369 SR-IOV

 config: '{ "cniVersion":"0.3.1", "name":"network-
dpdk","type":"sriov","vlan":500,"vlanQoS":0,"ipam":{"type":"host-
local","subnet":"192.168.0.0/24","rangeStart":"192.168.0.10","rangeEnd":"192.168.0.60","routes":
[{"dst":"0.0.0.0/0"}],"gateway":"192.168.0.1"}
 }'
kind: List
metadata:
 resourceVersion: ""

30.5 DPDK

DPDK (Data Plane Development Kit) is a set of libraries and drivers for fast packet processing. It is
used to accelerate packet processing workloads running on a wide variety of CPU architectures.
The DPDK includes data plane libraries and optimized network interface controller (NIC) drivers
for the following:

1. A queue manager implements lockless queues.

2. A buer manager pre-allocates xed size buers.

3. A memory manager allocates pools of objects in memory and uses a ring to store free
objects; ensures that objects are spread equally on all DRAM channels.

4. Poll mode drivers (PMD) are designed to work without asynchronous notifications, reduc-
ing overhead.

5. A packet framework as a set of libraries that are helpers to develop packet processing.

The following steps will show how to enable DPDK and how to create VFs from the NICs to
be used by the DPDK interfaces:

Install the DPDK package:

$ transactional-update pkg install dpdk22 dpdk22-tools libdpdk-23
$ reboot

370 DPDK

Kernel parameters:

To use DPDK, employ some drivers to enable certain parameters in the kernel:

parameter value description

iommu pt This option enables the use
of the vfio driver for the
DPDK interfaces.

intel_iommu on This option enables the use
of vfio for VFs .

To enable the parameters, add them to the /etc/default/grub le:

GRUB_CMDLINE_LINUX="intel_iommu=on intel_pstate=passive processor.max_cstate=1
 intel_idle.max_cstate=0 iommu=pt usbcore.autosuspend=-1 selinux=0 enforcing=0
 nmi_watchdog=0 crashkernel=auto softlockup_panic=0 audit=0 mce=off hugepagesz=1G
 hugepages=40 hugepagesz=2M hugepages=0 default_hugepagesz=1G kthread_cpus=0,31,32,63
 irqaffinity=0,31,32,63 isolcpus=1-30,33-62 skew_tick=1 nohz_full=1-30,33-62
 rcu_nocbs=1-30,33-62 rcu_nocb_poll"

Update the GRUB configuration and reboot the system to apply the changes:

$ transactional-update grub.cfg
$ reboot

Load vfio-pci kernel module and enable SR-IOV on the NICs :

$ modprobe vfio-pci enable_sriov=1 disable_idle_d3=1

Create some virtual functions (VFs) from the NICs .

To create for VFs , for example, for two different NICs , the following commands are required:

$ echo 4 > /sys/bus/pci/devices/0000:51:00.0/sriov_numvfs
$ echo 4 > /sys/bus/pci/devices/0000:51:00.1/sriov_numvfs

Bind the new VFs with the vfio-pci driver:

$ dpdk-devbind.py -b vfio-pci 0000:51:01.0 0000:51:01.1 0000:51:01.2 0000:51:01.3 \
 0000:51:11.0 0000:51:11.1 0000:51:11.2 0000:51:11.3

371 DPDK

Review the configuration is correctly applied:

$ dpdk-devbind.py -s

Network devices using DPDK-compatible driver
==
0000:51:01.0 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.1 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.2 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.3 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.0 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:11.1 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:21.2 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:31.3 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio

Network devices using kernel driver
===================================
0000:19:00.0 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em1
 drv=bnxt_en unused=igb_uio,vfio-pci *Active*
0000:19:00.1 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em2
 drv=bnxt_en unused=igb_uio,vfio-pci
0000:19:00.2 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em3
 drv=bnxt_en unused=igb_uio,vfio-pci
0000:19:00.3 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em4
 drv=bnxt_en unused=igb_uio,vfio-pci
0000:51:00.0 'Ethernet Controller E810-C for QSFP 1592' if=eth13 drv=ice
 unused=igb_uio,vfio-pci
0000:51:00.1 'Ethernet Controller E810-C for QSFP 1592' if=rename8 drv=ice
 unused=igb_uio,vfio-pci

30.6 vRAN acceleration (Intel ACC100/ACC200)
As communications service providers move from 4 G to 5 G networks, many are adopting vir-
tualized radio access network (vRAN) architectures for higher channel capacity and easier de-
ployment of edge-based services and applications. vRAN solutions are ideally located to deliver
low-latency services with the flexibility to increase or decrease capacity based on the volume
of real-time traffic and demand on the network.

One of the most compute-intensive 4 G and 5 G workloads is RAN layer 1 (L1) FEC , which re-
solves data transmission errors over unreliable or noisy communication channels. FEC technol-
ogy detects and corrects a limited number of errors in 4 G or 5 G data, eliminating the need for
retransmission. Since the FEC acceleration transaction does not contain cell state information,
it can be easily virtualized, enabling pooling benefits and easy cell migration.

372 vRAN acceleration (Intel ACC100/ACC200)

Kernel parameters

To enable the vRAN acceleration, we need to enable the following kernel parameters (if not
present yet):

parameter value description

iommu pt This option enables the use
of vo for the DPDK inter-
faces.

intel_iommu on This option enables the use
of vo for VFs.

Modify the GRUB le /etc/default/grub to add them to the kernel command line:

GRUB_CMDLINE_LINUX="intel_iommu=on intel_pstate=passive processor.max_cstate=1
 intel_idle.max_cstate=0 iommu=pt usbcore.autosuspend=-1 selinux=0 enforcing=0
 nmi_watchdog=0 crashkernel=auto softlockup_panic=0 audit=0 mce=off hugepagesz=1G
 hugepages=40 hugepagesz=2M hugepages=0 default_hugepagesz=1G kthread_cpus=0,31,32,63
 irqaffinity=0,31,32,63 isolcpus=1-30,33-62 skew_tick=1 nohz_full=1-30,33-62
 rcu_nocbs=1-30,33-62 rcu_nocb_poll"

Update the GRUB configuration and reboot the system to apply the changes:

$ transactional-update grub.cfg
$ reboot

To verify that the parameters are applied after the reboot, check the command line:

$ cat /proc/cmdline

Load vo-pci kernel modules to enable the vRAN acceleration:

$ modprobe vfio-pci enable_sriov=1 disable_idle_d3=1

Get interface information Acc100:

$ lspci | grep -i acc
8a:00.0 Processing accelerators: Intel Corporation Device 0d5c

Bind the physical interface (PF) with vfio-pci driver:

$ dpdk-devbind.py -b vfio-pci 0000:8a:00.0

373 vRAN acceleration (Intel ACC100/ACC200)

Create the virtual functions (VFs) from the physical interface (PF).

Create 2 VFs from the PF and bind with vfio-pci following the next steps:

$ echo 2 > /sys/bus/pci/devices/0000:8a:00.0/sriov_numvfs
$ dpdk-devbind.py -b vfio-pci 0000:8b:00.0

Configure acc100 with the proposed configuration le:

$ pf_bb_config ACC100 -c /opt/pf-bb-config/acc100_config_vf_5g.cfg
Tue Jun 6 10:49:20 2023:INFO:Queue Groups: 2 5GUL, 2 5GDL, 2 4GUL, 2 4GDL
Tue Jun 6 10:49:20 2023:INFO:Configuration in VF mode
Tue Jun 6 10:49:21 2023:INFO: ROM version MM 99AD92
Tue Jun 6 10:49:21 2023:WARN:* Note: Not on DDR PRQ version 1302020 != 10092020
Tue Jun 6 10:49:21 2023:INFO:PF ACC100 configuration complete
Tue Jun 6 10:49:21 2023:INFO:ACC100 PF [0000:8a:00.0] configuration complete!

Check the new VFs created from the FEC PF:

$ dpdk-devbind.py -s
Baseband devices using DPDK-compatible driver
===
0000:8a:00.0 'Device 0d5c' drv=vfio-pci unused=
0000:8b:00.0 'Device 0d5d' drv=vfio-pci unused=

Other Baseband devices
======================
0000:8b:00.1 'Device 0d5d' unused=

30.7 Huge pages
When a process uses RAM , the CPU marks it as used by that process. For efficiency, the CPU
allocates RAM in chunks 4K bytes is the default value on many platforms. Those chunks are
named pages. Pages can be swapped to disk, etc.

Since the process address space is virtual, the CPU and the operating system need to remember
which pages belong to which process, and where each page is stored. The greater the number
of pages, the longer the search for memory mapping. When a process uses 1 GB of memory,
that is 262144 entries to look up (1 GB / 4 K). If a page table entry consumes 8 bytes, that
is 2 MB (262144 * 8) to look up.

Most current CPU architectures support larger-than-default pages, which give the CPU/OS fewer
entries to look up.

374 Huge pages

Kernel parameters

To enable the huge pages, we should add the next kernel parameters:

parameter value description

hugepagesz 1G This option allows to set the
size of huge pages to 1 G

hugepages 40 This is the number of huge
pages defined before

default_hugepagesz 1G This is the default value to
get the huge pages

Modify the GRUB le /etc/default/grub to add them to the kernel command line:

GRUB_CMDLINE_LINUX="intel_iommu=on intel_pstate=passive processor.max_cstate=1
 intel_idle.max_cstate=0 iommu=pt usbcore.autosuspend=-1 selinux=0 enforcing=0
 nmi_watchdog=0 crashkernel=auto softlockup_panic=0 audit=0 mce=off hugepagesz=1G
 hugepages=40 hugepagesz=2M hugepages=0 default_hugepagesz=1G kthread_cpus=0,31,32,63
 irqaffinity=0,31,32,63 isolcpus=1-30,33-62 skew_tick=1 nohz_full=1-30,33-62
 rcu_nocbs=1-30,33-62 rcu_nocb_poll"

Update the GRUB configuration and reboot the system to apply the changes:

$ transactional-update grub.cfg
$ reboot

To validate that the parameters are applied after the reboot, you can check the command line:

$ cat /proc/cmdline

Using huge pages

To use the huge pages, we need to mount them:

$ mkdir -p /hugepages
$ mount -t hugetlbfs nodev /hugepages

Deploy a Kubernetes workload, creating the resources and the volumes:

...

375 Huge pages

 resources:
 requests:
 memory: "24Gi"
 hugepages-1Gi: 16Gi
 intel.com/intel_sriov_oru: '4'
 limits:
 memory: "24Gi"
 hugepages-1Gi: 16Gi
 intel.com/intel_sriov_oru: '4'
...

...
volumeMounts:
 - name: hugepage
 mountPath: /hugepages
...
volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages
...

30.8 CPU pinning configuration

Requirements

1. Must have the CPU tuned to the performance profile covered in this section (Sec-

tion 30.2, “CPU tuned configuration”).

2. Must have the RKE2 cluster kubelet configured with the CPU management argu-
ments adding the following block (as an example) to the /etc/rancher/rke2/con-
fig.yaml le:

kubelet-arg:
- "cpu-manager=true"
- "cpu-manager-policy=static"
- "cpu-manager-policy-options=full-pcpus-only=true"
- "cpu-manager-reconcile-period=0s"
- "kubelet-reserved=cpu=1"
- "system-reserved=cpu=1"

376 CPU pinning configuration

Using CPU pinning on Kubernetes

There are three ways to use that feature using the Static Policy defined in kubelet depending
on the requests and limits you define on your workload:

1. BestEffort QoS Class: If you do not define any request or limit for CPU , the pod is
scheduled on the rst CPU available on the system.
An example of using the BestEffort QoS Class could be:

spec:
 containers:
 - name: nginx
 image: nginx

2. Burstable QoS Class: If you define a request for CPU, which is not equal to the limits,
or there is no CPU request.
Examples of using the Burstable QoS Class could be:

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

or

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 requests:
 memory: "100Mi"
 cpu: "1"

3. Guaranteed QoS Class: If you define a request for CPU, which is equal to the limits.

377 CPU pinning configuration

An example of using the Guaranteed QoS Class could be:

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 requests:
 memory: "200Mi"
 cpu: "2"

30.9 NUMA-aware scheduling

Non-Uniform Memory Access or Non-Uniform Memory Architecture (NUMA) is a physical mem-
ory design used in SMP (multiprocessors) architecture, where the memory access time depends
on the memory location relative to a processor. Under NUMA , a processor can access its own local
memory faster than non-local memory, that is, memory local to another processor or memory
shared between processors.

30.9.1 Identifying NUMA nodes

To identify the NUMA nodes, on your system use the following command:

$ lscpu | grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0-63

Note
For this example, we have only one NUMA node showing 64 CPUs .

NUMA needs to be enabled in the BIOS . If dmesg does not have records of NUMA initial-
ization during the bootup, then NUMA -related messages in the kernel ring buer might
have been overwritten.

378 NUMA-aware scheduling

30.10 Metal LB
MetalLB is a load-balancer implementation for bare-metal Kubernetes clusters, using standard
routing protocols like L2 and BGP as advertisement protocols. It is a network load balancer
that can be used to expose services in a Kubernetes cluster to the outside world due to the need
to use Kubernetes Services type LoadBalancer with bare-metal.

To enable MetalLB in the RKE2 cluster, the following steps are required:

Install MetalLB using the following command:

$ kubectl apply <<EOF -f
apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata:
 name: metallb
 namespace: kube-system
spec:
 repo: https://metallb.github.io/metallb/
 chart: metallb
 targetNamespace: metallb-system

apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata:
 name: endpoint-copier-operator
 namespace: kube-system
spec:
 repo: https://suse-edge.github.io/endpoint-copier-operator
 chart: endpoint-copier-operator
 targetNamespace: endpoint-copier-operator
EOF

Create the IpAddressPool and the L2advertisement configuration:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: kubernetes-vip-ip-pool
 namespace: metallb-system
spec:
 addresses:
 - 10.168.200.98/32
 serviceAllocation:
 priority: 100
 namespaces:

379 Metal LB

 - default

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - kubernetes-vip-ip-pool

Create the endpoint service to expose the VIP :

apiVersion: v1
kind: Service
metadata:
 name: kubernetes-vip
 namespace: default
spec:
 internalTrafficPolicy: Cluster
 ipFamilies:
 - IPv4
 ipFamilyPolicy: SingleStack
 ports:
 - name: rke2-api
 port: 9345
 protocol: TCP
 targetPort: 9345
 - name: k8s-api
 port: 6443
 protocol: TCP
 targetPort: 6443
 sessionAffinity: None
 type: LoadBalancer

Check the VIP is created and the MetalLB pods are running:

$ kubectl get svc -n default
$ kubectl get pods -n default

30.11 Private registry configuration
Containerd can be configured to connect to private registries and use them to pull private
images on each node.

380 Private registry configuration

Upon startup, RKE2 checks if a registries.yaml le exists at /etc/rancher/rke2/ and
instructs containerd to use any registries defined in the le. If you wish to use a private
registry, create this le as root on each node that will use the registry.

To add the private registry, create the le /etc/rancher/rke2/registries.yaml with the
following content:

mirrors:
 docker.io:
 endpoint:
 - "https://registry.example.com:5000"
configs:
 "registry.example.com:5000":
 auth:
 username: xxxxxx # this is the registry username
 password: xxxxxx # this is the registry password
 tls:
 cert_file: # path to the cert file used to authenticate to the registry
 key_file: # path to the key file for the certificate used to
 authenticate to the registry
 ca_file: # path to the ca file used to verify the registry's
 certificate
 insecure_skip_verify: # may be set to true to skip verifying the registry's
 certificate

or without authentication:

mirrors:
 docker.io:
 endpoint:
 - "https://registry.example.com:5000"
configs:
 "registry.example.com:5000":
 tls:
 cert_file: # path to the cert file used to authenticate to the registry
 key_file: # path to the key file for the certificate used to
 authenticate to the registry
 ca_file: # path to the ca file used to verify the registry's
 certificate
 insecure_skip_verify: # may be set to true to skip verifying the registry's
 certificate

For the registry changes to take effect, you need to either configure this le before starting RKE2
on the node, or restart RKE2 on each configured node.

381 Private registry configuration

Note
For more information about this, please check containerd registry configura-

tion rke2 (https://docs.rke2.io/install/containerd_registry_configuration#registries-configu-

ration-file) .

382 Private registry configuration

https://docs.rke2.io/install/containerd_registry_configuration#registries-configuration-file
https://docs.rke2.io/install/containerd_registry_configuration#registries-configuration-file
https://docs.rke2.io/install/containerd_registry_configuration#registries-configuration-file

31 Fully automated directed network provisioning

31.1 Introduction
Directed network provisioning is a feature that allows you to automate the provisioning of
downstream clusters. This feature is useful when you have many downstream clusters to provi-
sion, and you want to automate the process.

A management cluster (Chapter 29, Setting up the management cluster) automates deployment of
the following components:

SUSE Linux Enterprise Micro RT as the OS. Depending on the use case, configurations
like networking, storage, users and kernel arguments can be customized.

RKE2 as the Kubernetes cluster. The default CNI plug-in is Cilium . Depending on the use
case, certain CNI plug-ins can be used, such as Cilium+Multus .

Longhorn as the storage solution.

NeuVector as the security solution.

MetalLB can be used as the load balancer for highly available multi-node clusters.

Note
For more information about SUSE Linux Enterprise Micro , see Chapter 7, SLE Micro For
more information about RKE2 , see Chapter 14, RKE2 For more information about Long-
horn , see Chapter 15, Longhorn For more information about NeuVector , see Chapter 16,

NeuVector

The following sections describe the different directed network provisioning workflows and some
additional features that can be added to the provisioning process:

Section 31.2, “Prepare downstream cluster image for connected scenarios”

Section 31.3, “Prepare downstream cluster image for air-gap scenarios”

Section 31.4, “Downstream cluster provisioning with Directed network provisioning (single-node)”

Section 31.5, “Downstream cluster provisioning with Directed network provisioning (multi-node)”

383 Introduction

Section 31.6, “Advanced Network Configuration”

Section 31.7, “Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)”

Section 31.8, “Private registry”

Section 31.9, “Downstream cluster provisioning in air-gapped scenarios”

31.2 Prepare downstream cluster image for
connected scenarios

Edge Image Builder (Chapter 9, Edge Image Builder) is used to prepare a modified SLEMicro base
image which is provisioned on downstream cluster hosts.

Much of the configuration via Edge Image Builder is possible, but in this guide, we cover the
minimal configurations necessary to set up the downstream cluster.

31.2.1 Prerequisites for connected scenarios

A container runtime such as Podman (https://podman.io) or Rancher Desktop (https://

rancherdesktop.io) is required to run Edge Image Builder.

