
SUSE Edge Documentation

SUSE Edge Documentation

Publication Date: 2025-03-06

https://documentation.suse.com

https://documentation.suse.com

Contents

SUSE Edge Documentation xvi
1 What is SUSE Edge? xvi

2 Design Philosophy xvi

3 High Level Architecture xvii

Components used in SUSE Edge xviii • Connectivity xxii

4 Common Edge Deployment Patterns xxiv

Directed network provisioning xxiv • "Phone Home" network

provisioning xxiv • Image-based provisioning xxv

5 SUSE Edge Stack Validation xxvi

6 Full Component List xxvi

I QUICK STARTS 1

1 BMC automated deployments with Metal3 2
1.1 Why use this method 2

1.2 High-level architecture 3

1.3 Prerequisites 4

Setup Management Cluster 4 • Installing Metal3

dependencies 5 • Installing cluster API dependencies 7 • Prepare

downstream cluster image 8 • Adding BareMetalHost

inventory 10 • Creating downstream clusters 14 • Control plane

deployment 15 • Worker/Compute deployment 18 • Cluster

deprovisioning 21

1.4 Known issues 22

1.5 Planned changes 22

iii SUSE Edge Documentation

1.6 Additional resources 22

Single-node configuration 22 • Disabling TLS for virtualmedia ISO

attachment 23

2 Remote host onboarding with Elemental 24

2.1 High-level architecture 25

2.2 Resources needed 26

2.3 Build bootstrap cluster 27

Create Kubernetes cluster 27 • Set up DNS 27

2.4 Install Rancher 27

2.5 Install Elemental 28

(Optionally) Install the Elemental UI extension 30

2.6 Configure Elemental 35

2.7 Build the image 42

2.8 Boot the downstream nodes 43

2.9 Create downstream clusters 44

2.10 Node Reset (Optional) 46

2.11 Next steps 47

3 Standalone clusters with Edge Image Builder 48

3.1 Prerequisites 48

Getting the EIB Image 49

3.2 Creating the image configuration directory 49

3.3 Creating the image definition file 49

Configuring OS Users 50 • Configuring RPM packages 51 • Configuring

Kubernetes cluster and user workloads 53 • Configuring the network 55

3.4 Building the image 57

3.5 Debugging the image build process 60

iv SUSE Edge Documentation

3.6 Testing your newly built image 61

II COMPONENTS USED 62

4 Rancher 63
4.1 Key Features of Rancher 63

4.2 Rancher’s use in SUSE Edge 63

Centralized Kubernetes management 63 • Simplified

cluster deployment 64 • Application deployment and

management 64 • Security and policy enforcement 64

4.3 Best practices 64

GitOps 64 • Observability 64

4.4 Installing with Edge Image Builder 64

4.5 Additional Resources 65

5 Rancher Dashboard Extensions 66

5.1 Installation 66

Installing with Rancher Dashboard UI 66 • Installing with

Helm 69 • Installing with Fleet 70

5.2 KubeVirt Dashboard Extension 73

5.3 Akri Dashboard Extension 73

6 Fleet 74

6.1 Installing Fleet with Helm 74

6.2 Using Fleet with Rancher 74

6.3 Accessing Fleet in the Rancher UI 74

Dashboard 75 • Git repos 76 • Clusters 76 • Cluster

groups 76 • Advanced 76

6.4 Example of installing KubeVirt with Rancher and Fleet using Rancher
dashboard 76

6.5 Debugging and troubleshooting 81

v SUSE Edge Documentation

6.6 Fleet examples 84

7 SLE Micro 85

7.1 How does SUSE Edge use SLE Micro? 85

7.2 Best practices 85

Installation media 85 • Local administration 85

7.3 Known issues 86

8 Metal3 87

8.1 How does SUSE Edge use Metal3? 87

8.2 Known issues 87

9 Edge Image Builder 88

9.1 How does SUSE Edge use Edge Image Builder? 88

9.2 Getting started 89

9.3 Known issues 89

10 Edge Networking 90

10.1 Overview of NetworkManager 90

10.2 Overview of nmstate 90

10.3 Enter: NetworkManager Configurator (nmc) 90

10.4 How does SUSE Edge use NetworkManager Configurator? 91

10.5 Configuring with Edge Image Builder 91

Prerequisites 91 • Getting the Edge Image Builder container

image 91 • Creating the image configuration directory 92 • Creating

the image definition file 92 • Defining the network

configurations 93 • Building the OS image 98 • Provisioning the

edge nodes 99 • Unified node configurations 106 • Custom network

configurations 109

vi SUSE Edge Documentation

11 Elemental 113

11.1 How does SUSE Edge use Elemental? 113

11.2 Best practices 114

Installation media 114 • Labels 114

11.3 Known issues 114

12 Akri 115

12.1 How does SUSE Edge use Akri? 115

Installing Akri 115 • Configuring Akri 115 • Writing and deploying

additional Discovery Handlers 117 • Akri Rancher Dashboard Extension 117

13 K3s 124

13.1 How does SUSE Edge use K3s 124

13.2 Best practices 124

Installation 124 • Fleet for GitOps workflow 124 • Storage

management 124 • Load balancing and HA 125

14 RKE2 126

14.1 RKE2 vs K3s 126

14.2 How does SUSE Edge use RKE2? 126

14.3 Best practices 127

Installation 127 • High

availability 127 • Networking 128 • Storage 128

15 Longhorn 129

15.1 Prerequisites 129

15.2 Manual installation of Longhorn 129

Installing Open-iSCSI 129 • Installing Longhorn 130

15.3 Creating Longhorn volumes 131

15.4 Accessing the UI 134

15.5 Installing with Edge Image Builder 134

vii SUSE Edge Documentation

16 NeuVector 138

16.1 How does SUSE Edge use NeuVector? 139

16.2 Important notes 139

16.3 Installing with Edge Image Builder 139

17 MetalLB 140

17.1 How does SUSE Edge use MetalLB? 140

17.2 Best practices 141

17.3 Known issues 141

18 Edge Virtualization 142

18.1 KubeVirt overview 142

18.2 Prerequisites 143

18.3 Manual installation of Edge Virtualization 143

18.4 Deploying virtual machines 147

18.5 Using virtctl 150

18.6 Simple ingress networking 152

18.7 Using the Rancher UI extension 154

Installation 154 • Using KubeVirt Rancher Dashboard Extension 154

18.8 Installing with Edge Image Builder 158

19 System Upgrade Controller 159

19.1 How does SUSE Edge use System Upgrade Controller? 159

19.2 Installing the System Upgrade Controller 159

System Upgrade Controller Fleet installation 160 • System Upgrade Controller

Helm installation 165

19.3 Monitoring System Upgrade Controller Plans 166

Monitoring System Upgrade Controller Plans - Rancher UI 166 • Monitoring

System Upgrade Controller Plans - Manual 167

viii SUSE Edge Documentation

20 Upgrade Controller 168

20.1 How does SUSE Edge use Upgrade Controller? 168

20.2 Installing the Upgrade Controller 168

Prerequisites 168 • Steps 169

20.3 How does the Upgrade Controller work? 169

Operating System upgrade 170 • Kubernetes upgrade 171 • Additional

components upgrades 172

20.4 Kubernetes API extensions 172

UpgradePlan 172 • ReleaseManifest 173

20.5 Tracking the upgrade process 174

General 174 • Helm Controller 179

20.6 Known Limitations 180

III HOW-TO GUIDES 181

21 MetalLB on K3s (using L2) 182
21.1 Why use this method 182

21.2 MetalLB on K3s (using L2) 182

21.3 Prerequisites 183

Deployment 183 • Configuration 184 • Traefik and

MetalLB 185 • Usage 185

21.4 Ingress with MetalLB 188

22 MetalLB in front of the Kubernetes API server 191

22.1 Prerequisites 191

22.2 Installing RKE2/K3s 191

22.3 Configuring an existing cluster 193

22.4 Installing MetalLB 193

22.5 Installing the Endpoint Copier Operator 194

ix SUSE Edge Documentation

22.6 Adding control-plane nodes 196

23 Air-gapped deployments with Edge Image
Builder 198

23.1 Intro 198

23.2 Prerequisites 198

23.3 Libvirt Network Configuration 199

23.4 Base Directory Configuration 199

23.5 Base Definition File 201

23.6 Rancher Installation 202

23.7 NeuVector Installation 209

23.8 Longhorn Installation 211

23.9 KubeVirt and CDI Installation 216

23.10 Troubleshooting 219

IV THIRD-PARTY INTEGRATION 220

24 NATS 221
24.1 Architecture 221

NATS client applications 221 • NATS service infrastructure 221 • Simple

messaging design 222 • NATS JetStream 222

24.2 Installation 222

Installing NATS on top of K3s 222 • NATS as a back-end for K3s 224

25 NVIDIA GPUs on SLE Micro 226

25.1 Intro 226

25.2 Prerequisites 227

25.3 Manual installation 227

25.4 Further validation of the manual installation 232

x SUSE Edge Documentation

25.5 Implementation with Kubernetes 235

25.6 Bringing it together via Edge Image Builder 238

25.7 Resolving issues 241

nvidia-smi does not find the GPU 241

V DAY 2 OPERATIONS 242

26 Edge 3.1 migration 243
26.1 Management cluster 243

Operating System (OS) 243 • RKE2 247 • Edge Helm charts 248

26.2 Downstream clusters 262

Prerequisites 262 • Migration steps 268

27 Management Cluster 269

27.1 Prerequisites 269

27.2 Upgrade 269

28 Downstream clusters 271

28.1 Introduction 271

Components 271 • Determine your use-case 273 • Day 2 workflow 274

28.2 OS upgrade 274

Components 274 • Requirements 275 • Update procedure 277 • OS

upgrade - SUC Plan deployment 284

28.3 Kubernetes version upgrade 289

Components 289 • Requirements 290 • Upgrade

procedure 291 • Kubernetes version upgrade - SUC Plan deployment 297

28.4 Helm chart upgrade 303

Components 304 • Preparation for air-gapped

environments 304 • Upgrade procedure 308

xi SUSE Edge Documentation

VI PRODUCT DOCUMENTATION 337

29 SUSE Adaptive Telco Infrastructure Platform
(ATIP) 338

30 Concept & Architecture 339

30.1 ATIP Architecture 339

30.2 Components 340

30.3 Example deployment flows 341

Example 1: Deploying a new management cluster with all components

installed 341 • Example 2: Deploying a single-node downstream cluster with

Telco profiles to enable it to run Telco workloads 342 • Example 3: Deploying

a high availability downstream cluster using MetalLB as a Load Balancer 343

31 Requirements & Assumptions 346

31.1 Hardware 346

31.2 Network 347

31.3 Services (DHCP, DNS, etc.) 348

31.4 Disabling systemd services 349

32 Setting up the management cluster 351

32.1 Introduction 351

32.2 Steps to set up the management cluster 352

32.3 Image preparation for connected environments 354

Directory structure 355 • Management cluster definition

file 356 • Custom folder 361 • Kubernetes folder 368 • Networking

folder 373

32.4 Image preparation for air-gap environments 375

Modifications in the definition file 375 • Modifications in the custom

folder 380 • Modifications in the helm values folder 380

32.5 Image creation 380

xii SUSE Edge Documentation

32.6 Provision the management cluster 381

33 Telco features configuration 382

33.1 Kernel image for real time 383

33.2 Kernel arguments for low latency and high performance 384

33.3 CPU tuned configuration 385

33.4 CNI Configuration 388

Cilium 388

33.5 SR-IOV 389

33.6 DPDK 399

33.7 vRAN acceleration (Intel ACC100/ACC200) 401

33.8 Huge pages 403

33.9 CPU pinning configuration 405

33.10 NUMA-aware scheduling 407

Identifying NUMA nodes 407

33.11 Metal LB 408

33.12 Private registry configuration 410

34 Fully automated directed network provisioning 412

34.1 Introduction 412

34.2 Prepare downstream cluster image for connected scenarios 413

Prerequisites for connected scenarios 413 • Image configuration for

connected scenarios 413 • Image creation 419

34.3 Prepare downstream cluster image for air-gap scenarios 419

Prerequisites for air-gap scenarios 420 • Image configuration for air-gap

scenarios 420 • Image creation for air-gap scenarios 426

34.4 Downstream cluster provisioning with Directed network provisioning
(single-node) 426

xiii SUSE Edge Documentation

34.5 Downstream cluster provisioning with Directed network provisioning
(multi-node) 434

34.6 Advanced Network Configuration 444

34.7 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA,
etc.) 447

34.8 Private registry 455

34.9 Downstream cluster provisioning in air-gapped scenarios 458

Requirements for air-gapped scenarios 458 • Enroll the bare-metal hosts

in air-gap scenarios 458 • Provision the downstream cluster in air-gap

scenarios 459

35 Lifecycle actions 466

35.1 Management cluster upgrades 466

35.2 Downstream cluster upgrades 466

VII APPENDIX 470

36 Release Notes 471
36.1 Abstract 471

36.2 About 472

36.3 Release 3.1.1 472

New Features 473 • Bug & Security Fixes 473 • Components

Versions 473

36.4 Release 3.1.0 484

New Features 484 • Bug & Security Fixes 486 • Components

Versions 486

36.5 Components Verification 497

36.6 Upgrade Steps 498

SSH root login on SUSE Linux Micro 6.0 499

36.7 Known Limitations 499

xiv SUSE Edge Documentation

36.8 Product Support Lifecycle 499

36.9 Obtaining source code 500

36.10 Legal notices 501

xv SUSE Edge Documentation

SUSE Edge Documentation

Welcome to the SUSE Edge documentation. You will nd the high level architectural overview,
quick start guides, validated designs, guidance on using components, third-party integrations,
and best practices for managing your edge computing infrastructure and workloads.

1 What is SUSE Edge?

SUSE Edge is a purpose-built, tightly integrated, and comprehensively validated end-to-end so-
lution for addressing the unique challenges of the deployment of infrastructure and cloud-native
applications at the edge. Its driving focus is to provide an opinionated, yet highly flexible, highly
scalable, and secure platform that spans initial deployment image building, node provisioning
and onboarding, application deployment, observability, and complete lifecycle operations. The
platform is built on best-of-breed open source software from the ground up, consistent with
both our 30-year+ history in delivering secure, stable, and certified SUSE Linux platforms and
our experience in providing highly scalable and feature-rich Kubernetes management with our
Rancher portfolio. SUSE Edge builds on-top of these capabilities to deliver functionality that can
address a wide number of market segments, including retail, medical, transportation, logistics,
telecommunications, smart manufacturing, and Industrial IoT.

2 Design Philosophy

The solution is designed with the notion that there is no "one-size-ts-all" edge platform due to
customers’ widely varying requirements and expectations. Edge deployments push us to solve,
and continually evolve, some of the most challenging problems, including massive scalability,
restricted network availability, physical space constraints, new security threats and attack vec-
tors, variations in hardware architecture and system resources, the requirement to deploy and
interface with legacy infrastructure and applications, and customer solutions that have extend-
ed lifespans. Since many of these challenges are different from traditional ways of thinking,
e.g. deployment of infrastructure and applications within data centers or in the public cloud,
we have to look into the design in much more granular detail, and rethinking many common
assumptions.

xvi What is SUSE Edge?

For example, we nd value in minimalism, modularity, and ease of operations. Minimalism is
important for edge environments since the more complex a system is, the more likely it is to
break. When looking at hundreds of locations, up to hundreds of thousands, complex systems will
break in complex ways. Modularity in our solution allows for more user choice while removing
unneeded complexity in the deployed platform. We also need to balance these with the ease of
operations. Humans may make mistakes when repeating a process thousands of times, so the
platform should make sure any potential mistakes are recoverable, eliminating the need for on-
site technician visits, but also strive for consistency and standardization.

3 High Level Architecture

The high level system architecture of SUSE Edge is broken into two core categories, namely
"management" and "downstream" clusters. The management cluster is responsible for remote
management of one or more downstream clusters, although it’s recognized that in certain cir-
cumstances, downstream clusters need to operate without remote management, e.g. in situa-
tions where an edge site has no external connectivity and needs to operate independently. In
SUSE Edge, the technical components that are utilized for the operation of both the management
and downstream clusters are largely common, although likely differentiate in both the system
specifications and the applications that reside on-top, i.e. the management cluster would run
applications that enable systems management and lifecycle operations, whereas the downstream
clusters fulfil the requirements for serving user applications.

xvii High Level Architecture

3.1 Components used in SUSE Edge
SUSE Edge is comprised of both existing SUSE and Rancher components along with additional
features and components built by the Edge team to enable us to address the constraints and
intricacies required in edge computing. The components used within both the management and
downstream clusters are explained below, with a simplified high-level architecture diagram,
noting that this isn’t an exhaustive list:

3.1.1 Management Cluster

xviii Components used in SUSE Edge

Management: This is the centralized part of SUSE Edge that is used to manage the provi-
sioning and lifecycle of connected downstream clusters. The management cluster typically
includes the following components:

Multi-cluster management with Rancher Prime (Chapter 4, Rancher), enabling a com-
mon dashboard for downstream cluster onboarding and ongoing lifecycle manage-
ment of infrastructure and applications, also providing comprehensive tenant isola-
tion and IDP (Identity Provider) integrations, a large marketplace of third-party in-
tegrations and extensions, and a vendor-neutral API.

Linux systems management with SUSE Manager, enabling automated Linux patch and
configuration management of the underlying Linux operating system (*SLE Micro
(Chapter 7, SLE Micro)) that runs on the downstream clusters. Note that while this
component is containerized, it currently needs to run on a separate system to the
rest of the management components, hence labelled as "Linux Management" in the
diagram above.

A dedicated Lifecycle Management (Chapter 20, Upgrade Controller) controller that
handles management cluster component upgrades to a given SUSE Edge release.

Remote system on-boarding into Rancher Prime with Elemental (Chapter 11, Elemen-

tal), enabling late binding of connected edge nodes to desired Kubernetes clusters
and application deployment, e.g. via GitOps.

An Optional full bare-metal lifecycle and management support with Metal3 (Chap-

ter 8, Metal3), MetalLB (Chapter 17, MetalLB), and CAPI (Cluster API) infrastructure
providers, enabling the full end-to-end provisioning of baremetal systems that have
remote management capabilities.

xix Components used in SUSE Edge

An optional GitOps engine called Fleet (Chapter 6, Fleet) for managing the provisioning
and lifecycle of downstream clusters and applications that reside on them.Underpinning the management cluster itself is SLE Micro (Chapter 7, SLE Micro) as the
base operating system and RKE2 (Chapter 14, RKE2) as the Kubernetes distribution
supporting the management cluster applications.

3.1.2 Downstream Clusters

xx Components used in SUSE Edge

Downstream: This is the distributed part of SUSE Edge that is used to run the user work-
loads at the Edge, i.e. the software that is running at the edge location itself, and is typi-
cally comprised of the following components:

A choice of Kubernetes distributions, with secure and lightweight distributions like
K3s (Chapter 13, K3s) and RKE2 (Chapter 14, RKE2) (RKE2 is hardened, certified and
optimized for usage in government and regulated industries).

NeuVector (Chapter 16, NeuVector) to enable security features like image vulnerability
scanning, deep packet inspection, and real-time threat and vulnerability protection.

Software block storage with Longhorn (Chapter 15, Longhorn) to enable lightweight
persistent, resilient, and scalable block-storage.

xxi Components used in SUSE Edge

A lightweight, container-optimized, hardened Linux operating system with SLE Mi-
cro (Chapter 7, SLE Micro), providing an immutable and highly resilient OS for running
containers and virtual machines at the edge. SLE Micro is available for both aarch64
and x86_64 architectures, and it also supports Real-Time Kernel for latency senti-
tive applications (e.g. telco use-cases).

For connected clusters (i.e. those that do have connectivity to the management clus-
ter) two agents are deployed, namely Rancher System Agent for managing the con-
nectivity to Rancher Prime, and venv-salt-minion for taking instructions from SUSE
Manager for applying Linux software updates. These agents are not required for man-
agement of disconnected clusters.3.2 Connectivity

xxii Connectivity

The above image provides a high-level architectural overview for connected downstream clus-
ters and their attachment to the management cluster. The management cluster can be deployed
on a wide variety of underlying infrastructure platforms, in both on-premises and cloud capac-
ities, depending on networking availability between the downstream clusters and the target
management cluster. The only requirement for this to function are API and callback URL’s to
be accessible over the network that connects downstream cluster nodes to the management in-
frastructure.

It’s important to recognize that there are distinct mechanisms in which this connectivity is es-
tablished relative to the mechanism of downstream cluster deployment. The details of this are
explained in much more depth in the next section, but to set a baseline understanding, there are
three primary mechanisms for connected downstream clusters to be established as a "managed"
cluster:

1. The downstream clusters are deployed in a "disconnected" capacity at rst (e.g. via Edge
Image Builder (Chapter 9, Edge Image Builder)), and are then imported into the management
cluster if/when connectivity allows.

2. The downstream clusters are configured to use the built-in onboarding mechanism (e.g. via
Elemental (Chapter 11, Elemental)), and they automatically register into the management
cluster at rst-boot, allowing for late-binding of the cluster configuration.

3. The downstream clusters have been provisioned with the baremetal management capabil-
ities (CAPI + Metal^3), and they’re automatically imported into the management cluster
once the cluster has been deployed and configured (via the Rancher Turtles operator).

Note
It’s recommended that multiple management clusters are implemented to accommodate
the scale of large deployments, optimize for bandwidth and latency concerns in geograph-
ically dispersed environments, and to minimize the disruption in the event of an out-
age or management cluster upgrade. You can nd the current management cluster scala-
bility limits and system requirements here (https://ranchermanager.docs.rancher.com/get-

ting-started/installation-and-upgrade/installation-requirements) .

xxiii Connectivity

https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installation-requirements
https://ranchermanager.docs.rancher.com/getting-started/installation-and-upgrade/installation-requirements

4 Common Edge Deployment Patterns
Due to the varying set of operating environments and lifecycle requirements, we’ve implemented
support for a number of distinct deployment patterns that loosely align to the market segments
and use-cases that SUSE Edge operates in. We have documented a quickstart guide for each of
these deployment patterns to help you get familiar with the SUSE Edge platform based around
your needs. The three deployment patterns that we support today are described below, with a
link to the respective quickstart page.

4.1 Directed network provisioning

Directed network provisioning is where you know the details of the hardware you wish to deploy
to and have direct access to the out-of-band management interface to orchestrate and automate
the entire provisioning process. In this scenario, our customers expect a solution to be able to
provision edge sites fully automated from a centralized location, going much further than the
creation of a boot image by minimizing the manual operations at the edge location; simply rack,
power, and attach the required networks to the physical hardware, and the automation process
powers up the machine via the out-of-band management (e.g. via the Redfish API) and handles
the provisioning, onboarding, and deployment of infrastructure without user intervention. The
key for this to work is that the systems are known to the administrators; they know which
hardware is in which location, and that deployment is expected to be handled centrally.

This solution is the most robust since you are directly interacting with the hardware’s manage-
ment interface, are dealing with known hardware, and have fewer constraints on network avail-
ability. Functionality wise, this solution extensively uses Cluster API and Metal3 for automated
provisioning from bare-metal, through operating system, Kubernetes, and layered applications,
and provides the ability to link into the rest of the common lifecycle management capabilities
of SUSE Edge post-deployment. The quickstart for this solution can be found in Chapter 1, BMC

automated deployments with Metal3.

4.2 "Phone Home" network provisioning

Sometimes you are operating in an environment where the central management cluster cannot
manage the hardware directly (for example, your remote network is behind a firewall or there is
no out-of-band management interface; common in "PC" type hardware often found at the edge).
In this scenario, we provide tooling to remotely provision clusters and their workloads with

xxiv Common Edge Deployment Patterns

no need to know where hardware is being shipped when it is bootstrapped. This is what most
people think of when they think about edge computing; it’s the thousands or tens of thousands of
somewhat unknown systems booting up at edge locations and securely phoning home, validating
who they are, and receiving their instructions on what they’re supposed to do. Our requirements
here expect provisioning and lifecycle management with very little user-intervention other than
either pre-imaging the machine at the factory, or simply attaching a boot image, e.g. via USB, and
switching the system on. The primary challenges in this space are addressing scale, consistency,
security, and lifecycle of these devices in the wild.

This solution provides a great deal of flexibility and consistency in the way that systems are
provisioned and on-boarded, regardless of their location, system type or specification, or when
they’re powered on for the rst time. SUSE Edge enables full flexibility and customization of the
system via Edge Image Builder, and leverages the registration capabilities Rancher’s Elemental
offering for node on-boarding and Kubernetes provisioning, along with SUSE Manager for op-
erating system patching. The quick start for this solution can be found in Chapter 2, Remote host

onboarding with Elemental.

4.3 Image-based provisioning

For customers that need to operate in standalone, air-gapped, or network limited environments,
SUSE Edge provides a solution that enables customers to generate fully customized installation
media that contains all of the required deployment artifacts to enable both single-node and mul-
ti-node highly-available Kubernetes clusters at the edge, including any workloads or additional
layered components required, all without any network connectivity to the outside world, and
without the intervention of a centralized management platform. The user-experience follows
closely to the "phone home" solution in that installation media is provided to the target systems,
but the solution will "bootstrap in-place". In this scenario, it’s possible to attach the resulting
clusters into Rancher for ongoing management (i.e. going from a "disconnected" to "connected"
mode of operation without major reconfiguration or redeployment), or can continue to operate
in isolation. Note that in both cases the same consistent mechanism for automating lifecycle
operations can be applied.

Furthermore, this solution can be used to quickly create management clusters that may host
the centralized infrastructure that supports both the "directed network provisioning" and "phone
home network provisioning" models as it can be the quickest and most simple way to provision

xxv Image-based provisioning

all types of Edge infrastructure. This solution heavily utilizes the capabilities of SUSE Edge
Image Builder to create fully customized and unattended installation media; the quickstart can
be found in Chapter 3, Standalone clusters with Edge Image Builder.

5 SUSE Edge Stack Validation
All SUSE Edge releases comprise of tightly integrated and thorougly validated components that
are versioned as one. As part of the continuous integration and stack validation efforts that not
only test the integration between components but ensure that the system performs as expected
under forced failure scenarios, the SUSE Edge team publishes all of the test runs and the results to
the public. The results along with all input parameters can be found at ci.edge.suse.com (https://

ci.edge.suse.com) .

6 Full Component List
The full list of components, along with a link to a high-level description of each and how it’s
used in SUSE Edge can be found below:

Rancher (Chapter 4, Rancher)

Rancher Dashboard Extensions (Chapter 5, Rancher Dashboard Extensions)

SUSE Manager

Fleet (Chapter 6, Fleet)

SLE Micro (Chapter 7, SLE Micro)

Metal³ (Chapter 8, Metal3)

Edge Image Builder (Chapter 9, Edge Image Builder)

NetworkManager Configurator (Chapter 10, Edge Networking)

Elemental (Chapter 11, Elemental)

Akri (Chapter 12, Akri)

K3s (Chapter 13, K3s)

RKE2 (Chapter 14, RKE2)

xxvi SUSE Edge Stack Validation

https://ci.edge.suse.com
https://ci.edge.suse.com

Longhorn (Chapter 15, Longhorn)

NeuVector (Chapter 16, NeuVector)

MetalLB (Chapter 17, MetalLB)

KubeVirt (Chapter 18, Edge Virtualization)

System Upgrade Controller (Chapter 19, System Upgrade Controller)

Upgrade Controller (Chapter 20, Upgrade Controller)

xxvii Full Component List

I Quick Starts

1 BMC automated deployments with Metal3 2

2 Remote host onboarding with Elemental 24

3 Standalone clusters with Edge Image Builder 48

Quick Starts here

1 BMC automated deployments with Metal3

Metal3 is a CNCF project (https://metal3.io/) which provides bare-metal infrastructure manage-
ment capabilities for Kubernetes.

Metal3 provides Kubernetes-native resources to manage the lifecycle of bare-metal servers which
support management via out-of-band protocols such as Redfish (https://www.dmtf.org/stan-

dards/redfish) .

It also has mature support for Cluster API (CAPI) (https://cluster-api.sigs.k8s.io/) which enables
management of infrastructure resources across multiple infrastructure providers via broadly
adopted vendor-neutral APIs.

1.1 Why use this method

This method is useful for scenarios where the target hardware supports out-of-band manage-
ment, and a fully automated infrastructure management ow is desired.

A management cluster is configured to provide declarative APIs that enable inventory and state
management of downstream cluster bare-metal servers, including automated inspection, clean-
ing and provisioning/deprovisioning.

2 Why use this method

https://metal3.io/
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish
https://cluster-api.sigs.k8s.io/

1.2 High-level architecture

3 High-level architecture

1.3 Prerequisites
There are some specific constraints related to the downstream cluster server hardware and net-
working:

Management cluster

Must have network connectivity to the target server management/BMC API

Must have network connectivity to the target server control plane network

For multi-node management clusters, an additional reserved IP address is required

Hosts to be controlled

Must support out-of-band management via Redfish, iDRAC or iLO interfaces

Must support deployment via virtual media (PXE is not currently supported)

Must have network connectivity to the management cluster for access to the Metal3

provisioning APIs

Some tools are required, these can be installed either on the management cluster, or on a host
which can access it.

Kubectl (https://kubernetes.io/docs/reference/kubectl/kubectl/) , Helm (https://helm.sh)

and Clusterctl (https://cluster-api.sigs.k8s.io/user/quick-start.html#install-clusterctl)

A container runtime such as Podman (https://podman.io) or Rancher Desktop (https://

rancherdesktop.io)

The SL-Micro.x86_64-6.0-Base-GM2.raw.xz OS image le must be downloaded from
the SUSE Customer Center (https://scc.suse.com/) or the SUSE Download page (https://

www.suse.com/download/sle-micro/) .

1.3.1 Setup Management Cluster

The basic steps to install a management cluster and use Metal3 are:

1. Install an RKE2 management cluster

2. Install Rancher

4 Prerequisites

https://kubernetes.io/docs/reference/kubectl/kubectl/
https://helm.sh
https://cluster-api.sigs.k8s.io/user/quick-start.html#install-clusterctl
https://podman.io
https://rancherdesktop.io
https://rancherdesktop.io
https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

3. Install a storage provider

4. Install the Metal3 dependencies

5. Install CAPI dependencies via Rancher Turtles

6. Build a SLEMicro OS image for downstream cluster hosts

7. Register BareMetalHost CRs to define the bare-metal inventory

8. Create a downstream cluster by defining CAPI resources

This guide assumes an existing RKE2 cluster and Rancher (including cert-manager) has been
installed, for example by using Edge Image Builder (Chapter 9, Edge Image Builder).

Tip
The steps here can also be fully automated as described in the ATIP management cluster
documentation (Chapter 32, Setting up the management cluster).

1.3.2 Installing Metal3 dependencies

If not already installed as part of the Rancher installation, cert-manager must be installed and
running.

A persistent storage provider must be installed. Longhorn is recommended but local-path can
also be used for dev/PoC environments. The instructions below assume a StorageClass has
been marked as default (https://kubernetes.io/docs/tasks/administer-cluster/change-default-stor-

age-class/) , otherwise additional configuration for the Metal3 chart is required.

An additional IP is required, which is managed by MetalLB (https://metallb.universe.tf/) to pro-
vide a consistent endpoint for the Metal3 management services. This IP must be part of the con-
trol plane subnet and reserved for static configuration (not part of any DHCP pool).

Tip
If the management cluster is a single node, the requirement for an additional floating IP
managed via MetalLB can be avoided, see Single-node configuration (Section 1.6.1, “Sin-

gle-node configuration”)

5 Installing Metal3 dependencies

https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/
https://metallb.universe.tf/

1. First, we install MetalLB:

helm install \
 metallb oci://registry.suse.com/edge/3.1/metallb-chart \
 --namespace metallb-system \
 --create-namespace

2. Then we define an IPAddressPool and L2Advertisment using the reserved IP, defined
as STATIC_IRONIC_IP below:

export STATIC_IRONIC_IP=<STATIC_IRONIC_IP>

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: ironic-ip-pool
 namespace: metallb-system
spec:
 addresses:
 - ${STATIC_IRONIC_IP}/32
 serviceAllocation:
 priority: 100
 serviceSelectors:
 - matchExpressions:
 - {key: app.kubernetes.io/name, operator: In, values: [metal3-ironic]}
EOF

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ironic-ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ironic-ip-pool
EOF

3. Now Metal3 can be installed:

helm install \
 metal3 oci://registry.suse.com/edge/3.1/metal3-chart \
 --namespace metal3-system \
 --create-namespace \

6 Installing Metal3 dependencies

 --set global.ironicIP="${STATIC_IRONIC_IP}"

4. It can take around two minutes for the initContainer to run on this deployment, so ensure
the pods are all running before proceeding:

kubectl get pods -n metal3-system
NAME READY STATUS RESTARTS
 AGE
baremetal-operator-controller-manager-85756794b-fz98d 2/2 Running 0
 15m
metal3-metal3-ironic-677bc5c8cc-55shd 4/4 Running 0
 15m
metal3-metal3-mariadb-7c7d6fdbd8-64c7l 1/1 Running 0
 15m

Warning
Do not proceed to the following steps until all pods in the metal3-system namespace
are running

1.3.3 Installing cluster API dependencies

Cluster API dependencies are managed via the Rancher Turtles Helm chart:

cat > values.yaml <<EOF
rancherTurtles:
 features:
 embedded-capi:
 disabled: true
 rancher-webhook:
 cleanup: true
EOF

helm install \
 rancher-turtles oci://registry.suse.com/edge/3.1/rancher-turtles-chart \
 --namespace rancher-turtles-system \
 --create-namespace \
 -f values.yaml

After some time, the controller pods should be running in the capi-system, capm3-system,
rke2-bootstrap-system and rke2-control-plane-system namespaces.

7 Installing cluster API dependencies

1.3.4 Prepare downstream cluster image

Edge Image Builder (Chapter 9, Edge Image Builder) is used to prepare a modified SLEMicro base
image which is provisioned on downstream cluster hosts.

In this guide, we cover the minimal configuration necessary to deploy the downstream cluster.

1.3.4.1 Image configuration

When running Edge Image Builder, a directory is mounted from the host, so it is necessary to
create a directory structure to store the configuration les used to define the target image.

downstream-cluster-config.yaml is the image definition le, see Chapter 3, Standalone

clusters with Edge Image Builder for more details.

The base image when downloaded is xz compressed, which must be uncompressed with
unxz and copied/moved under the base-images folder.

The network folder is optional, see Section 1.3.5.1.1, “Additional script for static network con-

figuration” for more details.

The custom/scripts directory contains scripts to be run on rst-boot; currently a 01-fix-
growfs.sh script is required to resize the OS root partition on deployment

├── downstream-cluster-config.yaml
├── base-images/
│ └ SL-Micro.x86_64-6.0-Base-GM2.raw
├── network/
| └ configure-network.sh
└── custom/
 └ scripts/
 └ 01-fix-growfs.sh

1.3.4.1.1 Downstream cluster image definition file

The downstream-cluster-config.yaml le is the main configuration le for the downstream
cluster image. The following is a minimal example for deployment via Metal3:

apiVersion: 1.0
image:
 imageType: RAW

8 Prepare downstream cluster image

 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-GM2.raw
 outputImageName: SLE-Micro-eib-output.raw
operatingSystem:
 kernelArgs:
 - ignition.platform.id=openstack
 - net.ifnames=1
 systemd:
 disable:
 - rebootmgr
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 sshKeys:
 - ${USERKEY1}

${ROOT_PASSWORD} is the encrypted password for the root user, which can be useful for test/
debugging. It can be generated with the openssl passwd -6 PASSWORD command

For the production environments, it is recommended to use the SSH keys that can be added to
the users block replacing the ${USERKEY1} with the real SSH keys.

Note
net.ifnames=1 enables Predictable Network Interface Naming (https://documenta-

tion.suse.com/smart/network/html/network-interface-predictable-naming/index.html)

This matches the default configuration for the metal3 chart, but the setting must match
the configured chart predictableNicNames value.

Also note ignition.platform.id=openstack is mandatory, without this argument
SLEMicro configuration via ignition will fail in the Metal3 automated ow.

1.3.4.1.2 Growfs script

Currently, a custom script (custom/scripts/01-fix-growfs.sh) is required to grow the le
system to match the disk size on rst-boot after provisioning. The 01-fix-growfs.sh script
contains the following information:

#!/bin/bash
growfs() {
 mnt="$1"
 dev="$(findmnt --fstab --target ${mnt} --evaluate --real --output SOURCE --noheadings)"

9 Prepare downstream cluster image

https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html
https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html

 # /dev/sda3 -> /dev/sda, /dev/nvme0n1p3 -> /dev/nvme0n1
 parent_dev="/dev/$(lsblk --nodeps -rno PKNAME "${dev}")"
 # Last number in the device name: /dev/nvme0n1p42 -> 42
 partnum="$(echo "${dev}" | sed 's/^.*[^0-9]\([0-9]\+\)$/\1/')"
 ret=0
 growpart "$parent_dev" "$partnum" || ret=$?
 [$ret -eq 0] || [$ret -eq 1] || exit 1
 /usr/lib/systemd/systemd-growfs "$mnt"
}
growfs /

Note
Add your own custom scripts to be executed during the provisioning process using the
same approach. For more information, see Chapter 3, Standalone clusters with Edge Image

Builder.

1.3.4.2 Image creation

Once the directory structure is prepared following the previous sections, run the following com-
mand to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
 build --definition-file downstream-cluster-config.yaml

This creates the output image le named SLE-Micro-eib-output.raw, based on the definition
described above.

The output image must then be made available via a webserver, either the media-server con-
tainer enabled via the Metal3 chart (Note) or some other locally accessible server. In the exam-
ples below, we refer to this server as imagecache.local:8080

1.3.5 Adding BareMetalHost inventory

Registering bare-metal servers for automated deployment requires creating two resources: a
Secret storing BMC access credentials and a Metal3 BareMetalHost resource defining the BMC
connection and other details:

apiVersion: v1

10 Adding BareMetalHost inventory

kind: Secret
metadata:
 name: controlplane-0-credentials
type: Opaque
data:
 username: YWRtaW4=
 password: cGFzc3dvcmQ=

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: controlplane-0
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: "00:f3:65:8a:a3:b0"
 bmc:
 address: redfish-virtualmedia://192.168.125.1:8000/redfish/v1/Systems/68bd0fb6-
d124-4d17-a904-cdf33efe83ab
 disableCertificateVerification: true
 credentialsName: controlplane-0-credentials

Note the following:

The Secret username/password must be base64 encoded. Note this should not include any
trailing newlines (for example, use echo -n, not just echo!)

The cluster-role label may be set now or later on cluster creation. In the example below,
we expect control-plane or worker

bootMACAddress must be a valid MAC that matches the control plane NIC of the host

The bmc address is the connection to the BMC management API, the following are sup-
ported:

redfish-virtualmedia://<IP ADDRESS>/redfish/v1/Systems/<SYSTEM ID>:
Redfish virtual media, for example, SuperMicro

idrac-virtualmedia://<IP ADDRESS>/redfish/v1/Systems/System.Embed-

ded.1: Dell iDRAC

See the Upstream API docs (https://github.com/metal3-io/baremetal-operator/blob/main/

docs/api.md) for more details on the BareMetalHost API

11 Adding BareMetalHost inventory

https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md
https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md

1.3.5.1 Configuring Static IPs

The BareMetalHost example above assumes DHCP provides the controlplane network configu-
ration, but for scenarios where manual configuration is needed such as static IPs it is possible
to provide additional configuration, as described below.

1.3.5.1.1 Additional script for static network configuration

When creating the base image with Edge Image Builder, in the network folder, create the fol-
lowing configure-network.sh le.

This consumes configuration drive data on rst-boot, and configures the host networking using
the NM Configurator tool (https://github.com/suse-edge/nm-configurator) .