The base image SLE-Micro.x86_64-5.5.0-Default-RT-GM.raw must be downloaded
from the SUSE Customer Center (https://scc.suse.com/) or the SUSE Download page (https://

www.suse.com/download/sle-micro/) .

31.2.2 Image configuration for connected scenarios

When running Edge Image Builder, a directory is mounted from the host, so it is necessary to
create a directory structure to store the configuration les used to define the target image.

downstream-cluster-config.yaml is the image definition le, see Chapter 3, Standalone

clusters with Edge Image Builder for more details.

The base image when downloaded is xz compressed, which must be uncompressed with
unxz and copied/moved under the base-images folder.

384 Prepare downstream cluster image for connected scenarios

https://podman.io
https://rancherdesktop.io
https://rancherdesktop.io
https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

The network folder is optional, see Section 31.2.2.4, “Additional script for Advanced Network

Configuration” for more details.

The custom/scripts directory contains scripts to be run on rst-boot; currently a 01-fix-
growfs.sh script is required to resize the OS root partition on deployment

├── downstream-cluster-config.yaml
├── base-images/
│ └ SLE-Micro.x86_64-5.5.0-Default-RT-GM.raw
├── network/
| └ configure-network.sh
└── custom/
 └ scripts/
 └ 01-fix-growfs.sh

31.2.2.1 Downstream cluster image definition file

The downstream-cluster-config.yaml le is the main configuration le for the downstream
cluster image. The following is a minimal example for deployment via Metal3:

apiVersion: 1.0
image:
 imageType: RAW
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-RT-GM.raw
 outputImageName: eibimage-slemicro55rt-telco.raw
operatingSystem:
 kernelArgs:
 - ignition.platform.id=openstack
 - net.ifnames=1
 systemd:
 disable:
 - rebootmgr
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 sshKeys:
 - ${USERKEY1}

${ROOT_PASSWORD} is the encrypted password for the root user, which can be useful for test/
debugging. It can be generated with the openssl passwd -6 PASSWORD command

For the production environments, it is recommended to use the SSH keys that can be added to
the users block replacing the ${USERKEY1} with the real SSH keys.

385 Image configuration for connected scenarios

Note
net.ifnames=1 enables Predictable Network Interface Naming (https://documenta-

tion.suse.com/smart/network/html/network-interface-predictable-naming/index.html)

This matches the default configuration for the metal3 chart, but the setting must match
the configured chart predictableNicNames value.

Also note ignition.platform.id=openstack is mandatory, without this argument
SLEMicro configuration via ignition will fail in the Metal3 automated ow.

31.2.2.2 Growfs script

Currently, a custom script (custom/scripts/01-fix-growfs.sh) is required to grow the le
system to match the disk size on rst-boot after provisioning. The 01-fix-growfs.sh script
contains the following information:

#!/bin/bash
growfs() {
 mnt="$1"
 dev="$(findmnt --fstab --target ${mnt} --evaluate --real --output SOURCE --noheadings)"
 # /dev/sda3 -> /dev/sda, /dev/nvme0n1p3 -> /dev/nvme0n1
 parent_dev="/dev/$(lsblk --nodeps -rno PKNAME "${dev}")"
 # Last number in the device name: /dev/nvme0n1p42 -> 42
 partnum="$(echo "${dev}" | sed 's/^.*[^0-9]\([0-9]\+\)$/\1/')"
 ret=0
 growpart "$parent_dev" "$partnum" || ret=$?
 [$ret -eq 0] || [$ret -eq 1] || exit 1
 /usr/lib/systemd/systemd-growfs "$mnt"
}
growfs /

Note
Add your own custom scripts to be executed during the provisioning process using the
same approach. For more information, see Chapter 3, Standalone clusters with Edge Image

Builder.

386 Image configuration for connected scenarios

https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html
https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html

31.2.2.3 Additional configuration for Telco workloads

To enable Telco features like dpdk , sr-iov or FEC , additional packages may be required as
shown in the following example.

apiVersion: 1.0
image:
 imageType: RAW
 arch: x86_64
 baseImage: SLE-Micro.x86_64-5.5.0-Default-RT-GM.raw
 outputImageName: eibimage-slemicro55rt-telco.raw
operatingSystem:
 kernelArgs:
 - ignition.platform.id=openstack
 - net.ifnames=1
 systemd:
 disable:
 - rebootmgr
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 sshKeys:
 - ${user1Key1}
 packages:
 packageList:
 - jq
 - dpdk22
 - dpdk22-tools
 - libdpdk-23
 - pf-bb-config
 additionalRepos:
 - url: https://download.opensuse.org/repositories/isv:/SUSE:/Edge:/Telco/
SLEMicro5.5/
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}

Where ${SCC_REGISTRATION_CODE} is the registration code copied from SUSE Customer Center

(https://scc.suse.com/) , and the package list contains the minimum packages to be used for
the Telco profiles. To use the pf-bb-config package (to enable the FEC feature and binding
with drivers), the additionalRepos block must be included to add the SUSE Edge Telco
repository.

387 Image configuration for connected scenarios

https://scc.suse.com/
https://scc.suse.com/

31.2.2.4 Additional script for Advanced Network Configuration

If you need to configure static IPs or more advanced networking scenarios as described in Sec-

tion 31.6, “Advanced Network Configuration”, the following additional configuration is required.

In the network folder, create the following configure-network.sh le - this consumes con-
figuration drive data on rst-boot, and configures the host networking using the NM Configurator

tool (https://github.com/suse-edge/nm-configurator) .

#!/bin/bash

set -eux

Attempt to statically configure a NIC in the case where we find a network_data.json
In a configuration drive

CONFIG_DRIVE=$(blkid --label config-2 || true)
if [-z "${CONFIG_DRIVE}"]; then
 echo "No config-2 device found, skipping network configuration"
 exit 0
fi

mount -o ro $CONFIG_DRIVE /mnt

NETWORK_DATA_FILE="/mnt/openstack/latest/network_data.json"

if [! -f "${NETWORK_DATA_FILE}"]; then
 umount /mnt
 echo "No network_data.json found, skipping network configuration"
 exit 0
fi

DESIRED_HOSTNAME=$(cat /mnt/openstack/latest/meta_data.json | tr ',{}' '\n' | grep
 '\"metal3-name\"' | sed 's/.*\"metal3-name\": \"\(.*\)\"/\1/')
echo "${DESIRED_HOSTNAME}" > /etc/hostname

mkdir -p /tmp/nmc/{desired,generated}
cp ${NETWORK_DATA_FILE} /tmp/nmc/desired/_all.yaml
umount /mnt

./nmc generate --config-dir /tmp/nmc/desired --output-dir /tmp/nmc/generated

./nmc apply --config-dir /tmp/nmc/generated

388 Image configuration for connected scenarios

https://github.com/suse-edge/nm-configurator
https://github.com/suse-edge/nm-configurator

31.2.3 Image creation

Once the directory structure is prepared following the previous sections, run the following com-
mand to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/edge-image-builder:1.0.2 \
 build --definition-file downstream-cluster-config.yaml

This creates the output ISO image le named eibimage-slemicro55rt-telco.raw , based on
the definition described above.

The output image must then be made available via a webserver, either the media-server con-
tainer enabled via the Management Cluster Documentation (Note) or some other locally acces-
sible server. In the examples below, we refer to this server as imagecache.local:8080

31.3 Prepare downstream cluster image for air-gap
scenarios
Edge Image Builder (Chapter 9, Edge Image Builder) is used to prepare a modified SLEMicro base
image which is provisioned on downstream cluster hosts.

Much of the configuration is possible with Edge Image Builder, but in this guide, we cover the
minimal configurations necessary to set up the downstream cluster for air-gap scenarios.

31.3.1 Prerequisites for air-gap scenarios

A container runtime such as Podman (https://podman.io) or Rancher Desktop (https://

rancherdesktop.io) is required to run Edge Image Builder.

The base image SLE-Micro.x86_64-5.5.0-Default-RT-GM.raw must be downloaded
from the SUSE Customer Center (https://scc.suse.com/) or the SUSE Download page (https://

www.suse.com/download/sle-micro/) .

If you want to use SR-IOV or any other workload which require a container image, a
local private registry must be deployed and already configured (with/without TLS and/
or authentication). This registry will be used to store the images and the helm chart OCI
images.

389 Image creation

https://podman.io
https://rancherdesktop.io
https://rancherdesktop.io
https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

31.3.2 Image configuration for air-gap scenarios

When running Edge Image Builder, a directory is mounted from the host, so it is necessary to
create a directory structure to store the configuration les used to define the target image.

downstream-cluster-airgap-config.yaml is the image definition le, see Chapter 3,

Standalone clusters with Edge Image Builder for more details.

The base image when downloaded is xz compressed, which must be uncompressed with
unxz and copied/moved under the base-images folder.

The network folder is optional, see Section 31.2.2.4, “Additional script for Advanced Network

Configuration” for more details.

The custom/scripts directory contains scripts to be run on rst-boot; currently a 01-
fix-growfs.sh script is required to resize the OS root partition on deployment. For air-
gap scenarios, a script 02-airgap.sh is required to copy the images to the right place
during the image creation process.

The custom/files directory contains the rke2 and the cni images to be copied to the
image during the image creation process.

├── downstream-cluster-airgap-config.yaml
├── base-images/
│ └ SLE-Micro.x86_64-5.5.0-Default-RT-GM.raw
├── network/
| └ configure-network.sh
└── custom/
 └ files/
 | └ install.sh
 | └ rke2-images-cilium.linux-amd64.tar.zst
 | └ rke2-images-core.linux-amd64.tar.zst
 | └ rke2-images-multus.linux-amd64.tar.zst
 | └ rke2-images.linux-amd64.tar.zst
 | └ rke2.linux-amd64.tar.zst
 | └ sha256sum-amd64.txt
 └ scripts/
 └ 01-fix-growfs.sh
 └ 02-airgap.sh

390 Image configuration for air-gap scenarios

31.3.2.1 Downstream cluster image definition file

The downstream-cluster-airgap-config.yaml le is the main configuration le for the
downstream cluster image and the content has been described in the previous section (Sec-

tion 31.2.2.3, “Additional configuration for Telco workloads”).

31.3.2.2 Growfs script

Currently, a custom script (custom/scripts/01-fix-growfs.sh) is required to grow the le
system to match the disk size on rst-boot after provisioning. The 01-fix-growfs.sh script
contains the following information:

#!/bin/bash
growfs() {
 mnt="$1"
 dev="$(findmnt --fstab --target ${mnt} --evaluate --real --output SOURCE --noheadings)"
 # /dev/sda3 -> /dev/sda, /dev/nvme0n1p3 -> /dev/nvme0n1
 parent_dev="/dev/$(lsblk --nodeps -rno PKNAME "${dev}")"
 # Last number in the device name: /dev/nvme0n1p42 -> 42
 partnum="$(echo "${dev}" | sed 's/^.*[^0-9]\([0-9]\+\)$/\1/')"
 ret=0
 growpart "$parent_dev" "$partnum" || ret=$?
 [$ret -eq 0] || [$ret -eq 1] || exit 1
 /usr/lib/systemd/systemd-growfs "$mnt"
}
growfs /

31.3.2.3 Air-gap script

The following script (custom/scripts/02-airgap.sh) is required to copy the images to the
right place during the image creation process:

#!/bin/bash

create the folder to extract the artifacts there
mkdir -p /opt/rke2-artifacts
mkdir -p /var/lib/rancher/rke2/agent/images

copy the artifacts
cp install.sh /opt/
cp rke2-images*.tar.zst rke2.linux-amd64.tar.gz sha256sum-amd64.txt /opt/rke2-artifacts/

391 Image configuration for air-gap scenarios

31.3.2.4 Custom files for air-gap scenarios

The custom/files directory contains the rke2 and the cni images to be copied to the
image during the image creation process. To easily generate the images, prepare them lo-
cally using following script (https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/

day2/edge-save-rke2-images.sh) and the list of images here (https://github.com/suse-edge/fleet-

examples/blob/release-3.0/scripts/day2/edge-release-rke2-images.txt) to generate the artifacts
required to be included in custom/files . Also, you can download the latest rke2-install
script from here (https://get.rke2.io/) .

$./edge-save-rke2-images.sh -o custom/files -l ~/edge-release-rke2-images.txt

After downloading the images, the directory structure should look like this:

└── custom/
 └ files/
 └ install.sh
 └ rke2-images-cilium.linux-amd64.tar.zst
 └ rke2-images-core.linux-amd64.tar.zst
 └ rke2-images-multus.linux-amd64.tar.zst
 └ rke2-images.linux-amd64.tar.zst
 └ rke2.linux-amd64.tar.zst
 └ sha256sum-amd64.txt

31.3.2.5 Preload your private registry with images required for air-gap
scenarios and SR-IOV (optional)

If you want to use SR-IOV in your air-gap scenario or any other workload images, you must
preload your local private registry with the images following the next steps:

Download, extract, and push the helm-chart OCI images to the private registry

Download, extract, and push the rest of images required to the private registry

The following scripts can be used to download, extract, and push the images to the private
registry. We will show an example to preload the SR-IOV images, but you can also use the same
approach to preload any other custom images:

1. Preload with helm-chart OCI images for SR-IOV:

a. You must create a list with the helm-chart OCI images required:

$ cat > edge-release-helm-oci-artifacts.txt <<EOF

392 Image configuration for air-gap scenarios

https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-rke2-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-rke2-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-release-rke2-images.txt
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-release-rke2-images.txt
https://get.rke2.io/

edge/sriov-network-operator-chart:1.2.2
edge/sriov-crd-chart:1.2.2
EOF

b. Generate a local tarball le using the following script (https://github.com/suse-edge/

fleet-examples/blob/release-3.0/scripts/day2/edge-save-oci-artefacts.sh) and the list
created above:

$./edge-save-oci-artefacts.sh -al ./edge-release-helm-oci-artifacts.txt -s
 registry.suse.com
Pulled: registry.suse.com/edge/sriov-network-operator-chart:1.2.2
Pulled: registry.suse.com/edge/sriov-crd-chart:1.2.2
a edge-release-oci-tgz-20240705
a edge-release-oci-tgz-20240705/sriov-network-operator-chart-1.2.2.tgz
a edge-release-oci-tgz-20240705/sriov-crd-chart-1.2.2.tgz

c. Upload your tarball le to your private registry (e.g. myregistry:5000) using the
following script (https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/

day2/edge-load-oci-artefacts.sh) to preload your registry with the helm chart OCI
images downloaded in the previous step:

$ tar zxvf edge-release-oci-tgz-20240705.tgz
$./edge-load-oci-artefacts.sh -ad edge-release-oci-tgz-20240705 -r
 myregistry:5000

2. Preload with the rest of the images required for SR-IOV:

a. In this case, we must include the `sr-iov container images for telco
workloads (e.g. as a reference, you could get them from helm-chart val-

ues (https://github.com/suse-edge/charts/blob/release-3.0/charts/sriov-network-opera-

tor/1.2.2%2Bup0.1.0/values.yaml))

$ cat > edge-release-images.txt <<EOF
rancher/hardened-sriov-network-operator:v1.2.0-build20240327
rancher/hardened-sriov-network-config-daemon:v1.2.0-build20240327
rancher/hardened-sriov-cni:v2.7.0-build20240327
rancher/hardened-ib-sriov-cni:v1.0.3-build20240327
rancher/hardened-sriov-network-device-plugin:v3.6.2-build20240327
rancher/hardened-sriov-network-resources-injector:v1.5-build20240327
rancher/hardened-sriov-network-webhook:v1.2.0-build20240327

393 Image configuration for air-gap scenarios

https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-oci-artefacts.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-oci-artefacts.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-load-oci-artefacts.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-load-oci-artefacts.sh
https://github.com/suse-edge/charts/blob/release-3.0/charts/sriov-network-operator/1.2.2%2Bup0.1.0/values.yaml
https://github.com/suse-edge/charts/blob/release-3.0/charts/sriov-network-operator/1.2.2%2Bup0.1.0/values.yaml
https://github.com/suse-edge/charts/blob/release-3.0/charts/sriov-network-operator/1.2.2%2Bup0.1.0/values.yaml

EOF

b. Using the following script (https://github.com/suse-edge/fleet-examples/blob/re-

lease-3.0/scripts/day2/edge-save-images.sh) and the list created above, you must
generate locally the tarball le with the images required:

$./edge-save-images.sh -l ./edge-release-images.txt -s registry.suse.com
Image pull success: registry.suse.com/rancher/hardened-sriov-network-
operator:v1.2.0-build20240327
Image pull success: registry.suse.com/rancher/hardened-sriov-network-config-
daemon:v1.2.0-build20240327
Image pull success: registry.suse.com/rancher/hardened-sriov-cni:v2.7.0-
build20240327
Image pull success: registry.suse.com/rancher/hardened-ib-sriov-cni:v1.0.3-
build20240327
Image pull success: registry.suse.com/rancher/hardened-sriov-network-device-
plugin:v3.6.2-build20240327
Image pull success: registry.suse.com/rancher/hardened-sriov-network-resources-
injector:v1.5-build20240327
Image pull success: registry.suse.com/rancher/hardened-sriov-network-
webhook:v1.2.0-build20240327
Creating edge-images.tar.gz with 7 images

c. Upload your tarball le to your private registry (e.g. myregistry:5000) using the
following script (https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/

day2/edge-load-images.sh) to preload your private registry with the images down-
loaded in the previous step:

$ tar zxvf edge-release-images-tgz-20240705.tgz
$./edge-load-images.sh -ad edge-release-images-tgz-20240705 -r myregistry:5000

31.3.3 Image creation for air-gap scenarios

Once the directory structure is prepared following the previous sections, run the following com-
mand to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/edge-image-builder:1.0.2 \
 build --definition-file downstream-cluster-airgap-config.yaml

This creates the output ISO image le named eibimage-slemicro55rt-telco.raw , based on
the definition described above.

394 Image creation for air-gap scenarios

https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-load-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-load-images.sh

The output image must then be made available via a webserver, either the media-server con-
tainer enabled via the Management Cluster Documentation (Note) or some other locally acces-
sible server. In the examples below, we refer to this server as imagecache.local:8080 .

31.4 Downstream cluster provisioning with Directed
network provisioning (single-node)

This section describes the workflow used to automate the provisioning of a single-node down-
stream cluster using directed network provisioning. This is the simplest way to automate the
provisioning of a downstream cluster.

Requirements

The image generated using EIB , as described in the previous section (Section 31.2, “Prepare

downstream cluster image for connected scenarios”), with the minimal configuration to set up
the downstream cluster has to be located in the management cluster exactly on the path
you configured on this section (Note).

The management server created and available to be used on the following sections. For
more information, refer to the Management Cluster section Chapter 29, Setting up the man-

agement cluster.

Workflow

395 Downstream cluster provisioning with Directed network provisioning (single-node)

The following diagram shows the workflow used to automate the provisioning of a single-node
downstream cluster using directed network provisioning:

There are two different steps to automate the provisioning of a single-node downstream cluster
using directed network provisioning:

1. Enroll the bare-metal host to make it available for the provisioning process.

2. Provision the bare-metal host to install and configure the operating system and the Kuber-
netes cluster.

Enroll the bare-metal host

396 Downstream cluster provisioning with Directed network provisioning (single-node)

The rst step is to enroll the new bare-metal host in the management cluster to make it available
to be provisioned. To do that, the following le (bmh-example.yaml) has to be created in the
management cluster, to specify the BMC credentials to be used and the BaremetalHost object
to be enrolled:

apiVersion: v1
kind: Secret
metadata:
 name: example-demo-credentials
type: Opaque
data:
 username: ${BMC_USERNAME}
 password: ${BMC_PASSWORD}

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: flexran-demo
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: ${BMC_MAC}
 rootDeviceHints:
 deviceName: /dev/nvme0n1
 bmc:
 address: ${BMC_ADDRESS}
 disableCertificateVerification: true
 credentialsName: example-demo-credentials

where:

${BMC_USERNAME} — The user name for the BMC of the new bare-metal host.

${BMC_PASSWORD} — The password for the BMC of the new bare-metal host.

${BMC_MAC} — The MAC address of the new bare-metal host to be used.

${BMC_ADDRESS} — The URL for the bare-metal host BMC (for example, redfish-vir-
tualmedia://192.168.200.75/redfish/v1/Systems/1/). To learn more about the dif-
ferent options available depending on your hardware provider, check the following link

(https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md) .

397 Downstream cluster provisioning with Directed network provisioning (single-node)

https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md
https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md

Once the le is created, the following command has to be executed in the management cluster
to start enrolling the new bare-metal host in the management cluster:

$ kubectl apply -f bmh-example.yaml

The new bare-metal host object will be enrolled, changing its state from registering to inspecting
and available. The changes can be checked using the following command:

$ kubectl get bmh

Note
The BaremetalHost object is in the registering state until the BMC credentials are
validated. Once the credentials are validated, the BaremetalHost object changes its state
to inspecting , and this step could take some time depending on the hardware (up to
20 minutes). During the inspecting phase, the hardware information is retrieved and
the Kubernetes object is updated. Check the information using the following command:
kubectl get bmh -o yaml .

Provision step

Once the bare-metal host is enrolled and available, the next step is to provision the bare-metal
host to install and configure the operating system and the Kubernetes cluster. To do that, the
following le (capi-provisioning-example.yaml) has to be created in the management-clus-
ter with the following information (the capi-provisioning-example.yaml can be generated
by joining the following blocks).

Note
Only values between $\{…\} must be replaced with the real values.

The following block is the cluster definition, where the networking can be configured using the
pods and the services blocks. Also, it contains the references to the control plane and the
infrastructure (using the Metal3 provider) objects to be used.

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 name: single-node-cluster
 namespace: default
spec:

398 Downstream cluster provisioning with Directed network provisioning (single-node)

 clusterNetwork:
 pods:
 cidrBlocks:
 - 192.168.0.0/18
 services:
 cidrBlocks:
 - 10.96.0.0/12
 controlPlaneRef:
 apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
 kind: RKE2ControlPlane
 name: single-node-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3Cluster
 name: single-node-cluster

The Metal3Cluster object specifies the control-plane endpoint (replacing the
${DOWNSTREAM_CONTROL_PLANE_IP}) to be configured and the noCloudProvider because a
bare-metal node is used.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3Cluster
metadata:
 name: single-node-cluster
 namespace: default
spec:
 controlPlaneEndpoint:
 host: ${DOWNSTREAM_CONTROL_PLANE_IP}
 port: 6443
 noCloudProvider: true

The RKE2ControlPlane object specifies the control-plane configuration to be used and the
Metal3MachineTemplate object specifies the control-plane image to be used. Also, it contains
the information about the number of replicas to be used (in this case, one) and the CNI plug-in
to be used (in this case, Cilium). The agentConfig block contains the Ignition format to be
used and the additionalUserData to be used to configure the RKE2 node with information
like a systemd named rke2-preinstall.service to replace automatically the BAREMETAL-
HOST_UUID and node-name during the provisioning process using the Ironic information. The
last block of information contains the Kubernetes version to be used. ${RKE2_VERSION} is the
version of RKE2 to be used replacing this value (for example, v1.28.13+rke2r1).

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster

399 Downstream cluster provisioning with Directed network provisioning (single-node)

 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 serverConfig:
 cni: cilium
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

400 Downstream cluster provisioning with Directed network provisioning (single-node)

The Metal3MachineTemplate object specifies the following information:

The dataTemplate to be used as a reference to the template.

The hostSelector to be used matching with the label created during the enrollment
process.

The image to be used as a reference to the image generated using EIB on the previ-
ous section (Section 31.2, “Prepare downstream cluster image for connected scenarios”), and the
checksum and checksumType to be used to validate the image.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: single-node-cluster-controlplane
 namespace: default
spec:
 template:
 spec:
 dataTemplate:
 name: single-node-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/eibimage-slemicro55rt-telco.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/eibimage-slemicro55rt-telco.raw

The Metal3DataTemplate object specifies the metaData for the downstream cluster.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: multinode-node-cluster-controlplane-template
 namespace: default
spec:
 clusterName: single-node-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine

401 Downstream cluster provisioning with Directed network provisioning (single-node)

 - key: local_hostname
 object: machine

Once the le is created by joining the previous blocks, the following command must be executed
in the management cluster to start provisioning the new bare-metal host:

$ kubectl apply -f capi-provisioning-example.yaml

31.5 Downstream cluster provisioning with Directed
network provisioning (multi-node)

This section describes the workflow used to automate the provisioning of a multi-node down-
stream cluster using directed network provisioning and MetalLB as a load-balancer strategy.
This is the simplest way to automate the provisioning of a downstream cluster. The following
diagram shows the workflow used to automate the provisioning of a multi-node downstream
cluster using directed network provisioning and MetalLB .

Requirements

The image generated using EIB , as described in the previous section (Section 31.2, “Prepare

downstream cluster image for connected scenarios”), with the minimal configuration to set up
the downstream cluster has to be located in the management cluster exactly on the path
you configured on this section (Note).

The management server created and available to be used on the following sections. For
more information, refer to the Management Cluster section: Chapter 29, Setting up the man-

agement cluster.

Workflow

402 Downstream cluster provisioning with Directed network provisioning (multi-node)

The following diagram shows the workflow used to automate the provisioning of a multi-node
downstream cluster using directed network provisioning:

1. Enroll the three bare-metal hosts to make them available for the provisioning process.

2. Provision the three bare-metal hosts to install and configure the operating system and the
Kubernetes cluster using MetalLB .

Enroll the bare-metal hosts

403 Downstream cluster provisioning with Directed network provisioning (multi-node)

The rst step is to enroll the three bare-metal hosts in the management cluster to make them
available to be provisioned. To do that, the following les (bmh-example-node1.yaml , bmh-
example-node2.yaml and bmh-example-node3.yaml) must be created in the management
cluster, to specify the BMC credentials to be used and the BaremetalHost object to be enrolled
in the management cluster.

Note

Only the values between $\{…\} have to be replaced with the real values.

We will walk you through the process for only one host. The same steps apply to
the other two nodes.

apiVersion: v1
kind: Secret
metadata:
 name: node1-example-credentials
type: Opaque
data:
 username: ${BMC_NODE1_USERNAME}
 password: ${BMC_NODE1_PASSWORD}

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: node1-example
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: ${BMC_NODE1_MAC}
 bmc:
 address: ${BMC_NODE1_ADDRESS}
 disableCertificateVerification: true
 credentialsName: node1-example-credentials

Where:

${BMC_NODE1_USERNAME} — The username for the BMC of the rst bare-metal host.

${BMC_NODE1_PASSWORD} — The password for the BMC of the rst bare-metal host.

404 Downstream cluster provisioning with Directed network provisioning (multi-node)

${BMC_NODE1_MAC} — The MAC address of the rst bare-metal host to be used.

${BMC_NODE1_ADDRESS} — The URL for the rst bare-metal host BMC (for example,
redfish-virtualmedia://192.168.200.75/redfish/v1/Systems/1/). To learn more
about the different options available depending on your hardware provider, check the fol-
lowing link (https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md) .

Once the le is created, the following command must be executed in the management cluster
to start enrolling the bare-metal hosts in the management cluster:

$ kubectl apply -f bmh-example-node1.yaml
$ kubectl apply -f bmh-example-node2.yaml
$ kubectl apply -f bmh-example-node3.yaml

The new bare-metal host objects are enrolled, changing their state from registering to inspecting
and available. The changes can be checked using the following command:

$ kubectl get bmh -o wide

Note
The BaremetalHost object is in the registering state until the BMC credentials are
validated. Once the credentials are validated, the BaremetalHost object changes its state
to inspecting , and this step could take some time depending on the hardware (up to
20 minutes). During the inspecting phase, the hardware information is retrieved and
the Kubernetes object is updated. Check the information using the following command:
kubectl get bmh -o yaml .

Provision step

Once the three bare-metal hosts are enrolled and available, the next step is to provision the
bare-metal hosts to install and configure the operating system and the Kubernetes cluster, cre-
ating a load balancer to manage them. To do that, the following le (capi-provisioning-ex-
ample.yaml) must be created in the management cluster with the following information (the
`capi-provisioning-example.yaml can be generated by joining the following blocks).

405 Downstream cluster provisioning with Directed network provisioning (multi-node)

https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md

Note

Only values between $\{…\} must be replaced with the real values.

The VIP address is a reserved IP address that is not assigned to any node and is
used to configure the load balancer.

Below is the cluster definition, where the cluster network can be configured using the pods and
the services blocks. Also, it contains the references to the control plane and the infrastructure
(using the Metal3 provider) objects to be used.

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 name: multinode-cluster
 namespace: default
spec:
 clusterNetwork:
 pods:
 cidrBlocks:
 - 192.168.0.0/18
 services:
 cidrBlocks:
 - 10.96.0.0/12
 controlPlaneRef:
 apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
 kind: RKE2ControlPlane
 name: multinode-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3Cluster
 name: multinode-cluster

The Metal3Cluster object specifies the control-plane endpoint that uses the VIP address al-
ready reserved (replacing the ${DOWNSTREAM_VIP_ADDRESS}) to be configured and the no-
CloudProvider because the three bare-metal nodes are used.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3Cluster
metadata:
 name: multinode-cluster
 namespace: default
spec:
 controlPlaneEndpoint:

406 Downstream cluster provisioning with Directed network provisioning (multi-node)

 host: ${EDGE_VIP_ADDRESS}
 port: 6443
 noCloudProvider: true

The RKE2ControlPlane object specifies the control-plane configuration to be used, and the
Metal3MachineTemplate object specifies the control-plane image to be used.

The number of replicas to be used (in this case, three).

The advertisement mode to be used by the Load Balancer (address uses the L2 imple-
mentation), as well as the address to be used (replacing the ${EDGE_VIP_ADDRESS} with
the VIP address).

The serverConfig with the CNI plug-in to be used (in this case, Cilium), and the tl-
sSan to be used to configure the VIP address.

The agentConfig block contains the Ignition format to be used and the addition-
alUserData to be used to configure the RKE2 node with information like:

The systemd service named rke2-preinstall.service to replace automatically
the BAREMETALHOST_UUID and node-name during the provisioning process using the
Ironic information.

The storage block which contains the Helm charts to be used to install the MetalLB
and the endpoint-copier-operator .

The metalLB custom resource le with the IPaddressPool and the L2Advertise-
ment to be used (replacing ${EDGE_VIP_ADDRESS} with the VIP address).

The endpoint-svc.yaml le to be used to configure the kubernetes-vip service
to be used by the MetalLB to manage the VIP address.

The last block of information contains the Kubernetes version to be used. The
${RKE2_VERSION} is the version of RKE2 to be used replacing this value (for example,
v1.28.13+rke2r1).

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: multinode-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate

407 Downstream cluster provisioning with Directed network provisioning (multi-node)

 name: multinode-cluster-controlplane
 replicas: 3
 registrationMethod: "address"
 registrationAddress: ${EDGE_VIP_ADDRESS}
 serverConfig:
 cni: cilium
 tlsSan:
 - ${EDGE_VIP_ADDRESS}
 - https://${EDGE_VIP_ADDRESS}.sslip.io
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 storage:
 files:
 - path: /var/lib/rancher/rke2/server/manifests/endpoint-copier-operator.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: endpoint-copier-operator
 namespace: kube-system

408 Downstream cluster provisioning with Directed network provisioning (multi-node)

 spec:
 chart: oci://registry.suse.com/edge/endpoint-copier-operator-chart
 targetNamespace: endpoint-copier-operator
 version: 0.2.0
 createNamespace: true
 - path: /var/lib/rancher/rke2/server/manifests/metallb.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: metallb
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/metallb-chart
 targetNamespace: metallb-system
 version: 0.14.3
 createNamespace: true

 - path: /var/lib/rancher/rke2/server/manifests/metallb-cr.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: metallb.io/v1beta1
 kind: IPAddressPool
 metadata:
 name: kubernetes-vip-ip-pool
 namespace: metallb-system
 spec:
 addresses:
 - ${EDGE_VIP_ADDRESS}/32
 serviceAllocation:
 priority: 100
 namespaces:
 - default
 serviceSelectors:
 - matchExpressions:
 - {key: "serviceType", operator: In, values: [kubernetes-vip]}

 apiVersion: metallb.io/v1beta1
 kind: L2Advertisement
 metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
 spec:
 ipAddressPools:

409 Downstream cluster provisioning with Directed network provisioning (multi-node)

 - kubernetes-vip-ip-pool
 - path: /var/lib/rancher/rke2/server/manifests/endpoint-svc.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 kind: Service
 metadata:
 name: kubernetes-vip
 namespace: default
 labels:
 serviceType: kubernetes-vip
 spec:
 ports:
 - name: rke2-api
 port: 9345
 protocol: TCP
 targetPort: 9345
 - name: k8s-api
 port: 6443
 protocol: TCP
 targetPort: 6443
 type: LoadBalancer
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "Node-multinode-cluster"

The Metal3MachineTemplate object specifies the following information:

The dataTemplate to be used as a reference to the template.

The hostSelector to be used matching with the label created during the enrollment
process.

The image to be used as a reference to the image generated using EIB on the previous
section (Section 31.2, “Prepare downstream cluster image for connected scenarios”), and check-
sum and checksumType to be used to validate the image.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: multinode-cluster-controlplane
 namespace: default
spec:

410 Downstream cluster provisioning with Directed network provisioning (multi-node)

 template:
 spec:
 dataTemplate:
 name: multinode-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/eibimage-slemicro55rt-telco.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/eibimage-slemicro55rt-telco.raw

The Metal3DataTemplate object specifies the metaData for the downstream cluster.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: multinode-node-cluster-controlplane-template
 namespace: default
spec:
 clusterName: single-node-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname
 object: machine

Once the le is created by joining the previous blocks, the following command has to be executed
in the management cluster to start provisioning the new three bare-metal hosts:

$ kubectl apply -f capi-provisioning-example.yaml

31.6 Advanced Network Configuration
The directed network provisioning workflow allows downstream clusters network configura-
tions such as static IPs, bonding, VLAN’s, etc.

The following sections describe the additional steps required to enable provisioning downstream
clusters using advanced network configuration.

Requirements

411 Advanced Network Configuration

The image generated using EIB has to include the network folder and the script following
this section (Section 31.2.2.4, “Additional script for Advanced Network Configuration”).

Configuration

Use the following two sections as the base to enroll and provision the hosts:

Downstream cluster provisioning with Directed network provisioning (single-node) (Sec-

tion 31.4, “Downstream cluster provisioning with Directed network provisioning (single-node)”)

Downstream cluster provisioning with Directed network provisioning (multi-node) (Sec-

tion 31.5, “Downstream cluster provisioning with Directed network provisioning (multi-node)”)

The changes required to enable the advanced network configuration are the following:

Enrollment step: The following new example le with a secret containing the information
about the networkData to be used to configure, for example, the static IPs and VLAN
for the downstream cluster

apiVersion: v1
kind: Secret
metadata:
 name: controlplane-0-networkdata
type: Opaque
stringData:
 networkData: |
 interfaces:
 - name: ${CONTROLPLANE_INTERFACE}
 type: ethernet
 state: up
 mtu: 1500
 mac-address: "${CONTROLPLANE_MAC}"
 ipv4:
 address:
 - ip: "${CONTROLPLANE_IP}"
 prefix-length: "${CONTROLPLANE_PREFIX}"
 enabled: true
 dhcp: false
 - name: floating
 type: vlan
 state: up
 vlan:
 base-iface: ${CONTROLPLANE_INTERFACE}
 id: ${VLAN_ID}
 dns-resolver:
 config:

412 Advanced Network Configuration

 server:
 - "${DNS_SERVER}"
 routes:
 config:
 - destination: 0.0.0.0/0
 next-hop-address: "${CONTROLPLANE_GATEWAY}"
 next-hop-interface: ${CONTROLPLANE_INTERFACE}

This le contains the networkData in a nmstate format to be used to configure the advance
network configuration (for example, static IPs and VLAN) for the downstream cluster. As
you can see, the example shows the configuration to enable the interface with static IPs, as well
as the configuration to enable the VLAN using the base interface. Any other nmstate example
could be defined to be used to configure the network for the downstream cluster to adapt to the
specific requirements, where the following variables have to be replaced with real values:

${CONTROLPLANE1_INTERFACE} — The control-plane interface to be used for the edge
cluster (for example, eth0).

${CONTROLPLANE1_IP} — The IP address to be used as an endpoint for the edge cluster
(must match with the kubeapi-server endpoint).

${CONTROLPLANE1_PREFIX} — The CIDR to be used for the edge cluster (for example, 24
if you want /24 or 255.255.255.0).

${CONTROLPLANE1_GATEWAY} — The gateway to be used for the edge cluster (for example,
192.168.100.1).

${CONTROLPLANE1_MAC} — The MAC address to be used for the control-plane interface
(for example, 00:0c:29:3e:3e:3e).

${DNS_SERVER} — The DNS to be used for the edge cluster (for example,
192.168.100.2).

${VLAN_ID} — The VLAN ID to be used for the edge cluster (for example, 100).