#!/bin/bash

set -eux

Attempt to statically configure a NIC in the case where we find a network_data.json
In a configuration drive

CONFIG_DRIVE=$(blkid --label config-2 || true)
if [-z "${CONFIG_DRIVE}"]; then
 echo "No config-2 device found, skipping network configuration"
 exit 0
fi

mount -o ro $CONFIG_DRIVE /mnt

NETWORK_DATA_FILE="/mnt/openstack/latest/network_data.json"

if [! -f "${NETWORK_DATA_FILE}"]; then
 umount /mnt
 echo "No network_data.json found, skipping network configuration"
 exit 0
fi

DESIRED_HOSTNAME=$(cat /mnt/openstack/latest/meta_data.json | tr ',{}' '\n' | grep
 '\"metal3-name\"' | sed 's/.*\"metal3-name\": \"\(.*\)\"/\1/')
echo "${DESIRED_HOSTNAME}" > /etc/hostname

mkdir -p /tmp/nmc/{desired,generated}
cp ${NETWORK_DATA_FILE} /tmp/nmc/desired/_all.yaml
umount /mnt

12 Adding BareMetalHost inventory

https://github.com/suse-edge/nm-configurator

./nmc generate --config-dir /tmp/nmc/desired --output-dir /tmp/nmc/generated

./nmc apply --config-dir /tmp/nmc/generated

1.3.5.1.2 Additional secret with host network configuration

An additional secret containing data in the nmstate (https://nmstate.io/) format supported by
NM Configurator (Chapter 10, Edge Networking) can be defined for each host.

The secret is then referenced in the BareMetalHost resource via the preprovisioningNet-
workDataName spec eld.

apiVersion: v1
kind: Secret
metadata:
 name: controlplane-0-networkdata
type: Opaque
stringData:
 networkData: |
 interfaces:
 - name: enp1s0
 type: ethernet
 state: up
 mac-address: "00:f3:65:8a:a3:b0"
 ipv4:
 address:
 - ip: 192.168.125.200
 prefix-length: 24
 enabled: true
 dhcp: false
 dns-resolver:
 config:
 server:
 - 192.168.125.1
 routes:
 config:
 - destination: 0.0.0.0/0
 next-hop-address: 192.168.125.1
 next-hop-interface: enp1s0

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: controlplane-0
 labels:
 cluster-role: control-plane
spec:

13 Adding BareMetalHost inventory

https://nmstate.io/

 preprovisioningNetworkDataName: controlplane-0-networkdata
Remaining content as in previous example

Note
In some circumstances the mac-address may be omitted but the configure-network.sh
script must use the _all.yaml filename described above to enable Unified node config-
uration (Section 10.5.8, “Unified node configurations”) in nm-configurator.

1.3.5.2 BareMetalHost preparation

After creating the BareMetalHost resource and associated secrets as described above, a host
preparation workflow is triggered:

A ramdisk image is booted by virtualmedia attachment to the target host BMC

The ramdisk inspects hardware details, and prepares the host for provisioning (for example
by cleaning disks of previous data)

On completion of this process, hardware details in the BareMetalHost status.hardware
eld are updated and can be verified

This process can take several minutes, but when completed you should see the BareMetalHost
state become available:

% kubectl get baremetalhost
NAME STATE CONSUMER ONLINE ERROR AGE
controlplane-0 available true 9m44s
worker-0 available true 9m44s

1.3.6 Creating downstream clusters

We now create Cluster API resources which define the downstream cluster, and Machine re-
sources which will cause the BareMetalHost resources to be provisioned, then bootstrapped to
form an RKE2 cluster.

14 Creating downstream clusters

1.3.7 Control plane deployment

To deploy the controlplane we define a yaml manifest similar to the one below, which contains
the following resources:

Cluster resource defines the cluster name, networks, and type of controlplane/infrastruc-
ture provider (in this case RKE2/Metal3)

Metal3Cluster defines the controlplane endpoint (host IP for single-node, LoadBalancer
endpoint for multi-node, this example assumes single-node)

RKE2ControlPlane defines the RKE2 version and any additional configuration needed dur-
ing cluster bootstrapping

Metal3MachineTemplate defines the OS Image to be applied to the BareMetalHost re-
sources, and the hostSelector defines which BareMetalHosts to consume

Metal3DataTemplate defines additional metaData to be passed to the BareMetalHost (note
networkData is not currently supported in the Edge solution)

Note for simplicity this example assumes a single-node controlplane, where the BareMetalHost
is configured with an IP of 192.168.125.200 - for more advanced multi-node examples please
see the ATIP documentation (Chapter 34, Fully automated directed network provisioning)

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 name: sample-cluster
 namespace: default
spec:
 clusterNetwork:
 pods:
 cidrBlocks:
 - 192.168.0.0/18
 services:
 cidrBlocks:
 - 10.96.0.0/12
 controlPlaneRef:
 apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
 kind: RKE2ControlPlane
 name: sample-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3Cluster
 name: sample-cluster

15 Control plane deployment

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3Cluster
metadata:
 name: sample-cluster
 namespace: default
spec:
 controlPlaneEndpoint:
 host: 192.168.125.200
 port: 6443
 noCloudProvider: true

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: sample-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: sample-cluster-controlplane
 replicas: 1
 agentConfig:
 format: ignition
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"

16 Control plane deployment

 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 version: v1.30.5+rke2r1

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: sample-cluster-controlplane
 namespace: default
spec:
 template:
 spec:
 dataTemplate:
 name: sample-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/SLE-Micro-eib-output.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/SLE-Micro-eib-output.raw

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: sample-cluster-controlplane-template
 namespace: default
spec:
 clusterName: sample-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname
 object: machine

When the example above has been copied and adapted to suit your environment, it can be
applied via kubectl then the cluster status can be monitored with clusterctl

17 Control plane deployment

% kubectl apply -f rke2-control-plane.yaml

Wait for the cluster to be provisioned - status can be checked via clusterctl
% clusterctl describe cluster sample-cluster
NAME READY SEVERITY REASON SINCE
 MESSAGE
Cluster/sample-cluster True 22m
├─ClusterInfrastructure - Metal3Cluster/sample-cluster True 27m
├─ControlPlane - RKE2ControlPlane/sample-cluster True 22m
│ └─Machine/sample-cluster-chflc True 23m

1.3.8 Worker/Compute deployment

Similar to the controlplane we define a yaml manifest, which contains the following resources:

MachineDeployment defines the number of replicas (hosts) and the bootstrap/infrastruc-
ture provider (in this case RKE2/Metal3)

RKE2ConfigTemplate describes the RKE2 version and rst-boot configuration for agent
host bootstrapping

Metal3MachineTemplate defines the OS Image to be applied to the BareMetalHost re-
sources, and the hostSelector defines which BareMetalHosts to consume

Metal3DataTemplate defines additional metaData to be passed to the BareMetalHost (note
networkData is not currently supported in the Edge solution)

apiVersion: cluster.x-k8s.io/v1beta1
kind: MachineDeployment
metadata:
 labels:
 cluster.x-k8s.io/cluster-name: sample-cluster
 name: sample-cluster
 namespace: default
spec:
 clusterName: sample-cluster
 replicas: 1
 selector:
 matchLabels:
 cluster.x-k8s.io/cluster-name: sample-cluster
 template:
 metadata:
 labels:
 cluster.x-k8s.io/cluster-name: sample-cluster

18 Worker/Compute deployment

 spec:
 bootstrap:
 configRef:
 apiVersion: bootstrap.cluster.x-k8s.io/v1alpha1
 kind: RKE2ConfigTemplate
 name: sample-cluster-workers
 clusterName: sample-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: sample-cluster-workers
 nodeDrainTimeout: 0s
 version: v1.30.5+rke2r1

apiVersion: bootstrap.cluster.x-k8s.io/v1alpha1
kind: RKE2ConfigTemplate
metadata:
 name: sample-cluster-workers
 namespace: default
spec:
 template:
 spec:
 agentConfig:
 format: ignition
 version: v1.30.5+rke2r1
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"

19 Worker/Compute deployment

 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /
mnt/openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: sample-cluster-workers
 namespace: default
spec:
 template:
 spec:
 dataTemplate:
 name: sample-cluster-workers-template
 hostSelector:
 matchLabels:
 cluster-role: worker
 image:
 checksum: http://imagecache.local:8080/SLE-Micro-eib-output.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/SLE-Micro-eib-output.raw

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: sample-cluster-workers-template
 namespace: default
spec:
 clusterName: sample-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname
 object: machine

When the example above has been copied and adapted to suit your environment, it can be
applied via kubectl then the cluster status can be monitored with clusterctl

% kubectl apply -f rke2-agent.yaml

20 Worker/Compute deployment

Wait some time for the compute/agent hosts to be provisioned
% clusterctl describe cluster sample-cluster
NAME READY SEVERITY REASON SINCE
 MESSAGE
Cluster/sample-cluster True 25m
├─ClusterInfrastructure - Metal3Cluster/sample-cluster True 30m
├─ControlPlane - RKE2ControlPlane/sample-cluster True 25m
│ └─Machine/sample-cluster-chflc True 27m
└─Workers
 └─MachineDeployment/sample-cluster True 22m
 └─Machine/sample-cluster-56df5b4499-zfljj True 23m

1.3.9 Cluster deprovisioning

The downstream cluster may be deprovisioned by deleting the resources applied in the creation
steps above:

% kubectl delete -f rke2-agent.yaml
% kubectl delete -f rke2-control-plane.yaml

This triggers deprovisioning of the BareMetalHost resources, which may take several minutes,
after which they should be in available state again:

% kubectl get bmh
NAME STATE CONSUMER ONLINE ERROR
 AGE
controlplane-0 deprovisioning sample-cluster-controlplane-vlrt6 false
 10m
worker-0 deprovisioning sample-cluster-workers-785x5 false
 10m

...

% kubectl get bmh
NAME STATE CONSUMER ONLINE ERROR AGE
controlplane-0 available false 15m
worker-0 available false 15m

21 Cluster deprovisioning

1.4 Known issues

The upstream IP Address Management controller (https://github.com/metal3-io/ip-ad-

dress-manager) is currently not supported, because it’s not yet compatible with our
choice of network configuration tooling and rst-boot toolchain in SLEMicro.

Relatedly, the IPAM resources and Metal3DataTemplate networkData elds are not cur-
rently supported.

Only deployment via redfish-virtualmedia is currently supported.

Deployed clusters are not currently imported into Rancher

Due to disabling the Rancher embedded CAPI controller, a management cluster configured
for Metal3 as described above cannot also be used for other cluster provisioning methods
such as Elemental (Chapter 11, Elemental)

1.5 Planned changes

Deployed clusters imported into Rancher, this is planned via Rancher Turtles (https://tur-

tles.docs.rancher.com/) in future

Aligning with Rancher Turtles is also expected to remove the requirement to disable the
Rancher embedded CAPI, so other cluster methods should be possible via the management
cluster.

Enable support of the IPAM resources and configuration via networkData elds

1.6 Additional resources
The ATIP Documentation (Chapter 29, SUSE Adaptive Telco Infrastructure Platform (ATIP)) has exam-
ples of more advanced usage of Metal3 for telco use-cases.

1.6.1 Single-node configuration

For test/PoC environments where the management cluster is a single node, it is possible to avoid
the requirement for an additional floating IP managed via MetalLB.

22 Known issues

https://github.com/metal3-io/ip-address-manager
https://github.com/metal3-io/ip-address-manager
https://turtles.docs.rancher.com/
https://turtles.docs.rancher.com/

In this mode, the endpoint for the management cluster APIs is the IP of the management cluster,
therefore it should be reserved when using DHCP or statically configured to ensure the manage-
ment cluster IP does not change - referred to as <MANAGEMENT_CLUSTER_IP> below.

To enable this scenario the metal3 chart values required are as follows:

global:
 ironicIP: <MANAGEMENT_CLUSTER_IP>
metal3-ironic:
 service:
 type: NodePort

1.6.2 Disabling TLS for virtualmedia ISO attachment

Some server vendors verify the SSL connection when attaching virtual-media ISO images to the
BMC, which can cause a problem because the generated certificates for the Metal3 deployment
are self-signed, to work around this issue it’s possible to disable TLS only for the virtualmedia
disk attachment with metal3 chart values as follows:

global:
 enable_vmedia_tls: false

An alternative solution is to configure the BMCs with the CA cert - in this case you can read the
certificates from the cluster using kubectl:

kubectl get secret -n metal3-system ironic-vmedia-cert -o yaml

The certificate can then be configured on the server BMC console, although the process for that
is vendor specific (and not possible for all vendors, in which case the enable_vmedia_tls ag
may be required).

23 Disabling TLS for virtualmedia ISO attachment

2 Remote host onboarding with Elemental

This section documents the "phone home network provisioning" solution as part of SUSE Edge,
where we use Elemental to assist with node onboarding. Elemental is a software stack enabling
remote host registration and centralized full cloud-native OS management with Kubernetes. In
the SUSE Edge stack we use the registration feature of Elemental to enable remote host onboard-
ing into Rancher so that hosts can be integrated into a centralized management platform and
from there, deploy and manage Kubernetes clusters along with layered components, applica-
tions, and their lifecycle, all from a common place.

This approach can be useful in scenarios where the devices that you want to control are not on
the same network as the upstream cluster or do not have a out-of-band management controller
onboard to allow more direct control, and where you’re booting many different "unknown"
systems at the edge, and need to securely onboard and manage them at scale. This is a common
scenario for use cases in retail, industrial IoT, or other spaces where you have little control over
the network your devices are being installed in.

24

2.1 High-level architecture

25 High-level architecture

2.2 Resources needed
The following describes the minimum system and environmental requirements to run through
this quickstart:

A host for the centralized management cluster (the one hosting Rancher and Elemental):

Minimum 8 GB RAM and 20 GB disk space for development or testing (see
here (https://ranchermanager.docs.rancher.com/pages-for-subheaders/installation-re-

quirements#hardware-requirements) for production use)

A target node to be provisioned, i.e. the edge device (a virtual machine can be used for
demoing or testing purposes)

Minimum 4GB RAM, 2 CPU cores, and 20 GB disk

A resolvable host name for the management cluster or a static IP address to use with a
service like sslip.io

A host to build the installation media via Edge Image Builder

Running SLES 15 SP6, openSUSE Leap 15.6, or another compatible operating system
that supports Podman.

With Kubectl (https://kubernetes.io/docs/reference/kubectl/kubectl/) , Podman

(https://podman.io) , and Helm (https://helm.sh) installed

A USB ash drive to boot from (if using physical hardware)

A downloaded copy of the latest SLE Micro 6.0 SelfInstall "GM2" ISO image found here

(https://www.suse.com/download/sle-micro/) .

Note
Existing data found on target machines will be overwritten as part of the process, please
make sure you backup any data on any USB storage devices and disks attached to target
deployment nodes.

This guide is created using a Digital Ocean droplet to host the upstream cluster and an Intel NUC
as the downstream device. For building the installation media, SUSE Linux Enterprise Server
is used.

26 Resources needed

https://ranchermanager.docs.rancher.com/pages-for-subheaders/installation-requirements#hardware-requirements
https://ranchermanager.docs.rancher.com/pages-for-subheaders/installation-requirements#hardware-requirements
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://podman.io
https://podman.io
https://helm.sh
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

2.3 Build bootstrap cluster

Start by creating a cluster capable of hosting Rancher and Elemental. This cluster needs to be
routable from the network that the downstream nodes are connected to.

2.3.1 Create Kubernetes cluster

If you are using a hyperscaler (such as Azure, AWS or Google Cloud), the easiest way to set up
a cluster is using their built-in tools. For the sake of conciseness in this guide, we do not detail
the process of each of these options.

If you are installing onto bare-metal or another hosting service where you need to also provide
the Kubernetes distribution itself, we recommend using RKE2 (https://docs.rke2.io/install/quick-

start) .

2.3.2 Set up DNS

Before continuing, you need to set up access to your cluster. As with the setup of the cluster
itself, how you configure DNS will be different depending on where it is being hosted.

Tip
If you do not want to handle setting up DNS records (for example, this is just an ephemeral
test server), you can use a service like sslip.io (https://sslip.io) instead. With this service,
you can resolve any IP address with <address>.sslip.io.

2.4 Install Rancher

To install Rancher, you need to get access to the Kubernetes API of the cluster you just created.
This looks differently depending on what distribution of Kubernetes is being used.

For RKE2, the kubeconfig le will have been written to /etc/rancher/rke2/rke2.yaml. Save
this le as ~/.kube/config on your local system. You may need to edit the le to include the
correct externally routable IP address or host name.

27 Build bootstrap cluster

https://docs.rke2.io/install/quickstart
https://docs.rke2.io/install/quickstart
https://sslip.io

Install Rancher easily with the commands from the Rancher Documentation (https://rancherman-

ager.docs.rancher.com/pages-for-subheaders/install-upgrade-on-a-kubernetes-cluster) :

Install cert-manager (https://cert-manager.io) :

helm repo add jetstack https://charts.jetstack.io
helm repo update
helm install cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --create-namespace \
 --set crds.enabled=true

Then install Rancher itself:

helm repo add rancher-prime https://charts.rancher.com/server-charts/prime
helm repo update
helm install rancher rancher-prime/rancher \
 --namespace cattle-system \
 --create-namespace \
 --set hostname=<DNS or sslip from above> \
 --set replicas=1 \
 --set bootstrapPassword=<PASSWORD_FOR_RANCHER_ADMIN> \
 --version 2.9.3

Note
If this is intended to be a production system, please use cert-manager to configure a real
certificate (such as one from Let’s Encrypt).

Browse to the host name you set up and log in to Rancher with the bootstrapPassword you
used. You will be guided through a short setup process.

2.5 Install Elemental
With Rancher installed, you can now install the Elemental operator and required CRD’s. The
Helm chart for Elemental is published as an OCI artifact so the installation is a little simpler
than other charts. It can be installed from either the same shell you used to install Rancher or
in the browser from within Rancher’s shell.

helm install --create-namespace -n cattle-elemental-system \
 elemental-operator-crds \
 oci://registry.suse.com/rancher/elemental-operator-crds-chart \

28 Install Elemental

https://ranchermanager.docs.rancher.com/pages-for-subheaders/install-upgrade-on-a-kubernetes-cluster
https://ranchermanager.docs.rancher.com/pages-for-subheaders/install-upgrade-on-a-kubernetes-cluster
https://cert-manager.io

 --version 1.6.4

helm install -n cattle-elemental-system \
 elemental-operator \
 oci://registry.suse.com/rancher/elemental-operator-chart \
 --version 1.6.4

29 Install Elemental

2.5.1 (Optionally) Install the Elemental UI extension

1. To use the Elemental UI, log in to your Rancher instance, click the three-dot menu in the
upper left:

2. From the "Available" tab on this page, click "Install" on the Elemental card:

30 (Optionally) Install the Elemental UI extension

3. Confirm that you want to install the extension:

31 (Optionally) Install the Elemental UI extension

4. After it installs, you will be prompted to reload the page.

32 (Optionally) Install the Elemental UI extension

5. Once you reload, you can access the Elemental extension through the "OS Management"
global app.

33 (Optionally) Install the Elemental UI extension

34 (Optionally) Install the Elemental UI extension

2.6 Configure Elemental

For simplicity, we recommend setting the variable $ELEM to the full path of where you want
the configuration directory:

export ELEM=$HOME/elemental
mkdir -p $ELEM

To allow machines to register to Elemental, we need to create a MachineRegistration object
in the fleet-default namespace.

Let us create a basic version of this object:

cat << EOF > $ELEM/registration.yaml
apiVersion: elemental.cattle.io/v1beta1
kind: MachineRegistration
metadata:
 name: ele-quickstart-nodes
 namespace: fleet-default
spec:
 machineName: "\${System Information/Manufacturer}-\${System Information/UUID}"
 machineInventoryLabels:
 manufacturer: "\${System Information/Manufacturer}"
 productName: "\${System Information/Product Name}"
EOF

kubectl apply -f $ELEM/registration.yaml

Note
The cat command escapes each $ with a backslash (\) so that Bash does not template
them. Remove the backslashes if copying manually.

Once the object is created, nd and note the endpoint that gets assigned:

REGISURL=$(kubectl get machineregistration ele-quickstart-nodes -n fleet-default -o
 jsonpath='{.status.registrationURL}')

Alternatively, this can also be done from the UI.

35 Configure Elemental

UI Extension

1. From the OS Management extension, click "Create Registration Endpoint":

2. Give this configuration a name.

36 Configure Elemental

37 Configure Elemental

Note
You can ignore the Cloud Configuration eld as the data here is overridden by
the following steps with Edge Image Builder.

3. Next, scroll down and click "Add Label" for each label you want to be on the resource
that gets created when a machine registers. This is useful for distinguishing machines.

38 Configure Elemental

4. Lastly, click "Create" to save the configuration.

39 Configure Elemental

40 Configure Elemental

UI Extension

If you just created the configuration, you should see the Registration URL listed and can
click "Copy" to copy the address:

41 Configure Elemental

Tip
If you clicked away from that screen, you can click "Registration Endpoints" in the
left menu, then click the name of the endpoint you just created.

This URL is used in the next step.

2.7 Build the image
While the current version of Elemental has a way to build its own installation media, in SUSE
Edge 3.1 we do this with the Edge Image Builder instead, so the resulting system is built with
SLE Micro (https://www.suse.com/products/micro/) as the base Operating System.

Tip
For more details on the Edge Image Builder, check out the Getting Started Guide for it
(Chapter 3, Standalone clusters with Edge Image Builder) and also the Component Documen-
tation (Chapter 9, Edge Image Builder).

From a Linux system with Podman installed, create the directories and place the base image:

mkdir -p $ELEM/eib_quickstart/base-images
cp /path/to/downloads/SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso $ELEM/
eib_quickstart/base-images/
mkdir -p $ELEM/eib_quickstart/elemental

curl $REGISURL -o $ELEM/eib_quickstart/elemental/elemental_config.yaml

cat << EOF > $ELEM/eib_quickstart/eib-config.yaml
apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
 outputImageName: elemental-image.iso
operatingSystem:
 isoConfiguration:
 installDevice: /dev/vda
 users:

42 Build the image

https://www.suse.com/products/micro/

 - username: root
 encryptedPassword: \$6\$jHugJNNd3HElGsUZ\
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
 packages:
 sccRegistrationCode: XXX
EOF

Note

The unencoded password is eib.

The sccRegistrationCode is needed to download and install the necessary RPMs
from the official sources (alternatively, the elemental-register and elemen-
tal-system-agent RPMs can be manually side-loaded instead)

The cat command escapes each $ with a backslash (\) so that Bash does not template
them. Remove the backslashes if copying manually.

The installation device will be wiped during the installation.

podman run --privileged --rm -it -v $ELEM/eib_quickstart/:/eib \
 registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
 build --definition-file eib-config.yaml

If you are booting a physical device, we need to burn the image to a USB ash drive. This can
be done with:

sudo dd if=/eib_quickstart/elemental-image.iso of=/dev/<PATH_TO_DISK_DEVICE>
 status=progress

2.8 Boot the downstream nodes

Now that we have created the installation media, we can boot our downstream nodes with it.

For each of the systems that you want to control with Elemental, add the installation media and
boot the device. After installation, it will reboot and register itself.

If you are using the UI extension, you should see your node appear in the "Inventory of Ma-
chines."

43 Boot the downstream nodes

Note
Do not remove the installation medium until you’ve seen the login prompt; during rst-
boot les are still accessed on the USB stick.

2.9 Create downstream clusters

There are two objects we need to create when provisioning a new cluster using Elemental.

Linux

The rst is the MachineInventorySelectorTemplate. This object allows us to specify a
mapping between clusters and the machines in the inventory.

1. Create a selector which will match any machine in the inventory with a label:

cat << EOF > $ELEM/selector.yaml
apiVersion: elemental.cattle.io/v1beta1
kind: MachineInventorySelectorTemplate
metadata:
 name: location-123-selector
 namespace: fleet-default
spec:
 template:
 spec:
 selector:
 matchLabels:
 locationID: '123'
EOF

2. Apply the resource to the cluster:

kubectl apply -f $ELEM/selector.yaml

3. Obtain the name of the machine and add the matching label:

MACHINENAME=$(kubectl get MachineInventory -n fleet-default | awk 'NR>1 {print
 $1}')

kubectl label MachineInventory -n fleet-default \

44 Create downstream clusters

 $MACHINENAME locationID=123

4. Create a simple single-node K3s cluster resource and apply it to the cluster:

cat << EOF > $ELEM/cluster.yaml
apiVersion: provisioning.cattle.io/v1
kind: Cluster
metadata:
 name: location-123
 namespace: fleet-default
spec:
 kubernetesVersion: v1.30.5+k3s1
 rkeConfig:
 machinePools:
 - name: pool1
 quantity: 1
 etcdRole: true
 controlPlaneRole: true
 workerRole: true
 machineConfigRef:
 kind: MachineInventorySelectorTemplate
 name: location-123-selector
 apiVersion: elemental.cattle.io/v1beta1
EOF

kubectl apply -f $ELEM/cluster.yaml

UI Extension

The UI extension allows for a few shortcuts to be taken. Note that managing multiple
locations may involve too much manual work.

1. As before, open the left three-dot menu and select "OS Management." This brings you
back to the main screen for managing your Elemental systems.

2. On the left sidebar, click "Inventory of Machines." This opens the inventory of ma-
chines that have registered.

3. To create a cluster from these machines, select the systems you want, click the "Ac-
tions" drop-down list, then "Create Elemental Cluster." This opens the Cluster Creation
dialog while also creating a MachineSelectorTemplate to use in the background.

4. On this screen, configure the cluster you want to be built. For this quick start, K3s
v1.30.5+k3s1 is selected and the rest of the options are left as is.

45 Create downstream clusters

Tip
You may need to scroll down to see more options.

After creating these objects, you should see a new Kubernetes cluster spin up using the new
node you just installed with.

2.10 Node Reset (Optional)
SUSE Rancher Elemental supports the ability to perform a "node reset" which can optionally
trigger when either a whole cluster is deleted from Rancher, a single node is deleted from a
cluster, or a node is manually deleted from the machine inventory. This is useful when you
want to reset and clean-up any orphaned resources and want to automatically bring the cleaned
node back into the machine inventory so it can be reused. This is not enabled by default, and
thus any system that is removed, will not be cleaned up (i.e. data will not be removed, and any
Kubernetes cluster resources will continue to operate on the downstream clusters) and it will
require manual intervention to wipe data and re-register the machine to Rancher via Elemental.

If you wish for this functionality to be enabled by default, you need to make sure that your
MachineRegistration explicitly enables this by adding config.elemental.reset.enabled:
true, for example:

config:
 elemental:
 registration:
 auth: tpm
 reset:
 enabled: true

Then, all systems registered with this MachineRegistration will automatically receive the el-
emental.cattle.io/resettable: 'true' annotation in their configuration. If you wish to
do this manually on individual nodes, e.g. because you’ve got an existing MachineInventory
that doesn’t have this annotation, or you have already deployed nodes, you can modify the Ma-
chineInventory and add the resettable configuration, for example:

apiVersion: elemental.cattle.io/v1beta1
kind: MachineInventory
metadata:
 annotations:

46 Node Reset (Optional)

 elemental.cattle.io/os.unmanaged: 'true'
 elemental.cattle.io/resettable: 'true'

In SUSE Edge 3.1, the Elemental Operator puts down a marker on the operating system that
will trigger the cleanup process automatically; it will stop all Kubernetes services, remove all
persistent data, uninstall all Kubernetes services, cleanup any remaining Kubernetes/Rancher
directories, and force a re-registration to Rancher via the original Elemental MachineRegistra-
tion configuration. This happens automatically, there is no need for any manual intervention.
The script that gets called can be found in /opt/edge/elemental_node_cleanup.sh and is
triggered via systemd.path upon the placement of the marker, so its execution is immediate.

Warning
Using the resettable functionality assumes that the desired behavior when removing a
node/cluster from Rancher is to wipe data and force a re-registration. Data loss is guar-
anteed in this situation, so only use this if you’re sure that you want automatic reset to
be performed.

2.11 Next steps
Here are some recommended resources to research after using this guide:

End-to-end automation in Chapter 6, Fleet

Additional network configuration options in Chapter 10, Edge Networking

47 Next steps

3 Standalone clusters with Edge Image Builder

Edge Image Builder (EIB) is a tool that streamlines the process of generating Customized, Ready-
to-Boot (CRB) disk images for bootstrapping machines, even in fully air-gapped scenarios. EIB
is used to create deployment images for use in all three of the SUSE Edge deployment foot-
prints, as it’s flexible enough to offer the smallest customizations, e.g. adding a user or setting
the timezone, through offering a comprehensively configured image that sets up, for example,
complex networking configurations, deploys multi-node Kubernetes clusters, deploys customer
workloads, and registers to the centralized management platform via Rancher/Elemental and
SUSE Manager. EIB runs as in a container image, making it incredibly portable across platforms
and ensuring that all of the required dependencies are self-contained, having a very minimal
impact on the installed packages of the system that’s being used to operate the tool.

For more information, read the Edge Image Builder Introduction (Chapter 9, Edge Image Builder).

Warning
Edge Image Builder v1.1 supports customizing SUSE Linux Micro 6.0 images. Older ver-
sions e.g. SUSE Linux Enterprise Micro 5.5 are not supported.

3.1 Prerequisites

An x86_64 physical host (or virtual machine) running SLES 15 SP6, openSUSE Leap 15.6,
or openSUSE Tumbleweed.

An available container runtime (e.g. Podman)

A downloaded copy of the latest SLE Micro 6.0 SelfInstall ISO image found here (https://

www.suse.com/download/sle-micro/) .

Note
Other operating systems may function so long as a compatible container runtime is avail-
able, but testing on other platforms has not been extensive. The documentation focuses
on Podman, but the same functionality should be able to be achieved with Docker.

48 Prerequisites

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

3.1.1 Getting the EIB Image

The EIB container image is publicly available and can be downloaded from the SUSE Edge
registry by running the following command on your image build host:

podman pull registry.suse.com/edge/3.1/edge-image-builder:1.1.0

3.2 Creating the image configuration directory
As EIB runs within a container, we need to mount a configuration directory from the host,
enabling you to specify your desired configuration, and during the build process EIB has access to
any required input les and supporting artifacts. This directory must follow a specific structure.
Let’s create it, assuming that this directory will exist in your home directory, and called "eib":

export CONFIG_DIR=$HOME/eib
mkdir -p $CONFIG_DIR/base-images

In the previous step we created a "base-images" directory that will host the SLE Micro 6.0 input
image, let’s ensure that the downloaded image is copied over to the configuration directory:

cp /path/to/downloads/SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso $CONFIG_DIR/
base-images/slemicro.iso

Note
During the EIB run, the original base image is not modified; a new and customized version
is created with the desired configuration in the root of the EIB config directory.

The configuration directory at this point should look like the following:

└── base-images/
 └── slemicro.iso

3.3 Creating the image definition file
The definition le describes the majority of configurable options that the Edge Image Builder
supports, a full example of options can be found here (https://github.com/suse-edge/edge-im-

age-builder/blob/release-1.1/pkg/image/testdata/full-valid-example.yaml) , and we would recom-
mend that you take a look at the upstream building images guide (https://github.com/suse-edge/

49 Getting the EIB Image

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/pkg/image/testdata/full-valid-example.yaml
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/pkg/image/testdata/full-valid-example.yaml
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md

edge-image-builder/blob/release-1.1/docs/building-images.md) for more comprehensive exam-
ples than the one we’re going to run through below. Let’s start with a very basic definition le
for our OS image:

cat << EOF > $CONFIG_DIR/iso-definition.yaml
apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
EOF

This definition specifies that we’re generating an output image for an x86_64 based system.
The image that will be used as the base for further modification is an iso image named slemi-
cro.iso, expected to be located at $CONFIG_DIR/base-images/slemicro.iso. It also outlines
that after EIB finishes modifying the image, the output image will be named eib-image.iso,
and by default will reside in $CONFIG_DIR.

Now our directory structure should look like:

├── iso-definition.yaml
└── base-images/
 └── slemicro.iso

In the following sections we’ll walk through a few examples of common operations:

3.3.1 Configuring OS Users

EIB allows you to preconfigure users with login information, such as passwords or SSH keys,
including setting a xed root password. As part of this example we’re going to x the root
password, and the rst step is to use OpenSSL to create a one-way encrypted password:

openssl passwd -6 SecurePassword

This will output something similar to:

6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1

We can then add a section in the definition le called operatingSystem with a users array
inside it. The resulting le should look like:

apiVersion: 1.0
image:

50 Configuring OS Users

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md

 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword:
 6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1

Note
It’s also possible to add additional users, create the home directories, set user-id’s, add
ssh-key authentication, and modify group information. Please refer to the upstream build-

ing images guide (https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/

building-images.md) for further examples.

3.3.2 Configuring RPM packages

One of the major features of EIB is to provide a mechanism to add additional software packages
to the image, so when the installation completes the system is able to leverage the installed
packages right away. EIB permits users to specify the following:

Packages by their name within a list in the image definition

Network repositories to search for these packages in

SUSE Customer Center (SCC) credentials to search official SUSE repositories for the listed
packages

Via an $CONFIG_DIR/rpms directory, side-load custom RPM’s that don’t exist in network
repositories

Via the same directory ($CONFIG_DIR/rpms/gpg-keys), GPG-keys to enable validation of
third party packages

EIB will then run through a package resolution process at image build time, taking the base
image as the input, and attempts to pull and install all supplied packages, either specified via
the list or provided locally. EIB downloads all of the packages, including any dependencies into
a repository that exists within the output image and instructs the system to install these during
the rst boot process. Doing this process during the image build guarantees that the packages

51 Configuring RPM packages

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md

will successfully install during rst-boot on the desired platform, e.g. the node at the edge. This
is also advantageous in environments where you want to bake the additional packages into the
image rather than pull them over the network when in operation, e.g. for air-gapped or restricted
network environments.

As a simple example to demonstrate this, we are going to install the nvidia-container-toolk-
it RPM package found in the third party vendor-supported NVIDIA repository:

 packages:
 packageList:
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64

The resulting definition le looks like:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword:
 6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1
 packages:
 packageList:
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64

The above is a simple example, but for completeness, download the NVIDIA package signing
key before running the image generation:

$ mkdir -p $CONFIG_DIR/rpms/gpg-keys
$ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey > $CONFIG_DIR/rpms/gpg-
keys/nvidia.gpg

Warning
Adding in additional RPM’s via this method is meant for the addition of supported third
party components or user-supplied (and maintained) packages; this mechanism should
not be used to add packages that would not usually be supported on SLE Micro. If this

52 Configuring RPM packages

mechanism is used to add components from openSUSE repositories (which are not sup-
ported), including from newer releases or service packs, you may end up with an unsup-
ported configuration, especially when dependency resolution results in core parts of the
operating system being replaced, even though the resulting system may appear to func-
tion as expected. If you’re unsure, contact your SUSE representative for assistance in de-
termining the supportability of your desired configuration.

Note
A more comprehensive guide with additional examples can be found in the up-

stream installing packages guide (https://github.com/suse-edge/edge-image-builder/blob/re-

lease-1.1/docs/installing-packages.md) .

3.3.3 Configuring Kubernetes cluster and user workloads

Another feature of EIB is the ability to use it to automate the deployment of both single-node and
multi-node highly-available Kubernetes clusters that "bootstrap in place", i.e. don’t require any
form of centralized management infrastructure to coordinate. The primary driver behind this
approach is for air-gapped deployments, or network restricted environments, but it also serves
as a way of quickly bootstrapping standalone clusters, even if full and unrestricted network
access is available.

This method enables not only the deployment of the customized operating system, but also the
ability to specify Kubernetes configuration, any additional layered components via Helm charts,
and any user workloads via supplied Kubernetes manifests. However, the design principle behind
using this method is that we default to assuming that the user is wanting to air-gap and therefore
any items specified in the image definition will be pulled into the image, which includes user-
supplied workloads, where EIB will make sure that any discovered images that are required by
definitions supplied are copied locally, and are served by the embedded image registry in the
resulting deployed system.

In this next example, we’re going to take our existing image definition and will specify a Ku-
bernetes configuration (in this example it doesn’t list the systems and their roles, so we default
to assuming single-node), which will instruct EIB to provision a single-node RKE2 Kubernetes
cluster. To show the automation of both the deployment of both user-supplied workloads (via

53 Configuring Kubernetes cluster and user workloads

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/installing-packages.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/installing-packages.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/installing-packages.md

manifest) and layered components (via Helm), we are going to install KubeVirt via the SUSE
Edge Helm chart, as well as NGINX via a Kubernetes manifest. The additional configuration we
need to append to the existing image definition is as follows:

kubernetes:
 version: v1.30.5+rke2r1
 manifests:
 urls:
 - https://k8s.io/examples/application/nginx-app.yaml
 helm:
 charts:
 - name: kubevirt-chart
 version: 0.4.0
 repositoryName: suse-edge
 repositories:
 - name: suse-edge
 url: oci://registry.suse.com/edge/3.1

The resulting full definition le should now look like:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword:
 6G392FCbxVgnLaFw1$Ujt00mdpJ3tDHxEg1snBU3GjujQf6f8kvopu7jiCBIhRbRvMmKUqwcmXAKggaSSKeUUOEtCP3ZUoZQY7zTXnC1
 packages:
 packageList:
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64
kubernetes:
 version: v1.30.5+rke2r1
 manifests:
 urls:
 - https://k8s.io/examples/application/nginx-app.yaml
 helm:
 charts:
 - name: kubevirt-chart
 version: 0.4.0
 repositoryName: suse-edge
 repositories:

54 Configuring Kubernetes cluster and user workloads

 - name: suse-edge
 url: oci://registry.suse.com/edge/3.1

Note
Further examples of options such as multi-node deployments, custom net-
working, and Helm chart options/values can be found in the upstream doc-

umentation (https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/build-

ing-images.md#kubernetes) .

3.3.4 Configuring the network

In the last example in this quickstart, let’s configure the network that will be brought up when a
system is provisioned with the image generated by EIB. It’s important to understand that unless
a network configuration is supplied, the default model is that DHCP will be used on all interfaces
discovered at boot time. However, this is not always a desirable configuration, especially if
DHCP is not available and you need to provide static configurations, or you need to set up
more complex networking constructs, e.g. bonds, LACP, and VLAN’s, or need to override certain
parameters, e.g. hostnames, DNS servers, and routes.

EIB provides the ability to provide either per-node configurations (where the system in question
is uniquely identified by its MAC address), or an override for supplying an identical configura-
tion to each machine, which is more useful when the system MAC addresses aren’t known. An
additional tool is used by EIB called Network Manager Configurator, or nmc for short, which is
a tool built by the SUSE Edge team to allow custom networking configurations to be applied
based on the nmstate.io (https://nmstate.io/) declarative network schema, and at boot time will
identify the node it’s booting on and will apply the desired network configuration prior to any
services coming up.

We’ll now apply a static network configuration for a system with a single interface by describing
the desired network state in a node-specific le (based on the desired hostname) in the required
network directory:

mkdir $CONFIG_DIR/network

cat << EOF > $CONFIG_DIR/network/host1.local.yaml
routes:
 config:
 - destination: 0.0.0.0/0

55 Configuring the network

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#kubernetes
https://nmstate.io/

 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: eth0
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E7
 ipv4:
 address:
 - ip: 192.168.122.50
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
EOF

Warning
The above example is set up for the default 192.168.122.0/24 subnet assuming that
testing is being executed on a virtual machine, please adapt to suit your environment,
not forgetting the MAC address. As the same image can be used to provision multiple
nodes, networking configured by EIB (via nmc) is dependent on it being able to uniquely
identify the node by its MAC address, and hence during boot nmc will apply the correct
networking configuration to each machine. This means that you’ll need to know the MAC
addresses of the systems you want to install onto. Alternatively, the default behavior is to
rely on DHCP, but you can utilize the configure-network.sh hook to apply a common
configuration to all nodes - see the networking guide (Chapter 10, Edge Networking) for
further details.

56 Configuring the network

The resulting le structure should look like:

├── iso-definition.yaml
├── base-images/
│ └── slemicro.iso
└── network/
 └── host1.local.yaml

The network configuration we just created will be parsed and the necessary NetworkManager
connection les will be automatically generated and inserted into the new installation image
that EIB will create. These les will be applied during the provisioning of the host, resulting in
a complete network configuration.

Note
Please refer to the Edge Networking component (Chapter 10, Edge Networking) for a more
comprehensive explanation of the above configuration and examples of this feature.