Also, the reference to that secret using preprovisioningNetworkDataName is needed in the
BaremetalHost object at the end of the le to be enrolled in the management cluster.

apiVersion: v1
kind: Secret
metadata:
 name: example-demo-credentials
type: Opaque

413 Advanced Network Configuration

data:
 username: ${BMC_USERNAME}
 password: ${BMC_PASSWORD}

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: flexran-demo
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: ${BMC_MAC}
 rootDeviceHints:
 deviceName: /dev/nvme0n1
 bmc:
 address: ${BMC_ADDRESS}
 disableCertificateVerification: true
 credentialsName: example-demo-credentials
 preprovisioningNetworkDataName: controlplane-0-networkdata

Note
If you need to deploy a multi-node cluster, the same process must be done for the other
nodes.

Provision step: The block of information related to the network data has to be removed
because the platform includes the network data configuration into the secret control-
plane-0-networkdata .

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: multinode-cluster-controlplane-template
 namespace: default
spec:
 clusterName: multinode-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname

414 Advanced Network Configuration

 object: machine

Note
The Metal3DataTemplate , networkData and Metal3 IPAM are currently not support-
ed; only the configuration via static secrets is fully supported.

31.7 Telco features (DPDK, SR-IOV, CPU isolation,
huge pages, NUMA, etc.)
The directed network provisioning workflow allows to automate the Telco features to be used
in the downstream clusters to run Telco workloads on top of those servers.

Requirements

The image generated using EIB has to include the specific Telco packages following this
section (Section 31.2.2.3, “Additional configuration for Telco workloads”).

The image generated using EIB , as described in the previous section (Section 31.2, “Prepare

downstream cluster image for connected scenarios”), has to be located in the management
cluster exactly on the path you configured on this section (Note).

The management server created and available to be used on the following sections. For
more information, refer to the Management Cluster section: Chapter 29, Setting up the man-

agement cluster.

Configuration

Use the following two sections as the base to enroll and provision the hosts:

Downstream cluster provisioning with Directed network provisioning (single-node) (Sec-

tion 31.4, “Downstream cluster provisioning with Directed network provisioning (single-node)”)

Downstream cluster provisioning with Directed network provisioning (multi-node) (Sec-

tion 31.5, “Downstream cluster provisioning with Directed network provisioning (multi-node)”)

The Telco features covered in this section are the following:

DPDK and VFs creation

SR-IOV and VFs allocation to be used by the workloads

415 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

CPU isolation and performance tuning

Huge pages configuration

Kernel parameters tuning

Note
For more information about the Telco features, see Chapter 30, Telco features configuration.

The changes required to enable the Telco features shown above are all inside the RKE2Con-
trolPlane block in the provision le capi-provisioning-example.yaml . The rest of the in-
formation inside the le capi-provisioning-example.yaml is the same as the information
provided in the provisioning section (Section 31.4, “Downstream cluster provisioning with Directed

network provisioning (single-node)” (page 398)).

To make the process clear, the changes required on that block (RKE2ControlPlane) to enable
the Telco features are the following:

The preRKE2Commands to be used to execute the commands before the RKE2 installation
process. In this case, use the modprobe command to enable the vfio-pci and the SR-
IOV kernel modules.

The ignition le /var/lib/rancher/rke2/server/manifests/configmap-sriov-cus-
tom-auto.yaml to be used to define the interfaces, drivers and the number of VFs to be
created and exposed to the workloads.

The values inside the config map sriov-custom-auto-config are the only values
to be replaced with real values.

${RESOURCE_NAME1} — The resource name to be used for the rst PF interface
(for example, sriov-resource-du1). It is added to the prefix rancher.io to
be used as a label to be used by the workloads (for example, rancher.io/sri-
ov-resource-du1).

${SRIOV-NIC-NAME1} — The name of the rst PF interface to be used (for
example, eth0).

${PF_NAME1} — The name of the rst physical function PF to be used. Gen-
erate more complex filters using this (for example, eth0#2-5).

416 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

${DRIVER_NAME1} — The driver name to be used for the rst VF interface (for
example, vfio-pci).

${NUM_VFS1} — The number of VFs to be created for the rst PF interface
(for example, 8).

The /var/sriov-auto-filler.sh to be used as a translator between the high-level con-
fig map sriov-custom-auto-config and the sriovnetworknodepolicy which contains
the low-level hardware information. This script has been created to abstract the user from
the complexity to know in advance the hardware information. No changes are required in
this le, but it should be present if we need to enable sr-iov and create VFs .

The kernel arguments to be used to enable the following features:

Parameter Value Description

isolcpus 1-30,33-62 Isolate the cores 1-30 and
33-62.

skew_tick 1 Allows the kernel to skew the
timer interrupts across the
isolated CPUs.

nohz on Allows the kernel to run the
timer tick on a single CPU
when the system is idle.

nohz_full 1-30,33-62 kernel boot parameter is the
current main interface to
configure full dynticks along
with CPU Isolation.

rcu_nocbs 1-30,33-62 Allows the kernel to run the
RCU callbacks on a single
CPU when the system is idle.

kthread_cpus 0,31,32,63 Allows the kernel to run the
kthreads on a single CPU
when the system is idle.

417 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

irqaffinity 0,31,32,63 Allows the kernel to run the
interrupts on a single CPU
when the system is idle.

processor.max_cstate 1 Prevents the CPU from drop-
ping into a sleep state when
idle.

intel_idle.max_cstate 0 Disables the intel_idle dri-
ver and allows acpi_idle to be
used.

iommu pt Allows to use vo for the
dpdk interfaces.

intel_iommu on Enables the use of vo for
VFs.

hugepagesz 1G Allows to set the size of huge
pages to 1 G.

hugepages 40 Number of huge pages de-
fined before.

default_hugepagesz 1G Default value to enable huge
pages.

The following systemd services are used to enable the following:

rke2-preinstall.service to replace automatically the BAREMETALHOST_UUID
and node-name during the provisioning process using the Ironic information.

cpu-performance.service to enable the CPU performance tuning. The
${CPU_FREQUENCY} has to be replaced with the real values (for example, 2500000
to set the CPU frequency to 2.5GHz).

418 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

cpu-partitioning.service to enable the isolation cores of the CPU (for example,
1-30,33-62).

sriov-custom-auto-vfs.service to install the sriov Helm chart, wait until cus-
tom resources are created and run the /var/sriov-auto-filler.sh to replace the
values in the config map sriov-custom-auto-config and create the sriovnet-
worknodepolicy to be used by the workloads.

The ${RKE2_VERSION} is the version of RKE2 to be used replacing this value (for example,
v1.28.13+rke2r1).

With all these changes mentioned, the RKE2ControlPlane block in the capi-provision-
ing-example.yaml will look like the following:

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 serverConfig:
 cni: cilium
 cniMultusEnable: true
 preRKE2Commands:
 - modprobe vfio-pci enable_sriov=1 disable_idle_d3=1
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 storage:
 files:
 - path: /var/lib/rancher/rke2/server/manifests/configmap-sriov-custom-
auto.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 kind: ConfigMap

419 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 metadata:
 name: sriov-custom-auto-config
 namespace: kube-system
 data:
 config.json: |
 [
 {
 "resourceName": "${RESOURCE_NAME1}",
 "interface": "${SRIOV-NIC-NAME1}",
 "pfname": "${PF_NAME1}",
 "driver": "${DRIVER_NAME1}",
 "numVFsToCreate": ${NUM_VFS1}
 },
 {
 "resourceName": "${RESOURCE_NAME2}",
 "interface": "${SRIOV-NIC-NAME2}",
 "pfname": "${PF_NAME2}",
 "driver": "${DRIVER_NAME2}",
 "numVFsToCreate": ${NUM_VFS2}
 }
]
 mode: 0644
 user:
 name: root
 group:
 name: root
 - path: /var/lib/rancher/rke2/server/manifests/sriov-crd.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: sriov-crd
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/sriov-crd-chart
 targetNamespace: sriov-network-operator
 version: 1.2.2
 createNamespace: true
 - path: /var/lib/rancher/rke2/server/manifests/sriov-network-operator.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:

420 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 name: sriov-network-operator
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/sriov-network-operator-chart
 targetNamespace: sriov-network-operator
 version: 1.2.2
 createNamespace: true
 - path: /var/sriov-auto-filler.sh
 overwrite: true
 contents:
 inline: |
 #!/bin/bash
 cat <<- EOF > /var/sriov-networkpolicy-template.yaml
 apiVersion: sriovnetwork.openshift.io/v1
 kind: SriovNetworkNodePolicy
 metadata:
 name: atip-RESOURCENAME
 namespace: sriov-network-operator
 spec:
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 resourceName: RESOURCENAME
 deviceType: DRIVER
 numVfs: NUMVF
 mtu: 1500
 nicSelector:
 pfNames: ["PFNAMES"]
 deviceID: "DEVICEID"
 vendor: "VENDOR"
 rootDevices:
 - PCIADDRESS
 EOF

 export KUBECONFIG=/etc/rancher/rke2/rke2.yaml; export KUBECTL=/var/lib/
rancher/rke2/bin/kubectl
 while [$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r '.items[].status.syncStatus') != "Succeeded"]; do sleep 1; done
 input=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get cm sriov-custom-auto-
config -n kube-system -ojson | jq -r '.data."config.json"')
 jq -c '.[]' <<< $input | while read i; do
 interface=$(echo $i | jq -r '.interface')
 pfname=$(echo $i | jq -r '.pfname')
 pciaddress=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r ".items[].status.interfaces[]|select(.name==\"$interface\")|.pciAddress")

421 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 vendor=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r ".items[].status.interfaces[]|select(.name==\"$interface\")|.vendor")
 deviceid=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r ".items[].status.interfaces[]|select(.name==\"$interface\")|.deviceID")
 resourceName=$(echo $i | jq -r '.resourceName')
 driver=$(echo $i | jq -r '.driver')
 sed -e "s/RESOURCENAME/$resourceName/g" \
 -e "s/DRIVER/$driver/g" \
 -e "s/PFNAMES/$pfname/g" \
 -e "s/VENDOR/$vendor/g" \
 -e "s/DEVICEID/$deviceid/g" \
 -e "s/PCIADDRESS/$pciaddress/g" \
 -e "s/NUMVF/$(echo $i | jq -r '.numVFsToCreate')/g" /var/sriov-
networkpolicy-template.yaml > /var/lib/rancher/rke2/server/manifests/$resourceName.yaml
 done
 mode: 0755
 user:
 name: root
 group:
 name: root
 kernel_arguments:
 should_exist:
 - intel_iommu=on
 - intel_pstate=passive
 - processor.max_cstate=1
 - intel_idle.max_cstate=0
 - iommu=pt
 - mce=off
 - hugepagesz=1G hugepages=40
 - hugepagesz=2M hugepages=0
 - default_hugepagesz=1G
 - kthread_cpus=${NON-ISOLATED_CPU_CORES}
 - irqaffinity=${NON-ISOLATED_CPU_CORES}
 - isolcpus=${ISOLATED_CPU_CORES}
 - nohz_full=${ISOLATED_CPU_CORES}
 - rcu_nocbs=${ISOLATED_CPU_CORES}
 - rcu_nocb_poll
 - nosoftlockup
 - nohz=on
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]

422 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 - name: cpu-performance.service
 enabled: true
 contents: |
 [Unit]
 Description=CPU perfomance
 Wants=network-online.target
 After=network.target network-online.target
 [Service]
 User=root
 Type=forking
 TimeoutStartSec=900
 ExecStart=/bin/sh -c "cpupower frequency-set -g performance; cpupower
 frequency-set -u ${CPU_FREQUENCY}; cpupower frequency-set -d ${CPU_FREQUENCY}"
 RemainAfterExit=yes
 KillMode=process
 [Install]
 WantedBy=multi-user.target
 - name: cpu-partitioning.service
 enabled: true
 contents: |
 [Unit]
 Description=cpu-partitioning
 Wants=network-online.target
 After=network.target network-online.target
 [Service]
 Type=oneshot
 User=root
 ExecStart=/bin/sh -c "echo isolated_cores=${ISOLATED_CPU_CORES} > /etc/
tuned/cpu-partitioning-variables.conf"
 ExecStartPost=/bin/sh -c "tuned-adm profile cpu-partitioning"
 ExecStartPost=/bin/sh -c "systemctl enable tuned.service"
 [Install]

423 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 WantedBy=multi-user.target
 - name: sriov-custom-auto-vfs.service
 enabled: true
 contents: |
 [Unit]
 Description=SRIOV Custom Auto VF Creation
 Wants=network-online.target rke2-server.target
 After=network.target network-online.target rke2-server.target
 [Service]
 User=root
 Type=forking
 TimeoutStartSec=900
 ExecStart=/bin/sh -c "while ! /var/lib/rancher/rke2/bin/kubectl --
kubeconfig=/etc/rancher/rke2/rke2.yaml wait --for condition=ready nodes --all ; do sleep
 2 ; done"
 ExecStartPost=/bin/sh -c "while [$(/var/lib/rancher/
rke2/bin/kubectl --kubeconfig=/etc/rancher/rke2/rke2.yaml get
 sriovnetworknodestates.sriovnetwork.openshift.io --ignore-not-found --no-headers -A | wc
 -l) -eq 0]; do sleep 1; done"
 ExecStartPost=/bin/sh -c "/var/sriov-auto-filler.sh"
 RemainAfterExit=yes
 KillMode=process
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

Once the le is created by joining the previous blocks, the following command must be executed
in the management cluster to start provisioning the new downstream cluster using the Telco
features:

$ kubectl apply -f capi-provisioning-example.yaml

31.8 Private registry
It is possible to configure a private registry as a mirror for images used by workloads.

To do this we create the secret containing the information about the private registry to be used
by the downstream cluster.

apiVersion: v1
kind: Secret

424 Private registry

metadata:
 name: private-registry-cert
 namespace: default
data:
 tls.crt: ${TLS_CERTIFICATE}
 tls.key: ${TLS_KEY}
 ca.crt: ${CA_CERTIFICATE}
type: kubernetes.io/tls

apiVersion: v1
kind: Secret
metadata:
 name: private-registry-auth
 namespace: default
data:
 username: ${REGISTRY_USERNAME}
 password: ${REGISTRY_PASSWORD}

The tls.crt , tls.key and ca.crt are the certificates to be used to authenticate the private
registry. The username and password are the credentials to be used to authenticate the private
registry.

Note
The tls.crt , tls.key , ca.crt , username and password have to be encoded in
base64 format before to be used in the secret.

With all these changes mentioned, the RKE2ControlPlane block in the capi-provision-
ing-example.yaml will look like the following:

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 privateRegistriesConfig:
 mirrors:
 "registry.example.com":
 endpoint:

425 Private registry

 - "https://registry.example.com:5000"
 configs:
 "registry.example.com":
 authSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-auth
 tls:
 tlsConfigSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-cert
 serverConfig:
 cni: cilium
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}

426 Private registry

 nodeName: "localhost.localdomain"

Where the registry.example.com is the example name of the private registry to be used by
the downstream cluster, and it should be replaced with the real values.

31.9 Downstream cluster provisioning in air-gapped
scenarios

The directed network provisioning workflow allows to automate the provisioning of downstream
clusters in air-gapped scenarios.

31.9.1 Requirements for air-gapped scenarios

1. The raw image generated using EIB must include the specific container images (helm-
chart OCI and container images) required to run the downstream cluster in an air-gapped
scenario. For more information, refer to this section (Section 31.3, “Prepare downstream clus-

ter image for air-gap scenarios”).

2. In case of using SR-IOV or any other custom workload, the images required to run the
workloads must be preloaded in your private registry following the preload private registry
section (Section 31.3.2.5, “Preload your private registry with images required for air-gap scenarios

and SR-IOV (optional)”).

31.9.2 Enroll the bare-metal hosts in air-gap scenarios

The process to enroll the bare-metal hosts in the management cluster is the same as described in
the previous section (Section 31.4, “Downstream cluster provisioning with Directed network provisioning

(single-node)” (page 396)).

427 Downstream cluster provisioning in air-gapped scenarios

31.9.3 Provision the downstream cluster in air-gap scenarios

There are some important changes required to provision the downstream cluster in air-gapped
scenarios:

1. The RKE2ControlPlane block in the capi-provisioning-example.yaml le must in-
clude the spec.agentConfig.airGapped: true directive.

2. The private registry configuration must be included in the RKE2ControlPlane block in
the capi-provisioning-airgap-example.yaml le following the private registry sec-
tion (Section 31.8, “Private registry”).

3. If you are using SR-IOV or any other AdditionalUserData configuration (combustion
script) which requires the helm-chart installation, you must modify the content to reference
the private registry instead of using the public registry.

The following example shows the SR-IOV configuration in the AdditionalUserData block in
the capi-provisioning-airgap-example.yaml le with the modifications required to refer-
ence the private registry

Private Registry secrets references

Helm-Chart definition using the private registry instead of the public OCI images.

secret to include the private registry certificates
apiVersion: v1
kind: Secret
metadata:
 name: private-registry-cert
 namespace: default
data:
 tls.crt: ${TLS_BASE64_CERT}
 tls.key: ${TLS_BASE64_KEY}
 ca.crt: ${CA_BASE64_CERT}
type: kubernetes.io/tls

secret to include the private registry auth credentials
apiVersion: v1
kind: Secret
metadata:
 name: private-registry-auth
 namespace: default
data:
 username: ${REGISTRY_USERNAME}
 password: ${REGISTRY_PASSWORD}

428 Provision the downstream cluster in air-gap scenarios

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 privateRegistriesConfig: # Private registry configuration to add your own mirror
 and credentials
 mirrors:
 docker.io:
 endpoint:
 - "https://$(PRIVATE_REGISTRY_URL)"
 configs:
 "192.168.100.22:5000":
 authSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-auth
 tls:
 tlsConfigSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-cert
 insecureSkipVerify: false
 serverConfig:
 cni: cilium
 cniMultusEnable: true
 preRKE2Commands:
 - modprobe vfio-pci enable_sriov=1 disable_idle_d3=1
 agentConfig:
 airGapped: true # Airgap true to enable airgap mode
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 storage:
 files:

429 Provision the downstream cluster in air-gap scenarios

 - path: /var/lib/rancher/rke2/server/manifests/configmap-sriov-custom-
auto.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: sriov-custom-auto-config
 namespace: sriov-network-operator
 data:
 config.json: |
 [
 {
 "resourceName": "${RESOURCE_NAME1}",
 "interface": "${SRIOV-NIC-NAME1}",
 "pfname": "${PF_NAME1}",
 "driver": "${DRIVER_NAME1}",
 "numVFsToCreate": ${NUM_VFS1}
 },
 {
 "resourceName": "${RESOURCE_NAME2}",
 "interface": "${SRIOV-NIC-NAME2}",
 "pfname": "${PF_NAME2}",
 "driver": "${DRIVER_NAME2}",
 "numVFsToCreate": ${NUM_VFS2}
 }
]
 mode: 0644
 user:
 name: root
 group:
 name: root
 - path: /var/lib/rancher/rke2/server/manifests/sriov.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 data:
 .dockerconfigjson: ${REGISTRY_AUTH_DOCKERCONFIGJSON}
 kind: Secret
 metadata:
 name: privregauth
 namespace: kube-system
 type: kubernetes.io/dockerconfigjson

 apiVersion: v1

430 Provision the downstream cluster in air-gap scenarios

 kind: ConfigMap
 metadata:
 namespace: kube-system
 name: example-repo-ca
 data:
 ca.crt: |-
 -----BEGIN CERTIFICATE-----
 ${CA_BASE64_CERT}
 -----END CERTIFICATE-----

 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: sriov-crd
 namespace: kube-system
 spec:
 chart: oci://${PRIVATE_REGISTRY_URL}/sriov-crd
 dockerRegistrySecret:
 name: privregauth
 repoCAConfigMap:
 name: example-repo-ca
 createNamespace: true
 set:
 global.clusterCIDR: 192.168.0.0/18
 global.clusterCIDRv4: 192.168.0.0/18
 global.clusterDNS: 10.96.0.10
 global.clusterDomain: cluster.local
 global.rke2DataDir: /var/lib/rancher/rke2
 global.serviceCIDR: 10.96.0.0/12
 targetNamespace: sriov-network-operator
 version: ${SRIOV_CRD_VERSION}

 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: sriov-network-operator
 namespace: kube-system
 spec:
 chart: oci://${PRIVATE_REGISTRY_URL}/sriov-network-operator
 dockerRegistrySecret:
 name: privregauth
 repoCAConfigMap:
 name: example-repo-ca
 createNamespace: true
 set:
 global.clusterCIDR: 192.168.0.0/18
 global.clusterCIDRv4: 192.168.0.0/18

431 Provision the downstream cluster in air-gap scenarios

 global.clusterDNS: 10.96.0.10
 global.clusterDomain: cluster.local
 global.rke2DataDir: /var/lib/rancher/rke2
 global.serviceCIDR: 10.96.0.0/12
 targetNamespace: sriov-network-operator
 version: ${SRIOV_OPERATOR_VERSION}
 mode: 0644
 user:
 name: root
 group:
 name: root
 - path: /var/sriov-auto-filler.sh
 overwrite: true
 contents:
 inline: |
 #!/bin/bash
 cat <<- EOF > /var/sriov-networkpolicy-template.yaml
 apiVersion: sriovnetwork.openshift.io/v1
 kind: SriovNetworkNodePolicy
 metadata:
 name: atip-RESOURCENAME
 namespace: sriov-network-operator
 spec:
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 resourceName: RESOURCENAME
 deviceType: DRIVER
 numVfs: NUMVF
 mtu: 1500
 nicSelector:
 pfNames: ["PFNAMES"]
 deviceID: "DEVICEID"
 vendor: "VENDOR"
 rootDevices:
 - PCIADDRESS
 EOF

 export KUBECONFIG=/etc/rancher/rke2/rke2.yaml; export KUBECTL=/var/lib/
rancher/rke2/bin/kubectl
 while [$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r '.items[].status.syncStatus') != "Succeeded"]; do sleep 1; done
 input=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get cm sriov-custom-auto-
config -n sriov-network-operator -ojson | jq -r '.data."config.json"')
 jq -c '.[]' <<< $input | while read i; do
 interface=$(echo $i | jq -r '.interface')
 pfname=$(echo $i | jq -r '.pfname')

432 Provision the downstream cluster in air-gap scenarios

 pciaddress=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r ".items[].status.interfaces[]|select(.name==\"$interface\")|.pciAddress")
 vendor=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r ".items[].status.interfaces[]|select(.name==\"$interface\")|.vendor")
 deviceid=$(${KUBECTL} --kubeconfig=${KUBECONFIG} get
 sriovnetworknodestates.sriovnetwork.openshift.io -n sriov-network-operator -ojson | jq -
r ".items[].status.interfaces[]|select(.name==\"$interface\")|.deviceID")
 resourceName=$(echo $i | jq -r '.resourceName')
 driver=$(echo $i | jq -r '.driver')
 sed -e "s/RESOURCENAME/$resourceName/g" \
 -e "s/DRIVER/$driver/g" \
 -e "s/PFNAMES/$pfname/g" \
 -e "s/VENDOR/$vendor/g" \
 -e "s/DEVICEID/$deviceid/g" \
 -e "s/PCIADDRESS/$pciaddress/g" \
 -e "s/NUMVF/$(echo $i | jq -r '.numVFsToCreate')/g" /var/sriov-
networkpolicy-template.yaml > /var/lib/rancher/rke2/server/manifests/$resourceName.yaml
 done
 mode: 0755
 user:
 name: root
 group:
 name: root
 kernel_arguments:
 should_exist:
 - intel_iommu=on
 - intel_pstate=passive
 - processor.max_cstate=1
 - intel_idle.max_cstate=0
 - iommu=pt
 - mce=off
 - hugepagesz=1G hugepages=40
 - hugepagesz=2M hugepages=0
 - default_hugepagesz=1G
 - kthread_cpus=${NON-ISOLATED_CPU_CORES}
 - irqaffinity=${NON-ISOLATED_CPU_CORES}
 - isolcpus=${ISOLATED_CPU_CORES}
 - nohz_full=${ISOLATED_CPU_CORES}
 - rcu_nocbs=${ISOLATED_CPU_CORES}
 - rcu_nocb_poll
 - nosoftlockup
 - nohz=on
 systemd:
 units:
 - name: rke2-preinstall.service

433 Provision the downstream cluster in air-gap scenarios

 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 - name: cpu-partitioning.service
 enabled: true
 contents: |
 [Unit]
 Description=cpu-partitioning
 Wants=network-online.target
 After=network.target network-online.target
 [Service]
 Type=oneshot
 User=root
 ExecStart=/bin/sh -c "echo isolated_cores=${ISOLATED_CPU_CORES} > /etc/
tuned/cpu-partitioning-variables.conf"
 ExecStartPost=/bin/sh -c "tuned-adm profile cpu-partitioning"
 ExecStartPost=/bin/sh -c "systemctl enable tuned.service"
 [Install]
 WantedBy=multi-user.target
 - name: sriov-custom-auto-vfs.service
 enabled: true
 contents: |
 [Unit]
 Description=SRIOV Custom Auto VF Creation
 Wants=network-online.target rke2-server.target
 After=network.target network-online.target rke2-server.target
 [Service]
 User=root
 Type=forking
 TimeoutStartSec=900

434 Provision the downstream cluster in air-gap scenarios

 ExecStart=/bin/sh -c "while ! /var/lib/rancher/rke2/bin/kubectl --
kubeconfig=/etc/rancher/rke2/rke2.yaml wait --for condition=ready nodes --all ; do sleep
 2 ; done"
 ExecStartPost=/bin/sh -c "while [$(/var/lib/rancher/
rke2/bin/kubectl --kubeconfig=/etc/rancher/rke2/rke2.yaml get
 sriovnetworknodestates.sriovnetwork.openshift.io --ignore-not-found --no-headers -A | wc
 -l) -eq 0]; do sleep 1; done"
 ExecStartPost=/bin/sh -c "/var/sriov-auto-filler.sh"
 RemainAfterExit=yes
 KillMode=process
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

435 Provision the downstream cluster in air-gap scenarios

32 Lifecycle actions

This section covers the lifecycle management actions of deployed ATIP clusters.

32.1 Management cluster upgrades
The upgrade of the management cluster involves several components. For a list of the general
components that require an upgrade, see the Day 2 management cluster (Chapter 24, Management

Cluster) documentation.

The upgrade procedure for comoponents specific to this setup can be seen below.

Upgrading Metal3

To upgrade Metal3 , use the following command to update the Helm repository cache and fetch
the latest chart to install Metal3 from the Helm chart repository:

helm repo update
helm fetch suse-edge/metal3

After that, the easy way to upgrade is to export your current configurations to a le, and then
upgrade the Metal3 version using that previous le. If any change is required in the new ver-
sion, the le can be edited before the upgrade.

helm get values metal3 -n metal3-system -o yaml > metal3-values.yaml
helm upgrade metal3 suse-edge/metal3 \
 --namespace metal3-system \
 -f metal3-values.yaml \
 --version=0.7.4

32.2 Downstream cluster upgrades
Upgrading downstream clusters involves updating several components. The following sections
cover the upgrade process for each of the components.

Upgrading the operating system

For this process, check the following reference (Section 31.2, “Prepare downstream cluster image for

connected scenarios”) to build the new image with a new operating system version. With this new
image generated by EIB , the next provision phase uses the new operating version provided. In
the following step, the new image is used to upgrade the nodes.

436 Management cluster upgrades

Upgrading the RKE2 cluster

The changes required to upgrade the RKE2 cluster using the automated workflow are the fol-
lowing:

Change the block RKE2ControlPlane in the capi-provisioning-example.yaml shown
in the following section (Section 31.4, “Downstream cluster provisioning with Directed network

provisioning (single-node)” (page 398)):

Add the rollout strategy in the spec le.

Change the version of the RKE2 cluster to the new version replacing
${RKE2_NEW_VERSION} .

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 serverConfig:
 cni: cilium
 rolloutStrategy:
 rollingUpdate:
 maxSurge: 0
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete

437 Downstream cluster upgrades

 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_NEW_VERSION}
 nodeName: "localhost.localdomain"

Change the block Metal3MachineTemplate in the capi-provisioning-example.yaml
shown in the following section (Section 31.4, “Downstream cluster provisioning with Directed

network provisioning (single-node)” (page 398)):

Change the image name and checksum to the new version generated in the previous
step.

Add the directive nodeReuse to true to avoid creating a new node.

Add the directive automatedCleaningMode to metadata to enable the automated
cleaning for the node.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: single-node-cluster-controlplane
 namespace: default
spec:
 nodeReuse: True
 template:
 spec:
 automatedCleaningMode: metadata
 dataTemplate:
 name: single-node-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/${NEW_IMAGE_GENERATED}.sha256

438 Downstream cluster upgrades

 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/${NEW_IMAGE_GENERATED}.raw

After making these changes, the capi-provisioning-example.yaml le can be applied to the
cluster using the following command:

kubectl apply -f capi-provisioning-example.yaml

439 Downstream cluster upgrades

VII Appendix

33 Release Notes 441

33 Release Notes

33.1 Abstract

SUSE Edge 3.0 is a tightly integrated and comprehensively validated end-to-end solution for
addressing the unique challenges of the deployment of infrastructure and cloud-native appli-
cations at the edge. Its driving focus is to provide an opinionated, yet highly flexible, highly
scalable, and secure platform that spans initial deployment image building, node provisioning
and onboarding, application deployment, observability, and lifecycle management.

The solution is designed with the notion that there is no "one-size-ts-all" edge platform due
to our customers’ widely varying requirements and expectations. Edge deployments push us
to solve, and continually evolve, some of the most challenging problems, including massive
scalability, restricted network availability, physical space constraints, new security threats and
attack vectors, variations in hardware architecture and system resources, the requirement to
deploy and interface with legacy infrastructure and applications, and customer solutions that
have extended lifespans.

SUSE Edge is built on best-of-breed open source software from the ground up, consistent with
both our 30-year history in delivering secure, stable, and certified SUSE Linux platforms and
our experience in providing highly scalable and feature-rich Kubernetes management with our
Rancher portfolio. SUSE Edge builds on-top of these capabilities to deliver functionality that can
address a wide number of market segments, including retail, medical, transportation, logistics,
telecommunications, smart manufacturing, and Industrial IoT.

Note
SUSE Adaptive Telco Infrastructure Platform (ATIP) is a derivative (or downstream prod-
uct) of SUSE Edge, with additional optimizations and components that enable the plat-
form to address the requirements found in telecommunications use-cases. Unless explic-
itly stated, all of the release notes are applicable for both SUSE Edge 3.0, and SUSE ATIP
3.0.

441 Abstract

33.2 About

These Release Notes are, unless explicitly specified and explained, identical across all architec-
tures, and the most recent version, along with the release notes of all other SUSE products are
always available online at https://www.suse.com/releasenotes .

Entries are only listed once, but they can be referenced in several places if they are important
and belong to more than one section. Release notes usually only list changes that happened
between two subsequent releases. Certain important entries from the release notes of previous
product versions may be repeated. To make these entries easier to identify, they contain a note
to that effect.

However, repeated entries are provided as a courtesy only. Therefore, if you are skipping one
or releases, check the release notes of the skipped releases also. If you are only reading the
release notes of the current release, you could miss important changes that may affect system
behavior. SUSE Edge versions are defined as x.y.z, where 'x' denotes the major version, 'y' denotes
the minor, and 'z' denotes the patch version, also known as the "z-stream". SUSE Edge product
lifecycles are defined based around a given minor release, e.g. "3.0", but ship with subsequent
patch updates through its lifecycle, e.g. "3.0.1".

Note
SUSE Edge z-stream releases are tightly integrated and thoroughly tested as a versioned
stack. Upgrade of any individual components to a different versions to those listed above
is likely to result in system downtime. While it’s possible to run Edge clusters in untest-
ed configurations, it is not recommended, and it may take longer to provide resolution
through the support channels.

33.3 Release 3.0.3

Availability Date: 15th November 2024

Summary: SUSE Edge 3.0.3 is the third z-stream release in the SUSE Edge 3.0 portfolio.

442 About

https://www.suse.com/releasenotes

33.3.1 Bug & Security Fixes

The Rancher version is updated to 2.8.8 : Release Notes (https://github.com/rancher/ranch-

er/releases/tag/v2.8.8)

The RKE2 version is updated to 1.28.13 : Release Notes (https://docs.rke2.io/release-notes/

v1.28.X#release-v12813rke2r1)

The K3s version is updated to 1.28.13 : Release Notes (https://docs.k3s.io/release-notes/

v1.28.X#release-v12813k3s1)

The Metal3 chart fixes an issue with the handling of the predictableNicNames parameter:
SUSE Edge issue #163 (https://github.com/suse-edge/charts/pull/163)

The Metal3 chart resolves security issues identified in CVE-2024-43803 (https://www.cve.org/

CVERecord?id=CVE-2024-43803:) : SUSE Edge issue #163 (https://github.com/suse-edge/

charts/pull/163)

The Metal3 chart resolves security issues identified in CVE-2024-44082 (https://www.cve.org/

CVERecord?id=CVE-2024-44082:) : SUSE Edge issue #163 (https://github.com/suse-edge/

charts/pull/163)

33.3.2 Components Versions

The following table describes the individual components that make up the 3.0.3 release, includ-
ing the version, the Helm chart version (if applicable), and from where the released artifact
can be pulled in the binary format. Please follow the associated documentation for usage and
deployment examples. Note that items in bold are highlighted changes from the previous z-
stream release.

Name Version Helm Chart Version Artifact Location
(URL/Image)

SLE Micro 5.5 (latest) N/A SLE Micro Down-

load Page (https://

www.suse.com/down-

load/sle-micro/)

SLE-Mi-
cro.x86_64-5.5.0-De-
fault-SelfIn-

443 Bug & Security Fixes

https://github.com/rancher/rancher/releases/tag/v2.8.8
https://github.com/rancher/rancher/releases/tag/v2.8.8
https://docs.rke2.io/release-notes/v1.28.X#release-v12813rke2r1
https://docs.rke2.io/release-notes/v1.28.X#release-v12813rke2r1
https://docs.k3s.io/release-notes/v1.28.X#release-v12813k3s1
https://docs.k3s.io/release-notes/v1.28.X#release-v12813k3s1
https://github.com/suse-edge/charts/pull/163
https://www.cve.org/CVERecord?id=CVE-2024-43803:
https://www.cve.org/CVERecord?id=CVE-2024-43803:
https://github.com/suse-edge/charts/pull/163
https://github.com/suse-edge/charts/pull/163
https://www.cve.org/CVERecord?id=CVE-2024-44082:
https://www.cve.org/CVERecord?id=CVE-2024-44082:
https://github.com/suse-edge/charts/pull/163
https://github.com/suse-edge/charts/pull/163
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

stall-GM2.in-
stall.iso (sha256
4f672a4a0f8ec421e7c25797de-
f05598037c56b7f306283566a9f921b-
dce904a)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-SelfIn-
stall-GM2.in-
stall.iso (sha256
527a5a7cdbf11e3e6238e386533755257676ad8b4c80be3b159d0904cb637678)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-GM.raw.xz
(sha256
13243a737ca219bad6a7aa41fa747c06e8b825fe-
f10a756cf4d575f4493ed68b)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-
GM.raw.xz (sha256
6c2af94e7ac785c8f6a276032c8e6a4b493c294e6cd72809c75089522f01bc93)

SUSE Manager 4.3.11 N/A SUSE Manager Down-

load Page (https://

www.suse.com/down-

load/suse-manag-

er/)

K3s 1.28.13 N/A Upstream K3s

Release (https://

github.com/k3s-io/

k3s/releases/tag/

v1.28.13%2Bk3s1)

444 Components Versions

https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://github.com/k3s-io/k3s/releases/tag/v1.28.13%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.13%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.13%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.13%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.13%2Bk3s1

RKE2 1.28.13 N/A Upstream RKE2

Release (https://

github.com/ranch-

er/rke2/releases/tag/

v1.28.13%2Brke2r1)

Rancher Prime 2.8.8 2.8.8 Rancher 2.8.8 Images

(https://prime.rib-

s.rancher.io/ranch-

er/v2.8.8/rancher-im-

ages.txt)

Rancher Prime Helm

Repo (https://chart-

s.rancher.com/serv-

er-charts/prime)

Longhorn 1.6.1 103.3.0 Longhorn 1.6.1

Images (https://

raw.githubuser-

content.com/long-

horn/longhorn/v1.6.1/

deploy/longhorn-im-

ages.txt)

Longhorn Helm Repo

(https://charts.long-

horn.io)

NM Configurator 0.3.0 N/A NMConfigurator

Upstream Release

(https://github.com/

suse-edge/nm-config-

urator/releases/tag/

v0.3.0)

445 Components Versions

https://github.com/rancher/rke2/releases/tag/v1.28.13%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.13%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.13%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.13%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.13%2Brke2r1
https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt
https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt
https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt
https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt
https://prime.ribs.rancher.io/rancher/v2.8.8/rancher-images.txt
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://charts.longhorn.io
https://charts.longhorn.io
https://charts.longhorn.io
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0