3.4 Building the image
Now that we’ve got a base image and an image definition for EIB to consume, let’s go ahead
and build the image. For this, we simply use podman to call the EIB container with the "build"
command, specifying the definition le:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
build --definition-file iso-definition.yaml

The output of the command should be similar to:

Setting up Podman API listener...
Downloading file: dl-manifest-1.yaml 100% (498/498 B, 9.5 MB/s)
Pulling selected Helm charts... 100% (1/1, 43 it/min)
Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Resolving package dependencies...
Rpm [SUCCESS]

57 Building the image

Os Files [SKIPPED]
Systemd [SKIPPED]
Fips [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% (3/3, 10 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Downloading file: rke2-images-core.linux-amd64.tar.zst 100% (657/657 MB, 48 MB/s)
Downloading file: rke2-images-cilium.linux-amd64.tar.zst 100% (368/368 MB, 48 MB/s)
Downloading file: rke2.linux-amd64.tar.gz 100% (35/35 MB, 50 MB/s)
Downloading file: sha256sum-amd64.txt 100% (4.3/4.3 kB, 6.2 MB/s)
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Cleanup [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Build complete, the image can be found at: eib-image.iso

The built ISO image is stored at $CONFIG_DIR/eib-image.iso:

├── iso-definition.yaml
├── eib-image.iso
├── _build
│ └── cache/
│ └── ...
│ └── build-<timestamp>/
│ └── ...
├── base-images/
│ └── slemicro.iso
└── network/
 └── host1.local.yaml

Each build creates a time-stamped folder in $CONFIG_DIR/_build/ that includes the logs of the
build, the artifacts used during the build, and the combustion and artefacts directories which
contain all the scripts and artifacts that are added to the CRB image.

The contents of this directory should look like:

├── build-<timestamp>/
│ │── combustion/
│ │ ├── 05-configure-network.sh
│ │ ├── 10-rpm-install.sh
│ │ ├── 12-keymap-setup.sh
│ │ ├── 13b-add-users.sh

58 Building the image

│ │ ├── 20-k8s-install.sh
│ │ ├── 26-embedded-registry.sh
│ │ ├── 48-message.sh
│ │ ├── network/
│ │ │ ├── host1.local/
│ │ │ │ └── eth0.nmconnection
│ │ │ └── host_config.yaml
│ │ ├── nmc
│ │ └── script
│ │── artefacts/
│ │ │── registry/
│ │ │ ├── hauler
│ │ │ ├── nginx:<version>-registry.tar.zst
│ │ │ ├── rancher_kubectl:<version>-registry.tar.zst
│ │ │ └── registry.suse.com_suse_sles_15.6_virt-operator:<version>-registry.tar.zst
│ │ │── rpms/
│ │ │ └── rpm-repo
│ │ │ ├── addrepo0
│ │ │ │ ├── nvidia-container-toolkit-<version>.rpm
│ │ │ │ ├── nvidia-container-toolkit-base-<version>.rpm
│ │ │ │ ├── libnvidia-container1-<version>.rpm
│ │ │ │ └── libnvidia-container-tools-<version>.rpm
│ │ │ ├── repodata
│ │ │ │ ├── ...
│ │ │ └── zypper-success
│ │ └── kubernetes/
│ │ ├── rke2_installer.sh
│ │ ├── registries.yaml
│ │ ├── server.yaml
│ │ ├── images/
│ │ │ ├── rke2-images-cilium.linux-amd64.tar.zst
│ │ │ └── rke2-images-core.linux-amd64.tar.zst
│ │ ├── install/
│ │ │ ├── rke2.linux-amd64.tar.gz
│ │ │ └── sha256sum-amd64.txt
│ │ └── manifests/
│ │ ├── dl-manifest-1.yaml
│ │ └── kubevirt.yaml
│ ├── createrepo.log
│ ├── eib-build.log
│ ├── embedded-registry.log
│ ├── helm
│ │ └── kubevirt-chart
│ │ └── kubevirt-0.4.0.tgz
│ ├── helm-pull.log
│ ├── helm-template.log
│ ├── iso-build.log

59 Building the image

│ ├── iso-build.sh
│ ├── iso-extract
│ │ └── ...
│ ├── iso-extract.log
│ ├── iso-extract.sh
│ ├── modify-raw-image.sh
│ ├── network-config.log
│ ├── podman-image-build.log
│ ├── podman-system-service.log
│ ├── prepare-resolver-base-tarball-image.log
│ ├── prepare-resolver-base-tarball-image.sh
│ ├── raw-build.log
│ ├── raw-extract
│ │ └── ...
│ └── resolver-image-build
│ └──...
└── cache
 └── ...

If the build fails, eib-build.log is the rst log that contains information. From there, it will
direct you to the component that failed for debugging.

At this point, you should have a ready-to-use image that will:

1. Deploy SLE Micro 6.0

2. Configure the root password

3. Install the nvidia-container-toolkit package

4. Configure an embedded container registry to serve content locally

5. Install single-node RKE2

6. Configure static networking

7. Install KubeVirt

8. Deploy a user-supplied manifest

3.5 Debugging the image build process
If the image build process fails, refer to the upstream debugging guide (https://github.com/suse-

edge/edge-image-builder/blob/release-1.1/docs/debugging.md) .

60 Debugging the image build process

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/debugging.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/debugging.md

3.6 Testing your newly built image
For instructions on how to test the newly built CRB image, refer to the upstream

image testing guide (https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/test-

ing-guide.md) .

61 Testing your newly built image

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/testing-guide.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/testing-guide.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/testing-guide.md

II Components Used

4 Rancher 63

5 Rancher Dashboard Extensions 66

6 Fleet 74

7 SLE Micro 85

8 Metal3 87

9 Edge Image Builder 88

10 Edge Networking 90

11 Elemental 113

12 Akri 115

13 K3s 124

14 RKE2 126

15 Longhorn 129

16 NeuVector 138

17 MetalLB 140

18 Edge Virtualization 142

19 System Upgrade Controller 159

20 Upgrade Controller 168

List of components for Edge

4 Rancher

See Rancher upstream documentation at https://ranchermanager.docs.rancher.com .

Rancher is a powerful open-source Kubernetes management platform that stream-
lines the deployment, operations and monitoring of Kubernetes clusters across
multiple environments. Whether you manage clusters on premises, in the cloud,
or at the edge, Rancher provides a unified and centralized platform for all your
Kubernetes needs.

4.1 Key Features of Rancher

Multi-cluster management: Rancher’s intuitive interface lets you manage Kubernetes
clusters from anywhere—public clouds, private data centers and edge locations.

Security and compliance: Rancher enforces security policies, role-based access control
(RBAC), and compliance standards across your Kubernetes landscape.

Simplified cluster operations: Rancher automates cluster provisioning, upgrades and
troubleshooting, simplifying Kubernetes operations for teams of all sizes.

Centralized application catalog: The Rancher application catalog offers a diverse range
of Helm charts and Kubernetes Operators, making it easy to deploy and manage container-
ized applications.

Continuous delivery: Rancher supports GitOps and CI/CD pipelines, enabling automated
and streamlined application delivery processes.

4.2 Rancher’s use in SUSE Edge
Rancher provides several core functionalities to the SUSE Edge stack:

4.2.1 Centralized Kubernetes management

In typical edge deployments with numerous distributed clusters, Rancher acts as a central con-
trol plane for managing these Kubernetes clusters. It offers a unified interface for provisioning,
upgrading, monitoring, and troubleshooting, simplifying operations, and ensuring consistency.

63 Key Features of Rancher

https://ranchermanager.docs.rancher.com

4.2.2 Simplified cluster deployment

Rancher streamlines Kubernetes cluster creation on the lightweight SLE Micro (SUSE Linux En-
terprise Micro) operating system, easing the rollout of edge infrastructure with robust Kuber-
netes capabilities.

4.2.3 Application deployment and management

The integrated Rancher application catalog can simplify deploying and managing containerized
applications across SUSE Edge clusters, enabling seamless edge workload deployment.

4.2.4 Security and policy enforcement

Rancher provides policy-based governance tools, role-based access control (RBAC), and integra-
tion with external authentication providers. This helps SUSE Edge deployments maintain secu-
rity and compliance, critical in distributed environments.

4.3 Best practices

4.3.1 GitOps

Rancher includes Fleet as a built-in component to allow manage cluster configurations and
application deployments with code stored in git.

4.3.2 Observability

Rancher includes built-in monitoring and logging tools like Prometheus and Grafana for com-
prehensive insights into your cluster health and performance.

4.4 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
Follow Section 23.6, “Rancher Installation” for an air-gapped installation of Rancher on top of Ku-
bernetes clusters provisioned by EIB.

64 Simplified cluster deployment

4.5 Additional Resources

Rancher Documentation (https://rancher.com/docs/)

Rancher Academy (https://www.rancher.academy/)

Rancher Community (https://rancher.com/community/)

Helm Charts (https://helm.sh/)

Kubernetes Operators (https://operatorhub.io/)

65 Additional Resources

https://rancher.com/docs/
https://www.rancher.academy/
https://rancher.com/community/
https://helm.sh/
https://operatorhub.io/

5 Rancher Dashboard Extensions

Extensions allow users, developers, partners, and customers to extend and enhance the Rancher
UI. SUSE Edge 3.1 provides KubeVirt and Akri dashboard extensions.

See Rancher documentation for general information about Rancher Dashboard Extensions.

5.1 Installation

All SUSE Edge 3.1 components including dashboard extensions are distributed as OCI artifacts.
To install SUSE Edge Extensions you can use Rancher Dashboard UI, Helm or Fleet:

5.1.1 Installing with Rancher Dashboard UI

1. Click Extensions in the Configuration section of the navigation sidebar.

2. On the Extensions page, click the three dot menu at the top right and select Manage
Repositories.
Each extension is distributed via it’s own OCI artefact. Therefore, you need to add reposi-
tories for each extension that needs to be installed.

3. On the Repositories page, click Create.

4. In the form, specify the repository name and OCI artifact URL, and click Create.
Akri Dashboard Extension Repository URL: oci://registry.suse.com/edge/3.1/akri-
dashboard-extension-chart

KubeVirt Dashboard Extension Repository URL: oci://registry.suse.com/edge/3.1/
kubevirt-dashboard-extension-chart

66 Installation

5. You can see that the extension repository is added to the list and is in Active state.

67 Installing with Rancher Dashboard UI

6. Navigate back to the Extensions in the Configuration section of the navigation sidebar.

68 Installing with Rancher Dashboard UI

In the Available tab you can see the extensions available for installation.

7. On the extension card click Install and confirm the installation.
Once the extension is installed Rancher UI prompts to reload the page as described in the
Installing Extensions Rancher documentation page.

5.1.2 Installing with Helm

KubeVirt extension
helm install kubevirt-dashboard-extension oci://registry.suse.com/edge/3.1/kubevirt-
dashboard-extension-chart --version 1.1.0 --namespace cattle-ui-plugin-system

Akri extension

69 Installing with Helm

helm install akri-dashboard-extension oci://registry.suse.com/edge/3.1/akri-dashboard-
extension-chart --version 1.1.0 --namespace cattle-ui-plugin-system

Note
The extensions need to be installed in cattle-ui-plugin-system namespace.

Note
After an extension is installed, Rancher Dashboard UI needs to be reloaded.

5.1.3 Installing with Fleet

Installing Dashboard Extensions with Fleet requires defining a gitRepo resource which points
to a Git repository with custom fleet.yaml bundle configuration le(s).

KubeVirt extension fleet.yaml
defaultNamespace: cattle-ui-plugin-system
helm:
 releaseName: kubevirt-dashboard-extension
 chart: oci://registry.suse.com/edge/3.1/kubevirt-dashboard-extension-chart
 version: "1.1.0"

Akri extension fleet.yaml
defaultNamespace: cattle-ui-plugin-system
helm:
 releaseName: akri-dashboard-extension
 chart: oci://registry.suse.com/edge/3.1/akri-dashboard-extension-chart
 version: "1.1.0"

Note
The releaseName property is required and needs to match the extension name to get the
extension correctly installed.

cat <<- EOF | kubectl apply -f -
apiVersion: fleet.cattle.io/v1alpha1
metadata:
 name: edge-dashboard-extensions

70 Installing with Fleet

 namespace: fleet-local
spec:
 repo: https://github.com/suse-edge/fleet-examples.git
 branch: main
 paths:
 - fleets/kubevirt-dashboard-extension/
 - fleets/akri-dashboard-extension/
EOF

For more information see Fleet (Chapter 6, Fleet) section and fleet-examples repository.

Once the Extensions are installed they are listed in Extensions section under Installed tabs.
Since they are not installed via Apps/Marketplace, they are marked with Third-Party label.

71 Installing with Fleet

72 Installing with Fleet

5.2 KubeVirt Dashboard Extension
KubeVirt Extension provides basic virtual machine management for Rancher dashboard UI. Its
capabilities are described in Using KubeVirt Rancher Dashboard Extension (Section 18.7.2, “Using

KubeVirt Rancher Dashboard Extension”).

5.3 Akri Dashboard Extension
Akri is a Kubernetes Resource Interface that lets you easily expose heterogeneous leaf devices
(such as IP cameras and USB devices) as resources in a Kubernetes cluster, while also supporting
the exposure of embedded hardware resources such as GPUs and FPGAs. Akri continually detects
nodes that have access to these devices and schedules workloads based on them.

Akri Dashboard Extension allows you to use Rancher Dashboard user interface to manage and
monitor leaf devices and run workloads once these devices are discovered.

Extension capabilities are further described in Akri section (Section 12.1.4, “Akri Rancher Dashboard

Extension”).

73 KubeVirt Dashboard Extension

6 Fleet

Fleet (https://fleet.rancher.io) is a container management and deployment engine designed to
offer users more control on the local cluster and constant monitoring through GitOps. Fleet
focuses not only on the ability to scale, but it also gives users a high degree of control and
visibility to monitor exactly what is installed on the cluster.

Fleet can manage deployments from Git of raw Kubernetes YAML, Helm charts, Kustomize, or
any combination of the three. Regardless of the source, all resources are dynamically turned
into Helm charts, and Helm is used as the engine to deploy all resources in the cluster. As a
result, users can enjoy a high degree of control, consistency and auditability of their clusters.

For information about how Fleet works, see this page (https://ranchermanager.docs.ranch-

er.com/integrations-in-rancher/fleet/architecture) .

6.1 Installing Fleet with Helm

Fleet comes built-in to Rancher, but it can be also installed (https://fleet.rancher.io/installation)

as a standalone application on any Kubernetes cluster using Helm.

6.2 Using Fleet with Rancher

Rancher uses Fleet to deploy applications across managed clusters. Continuous delivery with
Fleet introduces GitOps at scale, designed to manage applications running on large numbers
of clusters.

Fleet shines as an integrated part of Rancher. Clusters managed with Rancher automatically get
the Fleet agent deployed as part of the installation/import process and the cluster is immediately
available to be managed by Fleet.

6.3 Accessing Fleet in the Rancher UI

Fleet comes preinstalled in Rancher and is managed by the Continuous Delivery option in the
Rancher UI. For additional information on Continuous Delivery and other Fleet troubleshooting
tips, refer here (https://fleet.rancher.io/troubleshooting) .

74 Installing Fleet with Helm

https://fleet.rancher.io
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/architecture
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/architecture
https://fleet.rancher.io/installation
https://fleet.rancher.io/troubleshooting

Continuous Delivery section consists of following items:

6.3.1 Dashboard

An overview page of all GitOps repositories across all workspaces. Only the workspaces with
repositories are displayed.

75 Dashboard

6.3.2 Git repos

A list of GitOps repositories in the selected workspace. Select the active workspace using the
drop-down list at the top of the page.

6.3.3 Clusters

A list of managed clusters. By default, all Rancher-managed clusters are added to the fleet-
default workspace. fleet-local workspace includes the local (management) cluster. From
here, it is possible to Pause or Force update the clusters or move the cluster into another
workspace. Editing the cluster allows to update labels and annotations used for grouping the
clusters.

6.3.4 Cluster groups

This section allows custom grouping of the clusters within the workspace using selectors.

6.3.5 Advanced

The "Advanced" section allows to manage workspaces and other related Fleet resources.

6.4 Example of installing KubeVirt with Rancher and
Fleet using Rancher dashboard

1. Create a Git repository containing the fleet.yaml le:

defaultNamespace: kubevirt
helm:
 chart: "oci://registry.suse.com/edge/3.1/kubevirt-chart"
 version: "0.4.0"
 # kubevirt namespace is created by kubevirt as well, we need to take ownership of
 it
 takeOwnership: true

2. In the Rancher dashboard, navigate to # > Continuous Delivery > Git Repos and click
Add Repository.

76 Git repos

3. The Repository creation wizard guides through creation of the Git repo. Provide Name,
Repository URL (referencing the Git repository created in the previous step) and select
the appropriate branch or revision. In the case of a more complex repository, specify Paths
to use multiple directories in a single repository.

77 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

78 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

4. Click Next.

5. In the next step, you can define where the workloads will get deployed. Cluster selection
offers several basic options: you can select no clusters, all clusters, or directly choose a
specific managed cluster or cluster group (if defined). The "Advanced" option allows to
directly edit the selectors via YAML.

79 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

6. Click Create. The repository gets created. From now on, the workloads are installed and
kept in sync on the clusters matching the repository definition.

80 Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard

6.5 Debugging and troubleshooting

The "Advanced" navigation section provides overviews of lower-level Fleet resources. A bundle

(https://fleet.rancher.io/ref-bundle-stages) is an internal resource used for the orchestration of
resources from Git. When a Git repo is scanned, it produces one or more bundles.

To nd bundles relevant to a specific repository, go to the Git repo detail page and click the
Bundles tab.

81 Debugging and troubleshooting

https://fleet.rancher.io/ref-bundle-stages
https://fleet.rancher.io/ref-bundle-stages

For each cluster, the bundle is applied to a BundleDeployment resource that is created. To view
BundleDeployment details, click the Graph button in the upper right of the Git repo detail page.
A graph of Repo > Bundles > BundleDeployments is loaded. Click the BundleDeployment
in the graph to see its details and click the Id to view the BundleDeployment YAML.

82 Debugging and troubleshooting

83 Debugging and troubleshooting

For additional information on Fleet troubleshooting tips, refer here (https://fleet.rancher.io/trou-

bleshooting) .

6.6 Fleet examples
The Edge team maintains a repository (https://github.com/suse-edge/fleet-examples) with ex-
amples of installing Edge projects with Fleet.

The Fleet project includes a fleet-examples (https://github.com/rancher/fleet-examples) repos-
itory that covers all use cases for Git repository structure (https://fleet.rancher.io/gitrepo-con-

tent) .

84 Fleet examples

https://fleet.rancher.io/troubleshooting
https://fleet.rancher.io/troubleshooting
https://github.com/suse-edge/fleet-examples
https://github.com/rancher/fleet-examples
https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

7 SLE Micro

See SLE Micro official documentation (https://documentation.suse.com/sle-micro/6.0/)

SUSE Linux Enterprise Micro is a lightweight and secure operating system for the
edge. It merges the enterprise-hardened components of SUSE Linux Enterprise
with the features that developers want in a modern, immutable operating system.
As a result, you get a reliable infrastructure platform with best-in-class compli-
ance that is also simple to use.

7.1 How does SUSE Edge use SLE Micro?

We use SLE Micro as the base operating system for our platform stack. This provides us with a
secure, stable and minimal base for building upon.

SLE Micro is unique in its use of le system (Btrfs) snapshots to allow for easy rollbacks in case
something goes wrong with an upgrade. This allows for secure remote upgrades for the entire
platform even without physical access in case of issues.

7.2 Best practices

7.2.1 Installation media

SUSE Edge uses the Edge Image Builder (Chapter 9, Edge Image Builder) to preconfigure the SLE
Micro self-install installation image.

7.2.2 Local administration

SLE Micro comes with Cockpit to allow the local management of the host through a Web ap-
plication.

This service is disabled by default but can be started by enabling the systemd service cock-
pit.socket.

85 How does SUSE Edge use SLE Micro?

https://documentation.suse.com/sle-micro/6.0/

7.3 Known issues

There is no desktop environment available in SLE Micro at the moment but a containerized
solution is in development.

86 Known issues

8 Metal3

Metal3 (https://metal3.io/) is a CNCF project which provides bare-metal infrastructure manage-
ment capabilities for Kubernetes.

Metal3 provides Kubernetes-native resources to manage the lifecycle of bare-metal servers which
support management via out-of-band protocols such as Redfish (https://www.dmtf.org/stan-

dards/redfish) .

It also has mature support for Cluster API (CAPI) (https://cluster-api.sigs.k8s.io/) which enables
management of infrastructure resources across multiple infrastructure providers via broadly
adopted vendor-neutral APIs.

8.1 How does SUSE Edge use Metal3?
This method is useful for scenarios where the target hardware supports out-of-band manage-
ment, and a fully automated infrastructure management ow is desired.

This method provides declarative APIs that enable inventory and state management of bare-
metal servers, including automated inspection, cleaning and provisioning/deprovisioning.

8.2 Known issues

The upstream IP Address Management controller (https://github.com/metal3-io/ip-ad-

dress-manager) is currently not supported, because it is not yet compatible with our
choice of network configuration tooling.

Relatedly, the IPAM resources and Metal3DataTemplate networkData elds are not sup-
ported.

Only deployment via redfish-virtualmedia is currently supported.

87 How does SUSE Edge use Metal3?

https://metal3.io/
https://www.dmtf.org/standards/redfish
https://www.dmtf.org/standards/redfish
https://cluster-api.sigs.k8s.io/
https://github.com/metal3-io/ip-address-manager
https://github.com/metal3-io/ip-address-manager

9 Edge Image Builder

See the Official Repository (https://github.com/suse-edge/edge-image-builder) .

Edge Image Builder (EIB) is a tool that streamlines the generation of Customized, Ready-to-Boot
(CRB) disk images for bootstrapping machines. These images enable the end-to-end deployment
of the entire SUSE software stack with a single image.

Whilst EIB can create CRB images for all provisioning scenarios, EIB demonstrates a tremendous
value in air-gapped deployments with limited or completely isolated networks.

9.1 How does SUSE Edge use Edge Image Builder?
SUSE Edge uses EIB for the simplified and quick configuration of customized SLE Micro images
for a variety of scenarios. These scenarios include the bootstrapping of virtual and bare-metal
machines with:

Fully air-gapped deployments of K3s/RKE2 Kubernetes (single & multi-node)

Fully air-gapped Helm chart and Kubernetes manifest deployments

Registration to Rancher via Elemental API

Metal3

Customized networking (for example, static IP, host name, VLAN’s, bonding, etc.)

Customized operating system configurations (for example, users, groups, passwords, SSH
keys, proxies, NTP, custom SSL certificates, etc.)

Air-gapped installation of host-level and side-loaded RPM packages (including dependency
resolution)

Registration to SUSE Manager for OS management

Embedded container images

Kernel command-line arguments

Systemd units to be enabled/disabled at boot time

Custom scripts and les for any manual tasks

88 How does SUSE Edge use Edge Image Builder?

https://github.com/suse-edge/edge-image-builder

9.2 Getting started
Comprehensive documentation for the usage and testing of Edge Image Builder can be found
here (https://github.com/suse-edge/edge-image-builder/tree/release-1.1/docs) .

Additionally, here is a quick start guide (Chapter 3, Standalone clusters with Edge Image Builder) for
Edge Image Builder covering a basic deployment scenario.

9.3 Known issues

EIB air-gaps Helm charts through templating the Helm charts and parsing all the images
within the template. If a Helm chart does not keep all of its images within the template and
instead side-loads the images, EIB will not be able to air-gap those images automatically.
The solution to this is to manually add any undetected images to the embeddedArtifac-
tRegistry section of the definition le.

89 Getting started

https://github.com/suse-edge/edge-image-builder/tree/release-1.1/docs

10 Edge Networking

This section describes the approach to network configuration in the SUSE Edge solution. We
will show how to configure NetworkManager on SLE Micro in a declarative manner, and explain
how the related tools are integrated.

10.1 Overview of NetworkManager

NetworkManager is a tool that manages the primary network connection and other connection
interfaces.

NetworkManager stores network configurations as connection les that contain the desired state.
These connections are stored as les in the /etc/NetworkManager/system-connections/ di-
rectory.

Details about NetworkManager can be found in the SLE Micro documentation (https://documen-

tation.suse.com/sle-micro/6.0/html/Micro-network-configuration/index.html) .

10.2 Overview of nmstate

nmstate is a widely adopted library (with an accompanying CLI tool) which offers a declarative
API for network configurations via a predefined schema.

Details about nmstate can be found in the upstream documentation (https://nmstate.io/) .

10.3 Enter: NetworkManager Configurator (nmc)

The network customization options available in SUSE Edge are achieved via a CLI tool called
NetworkManager Configurator or nmc for short. It is leveraging the functionality provided by the
nmstate library and, as such, it is fully capable of configuring static IP addresses, DNS servers,
VLANs, bonding, bridges, etc. This tool allows us to generate network configurations from pre-
defined desired states and to apply those across many different nodes in an automated fashion.

Details about the NetworkManager Configurator (nmc) can be found in the upstream repository

(https://github.com/suse-edge/nm-configurator) .

90 Overview of NetworkManager

https://documentation.suse.com/sle-micro/6.0/html/Micro-network-configuration/index.html
https://documentation.suse.com/sle-micro/6.0/html/Micro-network-configuration/index.html
https://nmstate.io/
https://github.com/suse-edge/nm-configurator
https://github.com/suse-edge/nm-configurator

10.4 How does SUSE Edge use NetworkManager
Configurator?
SUSE Edge utilizes nmc for the network customizations in the various different provisioning
models:

Custom network configurations in the Directed Network Provisioning scenarios (Chapter 1,

BMC automated deployments with Metal3)

Declarative static configurations in the Image Based Provisioning scenarios (Chapter 3,

Standalone clusters with Edge Image Builder)

10.5 Configuring with Edge Image Builder
Edge Image Builder (EIB) is a tool which enables configuring multiple hosts with a single OS
image. In this section we’ll show how you can use a declarative approach to describe the desired
network states, how those are converted to the respective NetworkManager connections, and
are then applied during the provisioning process.

10.5.1 Prerequisites

If you’re following this guide, it’s assumed that you’ve got the following already available:

An x86_64 physical host (or virtual machine) running SLES 15 SP6 or openSUSE Leap 15.6

An available container runtime (e.g. Podman)

A copy of the SL Micro 6.0 RAW image found here (https://www.suse.com/download/sle-

micro/)

10.5.2 Getting the Edge Image Builder container image

The EIB container image is publicly available and can be downloaded from the SUSE Edge
registry by running:

podman pull registry.suse.com/edge/3.1/edge-image-builder:1.1.0

91 How does SUSE Edge use NetworkManager Configurator?

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

10.5.3 Creating the image configuration directory

Let’s start with creating the configuration directory:

export CONFIG_DIR=$HOME/eib
mkdir -p $CONFIG_DIR/base-images

We will now ensure that the downloaded base image copy is moved over to the configuration
directory:

mv /path/to/downloads/SL-Micro.x86_64-6.0-Base-GM2.raw $CONFIG_DIR/base-images/

Note
EIB is never going to modify the base image input.

The configuration directory at this point should look like the following:

└── base-images/
 └── SL-Micro.x86_64-6.0-Base-GM2.raw

10.5.4 Creating the image definition file

The definition le describes the majority of configurable options that the Edge Image Builder
supports.

Let’s start with a very basic definition le for our OS image:

cat << EOF > $CONFIG_DIR/definition.yaml
apiVersion: 1.0
image:
 arch: x86_64
 imageType: raw
 baseImage: SL-Micro.x86_64-6.0-Base-GM2.raw
 outputImageName: modified-image.raw
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
EOF

92 Creating the image configuration directory

The image section is required, and it specifies the input image, its architecture and type, as well
as what the output image will be called. The operatingSystem section is optional, and contains
configuration to enable login on the provisioned systems with the root/eib username/pass-
word.

Note
Feel free to use your own encrypted password by running openssl passwd
-6 <password>.

The configuration directory at this point should look like the following:

├── definition.yaml
└── base-images/
 └── SL-Micro.x86_64-6.0-Base-GM2.raw

10.5.5 Defining the network configurations

The desired network configurations are not part of the image definition le that we just created.
We’ll now populate those under the special network/ directory. Let’s create it:

mkdir -p $CONFIG_DIR/network

As previously mentioned, the NetworkManager Configurator (nmc) tool expects an input in the
form of predefined schema. You can nd how to set up a wide variety of different networking
options in the upstream NMState examples documentation (https://nmstate.io/examples.html) .

This guide will explain how to configure the networking on three different nodes:

A node which uses two Ethernet interfaces

A node which uses network bonding

A node which uses a network bridge

Warning
Using completely different network setups is not recommended in production builds, es-
pecially if configuring Kubernetes clusters. Networking configurations should generally
be homogeneous amongst nodes or at least amongst roles within a given cluster. This
guide is including various different options only to serve as an example reference.

93 Defining the network configurations

https://nmstate.io/examples.html

Note
The following assumes a default libvirt network with an IP address range
192.168.122.1/24. Adjust accordingly if this differs in your environment.

Let’s create the desired states for the rst node which we will call node1.suse.com:

cat << EOF > $CONFIG_DIR/network/node1.suse.com.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: eth0
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
 - name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E1
 ipv4:
 address:
 - ip: 192.168.122.50
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false
 - name: eth3
 type: ethernet
 state: down
 mac-address: 34:8A:B1:4B:16:E2
 ipv4:
 address:
 - ip: 192.168.122.55
 prefix-length: 24

94 Defining the network configurations

 dhcp: false
 enabled: true
 ipv6:
 enabled: false
EOF

In this example we define a desired state of two Ethernet interfaces (eth0 and eth3), their re-
quested IP addresses, routing, and DNS resolution.

Warning
You must ensure that the MAC addresses of all Ethernet interfaces are listed. Those are
used during the provisioning process as the identifiers of the nodes and serve to determine
which configurations should be applied. This is how we are able to configure multiple
nodes using a single ISO or RAW image.

Next up is the second node which we will call node2.suse.com and which will use network
bonding:

cat << EOF > $CONFIG_DIR/network/node2.suse.com.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: bond99
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: bond99
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
 - name: bond99
 type: bond
 state: up
 ipv4:
 address:
 - ip: 192.168.122.60

95 Defining the network configurations

 prefix-length: 24
 enabled: true
 link-aggregation:
 mode: balance-rr
 options:
 miimon: '140'
 port:
 - eth0
 - eth1
 - name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E3
 ipv4:
 enabled: false
 ipv6:
 enabled: false
 - name: eth1
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E4
 ipv4:
 enabled: false
 ipv6:
 enabled: false
EOF

In this example we define a desired state of two Ethernet interfaces (eth0 and eth1) which are
not enabling IP addressing, as well as a bond with a round-robin policy and its respective address
which is going to be used to forward the network traffic.

Lastly, we’ll create the third and final desired state le which will be utilizing a network bridge
and which we’ll call node3.suse.com:

cat << EOF > $CONFIG_DIR/network/node3.suse.com.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.122.1
 next-hop-interface: linux-br0
 table-id: 254
 - destination: 192.168.122.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: linux-br0
 table-id: 254

96 Defining the network configurations

dns-resolver:
 config:
 server:
 - 192.168.122.1
 - 8.8.8.8
interfaces:
 - name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E5
 ipv4:
 enabled: false
 ipv6:
 enabled: false
 - name: linux-br0
 type: linux-bridge
 state: up
 ipv4:
 address:
 - ip: 192.168.122.70
 prefix-length: 24
 dhcp: false
 enabled: true
 bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: true
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: eth0
 stp-hairpin-mode: false
 stp-path-cost: 100
 stp-priority: 32
EOF

The configuration directory at this point should look like the following:

├── definition.yaml
├── network/
│ │── node1.suse.com.yaml
│ │── node2.suse.com.yaml
│ └── node3.suse.com.yaml

97 Defining the network configurations

└── base-images/
 └── SL-Micro.x86_64-6.0-Base-GM2.raw

Note
The names of the les under the network/ directory are intentional. They
correspond to the hostnames which will be set during the provisioning
process.

10.5.6 Building the OS image

Now that all the necessary configurations are in place, we can build the image by simply running:

podman run --rm -it -v $CONFIG_DIR:/eib registry.suse.com/edge/3.1/edge-image-
builder:1.1.0 build --definition-file definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Embedded Artifact Registry ... [SKIPPED]
Keymap [SUCCESS]
Kubernetes [SKIPPED]
Certificates [SKIPPED]
Building RAW image...
Kernel Params [SKIPPED]
Image build complete!

The snippet above tells us that the Network component has successfully been configured, and
we can proceed with provisioning our edge nodes.

98 Building the OS image

Note
A log le (network-config.log) and the respective NetworkManager con-
nection les can be inspected in the resulting _build directory under a
timestamped directory for the image run.

10.5.7 Provisioning the edge nodes

Let’s copy the resulting RAW image:

mkdir edge-nodes && cd edge-nodes
for i in {1..4}; do cp $CONFIG_DIR/modified-image.raw node$i.raw; done

You will notice that we copied the built image four times but only specified the network con-
figurations for three nodes. This is because we also want to showcase what will happen if we
provision a node which does not match any of the desired configurations.

Note
This guide will use virtualization for the node provisioning ex-
amples. Ensure the necessary extensions are enabled in the BIOS
(see here (https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-

virt-support.html#sec-kvm-requires-hardware) for details).

We will be using virt-install to create virtual machines using the copied raw disks. Each
virtual machine will be using 10 GB of RAM and 6 vCPUs.

10.5.7.1 Provisioning the first node

Let’s create the virtual machine:

virt-install --name node1 --ram 10000 --vcpus 6 --disk path=node1.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default,mac=34:8A:B1:4B:16:E1 --network default,mac=34:8A:B1:4B:16:E2 --virt-type kvm --
import

99 Provisioning the edge nodes

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware

Note
It is important that we create the network interfaces with the same MAC
addresses as the ones in the desired state we described above.

Once the operation is complete, we will see something similar to the following:

Starting install...
Creating domain...

Running text console command: virsh --connect qemu:///system console node1
Connected to domain 'node1'
Escape character is ^] (Ctrl +])

Welcome to SUSE Linux Enterprise Micro 6.0 (x86_64) - Kernel 6.4.0-18-default (tty1).

SSH host key: SHA256:XN/R5Tw43reG+QsOw480LxCnhkc/1uqMdwlI6KUBY70 (RSA)
SSH host key: SHA256:/96yGrPGKlhn04f1rb9cXv/2WJt4TtrIN5yEcN66r3s (DSA)
SSH host key: SHA256:Dy/YjBQ7LwjZGaaVcMhTWZNSOstxXBsPsvgJTJq5t00 (ECDSA)
SSH host key: SHA256:TNGqY1LRddpxD/jn/8dkT/9YmVl9hiwulqmayP+wOWQ (ED25519)
eth0: 192.168.122.50
eth1:

Configured with the Edge Image Builder
Activate the web console with: systemctl enable --now cockpit.socket

node1 login:

We’re now able to log in with the root:eib credentials pair. We’re also able to SSH into the
host if we prefer that over the virsh console we’re presented with here.

Once logged in, let’s confirm that all the settings are in place.

Verify that the hostname is properly set:

node1:~ # hostnamectl
 Static hostname: node1.suse.com
 ...

Verify that the routing is properly configured:

node1:~ # ip r
default via 192.168.122.1 dev eth0 proto static metric 100
192.168.122.0/24 dev eth0 proto static scope link metric 100

100 Provisioning the edge nodes

192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.50 metric 100

Verify that Internet connection is available:

node1:~ # ping google.com
PING google.com (142.250.72.78) 56(84) bytes of data.
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=1 ttl=56 time=13.2 ms
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=2 ttl=56 time=13.4 ms
^C
--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 13.248/13.304/13.361/0.056 ms

Verify that exactly two Ethernet interfaces are configured and only one of those is active:

node1:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e1 brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
 inet 192.168.122.50/24 brd 192.168.122.255 scope global noprefixroute eth0
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e2 brd ff:ff:ff:ff:ff:ff
 altname enp0s3
 altname ens3

node1:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/system-
connections/eth0.nmconnection
eth1 7e211aea-3d14-59cf-a4fa-be91dac5dbba ethernet -- /etc/NetworkManager/system-
connections/eth1.nmconnection

You’ll notice that the second interface is eth1 instead of the predefined eth3 in our desired
networking state. This is the case because the NetworkManager Configurator (nmc) is able to
detect that the OS has given a different name for the NIC with MAC address 34:8a:b1:4b:16:e2
and it adjusts its settings accordingly.

101 Provisioning the edge nodes

Verify this has indeed happened by inspecting the Combustion phase of the provisioning:

node1:~ # journalctl -u combustion | grep nmc
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Identified host: node1.suse.com
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Set hostname: node1.suse.com
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Processing interface 'eth0'...
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Processing interface 'eth3'...
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO
 nmc::apply_conf] Using interface name 'eth1' instead of the preconfigured 'eth3'
Apr 23 09:20:19 localhost.localdomain combustion[1360]: [2024-04-23T09:20:19Z INFO nmc]
 Successfully applied config

We will now provision the rest of the nodes, but we will only show the differences in the final
configuration. Feel free to apply any or all of the above checks for all nodes you are about to
provision.

10.5.7.2 Provisioning the second node

Let’s create the virtual machine:

virt-install --name node2 --ram 10000 --vcpus 6 --disk path=node2.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default,mac=34:8A:B1:4B:16:E3 --network default,mac=34:8A:B1:4B:16:E4 --virt-type kvm --
import

Once the virtual machine is up and running, we can confirm that this node is using bonded
interfaces:

node2:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond99
 state UP group default qlen 1000
 link/ether 34:8a:b1:4b:16:e3 brd ff:ff:ff:ff:ff:ff
 altname enp0s2

102 Provisioning the edge nodes

 altname ens2
3: eth1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master bond99
 state UP group default qlen 1000
 link/ether 34:8a:b1:4b:16:e3 brd ff:ff:ff:ff:ff:ff permaddr 34:8a:b1:4b:16:e4
 altname enp0s3
 altname ens3
4: bond99: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e3 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.60/24 brd 192.168.122.255 scope global noprefixroute bond99
 valid_lft forever preferred_lft forever

Confirm that the routing is using the bond:

node2:~ # ip r
default via 192.168.122.1 dev bond99 proto static metric 100
192.168.122.0/24 dev bond99 proto static scope link metric 100
192.168.122.0/24 dev bond99 proto kernel scope link src 192.168.122.60 metric 300

Ensure that the static connection les are properly utilized:

node2:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
bond99 4a920503-4862-5505-80fd-4738d07f44c6 bond bond99 /etc/NetworkManager/
system-connections/bond99.nmconnection
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/
system-connections/eth0.nmconnection
eth1 0523c0a1-5f5e-5603-bcf2-68155d5d322e ethernet eth1 /etc/NetworkManager/
system-connections/eth1.nmconnection

10.5.7.3 Provisioning the third node

Let’s create the virtual machine:

virt-install --name node3 --ram 10000 --vcpus 6 --disk path=node3.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default,mac=34:8A:B1:4B:16:E5 --virt-type kvm --import

Once the virtual machine is up and running, we can confirm that this node is using a network
bridge:

node3:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

103 Provisioning the edge nodes

 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master linux-br0
 state UP group default qlen 1000
 link/ether 34:8a:b1:4b:16:e5 brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
3: linux-br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group
 default qlen 1000
 link/ether 34:8a:b1:4b:16:e5 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.70/24 brd 192.168.122.255 scope global noprefixroute linux-br0
 valid_lft forever preferred_lft forever

Confirm that the routing is using the bridge:

node3:~ # ip r
default via 192.168.122.1 dev linux-br0 proto static metric 100
192.168.122.0/24 dev linux-br0 proto static scope link metric 100
192.168.122.0/24 dev linux-br0 proto kernel scope link src 192.168.122.70 metric 425

Ensure that the static connection les are properly utilized:

node3:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
linux-br0 1f8f1469-ed20-5f2c-bacb-a6767bee9bc0 bridge linux-br0 /etc/
NetworkManager/system-connections/linux-br0.nmconnection
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/
NetworkManager/system-connections/eth0.nmconnection

10.5.7.4 Provisioning the fourth node

Lastly, we will provision a node which will not match any of the predefined configurations by
a MAC address. In these cases, we will default to DHCP to configure the network interfaces.