NeuVector 5.3.2 103.0.3 reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-controller:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-enforcer:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-manager:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-prometheus-ex-
porter:5.3.2
reg-
istry.suse.com/ranch-
er mirrored-neu-
vector-reg-
istry-adapter:0.1.1-s1
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-scanner:latest
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-updater:latest

Cluster API (CAPI) 1.6.2 N/A reg-
istry.suse.com/edge/
cluster-api-con-
troller:1.6.2

446 Components Versions

reg-
istry.suse.com/edge/
cluster-api-provider-
metal3:1.6.0
reg-
istry.suse.com/edge/
cluster-api-provider-
rke2-bootstrap:0.4.1
reg-
istry.suse.com/edge/
cluster-api-provider-
rke2-control-
plane:0.4.1

Metal3 0.7.4 0.7.4 reg-
istry.suse.com/edge/
metal3-chart:0.7.4
reg-
istry.suse.com/edge/
baremetal-opera-
tor:0.5.2
reg-
istry.suse.com/edge/
ip-address-manag-
er:1.6.0
reg-
istry.suse.com/edge/
ironic:23.0.3.1
reg-
istry.suse.com/edge/
ironic-ipa-down-
loader:1.3.5
reg-
istry.suse.com/edge/
kube-rbac-prox-

447 Components Versions

y:v0.14.2 +.1 reg-
istry.suse.com/edge/
mariadb:10.6.15.1

MetalLB 0.14.3 0.14.3 reg-
istry.suse.com/edge/
metallb-chart:0.14.3
reg-
istry.suse.com/edge/
metallb-con-
troller:v0.14.3
reg-
istry.suse.com/edge/
metallb-speak-
er:v0.14.3
reg-
istry.suse.com/edge/
frr:8.4
reg-
istry.suse.com/edge/
frr-k8s:v0.0.8

Elemental 1.4.4 1.4.4 reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-chart:1.4.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-crds-chart:1.4.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor:1.4.4

448 Components Versions

Edge Image Builder 1.0.2 N/A reg-
istry.suse.com/edge/
edge-im-
age-builder:1.0.2

KubeVirt 1.2.2 0.3.0 reg-
istry.suse.com/edge/
kubevirt-chart:0.3.0
reg-
istry.suse.com/suse/
sles/15.5/virt-opera-
tor:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-
api:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-con-
troller:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-export-
proxy:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-export-
server:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-han-
dler:1.2.2

449 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/virt-
launcher:1.2.2

KubeVirt Dashboard
Extension

1.0.0 1.0.0 reg-
istry.suse.com/edge/
kubevirt-dash-
board-exten-
sion-chart:1.0.0

Containerized Data
Importer

1.59.0 0.3.0 reg-
istry.suse.com/edge/
cdi-chart:0.3.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-opera-
tor:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-con-
troller:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-im-
porter:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-clon-
er:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-apis-
erver:1.59.0

450 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/cdi-upload-
server:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-upload-
proxy:1.59.0

Endpoint Copier Op-
erator

0.2.0 0.2.0 reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator:v0.2.0
reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator-chart:0.2.0

Akri (Tech Preview) 0.12.20 0.12.20 reg-
istry.suse.com/edge/
akri-chart:0.12.20
reg-
istry.suse.com/edge/
akri-dashboard-ex-
tension-chart:1.0.0
reg-
istry.suse.com/edge/
akri-agent:v0.12.20
reg-
istry.suse.com/edge/
akri-con-
troller:v0.12.20

451 Components Versions

reg-
istry.suse.com/edge/
akri-debug-echo-
discovery-han-
dler:v0.12.20
reg-
istry.suse.com/edge/
akri-onvif-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-opcua-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-udev-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-webhook-config-
uration:v0.12.20

SR-IOV Network Op-
erator

1.2.2 1.2.2+up0.1.0 reg-
istry.suse.com/edge/
sriov-network-opera-
tor-chart:1.2.2
reg-
istry.suse.com/edge/
sriov-crd-chart:1.2.2

33.4 Release 3.0.2

Availability Date: 16th August 2024

Summary: SUSE Edge 3.0.2 is the second z-stream release in the SUSE Edge 3.0 portfolio.

452 Release 3.0.2

33.4.1 New Features

The Metal3 chart now supports static network configuration without any mac-address :
SUSE Edge issue #134 (https://github.com/suse-edge/charts/pull/134)

KubeVirt is updated from 1.1.1 to 1.2.2 for details of new features refer to the: Upstream

Release Notes (https://github.com/kubevirt/kubevirt/releases)

33.4.2 Bug & Security Fixes

The Metal3 chart fixes an issue where host reprovisioning may use stale static network
configuration: SUSE Edge issue #133 (https://github.com/suse-edge/charts/pull/133)

The RKE2 Cluster API provider fixes an issue when specifying TLS configuration for a lo-
cal registry: RKE2 Provider issue #357 (https://github.com/rancher/cluster-api-provider-rke2/

pull/357)

The RKE2 Cluster API provider fixes an issue causing rke2-install to error after sys-
tem reboot: RKE2 Provider issue #346 (https://github.com/rancher/cluster-api-provider-rke2/

pull/346)

KubeVirt is updated to include several security fixes: Kubevirt Update (https://

www.suse.com/support/update/announcement/2024/suse-su-20242669-1)

33.4.3 Components Versions

The following table describes the individual components that make up the 3.0.2 release, includ-
ing the version, the Helm chart version (if applicable), and from where the released artifact
can be pulled in the binary format. Please follow the associated documentation for usage and
deployment examples. Note that items in bold are highlighted changes from the previous z-
stream release.

Name Version Helm Chart Version Artifact Location
(URL/Image)

SLE Micro 5.5 (latest) N/A SLE Micro Down-

load Page (https://

www.suse.com/down-

load/sle-micro/)

453 New Features

https://github.com/suse-edge/charts/pull/134
https://github.com/kubevirt/kubevirt/releases
https://github.com/kubevirt/kubevirt/releases
https://github.com/suse-edge/charts/pull/133
https://github.com/rancher/cluster-api-provider-rke2/pull/357
https://github.com/rancher/cluster-api-provider-rke2/pull/357
https://github.com/rancher/cluster-api-provider-rke2/pull/346
https://github.com/rancher/cluster-api-provider-rke2/pull/346
https://www.suse.com/support/update/announcement/2024/suse-su-20242669-1
https://www.suse.com/support/update/announcement/2024/suse-su-20242669-1
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

SLE-Mi-
cro.x86_64-5.5.0-De-
fault-SelfIn-
stall-GM2.in-
stall.iso (sha256
4f672a4a0f8ec421e7c25797de-
f05598037c56b7f306283566a9f921b-
dce904a)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-SelfIn-
stall-GM2.in-
stall.iso (sha256
527a5a7cdbf11e3e6238e386533755257676ad8b4c80be3b159d0904cb637678)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-GM.raw.xz
(sha256
13243a737ca219bad6a7aa41fa747c06e8b825fe-
f10a756cf4d575f4493ed68b)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-
GM.raw.xz (sha256
6c2af94e7ac785c8f6a276032c8e6a4b493c294e6cd72809c75089522f01bc93)

SUSE Manager 4.3.11 N/A SUSE Manager Down-

load Page (https://

www.suse.com/down-

load/suse-manag-

er/)

454 Components Versions

https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/

K3s 1.28.10 N/A Upstream K3s

Release (https://

github.com/k3s-io/

k3s/releases/tag/

v1.28.10%2Bk3s1)

RKE2 1.28.10 N/A Upstream RKE2

Release (https://

github.com/ranch-

er/rke2/releases/tag/

v1.28.10%2Brke2r1)

Rancher Prime 2.8.5 2.8.5 Rancher 2.8.5 Images

(https://github.com/

rancher/ranch-

er/releases/down-

load/v2.8.5/ranch-

er-images.txt)

Rancher Prime Helm

Repo (https://chart-

s.rancher.com/serv-

er-charts/prime)

Longhorn 1.6.1 103.3.0 Longhorn 1.6.1

Images (https://

raw.githubuser-

content.com/long-

horn/longhorn/v1.6.1/

deploy/longhorn-im-

ages.txt)

Longhorn Helm Repo

(https://charts.long-

horn.io)

NM Configurator 0.3.0 N/A NMConfigurator

Upstream Release

(https://github.com/

455 Components Versions

https://github.com/k3s-io/k3s/releases/tag/v1.28.10%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.10%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.10%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.10%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.10%2Bk3s1
https://github.com/rancher/rke2/releases/tag/v1.28.10%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.10%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.10%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.10%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.10%2Brke2r1
https://github.com/rancher/rancher/releases/download/v2.8.5/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.5/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.5/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.5/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.5/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.5/rancher-images.txt
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://charts.longhorn.io
https://charts.longhorn.io
https://charts.longhorn.io
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0

suse-edge/nm-config-

urator/releases/tag/

v0.3.0)

NeuVector 5.3.2 103.0.3 reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-controller:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-enforcer:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-manager:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-prometheus-ex-
porter:5.3.2
reg-
istry.suse.com/ranch-
er mirrored-neu-
vector-reg-
istry-adapter:0.1.1-s1
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-scanner:latest
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-updater:latest

456 Components Versions

https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0

Cluster API (CAPI) 1.6.2 N/A reg-
istry.suse.com/edge/
cluster-api-con-
troller:1.6.2
reg-
istry.suse.com/edge/
cluster-api-provider-
metal3:1.6.0
reg-
istry.suse.com/edge/
cluster-api-
provider-rke2-boot-
strap:0.4.1
reg-
istry.suse.com/edge/
cluster-api-
provider-rke2-con-
trolplane:0.4.1

Metal3 0.7.3 0.7.3 reg-
istry.suse.com/edge/
metal3-chart:0.7.3
reg-
istry.suse.com/edge/
baremetal-opera-
tor:0.5.1
reg-
istry.suse.com/edge/
ip-address-manag-
er:1.6.0
reg-
istry.suse.com/edge/
ironic:23.0.2.1

457 Components Versions

reg-
istry.suse.com/edge/
ironic-ipa-down-
loader:1.3.4
reg-
istry.suse.com/edge/
kube-rbac-prox-
y:v0.14.2 +.1 reg-
istry.suse.com/edge/
mariadb:10.6.15.1

MetalLB 0.14.3 0.14.3 reg-
istry.suse.com/edge/
metallb-chart:0.14.3
reg-
istry.suse.com/edge/
metallb-con-
troller:v0.14.3
reg-
istry.suse.com/edge/
metallb-speak-
er:v0.14.3
reg-
istry.suse.com/edge/
frr:8.4
reg-
istry.suse.com/edge/
frr-k8s:v0.0.8

Elemental 1.4.4 1.4.4 reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-chart:1.4.4

458 Components Versions

reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-crds-chart:1.4.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor:1.4.4

Edge Image Builder 1.0.2 N/A reg-
istry.suse.com/edge/
edge-im-
age-builder:1.0.2

KubeVirt 1.2.2 0.3.0 reg-
istry.suse.com/edge/
kubevirt-chart:0.3.0
reg-
istry.suse.com/suse/
sles/15.5/virt-oper-
ator:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-
api:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-con-
troller:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-ex-
portproxy:1.2.2

459 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/virt-ex-
portserver:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-han-
dler:1.2.2
reg-
istry.suse.com/suse/
sles/15.5/virt-
launcher:1.2.2

KubeVirt Dashboard
Extension

1.0.0 1.0.0 reg-
istry.suse.com/edge/
kubevirt-dash-
board-exten-
sion-chart:1.0.0

Containerized Data
Importer

1.59.0 0.3.0 reg-
istry.suse.com/edge/
cdi-chart:0.3.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-opera-
tor:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-con-
troller:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-im-
porter:1.59.0

460 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/cdi-clon-
er:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-apis-
erver:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-up-
loadserver:1.59.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-up-
loadproxy:1.59.0

Endpoint Copier Op-
erator

0.2.0 0.2.0 reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator:v0.2.0
reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator-chart:0.2.0

Akri (Tech Preview) 0.12.20 0.12.20 reg-
istry.suse.com/edge/
akri-chart:0.12.20
reg-
istry.suse.com/edge/
akri-dashboard-ex-
tension-chart:1.0.0
reg-
istry.suse.com/edge/
akri-agent:v0.12.20

461 Components Versions

reg-
istry.suse.com/edge/
akri-con-
troller:v0.12.20
reg-
istry.suse.com/edge/
akri-debug-echo-
discovery-han-
dler:v0.12.20
reg-
istry.suse.com/edge/
akri-onvif-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-opcua-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-udev-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-webhook-config-
uration:v0.12.20

SR-IOV Network Op-
erator

1.2.2 1.2.2+up0.1.0 reg-
istry.suse.com/edge/
sriov-network-opera-
tor-chart:1.2.2
reg-
istry.suse.com/edge/
sriov-crd-chart:1.2.2

462 Components Versions

33.5 Release 3.0.1
Availability Date: 14th June 2024

Summary: SUSE Edge 3.0.1 is the rst z-stream release in the SUSE Edge 3.0 portfolio.

33.5.1 New Features

Elemental and EIB now support node reset for unmanaged hosts

SR-IOV Network Operator chart is now included

The Metal3 chart now supports providing additional trusted CA certificates

NM Configurator now supports applying unified configurations without any MAC specifi-
cation

Added version subcommand to EIB; the version will also automatically be included in
each image built by EIB

33.5.2 Bug & Security Fixes

EIB now automatically sets the execute bit on custom scripts: SUSE Edge issue #429 (https://

github.com/suse-edge/edge-image-builder/issues/429)

EIB now supports disks which are >512 byte sector size: SUSE Edge issue #447 (https://

github.com/suse-edge/edge-image-builder/issues/447)

Enhance EIB’s ability to detect container images in Helm charts: SUSE Edge issue #442

(https://github.com/suse-edge/edge-image-builder/issues/442)

33.5.3 Components Versions

The following table describes the individual components that make up the 3.0.1 release, includ-
ing the version, the Helm chart version (if applicable), and where the released artifact can be
pulled from in binary format. Please follow the associated documentation for usage and deploy-
ment examples. Note that items in bold are highlighted changes from the previous z-stream
release.

463 Release 3.0.1

https://github.com/suse-edge/edge-image-builder/issues/429
https://github.com/suse-edge/edge-image-builder/issues/429
https://github.com/suse-edge/edge-image-builder/issues/447
https://github.com/suse-edge/edge-image-builder/issues/447
https://github.com/suse-edge/edge-image-builder/issues/442
https://github.com/suse-edge/edge-image-builder/issues/442

Name Version Helm Chart Version Artifact Location
(URL/Image)

SLE Micro 5.5 (latest) N/A SLE Micro Down-

load Page (https://

www.suse.com/down-

load/sle-micro/)

SLE-Mi-
cro.x86_64-5.5.0-De-
fault-SelfIn-
stall-GM2.in-
stall.iso (sha256
4f672a4a0f8ec421e7c25797de-
f05598037c56b7f306283566a9f921b-
dce904a)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-SelfIn-
stall-GM2.in-
stall.iso (sha256
527a5a7cdbf11e3e6238e386533755257676ad8b4c80be3b159d0904cb637678)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-GM.raw.xz
(sha256
13243a737ca219bad6a7aa41fa747c06e8b825fe-
f10a756cf4d575f4493ed68b)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-
GM.raw.xz (sha256
6c2af94e7ac785c8f6a276032c8e6a4b493c294e6cd72809c75089522f01bc93)

464 Components Versions

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

SUSE Manager 4.3.11 N/A SUSE Manager Down-

load Page (https://

www.suse.com/down-

load/suse-manag-

er/)

K3s 1.28.9 N/A Upstream K3s

Release (https://

github.com/k3s-io/

k3s/releases/tag/

v1.28.9%2Bk3s1)

RKE2 1.28.9 N/A Upstream RKE2

Release (https://

github.com/ranch-

er/rke2/releases/tag/

v1.28.9%2Brke2r1)

Rancher Prime 2.8.4 2.8.4 Rancher 2.8.4 Images

(https://github.com/

rancher/ranch-

er/releases/down-

load/v2.8.4/ranch-

er-images.txt)

Rancher Prime Helm

Repo (https://chart-

s.rancher.com/serv-

er-charts/prime)

Longhorn 1.6.1 103.3.0 Longhorn 1.6.1

Images (https://

raw.githubuser-

content.com/long-

horn/longhorn/v1.6.1/

deploy/longhorn-im-

ages.txt)

465 Components Versions

https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://github.com/k3s-io/k3s/releases/tag/v1.28.9%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.9%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.9%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.9%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.9%2Bk3s1
https://github.com/rancher/rke2/releases/tag/v1.28.9%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.9%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.9%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.9%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.9%2Brke2r1
https://github.com/rancher/rancher/releases/download/v2.8.4/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.4/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.4/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.4/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.4/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.4/rancher-images.txt
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt

Longhorn Helm Repo

(https://charts.long-

horn.io)

NM Configurator 0.3.0 N/A NMConfigurator

Upstream Release

(https://github.com/

suse-edge/nm-config-

urator/releases/tag/

v0.3.0)

NeuVector 5.3.2 103.0.3 reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-controller:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-enforcer:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-manager:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-prometheus-ex-
porter:5.3.2
reg-
istry.suse.com/ranch-
er mirrored-neu-
vector-reg-
istry-adapter:0.1.1-s1

466 Components Versions

https://charts.longhorn.io
https://charts.longhorn.io
https://charts.longhorn.io
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.0

reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-scanner:latest
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-updater:latest

Cluster API (CAPI) 1.6.2 N/A reg-
istry.suse.com/edge/
cluster-api-con-
troller:1.6.2
reg-
istry.suse.com/edge/
cluster-api-provider-
metal3:1.6.0
reg-
istry.suse.com/edge/
cluster-api-provider-
rke2-bootstrap:0.2.6
reg-
istry.suse.com/edge/
cluster-api-provider-
rke2-control-
plane:0.2.6

Metal3 0.7.1 0.7.1 reg-
istry.suse.com/edge/
metal3-chart:0.7.1
reg-
istry.suse.com/edge/
baremetal-opera-
tor:0.5.1

467 Components Versions

reg-
istry.suse.com/edge/
ip-address-manag-
er:1.6.0
reg-
istry.suse.com/edge/
ironic:23.0.2.1
reg-
istry.suse.com/edge/
ironic-ipa-down-
loader:1.3.2
reg-
istry.suse.com/edge/
kube-rbac-prox-
y:v0.14.2 +.1 reg-
istry.suse.com/edge/
mariadb:10.6.15.1

MetalLB 0.14.3 0.14.3 reg-
istry.suse.com/edge/
metallb-chart:0.14.3
reg-
istry.suse.com/edge/
metallb-con-
troller:v0.14.3
reg-
istry.suse.com/edge/
metallb-speak-
er:v0.14.3
reg-
istry.suse.com/edge/
frr:8.4
reg-
istry.suse.com/edge/
frr-k8s:v0.0.8

468 Components Versions

Elemental 1.4.4 1.4.4 reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-chart:1.4.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-crds-chart:1.4.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor:1.4.4

Edge Image Builder 1.0.2 N/A reg-
istry.suse.com/edge/
edge-im-
age-builder:1.0.2

KubeVirt 1.1.1 0.2.4 reg-
istry.suse.com/edge/
kubevirt-chart:0.2.4
reg-
istry.suse.com/suse/
sles/15.5/virt-opera-
tor:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-
api:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-con-
troller:1.1.1

469 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/virt-export-
proxy:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-export-
server:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-han-
dler:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-
launcher:1.1.1

KubeVirt Dashboard
Extension

1.0.0 1.0.0 reg-
istry.suse.com/edge/
kubevirt-dash-
board-exten-
sion-chart:1.0.0

Containerized Data
Importer

1.58.0 0.2.3 reg-
istry.suse.com/edge/
cdi-chart:0.2.3
reg-
istry.suse.com/suse/
sles/15.5/cdi-opera-
tor:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-con-
troller:1.58.0

470 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/cdi-im-
porter:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-clon-
er:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-apis-
erver:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-upload-
server:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-upload-
proxy:1.58.0

Endpoint Copier Op-
erator

0.2.0 0.2.0 reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator:v0.2.0
reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator-chart:0.2.0

Akri (Tech Preview) 0.12.20 0.12.20 reg-
istry.suse.com/edge/
akri-chart:0.12.20

471 Components Versions

reg-
istry.suse.com/edge/
akri-dashboard-ex-
tension-chart:1.0.0
reg-
istry.suse.com/edge/
akri-agent:v0.12.20
reg-
istry.suse.com/edge/
akri-con-
troller:v0.12.20
reg-
istry.suse.com/edge/
akri-debug-echo-
discovery-han-
dler:v0.12.20
reg-
istry.suse.com/edge/
akri-onvif-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-opcua-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-udev-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-webhook-config-
uration:v0.12.20

472 Components Versions

SR-IOV Network
Operator

1.2.2 1.2.2+up0.1.0 reg-
istry.suse.com/edge/
sriov-network-opera-
tor-chart:1.2.2
reg-
istry.suse.com/edge/
sriov-crd-chart:1.2.2

33.6 Release 3.0.0

Availability Date: 26th April 2024

Summary: SUSE Edge 3.0.0 is the rst release in the SUSE Edge 3.0 portfolio.