Let’s create the virtual machine:

virt-install --name node4 --ram 10000 --vcpus 6 --disk path=node4.raw,format=raw --osinfo
 detect=on,name=sle-unknown --graphics none --console pty,target_type=serial --network
 default --virt-type kvm --import

Once the virtual machine is up and running, we can confirm that this node is using a random
IP address for its network interface:

localhost:~ # ip a

104 Provisioning the edge nodes

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:56:63:71 brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
 inet 192.168.122.86/24 brd 192.168.122.255 scope global dynamic noprefixroute eth0
 valid_lft 3542sec preferred_lft 3542sec
 inet6 fe80::5054:ff:fe56:6371/64 scope link noprefixroute
 valid_lft forever preferred_lft forever

Verify that nmc failed to apply static configurations for this node:

localhost:~ # journalctl -u combustion | grep nmc
Apr 23 12:15:45 localhost.localdomain combustion[1357]: [2024-04-23T12:15:45Z ERROR nmc]
 Applying config failed: None of the preconfigured hosts match local NICs

Verify that the Ethernet interface was configured via DHCP:

localhost:~ # journalctl | grep eth0
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7801]
 manager: (eth0): new Ethernet device (/org/freedesktop/NetworkManager/Devices/2)
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7802]
 device (eth0): state change: unmanaged -> unavailable (reason 'managed', sys-iface-
state: 'external')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7929]
 device (eth0): carrier: link connected
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7931]
 device (eth0): state change: unavailable -> disconnected (reason 'carrier-changed', sys-
iface-state: 'managed')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info>
 [1713874529.7944] device (eth0): Activation: starting connection 'Wired
 Connection' (300ed658-08d4-4281-9f8c-d1b8882d29b9)
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7945]
 device (eth0): state change: disconnected -> prepare (reason 'none', sys-iface-state:
 'managed')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7947]
 device (eth0): state change: prepare -> config (reason 'none', sys-iface-state:
 'managed')
Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7953]
 device (eth0): state change: config -> ip-config (reason 'none', sys-iface-state:
 'managed')

105 Provisioning the edge nodes

Apr 23 12:15:29 localhost.localdomain NetworkManager[704]: <info> [1713874529.7964]
 dhcp4 (eth0): activation: beginning transaction (timeout in 90 seconds)
Apr 23 12:15:33 localhost.localdomain NetworkManager[704]: <info> [1713874533.1272]
 dhcp4 (eth0): state changed new lease, address=192.168.122.86

localhost:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
Wired Connection 300ed658-08d4-4281-9f8c-d1b8882d29b9 ethernet eth0 /var/run/
NetworkManager/system-connections/default_connection.nmconnection

10.5.8 Unified node configurations

There are occasions where relying on known MAC addresses is not an option. In these cases we
can opt for the so-called unified configuration which allows us to specify settings in an _all.yaml
le which will then be applied across all provisioned nodes.

We will build and provision an edge node using different configuration structure. Follow all
steps starting from Section 10.5.3, “Creating the image configuration directory” up until Section 10.5.5,

“Defining the network configurations”.

In this example we define a desired state of two Ethernet interfaces (eth0 and eth1) - one using
DHCP, and one assigned a static IP address.

mkdir -p $CONFIG_DIR/network

cat <<- EOF > $CONFIG_DIR/network/_all.yaml
interfaces:
- name: eth0
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
 ipv6:
 enabled: false
- name: eth1
 type: ethernet
 state: up
 ipv4:
 address:
 - ip: 10.0.0.1
 prefix-length: 24
 enabled: true
 dhcp: false
 ipv6:

106 Unified node configurations

 enabled: false
EOF

Let’s build the image:

podman run --rm -it -v $CONFIG_DIR:/eib registry.suse.com/edge/3.1/edge-image-
builder:1.1.0 build --definition-file definition.yaml

Once the image is successfully built, let’s create a virtual machine using it:

virt-install --name node1 --ram 10000 --vcpus 6 --disk path=$CONFIG_DIR/modified-
image.raw,format=raw --osinfo detect=on,name=sle-unknown --graphics none --console
 pty,target_type=serial --network default --network default --virt-type kvm --import

The provisioning process might take a few minutes. Once it’s finished, log in to the system with
the provided credentials.

Verify that the routing is properly configured:

localhost:~ # ip r
default via 192.168.122.1 dev eth0 proto dhcp src 192.168.122.100 metric 100
10.0.0.0/24 dev eth1 proto kernel scope link src 10.0.0.1 metric 101
192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.100 metric 100

Verify that Internet connection is available:

localhost:~ # ping google.com
PING google.com (142.250.72.46) 56(84) bytes of data.
64 bytes from den16s08-in-f14.1e100.net (142.250.72.46): icmp_seq=1 ttl=56 time=14.3 ms
64 bytes from den16s08-in-f14.1e100.net (142.250.72.46): icmp_seq=2 ttl=56 time=14.2 ms
^C
--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 14.196/14.260/14.324/0.064 ms

Verify that the Ethernet interfaces are configured and active:

localhost:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:26:44:7a brd ff:ff:ff:ff:ff:ff
 altname enp1s0
 inet 192.168.122.100/24 brd 192.168.122.255 scope global dynamic noprefixroute eth0

107 Unified node configurations

 valid_lft 3505sec preferred_lft 3505sec
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:ec:57:9e brd ff:ff:ff:ff:ff:ff
 altname enp7s0
 inet 10.0.0.1/24 brd 10.0.0.255 scope global noprefixroute eth1
 valid_lft forever preferred_lft forever

localhost:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/system-
connections/eth0.nmconnection
eth1 0523c0a1-5f5e-5603-bcf2-68155d5d322e ethernet eth1 /etc/NetworkManager/system-
connections/eth1.nmconnection

localhost:~ # cat /etc/NetworkManager/system-connections/eth0.nmconnection
[connection]
autoconnect=true
autoconnect-slaves=-1
id=eth0
interface-name=eth0
type=802-3-ethernet
uuid=dfd202f5-562f-5f07-8f2a-a7717756fb70

[ipv4]
dhcp-client-id=mac
dhcp-send-hostname=true
dhcp-timeout=2147483647
ignore-auto-dns=false
ignore-auto-routes=false
method=auto
never-default=false

[ipv6]
addr-gen-mode=0
dhcp-timeout=2147483647
method=disabled

localhost:~ # cat /etc/NetworkManager/system-connections/eth1.nmconnection
[connection]
autoconnect=true
autoconnect-slaves=-1
id=eth1
interface-name=eth1
type=802-3-ethernet
uuid=0523c0a1-5f5e-5603-bcf2-68155d5d322e

108 Unified node configurations

[ipv4]
address0=10.0.0.1/24
dhcp-timeout=2147483647
method=manual

[ipv6]
addr-gen-mode=0
dhcp-timeout=2147483647
method=disabled

10.5.9 Custom network configurations

We have already covered the default network configuration for Edge Image Builder which relies
on the NetworkManager Configurator. However, there is also the option to modify it via a custom
script. Whilst this option is very flexible and is also not MAC address dependant, its limitation
stems from the fact that using it is much less convenient when bootstrapping multiple nodes
with a single image.

Note
It is recommended to use the default network configuration via les de-
scribing the desired network states under the /network directory. Only opt
for custom scripting when that behaviour is not applicable to your use case.

We will build and provision an edge node using different configuration structure. Follow all
steps starting from Section 10.5.3, “Creating the image configuration directory” up until Section 10.5.5,

“Defining the network configurations”.

In this example, we will create a custom script which applies static configuration for the eth0
interface on all provisioned nodes, as well as removing and disabling the automatically created
wired connections by NetworkManager. This is beneficial in situations where you want to make
sure that every node in your cluster has an identical networking configuration, and as such you
do not need to be concerned with the MAC address of each node prior to image creation.

Let’s start by storing the connection le in the /custom/files directory:

mkdir -p $CONFIG_DIR/custom/files

cat << EOF > $CONFIG_DIR/custom/files/eth0.nmconnection
[connection]

109 Custom network configurations

autoconnect=true
autoconnect-slaves=-1
autoconnect-retries=1
id=eth0
interface-name=eth0
type=802-3-ethernet
uuid=dfd202f5-562f-5f07-8f2a-a7717756fb70
wait-device-timeout=60000

[ipv4]
dhcp-timeout=2147483647
method=auto

[ipv6]
addr-gen-mode=eui64
dhcp-timeout=2147483647
method=disabled
EOF

Now that the static configuration is created, we will also create our custom network script:

mkdir -p $CONFIG_DIR/network

cat << EOF > $CONFIG_DIR/network/configure-network.sh
#!/bin/bash
set -eux

Remove and disable wired connections
mkdir -p /etc/NetworkManager/conf.d/
printf "[main]\nno-auto-default=*\n" > /etc/NetworkManager/conf.d/no-auto-default.conf
rm -f /var/run/NetworkManager/system-connections/* || true

Copy pre-configured network configuration files into NetworkManager
mkdir -p /etc/NetworkManager/system-connections/
cp eth0.nmconnection /etc/NetworkManager/system-connections/
chmod 600 /etc/NetworkManager/system-connections/*.nmconnection
EOF

chmod a+x $CONFIG_DIR/network/configure-network.sh

Note
The nmc binary will still be included by default, so it can also be used in
the configure-network.sh script if necessary.

110 Custom network configurations

Warning
The custom script must always be provided under /network/configure-network.sh in
the configuration directory. If present, all other les will be ignored. It is NOT possible
to configure a network by working with both static configurations in YAML format and
a custom script simultaneously.

The configuration directory at this point should look like the following:

├── definition.yaml
├── custom/
│ └── files/
│ └── eth0.nmconnection
├── network/
│ └── configure-network.sh
└── base-images/
 └── SL-Micro.x86_64-6.0-Base-GM2.raw

Let’s build the image:

podman run --rm -it -v $CONFIG_DIR:/eib registry.suse.com/edge/3.1/edge-image-
builder:1.1.0 build --definition-file definition.yaml

Once the image is successfully built, let’s create a virtual machine using it:

virt-install --name node1 --ram 10000 --vcpus 6 --disk path=$CONFIG_DIR/modified-
image.raw,format=raw --osinfo detect=on,name=sle-unknown --graphics none --console
 pty,target_type=serial --network default --virt-type kvm --import

The provisioning process might take a few minutes. Once it’s finished, log in to the system with
the provided credentials.

Verify that the routing is properly configured:

localhost:~ # ip r
default via 192.168.122.1 dev eth0 proto dhcp src 192.168.122.185 metric 100
192.168.122.0/24 dev eth0 proto kernel scope link src 192.168.122.185 metric 100

Verify that Internet connection is available:

localhost:~ # ping google.com
PING google.com (142.250.72.78) 56(84) bytes of data.
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=1 ttl=56 time=13.6 ms
64 bytes from den16s09-in-f14.1e100.net (142.250.72.78): icmp_seq=2 ttl=56 time=13.6 ms
^C

111 Custom network configurations

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 13.592/13.599/13.606/0.007 ms

Verify that an Ethernet interface is statically configured using our connection le and is active:

localhost:~ # ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen
 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group
 default qlen 1000
 link/ether 52:54:00:31:d0:1b brd ff:ff:ff:ff:ff:ff
 altname enp0s2
 altname ens2
 inet 192.168.122.185/24 brd 192.168.122.255 scope global dynamic noprefixroute eth0

localhost:~ # nmcli -f NAME,UUID,TYPE,DEVICE,FILENAME con show
NAME UUID TYPE DEVICE FILENAME
eth0 dfd202f5-562f-5f07-8f2a-a7717756fb70 ethernet eth0 /etc/NetworkManager/system-
connections/eth0.nmconnection

localhost:~ # cat /etc/NetworkManager/system-connections/eth0.nmconnection
[connection]
autoconnect=true
autoconnect-slaves=-1
autoconnect-retries=1
id=eth0
interface-name=eth0
type=802-3-ethernet
uuid=dfd202f5-562f-5f07-8f2a-a7717756fb70
wait-device-timeout=60000

[ipv4]
dhcp-timeout=2147483647
method=auto

[ipv6]
addr-gen-mode=eui64
dhcp-timeout=2147483647
method=disabled

112 Custom network configurations

11 Elemental

Elemental is a software stack enabling centralized and full cloud-native OS management with
Kubernetes. The Elemental stack consists of a number of components that either reside on Ranch-
er itself, or on the edge nodes. The core components are:

elemental-operator - The core operator that resides on Rancher and handles registration
requests from clients.

elemental-register - The client that runs on the edge nodes allowing registration via the
elemental-operator.

elemental-system-agent - An agent that resides on the edge nodes; its configuration is
fed from elemental-register and it receives a plan for configuring the rancher-sys-
tem-agent

rancher-system-agent - Once the edge node has fully registered, this takes over from
elemental-system-agent and waits for further plans from Rancher Manager (e.g. for
Kubernetes installation).

See Elemental upstream documentation (https://elemental.docs.rancher.com/) for full informa-
tion about Elemental and its relationship to Rancher.

11.1 How does SUSE Edge use Elemental?

We use portions of Elemental for managing remote devices where Metal3 is not an option (for
example, there is no BMC, or the device is behind a NAT gateway). This tooling allows for an
operator to bootstrap their devices in a lab before knowing when or where they will be shipped
to. Namely, we leverage the elemental-register and elemental-system-agent components
to enable the onboarding of SLE Micro hosts to Rancher for "phone home" network provisioning
use-cases. When using Edge Image Builder (EIB) to create deployment images, the automatic
registration through Rancher via Elemental can be achieved by specifying the registration con-
figuration in the configuration directory for EIB.

113 How does SUSE Edge use Elemental?

https://elemental.docs.rancher.com/

Note
In SUSE Edge 3.1 we do not leverage the operating system management aspects of El-
emental, and therefore it’s not possible to manage your operating system patching via
Rancher. Instead of using the Elemental tools to build deployment images, SUSE Edge
uses the Edge Image Builder tooling, which consumes the registration configuration.

11.2 Best practices

11.2.1 Installation media

The SUSE Edge recommended way of building deployments image that can leverage Elemental
for registration to Rancher in the "phone home network provisioning" deployment footprint is to
follow the instructions detailed in the remote host onboarding with Elemental (Chapter 2, Remote

host onboarding with Elemental) quickstart.

11.2.2 Labels

Elemental tracks its inventory with the MachineInventory CRD and provides a way to select
inventory, e.g. for selecting machines to deploy Kubernetes clusters to, based on labels. This
provides a way for users to predefine most (if not all) of their infrastructure needs prior to hard-
ware even being purchased. Also, since nodes can add/remove labels on their respective inven-
tory object (by re-running elemental-register with the additional ag --label "FOO=BAR"),
we can write scripts that will discover and let Rancher know where a node is booted.

11.3 Known issues

The Elemental UI does not currently know how to build installation media or update
non-"Elemental Teal" operating systems. This should be addressed in future releases.

114 Best practices

12 Akri

Akri is a CNCF-Sandbox project that aims to discover leaf devices to present those as Kubernetes
native resource. It also allows scheduling a pod or a job for each discovered device. Devices can
be node-local or networked, and can use a wide variety of protocols.

Akri’s upstream documentation is available at: https://docs.akri.sh

12.1 How does SUSE Edge use Akri?

Warning
Akri is currently tech-preview in the SUSE Edge stack.

Akri is available as part of the Edge Stack whenever there is a need to discover and schedule
workload against leaf devices.

12.1.1 Installing Akri

Akri is available as a Helm chart within the Edge Helm repository. The recommended way of
configuring Akri is by using the given Helm chart to deploy the different components (agent,
controller, discovery-handlers), and then use your preferred deployment mechanism to deploy
Akri’s Configuration CRDs.

12.1.2 Configuring Akri

Akri is configured using a akri.sh/Configuration object, this object takes in all information
about how to discover the devices, as well as what to do when a matching one is discovered.

Here is an example configuration breakdown with all elds explained:

apiVersion: akri.sh/v0
kind: Configuration
metadata:
 name: sample-configuration
spec:

115 How does SUSE Edge use Akri?

https://docs.akri.sh

This part describes the configuration of the discovery handler, you have to specify its name (the
handlers available as part of Akri’s chart are udev, opcua, onvif). The discoveryDetails is
handler specific, refer to the handler’s documentation on how to configure it.

 discoveryHandler:
 name: debugEcho
 discoveryDetails: |+
 descriptions:
 - "foo"
 - "bar"

This section defines the workload to be deployed for every discovered device. The example
shows a minimal version of a Pod configuration in brokerPodSpec, all usual elds of a Pod’s spec
can be used here. It also shows the Akri specific syntax to request the device in the resources
section.

You can alternatively use a Job instead of a Pod, using the brokerJobSpec key instead, and
providing the spec part of a Job to it.

 brokerSpec:
 brokerPodSpec:
 containers:
 - name: broker-container
 image: rancher/hello-world
 resources:
 requests:
 "{{PLACEHOLDER}}" : "1"
 limits:
 "{{PLACEHOLDER}}" : "1"

These two sections show how to configure Akri to deploy a service per broker (instanceSer-
vice), or pointing to all brokers (configurationService). These are containing all elements
pertaining to a usual Service.

 instanceServiceSpec:
 type: ClusterIp
 ports:
 - name: http
 port: 80
 protocol: tcp
 targetPort: 80
 configurationServiceSpec:
 type: ClusterIp
 ports:
 - name: https

116 Configuring Akri

 port: 443
 protocol: tcp
 targetPort: 443

The brokerProperties eld is a key/value store that will be exposed as additional environment
variables to any pod requesting a discovered device.

The capacity is the allowed number of concurrent users of a discovered device.

 brokerProperties:
 key: value
 capacity: 1

12.1.3 Writing and deploying additional Discovery Handlers

In case the protocol used by your device isn’t covered by an existing discovery handler, you can
write your own using this guide (https://docs.akri.sh/development/handler-development)

12.1.4 Akri Rancher Dashboard Extension

Akri Dashboard Extension allows you to use Rancher Dashboard user interface to manage and
monitor leaf devices and run workloads once these devices are discovered.

See Rancher Dashboard Extensions (Chapter 5, Rancher Dashboard Extensions) for installation guid-
ance.

Once the extension is installed you can navigate to any Akri-enabled managed cluster using
cluster explorer. Under Akri navigation group you can see Configurations and Instances sections.

117 Writing and deploying additional Discovery Handlers

https://docs.akri.sh/development/handler-development

The configurations list provides information about Configuration Discovery Handler and number
of instances. Clicking the name opens a configuration detail page.

118 Akri Rancher Dashboard Extension

119 Akri Rancher Dashboard Extension

You can also edit or create a new Configuration. Extension allows you to select discovery han-
dler, set up Broker Pod or Job, configure Configuration and Instance services and set the Con-
figuration capacity.

120 Akri Rancher Dashboard Extension

121 Akri Rancher Dashboard Extension

Discovered devices are listed in the Instances list.

Clicking the Instance name opens a detail page allowing to view the workloads and instance
service.

122 Akri Rancher Dashboard Extension

123 Akri Rancher Dashboard Extension

13 K3s

K3s (https://k3s.io/) is a highly available, certified Kubernetes distribution designed for produc-
tion workloads in unattended, resource-constrained, remote locations or inside IoT appliances.

It is packaged as a single and small binary, so installations and updates are fast and easy.

13.1 How does SUSE Edge use K3s
K3s can be used as the Kubernetes distribution backing the SUSE Edge stack. It is meant to be
installed on a SLE Micro operating system.

Using K3s as the SUSE Edge stack Kubernetes distribution is only recommended when etcd as a
backend does not t your constraints. If etcd as a backend is possible, it is better to use RKE2
(Chapter 14, RKE2).

13.2 Best practices

13.2.1 Installation

The recommended way of installing K3s as part of the SUSE Edge stack is by using Edge Image
Builder (EIB). See its documentation (Chapter 9, Edge Image Builder) for more details on how to
configure it to deploy K3s.

It automatically supports HA setup, as well as Elemental setup.

13.2.2 Fleet for GitOps workflow

The SUSE Edge stack uses Fleet as its preferred GitOps tool. For more information around its
installation and use, refer to the Fleet section (Chapter 6, Fleet) in this documentation.

13.2.3 Storage management

K3s comes with local-path storage preconfigured, which is suitable for single-node clusters. For
clusters spanning over multiple nodes, we recommend using Longhorn (Chapter 15, Longhorn).

124 How does SUSE Edge use K3s

https://k3s.io/

13.2.4 Load balancing and HA

If you installed K3s using EIB, this part is already covered by the EIB documentation in the
HA section.

Otherwise, you need to install and configure MetalLB as per our MetalLB documentation (Chap-

ter 21, MetalLB on K3s (using L2)).

125 Load balancing and HA

14 RKE2

See RKE2 official documentation (https://docs.rke2.io/) .

RKE2 is a fully conformant Kubernetes distribution that focuses on security and compliance by:

Providing defaults and configuration options that allow clusters to pass the CIS Kubernetes
Benchmark v1.6 or v1.23 with minimal operator intervention

Enabling FIPS 140-2 compliance

Regularly scanning components for CVEs using trivy (https://trivy.dev) in the RKE2 build
pipeline

RKE2 launches control plane components as static pods, managed by kubelet. The embedded
container runtime is containerd.

Note: RKE2 is also known as RKE Government in order to convey another use case and sector
it currently targets.

14.1 RKE2 vs K3s

K3s is a fully compliant and lightweight Kubernetes distribution focused on Edge, IoT, ARM -
optimized for ease of use and resource constrained environments.

RKE2 combines the best of both worlds from the 1.x version of RKE (hereafter referred to as
RKE1) and K3s.

From K3s, it inherits the usability, ease of operation and deployment model.

From RKE1, it inherits close alignment with upstream Kubernetes. In places, K3s has diverged
from upstream Kubernetes in order to optimize for edge deployments, but RKE1 and RKE2 can
stay closely aligned with upstream.

14.2 How does SUSE Edge use RKE2?

RKE2 is a fundamental piece of the SUSE Edge stack. It sits on top of SUSE Linux Micro (Chapter 7,

SLE Micro), providing a standard Kubernetes interface required to deploy Edge workloads.

126 RKE2 vs K3s

https://docs.rke2.io/
https://trivy.dev

14.3 Best practices

14.3.1 Installation

The recommended way of installing RKE2 as part of the SUSE Edge stack is by using Edge Image
Builder (EIB). See the EIB documentation (Chapter 9, Edge Image Builder) for more details on how
to configure it to deploy RKE2.

EIB is flexible enough to support any parameter required by RKE2, such as specifying the
RKE2 version, the servers (https://docs.rke2.io/reference/server_config) or the agents (https://

docs.rke2.io/reference/linux_agent_config) configuration, covering all the Edge use cases.

For other use cases involving Metal3, RKE2 is also being used and installed. In those particu-
lar cases, the Cluster API Provider RKE2 (https://github.com/rancher-sandbox/cluster-api-provider-

rke2) automatically deploys RKE2 on clusters being provisioned with Metal3 using the Edge
Stack.

In those cases, the RKE2 configuration must be applied on the different CRDs involved. An
example of how to provide a different CNI using the RKE2ControlPlane CRD looks like:

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 serverConfig:
 cni: calico
 cniMultusEnable: true
...

For more information about the Metal3 use cases, see Chapter 8, Metal3.

14.3.2 High availability

For HA deployments, EIB automatically deploys and configures MetalLB (Chapter 17, MetalLB)
and the Endpoint Copier Operator (https://github.com/suse-edge/endpoint-copier-operator) to
expose the RKE2 API endpoint externally.

127 Best practices

https://docs.rke2.io/reference/server_config
https://docs.rke2.io/reference/linux_agent_config
https://docs.rke2.io/reference/linux_agent_config
https://github.com/rancher-sandbox/cluster-api-provider-rke2
https://github.com/rancher-sandbox/cluster-api-provider-rke2
https://github.com/suse-edge/endpoint-copier-operator

14.3.3 Networking

The supported CNI for the Edge Stack is Cilium (https://docs.cilium.io/en/stable/) with optional-
ly adding the meta-plugin Multus (https://github.com/k8snetworkplumbingwg/multus-cni) , but
RKE2 supports a few others (https://docs.rke2.io/install/network_options) as well.

14.3.4 Storage

RKE2 does not provide any kind of persistent storage class or operators. For clusters spanning
over multiple nodes, it is recommended to use Longhorn (Chapter 15, Longhorn).

128 Networking

https://docs.cilium.io/en/stable/
https://github.com/k8snetworkplumbingwg/multus-cni
https://docs.rke2.io/install/network_options

15 Longhorn

Longhorn is a lightweight, reliable and user-friendly distributed block storage system designed
for Kubernetes. As an open source project, Longhorn was initially developed by Rancher Labs
and is currently incubated under the CNCF.

15.1 Prerequisites

If you are following this guide, it assumes that you have the following already available:

At least one host with SLE Micro 6.0 installed; this can be physical or virtual

A Kubernetes cluster installed; either K3s or RKE2

Helm

15.2 Manual installation of Longhorn

15.2.1 Installing Open-iSCSI

A core requirement of deploying and using Longhorn is the installation of the open-iscsi pack-
age and the iscsid daemon running on all Kubernetes nodes. This is necessary, since Longhorn
relies on iscsiadm on the host to provide persistent volumes to Kubernetes.

Let’s install it:

transactional-update pkg install open-iscsi

It is important to note that once the operation is completed, the package is only installed into
a new snapshot as SLE Micro is an immutable operating system. In order to load it and for the
iscsid daemon to start running, we must reboot into that new snapshot that we just created.
Issue the reboot command when you are ready:

reboot

129 Prerequisites

Tip
For additional help installing open-iscsi, refer to the official Longhorn documentation

(https://longhorn.io/docs/1.7.1/deploy/install/#installing-open-iscsi) .

15.2.2 Installing Longhorn

There are several ways to install Longhorn on your Kubernetes clusters. This guide will follow
through the Helm installation, however feel free to follow the official documentation (https://

longhorn.io/docs/1.7.1/deploy/install/) if another approach is desired.

1. Add the Rancher Charts Helm repository:

helm repo add rancher-charts https://charts.rancher.io/

2. Fetch the latest charts from the repository:

helm repo update

3. Install Longhorn in the longhorn-system namespace:

helm install longhorn-crd rancher-charts/longhorn-crd --namespace longhorn-system --
create-namespace --version 104.2.0+up1.7.1
helm install longhorn rancher-charts/longhorn --namespace longhorn-system --version
 104.2.0+up1.7.1

4. Confirm that the deployment succeeded:

kubectl -n longhorn-system get pods

localhost:~ # kubectl -n longhorn-system get pod
NAMESPACE NAME READY STATUS
 RESTARTS AGE
longhorn-system longhorn-ui-5fc9fb76db-z5dc9 1/1
 Running 0 90s
longhorn-system longhorn-ui-5fc9fb76db-dcb65 1/1
 Running 0 90s
longhorn-system longhorn-manager-wts2v 1/1
 Running 1 (77s ago) 90s
longhorn-system longhorn-driver-deployer-5d4f79ddd-fxgcs 1/1
 Running 0 90s
longhorn-system instance-manager-a9bf65a7808a1acd6616bcd4c03d925b 1/1
 Running 0 70s

130 Installing Longhorn

https://longhorn.io/docs/1.7.1/deploy/install/#installing-open-iscsi
https://longhorn.io/docs/1.7.1/deploy/install/#installing-open-iscsi
https://longhorn.io/docs/1.7.1/deploy/install/
https://longhorn.io/docs/1.7.1/deploy/install/

longhorn-system engine-image-ei-acb7590c-htqmp 1/1
 Running 0 70s
longhorn-system csi-attacher-5c4bfdcf59-j8xww 1/1
 Running 0 50s
longhorn-system csi-provisioner-667796df57-l69vh 1/1
 Running 0 50s
longhorn-system csi-attacher-5c4bfdcf59-xgd5z 1/1
 Running 0 50s
longhorn-system csi-provisioner-667796df57-dqkfr 1/1
 Running 0 50s
longhorn-system csi-attacher-5c4bfdcf59-wckt8 1/1
 Running 0 50s
longhorn-system csi-resizer-694f8f5f64-7n2kq 1/1
 Running 0 50s
longhorn-system csi-snapshotter-959b69d4b-rp4gk 1/1
 Running 0 50s
longhorn-system csi-resizer-694f8f5f64-r6ljc 1/1
 Running 0 50s
longhorn-system csi-resizer-694f8f5f64-k7429 1/1
 Running 0 50s
longhorn-system csi-snapshotter-959b69d4b-5k8pg 1/1
 Running 0 50s
longhorn-system csi-provisioner-667796df57-n5w9s 1/1
 Running 0 50s
longhorn-system csi-snapshotter-959b69d4b-x7b7t 1/1
 Running 0 50s
longhorn-system longhorn-csi-plugin-bsc8c 3/3
 Running 0 50s

15.3 Creating Longhorn volumes
Longhorn utilizes Kubernetes resources called StorageClass in order to automatically provision
PersistentVolume objects for pods. Think of StorageClass as a way for administrators to
describe the classes or profiles of storage they offer.

Let’s create a StorageClass with some default options:

kubectl apply -f - <<EOF
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: longhorn-example
provisioner: driver.longhorn.io
allowVolumeExpansion: true
parameters:

131 Creating Longhorn volumes

 numberOfReplicas: "3"
 staleReplicaTimeout: "2880" # 48 hours in minutes
 fromBackup: ""
 fsType: "ext4"
EOF

Now that we have our StorageClass in place, we need a PersistentVolumeClaim referencing
it. A PersistentVolumeClaim (PVC) is a request for storage by a user. PVCs consume Persis-
tentVolume resources. Claims can request specific sizes and access modes (e.g., they can be
mounted once read/write or many times read-only).

Let’s create a PersistentVolumeClaim:

kubectl apply -f - <<EOF
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: longhorn-volv-pvc
 namespace: longhorn-system
spec:
 accessModes:
 - ReadWriteOnce
 storageClassName: longhorn-example
 resources:
 requests:
 storage: 2Gi
EOF

That’s it! Once we have the PersistentVolumeClaim created, we can proceed with attaching
it to a Pod. When the Pod is deployed, Kubernetes creates the Longhorn volume and binds it
to the Pod if storage is available.

kubectl apply -f - <<EOF
apiVersion: v1
kind: Pod
metadata:
 name: volume-test
 namespace: longhorn-system
spec:
 containers:
 - name: volume-test
 image: nginx:stable-alpine
 imagePullPolicy: IfNotPresent
 volumeMounts:
 - name: volv
 mountPath: /data
 ports:

132 Creating Longhorn volumes

 - containerPort: 80
 volumes:
 - name: volv
 persistentVolumeClaim:
 claimName: longhorn-volv-pvc
EOF

Tip
The concept of storage in Kubernetes is a complex, but important topic. We briey men-
tioned some of the most common Kubernetes resources, however, we suggest to familiar-
ize yourself with the terminology documentation (https://longhorn.io/docs/1.7.1/terminol-

ogy/) that Longhorn offers.

In this example, the result should look something like this:

localhost:~ # kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
 ALLOWVOLUMEEXPANSION AGE
longhorn (default) driver.longhorn.io Delete Immediate true
 12m
longhorn-example driver.longhorn.io Delete Immediate true
 24s

localhost:~ # kubectl get pvc -n longhorn-system
NAME STATUS VOLUME CAPACITY ACCESS
 MODES STORAGECLASS AGE
longhorn-volv-pvc Bound pvc-f663a92e-ac32-49ae-b8e5-8a6cc29a7d1e 2Gi RWO
 longhorn-example 54s

localhost:~ # kubectl get pods -n longhorn-system
NAME READY STATUS RESTARTS AGE
csi-attacher-5c4bfdcf59-qmjtz 1/1 Running 0 14m
csi-attacher-5c4bfdcf59-s7n65 1/1 Running 0 14m
csi-attacher-5c4bfdcf59-w9xgs 1/1 Running 0 14m
csi-provisioner-667796df57-fmz2d 1/1 Running 0 14m
csi-provisioner-667796df57-p7rjr 1/1 Running 0 14m
csi-provisioner-667796df57-w9fdq 1/1 Running 0 14m
csi-resizer-694f8f5f64-2rb8v 1/1 Running 0 14m
csi-resizer-694f8f5f64-z9v9x 1/1 Running 0 14m
csi-resizer-694f8f5f64-zlncz 1/1 Running 0 14m
csi-snapshotter-959b69d4b-5dpvj 1/1 Running 0 14m
csi-snapshotter-959b69d4b-lwwkv 1/1 Running 0 14m
csi-snapshotter-959b69d4b-tzhwc 1/1 Running 0 14m
engine-image-ei-5cefaf2b-hvdv5 1/1 Running 0 14m

133 Creating Longhorn volumes

https://longhorn.io/docs/1.7.1/terminology/
https://longhorn.io/docs/1.7.1/terminology/

instance-manager-0ee452a2e9583753e35ad00602250c5b 1/1 Running 0 14m
longhorn-csi-plugin-gd2jx 3/3 Running 0 14m
longhorn-driver-deployer-9f4fc86-j6h2b 1/1 Running 0 15m
longhorn-manager-z4lnl 1/1 Running 0 15m
longhorn-ui-5f4b7bbf69-bln7h 1/1 Running 3 (14m ago) 15m
longhorn-ui-5f4b7bbf69-lh97n 1/1 Running 3 (14m ago) 15m
volume-test 1/1 Running 0 26s

15.4 Accessing the UI
If you installed Longhorn with kubectl or Helm, you need to set up an Ingress controller to
allow external traffic into the cluster. Authentication is not enabled by default. If the Rancher
catalog app was used, Rancher automatically created an Ingress controller with access control
(the rancher-proxy).

1. Get the Longhorn’s external service IP address:

kubectl -n longhorn-system get svc

2. Once you have retrieved the longhorn-frontend IP address, you can start using the UI
by navigating to it in your browser.

15.5 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
We are going to demonstrate how to do so for provisioning an RKE2 cluster with Longhorn on
top of it.

Let’s create the definition le:

export CONFIG_DIR=$HOME/eib
mkdir -p $CONFIG_DIR

cat << EOF > $CONFIG_DIR/iso-definition.yaml
apiVersion: 1.0
image:
 imageType: iso
 baseImage: SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
 arch: x86_64
 outputImageName: eib-image.iso
kubernetes:

134 Accessing the UI

 version: v1.30.5+rke2r1
 helm:
 charts:
 - name: longhorn
 version: 104.2.0+up1.7.1
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd
 version: 104.2.0+up1.7.1
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 repositories:
 - name: longhorn
 url: https://charts.rancher.io
operatingSystem:
 packages:
 sccRegistrationCode: <reg-code>
 packageList:
 - open-iscsi
 users:
 - username: root
 encryptedPassword: \$6\$jHugJNNd3HElGsUZ\
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
EOF

Note
Customizing any of the Helm chart values is possible via a separate le
provided under helm.charts[].valuesFile. Refer to the upstream documenta-

tion (https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-im-

ages.md#kubernetes) for details.

Let’s build the image:

podman run --rm --privileged -it -v $CONFIG_DIR:/eib registry.suse.com/edge/3.1/edge-
image-builder:1.1.0 build --definition-file $CONFIG_DIR/iso-definition.yaml

After the image is built, you can use it to install your OS on a physical or virtual host. Once the
provisioning is complete, you are able to log in to the system using the root:eib credentials pair.

135 Installing with Edge Image Builder

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#kubernetes

Ensure that Longhorn has been successfully deployed:

localhost:~ # /var/lib/rancher/rke2/bin/kubectl --kubeconfig /etc/rancher/rke2/rke2.yaml
 -n longhorn-system get pods
NAME READY STATUS RESTARTS AGE
csi-attacher-5c4bfdcf59-qmjtz 1/1 Running 0
 103s
csi-attacher-5c4bfdcf59-s7n65 1/1 Running 0
 103s
csi-attacher-5c4bfdcf59-w9xgs 1/1 Running 0
 103s
csi-provisioner-667796df57-fmz2d 1/1 Running 0
 103s
csi-provisioner-667796df57-p7rjr 1/1 Running 0
 103s
csi-provisioner-667796df57-w9fdq 1/1 Running 0
 103s
csi-resizer-694f8f5f64-2rb8v 1/1 Running 0
 103s
csi-resizer-694f8f5f64-z9v9x 1/1 Running 0
 103s
csi-resizer-694f8f5f64-zlncz 1/1 Running 0
 103s
csi-snapshotter-959b69d4b-5dpvj 1/1 Running 0
 103s
csi-snapshotter-959b69d4b-lwwkv 1/1 Running 0
 103s
csi-snapshotter-959b69d4b-tzhwc 1/1 Running 0
 103s
engine-image-ei-5cefaf2b-hvdv5 1/1 Running 0
 109s
instance-manager-0ee452a2e9583753e35ad00602250c5b 1/1 Running 0
 109s
longhorn-csi-plugin-gd2jx 3/3 Running 0
 103s
longhorn-driver-deployer-9f4fc86-j6h2b 1/1 Running 0
 2m28s
longhorn-manager-z4lnl 1/1 Running 0
 2m28s
longhorn-ui-5f4b7bbf69-bln7h 1/1 Running 3 (2m7s ago)
 2m28s
longhorn-ui-5f4b7bbf69-lh97n 1/1 Running 3 (2m10s ago)
 2m28s

136 Installing with Edge Image Builder

Note
This installation will not work for completely air-gapped environments. In those cases,
please refer to Section 23.8, “Longhorn Installation”.

137 Installing with Edge Image Builder

16 NeuVector

NeuVector is a security solution for Kubernetes that provides L7 network security, runtime se-
curity, supply chain security, and compliance checks in a cohesive package.

NeuVector is deployed as a platform of several containers that communicate with each other on
various ports and interfaces. The following are the different containers deployed:

Manager. A stateless container which presents the Web-based console. Typically, only one
is needed and this can run anywhere. Failure of the Manager does not affect any of the
operations of the controller or enforcer. However, certain notifications (events) and recent
connection data are cached in memory by the Manager so viewing of these would be
affected.

Controller. The ‘control plane’ for NeuVector must be deployed in an HA configuration, so
configuration is not lost in a node failure. These can run anywhere, although customers
often choose to place these on ‘management’, master or infra nodes because of their crit-
icality.

Enforcer. This container is deployed as a DaemonSet so one Enforcer is on every node to
be protected. Typically deploys to every worker node but scheduling can be enabled for
master and infra nodes to deploy there as well. Note: If the Enforcer is not on a cluster node
and connections come from a pod on that node, NeuVector labels them as ‘unmanaged’
workloads.

Scanner. Performs the vulnerability scanning using the built-in CVE database, as directed
by the Controller. Multiple scanners can be deployed to increase scanning capacity. Scan-
ners can run anywhere but are often run on the nodes where the controllers run. See below
for sizing considerations of scanner nodes. A scanner can also be invoked independently
when used for build-phase scanning, for example, within a pipeline that triggers a scan,
retrieves the results, and stops the scanner. The scanner contains the latest CVE database
so should be updated daily.

Updater. The updater triggers an update of the scanner through a Kubernetes cron job
when an update of the CVE database is desired. Please be sure to configure this for your
environment.

A more in-depth NeuVector onboarding and best practices documentation can be found here

(https://open-docs.neuvector.com/deploying/production/NV_Onboarding_5.0.pdf) .

138

https://open-docs.neuvector.com/deploying/production/NV_Onboarding_5.0.pdf
https://open-docs.neuvector.com/deploying/production/NV_Onboarding_5.0.pdf

16.1 How does SUSE Edge use NeuVector?
SUSE Edge provides a leaner configuration of NeuVector as a starting point for edge deploy-
ments.

Find the NeuVector configuration changes here (https://github.com/suse-edge/charts/blob/main/

packages/neuvector-core/generated-changes/patch/values.yaml.patch) .

16.2 Important notes

The Scanner container must have enough memory to pull the image to be scanned into
memory and expand it. To scan images exceeding 1 GB, increase the scanner’s memory to
slightly above the largest expected image size.

High network connections expected in Protect mode. The Enforcer requires CPU and
memory when in Protect (inline firewall blocking) mode to hold and inspect connections
and possible payload (DLP). Increasing memory and dedicating a CPU core to the Enforcer
can ensure adequate packet filtering capacity.

16.3 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
Follow Section 23.7, “NeuVector Installation” for an air-gapped installation of NeuVector on top of
Kubernetes clusters provisioned by EIB.

139 How does SUSE Edge use NeuVector?

https://github.com/suse-edge/charts/blob/main/packages/neuvector-core/generated-changes/patch/values.yaml.patch
https://github.com/suse-edge/charts/blob/main/packages/neuvector-core/generated-changes/patch/values.yaml.patch

17 MetalLB

See MetalLB official documentation (https://metallb.universe.tf/) .

MetalLB is a load-balancer implementation for bare-metal Kubernetes clusters,
using standard routing protocols.