33.6.1 New Features

Not Applicable - this is the rst release shipped in 3.0.z.

33.6.2 Bug & Security Fixes

Not Applicable - this is the rst release shipped in 3.0.z.

33.6.3 Components Versions

The following table describes the individual components that make up the 3.0.0 release, includ-
ing the version, the Helm chart version (if applicable), and where the released artifact can be
pulled from in binary format. Please follow the associated documentation for usage and deploy-
ment examples.

Name Version Helm Chart Version Artifact Location
(URL/Image)

473 Release 3.0.0

SLE Micro 5.5 (latest) N/A SLE Micro Down-

load Page (https://

www.suse.com/down-

load/sle-micro/)

SLE-Mi-
cro.x86_64-5.5.0-De-
fault-SelfIn-
stall-GM2.in-
stall.iso (sha256
4f672a4a0f8ec421e7c25797de-
f05598037c56b7f306283566a9f921b-
dce904a)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-SelfIn-
stall-GM2.in-
stall.iso (sha256
527a5a7cdbf11e3e6238e386533755257676ad8b4c80be3b159d0904cb637678)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-GM.raw.xz
(sha256
13243a737ca219bad6a7aa41fa747c06e8b825fe-
f10a756cf4d575f4493ed68b)
SLE-Mi-
cro.x86_64-5.5.0-De-
fault-RT-
GM.raw.xz (sha256
6c2af94e7ac785c8f6a276032c8e6a4b493c294e6cd72809c75089522f01bc93)

SUSE Manager 4.3.11 N/A SUSE Manager Down-

load Page (https://

www.suse.com/down-

load/suse-manag-

er/)

474 Components Versions

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/

K3s 1.28.8 N/A Upstream K3s

Release (https://

github.com/k3s-io/

k3s/releases/tag/

v1.28.8%2Bk3s1)

RKE2 1.28.8 N/A Upstream RKE2

Release (https://

github.com/ranch-

er/rke2/releases/tag/

v1.28.8%2Brke2r1)

Rancher Prime 2.8.3 2.8.3 Rancher 2.8.3 Images

(https://github.com/

rancher/ranch-

er/releases/down-

load/v2.8.3/ranch-

er-images.txt)

Rancher Prime Helm

Repo (https://chart-

s.rancher.com/serv-

er-charts/prime)

Longhorn 1.6.1 103.3.0 Longhorn 1.6.1

Images (https://

raw.githubuser-

content.com/long-

horn/longhorn/v1.6.1/

deploy/longhorn-im-

ages.txt)

Longhorn Helm Repo

(https://charts.long-

horn.io)

NM Configurator 0.2.3 N/A NMConfigurator

Upstream Release

(https://github.com/

475 Components Versions

https://github.com/k3s-io/k3s/releases/tag/v1.28.8%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.8%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.8%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.8%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.28.8%2Bk3s1
https://github.com/rancher/rke2/releases/tag/v1.28.8%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.8%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.8%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.8%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.28.8%2Brke2r1
https://github.com/rancher/rancher/releases/download/v2.8.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.8.3/rancher-images.txt
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.6.1/deploy/longhorn-images.txt
https://charts.longhorn.io
https://charts.longhorn.io
https://charts.longhorn.io
https://github.com/suse-edge/nm-configurator/releases/tag/v0.2.3
https://github.com/suse-edge/nm-configurator/releases/tag/v0.2.3
https://github.com/suse-edge/nm-configurator/releases/tag/v0.2.3

suse-edge/nm-config-

urator/releases/tag/

v0.2.3)

NeuVector 5.3.2 103.0.3 reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-controller:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-enforcer:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-manager:5.3.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-prometheus-ex-
porter:5.3.2
reg-
istry.suse.com/ranch-
er mirrored-neu-
vector-reg-
istry-adapter:0.1.1-s1
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-scanner:latest
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-updater:latest

476 Components Versions

https://github.com/suse-edge/nm-configurator/releases/tag/v0.2.3
https://github.com/suse-edge/nm-configurator/releases/tag/v0.2.3
https://github.com/suse-edge/nm-configurator/releases/tag/v0.2.3

Cluster API (CAPI) 1.6.2 N/A reg-
istry.suse.com/edge/
cluster-api-con-
troller:1.6.2
reg-
istry.suse.com/edge/
cluster-api-provider-
metal3:1.6.0
reg-
istry.suse.com/edge/
cluster-api-provider-
rke2-bootstrap:0.2.6
reg-
istry.suse.com/edge/
cluster-api-provider-
rke2-control-
plane:0.2.6

Metal3 0.6.5 0.6.5 reg-
istry.suse.com/edge/
metal3-chart:0.6.5
reg-
istry.suse.com/edge/
baremetal-opera-
tor:0.5.1
reg-
istry.suse.com/edge/
ip-address-manag-
er:1.6.0
reg-
istry.suse.com/edge/
ironic:23.0.1.2
reg-
istry.suse.com/edge/
ironic-ipa-down-
loader:1.3.1

477 Components Versions

reg-
istry.suse.com/edge/
kube-rbac-prox-
y:v0.14.2
reg-
istry.suse.com/edge/
mariadb:10.6.15.1

MetalLB 0.14.3 0.14.3 reg-
istry.suse.com/edge/
metallb-chart:0.14.3
reg-
istry.suse.com/edge/
metallb-con-
troller:v0.14.3
reg-
istry.suse.com/edge/
metallb-speak-
er:v0.14.3
reg-
istry.suse.com/edge/
frr:8.4
reg-
istry.suse.com/edge/
frr-k8s:v0.0.8

Elemental 1.4.3 1.4.3 reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-chart:1.4.3
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-crds-chart:1.4.3

478 Components Versions

reg-
istry.suse.com/ranch-
er/elemental-opera-
tor:1.4.3

Edge Image Builder 1.0.1 N/A reg-
istry.suse.com/edge/
edge-im-
age-builder:1.0.1

KubeVirt 1.1.1 0.2.4 reg-
istry.suse.com/edge/
kubevirt-chart:0.2.4
reg-
istry.suse.com/suse/
sles/15.5/virt-opera-
tor:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-
api:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-con-
troller:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-export-
proxy:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-export-
server:1.1.1

479 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/virt-han-
dler:1.1.1
reg-
istry.suse.com/suse/
sles/15.5/virt-
launcher:1.1.1

KubeVirt Dashboard
Extension

1.0.0 1.0.0 reg-
istry.suse.com/edge/
kubevirt-dash-
board-exten-
sion-chart:1.0.0

Containerized Data
Importer

1.58.0 0.2.3 reg-
istry.suse.com/edge/
cdi-chart:0.2.3
reg-
istry.suse.com/suse/
sles/15.5/cdi-opera-
tor:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-con-
troller:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-im-
porter:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-clon-
er:1.58.0

480 Components Versions

reg-
istry.suse.com/suse/
sles/15.5/cdi-apis-
erver:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-upload-
server:1.58.0
reg-
istry.suse.com/suse/
sles/15.5/cdi-upload-
proxy:1.58.0

Endpoint Copier Op-
erator

0.2.0 0.2.0 reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator:v0.2.0
reg-
istry.suse.com/edge/
endpoint-copier-oper-
ator-chart:0.2.0

Akri (Tech Preview) 0.12.20 0.12.20 reg-
istry.suse.com/edge/
akri-chart:0.12.20
reg-
istry.suse.com/edge/
akri-dashboard-ex-
tension-chart:1.0.0
reg-
istry.suse.com/edge/
akri-agent:v0.12.20
reg-
istry.suse.com/edge/
akri-con-
troller:v0.12.20

481 Components Versions

reg-
istry.suse.com/edge/
akri-debug-echo-
discovery-han-
dler:v0.12.20
reg-
istry.suse.com/edge/
akri-onvif-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-opcua-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-udev-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/
akri-webhook-config-
uration:v0.12.20

33.7 Components Verification
The components mentioned above may be verified using the Software Bill Of Materials (SBOM)
data - for example using cosign as outlined below:

Download the SUSE Edge Container public key from the SUSE Signing Keys source (https://

www.suse.com/support/security/keys/) :

> cat key.pem
-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA7N0S2d8LFKW4WU43bq7Z
IZT537xlKe17OQEpYjNrdtqnSwA0/jLtK83m7bTzfYRK4wty/so0g3BGo+x6yDFt
SVXTPBqnYvabU/j7UKaybJtX3jc4SjaezeBqdi96h6yEslvg4VTZDpy6TFP5ZHxZ
A0fX6m5kU2/RYhGXItoeUmL5hZ+APYgYG4/455NBaZT2yOywJ6+1zRgpR0cRAekI
OZXl51k0ebsGV6ui/NGECO6MB5e3arAhszf8eHDE02FeNJw5cimXkgDh/1Lg3KpO
dvUNm0EPWvnkNYeMCKR+687QG0bXqSVyCbY6+HG/HLkeBWkv6Hn41oeTSLrjYVGa

482 Components Verification

https://www.suse.com/support/security/keys/
https://www.suse.com/support/security/keys/

T3zxPVQM726sami6pgZ5vULyOleQuKBZrlFhFLbFyXqv1/DokUqEppm2Y3xZQv77
fMNogapp0qYz+nE3wSK4UHPd9z+2bq5WEkQSalYxadyuqOzxqZgSoCNoX5iIuWte
Zf1RmHjiEndg/2UgxKUysVnyCpiWoGbalM4dnWE24102050Gj6M4B5fe73hbaRlf
NBqP+97uznnRlSl8FizhXzdzJiVPcRav1tDdRUyDE2XkNRXmGfD3aCmILhB27SOA
Lppkouw849PWBt9kDMvzelUYLpINYpHRi2+/eyhHNlufeyJ7e7d6N9VcvjR/6qWG
64iSkcF2DTW61CN5TrCe0k0CAwEAAQ==
-----END PUBLIC KEY-----

Verify the container image hash, for example using crane :

> crane digest registry.suse.com/edge/baremetal-operator:0.5.1
sha256:13e8b2c59aeb503f8adaac095495007071559c9d6d8ef5a7cb1ce6fd1430c782

Verify with cosign :

> cosign verify-attestation --type spdxjson --key key.pem registry.suse.com/edge/
baremetal-
operator@sha256:13e8b2c59aeb503f8adaac095495007071559c9d6d8ef5a7cb1ce6fd1430c782 > /dev/
null
#
Verification for registry.suse.com/edge/baremetal-
operator@sha256:13e8b2c59aeb503f8adaac095495007071559c9d6d8ef5a7cb1ce6fd1430c782 --
The following checks were performed on each of these signatures:
 - The cosign claims were validated
 - The claims were present in the transparency log
 - The signatures were integrated into the transparency log when the certificate was
 valid
 - The signatures were verified against the specified public key

Extract SBOM data as described at the upstream documentation (https://www.suse.com/sup-

port/security/sbom/) :

> cosign verify-attestation --type spdxjson --key key.pem registry.suse.com/edge/
baremetal-
operator@sha256:13e8b2c59aeb503f8adaac095495007071559c9d6d8ef5a7cb1ce6fd1430c782 | jq
 '.payload | @base64d | fromjson | .predicate'

33.8 Upgrade Steps
Refer to the Day 2 Documentation for details around how to upgrade to a new z-stream release.

33.9 Known Limitations
Unless otherwise stated these apply to the 3.0.0 release and all subsequent z-stream versions.

483 Upgrade Steps

https://www.suse.com/support/security/sbom/
https://www.suse.com/support/security/sbom/

Akri is released for the rst time as a Technology Preview offering, and is not subject to
the standard scope of support.

Rancher UI Extensions used in SUSE Edge cannot currently be deployed via the Rancher
Marketplace and must be deployed manually. Rancher issue #29105 (https://github.com/

rancher/rancher/issues/29105)

If you’re using NVIDIA GPU’s, SELinux cannot be enabled at the containerd layer
due to a missing SELinux policy. Bugzilla #1222725 (https://bugzilla.suse.com/show_bug.c-

gi?id=1222725)

If deploying with Metal3 and Cluster API (CAPI), clusters aren’t automatically imported
into Rancher post-installation. It will be addressed in future releases.

Due to certain limitations, Elemental and Metal3 components cannot be deployed on the
same management cluster. It will be addressed in future releases.

33.10 Product Support Lifecycle

SUSE Edge is backed by award-winning support from SUSE, an established technology leader
with a proven history of delivering enterprise-quality support services. For more information,
see https://www.suse.com/lifecycle and the Support Policy page at https://www.suse.com/sup-

port/policy.html . If you have any questions about raising a support case, how SUSE classifies
severity levels, or the scope of support, please see the Technical Support Handbook at https://

www.suse.com/support/handbook/ .

At the time of publication, each minor version of SUSE Edge, e.g. "3.0" is supported for 12-
months of production support, with an initial 6-months of "full support", followed by 6-months
of "maintenance support". In the "full support" coverage period, SUSE may introduce new fea-
tures (that do not break existing functionality), introduce bug fixes, and deliver security patch-
es. During the "maintenance support" window, only critical security and bug fixes will be intro-
duced, with other fixes delivered at our discretion.

Unless explicitly stated, all components listed are considered Generally Available (GA), and are
covered by SUSE’s standard scope of support. Some components may be listed as "Technology
Preview", where SUSE is providing customers with access to early pre-GA features and func-
tionality for evaluation, but are not subject to the standard support policies and are not recom-
mended for production use-cases. SUSE very much welcomes feedback and suggestions on the

484 Product Support Lifecycle

https://github.com/rancher/rancher/issues/29105
https://github.com/rancher/rancher/issues/29105
https://bugzilla.suse.com/show_bug.cgi?id=1222725
https://bugzilla.suse.com/show_bug.cgi?id=1222725
https://www.suse.com/lifecycle
https://www.suse.com/support/policy.html
https://www.suse.com/support/policy.html
https://www.suse.com/support/handbook/
https://www.suse.com/support/handbook/

improvements that can be made to Technology Preview components, but SUSE reserves the right
to deprecate a Technology Preview feature before it becomes Generally Available if it doesn’t
meet the needs of our customers or doesn’t reach a state of maturity that we require.

Please note that SUSE must occasionally deprecate features or change API specifications. Rea-
sons for feature deprecation or API change could include a feature being updated or replaced
by a new implementation, a new feature set, upstream technology is no longer available, or the
upstream community has introduced incompatible changes. It is not intended that this will ever
happen within a given minor release (x.z), and so all z-stream releases will maintain API com-
patibility and feature functionality. SUSE will endeavor to provide deprecation warnings with
plenty of notice within the release notes, along with workarounds, suggestions, and mitigations
to minimize service disruption.

The SUSE Edge team also welcomes community feedback, where issues can be raised within the
respective code repository within https://www.github.com/suse-edge .

33.11 Obtaining source code

This SUSE product includes materials licensed to SUSE under the GNU General Public License
(GPL) and various other open source licenses. The GPL requires SUSE to provide the source
code that corresponds to the GPL-licensed material, and SUSE conforms to all other open-source
license requirements. As such, SUSE makes all source code available, and can generally be found
in the SUSE Edge GitHub repository (https://www.github.com/suse-edge), the SUSE Rancher
GitHub repository (https://www.github.com/rancher) for dependent components, and specifi-
cally for SLE Micro, the source code is available for download at https://www.suse.com/down-

load/sle-micro (https://www.suse.com/download/sle-micro/) on "Medium 2".

33.12 Legal notices

SUSE makes no representations or warranties with regard to the contents or use of this docu-
mentation, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Further, SUSE reserves the right to revise this publication
and to make changes to its content, at any time, without the obligation to notify any person or
entity of such revisions or changes.

485 Obtaining source code

https://www.github.com/suse-edge
https://www.github.com/suse-edge
https://www.github.com/rancher
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

Further, SUSE makes no representations or warranties with regard to any software, and specifi-
cally disclaims any express or implied warranties of merchantability or fitness for any particular
purpose. Further, SUSE reserves the right to make changes to any and all parts of SUSE software,
at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S.
export controls and the trade laws of other countries. You agree to comply with all export control
regulations and to obtain any required licenses or classifications to export, re-export, or import
deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion
lists or to any embargoed or terrorist countries as specified in U.S. export laws. You agree to not
use deliverables for prohibited nuclear, missile, or chemical/biological weaponry end uses. Refer
to https://www.suse.com/company/legal/ for more information on exporting SUSE software.
SUSE assumes no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2024 SUSE LLC.