In bare-metal environments, setting up network load balancers is notably more
complex than in cloud environments. Unlike the straightforward API calls in cloud
setups, bare-metal requires either dedicated network appliances or a combination
of load balancers and Virtual IP (VIP) configurations to manage High Availability
(HA) or address the potential Single Point of Failure (SPOF) inherent in a single
node load balancer. These configurations are not easily automated, posing chal-
lenges in Kubernetes deployments where components dynamically scale up and
down.

MetalLB addresses these challenges by harnessing the Kubernetes model to create
LoadBalancer type services as if they were operating in a cloud environment,
even on bare-metal setups.

There are two different approaches, via L2 mode (https://metallb.universe.tf/con-

cepts/layer2/) (using ARP tricks) or via BGP (https://metallb.universe.tf/con-

cepts/bgp/) . Mainly L2 does not need any special network gear but BGP is in
general better. It depends on the use cases.

17.1 How does SUSE Edge use MetalLB?
SUSE Edge uses MetalLB in two key ways:

As a Load Balancer Solution: MetalLB serves as the Load Balancer solution for bare-metal
machines.

For an HA K3s/RKE2 Setup: MetalLB allows for load balancing the Kubernetes API using
a Virtual IP address.

Note
In order to be able to expose the API, the endpoint-copier-operator is used to keep
in sync the K8s API endpoints from the 'kubernetes' service to a 'kubernetes-vip' LoadBal-
ancer service.

140 How does SUSE Edge use MetalLB?

https://metallb.universe.tf/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/concepts/layer2/
https://metallb.universe.tf/concepts/bgp/
https://metallb.universe.tf/concepts/bgp/

17.2 Best practices
Installation of MetalLB in L2 mode is detailed in the MetalLB guide (Chapter 21, MetalLB on K3s

(using L2)).

A guide on installing MetalLB in front of the kube-api-server to achieve HA setups can be found
in the MetalLB in front of the Kubernetes API server (Chapter 22, MetalLB in front of the Kubernetes

API server) tutorial.

17.3 Known issues

K3S LoadBalancer Solution: K3S comes with its Load Balancer solution, Klipper. To use
MetalLB, Klipper must be disabled. This can be done by starting the K3s server with the --
disable servicelb option, as described in the K3s documentation (https://docs.k3s.io/net-

working) .

141 Best practices

https://docs.k3s.io/networking
https://docs.k3s.io/networking

18 Edge Virtualization

This section describes how you can use Edge Virtualization to run virtual machines on your
edge nodes. Edge Virtualization is designed for lightweight virtualization use-cases, where it is
expected that a common workflow for the deployment and management of both virtualized and
containerized applications will be utilized.

SUSE Edge Virtualization supports two methods of running virtual machines:

1. Deploying the virtual machines manually via libvirt+qemu-kvm at the host level (where
Kubernetes is not involved)

2. Deploying the KubeVirt operator for Kubernetes-based management of virtual machines

Both options are valid, but only the second one is covered below. If you want to use the
standard out-of-the box virtualization mechanisms provided by SLE Micro, a comprehensive
guide can be found here (https://documentation.suse.com/sles/15-SP6/html/SLES-all/chap-virtual-

ization-introduction.html) , and whilst it was primarily written for SUSE Linux Enterprise Serv-
er, the concepts are almost identical.

This guide initially explains how to deploy the additional virtualization components onto a
system that has already been pre-deployed, but follows with a section that describes how to
embed this configuration in the initial deployment via Edge Image Builder. If you do not want
to run through the basics and set things up manually, skip right ahead to that section.

18.1 KubeVirt overview

KubeVirt allows for managing Virtual Machines with Kubernetes alongside the rest of your con-
tainerized workloads. It does this by running the user space portion of the Linux virtualization
stack in a container. This minimizes the requirements on the host system, allowing for easier
setup and management.

Details about KubeVirt’s architecture can be found in the upstream documentation. (https://kube-

virt.io/user-guide/architecture/)

142 KubeVirt overview

https://documentation.suse.com/sles/15-SP6/html/SLES-all/chap-virtualization-introduction.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/chap-virtualization-introduction.html
https://kubevirt.io/user-guide/architecture/
https://kubevirt.io/user-guide/architecture/

18.2 Prerequisites

If you are following this guide, we assume you have the following already available:

At least one physical host with SLE Micro 6.0 installed, and with virtualization extensions
enabled in the BIOS (see here (https://documentation.suse.com/sles/15-SP6/html/SLES-all/

cha-virt-support.html#sec-kvm-requires-hardware) for details).

Across your nodes, a K3s/RKE2 Kubernetes cluster already deployed and with an appro-
priate kubeconfig that enables superuser access to the cluster.

Access to the root user — these instructions assume you are the root user, and not escalating
your privileges via sudo.

You have Helm (https://helm.sh/docs/intro/install/) available locally with an adequate net-
work connection to be able to push configurations to your Kubernetes cluster and down-
load the required images.

18.3 Manual installation of Edge Virtualization

This guide will not walk you through the deployment of Kubernetes, but it assumes that you
have either installed the SUSE Edge-appropriate version of K3s (https://k3s.io/) or RKE2 (https://

docs.rke2.io/install/quickstart) and that you have your kubeconfig configured accordingly so
that standard kubectl commands can be executed as the superuser. We assume your node
forms a single-node cluster, although there are no significant differences expected for multi-node
deployments.

143 Prerequisites

https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-virt-support.html#sec-kvm-requires-hardware
https://helm.sh/docs/intro/install/
https://k3s.io/
https://docs.rke2.io/install/quickstart
https://docs.rke2.io/install/quickstart

SUSE Edge Virtualization is deployed via three separate Helm charts, specifically:

KubeVirt: The core virtualization components, that is, Kubernetes CRDs, operators and
other components required for enabling Kubernetes to deploy and manage virtual ma-
chines.

KubeVirt Dashboard Extension: An optional Rancher UI extension that allows basic vir-
tual machine management, for example, starting/stopping of virtual machines as well as
accessing the console.

Containerized Data Importer (CDI): An additional component that enables persis-
tent-storage integration for KubeVirt, providing capabilities for virtual machines to use
existing Kubernetes storage back-ends for data, but also allowing users to import or clone
data volumes for virtual machines.

Each of these Helm charts is versioned according to the SUSE Edge release you are currently
using. For production/supported usage, employ the artifacts that can be found in the SUSE
Registry.

First, ensure that your kubectl access is working:

$ kubectl get nodes

This should show something similar to the following:

NAME STATUS ROLES AGE VERSION
node1.edge.rdo.wales Ready control-plane,etcd,master 4h20m v1.30.5+rke2r1
node2.edge.rdo.wales Ready control-plane,etcd,master 4h15m v1.30.5+rke2r1
node3.edge.rdo.wales Ready control-plane,etcd,master 4h15m v1.30.5+rke2r1

Now you can proceed to install the KubeVirt and Containerized Data Importer (CDI) Helm
charts:

$ helm install kubevirt oci://registry.suse.com/edge/3.1/kubevirt-chart --namespace
 kubevirt-system --create-namespace
$ helm install cdi oci://registry.suse.com/edge/3.1/cdi-chart --namespace cdi-system --
create-namespace

In a few minutes, you should have all KubeVirt and CDI components deployed. You can validate
this by checking all the deployed resources in the kubevirt-system and cdi-system name-
space.

Verify KubeVirt resources:

$ kubectl get all -n kubevirt-system

144 Manual installation of Edge Virtualization

This should show something similar to the following:

NAME READY STATUS RESTARTS AGE
pod/virt-operator-5fbcf48d58-p7xpm 1/1 Running 0 2m24s
pod/virt-operator-5fbcf48d58-wnf6s 1/1 Running 0 2m24s
pod/virt-handler-t594x 1/1 Running 0 93s
pod/virt-controller-5f84c69884-cwjvd 1/1 Running 1 (64s ago) 93s
pod/virt-controller-5f84c69884-xxw6q 1/1 Running 1 (64s ago) 93s
pod/virt-api-7dfc54cf95-v8kcl 1/1 Running 1 (59s ago) 118s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
service/kubevirt-prometheus-metrics ClusterIP None <none> 443/TCP
 2m1s
service/virt-api ClusterIP 10.43.56.140 <none> 443/TCP
 2m1s
service/kubevirt-operator-webhook ClusterIP 10.43.201.121 <none> 443/TCP
 2m1s
service/virt-exportproxy ClusterIP 10.43.83.23 <none> 443/TCP
 2m1s

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
 SELECTOR AGE
daemonset.apps/virt-handler 1 1 1 1 1
 kubernetes.io/os=linux 93s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virt-operator 2/2 2 2 2m24s
deployment.apps/virt-controller 2/2 2 2 93s
deployment.apps/virt-api 1/1 1 1 118s

NAME DESIRED CURRENT READY AGE
replicaset.apps/virt-operator-5fbcf48d58 2 2 2 2m24s
replicaset.apps/virt-controller-5f84c69884 2 2 2 93s
replicaset.apps/virt-api-7dfc54cf95 1 1 1 118s

NAME AGE PHASE
kubevirt.kubevirt.io/kubevirt 2m24s Deployed

Verify CDI resources:

$ kubectl get all -n cdi-system

This should show something similar to the following:

NAME READY STATUS RESTARTS AGE
pod/cdi-operator-55c74f4b86-692xb 1/1 Running 0 2m24s

145 Manual installation of Edge Virtualization

pod/cdi-apiserver-db465b888-62lvr 1/1 Running 0 2m21s
pod/cdi-deployment-56c7d74995-mgkfn 1/1 Running 0 2m21s
pod/cdi-uploadproxy-7d7b94b968-6kxc2 1/1 Running 0 2m22s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cdi-uploadproxy ClusterIP 10.43.117.7 <none> 443/TCP
 2m22s
service/cdi-api ClusterIP 10.43.20.101 <none> 443/TCP
 2m22s
service/cdi-prometheus-metrics ClusterIP 10.43.39.153 <none> 8080/TCP
 2m21s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/cdi-operator 1/1 1 1 2m24s
deployment.apps/cdi-apiserver 1/1 1 1 2m22s
deployment.apps/cdi-deployment 1/1 1 1 2m21s
deployment.apps/cdi-uploadproxy 1/1 1 1 2m22s

NAME DESIRED CURRENT READY AGE
replicaset.apps/cdi-operator-55c74f4b86 1 1 1 2m24s
replicaset.apps/cdi-apiserver-db465b888 1 1 1 2m21s
replicaset.apps/cdi-deployment-56c7d74995 1 1 1 2m21s
replicaset.apps/cdi-uploadproxy-7d7b94b968 1 1 1 2m22s

To verify that the VirtualMachine custom resource definitions (CRDs) are deployed, you can
validate with:

$ kubectl explain virtualmachine

This should print out the definition of the VirtualMachine object, which should print as follows:

GROUP: kubevirt.io
KIND: VirtualMachine
VERSION: v1

DESCRIPTION:
 VirtualMachine handles the VirtualMachines that are not running or are in a
 stopped state The VirtualMachine contains the template to create the
 VirtualMachineInstance. It also mirrors the running state of the created
 VirtualMachineInstance in its status.
(snip)

146 Manual installation of Edge Virtualization

18.4 Deploying virtual machines
Now that KubeVirt and CDI are deployed, let us define a simple virtual machine based on
openSUSE Tumbleweed (https://get.opensuse.org/tumbleweed/) . This virtual machine has the
most simple of configurations, using standard "pod networking" for a networking configura-
tion identical to any other pod. It also employs non-persistent storage, ensuring the storage is
ephemeral, just like in any container that does not have a PVC (https://kubernetes.io/docs/con-

cepts/storage/persistent-volumes/) .

$ kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 name: tumbleweed
 namespace: default
spec:
 runStrategy: Always
 template:
 spec:
 domain:
 devices: {}
 machine:
 type: q35
 memory:
 guest: 2Gi
 resources: {}
 volumes:
 - containerDisk:
 image: registry.opensuse.org/home/roxenham/tumbleweed-container-disk/
containerfile/cloud-image:latest
 name: tumbleweed-containerdisk-0
 - cloudInitNoCloud:
 userDataBase64:
 I2Nsb3VkLWNvbmZpZwpkaXNhYmxlX3Jvb3Q6IGZhbHNlCnNzaF9wd2F1dGg6IFRydWUKdXNlcnM6CiAgLSBkZWZhdWx0CiAgLSBuYW1lOiBzdXNlCiAgICBncm91cHM6IHN1ZG8KICAgIHNoZWxsOiAvYmluL2Jhc2gKICAgIHN1ZG86ICBBTEw9KEFMTCkgTk9QQVNTV0Q6QUxMCiAgICBsb2NrX3Bhc3N3ZDogRmFsc2UKICAgIHBsYWluX3RleHRfcGFzc3dkOiAnc3VzZScK
 name: cloudinitdisk
EOF

This should print that a VirtualMachine was created:

virtualmachine.kubevirt.io/tumbleweed created

This VirtualMachine definition is minimal, specifying little about the configuration. It simply
outlines that it is a machine type "q35 (https://wiki.qemu.org/Features/Q35) " with 2 GB of mem-
ory that uses a disk image based on an ephemeral containerDisk (that is, a disk image that is

147 Deploying virtual machines

https://get.opensuse.org/tumbleweed/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://wiki.qemu.org/Features/Q35

stored in a container image from a remote image repository), and specifies a base64 encoded
cloudInit disk, which we only use for user creation and password enforcement at boot time (use
base64 -d to decode it).

Note
This virtual machine image is only for testing. The image is not officially
supported and is only meant as a documentation example.

This machine takes a few minutes to boot as it needs to download the openSUSE Tumbleweed
disk image, but once it has done so, you can view further details about the virtual machine by
checking the virtual machine information:

$ kubectl get vmi

This should print the node that the virtual machine was started on, and the IP address of the
virtual machine. Remember, since it uses pod networking, the reported IP address will be just
like any other pod, and routable as such:

NAME AGE PHASE IP NODENAME READY
tumbleweed 4m24s Running 10.42.2.98 node3.edge.rdo.wales True

When running these commands on the Kubernetes cluster nodes themselves, with a CNI that
routes traffic directly to pods (for example, Cilium), you should be able to ssh directly to the
machine itself. Substitute the following IP address with the one that was assigned to your virtual
machine:

$ ssh suse@10.42.2.98
(password is "suse")

Once you are in this virtual machine, you can play around, but remember that it is limited in
terms of resources, and only has 1 GB disk space. When you are finished, Ctrl-D or exit to
disconnect from the SSH session.

The virtual machine process is still wrapped in a standard Kubernetes pod. The VirtualMachine
CRD is a representation of the desired virtual machine, but the process in which the virtual
machine is actually started is via the virt-launcher pod, a standard Kubernetes pod, just like
any other application. For every virtual machine started, you can see there is a virt-launcher
pod:

$ kubectl get pods

148 Deploying virtual machines

This should then show the one virt-launcher pod for the Tumbleweed machine that we have
defined:

NAME READY STATUS RESTARTS AGE
virt-launcher-tumbleweed-8gcn4 3/3 Running 0 10m

If we take a look into this virt-launcher pod, you see it is executing libvirt and qemu-kvm
processes. We can enter the pod itself and have a look under the covers, noting that you need
to adapt the following command for your pod name:

$ kubectl exec -it virt-launcher-tumbleweed-8gcn4 -- bash

Once you are in the pod, try running virsh commands along with looking at the processes. You
will see the qemu-system-x86_64 binary running, along with certain processes for monitoring
the virtual machine. You will also see the location of the disk image and how the networking
is plugged (as a tap device):

qemu@tumbleweed:/> ps ax
 PID TTY STAT TIME COMMAND
 1 ? Ssl 0:00 /usr/bin/virt-launcher-monitor --qemu-timeout 269s --name
 tumbleweed --uid b9655c11-38f7-4fa8-8f5d-bfe987dab42c --namespace default --kubevirt-
share-dir /var/run/kubevirt --ephemeral-disk-dir /var/run/kubevirt-ephemeral-disks --
container-disk-dir /var/run/kube
 12 ? Sl 0:01 /usr/bin/virt-launcher --qemu-timeout 269s --name tumbleweed
 --uid b9655c11-38f7-4fa8-8f5d-bfe987dab42c --namespace default --kubevirt-share-dir /
var/run/kubevirt --ephemeral-disk-dir /var/run/kubevirt-ephemeral-disks --container-disk-
dir /var/run/kubevirt/con
 24 ? Sl 0:00 /usr/sbin/virtlogd -f /etc/libvirt/virtlogd.conf
 25 ? Sl 0:01 /usr/sbin/virtqemud -f /var/run/libvirt/virtqemud.conf
 83 ? Sl 0:31 /usr/bin/qemu-system-x86_64 -name
 guest=default_tumbleweed,debug-threads=on -S -object {"qom-
type":"secret","id":"masterKey0","format":"raw","file":"/var/run/kubevirt-private/
libvirt/qemu/lib/domain-1-default_tumbleweed/master-key.aes"} -machine pc-q35-7.1,usb
 286 pts/0 Ss 0:00 bash
 320 pts/0 R+ 0:00 ps ax

qemu@tumbleweed:/> virsh list --all
 Id Name State

 1 default_tumbleweed running

qemu@tumbleweed:/> virsh domblklist 1
 Target Source

 sda /var/run/kubevirt-ephemeral-disks/disk-data/tumbleweed-containerdisk-0/
disk.qcow2

149 Deploying virtual machines

 sdb /var/run/kubevirt-ephemeral-disks/cloud-init-data/default/tumbleweed/
noCloud.iso

qemu@tumbleweed:/> virsh domiflist 1
 Interface Type Source Model MAC
--
 tap0 ethernet - virtio-non-transitional e6:e9:1a:05:c0:92

qemu@tumbleweed:/> exit
exit

Finally, let us delete this virtual machine to clean up:

$ kubectl delete vm/tumbleweed
virtualmachine.kubevirt.io "tumbleweed" deleted

18.5 Using virtctl
Along with the standard Kubernetes CLI tooling, that is, kubectl, KubeVirt comes with an ac-
companying CLI utility that allows you to interface with your cluster in a way that bridges some
gaps between the virtualization world and the world that Kubernetes was designed for. For ex-
ample, the virtctl tool provides the capability of managing the lifecycle of virtual machines
(starting, stopping, restarting, etc.), providing access to the virtual consoles, uploading virtual
machine images, as well as interfacing with Kubernetes constructs such as services, without
using the API or CRDs directly.

Let us download the latest stable version of the virtctl tool:

$ export VERSION=v1.3.1
$ wget https://github.com/kubevirt/kubevirt/releases/download/${VERSION}/virtctl-
${VERSION}-linux-amd64

If you are using a different architecture or a non-Linux machine, you can nd other releases
here (https://github.com/kubevirt/kubevirt/releases) . You need to make this executable before
proceeding, and it may be useful to move it to a location within your $PATH:

$ mv virtctl-${VERSION}-linux-amd64 /usr/local/bin/virtctl
$ chmod a+x /usr/local/bin/virtctl

You can then use the virtctl command-line tool to create virtual machines. Let us replicate
our previous virtual machine, noting that we are piping the output directly into kubectl apply:

$ virtctl create vm --name virtctl-example --memory=1Gi \

150 Using virtctl

https://github.com/kubevirt/kubevirt/releases

 --volume-containerdisk=src:registry.opensuse.org/home/roxenham/tumbleweed-container-
disk/containerfile/cloud-image:latest \
 --cloud-init-user-data
 "I2Nsb3VkLWNvbmZpZwpkaXNhYmxlX3Jvb3Q6IGZhbHNlCnNzaF9wd2F1dGg6IFRydWUKdXNlcnM6CiAgLSBkZWZhdWx0CiAgLSBuYW1lOiBzdXNlCiAgICBncm91cHM6IHN1ZG8KICAgIHNoZWxsOiAvYmluL2Jhc2gKICAgIHN1ZG86ICBBTEw9KEFMTCkgTk9QQVNTV0Q6QUxMCiAgICBsb2NrX3Bhc3N3ZDogRmFsc2UKICAgIHBsYWluX3RleHRfcGFzc3dkOiAnc3VzZScK"
 | kubectl apply -f -

This should then show the virtual machine running (it should start a lot quicker this time given
that the container image will be cached):

$ kubectl get vmi
NAME AGE PHASE IP NODENAME READY
virtctl-example 52s Running 10.42.2.29 node3.edge.rdo.wales True

Now we can use virtctl to connect directly to the virtual machine:

$ virtctl ssh suse@virtctl-example
(password is "suse" - Ctrl-D to exit)

There are plenty of other commands that can be used by virtctl. For example, virtctl con-
sole can give you access to the serial console if networking is not working, and you can use
virtctl guestosinfo to get comprehensive OS information, subject to the guest having the
qemu-guest-agent installed and running.

Finally, let us pause and resume the virtual machine:

$ virtctl pause vm virtctl-example
VMI virtctl-example was scheduled to pause

You nd that the VirtualMachine object shows as Paused and the VirtualMachineInstance
object shows as Running but READY=False:

$ kubectl get vm
NAME AGE STATUS READY
virtctl-example 8m14s Paused False

$ kubectl get vmi
NAME AGE PHASE IP NODENAME READY
virtctl-example 8m15s Running 10.42.2.29 node3.edge.rdo.wales False

You also nd that you can no longer connect to the virtual machine:

$ virtctl ssh suse@virtctl-example
can't access VMI virtctl-example: Operation cannot be fulfilled on
 virtualmachineinstance.kubevirt.io "virtctl-example": VMI is paused

Let us resume the virtual machine and try again:

$ virtctl unpause vm virtctl-example

151 Using virtctl

VMI virtctl-example was scheduled to unpause

Now we should be able to re-establish a connection:

$ virtctl ssh suse@virtctl-example
suse@vmi/virtctl-example.default's password:
suse@virtctl-example:~> exit
logout

Finally, let us remove the virtual machine:

$ kubectl delete vm/virtctl-example
virtualmachine.kubevirt.io "virtctl-example" deleted

18.6 Simple ingress networking
In this section, we show how you can expose virtual machines as standard Kubernetes services
and make them available via the Kubernetes ingress service, for example, NGINX with RKE2

(https://docs.rke2.io/networking/networking_services#nginx-ingress-controller) or Traefik with

K3s (https://docs.k3s.io/networking/networking-services#traefik-ingress-controller) . This docu-
ment assumes that these components are already configured appropriately and that you have
an appropriate DNS pointer, for example, via a wild card, to point at your Kubernetes server
nodes or your ingress virtual IP for proper ingress resolution.

Note
In SUSE Edge 3.1+, if you are using K3s in a multi-server node configura-
tion, you might have needed to configure a MetalLB-based VIP for Ingress;
this is not required for RKE2.

In the example environment, another openSUSE Tumbleweed virtual machine is deployed,
cloud-init is used to install NGINX as a simple Web server at boot time, and a simple message
is configured to be returned to verify that it works as expected when a call is made. To see how
this is done, simply base64 -d the cloud-init section in the output below.

Let us create this virtual machine now:

$ kubectl apply -f - <<EOF
apiVersion: kubevirt.io/v1

152 Simple ingress networking

https://docs.rke2.io/networking/networking_services#nginx-ingress-controller
https://docs.rke2.io/networking/networking_services#nginx-ingress-controller
https://docs.k3s.io/networking/networking-services#traefik-ingress-controller
https://docs.k3s.io/networking/networking-services#traefik-ingress-controller

kind: VirtualMachine
metadata:
 name: ingress-example
 namespace: default
spec:
 runStrategy: Always
 template:
 metadata:
 labels:
 app: nginx
 spec:
 domain:
 devices: {}
 machine:
 type: q35
 memory:
 guest: 2Gi
 resources: {}
 volumes:
 - containerDisk:
 image: registry.opensuse.org/home/roxenham/tumbleweed-container-disk/
containerfile/cloud-image:latest
 name: tumbleweed-containerdisk-0
 - cloudInitNoCloud:
 userDataBase64:
 I2Nsb3VkLWNvbmZpZwpkaXNhYmxlX3Jvb3Q6IGZhbHNlCnNzaF9wd2F1dGg6IFRydWUKdXNlcnM6CiAgLSBkZWZhdWx0CiAgLSBuYW1lOiBzdXNlCiAgICBncm91cHM6IHN1ZG8KICAgIHNoZWxsOiAvYmluL2Jhc2gKICAgIHN1ZG86ICBBTEw9KEFMTCkgTk9QQVNTV0Q6QUxMCiAgICBsb2NrX3Bhc3N3ZDogRmFsc2UKICAgIHBsYWluX3RleHRfcGFzc3dkOiAnc3VzZScKcnVuY21kOgogIC0genlwcGVyIGluIC15IG5naW54CiAgLSBzeXN0ZW1jdGwgZW5hYmxlIC0tbm93IG5naW54CiAgLSBlY2hvICJJdCB3b3JrcyEiID4gL3Nydi93d3cvaHRkb2NzL2luZGV4Lmh0bQo=
 name: cloudinitdisk
EOF

When this virtual machine has successfully started, we can use the virtctl command to expose
the VirtualMachineInstance with an external port of 8080 and a target port of 80 (where
NGINX listens by default). We use the virtctl command here as it understands the mapping
between the virtual machine object and the pod. This creates a new service for us:

$ virtctl expose vmi ingress-example --port=8080 --target-port=80 --name=ingress-example
Service ingress-example successfully exposed for vmi ingress-example

We will then have an appropriate service automatically created:

$ kubectl get svc/ingress-example
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
ingress-example ClusterIP 10.43.217.19 <none> 8080/TCP
 9s

153 Simple ingress networking

Next, if you then use kubectl create ingress, we can create an ingress object that points
to this service. Adapt the URL (known as the "host" in the ingress (https://kubernetes.io/docs/

reference/kubectl/generated/kubectl_create/kubectl_create_ingress/) object) here to match your
DNS configuration and ensure that you point it to port 8080:

$ kubectl create ingress ingress-example --rule=ingress-example.suse.local/=ingress-
example:8080

With DNS being configured correctly, you should be able to curl the URL immediately:

$ curl ingress-example.suse.local
It works!

Let us clean up by removing this virtual machine and its service and ingress resources:

$ kubectl delete vm/ingress-example svc/ingress-example ingress/ingress-example
virtualmachine.kubevirt.io "ingress-example" deleted
service "ingress-example" deleted
ingress.networking.k8s.io "ingress-example" deleted

18.7 Using the Rancher UI extension
SUSE Edge Virtualization provides a UI extension for Rancher Manager, enabling basic virtual
machine management using the Rancher dashboard UI.

18.7.1 Installation

See Rancher Dashboard Extensions (Chapter 5, Rancher Dashboard Extensions) for installation guid-
ance.

18.7.2 Using KubeVirt Rancher Dashboard Extension

The extension introduces a new KubeVirt section to the Cluster Explorer. This section is added
to any managed cluster which has KubeVirt installed.

The extension allows you to directly interact with two KubeVirt resources:

1. Virtual Machine instances — A resource representing a single running virtual machine
instance.

2. Virtual Machines — A resource used to manage virtual machines lifecycle.

154 Using the Rancher UI extension

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_create/kubectl_create_ingress/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_create/kubectl_create_ingress/

18.7.2.1 Creating a virtual machine

1. Navigate to Cluster Explorer clicking KubeVirt-enabled managed cluster in the left nav-
igation.

2. Navigate to KubeVirt > Virtual Machines page and click Create from YAML in the
upper right of the screen.

3. Fill in or paste a virtual machine definition and press Create. Use virtual machine defin-
ition from Deploying Virtual Machines section as an inspiration.

155 Using KubeVirt Rancher Dashboard Extension

18.7.2.2 Starting and stopping virtual machines

Start and stop virtual machines using the action menu accessed from the # drop-down list to
the right of each virtual machine or use group actions at the top of the list by selecting virtual
machines to perform the action on.

It is possible to run start and stop actions only on the virtual machines which have spec.running
property defined. In case when spec.runStrategy is used, it is not possible to directly start and
stop such a machine. For more information, see KubeVirt documentation (https://kubevirt.io/user-

guide/virtual_machines/run_strategies/#run-strategies) .

18.7.2.3 Accessing virtual machine console

The "Virtual machines" list provides a Console drop-down list that allows to connect to the
machine using VNC or Serial Console. This action is only available to running machines.

In some cases, it takes a short while before the console is accessible on a freshly started virtual
machine.

156 Using KubeVirt Rancher Dashboard Extension

https://kubevirt.io/user-guide/virtual_machines/run_strategies/#run-strategies
https://kubevirt.io/user-guide/virtual_machines/run_strategies/#run-strategies

157 Using KubeVirt Rancher Dashboard Extension

18.8 Installing with Edge Image Builder
SUSE Edge is using Chapter 9, Edge Image Builder in order to customize base SLE Micro OS images.
Follow Section 23.9, “KubeVirt and CDI Installation” for an air-gapped installation of both KubeVirt
and CDI on top of Kubernetes clusters provisioned by EIB.

158 Installing with Edge Image Builder

19 System Upgrade Controller

See the System Upgrade Controller documentation (https://github.com/rancher/system-up-

grade-controller) .

The System Upgrade Controller (SUC) aims to provide a general-purpose, Kuber-
netes-native upgrade controller (for nodes). It introduces a new CRD, the Plan,
for defining any and all of your upgrade policies/requirements. A Plan is an out-
standing intent to mutate nodes in your cluster.

19.1 How does SUSE Edge use System Upgrade
Controller?

SUC is used to assist in the various Day 2 operations that need to be executed in order to upgrade
management/downstream clusters from one Edge platform version to another. Day 2 operations
are defined in the form of SUC Plans. Based on the these plans, SUC deploys workloads on each
node that executes the respective Day 2 operations.

19.2 Installing the System Upgrade Controller

We recommend that you install SUC through Fleet (Chapter 6, Fleet) located in the suse-edge/

fleet-examples (https://github.com/suse-edge/fleet-examples) repository.

Note
The resources offered by the suse-edge/fleet-examples repository must always be
used from a valid fleet-examples release (https://github.com/suse-edge/fleet-examples/re-

leases) . To determine which release you need to use, refer to the Release Notes (Sec-

tion 36.1, “Abstract”).

If you are unable to use Fleet (Chapter 6, Fleet) for the installation of SUC, you can install it
through Rancher’s Helm chart repository, or incorporate the Rancher’s Helm chart in your own
third-party GitOps workflow.

159 How does SUSE Edge use System Upgrade Controller?

https://github.com/rancher/system-upgrade-controller
https://github.com/rancher/system-upgrade-controller
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

This section covers:

Fleet installation (Section 19.2.1, “System Upgrade Controller Fleet installation”)

Helm installation (Section 19.2.2, “System Upgrade Controller Helm installation”)

19.2.1 System Upgrade Controller Fleet installation

Using Fleet there are two possible resources that can be used to deploy SUC:

GitRepo (https://fleet.rancher.io/ref-gitrepo) resource - for use-cases where an external/lo-
cal Git server is available. For installation instructions, see System Upgrade Controller in-
stallation - GitRepo (Section 19.2.1.1, “System Upgrade Controller installation - GitRepo”).

Bundle (https://fleet.rancher.io/bundle-add) resource - for air-gapped use-cases that do not
support a local Git server option. For installation instructions, see System Upgrade Con-
troller installation - Bundle (Section 19.2.1.2, “System Upgrade Controller installation - Bundle”).

19.2.1.1 System Upgrade Controller installation - GitRepo

Note
This process can also be done through the Rancher UI, if such is available. For more infor-
mation, see Accessing Fleet in the Rancher UI (https://ranchermanager.docs.rancher.com/in-

tegrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui) .

In your management cluster:

1. Determine on which clusters you want to deploy SUC. This is done by deploying the SUC
GitRepo in the correct Fleet workspace inside your management cluster. By default, Fleet
has two workspaces:

fleet-local - for resources that need to be deployed on the management cluster.

fleet-default - for resources that need to be deployed on downstream clusters.

160 System Upgrade Controller Fleet installation

https://fleet.rancher.io/ref-gitrepo
https://fleet.rancher.io/bundle-add
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui

For more information on Fleet workspaces, see the upstream (https://fleet.ranch-

er.io/namespaces#gitrepos-bundles-clusters-clustergroups) documentation.

2. Deploy the GitRepo resource:

To deploy SUC on your management cluster:

kubectl apply -n fleet-local -f - <<EOF
apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
 name: system-upgrade-controller
spec:
 revision: release-3.1.0
 paths:
 - fleets/day2/system-upgrade-controller
 repo: https://github.com/suse-edge/fleet-examples.git
EOF

To deploy SUC on your downstream clusters:

Note
Before deploying the resource below, you must provide a valid targets con-
figuration, so that Fleet knows on which downstream clusters to deploy your
resource. For information on how to map to downstream clusters, see Mapping

to Downstream Clusters (https://fleet.rancher.io/gitrepo-targets) .

kubectl apply -n fleet-default -f - <<EOF
apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
 name: system-upgrade-controller
spec:
 revision: release-3.1.0
 paths:
 - fleets/day2/system-upgrade-controller
 repo: https://github.com/suse-edge/fleet-examples.git
 targets:
 - clusterSelector: CHANGEME
 # Example matching all clusters:
 # targets:
 # - clusterSelector: {}

161 System Upgrade Controller Fleet installation

https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups
https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

EOF

3. Validate that the GitRepo is deployed:

Namespace will vary based on where you want to deploy SUC
kubectl get gitrepo system-upgrade-controller -n <fleet-local/fleet-default>

NAME REPO COMMIT
 BUNDLEDEPLOYMENTS-READY STATUS
system-upgrade-controller https://github.com/suse-edge/fleet-examples.git
 release-3.1.0 1/1

4. Validate the System Upgrade Controller deployment:

kubectl get deployment system-upgrade-controller -n cattle-system
NAME READY UP-TO-DATE AVAILABLE AGE
system-upgrade-controller 1/1 1 1 2m20s

19.2.1.2 System Upgrade Controller installation - Bundle

This section illustrates how to build and deploy a Bundle resource from a standard Fleet con-
figuration using the fleet-cli (https://fleet.rancher.io/cli/fleet-cli/fleet) .

1. On a machine with network access download the eet-cli:

Note
Make sure that the version of the eet-cli you download matches the version of
Fleet that has been deployed on your cluster.

For Mac users there is a fleet-cli (https://formulae.brew.sh/formula/fleet-cli) Home-
brew Formulae.

For Linux and Windows users the binaries are present as assets to each Fleet release

(https://github.com/rancher/fleet/releases) .

162 System Upgrade Controller Fleet installation

https://fleet.rancher.io/cli/fleet-cli/fleet
https://formulae.brew.sh/formula/fleet-cli
https://github.com/rancher/fleet/releases
https://github.com/rancher/fleet/releases

Linux AMD:

curl -L -o fleet-cli https://github.com/rancher/fleet/releases/download/
<FLEET_VERSION>/fleet-linux-amd64

Linux ARM:

curl -L -o fleet-cli https://github.com/rancher/fleet/releases/download/
<FLEET_VERSION>/fleet-linux-arm64

2. Make fleet-cli executable:

chmod +x fleet-cli

3. Clone the suse-edge/eet-examples release (https://github.com/suse-edge/fleet-exam-

ples/releases) that you wish to use:

git clone -b release-3.1.0 https://github.com/suse-edge/fleet-examples.git

4. Navigate to the SUC eet, located in the eet-examples repo:

cd fleet-examples/fleets/day2/system-upgrade-controller

5. Determine on which clusters you want to deploy SUC. This is done by deploying the SUC
Bundle in the correct Fleet workspace inside your management cluster. By default, Fleet
has two workspaces:

fleet-local - for resources that need to be deployed on the management cluster.

fleet-default - for resources that need to be deployed on downstream clusters.
For more information on Fleet workspaces, see the upstream (https://fleet.ranch-

er.io/namespaces#gitrepos-bundles-clusters-clustergroups) documentation.

6. If you intend to deploy SUC only on downstream clusters, create a targets.yaml le
that matches the specific clusters:

cat > targets.yaml <<EOF
targets:
- clusterSelector: CHANGEME
EOF

For information on how to map to downstream clusters, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets)

163 System Upgrade Controller Fleet installation

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups
https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

7. Proceed to building the Bundle:

Note
Make sure you did not download the eet-cli in the fleet-examples/fleets/
day2/system-upgrade-controller directory, otherwise it will be packaged with
the Bundle, which is not advised.

To deploy SUC on your management cluster, execute:

fleet-cli apply --compress -n fleet-local -o - system-upgrade-controller . >
 system-upgrade-controller-bundle.yaml

To deploy SUC on your downstream clusters, execute:

fleet-cli apply --compress --targets-file=targets.yaml -n fleet-default -o -
 system-upgrade-controller . > system-upgrade-controller-bundle.yaml

For more information about this process, see Convert a Helm Chart into a Bundle

(https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle) .
For more information about the fleet-cli apply command, see fleet apply (https://

fleet.rancher.io/cli/fleet-cli/fleet_apply) .

8. Transfer the system-upgrade-controller-bundle.yaml bundle to your management clus-
ter machine:

scp system-upgrade-controller-bundle.yaml <machine-address>:<filesystem-path>

9. On your management cluster, deploy the system-upgrade-controller-bundle.yaml Bun-
dle:

kubectl apply -f system-upgrade-controller-bundle.yaml

10. On your management cluster, validate that the Bundle is deployed:

Namespace will vary based on where you want to deploy SUC
kubectl get bundle system-upgrade-controller -n <fleet-local/fleet-default>

NAME BUNDLEDEPLOYMENTS-READY STATUS

164 System Upgrade Controller Fleet installation

https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/cli/fleet-cli/fleet_apply
https://fleet.rancher.io/cli/fleet-cli/fleet_apply

system-upgrade-controller 1/1

11. Based on the Fleet workspace that you deployed your Bundle to, navigate to the cluster
and validate the SUC deployment:

Note
SUC is always deployed in the cattle-system namespace.

kubectl get deployment system-upgrade-controller -n cattle-system
NAME READY UP-TO-DATE AVAILABLE AGE
system-upgrade-controller 1/1 1 1 111s

19.2.2 System Upgrade Controller Helm installation

1. Add the Rancher chart repository:

helm repo add rancher-charts https://charts.rancher.io/

2. Deploy the SUC chart:

helm install system-upgrade-controller rancher-charts/system-upgrade-controller --
version 104.0.0+up0.7.0 --set global.cattle.psp.enabled=false -n cattle-system --
create-namespace

This will install SUC 0.13.4 version which is needed by the Edge 3.1 platform.

3. Validate the SUC deployment:

kubectl get deployment system-upgrade-controller -n cattle-system
NAME READY UP-TO-DATE AVAILABLE AGE
system-upgrade-controller 1/1 1 1 37s

165 System Upgrade Controller Helm installation

19.3 Monitoring System Upgrade Controller Plans
SUC Plans can be viewed in the following ways:

Through the Rancher UI (Section 19.3.1, “Monitoring System Upgrade Controller Plans - Rancher

UI”).

Through manual monitoring (Section 19.3.2, “Monitoring System Upgrade Controller Plans - Man-

ual”) inside of the cluster.

Important
Pods deployed for SUC Plans are kept alive 15 minutes after a successful execution.
After that they are removed by the corresponding Job that created them. To have access
to the Pod’s logs after this time period, you should enable logging for your cluster. For
information on how to do this in Rancher, see Rancher Integration with Logging Services

(https://ranchermanager.docs.rancher.com/v2.9/integrations-in-rancher/logging) .

19.3.1 Monitoring System Upgrade Controller Plans - Rancher UI

To check Pod logs for the specific SUC plan:

1. In the upper left corner, # → <your-cluster-name>

2. Select Workloads → Pods

3. Select the Only User Namespaces drop down menu and add the cattle-system name-
space

4. In the Pod filter bar, write the name for your SUC Plan Pod. The name will be in the
following template format: apply-<plan_name>-on-<node_name>

Note
There may be both Completed and Unknown Pods for a specific SUC Plan. This is
expected and happens due to the nature of some of the upgrades.

5. Select the pod that you want to review the logs of and navigate to # → View Logs

166 Monitoring System Upgrade Controller Plans

https://ranchermanager.docs.rancher.com/v2.9/integrations-in-rancher/logging
https://ranchermanager.docs.rancher.com/v2.9/integrations-in-rancher/logging

19.3.2 Monitoring System Upgrade Controller Plans - Manual

Note
The below steps assume that kubectl has been configured to connect to the cluster where
the SUC Plans have been deployed to.

1. List deployed SUC Plans:

kubectl get plans -n cattle-system

2. Get Pod for SUC Plan:

kubectl get pods -l upgrade.cattle.io/plan=<plan_name> -n cattle-system

Note
There may be both Completed and Unknown Pods for a specific SUC Plan. This is
expected and happens due to the nature of some of the upgrades.

3. Get logs for the Pod:

kubectl logs <pod_name> -n cattle-system

167 Monitoring System Upgrade Controller Plans - Manual

20 Upgrade Controller

See the Upgrade Controller (https://github.com/suse-edge/upgrade-controller) documentation.

A Kubernetes controller capable of performing infrastructure platform upgrades
consisting of:

Operating System (SL Micro)

Kubernetes (K3s & RKE2)

Additional components (Rancher, Elemental, NeuVector, etc.)

20.1 How does SUSE Edge use Upgrade Controller?
The Upgrade Controller is essential in automating the (formerly manual) Day 2 operations
required to upgrade management clusters from one SUSE Edge release version to the next.

To achieve this automation, the Upgrade Controller utilizes tools such as the System Upgrade
Controller (Chapter 19, System Upgrade Controller) and the Helm Controller (https://github.com/k3s-

io/helm-controller/) .

For further details on how the Upgrade Controller works, see "How does the Upgrade Con-
troller work?" (Section 20.3, “How does the Upgrade Controller work?”).

For known limitations that the Upgrade Controller has, see the Known Limitations (Sec-

tion 20.6, “Known Limitations”) section.

20.2 Installing the Upgrade Controller

20.2.1 Prerequisites

Helm (https://helm.sh/docs/intro/install/)

cert-manager (https://cert-manager.io/v1.14-docs/installation/helm/#installing-with-helm)

System Upgrade Controller (Section 19.2, “Installing the System Upgrade Controller”)

A Kubernetes cluster; either K3s or RKE2

168 How does SUSE Edge use Upgrade Controller?

https://github.com/suse-edge/upgrade-controller
https://github.com/k3s-io/helm-controller/
https://github.com/k3s-io/helm-controller/
https://helm.sh/docs/intro/install/
https://cert-manager.io/v1.14-docs/installation/helm/#installing-with-helm

20.2.2 Steps

1. Install the Upgrade Controller Helm chart on your management cluster:

helm install upgrade-controller oci://registry.suse.com/edge/3.1/upgrade-controller-
chart --version 0.1.0 --create-namespace --namespace upgrade-controller-system

2. Validate the Upgrade Controller deployment:

kubectl get deployment -n upgrade-controller-system

3. Validate the Upgrade Controller pod:

kubectl get pods -n upgrade-controller-system

4. Validate the Upgrade Controller pod logs:

kubectl logs <pod_name> -n upgrade-controller-system

20.3 How does the Upgrade Controller work?

In order to perform an Edge release upgrade, the Upgrade Controller introduces two new
Kubernetes custom resources (https://kubernetes.io/docs/concepts/extend-kubernetes/api-exten-

sion/custom-resources/) :

UpgradePlan (Section 20.4.1, “UpgradePlan”) - created by the user; holds configurations
regarding an Edge release upgrade.

ReleaseManifest (Section 20.4.2, “ReleaseManifest”) - created by the Upgrade Controller;
holds component versions specific to a particular Edge release version. Must not be edited
by users.

The Upgrade Controller proceeds to create a ReleaseManifest resource that holds the com-
ponent data for the Edge release version specified by the user under the releaseVersion prop-
erty in the UpgradePlan resource.

169 Steps

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Using the component data from the ReleaseManifest, the Upgrade Controller proceeds to
upgrade the Edge release components in the following order:

1. Operating System (OS) (Section 20.3.1, “Operating System upgrade”).

2. Kubernetes (Section 20.3.2, “Kubernetes upgrade”).

3. Additional components (Section 20.3.3, “Additional components upgrades”).

Note
During the upgrade process, the Upgrade Controller constantly outputs upgrade infor-
mation to the created UpgradePlan. For more information on how to track the upgrade
process, see Tracking the upgrade process (Section 20.5, “Tracking the upgrade process”).

20.3.1 Operating System upgrade

To upgrade the OS component, the Upgrade Controller creates SUC (Chapter 19, System Upgrade

Controller) Plans that have the following naming template:

For SUC Plans related to control-plane node OS upgrades - control-plane-<os-name>-
<os-version>-<suffix>.

For SUC Plans related to worker node OS upgrades - workers-<os-name>-<os-ver-
sion>-<suffix>.

Based on these plans, SUC proceeds to create workloads on each node of the cluster that perform
the actual OS upgrade.

Depending on the ReleaseManifest, the OS upgrade may include:

Package only updates - for use-cases where the OS version does not change between
Edge releases.

Full OS migration - for use-cases where the OS version changes between Edge releases.

The upgrade is executed one node at a time starting with the control-plane nodes rst. Only
if the control-plane node upgrade finishes, will the worker nodes begin to be upgraded.

170 Operating System upgrade

Note
The Upgrade Controller configures the OS SUC Plans to do drain (https://kuber-

netes.io/docs/reference/kubectl/generated/kubectl_drain/) of the cluster nodes if the
cluster has more than one node of the specific type.

For clusters where the control-plane nodes are greater than one and there is only one
worker node, drain will be performed only for the control-plane nodes and vice versa.

For information on how to disable node drains altogether, see the UpgradePlan (Sec-

tion 20.4.1, “UpgradePlan”) section.

20.3.2 Kubernetes upgrade

To upgrade the Kubernetes distribution of a cluster, the Upgrade Controller creates SUC
(Chapter 19, System Upgrade Controller) Plans that have the following naming template:

For SUC Plans related to control-plane node Kubernetes upgrades - control-plane-
<k8s-version>-<suffix>.

For SUC Plans related to worker node Kubernetes upgrades - workers-<k8s-ver-
sion>-<suffix>.

Based on these plans, SUC proceeds to create workloads on each node of the cluster that perform
the actual Kubernetes upgrade.

The Kubernetes upgrade will happen one node at a time starting with the control-plane
nodes rst. Only if the control-plane node upgrade finishes, will the worker nodes begin to
be upgraded.

Note
The Upgrade Controller configures the Kubernetes SUC Plans to do drain (https://ku-

bernetes.io/docs/reference/kubectl/generated/kubectl_drain/) of the cluster nodes if the
cluster has more than one node of the specific type.

For clusters where the control-plane nodes are greater than one and there is only one
worker node, drain will be performed only for the control-plane nodes and vice versa.

For information on how to disable node drains altogether, see the UpgradePlan (Sec-

tion 20.4.1, “UpgradePlan”) section.

171 Kubernetes upgrade

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/

20.3.3 Additional components upgrades

Currently, all additional components are installed via Helm charts. For a full list of the compo-
nents for a specific release, refer to the Release Notes (Section 36.1, “Abstract”).

For Helm charts deployed through EIB (Chapter 9, Edge Image Builder), the Upgrade Controller
updates the existing HelmChart CR (https://docs.rke2.io/helm#using-the-helm-crd) of each com-
ponent.

For Helm charts deployed outside of EIB, the Upgrade Controller creates a HelmChart resource
for each component.

After the creation/update of the HelmChart resource, the Upgrade Controller relies on the
helm-controller (https://github.com/k3s-io/helm-controller/) to pick up this change and proceed
with the actual component upgrade.

Charts will be upgraded sequentially based on their order in the ReleaseManifest. Additional
values can also be passed through the UpgradePlan. For more information about this, refer to
the UpgradePlan (Section 20.4.1, “UpgradePlan”) section.

20.4 Kubernetes API extensions
Extensions to the Kubernetes API introduced by the Upgrade Controller.

20.4.1 UpgradePlan

The Upgrade Controller introduces a new Kubernetes custom resource (https://ku-

bernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/) called an Up-
gradePlan.

The UpgradePlan serves as an instruction mechanism for the Upgrade Controller and it sup-
ports the following configurations:

releaseVersion - Edge release version to which the cluster should be upgraded to. The
release version must follow semantic (https://semver.org) versioning and should be re-
trieved from the Release Notes (Section 36.1, “Abstract”).

disableDrain - Optional; instructs the Upgrade Controller on whether to disable node
drains (https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/) . Useful for
when you have workloads with Disruption Budgets (https://kubernetes.io/docs/tasks/run-

application/configure-pdb/) .

172 Additional components upgrades

https://docs.rke2.io/helm#using-the-helm-crd
https://github.com/k3s-io/helm-controller/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://semver.org
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/

Example for control-plane node drain disablement:

spec:
 disableDrain:
 controlPlane: true

Example for control-plane and worker node drain disablement:

spec:
 disableDrain:
 controlPlane: true
 worker: true

helm - Optional; specifies additional values for components installed via Helm.

Warning
It is only advised to use this eld for values that are critical for upgrades. Standard
chart value updates should be performed after the respective charts have been up-
graded to the next version.

Example:

spec:
 helm:
 - chart: foo
 values:
 bar: baz

20.4.2 ReleaseManifest

The Upgrade Controller introduces a new Kubernetes custom resource (https://ku-

bernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/) called a Re-
leaseManifest.

The ReleaseManifest is created by the Upgrade Controller and holds component data for
one specific Edge release version. This means that each Edge release version upgrade will be
represented by a different ReleaseManifest resource.

173 ReleaseManifest

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

Warning
The ReleaseManifest should always be created by the Upgrade Controller.

It is not advisable to manually create or edit the ReleaseManifest. Users that decide to
do so, should do this at their own risk.

Component data that the ReleaseManifest ships include, but is not limited to:

Operating System data (version, supported architectures, additional upgrade data, etc.).

Kubernetes distribution data (RKE2 (https://docs.rke2.io) /K3s (https://k3s.io) sup-
ported versions).

Additional components data - SUSE Helm chart data (location, version, name, etc.).

For an example of how a ReleaseManifest can look, refer to
the upstream (https://github.com/suse-edge/upgrade-controller/blob/main/config/samples/lifecy-

cle_v1alpha1_releasemanifest.yaml) documentation. Please note that this is just an example and
it is not intended to be created as a valid ReleaseManifest resource.

20.5 Tracking the upgrade process
This section serves as means to track and debug the upgrade process that the Upgrade Con-
troller initiates once the user creates an UpgradePlan.

20.5.1 General

General information about the state of the upgrade process can be viewed in the Upgrade-
Plan’s status conditions.

The UpgradePlan resource’s status can be viewed in the following way:

kubectl get upgradeplan <upgradeplan_name> -n upgrade-controller-system -o yaml

Running UpgradePlan example:

apiVersion: lifecycle.suse.com/v1alpha1

kind: UpgradePlan

metadata:

 name: upgrade-plan-mgmt-3-1-0

174 Tracking the upgrade process

https://docs.rke2.io
https://k3s.io
https://github.com/suse-edge/upgrade-controller/blob/main/config/samples/lifecycle_v1alpha1_releasemanifest.yaml
https://github.com/suse-edge/upgrade-controller/blob/main/config/samples/lifecycle_v1alpha1_releasemanifest.yaml

 namespace: upgrade-controller-system

spec:

 releaseVersion: 3.1.0

status:

 conditions:

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Control plane nodes are being upgraded

 reason: InProgress

 status: "False"

 type: OSUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Kubernetes upgrade is not yet started

 reason: Pending

 status: Unknown

 type: KubernetesUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Rancher upgrade is not yet started

 reason: Pending

 status: Unknown

 type: RancherUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Longhorn upgrade is not yet started

 reason: Pending

 status: Unknown

 type: LonghornUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: MetalLB upgrade is not yet started

 reason: Pending

 status: Unknown

 type: MetalLBUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: CDI upgrade is not yet started

 reason: Pending

 status: Unknown

 type: CDIUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: KubeVirt upgrade is not yet started

 reason: Pending

 status: Unknown

 type: KubeVirtUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: NeuVector upgrade is not yet started

 reason: Pending

 status: Unknown

 type: NeuVectorUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: EndpointCopierOperator upgrade is not yet started

175 General

 reason: Pending

 status: Unknown

 type: EndpointCopierOperatorUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Elemental upgrade is not yet started

 reason: Pending

 status: Unknown

 type: ElementalUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: SRIOV upgrade is not yet started

 reason: Pending

 status: Unknown

 type: SRIOVUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Akri upgrade is not yet started

 reason: Pending

 status: Unknown

 type: AkriUpgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: Metal3 upgrade is not yet started

 reason: Pending

 status: Unknown

 type: Metal3Upgraded

 - lastTransitionTime: "2024-10-01T06:26:27Z"

 message: RancherTurtles upgrade is not yet started

 reason: Pending

 status: Unknown

 type: RancherTurtlesUpgraded

 observedGeneration: 1

 sucNameSuffix: 90315a2b6d

Here you can view every component that the Upgrade Controller will try to schedule an
upgrade for. Each condition follows the below template:

lastTransitionTime - the last time that this component condition has transitioned from
one status to another.

message - message that indicates the current upgrade state of the specific component con-
dition.

reason - the current upgrade state of the specific component condition. Possible reasons
include:

Succeeded - upgrade of the specific component is successful.

Failed - upgrade of the specific component has failed.

176 General

InProgress - upgrade of the specific component is currently in progress.

Pending - upgrade of the specific component is not yet scheduled.

Skipped - specific component is not found on the cluster, so its upgrade will be
skipped.

Error - specific component has encountered a transient error.

status - status of the current condition type, one of True, False, Unknown.

type - indicator for the currently upgraded component.

The Upgrade Controller creates SUC Plans for component conditions of type "OSUpgraded"
and "KubernetesUpgraded". To further track the SUC Plans created for these components, refer
to the Monitoring System Upgrade Controller Plans (Section 19.3, “Monitoring System Upgrade Con-

troller Plans”) section.

All other component condition types can be further tracked by viewing the resources created for
them by the helm-controller (https://github.com/k3s-io/helm-controller/) . For more information,
see the Helm Controller (Section 20.5.2, “Helm Controller”) section.

An UpgradePlan scheduled by the Upgrade Controller can be marked as successful once:

1. There are no Pending or InProgress component conditions.

2. The lastSuccessfulReleaseVersion property points to the releaseVersion that is spec-
ified in the UpgradePlan’s configuration. This property is added to the UpgradePlan’s sta-
tus by the Upgrade Controller once the upgrade process is successful.

Successful UpgradePlan example:

apiVersion: lifecycle.suse.com/v1alpha1

kind: UpgradePlan

metadata:

 name: upgrade-plan-mgmt-3-1-0

 namespace: upgrade-controller-system

spec:

 releaseVersion: 3.1.0

status:

 conditions:

 - lastTransitionTime: "2024-10-01T06:26:48Z"

 message: All cluster nodes are upgraded

 reason: Succeeded

 status: "True"177 General

https://github.com/k3s-io/helm-controller/

 type: OSUpgraded

 - lastTransitionTime: "2024-10-01T06:26:59Z"

 message: All cluster nodes are upgraded

 reason: Succeeded

 status: "True"

 type: KubernetesUpgraded

 - lastTransitionTime: "2024-10-01T06:27:13Z"

 message: Chart rancher upgrade succeeded

 reason: Succeeded

 status: "True"

 type: RancherUpgraded

 - lastTransitionTime: "2024-10-01T06:27:13Z"

 message: Chart longhorn is not installed

 reason: Skipped

 status: "False"

 type: LonghornUpgraded

 - lastTransitionTime: "2024-10-01T06:27:13Z"

 message: Specified version of chart metallb is already installed

 reason: Skipped

 status: "False"

 type: MetalLBUpgraded

 - lastTransitionTime: "2024-10-01T06:27:13Z"

 message: Chart cdi is not installed

 reason: Skipped

 status: "False"

 type: CDIUpgraded

 - lastTransitionTime: "2024-10-01T06:27:13Z"

 message: Chart kubevirt is not installed

 reason: Skipped

 status: "False"

 type: KubeVirtUpgraded

 - lastTransitionTime: "2024-10-01T06:27:13Z"

 message: Chart neuvector-crd is not installed

 reason: Skipped

 status: "False"

 type: NeuVectorUpgraded

 - lastTransitionTime: "2024-10-01T06:27:14Z"

 message: Specified version of chart endpoint-copier-operator is already installed

 reason: Skipped

 status: "False"

 type: EndpointCopierOperatorUpgraded

 - lastTransitionTime: "2024-10-01T06:27:14Z"

 message: Chart elemental-operator upgrade succeeded

 reason: Succeeded

 status: "True"

 type: ElementalUpgraded

 - lastTransitionTime: "2024-10-01T06:27:15Z"

178 General

 message: Chart sriov-crd is not installed

 reason: Skipped

 status: "False"

 type: SRIOVUpgraded

 - lastTransitionTime: "2024-10-01T06:27:16Z"

 message: Chart akri is not installed

 reason: Skipped

 status: "False"

 type: AkriUpgraded

 - lastTransitionTime: "2024-10-01T06:27:19Z"

 message: Chart metal3 is not installed

 reason: Skipped

 status: "False"

 type: Metal3Upgraded

 - lastTransitionTime: "2024-10-01T06:27:27Z"

 message: Chart rancher-turtles is not installed

 reason: Skipped

 status: "False"

 type: RancherTurtlesUpgraded

 lastSuccessfulReleaseVersion: 3.1.0

 observedGeneration: 1

 sucNameSuffix: 90315a2b6d

20.5.2 Helm Controller

This section covers how to track resources created by the helm-controller (https://github.com/

k3s-io/helm-controller/) .

Note
The below steps assume that kubectl has been configured to connect to the cluster where
the Upgrade Controller has been deployed to.

1. Locate the HelmChart resource for the specific component:

kubectl get helmcharts -n kube-system

2. Using the name of the HelmChart resource, locate the upgrade Pod that was created by
the helm-controller:

kubectl get pods -l helmcharts.helm.cattle.io/chart=<helmchart_name> -n kube-system

179 Helm Controller

https://github.com/k3s-io/helm-controller/
https://github.com/k3s-io/helm-controller/

Example for Rancher
kubectl get pods -l helmcharts.helm.cattle.io/chart=rancher -n kube-system
NAME READY STATUS RESTARTS AGE
helm-install-rancher-tv9wn 0/1 Completed 0 16m

3. View the logs of the component specific pod:

kubectl logs <pod_name> -n kube-system

20.6 Known Limitations

Downstream cluster upgrades are not yet managed by the Upgrade Controller. For infor-
mation on how to upgrade downstream clusters, refer to the Downstream clusters (Chap-

ter 28, Downstream clusters) section.

The Upgrade Controller expects any additional SUSE Edge Helm charts that are de-
ployed through EIB (Chapter 9, Edge Image Builder) to have their HelmChart CR (https://doc-

s.rke2.io/helm#using-the-helm-crd) deployed in the kube-system namespace. To do this,
configure the installationNamespace property in your EIB definition le. For more in-
formation, see the upstream (https://github.com/suse-edge/edge-image-builder/blob/main/

docs/building-images.md#kubernetes) documentation.

Currently the Upgrade Controller has no way to determine the current running Edge
release version on the management cluster. Ensure to provide an Edge release version that
is greater than the currently running Edge release version on the cluster.

Currently the Upgrade Controller supports non air-gapped environment upgrades only.
Air-gapped upgrades are not yet possible.

180 Known Limitations

https://docs.rke2.io/helm#using-the-helm-crd
https://docs.rke2.io/helm#using-the-helm-crd
https://github.com/suse-edge/edge-image-builder/blob/main/docs/building-images.md#kubernetes
https://github.com/suse-edge/edge-image-builder/blob/main/docs/building-images.md#kubernetes

III How-To Guides

21 MetalLB on K3s (using L2) 182

22 MetalLB in front of the Kubernetes API server 191

23 Air-gapped deployments with Edge Image Builder 198

How-to guides and best practices

21 MetalLB on K3s (using L2)

MetalLB is a load-balancer implementation for bare-metal Kubernetes clusters, using standard
routing protocols.

In this guide, we demonstrate how to deploy MetalLB in layer 2 mode.

21.1 Why use this method
MetalLB is a compelling choice for load balancing in bare-metal Kubernetes clusters for several
reasons:

1. Native Integration with Kubernetes: MetalLB seamlessly integrates with Kubernetes, mak-
ing it easy to deploy and manage using familiar Kubernetes tools and practices.

2. Bare-Metal Compatibility: Unlike cloud-based load balancers, MetalLB is designed specifi-
cally for on-premises deployments where traditional load balancers might not be available
or feasible.

3. Supports Multiple Protocols: MetalLB supports both Layer 2 and BGP (Border Gateway Pro-
tocol) modes, providing flexibility for different network architectures and requirements.

4. High Availability: By distributing load-balancing responsibilities across multiple nodes,
MetalLB ensures high availability and reliability for your services.

5. Scalability: MetalLB can handle large-scale deployments, scaling alongside your Kuber-
netes cluster to meet increasing demand.

In layer 2 mode, one node assumes the responsibility of advertising a service to the local network.
From the network’s perspective, it simply looks like that machine has multiple IP addresses
assigned to its network interface.

The major advantage of the layer 2 mode is its universality: it works on any Ethernet network,
with no special hardware required, not even fancy routers.

21.2 MetalLB on K3s (using L2)
In this quick start, L2 mode will be used, so it means we do not need any special network gear
but just a couple of free IPs in our network range, ideally outside of the DHCP pool so they
are not assigned.

182 Why use this method

In this example, our DHCP pool is 192.168.122.100-192.168.122.200 (yes, three IPs, see
Traefik and MetalLB (Section 21.3.3, “Traefik and MetalLB”) for the reason of the extra IP) for a
192.168.122.0/24 network, so anything outside this range is OK (besides the gateway and
other hosts that can be already running!)

21.3 Prerequisites

A K3s cluster where MetalLB is going to be deployed.

Warning
K3S comes with its own service load balancer named Klipper. You need to disable it to run

MetalLB (https://metallb.universe.tf/configuration/k3s/) . To disable Klipper, K3s needs to
be installed using the --disable=servicelb ag.

Helm

A couple of free IPs in our network range. In this case, 192.168.122.10-192.168.122.12

21.3.1 Deployment

MetalLB leverages Helm (and other methods as well), so:

helm install \
 metallb oci://registry.suse.com/edge/3.1/metallb-chart \
 --namespace metallb-system \
 --create-namespace

while ! kubectl wait --for condition=ready -n metallb-system $(kubectl get\
 pods -n metallb-system -l app.kubernetes.io/component=controller -o name)\
 --timeout=10s; do
 sleep 2
done

183 Prerequisites

https://metallb.universe.tf/configuration/k3s/
https://metallb.universe.tf/configuration/k3s/

21.3.2 Configuration

At this point, the installation is completed. Now it is time to configure (https://metallb.uni-

verse.tf/configuration/) using our example values:

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: ip-pool
 namespace: metallb-system
spec:
 addresses:
 - 192.168.122.10/32
 - 192.168.122.11/32
 - 192.168.122.12/32
EOF

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ip-pool
EOF

Now, it is ready to be used. You can customize many things for L2 mode, such as:

IPv6 And Dual Stack Services (https://metallb.universe.tf/usage/#ipv6-and-dual-stack-ser-

vices)

Control automatic address allocation (https://metallb.universe.tf/configuration/_advanced_i-

paddresspool_configuration/#controlling-automatic-address-allocation)

Reduce the scope of address allocation to specific namespaces and ser-

vices (https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#re-

duce-scope-of-address-allocation-to-specific-namespace-and-service)

184 Configuration

https://metallb.universe.tf/configuration/
https://metallb.universe.tf/configuration/
https://metallb.universe.tf/usage/#ipv6-and-dual-stack-services
https://metallb.universe.tf/usage/#ipv6-and-dual-stack-services
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#controlling-automatic-address-allocation
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#controlling-automatic-address-allocation
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#reduce-scope-of-address-allocation-to-specific-namespace-and-service
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#reduce-scope-of-address-allocation-to-specific-namespace-and-service
https://metallb.universe.tf/configuration/_advanced_ipaddresspool_configuration/#reduce-scope-of-address-allocation-to-specific-namespace-and-service

Limiting the set of nodes where the service can be announced

from (https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-

of-nodes-where-the-service-can-be-announced-from)

Specify network interfaces that LB IP can be announced

from (https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-net-

work-interfaces-that-lb-ip-can-be-announced-from)

And a lot more for BGP (https://metallb.universe.tf/configuration/_advanced_bgp_configura-

tion/) .

21.3.3 Traefik and MetalLB

Traefik is deployed by default with K3s (it can be disabled (https://docs.k3s.io/networking#trae-

fik-ingress-controller) with --disable=traefik) and it is by default exposed as LoadBalancer
(to be used with Klipper). However, as Klipper needs to be disabled, Traefik service for ingress is
still a LoadBalancer type. So at the moment of deploying MetalLB, the rst IP will be assigned
automatically to Traefik Ingress.

Before deploying MetalLB
kubectl get svc -n kube-system traefik
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
traefik LoadBalancer 10.43.44.113 <pending> 80:31093/TCP,443:32095/TCP 28s
After deploying MetalLB
kubectl get svc -n kube-system traefik
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
traefik LoadBalancer 10.43.44.113 192.168.122.10 80:31093/TCP,443:32095/TCP
 3m10s

This will be applied later (Section 21.4, “Ingress with MetalLB”) in the process.

21.3.4 Usage

Let us create an example deployment:

cat <<- EOF | kubectl apply -f -

apiVersion: v1
kind: Namespace
metadata:
 name: hello-kubernetes

185 Traefik and MetalLB

https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-of-nodes-where-the-service-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-of-nodes-where-the-service-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#limiting-the-set-of-nodes-where-the-service-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_l2_configuration/#specify-network-interfaces-that-lb-ip-can-be-announced-from
https://metallb.universe.tf/configuration/_advanced_bgp_configuration/
https://metallb.universe.tf/configuration/_advanced_bgp_configuration/
https://docs.k3s.io/networking#traefik-ingress-controller
https://docs.k3s.io/networking#traefik-ingress-controller

apiVersion: v1
kind: ServiceAccount
metadata:
 name: hello-kubernetes
 namespace: hello-kubernetes
 labels:
 app.kubernetes.io/name: hello-kubernetes

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-kubernetes
 namespace: hello-kubernetes
 labels:
 app.kubernetes.io/name: hello-kubernetes
spec:
 replicas: 2
 selector:
 matchLabels:
 app.kubernetes.io/name: hello-kubernetes
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello-kubernetes
 spec:
 serviceAccountName: hello-kubernetes
 containers:
 - name: hello-kubernetes
 image: "paulbouwer/hello-kubernetes:1.10"
 imagePullPolicy: IfNotPresent
 ports:
 - name: http
 containerPort: 8080
 protocol: TCP
 livenessProbe:
 httpGet:
 path: /
 port: http
 readinessProbe:
 httpGet:
 path: /
 port: http
 env:
 - name: HANDLER_PATH_PREFIX
 value: ""
 - name: RENDER_PATH_PREFIX
 value: ""

186 Usage

 - name: KUBERNETES_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: KUBERNETES_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: KUBERNETES_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: CONTAINER_IMAGE
 value: "paulbouwer/hello-kubernetes:1.10"
EOF

And finally, the service:

cat <<- EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: hello-kubernetes
 namespace: hello-kubernetes
 labels:
 app.kubernetes.io/name: hello-kubernetes
spec:
 type: LoadBalancer
 ports:
 - port: 80
 targetPort: http
 protocol: TCP
 name: http
 selector:
 app.kubernetes.io/name: hello-kubernetes
EOF

Let us see it in action:

kubectl get svc -n hello-kubernetes
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-kubernetes LoadBalancer 10.43.127.75 192.168.122.11 80:31461/TCP 8s

curl http://192.168.122.11
<!DOCTYPE html>
<html>
<head>
 <title>Hello Kubernetes!</title>

187 Usage

 <link rel="stylesheet" type="text/css" href="/css/main.css">
 <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Ubuntu:300" >
</head>
<body>

 <div class="main">

 <div class="content">
 <div id="message">
 Hello world!
</div>
<div id="info">
 <table>
 <tr>
 <th>namespace:</th>
 <td>hello-kubernetes</td>
 </tr>
 <tr>
 <th>pod:</th>
 <td>hello-kubernetes-7c8575c848-2c6ps</td>
 </tr>
 <tr>
 <th>node:</th>
 <td>allinone (Linux 5.14.21-150400.24.46-default)</td>
 </tr>
 </table>
</div>
<div id="footer">
 paulbouwer/hello-kubernetes:1.10 (linux/amd64)
</div>
 </div>
 </div>

</body>
</html>

21.4 Ingress with MetalLB
As Traefik is already serving as an ingress controller, we can expose any HTTP/HTTPS traffic
via an Ingress object such as:

IP=$(kubectl get svc -n kube-system traefik -o
 jsonpath="{.status.loadBalancer.ingress[0].ip}")
cat <<- EOF | kubectl apply -f -
apiVersion: networking.k8s.io/v1

188 Ingress with MetalLB

kind: Ingress
metadata:
 name: hello-kubernetes-ingress
 namespace: hello-kubernetes
spec:
 rules:
 - host: hellok3s.${IP}.sslip.io
 http:
 paths:
 - path: "/"
 pathType: Prefix
 backend:
 service:
 name: hello-kubernetes
 port:
 name: http
EOF

And then:

curl http://hellok3s.${IP}.sslip.io
<!DOCTYPE html>
<html>
<head>
 <title>Hello Kubernetes!</title>
 <link rel="stylesheet" type="text/css" href="/css/main.css">
 <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Ubuntu:300" >
</head>
<body>

 <div class="main">

 <div class="content">
 <div id="message">
 Hello world!
</div>
<div id="info">
 <table>
 <tr>
 <th>namespace:</th>
 <td>hello-kubernetes</td>
 </tr>
 <tr>
 <th>pod:</th>
 <td>hello-kubernetes-7c8575c848-fvqm2</td>
 </tr>
 <tr>
 <th>node:</th>

189 Ingress with MetalLB

 <td>allinone (Linux 5.14.21-150400.24.46-default)</td>
 </tr>
 </table>
</div>
<div id="footer">
 paulbouwer/hello-kubernetes:1.10 (linux/amd64)
</div>
 </div>
 </div>

</body>
</html>

Also, to verify that MetalLB works correctly, arping can be used as:

arping hellok3s.${IP}.sslip.io

Expected result:

ARPING 192.168.64.210
60 bytes from 92:12:36:00:d3:58 (192.168.64.210): index=0 time=1.169 msec
60 bytes from 92:12:36:00:d3:58 (192.168.64.210): index=1 time=2.992 msec
60 bytes from 92:12:36:00:d3:58 (192.168.64.210): index=2 time=2.884 msec

In the example above, the traffic ows as follows:

1. hellok3s.${IP}.sslip.io is resolved to the actual IP.

2. Then the traffic is handled by the metallb-speaker pod.

3. metallb-speaker redirects the traffic to the traefik controller.

4. Finally, Traefik forwards the request to the hello-kubernetes service.

190 Ingress with MetalLB

22 MetalLB in front of the Kubernetes API server

This guide demonstrates using a MetalLB service to expose the RKE2/K3s API externally on an
HA cluster with three control-plane nodes. To achieve this, a Kubernetes Service of type Load-
Balancer and Endpoints will be manually created. The Endpoints keep the IPs of all control
plane nodes available in the cluster. For the Endpoint to be continuously synchronized with the
events occurring in the cluster (adding/removing a node or a node goes offline), the Endpoint

Copier Operator (https://github.com/suse-edge/endpoint-copier-operator) will be deployed. The
operator monitors the events happening in the default kubernetes Endpoint and updates the
managed one automatically to keep them in sync. Since the managed Service is of type Load-
Balancer, MetalLB assigns it a static ExternalIP. This ExternalIP will be used to communi-
cate with the API Server.

22.1 Prerequisites

Three hosts to deploy RKE2/K3s on top.

Ensure the hosts have different host names.

For testing, these could be virtual machines

At least 2 available IPs in the network (one for the Traefik/Nginx and one for the managed
service).

Helm

22.2 Installing RKE2/K3s

Note
If you do not want to use a fresh cluster but want to use an existing one, skip this step
and proceed to the next one.

First, a free IP in the network must be reserved that will be used later for ExternalIP of the
managed Service.

191 Prerequisites

https://github.com/suse-edge/endpoint-copier-operator
https://github.com/suse-edge/endpoint-copier-operator

SSH to the rst host and install the wanted distribution in cluster mode.

For RKE2:

Export the free IP mentioned above
export VIP_SERVICE_IP=<ip>

curl -sfL https://get.rke2.io | INSTALL_RKE2_EXEC="server \
 --write-kubeconfig-mode=644 --tls-san=${VIP_SERVICE_IP} \
 --tls-san=https://${VIP_SERVICE_IP}.sslip.io" sh -

systemctl enable rke2-server.service
systemctl start rke2-server.service

Fetch the cluster token:
RKE2_TOKEN=$(tr -d '\n' < /var/lib/rancher/rke2/server/node-token)

For K3s:

Export the free IP mentioned above
export VIP_SERVICE_IP=<ip>
export INSTALL_K3S_SKIP_START=false

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="server --cluster-init \
 --disable=servicelb --write-kubeconfig-mode=644 --tls-san=${VIP_SERVICE_IP} \
 --tls-san=https://${VIP_SERVICE_IP}.sslip.io" K3S_TOKEN=foobar sh -

Note
Make sure that --disable=servicelb ag is provided in the k3s server command.

Important
From now on, the commands should be run on the local machine.

To access the API server from outside, the IP of the RKE2/K3s VM will be used.

Replace <node-ip> with the actual IP of the machine
export NODE_IP=<node-ip>
export KUBE_DISTRIBUTION=<k3s/rke2>

scp ${NODE_IP}:/etc/rancher/${KUBE_DISTRIBUTION}/${KUBE_DISTRIBUTION}.yaml ~/.kube/config
 && sed \
 -i '' "s/127.0.0.1/${NODE_IP}/g" ~/.kube/config && chmod 600 ~/.kube/config

192 Installing RKE2/K3s

22.3 Configuring an existing cluster

Note
This step is valid only if you intend to use an existing RKE2/K3s cluster.

To use an existing cluster the tls-san ags should be modified and also, servicelb LB should
be disabled for K3s.

To change the ags for RKE2 or K3s servers, you need to modify either the /etc/systemd/sys-
tem/rke2.service or /etc/systemd/system/k3s.service le on all the VMs in the cluster,
depending on the distribution.

The ags should be inserted in the ExecStart. For example:

For RKE2:

Replace the <vip-service-ip> with the actual ip
ExecStart=/usr/local/bin/rke2 \
 server \
 '--write-kubeconfig-mode=644' \
 '--tls-san=<vip-service-ip>' \
 '--tls-san=https://<vip-service-ip>.sslip.io' \

For K3s:

Replace the <vip-service-ip> with the actual ip
ExecStart=/usr/local/bin/k3s \
 server \
 '--cluster-init' \
 '--write-kubeconfig-mode=644' \
 '--disable=servicelb' \
 '--tls-san=<vip-service-ip>' \
 '--tls-san=https://<vip-service-ip>.sslip.io' \

Then the following commands should be executed to load the new configurations:

systemctl daemon-reload
systemctl restart ${KUBE_DISTRIBUTION}

22.4 Installing MetalLB
To deploy MetalLB, the MetalLB on K3s (https://suse-edge.github.io/docs/quickstart/metallb)

guide can be used.

193 Configuring an existing cluster

https://suse-edge.github.io/docs/quickstart/metallb

NOTE: Ensure that the IP addresses of the ip-pool IPAddressPool do not overlap with the IP
addresses previously selected for the LoadBalancer service.

Create a separate IpAddressPool that will be used only for the managed Service.

Export the VIP_SERVICE_IP on the local machine
Replace with the actual IP
export VIP_SERVICE_IP=<ip>

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: kubernetes-vip-ip-pool
 namespace: metallb-system
spec:
 addresses:
 - ${VIP_SERVICE_IP}/32
 serviceAllocation:
 priority: 100
 namespaces:
 - default
EOF

cat <<-EOF | kubectl apply -f -
apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ip-pool
 - kubernetes-vip-ip-pool
EOF

22.5 Installing the Endpoint Copier Operator

helm install \
endpoint-copier-operator oci://registry.suse.com/edge/3.1/endpoint-copier-operator-chart
 \
--namespace endpoint-copier-operator \
--create-namespace

194 Installing the Endpoint Copier Operator

The command above will deploy the endpoint-copier-operator operator Deployment with
two replicas. One will be the leader and the other will take over the leader role if needed.

Now, the kubernetes-vip Service should be deployed, which will be reconciled by the operator
and an Endpoint with the configured ports and IP will be created.

For RKE2:

cat <<-EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: kubernetes-vip
 namespace: default
spec:
 ports:
 - name: rke2-api
 port: 9345
 protocol: TCP
 targetPort: 9345
 - name: k8s-api
 port: 6443
 protocol: TCP
 targetPort: 6443
 type: LoadBalancer
EOF

For K3s:

cat <<-EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
 name: kubernetes-vip
 namespace: default
spec:
 internalTrafficPolicy: Cluster
 ipFamilies:
 - IPv4
 ipFamilyPolicy: SingleStack
 ports:
 - name: https
 port: 443
 protocol: TCP
 targetPort: 6443
 sessionAffinity: None
 type: LoadBalancer

195 Installing the Endpoint Copier Operator

EOF

Verify that the kubernetes-vip Service has the correct IP address:

kubectl get service kubernetes-vip -n default \
 -o=jsonpath='{.status.loadBalancer.ingress[0].ip}'

Ensure that the kubernetes-vip and kubernetes Endpoints resources in the default name-
space point to the same IPs.

kubectl get endpoints kubernetes kubernetes-vip

If everything is correct, the last thing left is to use the VIP_SERVICE_IP in our Kubeconfig.

sed -i '' "s/${NODE_IP}/${VIP_SERVICE_IP}/g" ~/.kube/config

From now on, all the kubectl will go through the kubernetes-vip service.

22.6 Adding control-plane nodes
To monitor the entire process, two more terminal tabs can be opened.

First terminal:

watch kubectl get nodes

Second terminal:

watch kubectl get endpoints

Now execute the commands below on the second and third nodes.

For RKE2:

Export the VIP_SERVICE_IP in the VM
Replace with the actual IP
export VIP_SERVICE_IP=<ip>

curl -sfL https://get.rke2.io | INSTALL_RKE2_TYPE="server" sh -
systemctl enable rke2-server.service

mkdir -p /etc/rancher/rke2/
cat <<EOF > /etc/rancher/rke2/config.yaml
server: https://${VIP_SERVICE_IP}:9345

196 Adding control-plane nodes

token: ${RKE2_TOKEN}
EOF

systemctl start rke2-server.service

For K3s:

Export the VIP_SERVICE_IP in the VM
Replace with the actual IP
export VIP_SERVICE_IP=<ip>
export INSTALL_K3S_SKIP_START=false

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="server \
 --server https://${VIP_SERVICE_IP}:6443 --disable=servicelb \
 --write-kubeconfig-mode=644" K3S_TOKEN=foobar sh -

197 Adding control-plane nodes

23 Air-gapped deployments with Edge Image Builder

23.1 Intro

This guide will show how to deploy several of the SUSE Edge components completely air-gapped
on SLE Micro 6.0 utilizing Edge Image Builder(EIB) (Chapter 9, Edge Image Builder). With this,
you’ll be able to boot into a customized, ready to boot (CRB) image created by EIB and have the
specified components deployed on either a RKE2 or K3s cluster without an Internet connection
or any manual steps. This configuration is highly desirable for customers that want to pre-bake
all artifacts required for deployment into their OS image, so they are immediately available on
boot.

We will cover an air-gapped installation of:

Chapter 4, Rancher

Chapter 16, NeuVector

Chapter 15, Longhorn

Chapter 18, Edge Virtualization

Warning
EIB will parse and pre-download all images referenced in the provided Helm charts and
Kubernetes manifests. However, some of those may be attempting to pull container im-
ages and create Kubernetes resources based on those at runtime. In these cases we have
to manually specify the necessary images in the definition le if we want to set up a
completely air-gapped environment.

23.2 Prerequisites

If you’re following this guide, it’s assumed that you are already familiar with EIB (Chapter 9,

Edge Image Builder). If not, please follow the quick start guide (Chapter 3, Standalone clusters with

Edge Image Builder) to better understand the concepts shown in practice below.

198 Intro

23.3 Libvirt Network Configuration

Note
To demo the air-gapped deployment, this guide will be done using a simulated air-gapped
libvirt network and the following configuration will be tailored to that. For your own
deployments, you may have to modify the host1.local.yaml configuration that will be
introduced in the next step.