This release notes document is licensed under a Creative Commons Attribution-NoDerivatives
4.0 International License (CC-BY-ND-4.0). You should have received a copy of the license along
with this document. If not, see https://creativecommons.org/licenses/by-nd/4.0/ .

SUSE has intellectual property rights relating to technology embodied in the product that is de-
scribed in this document. In particular, and without limitation, these intellectual property rights
may include one or more of the U.S. patents listed at https://www.suse.com/company/legal/ and
one or more additional patents or pending patent applications in the U.S. and other countries.

For SUSE trademarks, see the SUSE Trademark and Service Mark list (https://www.suse.com/

company/legal/). All third-party trademarks are the property of their respective owners. For
SUSE brand information and usage requirements, please see the guidelines published at https://

brand.suse.com/ .

486 Legal notices

https://www.suse.com/company/legal/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.suse.com/company/legal/
https://www.suse.com/company/legal/
https://www.suse.com/company/legal/
https://brand.suse.com/
https://brand.suse.com/

	SUSE Edge Documentation
	Contents
	SUSE Edge Documentation
	1. What is SUSE Edge?
	2. Design Philosophy
	3. Which Quick Start should you use?
	3.1. Directed network provisioning
	3.2. "Phone home" network provisioning
	3.3. Image-based provisioning

	4. Components used in SUSE Edge

	Part I. Quick Starts
	Chapter 1. BMC automated deployments with Metal3
	1.1. Why use this method
	1.2. High-level architecture
	1.3. Prerequisites
	1.3.1. Setup Management Cluster
	1.3.2. Installing Metal3 dependencies
	1.3.3. Installing cluster API dependencies
	1.3.4. Prepare downstream cluster image
	1.3.4.1. Image configuration
	1.3.4.1.1. Downstream cluster image definition file
	1.3.4.1.2. Growfs script

	1.3.4.2. Image creation

	1.3.5. Adding BareMetalHost inventory
	1.3.5.1. Configuring Static IPs
	1.3.5.1.1. Additional script for static network configuration
	1.3.5.1.2. Additional secret with host network configuration

	1.3.5.2. BareMetalHost preparation

	1.3.6. Creating downstream clusters
	1.3.7. Control plane deployment
	1.3.8. Worker/Compute deployment
	1.3.9. Cluster deprovisioning

	1.4. Known issues
	1.5. Planned changes
	1.6. Additional resources
	1.6.1. Single-node configuration
	1.6.2. Disabling TLS for virtualmedia ISO attachment

	Chapter 2. Remote host onboarding with Elemental
	2.1. High-level architecture
	2.2. Resources needed
	2.3. How to use Elemental
	2.3.1. Build bootstrap cluster
	2.3.1.1. Create Kubernetes cluster
	2.3.1.2. Set up DNS

	2.3.2. Install Rancher
	2.3.3. Install Elemental
	2.3.3.1. (Optionally) Install the Elemental UI extension
	2.3.3.2. Configure Elemental

	2.3.4. Build the installation media
	2.3.5. Boot the downstream nodes
	2.3.6. Create downstream clusters

	2.4. Node Reset
	2.5. Next steps

	Chapter 3. Standalone clusters with Edge Image Builder
	3.1. Prerequisites
	3.1.1. Getting the EIB Image

	3.2. Creating the image configuration directory
	3.3. Creating the image definition file
	3.3.1. Configuring OS Users
	3.3.2. Configuring RPM packages
	3.3.3. Configuring Kubernetes cluster and user workloads
	3.3.4. Configuring the network

	3.4. Building the image
	3.5. Debugging the image build process
	3.6. Testing your newly built image

	Part II. Components Used
	Chapter 4. Rancher
	4.1. Key Features of Rancher
	4.2. Rancher’s use in SUSE Edge
	4.2.1. Centralized Kubernetes management
	4.2.2. Simplified cluster deployment
	4.2.3. Application deployment and management
	4.2.4. Security and policy enforcement

	4.3. Best practices
	4.3.1. GitOps
	4.3.2. Observability

	4.4. Installing with Edge Image Builder
	4.5. Additional Resources

	Chapter 5. Rancher Dashboard Extensions
	5.1. Prerequisites
	5.2. Installation
	5.2.1. Installing with Helm
	5.2.2. Installing with Fleet

	5.3. KubeVirt Dashboard Extension
	5.4. Akri Dashboard Extension

	Chapter 6. Fleet
	6.1. Installing Fleet with Helm
	6.2. Using Fleet with Rancher
	6.3. Accessing Fleet in the Rancher UI
	6.3.1. Dashboard
	6.3.2. Git repos
	6.3.3. Clusters
	6.3.4. Cluster groups
	6.3.5. Advanced

	6.4. Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard
	6.5. Debugging and troubleshooting
	6.6. Fleet examples

	Chapter 7. SLE Micro
	7.1. How does SUSE Edge use SLE Micro?
	7.2. Best practices
	7.2.1. Installation media
	7.2.2. Local administration

	7.3. Known issues

	Chapter 8. Metal3
	8.1. How does SUSE Edge use Metal3?
	8.2. Known issues

	Chapter 9. Edge Image Builder
	9.1. How does SUSE Edge use Edge Image Builder?
	9.2. Getting started
	9.3. Known issues

	Chapter 10. Edge Networking
	10.1. Overview of NetworkManager
	10.2. Overview of nmstate
	10.3. Enter: NetworkManager Configurator (nmc)
	10.4. How does SUSE Edge use NetworkManager Configurator?
	10.5. Configuring with Edge Image Builder
	10.5.1. Prerequisites
	10.5.2. Getting the Edge Image Builder container image
	10.5.3. Creating the image configuration directory
	10.5.4. Creating the image definition file
	10.5.5. Defining the network configurations
	10.5.6. Building the OS image
	10.5.7. Provisioning the edge nodes
	10.5.7.1. Provisioning the first node
	10.5.7.2. Provisioning the second node
	10.5.7.3. Provisioning the third node
	10.5.7.4. Provisioning the fourth node

	10.5.8. Unified node configurations
	10.5.9. Custom network configurations

	Chapter 11. Elemental
	11.1. How does SUSE Edge use Elemental?
	11.2. Best practices
	11.2.1. Installation media
	11.2.2. Labels

	11.3. Known issues

	Chapter 12. Akri
	12.1. How does SUSE Edge use Akri?
	12.1.1. Installing Akri
	12.1.2. Configuring Akri
	12.1.3. Writing and deploying additional Discovery Handlers
	12.1.4. Akri Rancher Dashboard Extension

	Chapter 13. K3s
	13.1. How does SUSE Edge use K3s
	13.2. Best practices
	13.2.1. Installation
	13.2.2. Fleet for GitOps workflow
	13.2.3. Storage management
	13.2.4. Load balancing and HA

	Chapter 14. RKE2
	14.1. RKE2 vs K3s
	14.2. How does SUSE Edge use RKE2?
	14.3. Best practices
	14.3.1. Installation
	14.3.2. High availability
	14.3.3. Networking
	14.3.4. Storage

	Chapter 15. Longhorn
	15.1. Prerequisites
	15.2. Manual installation of Longhorn
	15.2.1. Installing Open-iSCSI
	15.2.2. Installing Longhorn

	15.3. Creating Longhorn volumes
	15.4. Accessing the UI
	15.5. Installing with Edge Image Builder

	Chapter 16. NeuVector
	16.1. How does SUSE Edge use NeuVector?
	16.2. Important notes
	16.3. Installing with Edge Image Builder

	Chapter 17. MetalLB
	17.1. How does SUSE Edge use MetalLB?
	17.2. Best practices
	17.3. Known issues

	Chapter 18. Edge Virtualization
	18.1. KubeVirt overview
	18.2. Prerequisites
	18.3. Manual installation of Edge Virtualization
	18.4. Deploying virtual machines
	18.5. Using virtctl
	18.6. Simple ingress networking
	18.7. Using the Rancher UI extension
	18.7.1. Installation
	18.7.2. Using KubeVirt Rancher Dashboard Extension
	18.7.2.1. Creating a virtual machine
	18.7.2.2. Starting and stopping virtual machines
	18.7.2.3. Accessing virtual machine console

	18.8. Installing with Edge Image Builder

	Part III. How-To Guides
	Chapter 19. MetalLB on K3s (using L2)
	19.1. Why use this method
	19.2. MetalLB on K3s (using L2)
	19.3. Prerequisites
	19.3.1. Deployment
	19.3.2. Configuration
	19.3.3. Traefik and MetalLB
	19.3.4. Usage

	19.4. Ingress with MetalLB

	Chapter 20. MetalLB in front of the Kubernetes API server
	20.1. Prerequisites
	20.2. Installing RKE2/K3s
	20.3. Configuring an existing cluster
	20.4. Installing MetalLB
	20.5. Installing the Endpoint Copier Operator
	20.6. Adding control-plane nodes

	Chapter 21. Air-gapped deployments with Edge Image Builder
	21.1. Intro
	21.2. Prerequisites
	21.3. Libvirt Network Configuration
	21.4. Base Directory Configuration
	21.5. Base Definition File
	21.6. Rancher Installation
	21.7. NeuVector Installation
	21.8. Longhorn Installation
	21.9. KubeVirt and CDI Installation
	21.10. Troubleshooting

	Part IV. Third-Party Integration
	Chapter 22. NATS
	22.1. Architecture
	22.1.1. NATS client applications
	22.1.2. NATS service infrastructure
	22.1.3. Simple messaging design
	22.1.4. NATS JetStream

	22.2. Installation
	22.2.1. Installing NATS on top of K3s
	22.2.1.1. Testing the setup
	22.2.1.2. Cleaning up

	22.2.2. NATS as a back-end for K3s
	22.2.2.1. Building K3s
	22.2.2.2. Installing NATS CLI
	22.2.2.3. Running NATS as K3s back-end
	22.2.2.4. Troubleshooting

	Chapter 23. NVIDIA GPUs on SLE Micro
	23.1. Intro
	23.2. Prerequisites
	23.3. Manual installation
	23.4. Further validation of the manual installation
	23.5. Implementation with Kubernetes
	23.6. Bringing it together via Edge Image Builder
	23.7. Resolving issues
	23.7.1. nvidia-smi does not find the GPU

	Part V. Day 2 Operations
	Chapter 24. Management Cluster
	24.1. RKE2 upgrade
	24.2. OS upgrade
	24.3. Helm upgrade
	24.3.1. EIB deployed helm chart
	24.3.1.1. Examples
	24.3.1.1.1. Rancher upgrade
	24.3.1.1.2. Metal3 upgrade

	24.3.2. Non-EIB deployed helm chart
	24.3.2.1. Examples
	24.3.2.1.1. Rancher
	24.3.2.1.2. Metal3

	24.4. Cluster API upgrade

	Chapter 25. Downstream clusters
	25.1. Introduction
	25.1.1. Components
	25.1.1.1. Rancher
	25.1.1.2. Fleet
	25.1.1.3. System-upgrade-controller (SUC)

	25.1.2. Determine your use-case
	25.1.2.1. GitRepo
	25.1.2.2. Bundle

	25.1.3. Day 2 workflow

	25.2. System upgrade controller deployment guide
	25.2.1. Deployment
	25.2.1.1. SUC deployment using a GitRepo resource
	25.2.1.1.1. GitRepo deployment - Rancher UI
	25.2.1.1.2. GitRepo creation - manual

	25.2.1.2. SUC deployment using a Bundle resource
	25.2.1.2.1. Bundle creation - Rancher UI
	25.2.1.2.2. Bundle creation - manual

	25.2.1.3. Deploying system-upgrade-controller when using a third-party GitOps workflow

	25.2.2. Monitor SUC resources using Rancher
	25.2.2.1. Monitor SUC deployment
	25.2.2.2. Monitor SUC Plans

	25.3. OS package update
	25.3.1. Components
	25.3.1.1. edge-update.service

	25.3.2. Requirements
	25.3.3. Update procedure
	25.3.3.1. Overview

	25.3.4. OS package update - SUC Plan deployment
	25.3.4.1. SUC Plan deployment - GitRepo resource
	25.3.4.1.1. GitRepo creation - Rancher UI
	25.3.4.1.2. GitRepo creation - manual

	25.3.4.2. SUC Plan deployment - Bundle resource
	25.3.4.2.1. Bundle creation - Rancher UI
	25.3.4.2.2. Bundle creation - manual

	25.3.4.3. SUC Plan deployment - third-party GitOps workflow

	25.4. Kubernetes version upgrade
	25.4.1. Components
	25.4.1.1. rke2-upgrade
	25.4.1.2. k3s-upgrade

	25.4.2. Requirements
	25.4.3. Upgrade procedure
	25.4.3.1. Overview

	25.4.4. Kubernetes version upgrade - SUC Plan deployment
	25.4.4.1. SUC Plan deployment - GitRepo resource
	25.4.4.1.1. GitRepo creation - Rancher UI
	25.4.4.1.2. GitRepo creation - manual

	25.4.4.2. SUC Plan deployment - Bundle resource
	25.4.4.2.1. Bundle creation - Rancher UI
	25.4.4.2.2. Bundle creation - manual

	25.4.4.3. SUC Plan deployment - third-party GitOps workflow

	25.5. Helm chart upgrade
	25.5.1. Components
	25.5.2. Preparation for air-gapped environments
	25.5.2.1. Ensure that you have access to your Helm chart’s upgrade fleet.yaml file
	25.5.2.2. Find the required assets for your Edge release version
	25.5.2.3. Create the SUSE Edge release images archive
	25.5.2.4. Create a SUSE Edge Helm chart OCI images archive
	25.5.2.5. Load SUSE Edge release images to your air-gapped machine
	25.5.2.6. Load SUSE Edge Helm chart OCI images to your air-gapped machine
	25.5.2.7. Create registry mirrors pointing to your private registry for your Kubernetes distribution

	25.5.3. Upgrade procedure
	25.5.3.1. I have a new cluster and would like to deploy and manage a SUSE Helm chart
	25.5.3.1.1. Prepare your Fleet resources
	25.5.3.1.2. Create the GitRepo
	25.5.3.1.3. Managing the deployed Helm chart

	25.5.3.2. I would like to upgrade a Fleet managed Helm chart
	25.5.3.3. I would like to upgrade an EIB created Helm chart
	25.5.3.3.1. Overview
	25.5.3.3.2. Upgrade Steps
	25.5.3.3.3. Example
	25.5.3.3.4. Helm chart upgrade using a third-party GitOps tool

	Part VI. Product Documentation
	Chapter 26. SUSE Adaptive Telco Infrastructure Platform (ATIP)
	Chapter 27. Concept & Architecture
	27.1. ATIP Architecture
	27.2. Components
	27.3. Example deployment flows
	27.3.1. Example 1: Deploying a new management cluster with all components installed
	27.3.2. Example 2: Deploying a single-node downstream cluster with Telco profiles to enable it to run Telco workloads
	27.3.3. Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

	Chapter 28. Requirements & Assumptions
	28.1. Hardware
	28.2. Network
	28.3. Services (DHCP, DNS, etc.)
	28.4. Disabling rebootmgr

	Chapter 29. Setting up the management cluster
	29.1. Introduction
	29.2. Steps to set up the management cluster
	29.3. Image preparation for connected environments
	29.3.1. Directory structure
	29.3.2. Management cluster definition file
	29.3.3. Custom folder
	29.3.4. Kubernetes folder
	29.3.5. Networking folder

	29.4. Image preparation for air-gap environments
	29.4.1. Directory structure for air-gap environments
	29.4.2. Modifications in the definition file
	29.4.3. Modifications in the custom folder

	29.5. Image creation
	29.6. Provision the management cluster

	Chapter 30. Telco features configuration
	30.1. Kernel image for real time
	30.2. CPU tuned configuration
	30.3. CNI Configuration
	30.3.1. Cilium

	30.4. SR-IOV
	30.5. DPDK
	30.6. vRAN acceleration (Intel ACC100/ACC200)
	30.7. Huge pages
	30.8. CPU pinning configuration
	30.9. NUMA-aware scheduling
	30.9.1. Identifying NUMA nodes

	30.10. Metal LB
	30.11. Private registry configuration

	Chapter 31. Fully automated directed network provisioning
	31.1. Introduction
	31.2. Prepare downstream cluster image for connected scenarios
	31.2.1. Prerequisites for connected scenarios
	31.2.2. Image configuration for connected scenarios
	31.2.2.1. Downstream cluster image definition file
	31.2.2.2. Growfs script
	31.2.2.3. Additional configuration for Telco workloads
	31.2.2.4. Additional script for Advanced Network Configuration

	31.2.3. Image creation

	31.3. Prepare downstream cluster image for air-gap scenarios
	31.3.1. Prerequisites for air-gap scenarios
	31.3.2. Image configuration for air-gap scenarios
	31.3.2.1. Downstream cluster image definition file
	31.3.2.2. Growfs script
	31.3.2.3. Air-gap script
	31.3.2.4. Custom files for air-gap scenarios
	31.3.2.5. Preload your private registry with images required for air-gap scenarios and SR-IOV (optional)

	31.3.3. Image creation for air-gap scenarios

	31.4. Downstream cluster provisioning with Directed network provisioning (single-node)
	31.5. Downstream cluster provisioning with Directed network provisioning (multi-node)
	31.6. Advanced Network Configuration
	31.7. Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)
	31.8. Private registry
	31.9. Downstream cluster provisioning in air-gapped scenarios
	31.9.1. Requirements for air-gapped scenarios
	31.9.2. Enroll the bare-metal hosts in air-gap scenarios
	31.9.3. Provision the downstream cluster in air-gap scenarios

	Chapter 32. Lifecycle actions
	32.1. Management cluster upgrades
	32.2. Downstream cluster upgrades

	Part VII. Appendix
	Chapter 33. Release Notes
	33.1. Abstract
	33.2. About
	33.3. Release 3.0.3
	33.3.1. Bug & Security Fixes
	33.3.2. Components Versions

	33.4. Release 3.0.2
	33.4.1. New Features
	33.4.2. Bug & Security Fixes
	33.4.3. Components Versions

	33.5. Release 3.0.1
	33.5.1. New Features
	33.5.2. Bug & Security Fixes
	33.5.3. Components Versions

	33.6. Release 3.0.0
	33.6.1. New Features
	33.6.2. Bug & Security Fixes
	33.6.3. Components Versions

	33.7. Components Verification
	33.8. Upgrade Steps
	33.9. Known Limitations
	33.10. Product Support Lifecycle
	33.11. Obtaining source code
	33.12. Legal notices