If you would like to use the same libvirt network configuration, follow along. If not, skip to
Section 23.4, “Base Directory Configuration”.

Let’s create an isolated network configuration with an IP address range 192.168.100.2/24 for
DHCP:

cat << EOF > isolatednetwork.xml
<network>
 <name>isolatednetwork</name>
 <bridge name='virbr1' stp='on' delay='0'/>
 <ip address='192.168.100.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.100.2' end='192.168.100.254'/>
 </dhcp>
 </ip>
</network>
EOF

Now, the only thing left is to create the network and start it:

virsh net-define isolatednetwork.xml
virsh net-start isolatednetwork

23.4 Base Directory Configuration
The base directory configuration is the same across all different components, so we will set it
up here.

We will rst create the necessary subdirectories:

export CONFIG_DIR=$HOME/config
mkdir -p $CONFIG_DIR/base-images

199 Libvirt Network Configuration

mkdir -p $CONFIG_DIR/network
mkdir -p $CONFIG_DIR/kubernetes/helm/values

Make sure to add whichever base image you plan to use into the base-images directory. This
guide will focus on the Self Install ISO found here (https://www.suse.com/download/sle-micro/) .

Let’s copy the downloaded image:

cp SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso $CONFIG_DIR/base-images/
slemicro.iso

Note
EIB is never going to modify the base image input.

Let’s create a le containing the desired network configuration:

cat << EOF > $CONFIG_DIR/network/host1.local.yaml
routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100
 next-hop-address: 192.168.100.1
 next-hop-interface: eth0
 table-id: 254
 - destination: 192.168.100.0/24
 metric: 100
 next-hop-address:
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - 192.168.100.1
 - 8.8.8.8
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: 34:8A:B1:4B:16:E7
 ipv4:
 address:
 - ip: 192.168.100.50
 prefix-length: 24
 dhcp: false
 enabled: true

200 Base Directory Configuration

https://www.suse.com/download/sle-micro/

 ipv6:
 enabled: false
EOF

This configuration ensures the following are present on the provisioned systems (using the spec-
ified MAC address):

an Ethernet interface with a static IP address

routing

DNS

hostname (host1.local)

The resulting le structure should now look like:

├── kubernetes/
│ └── helm/
│ └── values/
├── base-images/
│ └── slemicro.iso
└── network/
 └── host1.local.yaml

23.5 Base Definition File
Edge Image Builder is using definition les to modify the SLE Micro images. These les contain
the majority of configurable options. Many of these options will be repeated across the different
component sections, so we will list and explain those here.

Tip
Full list of customization options in the definition le can be found in the upstream doc-

umentation (https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/build-

ing-images.md#image-definition-file)

We will take a look at the following elds which will be present in all definition les:

apiVersion: 1.0
image:
 imageType: iso

201 Base Definition File

https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#image-definition-file
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#image-definition-file
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md#image-definition-file

 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.30.5+rke2r1
embeddedArtifactRegistry:
 images:
 - ...

The image section is required, and it specifies the input image, its architecture and type, as well
as what the output image will be called.

The operatingSystem section is optional, and contains configuration to enable login on the
provisioned systems with the root/eib username/password.

The kubernetes section is optional, and it defines the Kubernetes type and version. We are going
to use Kubernetes 1.30.5 and RKE2 by default. Use kubernetes.version: v1.30.5+k3s1 if
K3s is desired instead. Unless explicitly configured via the kubernetes.nodes eld, all clusters
we bootstrap in this guide will be single-node ones.

The embeddedArtifactRegistry section will include all images which are only referenced and
pulled at runtime for the specific component.

23.6 Rancher Installation

Note
The Rancher (Chapter 4, Rancher) deployment that will be demonstrated will be highly
slimmed down for demonstration purposes. For your actual deployments, additional ar-
tifacts may be necessary depending on your configuration.

The Rancher v2.9.3 (https://github.com/rancher/rancher/releases/tag/v2.9.3) release assets con-
tain a rancher-images.txt le which lists all the images required for an air-gapped installation.

There are over 600 container images in total which means that the resulting CRB image would be
roughly 30GB. For our Rancher installation, we will strip down that list to the smallest working
configuration. From there, you can add back any images you may need for your deployments.

202 Rancher Installation

https://github.com/rancher/rancher/releases/tag/v2.9.3

We will create the definition le and include the stripped down image list:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.30.5+rke2r1
 network:
 apiVIP: 192.168.100.151
 manifests:
 urls:
 - https://github.com/cert-manager/cert-manager/releases/download/v1.15.3/cert-
manager.crds.yaml
 helm:
 charts:
 - name: rancher
 version: 2.9.3
 repositoryName: rancher-prime
 valuesFile: rancher-values.yaml
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 - name: cert-manager
 installationNamespace: kube-system
 createNamespace: true
 repositoryName: jetstack
 targetNamespace: cert-manager
 version: 1.15.3
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
embeddedArtifactRegistry:
 images:
 - name: registry.rancher.com/rancher/backup-restore-operator:v5.0.2
 - name: registry.rancher.com/rancher/calico-cni:v3.28.1-rancher1
 - name: registry.rancher.com/rancher/cis-operator:v1.0.16
 - name: registry.rancher.com/rancher/flannel-cni:v1.4.1-rancher1

203 Rancher Installation

 - name: registry.rancher.com/rancher/fleet-agent:v0.10.4
 - name: registry.rancher.com/rancher/fleet:v0.10.4
 - name: registry.rancher.com/rancher/hardened-addon-resizer:1.8.20-build20240910
 - name: registry.rancher.com/rancher/hardened-calico:v3.28.1-build20240911
 - name: registry.rancher.com/rancher/hardened-cluster-autoscaler:v1.8.11-
build20240910
 - name: registry.rancher.com/rancher/hardened-cni-plugins:v1.5.1-build20240910
 - name: registry.rancher.com/rancher/hardened-coredns:v1.11.1-build20240910
 - name: registry.rancher.com/rancher/hardened-dns-node-cache:1.23.1-build20240910
 - name: registry.rancher.com/rancher/hardened-etcd:v3.5.13-k3s1-build20240910
 - name: registry.rancher.com/rancher/hardened-flannel:v0.25.6-build20240910
 - name: registry.rancher.com/rancher/hardened-k8s-metrics-server:v0.7.1-build20240910
 - name: registry.rancher.com/rancher/hardened-kubernetes:v1.30.5-rke2r1-build20240912
 - name: registry.rancher.com/rancher/hardened-multus-cni:v4.1.0-build20240910
 - name: registry.rancher.com/rancher/hardened-node-feature-discovery:v0.15.6-
build20240822
 - name: registry.rancher.com/rancher/hardened-whereabouts:v0.8.0-build20240910
 - name: registry.rancher.com/rancher/helm-project-operator:v0.2.1
 - name: registry.rancher.com/rancher/k3s-upgrade:v1.30.5-k3s1
 - name: registry.rancher.com/rancher/klipper-helm:v0.9.2-build20240828
 - name: registry.rancher.com/rancher/klipper-lb:v0.4.9
 - name: registry.rancher.com/rancher/kube-api-auth:v0.2.2
 - name: registry.rancher.com/rancher/kubectl:v1.29.7
 - name: registry.rancher.com/rancher/local-path-provisioner:v0.0.28
 - name: registry.rancher.com/rancher/machine:v0.15.0-rancher118
 - name: registry.rancher.com/rancher/mirrored-cluster-api-controller:v1.7.3
 - name: registry.rancher.com/rancher/nginx-ingress-controller:v1.10.4-hardened3
 - name: registry.rancher.com/rancher/prometheus-federator:v0.3.4
 - name: registry.rancher.com/rancher/pushprox-client:v0.1.3-rancher2-client
 - name: registry.rancher.com/rancher/pushprox-proxy:v0.1.3-rancher2-proxy
 - name: registry.rancher.com/rancher/rancher-agent:v2.9.3
 - name: registry.rancher.com/rancher/rancher-csp-adapter:v4.0.0
 - name: registry.rancher.com/rancher/rancher-webhook:v0.5.3
 - name: registry.rancher.com/rancher/rancher:v2.9.3
 - name: registry.rancher.com/rancher/rke-tools:v0.1.103
 - name: registry.rancher.com/rancher/rke2-cloud-provider:v1.30.4-build20240910
 - name: registry.rancher.com/rancher/rke2-runtime:v1.30.5-rke2r1
 - name: registry.rancher.com/rancher/rke2-upgrade:v1.30.5-rke2r1
 - name: registry.rancher.com/rancher/security-scan:v0.2.18
 - name: registry.rancher.com/rancher/shell:v0.2.2
 - name: registry.rancher.com/rancher/system-agent-installer-k3s:v1.30.5-k3s1
 - name: registry.rancher.com/rancher/system-agent-installer-rke2:v1.30.5-rke2r1
 - name: registry.rancher.com/rancher/system-agent:v0.3.10-suc
 - name: registry.rancher.com/rancher/system-upgrade-controller:v0.13.4
 - name: registry.rancher.com/rancher/ui-plugin-catalog:2.1.0
 - name: registry.rancher.com/rancher/kubectl:v1.20.2
 - name: registry.rancher.com/rancher/kubectl:v1.29.2

204 Rancher Installation

 - name: registry.rancher.com/rancher/shell:v0.1.24
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v1.4.1
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v1.4.3
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20230312-helm-chart-4.5.2-28-g66a760794
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231011-8b53cabe0
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231226-1a7112e06

As compared to the full list of 600+ container images, this slimmed down version only contains
~60 which makes the new CRB image only about 7GB.

We also need to create a Helm values le for Rancher:

cat << EOF > $CONFIG_DIR/kubernetes/helm/values/rancher-values.yaml
hostname: 192.168.100.50.sslip.io
replicas: 1
bootstrapPassword: "adminadminadmin"
systemDefaultRegistry: registry.rancher.com
useBundledSystemChart: true
EOF

Warning
Setting the systemDefaultRegistry to registry.rancher.com allows Rancher to auto-
matically look for images in the embedded artifact registry started within the CRB image
at boot. Omitting this eld may result in failure to nd the container images on the node.

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Downloading file: dl-manifest-1.yaml 100% |
███|
 (583/583 kB, 12 MB/s)
Pulling selected Helm charts... 100% |
██|
 (4/4, 1 it/s)
Generating image customization components...

205 Rancher Installation

Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Os Files [SKIPPED]
Systemd [SKIPPED]
Fips [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% |
██|
 (57/57, 2020 it/s)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Downloading file: rke2-images-core.linux-amd64.tar.zst 100% (780/780 MB, 115 MB/s)
Downloading file: rke2-images-cilium.linux-amd64.tar.zst 100% (367/367 MB, 108 MB/s)
Downloading file: rke2.linux-amd64.tar.gz 100% (34/34 MB, 117 MB/s)
Downloading file: sha256sum-amd64.txt 100% (3.9/3.9 kB, 34 MB/s)
Downloading file: dl-manifest-1.yaml 100% (437/437 kB, 106 MB/s)
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Cleanup [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Build complete, the image can be found at: eib-image.iso

Once a node using the built image is provisioned, we can verify the Rancher installation:

/var/lib/rancher/rke2/bin/kubectl get all -n cattle-system --kubeconfig /etc/rancher/
rke2/rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/helm-operation-5v24z 0/2 Completed 0 2m18s
pod/helm-operation-jqjkg 0/2 Completed 0 101s
pod/helm-operation-p88bw 0/2 Completed 0 112s
pod/helm-operation-sdnql 2/2 Running 0 73s
pod/helm-operation-xkpkj 0/2 Completed 0 119s
pod/rancher-844dc7f5f6-pz7bz 1/1 Running 0 3m14s

206 Rancher Installation

pod/rancher-webhook-5c87686d68-hsllv 1/1 Running 0 97s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/rancher ClusterIP 10.43.96.117 <none> 80/TCP,443/TCP
 3m14s
service/rancher-webhook ClusterIP 10.43.112.253 <none> 443/TCP 97s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/rancher 1/1 1 1 3m14s
deployment.apps/rancher-webhook 1/1 1 1 97s

NAME DESIRED CURRENT READY AGE
replicaset.apps/rancher-844dc7f5f6 1 1 1 3m14s
replicaset.apps/rancher-webhook-5c87686d68 1 1 1 97s

207 Rancher Installation

And when we go to https://192.168.100.50.sslip.io and log in with the adminadminadmin
password that we set earlier, we are greeted with the Rancher dashboard:

208 Rancher Installation

23.7 NeuVector Installation
Unlike the Rancher installation, the NeuVector installation does not require any special handling
in EIB. EIB will automatically air-gap every image required by NeuVector.

We will create the definition le:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.30.5+rke2r1
 helm:
 charts:
 - name: neuvector-crd
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector-values.yaml
 - name: neuvector
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector-values.yaml
 repositories:
 - name: rancher-charts
 url: https://charts.rancher.io/

We will also create a Helm values le for NeuVector:

cat << EOF > $CONFIG_DIR/kubernetes/helm/values/neuvector-values.yaml
controller:
 replicas: 1
manager:
 enabled: false

209 NeuVector Installation

cve:
 scanner:
 enabled: false
 replicas: 1
k3s:
 enabled: true
crdwebhook:
 enabled: false
EOF

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Systemd [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% (6/6, 20 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Image build complete!

Once a node using the built image is provisioned, we can verify the NeuVector installation:

/var/lib/rancher/rke2/bin/kubectl get all -n neuvector --kubeconfig /etc/rancher/rke2/
rke2.yaml

210 NeuVector Installation

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/neuvector-controller-pod-7db4c6c9f4-qq7cf 1/1 Running 0 2m46s
pod/neuvector-enforcer-pod-qfdp2 1/1 Running 0 2m46s

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
service/neuvector-svc-admission-webhook ClusterIP 10.43.254.230 <none> 443/
TCP 2m46s
service/neuvector-svc-controller ClusterIP None <none>
 18300/TCP,18301/TCP,18301/UDP 2m46s

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
daemonset.apps/neuvector-enforcer-pod 1 1 1 1 1
 <none> 2m46s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/neuvector-controller-pod 1/1 1 1 2m46s

NAME DESIRED CURRENT READY AGE
replicaset.apps/neuvector-controller-pod-7db4c6c9f4 1 1 1 2m46s

NAME SCHEDULE TIMEZONE SUSPEND ACTIVE LAST
 SCHEDULE AGE
cronjob.batch/neuvector-updater-pod 0 0 * * * <none> False 0 <none>
 2m46s

23.8 Longhorn Installation
The official documentation (https://longhorn.io/docs/1.7.1/deploy/install/airgap/) for Longhorn
contains a longhorn-images.txt le which lists all the images required for an air-gapped in-
stallation. We will be including their mirrored counterparts from the Rancher container registry
in our definition le. Let’s create it:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso

211 Longhorn Installation

https://longhorn.io/docs/1.7.1/deploy/install/airgap/

operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
 packages:
 sccRegistrationCode: <reg-code>
 packageList:
 - open-iscsi
kubernetes:
 version: v1.30.5+rke2r1
 helm:
 charts:
 - name: longhorn
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 version: 104.2.0+up1.7.1
 - name: longhorn-crd
 repositoryName: longhorn
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 version: 104.2.0+up1.7.1
 repositories:
 - name: longhorn
 url: https://charts.rancher.io
embeddedArtifactRegistry:
 images:
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-attacher:v4.6.1
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-provisioner:v4.0.1
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-resizer:v1.11.1
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-snapshotter:v7.0.2
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-node-driver-
registrar:v2.12.0
 - name: registry.suse.com/rancher/mirrored-longhornio-livenessprobe:v2.14.0
 - name: registry.suse.com/rancher/mirrored-longhornio-openshift-origin-oauth-
proxy:4.15
 - name: registry.suse.com/rancher/mirrored-longhornio-backing-image-manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-engine:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-instance-
manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-share-manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-ui:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-support-bundle-kit:v0.0.42
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-cli:v1.7.1

212 Longhorn Installation

Note
You will notice that the definition le lists the open-iscsi package. This is necessary
since Longhorn relies on a iscsiadm daemon running on the different nodes to provide
persistent volumes to Kubernetes.

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Setting up Podman API listener...
Pulling selected Helm charts... 100% |
██|
 (2/2, 3 it/s)
Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Resolving package dependencies...
Rpm [SUCCESS]
Os Files [SKIPPED]
Systemd [SKIPPED]
Fips [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% |
███|
 (15/15, 20956 it/s)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Downloading file: rke2-images-core.linux-amd64.tar.zst 100% (782/782 MB, 108 MB/s)
Downloading file: rke2-images-cilium.linux-amd64.tar.zst 100% (367/367 MB, 104 MB/s)
Downloading file: rke2.linux-amd64.tar.gz 100% (34/34 MB, 108 MB/s)
Downloading file: sha256sum-amd64.txt 100% (3.9/3.9 kB, 7.5 MB/s)
Kubernetes [SUCCESS]

213 Longhorn Installation

Certificates [SKIPPED]
Cleanup [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Build complete, the image can be found at: eib-image.iso

Once a node using the built image is provisioned, we can verify the Longhorn installation:

/var/lib/rancher/rke2/bin/kubectl get all -n longhorn-system --kubeconfig /etc/rancher/
rke2/rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS
 AGE
pod/csi-attacher-5dbc6d6479-jz2kf 1/1 Running 0
 116s
pod/csi-attacher-5dbc6d6479-k2t47 1/1 Running 0
 116s
pod/csi-attacher-5dbc6d6479-ms76j 1/1 Running 0
 116s
pod/csi-provisioner-55749f6bd8-cv7k2 1/1 Running 0
 116s
pod/csi-provisioner-55749f6bd8-qxmdd 1/1 Running 0
 116s
pod/csi-provisioner-55749f6bd8-rjqpl 1/1 Running 0
 116s
pod/csi-resizer-68fc4f8555-7sxr4 1/1 Running 0
 116s
pod/csi-resizer-68fc4f8555-blxlt 1/1 Running 0
 116s
pod/csi-resizer-68fc4f8555-ww6tc 1/1 Running 0
 116s
pod/csi-snapshotter-6876488cb5-fw7vg 1/1 Running 0
 116s
pod/csi-snapshotter-6876488cb5-xmz7l 1/1 Running 0
 116s
pod/csi-snapshotter-6876488cb5-zt6ht 1/1 Running 0
 116s
pod/engine-image-ei-f586bff0-m6vzb 1/1 Running 0
 2m34s
pod/instance-manager-d8b2d035a5c84130de8779e3b4c29113 1/1 Running 0
 2m4s
pod/longhorn-csi-plugin-8dgxw 3/3 Running 0
 116s
pod/longhorn-driver-deployer-65b7c7c8cc-pz8lr 1/1 Running 0
 3m13s

214 Longhorn Installation

pod/longhorn-manager-pllq7 2/2 Running 0
 3m13s
pod/longhorn-ui-5c76575888-2rkpj 1/1 Running 3 (2m52s ago)
 3m13s
pod/longhorn-ui-5c76575888-6z69x 1/1 Running 3 (2m55s ago)
 3m13s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
service/longhorn-admission-webhook ClusterIP 10.43.213.17 <none> 9502/TCP
 3m14s
service/longhorn-backend ClusterIP 10.43.11.79 <none> 9500/TCP
 3m14s
service/longhorn-conversion-webhook ClusterIP 10.43.152.173 <none> 9501/TCP
 3m14s
service/longhorn-frontend ClusterIP 10.43.150.97 <none> 80/TCP
 3m14s
service/longhorn-recovery-backend ClusterIP 10.43.99.138 <none> 9503/TCP
 3m14s

NAME DESIRED CURRENT READY UP-TO-DATE
 AVAILABLE NODE SELECTOR AGE
daemonset.apps/engine-image-ei-f586bff0 1 1 1 1 1
 <none> 2m34s
daemonset.apps/longhorn-csi-plugin 1 1 1 1 1
 <none> 116s
daemonset.apps/longhorn-manager 1 1 1 1 1
 <none> 3m13s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/csi-attacher 3/3 3 3 116s
deployment.apps/csi-provisioner 3/3 3 3 116s
deployment.apps/csi-resizer 3/3 3 3 116s
deployment.apps/csi-snapshotter 3/3 3 3 116s
deployment.apps/longhorn-driver-deployer 1/1 1 1 3m13s
deployment.apps/longhorn-ui 2/2 2 2 3m13s

NAME DESIRED CURRENT READY AGE
replicaset.apps/csi-attacher-5dbc6d6479 3 3 3 116s
replicaset.apps/csi-provisioner-55749f6bd8 3 3 3 116s
replicaset.apps/csi-resizer-68fc4f8555 3 3 3 116s
replicaset.apps/csi-snapshotter-6876488cb5 3 3 3 116s
replicaset.apps/longhorn-driver-deployer-65b7c7c8cc 1 1 1 3m13s
replicaset.apps/longhorn-ui-5c76575888 2 2 2 3m13s

215 Longhorn Installation

23.9 KubeVirt and CDI Installation
The Helm charts for both KubeVirt and CDI are only installing their respective operators. It is
up to the operators to deploy the rest of the systems which means we will have to include all
necessary container images in our definition le. Let’s create it:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: slemicro.iso
 outputImageName: eib-image.iso
operatingSystem:
 users:
 - username: root
 encryptedPassword: 6jHugJNNd3HElGsUZ
$eodjVe4te5ps44SVcWshdfWizrP.xAyd71CVEXazBJ/.v799/WRCBXxfYmunlBO2yp1hm/zb4r8EmnrrNCF.P/
kubernetes:
 version: v1.30.5+rke2r1
 helm:
 charts:
 - name: kubevirt-chart
 repositoryName: suse-edge
 version: 0.4.0
 targetNamespace: kubevirt-system
 createNamespace: true
 installationNamespace: kube-system
 - name: cdi-chart
 repositoryName: suse-edge
 version: 0.4.0
 targetNamespace: cdi-system
 createNamespace: true
 installationNamespace: kube-system
 repositories:
 - name: suse-edge
 url: oci://registry.suse.com/edge/3.1
embeddedArtifactRegistry:
 images:
 - name: registry.suse.com/suse/sles/15.6/cdi-uploadproxy:1.60.1-150600.3.9.1
 - name: registry.suse.com/suse/sles/15.6/cdi-uploadserver:1.60.1-150600.3.9.1
 - name: registry.suse.com/suse/sles/15.6/cdi-apiserver:1.60.1-150600.3.9.1
 - name: registry.suse.com/suse/sles/15.6/cdi-controller:1.60.1-150600.3.9.1
 - name: registry.suse.com/suse/sles/15.6/cdi-importer:1.60.1-150600.3.9.1
 - name: registry.suse.com/suse/sles/15.6/cdi-cloner:1.60.1-150600.3.9.1
 - name: registry.suse.com/suse/sles/15.6/virt-api:1.3.1-150600.5.9.1
 - name: registry.suse.com/suse/sles/15.6/virt-controller:1.3.1-150600.5.9.1

216 KubeVirt and CDI Installation

 - name: registry.suse.com/suse/sles/15.6/virt-launcher:1.3.1-150600.5.9.1
 - name: registry.suse.com/suse/sles/15.6/virt-handler:1.3.1-150600.5.9.1
 - name: registry.suse.com/suse/sles/15.6/virt-exportproxy:1.3.1-150600.5.9.1
 - name: registry.suse.com/suse/sles/15.6/virt-exportserver:1.3.1-150600.5.9.1

Let’s build the image:

podman run --rm -it --privileged -v $CONFIG_DIR:/eib \
registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
build --definition-file eib-iso-definition.yaml

The output should be similar to the following:

Pulling selected Helm charts... 100% |
███|
 (2/2, 48 it/min)
Generating image customization components...
Identifier [SUCCESS]
Custom Files [SKIPPED]
Time [SKIPPED]
Network [SUCCESS]
Groups [SKIPPED]
Users [SUCCESS]
Proxy [SKIPPED]
Rpm [SKIPPED]
Os Files [SKIPPED]
Systemd [SKIPPED]
Fips [SKIPPED]
Elemental [SKIPPED]
Suma [SKIPPED]
Populating Embedded Artifact Registry... 100% |
██|
 (15/15, 4 it/min)
Embedded Artifact Registry ... [SUCCESS]
Keymap [SUCCESS]
Configuring Kubernetes component...
The Kubernetes CNI is not explicitly set, defaulting to 'cilium'.
Downloading file: rke2_installer.sh
Kubernetes [SUCCESS]
Certificates [SKIPPED]
Cleanup [SKIPPED]
Building ISO image...
Kernel Params [SKIPPED]
Build complete, the image can be found at: eib-image.iso

Once a node using the built image is provisioned, we can verify the installation of both KubeVirt
and CDI.

217 KubeVirt and CDI Installation

Verify KubeVirt:

/var/lib/rancher/rke2/bin/kubectl get all -n kubevirt-system --kubeconfig /etc/rancher/
rke2/rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/virt-api-59cb997648-mmt67 1/1 Running 0 2m34s
pod/virt-controller-69786b785-7cc96 1/1 Running 0 2m8s
pod/virt-controller-69786b785-wq2dz 1/1 Running 0 2m8s
pod/virt-handler-2l4dm 1/1 Running 0 2m8s
pod/virt-operator-7c444cff46-nps4l 1/1 Running 0 3m1s
pod/virt-operator-7c444cff46-r25xq 1/1 Running 0 3m1s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
service/kubevirt-operator-webhook ClusterIP 10.43.167.109 <none> 443/TCP
 2m36s
service/kubevirt-prometheus-metrics ClusterIP None <none> 443/TCP
 2m36s
service/virt-api ClusterIP 10.43.18.202 <none> 443/TCP
 2m36s
service/virt-exportproxy ClusterIP 10.43.142.188 <none> 443/TCP
 2m36s

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE
 SELECTOR AGE
daemonset.apps/virt-handler 1 1 1 1 1
 kubernetes.io/os=linux 2m8s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/virt-api 1/1 1 1 2m34s
deployment.apps/virt-controller 2/2 2 2 2m8s
deployment.apps/virt-operator 2/2 2 2 3m1s

NAME DESIRED CURRENT READY AGE
replicaset.apps/virt-api-59cb997648 1 1 1 2m34s
replicaset.apps/virt-controller-69786b785 2 2 2 2m8s
replicaset.apps/virt-operator-7c444cff46 2 2 2 3m1s

NAME AGE PHASE
kubevirt.kubevirt.io/kubevirt 3m1s Deployed

218 KubeVirt and CDI Installation

Verify CDI:

/var/lib/rancher/rke2/bin/kubectl get all -n cdi-system --kubeconfig /etc/rancher/rke2/
rke2.yaml

The output should be similar to the following, showing that everything has been successfully
deployed:

NAME READY STATUS RESTARTS AGE
pod/cdi-apiserver-5598c9bf47-pqfxw 1/1 Running 0 3m44s
pod/cdi-deployment-7cbc5db7f8-g46z7 1/1 Running 0 3m44s
pod/cdi-operator-777c865745-2qcnj 1/1 Running 0 3m48s
pod/cdi-uploadproxy-646f4cd7f7-fzkv7 1/1 Running 0 3m44s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/cdi-api ClusterIP 10.43.2.224 <none> 443/TCP
 3m44s
service/cdi-prometheus-metrics ClusterIP 10.43.237.13 <none> 8080/TCP
 3m44s
service/cdi-uploadproxy ClusterIP 10.43.114.91 <none> 443/TCP
 3m44s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/cdi-apiserver 1/1 1 1 3m44s
deployment.apps/cdi-deployment 1/1 1 1 3m44s
deployment.apps/cdi-operator 1/1 1 1 3m48s
deployment.apps/cdi-uploadproxy 1/1 1 1 3m44s

NAME DESIRED CURRENT READY AGE
replicaset.apps/cdi-apiserver-5598c9bf47 1 1 1 3m44s
replicaset.apps/cdi-deployment-7cbc5db7f8 1 1 1 3m44s
replicaset.apps/cdi-operator-777c865745 1 1 1 3m48s
replicaset.apps/cdi-uploadproxy-646f4cd7f7 1 1 1 3m44s

23.10 Troubleshooting
If you run into any issues while building the images or are looking to further test and debug
the process, please refer to the upstream documentation (https://github.com/suse-edge/edge-im-

age-builder/tree/release-1.1/docs) .

219 Troubleshooting

https://github.com/suse-edge/edge-image-builder/tree/release-1.1/docs
https://github.com/suse-edge/edge-image-builder/tree/release-1.1/docs

IV Third-Party Integration

24 NATS 221

25 NVIDIA GPUs on SLE Micro 226

How to integrate third-party tools

24 NATS

NATS (https://nats.io/) is a connective technology built for the ever-increasingly hyper-con-
nected world. It is a single technology that enables applications to securely communicate across
any combination of cloud vendors, on-premises, edge, Web and mobile devices. NATS consists
of a family of open-source products that are tightly integrated but can be deployed easily and
independently. NATS is being used globally by thousands of companies, spanning use cases in-
cluding microservices, edge computing, mobile and IoT, and can be used to augment or replace
traditional messaging.

24.1 Architecture

NATS is an infrastructure that allows data exchange between applications in the form of mes-
sages.

24.1.1 NATS client applications

NATS client libraries can be used to allow the applications to publish, subscribe, request and
reply between different instances. These applications are generally referred to as client ap-
plications.

24.1.2 NATS service infrastructure

The NATS services are provided by one or more NATS server processes that are configured
to interconnect with each other and provide a NATS service infrastructure. The NATS service
infrastructure can scale from a single NATS server process running on an end device to a public
global super-cluster of many clusters spanning all major cloud providers and all regions of the
world.

221 Architecture

https://nats.io/

24.1.3 Simple messaging design

NATS makes it easy for applications to communicate by sending and receiving messages. These
messages are addressed and identified by subject strings and do not depend on network location.
Data is encoded and framed as a message and sent by a publisher. The message is received,
decoded and processed by one or more subscribers.

24.1.4 NATS JetStream

NATS has a built-in distributed persistence system called JetStream. JetStream was created to
solve the problems identified with streaming in technology today — complexity, fragility and
a lack of scalability. JetStream also solves the problem with the coupling of the publisher and
the subscriber (the subscribers need to be up and running to receive the message when it is
published). More information about NATS JetStream can be found here (https://docs.nats.io/nats-

concepts/jetstream) .

24.2 Installation

24.2.1 Installing NATS on top of K3s

NATS is built for multiple architectures so it can easily be installed on K3s. (Chapter 13, K3s)

Let us create a values le to overwrite the default values of NATS.

cat > values.yaml <<EOF
cluster:
 # Enable the HA setup of the NATS
 enabled: true
 replicas: 3

nats:
 jetstream:
 # Enable JetStream
 enabled: true

 memStorage:
 enabled: true
 size: 2Gi

222 Simple messaging design

https://docs.nats.io/nats-concepts/jetstream
https://docs.nats.io/nats-concepts/jetstream

 fileStorage:
 enabled: true
 size: 1Gi
 storageDirectory: /data/
EOF

Now let us install NATS via Helm:

helm repo add nats https://nats-io.github.io/k8s/helm/charts/
helm install nats nats/nats --namespace nats --values values.yaml \
 --create-namespace

With the values.yaml le above, the following components will be in the nats namespace:

1. HA version of NATS Statefulset containing three containers: NATS server + Config re-
loader and Metrics sidecars.

2. NATS box container, which comes with a set of NATS utilities that can be used to verify
the setup.

3. JetStream also leverages its Key-Value back-end that comes with PVCs bounded to the pods.

24.2.1.1 Testing the setup

kubectl exec -n nats -it deployment/nats-box -- /bin/sh -l

1. Create a subscription for the test subject:

nats sub test &

2. Send a message to the test subject:

nats pub test hi

24.2.1.2 Cleaning up

helm -n nats uninstall nats
rm values.yaml

223 Installing NATS on top of K3s

24.2.2 NATS as a back-end for K3s

One component K3s leverages is KINE (https://github.com/k3s-io/kine) , which is a shim enabling
the replacement of etcd with alternate storage back-ends originally targeting relational databas-
es. As JetStream provides a Key Value API, this makes it possible to have NATS as a back-end
for the K3s cluster.

There is an already merged PR which makes the built-in NATS in K3s straightforward, but the
change is still not included (https://github.com/k3s-io/k3s/issues/7410#issue-1692989394) in the
K3s releases.

For this reason, the K3s binary should be built manually.

In this tutorial, SLE Micro on OSX on Apple Silicon (UTM) (https://suse-edge.github.io/docs/quick-

start/slemicro-utm-aarch64) VM is used.

Note
Run the commands below on the OSX PC.

24.2.2.1 Building K3s

git clone --depth 1 https://github.com/k3s-io/k3s.git && cd k3s

The following command adds nats in the build tags to enable the NATS built-in feature in K3s:

sed -i '' 's/TAGS="ctrd/TAGS="nats ctrd/g' scripts/build
make local

Replace <node-ip> with the actual IP of the node where the K3s will be started:

export NODE_IP=<node-ip>
sudo scp dist/artifacts/k3s-arm64 ${NODE_IP}:/usr/local/bin/k3s

Note
Locally building K3s requires the buildx Docker CLI plugin. It can be manually installed

(https://github.com/docker/buildx#manual-download) if $ make local fails.

24.2.2.2 Installing NATS CLI

TMPDIR=$(mktemp -d)

224 NATS as a back-end for K3s

https://github.com/k3s-io/kine
https://github.com/k3s-io/k3s/issues/7410#issue-1692989394
https://suse-edge.github.io/docs/quickstart/slemicro-utm-aarch64
https://suse-edge.github.io/docs/quickstart/slemicro-utm-aarch64
https://github.com/docker/buildx#manual-download
https://github.com/docker/buildx#manual-download

nats_version="nats-0.0.35-linux-arm64"
curl -o "${TMPDIR}/nats.zip" -sfL https://github.com/nats-io/natscli/releases/download/
v0.0.35/${nats_version}.zip
unzip "${TMPDIR}/nats.zip" -d "${TMPDIR}"

sudo scp ${TMPDIR}/${nats_version}/nats ${NODE_IP}:/usr/local/bin/nats
rm -rf ${TMPDIR}

24.2.2.3 Running NATS as K3s back-end

Let us ssh on the node and run the K3s with the --datastore-endpoint ag pointing to nats.

Note
The command below starts K3s as a foreground process, so the logs can be easily followed
to see if there are any issues. To not block the current terminal, a & ag could be added
before the command to start it as a background process.

k3s server --datastore-endpoint=nats://

Note
For making the K3s server with the NATS back-end permanent on your slemicro VM, the
script below can be run, which creates a systemd service with the needed configurations.

export INSTALL_K3S_SKIP_START=false
export INSTALL_K3S_SKIP_DOWNLOAD=true

curl -sfL https://get.k3s.io | INSTALL_K3S_EXEC="server \
 --datastore-endpoint=nats://" sh -

24.2.2.4 Troubleshooting

The following commands can be run on the node to verify that everything with the stream works
properly:

nats str report -a
nats str view -a

225 NATS as a back-end for K3s

25 NVIDIA GPUs on SLE Micro

25.1 Intro

This guide demonstrates how to implement host-level NVIDIA GPU support via the pre-built
open-source drivers (https://github.com/NVIDIA/open-gpu-kernel-modules) on SLE Micro 6.0.
These are drivers that are baked into the operating system rather than dynamically loaded by
NVIDIA’s GPU Operator (https://github.com/NVIDIA/gpu-operator) . This configuration is highly
desirable for customers that want to pre-bake all artifacts required for deployment into the im-
age, and where the dynamic selection of the driver version, that is, the user selecting the version
of the driver via Kubernetes, is not a requirement. This guide initially explains how to deploy
the additional components onto a system that has already been pre-deployed, but follows with
a section that describes how to embed this configuration into the initial deployment via Edge
Image Builder. If you do not want to run through the basics and set things up manually, skip
right ahead to that section.

It is important to call out that the support for these drivers is provided by both SUSE
and NVIDIA in tight collaboration, where the driver is built and shipped by SUSE as
part of the package repositories. However, if you have any concerns or questions about
the combination in which you use the drivers, ask your SUSE or NVIDIA account man-
agers for further assistance. If you plan to use NVIDIA AI Enterprise (https://www.nvidi-

a.com/en-gb/data-center/products/ai-enterprise/) (NVAIE), ensure that you are using an NVAIE

certified GPU (https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-sup-

port.html#supported-nvidia-gpus-and-systems) , which may require the use of proprietary
NVIDIA drivers. If you are unsure, speak with your NVIDIA representative.

Further information about NVIDIA GPU operator integration is not covered in this guide.
While integrating the NVIDIA GPU Operator for Kubernetes is not covered here, you can
still follow most of the steps in this guide to set up the underlying operating system
and simply enable the GPU operator to use the pre-installed drivers via the driver.en-
abled=false ag in the NVIDIA GPU Operator Helm chart, where it will simply pick
up the installed drivers on the host. More comprehensive instructions are available from
NVIDIA here (https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-op-

erator.html#chart-customization-options) . SUSE recently also made a Technical Reference Doc-

226 Intro

https://github.com/NVIDIA/open-gpu-kernel-modules
https://github.com/NVIDIA/gpu-operator
https://www.nvidia.com/en-gb/data-center/products/ai-enterprise/
https://www.nvidia.com/en-gb/data-center/products/ai-enterprise/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-nvidia-gpus-and-systems
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-nvidia-gpus-and-systems
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html#supported-nvidia-gpus-and-systems
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator.html#chart-customization-options
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/install-gpu-operator.html#chart-customization-options
https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-operator/

ument (https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-op-

erator/) (TRD) available that discusses how to use the GPU operator and the NVIDIA propri-
etary drivers, should this be a requirement for your use case.

25.2 Prerequisites
If you are following this guide, it assumes that you have the following already available:

At least one host with SLE Micro 6.0 installed; this can be physical or virtual.

Your hosts are attached to a subscription as this is required for package access — an eval-
uation is available here (https://www.suse.com/download/sle-micro/) .

A compatible NVIDIA GPU (https://github.com/NVIDIA/open-gpu-kernel-modules#compati-

ble-gpus) installed (or fully passed through to the virtual machine in which SLE Micro
is running).

Access to the root user — these instructions assume you are the root user, and not escalating
your privileges via sudo.

25.3 Manual installation
In this section, you are going to install the NVIDIA drivers directly onto the SLE Micro operating
system as the NVIDIA open-driver is now part of the core SLE Micro package repositories, which
makes it as easy as installing the required RPM packages. There is no compilation or download-
ing of executable packages required. Below we walk through deploying the "G06" generation
of driver, which supports the latest GPUs (see here (https://en.opensuse.org/SDB:NVIDIA_driver-

s#Install) for further information), so select an appropriate driver generation for the NVIDIA
GPU that your system has. For modern GPUs, the "G06" driver is the most common choice.

Before we begin, it is important to recognize that besides the NVIDIA open-driver that SUSE
ships as part of SLE Micro, you might also need additional NVIDIA components for your setup.
These could include OpenGL libraries, CUDA toolkits, command-line utilities such as nvidia-
smi, and container-integration components such as nvidia-container-toolkit. Many of these
components are not shipped by SUSE as they are proprietary NVIDIA software, or it makes no
sense for us to ship them instead of NVIDIA. Therefore, as part of the instructions, we are going
to configure additional repositories that give us access to said components and walk through

227 Prerequisites

https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-operator/
https://documentation.suse.com/trd/kubernetes/single-html/gs_rke2-slebci_nvidia-gpu-operator/
https://www.suse.com/download/sle-micro/
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://en.opensuse.org/SDB:NVIDIA_drivers#Install
https://en.opensuse.org/SDB:NVIDIA_drivers#Install

certain examples of how to use these tools, resulting in a fully functional system. It is important
to distinguish between SUSE repositories and NVIDIA repositories, as occasionally there can be
a mismatch between the package versions that NVIDIA makes available versus what SUSE has
built. This usually arises when SUSE makes a new version of the open-driver available, and it
takes a couple of days before the equivalent packages are made available in NVIDIA repositories
to match.

We recommend that you ensure that the driver version that you are selecting is compatible with
your GPU and meets any CUDA requirements that you may have by checking:

The CUDA release notes (https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/)

The driver version that you plan on deploying has a matching version in the NVIDIA

SLE15-SP6 repository (https://download.nvidia.com/suse/sle15sp6/x86_64/) and ensuring
that you have equivalent package versions for the supporting components available

Tip
To nd the NVIDIA open-driver versions, either run zypper se -s nvidia-open-driver
on the target machine or search the SUSE Customer Center for the "nvidia-open-driver"
in SLE Micro 6.0 for x86_64 (https://scc.suse.com/packages?name=SUSE%20Linux%20Mi-

cro&version=6.0&arch=x86_64) .

228 Manual installation

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/
https://download.nvidia.com/suse/sle15sp6/x86_64/
https://download.nvidia.com/suse/sle15sp6/x86_64/
https://scc.suse.com/packages?name=SUSE%20Linux%20Micro&version=6.0&arch=x86_64
https://scc.suse.com/packages?name=SUSE%20Linux%20Micro&version=6.0&arch=x86_64

At the time of writing, you will see a single version available (550.54.14):

229 Manual installation

When you have confirmed that an equivalent version is available in the NVIDIA repos, you
are ready to install the packages on the host operating system. For this, we need to open up
a transactional-update session, which creates a new read/write snapshot of the underly-
ing operating system so we can make changes to the immutable platform (for further instruc-
tions on transactional-update, see here (https://documentation.suse.com/sle-micro/6.0/html/

Micro-transactional-updates/transactional-updates.html)):

transactional-update shell

When you are in your transactional-update shell, add an additional package repository from
NVIDIA. This allows us to pull in additional utilities, for example, nvidia-smi:

zypper ar https://download.nvidia.com/suse/sle15sp6/ nvidia-sle15sp6-main
zypper --gpg-auto-import-keys refresh

You can then install the driver and nvidia-compute-utils for additional utilities. If you do not
need the utilities, you can omit it, but for testing purposes, it is worth installing at this stage:

zypper install -y --auto-agree-with-licenses nvidia-open-driver-G06-signed-kmp nvidia-
compute-utils-G06

Note
If the installation fails, this might indicate a dependency mismatch between the selected
driver version and what NVIDIA ships in their repositories. Refer to the previous section to
verify that your versions match. Attempt to install a different driver version. For example,
if the NVIDIA repositories have an earlier version, you can try specifying nvidia-open-
driver-G06-signed-kmp=550.54.14 on your install command to specify a version that
aligns.

Next, if you are not using a supported GPU (remembering that the list can be found here

(https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus)), you can see if the dri-
ver works by enabling support at the module level, but your mileage may vary — skip this step
if you are using a supported GPU:

sed -i '/NVreg_OpenRmEnableUnsupportedGpus/s/^#//g' /etc/modprobe.d/50-nvidia-
default.conf

Now that you have installed these packages, it is time to exit the transactional-update ses-
sion:

exit

230 Manual installation

https://documentation.suse.com/sle-micro/6.0/html/Micro-transactional-updates/transactional-updates.html
https://documentation.suse.com/sle-micro/6.0/html/Micro-transactional-updates/transactional-updates.html
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus
https://github.com/NVIDIA/open-gpu-kernel-modules#compatible-gpus

Note
Make sure that you have exited the transactional-update session before proceeding.

Now that you have installed the drivers, it is time to reboot. As SLE Micro is an immutable
operating system, it needs to reboot into the new snapshot that you created in a previous step.
The drivers are only installed into this new snapshot, hence it is not possible to load the drivers
without rebooting into this new snapshot, which happens automatically. Issue the reboot com-
mand when you are ready:

reboot

Once the system has rebooted successfully, log back in and use the nvidia-smi tool to verify
that the driver is loaded successfully and that it can both access and enumerate your GPUs:

nvidia-smi

The output of this command should show you something similar to the following output, noting
that in the example below, we have two GPUs:

Wed Feb 28 12:31:06 2024
+---+
| NVIDIA-SMI 545.29.06 Driver Version: 545.29.06 CUDA Version: 12.3 |
|---+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===+======================+======================		
0 NVIDIA A100-PCIE-40GB Off	00000000:17:00.0 Off	0
N/A 29C P0 35W / 250W	4MiB / 40960MiB	0% Default
		Disabled
+---+----------------------+----------------------+		
1 NVIDIA A100-PCIE-40GB Off	00000000:CA:00.0 Off	0
N/A 30C P0 33W / 250W	4MiB / 40960MiB	0% Default
		Disabled
+---+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

231 Manual installation

This concludes the installation and verification process for the NVIDIA drivers on your SLE
Micro system.

25.4 Further validation of the manual installation
At this stage, all we have been able to verify is that, at the host level, the NVIDIA device
can be accessed and that the drivers are loading successfully. However, if we want to be
sure that it is functioning, a simple test would be to validate that the GPU can take in-
structions from a user-space application, ideally via a container, and through the CUDA li-
brary, as that is typically what a real workload would use. For this, we can make a further
modification to the host OS by installing the nvidia-container-toolkit (NVIDIA Container

Toolkit (https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.htm-

l#installing-with-zypper)). First, open another transactional-update shell, noting that we
could have done this in a single transaction in the previous step, and see how to do this fully
automated in a later section:

transactional-update shell

Next, install the nvidia-container-toolkit package from the NVIDIA Container Toolkit repo:

The nvidia-container-toolkit.repo below contains a stable (nvidia-contain-
er-toolkit) and an experimental (nvidia-container-toolkit-experimental) reposi-
tory. The stable repository is recommended for production use. The experimental reposi-
tory is disabled by default.

zypper ar https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-
toolkit.repo
zypper --gpg-auto-import-keys install -y nvidia-container-toolkit

When you are ready, you can exit the transactional-update shell:

exit

…and reboot the machine into the new snapshot:

reboot

Note
As before, you need to ensure that you have exited the transactional-shell and re-
booted the machine for your changes to be enacted.

232 Further validation of the manual installation

https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installing-with-zypper

With the machine rebooted, you can verify that the system can successfully enumerate the de-
vices using the NVIDIA Container Toolkit. The output should be verbose, with INFO and WARN
messages, but no ERROR messages:

nvidia-ctk cdi generate --output=/etc/cdi/nvidia.yaml

This ensures that any container started on the machine can employ NVIDIA GPU devices that
have been discovered. When ready, you can then run a podman-based container. Doing this via
podman gives us a good way of validating access to the NVIDIA device from within a container,
which should give confidence for doing the same with Kubernetes at a later stage. Give podman
access to the labeled NVIDIA devices that were taken care of by the previous command, based
on SLE BCI (https://registry.suse.com/repositories/bci-bci-base-15sp6) , and simply run the Bash
command:

podman run --rm --device nvidia.com/gpu=all --security-opt=label=disable -it
 registry.suse.com/bci/bci-base:latest bash

You will now execute commands from within a temporary podman container. It does not have
access to your underlying system and is ephemeral, so whatever we do here will not persist,
and you should not be able to break anything on the underlying host. As we are now in a con-
tainer, we can install the required CUDA libraries, again checking the correct CUDA version for
your driver here (https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/) , although the previ-
ous output of nvidia-smi should show the required CUDA version. In the example below, we
are installing CUDA 12.3 and pulling many examples, demos and development kits so you can
fully validate the GPU:

zypper ar https://developer.download.nvidia.com/compute/cuda/repos/sles15/x86_64/ cuda-
sles15
zypper in -y cuda-libraries-devel-12-3 cuda-minimal-build-12-3 cuda-demo-suite-12-3

Once this has been installed successfully, do not exit the container. We will run the deviceQuery
CUDA example, which comprehensively validates GPU access via CUDA, and from within the
container itself:

/usr/local/cuda-12/extras/demo_suite/deviceQuery

If successful, you should see output that shows similar to the following, noting the Result =
PASS message at the end of the command, and noting that in the output below, the system
correctly identifies two GPUs, whereas your environment may only have one:

/usr/local/cuda-12/extras/demo_suite/deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

233 Further validation of the manual installation

https://registry.suse.com/repositories/bci-bci-base-15sp6
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/

Detected 2 CUDA Capable device(s)

Device 0: "NVIDIA A100-PCIE-40GB"
 CUDA Driver Version / Runtime Version 12.2 / 12.1
 CUDA Capability Major/Minor version number: 8.0
 Total amount of global memory: 40339 MBytes (42298834944 bytes)
 (108) Multiprocessors, (64) CUDA Cores/MP: 6912 CUDA Cores
 GPU Max Clock rate: 1410 MHz (1.41 GHz)
 Memory Clock rate: 1215 Mhz
 Memory Bus Width: 5120-bit
 L2 Cache Size: 41943040 bytes
 Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536),
 3D=(16384, 16384, 16384)
 Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
 Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
 Total amount of constant memory: 65536 bytes
 Total amount of shared memory per block: 49152 bytes
 Total number of registers available per block: 65536
 Warp size: 32
 Maximum number of threads per multiprocessor: 2048
 Maximum number of threads per block: 1024
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
 Maximum memory pitch: 2147483647 bytes
 Texture alignment: 512 bytes
 Concurrent copy and kernel execution: Yes with 3 copy engine(s)
 Run time limit on kernels: No
 Integrated GPU sharing Host Memory: No
 Support host page-locked memory mapping: Yes
 Alignment requirement for Surfaces: Yes
 Device has ECC support: Enabled
 Device supports Unified Addressing (UVA): Yes
 Device supports Compute Preemption: Yes
 Supports Cooperative Kernel Launch: Yes
 Supports MultiDevice Co-op Kernel Launch: Yes
 Device PCI Domain ID / Bus ID / location ID: 0 / 23 / 0
 Compute Mode:
 < Default (multiple host threads can use ::cudaSetDevice() with device
 simultaneously) >

Device 1: <snip to reduce output for multiple devices>
 < Default (multiple host threads can use ::cudaSetDevice() with device
 simultaneously) >
> Peer access from NVIDIA A100-PCIE-40GB (GPU0) -> NVIDIA A100-PCIE-40GB (GPU1) : Yes
> Peer access from NVIDIA A100-PCIE-40GB (GPU1) -> NVIDIA A100-PCIE-40GB (GPU0) : Yes

234 Further validation of the manual installation

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.3, CUDA Runtime Version =
 12.3, NumDevs = 2, Device0 = NVIDIA A100-PCIE-40GB, Device1 = NVIDIA A100-PCIE-40GB
Result = PASS

From here, you can continue to run any other CUDA workload — use compilers and any other
aspect of the CUDA ecosystem to run further tests. When done, you can exit from the container,
noting that whatever you have installed in there is ephemeral (so will be lost!), and has not
impacted the underlying operating system:

exit

25.5 Implementation with Kubernetes
Now that we have proven the installation and use of the NVIDIA open-driver on SLE Micro, let us
explore configuring Kubernetes on the same machine. This guide does not walk you through de-
ploying Kubernetes, but it assumes that you have installed K3s (https://k3s.io/) or RKE2 (https://

docs.rke2.io/install/quickstart) and that your kubeconfig is configured accordingly, so that stan-
dard kubectl commands can be executed as the superuser. We assume that your node forms
a single-node cluster, although the core steps should be similar for multi-node clusters. First,
ensure that your kubectl access is working:

kubectl get nodes

This should show something similar to the following:

NAME STATUS ROLES AGE VERSION
node0001 Ready control-plane,etcd,master 13d v1.30.5+rke2r1

What you should nd is that your k3s/rke2 installation has detected the NVIDIA Container
Toolkit on the host and auto-configured the NVIDIA runtime integration into containerd (the
Container Runtime Interface that k3s/rke2 use). Confirm this by checking the containerd con-
fig.toml le:

tail -n8 /var/lib/rancher/rke2/agent/etc/containerd/config.toml

This must show something akin to the following. The equivalent K3s location is /var/lib/
rancher/k3s/agent/etc/containerd/config.toml:

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes."nvidia"]
 runtime_type = "io.containerd.runc.v2"
[plugins."io.containerd.grpc.v1.cri".containerd.runtimes."nvidia".options]
 BinaryName = "/usr/bin/nvidia-container-runtime"

235 Implementation with Kubernetes

https://k3s.io/
https://docs.rke2.io/install/quickstart
https://docs.rke2.io/install/quickstart

Note
If these entries are not present, the detection might have failed. This could be due to the
machine or the Kubernetes services not being restarted. Add these manually as above,
if required.

Next, we need to configure the NVIDIA RuntimeClass as an additional Kubernetes runtime to
the default, ensuring that any user requests for pods that need access to the GPU can use the
NVIDIA Container Toolkit to do so, via the nvidia-container-runtime, as configured in the
containerd configuration:

kubectl apply -f - <<EOF
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: nvidia
handler: nvidia
EOF

The next step is to configure the NVIDIA Device Plugin (https://github.com/NVIDIA/k8s-device-plu-

gin) , which configures Kubernetes to leverage the NVIDIA GPUs as resources within the cluster
that can be used, working in combination with the NVIDIA Container Toolkit. This tool initially
detects all capabilities on the underlying host, including GPUs, drivers and other capabilities
(such as GL) and then allows you to request GPU resources and consume them as part of your
applications.

First, you need to add and update the Helm repository for the NVIDIA Device Plugin:

helm repo add nvdp https://nvidia.github.io/k8s-device-plugin
helm repo update

Now you can install the NVIDIA Device Plugin:

helm upgrade -i nvdp nvdp/nvidia-device-plugin --namespace nvidia-device-plugin --create-
namespace --version 0.14.5 --set runtimeClassName=nvidia

After a few minutes, you see a new pod running that will complete the detection on your avail-
able nodes and tag them with the number of GPUs that have been detected:

kubectl get pods -n nvidia-device-plugin
NAME READY STATUS RESTARTS AGE
nvdp-nvidia-device-plugin-jp697 1/1 Running 2 (12h ago) 6d3h

kubectl get node node0001 -o json | jq .status.capacity

236 Implementation with Kubernetes

https://github.com/NVIDIA/k8s-device-plugin
https://github.com/NVIDIA/k8s-device-plugin

{
 "cpu": "128",
 "ephemeral-storage": "466889732Ki",
 "hugepages-1Gi": "0",
 "hugepages-2Mi": "0",
 "memory": "32545636Ki",
 "nvidia.com/gpu": "1", <----
 "pods": "110"
}

Now you are ready to create an NVIDIA pod that attempts to use this GPU. Let us try with the
CUDA Benchmark container:

kubectl apply -f - <<EOF
apiVersion: v1
kind: Pod
metadata:
 name: nbody-gpu-benchmark
 namespace: default
spec:
 restartPolicy: OnFailure
 runtimeClassName: nvidia
 containers:
 - name: cuda-container
 image: nvcr.io/nvidia/k8s/cuda-sample:nbody
 args: ["nbody", "-gpu", "-benchmark"]
 resources:
 limits:
 nvidia.com/gpu: 1
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: all
EOF

If all went well, you can look at the logs and see the benchmark information:

kubectl logs nbody-gpu-benchmark
Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
 -fullscreen (run n-body simulation in fullscreen mode)
 -fp64 (use double precision floating point values for simulation)
 -hostmem (stores simulation data in host memory)
 -benchmark (run benchmark to measure performance)
 -numbodies=<N> (number of bodies (>= 1) to run in simulation)
 -device=<d> (where d=0,1,2.... for the CUDA device to use)
 -numdevices=<i> (where i=(number of CUDA devices > 0) to use for simulation)

237 Implementation with Kubernetes

 -compare (compares simulation results running once on the default GPU and once
 on the CPU)
 -cpu (run n-body simulation on the CPU)
 -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when
 GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "Turing" with compute capability 7.5

> Compute 7.5 CUDA device: [Tesla T4]
40960 bodies, total time for 10 iterations: 101.677 ms
= 165.005 billion interactions per second
= 3300.103 single-precision GFLOP/s at 20 flops per interaction

Finally, if your applications require OpenGL, you can install the required NVIDIA OpenGL li-
braries at the host level, and the NVIDIA Device Plugin and NVIDIA Container Toolkit can make
them available to containers. To do this, install the package as follows:

transactional-update pkg install nvidia-gl-G06

Note
You need to reboot to make this package available to your applications. The NVIDIA
Device Plugin should automatically redetect this via the NVIDIA Container Toolkit.

25.6 Bringing it together via Edge Image Builder
Okay, so you have demonstrated full functionality of your applications and GPUs on SLE Micro
and you now want to use Chapter 9, Edge Image Builder to provide it all together via a deploy-
able/consumable ISO or RAW disk image. This guide does not explain how to use Edge Image
Builder, but it provides the necessary configurations to build such image. Below you can nd
an example of an image definition, along with the necessary Kubernetes configuration les,
to ensure that all the required components are deployed out of the box. Here is the directory
structure of the Edge Image Builder directory for the example shown below:

.

238 Bringing it together via Edge Image Builder

├── base-images
│ └── SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
├── eib-config-iso.yaml
├── kubernetes
│ ├── config
│ │ └── server.yaml
│ ├── helm
│ │ └── values
│ │ └── nvidia-device-plugin.yaml
│ └── manifests
│ └── nvidia-runtime-class.yaml
└── rpms
 └── gpg-keys
 └── nvidia-container-toolkit.key

Let us explore those les. First, here is a sample image definition for a single-node cluster running
K3s that deploys the utilities and OpenGL packages, too (eib-config-iso.yaml):

apiVersion: 1.0
image:
 arch: x86_64
 imageType: iso
 baseImage: SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
 outputImageName: deployimage.iso
operatingSystem:
 time:
 timezone: Europe/London
 ntp:
 pools:
 - 2.suse.pool.ntp.org
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: 6XcQN1xkuQKjWEtQG
$WbhV80rbveDLJDz1c93K5Ga9JDjt3mF.ZUnhYtsS7uE52FR8mmT8Cnii/JPeFk9jzQO6eapESYZesZHO9EslD1
 packages:
 packageList:
 - nvidia-open-driver-G06-signed-kmp-default
 - nvidia-compute-utils-G06
 - nvidia-gl-G06
 - nvidia-container-toolkit
 additionalRepos:
 - url: https://download.nvidia.com/suse/sle15sp6/
 - url: https://nvidia.github.io/libnvidia-container/stable/rpm/x86_64
 sccRegistrationCode: <snip>
kubernetes:

239 Bringing it together via Edge Image Builder

 version: v1.30.5+k3s1
 helm:
 charts:
 - name: nvidia-device-plugin
 version: v0.14.5
 installationNamespace: kube-system
 targetNamespace: nvidia-device-plugin
 createNamespace: true
 valuesFile: nvidia-device-plugin.yaml
 repositoryName: nvidia
 repositories:
 - name: nvidia
 url: https://nvidia.github.io/k8s-device-plugin

Note
This is just an example. You may need to customize it to t your requirements and ex-
pectations. Additionally, if using SLE Micro, you need to provide your own sccRegis-
trationCode to resolve package dependencies and pull the NVIDIA drivers.

Besides this, we need to add additional components, so they get loaded by Kubernetes at boot
time. The EIB directory needs a kubernetes directory rst, with subdirectories for the configu-
ration, Helm chart values and any additional manifests required:

mkdir -p kubernetes/config kubernetes/helm/values kubernetes/manifests

Let us now set up the (optional) Kubernetes configuration by choosing a CNI (which defaults to
Cilium if unselected) and enabling SELinux:

cat << EOF > kubernetes/config/server.yaml
cni: cilium
selinux: true
EOF

Now ensure that the NVIDIA RuntimeClass is created on the Kubernetes cluster:

cat << EOF > kubernetes/manifests/nvidia-runtime-class.yaml
apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: nvidia
handler: nvidia
EOF

240 Bringing it together via Edge Image Builder

We use the built-in Helm Controller to deploy the NVIDIA Device Plugin through Kubernetes
itself. Let’s provide the runtime class in the values le for the chart:

cat << EOF > kubernetes/helm/values/nvidia-device-plugin.yaml
runtimeClassName: nvidia
EOF

We need to grab the NVIDIA Container Toolkit RPM public key before proceeding:

mkdir -p rpms/gpg-keys
curl -o rpms/gpg-keys/nvidia-container-toolkit.key https://nvidia.github.io/libnvidia-
container/gpgkey

All the required artifacts, including Kubernetes binary, container images, Helm charts (and any
referenced images), will be automatically air-gapped, meaning that the systems at deploy time
should require no Internet connectivity by default. Now you need only to grab the SLE Micro
ISO from the SUSE Downloads Page (https://www.suse.com/download/sle-micro/) (and place it
in the base-images directory), and you can call the Edge Image Builder tool to generate the
ISO for you. To complete the example, here is the command that was used to build the image:

podman run --rm --privileged -it -v /path/to/eib-files/:/eib \
registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
build --definition-file eib-config-iso.yaml

For further instructions, please see the documentation (https://github.com/suse-edge/edge-im-

age-builder/blob/release-1.1/docs/building-images.md) for Edge Image Builder.

25.7 Resolving issues

25.7.1 nvidia-smi does not find the GPU

Check the kernel messages using dmesg. If this indicates that it cannot allocate NvKMSKapDevice,
apply the unsupported GPU workaround:

sed -i '/NVreg_OpenRmEnableUnsupportedGpus/s/^#//g' /etc/modprobe.d/50-nvidia-
default.conf

NOTE: You will need to reload the kernel module, or reboot, if you change the
kernel module configuration in the above step for it to take effect.

241 Resolving issues

https://www.suse.com/download/sle-micro/
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md
https://github.com/suse-edge/edge-image-builder/blob/release-1.1/docs/building-images.md

V Day 2 Operations

26 Edge 3.1 migration 243

27 Management Cluster 269

28 Downstream clusters 271

This section explains how administrators can handle different "Day Two" operation tasks both
on the management and on the downstream clusters.

26 Edge 3.1 migration

This section offers migration guidelines for existing Edge 3.0 (including minor releases such as
3.0.1 and 3.0.2) management and downstream clusters to Edge 3.1.0.

For a list of Edge 3.1.0 component versions, refer to the release notes (Section 36.1, “Abstract”).

26.1 Management cluster

This section covers how to migrate a management cluster from Edge 3.0 to Edge 3.1.0.

Management cluster components should be migrated in the following order:

1. Operating System (OS) (Section 26.1.1, “Operating System (OS)”)

2. RKE2 (Section 26.1.2, “RKE2”)

3. Edge Helm charts (Section 26.1.3, “Edge Helm charts”)

26.1.1 Operating System (OS)

This section covers the steps needed to migrate your management cluster nodes' OS to an Edge
3.1.0 supported version.

Important
The below steps should be done for each node of the management cluster.

To avoid any unforeseen problems, migrate the cluster’s control-plane nodes rst and
the worker nodes second.

243 Management cluster

26.1.1.1 Prerequisites

SCC registered nodes - ensure your cluster nodes' OS are registered with a subscrip-
tion key that supports the operating system version specified in the Edge 3.1 release (Sec-

tion 36.1, “Abstract”).

Air-gapped:

Mirror SUSE RPM repositories - RPM repositories related to the operating system that
is specified in the Edge 3.1.0 release (Section 36.1, “Abstract”) should be locally mirrored,
so that transactional-update has access to them. This can be achieved by using either
RMT (https://documentation.suse.com/sles/15-SP6/html/SLES-all/book-rmt.html) or SUMA

(https://documentation.suse.com/suma/5.0/en/suse-manager/index.html) .

26.1.1.2 Migration steps

Note
The below steps assume you are running as root and that kubectl has been configured
to connect to the management cluster.

1. Mark the node as unschedulable:

kubectl cordon <node_name>

For a full list of the options for the cordon command, see kubectl cordon (https://kuber-

netes.io/docs/reference/kubectl/generated/kubectl_cordon/) .

2. Optionally, there might be use-cases where you would like to drain the nodes' workloads:

kubectl drain <node>

For a full list of the options for the drain command, see kubectl drain (https://kuber-

netes.io/docs/reference/kubectl/generated/kubectl_drain/) .

3. Before a migration, you need to ensure that packages on your current OS are updated. To
do this, execute:

transactional-update

244 Operating System (OS)

https://documentation.suse.com/sles/15-SP6/html/SLES-all/book-rmt.html
https://documentation.suse.com/suma/5.0/en/suse-manager/index.html
https://documentation.suse.com/suma/5.0/en/suse-manager/index.html
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/

The above command executes zypper up (https://en.opensuse.org/SDB:Zypper_usage#Up-

dating_packages) to update the OS packages. For more information on transaction-
al-update, see the transactional-update guide (https://documentation.suse.com/smart/sys-

tems-management/html/Micro-transactional-updates/index.html) .

4. Proceed to do the OS migration:

transactional-update --continue migration

Note
The --continue option is used here to reuse the previous snapshot without having
to reboot the system.

If your subscription key supports the SUSE Linux Micro 6.0 version, you will be
prompted with something similar to:

Select the number that corresponds to SUSE Linux Micro 6.0 <arch>.

245 Operating System (OS)

https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://documentation.suse.com/smart/systems-management/html/Micro-transactional-updates/index.html
https://documentation.suse.com/smart/systems-management/html/Micro-transactional-updates/index.html

Note
The Edge 3.1.0 release supports only the SUSE Linux Micro 6.0 operating
system.

5. After a successful transactional-update run, for the changes to take effect on the system
you would need to reboot:

reboot

6. After the host has been rebooted, validate that the operating system is migrated to SUSE
Linux Micro 6.0:

cat /etc/os-release

Output should be similar to:

NAME="SL-Micro"
VERSION="6.0"
VERSION_ID="6.0"
PRETTY_NAME="SUSE Linux Micro 6.0"
ID="sl-micro"
ID_LIKE="suse"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sl-micro:6.0"
HOME_URL="https://www.suse.com/products/micro/"
DOCUMENTATION_URL="https://documentation.suse.com/sl-micro/6.0/"

Note
In case something failed with the migration, you can rollback to the last working
snapshot using:

transactional-update rollback last

246 Operating System (OS)

You would need to reboot your system for the rollback

to take effect. See the official transactional-update documenta-

tion (https://documentation.suse.com/smart/systems-management/html/Micro-trans-

actional-updates/index.html#tr-up-rollback) for more information about the roll-
back procedure.

7. Mark the node as schedulable:

kubectl uncordon <node_name>

26.1.2 RKE2

Important
The below steps should be done for each node of the management cluster.

As the RKE2 documentation (https://docs.rke2.io/upgrade/manual_upgrade) explains, the
upgrade procedure requires to upgrade the clusters' control-plane nodes one at a time
and once all have been upgraded, the agent nodes.

Note
To ensure disaster recovery, we advise to do a backup of the RKE2 cluster data. For
information on how to do this, check the RKE2 backup and restore guide (https://doc-

s.rke2.io/backup_restore) . The default location for the rke2 binary is /opt/rke2/bin.

You can upgrade the RKE2 version to a Edge 3.1.0 compatible version using the RKE2 instal-
lation script as follows:

1. Mark the node as unschedulable:

kubectl cordon <node_name>

247 RKE2

https://documentation.suse.com/smart/systems-management/html/Micro-transactional-updates/index.html#tr-up-rollback
https://documentation.suse.com/smart/systems-management/html/Micro-transactional-updates/index.html#tr-up-rollback
https://documentation.suse.com/smart/systems-management/html/Micro-transactional-updates/index.html#tr-up-rollback
https://docs.rke2.io/upgrade/manual_upgrade
https://docs.rke2.io/backup_restore
https://docs.rke2.io/backup_restore

For a full list of the options for the cordon command, see kubectl cordon (https://kuber-

netes.io/docs/reference/kubectl/generated/kubectl_cordon/) .

2. Optionally, there might be use-cases where you would like to drain the nodes' workloads:

kubectl drain <node>

For a full list of the options for the drain command, see kubectl drain (https://kuber-

netes.io/docs/reference/kubectl/generated/kubectl_drain/) .

3. Use the RKE2 installation script to install the correct Edge 3.1.0 compatible RKE2 version:

curl -sfL https://get.rke2.io | INSTALL_RKE2_VERSION=v1.30.3+rke2r1 sh -

4. Restart the rke2 process:

For control-plane nodes:
systemctl restart rke2-server

For worker nodes:
systemctl restart rke2-agent

5. Validate that the nodes' RKE2 version is upgraded:

kubectl get nodes

6. Mark the node as schedulable:

kubectl uncordon <node_name>

26.1.3 Edge Helm charts

Note
This section assumes you have installed helm on your system and you have a valid kube-
config pointing to the desired cluster. For helm installation instructions, check the In-

stalling Helm (https://helm.sh/docs/intro/install) guide.

248 Edge Helm charts

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_drain/
https://helm.sh/docs/intro/install
https://helm.sh/docs/intro/install

This section provides guidelines for upgrading the Helm chart components that make up a spe-
cific Edge release. It covers the following topics:

Known limitations (Section 26.1.3.1, “Known Limitations”) that the upgrade process has.

How to migrate (Section 26.1.3.2, “Cluster API controllers migration”) Cluster API controllers
through the Rancher Turtles Helm chart.

How to upgrade Edge Helm charts (Section 26.1.3.3, “Edge Helm chart upgrade - EIB”) deployed
through EIB (Chapter 9, Edge Image Builder).

How to upgrade Edge Helm charts (Section 26.1.3.4, “Edge Helm chart upgrade - non-EIB”)
deployed through non-EIB means.

26.1.3.1 Known Limitations

This section covers known limitations to the current migration process. Users should rst go
through the steps described here before moving to upgrade their helm charts.

26.1.3.1.1 Rancher upgrade

With the current RKE2 version that Edge 3.1.0 utilizes, there is an issue where all ingresses
that do not contain an IngressClass are ignored by the ingress controller. To mitigate this,
users would need to manually add the name of the default IngressClass to the default Rancher
Ingress.

For more information on the problem that the below steps x, see the upstream

(https://github.com/rancher/rke2/issues/6510) RKE2 issue and more specifically this (https://

github.com/rancher/rke2/issues/6510#issuecomment-2311231917) comment.

Note
In some cases the default IngressClass might have a different name than nginx.

Make sure to validate the name by running:

kubectl get ingressclass

249 Edge Helm charts

https://github.com/rancher/rke2/issues/6510
https://github.com/rancher/rke2/issues/6510
https://github.com/rancher/rke2/issues/6510#issuecomment-2311231917
https://github.com/rancher/rke2/issues/6510#issuecomment-2311231917

Before upgrading Rancher, make sure to execute the following command:

If Rancher was deployed through EIB (Chapter 9, Edge Image Builder):

kubectl patch helmchart rancher -n <namespace> --type='merge' -p '{"spec":{"set":
{"ingress.ingressClassName":"nginx"}}}'

If Rancher was deployed through Helm, add the --set ingress.ingressClassName=ng-
inx ag to your upgrade (https://helm.sh/docs/helm/helm_upgrade/) command. For a full
example of how to utilize this option, see the following example (Section 26.1.3.4.1, “Exam-

ple”).

26.1.3.2 Cluster API controllers migration

From Edge 3.1.0, Cluster API (CAPI) controllers on a Metal3 management cluster are managed
via Rancher Turtles (https://turtles.docs.rancher.com) .

To migrate the CAPI controllers versions to Edge 3.1.0 compatible versions, install the Rancher
Turtles chart:

helm install rancher-turtles oci://registry.suse.com/edge/3.1/rancher-turtles-chart --
version 0.3.2 --namespace rancher-turtles-system --create-namespace

After some time, the controller pods running in the capi-system, capm3-system, rke2-boot-
strap-system and rke2-control-plane-system namespaces are upgraded with the Edge
3.1.0 compatible controller versions.

For information on how to install Rancher Turtles in an air-gapped environment, refer to
Rancher Turtles air-gapped installation (Section 26.1.3.2.1, “Rancher Turtles air-gapped installation”).

26.1.3.2.1 Rancher Turtles air-gapped installation

Note
The below steps assume that kubectl has been configured to connect to the management
cluster that you wish to upgrade.

250 Edge Helm charts

https://helm.sh/docs/helm/helm_upgrade/
https://turtles.docs.rancher.com

1. Before installing the below mentioned rancher-turtles-airgap-resources Helm chart,
ensure that it will have the correct ownership over the clusterctl created namespaces:

a. capi-system ownership change:

kubectl label namespace capi-system app.kubernetes.io/managed-by=Helm --
overwrite

kubectl annotate namespace capi-system meta.helm.sh/release-name=rancher-
turtles-airgap-resources --overwrite
kubectl annotate namespace capi-system meta.helm.sh/release-namespace=rancher-
turtles-system --overwrite

b. capm3-system ownership change:

kubectl label namespace capm3-system app.kubernetes.io/managed-by=Helm --
overwrite

kubectl annotate namespace capm3-system meta.helm.sh/release-name=rancher-
turtles-airgap-resources --overwrite
kubectl annotate namespace capm3-system meta.helm.sh/release-namespace=rancher-
turtles-system --overwrite

c. rke2-bootstrap-system ownership change:

kubectl label namespace rke2-bootstrap-system app.kubernetes.io/managed-by=Helm
 --overwrite

kubectl annotate namespace rke2-bootstrap-system meta.helm.sh/release-
name=rancher-turtles-airgap-resources --overwrite
kubectl annotate namespace rke2-bootstrap-system meta.helm.sh/release-
namespace=rancher-turtles-system --overwrite

d. rke2-control-plane-system ownership change:

kubectl label namespace rke2-control-plane-system app.kubernetes.io/managed-
by=Helm --overwrite

kubectl annotate namespace rke2-control-plane-system meta.helm.sh/release-
name=rancher-turtles-airgap-resources --overwrite

251 Edge Helm charts

kubectl annotate namespace rke2-control-plane-system meta.helm.sh/release-
namespace=rancher-turtles-system --overwrite

2. Pull the rancher-turtles-airgap-resources and rancher-turtles chart archives:

helm pull oci://registry.suse.com/edge/3.1/rancher-turtles-airgap-resources-chart --
version 0.3.2
helm pull oci://registry.suse.com/edge/3.1/rancher-turtles-chart --version 0.3.2

3. To provide the needed resources for an air-gapped installation of the Rancher Turtles
Helm chart, install the rancher-turtles-airgap-resources Helm chart:

helm install rancher-turtles-airgap-resources ./rancher-turtles-airgap-resources-
chart-0.3.2.tgz --namespace rancher-turtles-system --create-namespace

4. Configure the cluster-api-operator in the Rancher Turtles Helm chart to fetch con-
troller data from correct locations:

cat > values.yaml <<EOF
cluster-api-operator:
 cluster-api:
 core:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"core\"}}"
 rke2:
 bootstrap:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"rke2-bootstrap
\"}}"
 controlPlane:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"rke2-control-
plane\"}}"
 metal3:
 infrastructure:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"metal3\"}}"
EOF

5. Install Rancher Turtles:

helm install rancher-turtles ./rancher-turtles-chart-0.3.2.tgz --namespace rancher-
turtles-system --create-namespace --values values.yaml

252 Edge Helm charts

After some time, the controller pods running in the capi-system, capm3-system, rke2-boot-
strap-system and rke2-control-plane-system namespaces will be upgraded with the Edge
3.1.0 compatible controller versions.

26.1.3.3 Edge Helm chart upgrade - EIB

This section explains how to upgrade a Helm chart from the Edge component stack, deployed
via EIB (Chapter 9, Edge Image Builder), to an Edge 3.1.0 compatible version.

26.1.3.3.1 Prerequisites

In Edge 3.1, EIB changes the way it deploys charts and no longer uses
the RKE2 (https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts) /K3s

(https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons) man-
ifest auto-deploy mechanism.

This means that, before upgrading to an Edge 3.1.0 compatible version, any Helm charts
deployed on an Edge 3.0 environment using EIB should have their chart manifests removed
from the manifests directory of the relevant Kubernetes distribution.

Warning
If this is not done, any chart upgrade will be reverted by the RKE2/K3s process upon
restart of the process or the operating system.

Note
Deleting manifests from the RKE2/K3s directory will not result in the resources being
removed from the cluster.

As per the RKE2 (https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-

charts) /K3s (https://docs.k3s.io/installation/packaged-components#auto-deploying-mani-

fests-addons) documentation:

"Deleting les out of this directory will not delete the corresponding re-
sources from the cluster."

253 Edge Helm charts

https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons

Removing any EIB deployed chart manifests involves the following steps:

1. To ensure disaster recovery, make a backup of each EIB deployed manifest:

Note
EIB deployed manifests will have the "edge.suse.com/source: edge-im-

age-builder" label.

Note
Make sure that the <backup_location> that you provide to the below command
exists.

grep -lrIZ 'edge.suse.com/source: edge-image-builder' /var/lib/rancher/rke2/server/
manifests | xargs -0 -I{} cp {} <backup_location>

2. Remove all EIB deployed manifests:

grep -lrIZ 'edge.suse.com/source: edge-image-builder' /var/lib/rancher/rke2/server/
manifests | xargs -0 rm -f --

26.1.3.3.2 Upgrade steps

Note
The below steps assume that kubectl has been configured to connect to the management
cluster that you wish to upgrade.

1. Locate the Edge 3.1 compatible chart version that you wish to migrate to by looking at
the release notes (Section 36.1, “Abstract”).

2. Pull (https://helm.sh/docs/helm/helm_pull/) the desired Helm chart version:

For charts hosted in HTTP repositories:

helm repo add <chart_repo_name> <chart_repo_urls>

254 Edge Helm charts

https://helm.sh/docs/helm/helm_pull/

helm pull <chart_repo_name>/<chart_name> --version=X.Y.Z

For charts hosted in OCI registries:

helm pull oci://<chart_oci_url> --version=X.Y.Z

3. Encode the pulled chart archive:

base64 -w 0 <chart_name>-X.Y.Z.tgz > <chart_name>-X.Y.Z.txt

4. Check the Known Limitations (Section 26.1.3.1, “Known Limitations”) section if there are any
additional steps that need to be done for the charts.

5. Patch the existing HelmChart resource:

Important
Make sure to pass the HelmChart name, namespace, encoded le and version to
the command below.

kubectl patch helmchart <helmchart_name> --type=merge -p "{\"spec\":{\"chartContent
\":\"$(cat <helmchart_name>-X.Y.Z.txt)\", \"version\":\"<helmchart_version>\"}}" -n
 <helmchart_namespace>

6. This will signal the helm-controller (https://github.com/k3s-io/helm-controller) to schedule
a Job that will create a Pod that will upgrade the desired Helm chart. To view the logs of
the created Pod, follow these steps:

a. Locate the created Pod:

kubectl get pods -l helmcharts.helm.cattle.io/chart=<helmchart_name> -n
 <namespace>

b. View the Pod logs:

kubectl logs <pod_name> -n <namespace>

A Completed Pod with non-error logs would result in a successful upgrade of the desired Helm
chart.

For a full example of how to upgrade a Helm chart deployed through EIB, refer to the Example
(Section 26.1.3.3.3, “Example”) section.

255 Edge Helm charts

https://github.com/k3s-io/helm-controller

26.1.3.3.3 Example

This section provides an example of upgrading the Rancher and Metal3 Helm charts to a ver-
sion compatible with the Edge 3.1.0 release. It follows the steps outlined in the "Upgrade
Steps" (Section 26.1.3.3.2, “Upgrade steps”) section.

Use-case:

Current Rancher and Metal3 charts need to be upgraded to an Edge 3.1.0 compatible
version.

Rancher is deployed through EIB and its HelmChart is deployed in the default name-
space.

Metal3 is deployed through EIB and its HelmChart is deployed in the kube-system
namespace.

Steps:

1. Locate the desired versions for Rancher and Metal3 from the release notes (Section 36.1,

“Abstract”). For Edge 3.1.0, these versions would be 2.9.1 for Rancher and 0.8.1 for
Metal3.

2. Pull the desired chart versions:

For Rancher:

helm repo add rancher-prime https://charts.rancher.com/server-charts/prime
helm pull rancher-prime/rancher --version=2.9.1

For Metal3:

helm pull oci://registry.suse.com/edge/3.1/metal3-chart --version=0.8.1

3. Encode the Rancher and Metal3 Helm charts:

base64 -w 0 rancher-2.9.1.tgz > rancher-2.9.1.txt
base64 -w 0 metal3-chart-0.8.1.tgz > metal3-chart-0.8.1.txt

4. The directory structure should look similar to this:

.
├── metal3-chart-0.8.1.tgz
├── metal3-chart-0.8.1.txt
├── rancher-2.9.1.tgz

256 Edge Helm charts

└── rancher-2.9.1.txt

5. Check the Known Limitations (Section 26.1.3.1, “Known Limitations”) section if there are any
additional steps that need to be done for the charts.

For Rancher:

Execute the command described in the Known Limitations section:

In this example the rancher helmchart is in the 'default' namespace
kubectl patch helmchart rancher -n default --type='merge' -p '{"spec":
{"set":{"ingress.ingressClassName":"nginx"}}}'

Validate that the ingressClassName property was successfully added:

kubectl get ingress rancher -n cattle-system -o yaml | grep -w
 ingressClassName

Example output
 ingressClassName: nginx

6. Patch the Rancher and Metal3 HelmChart resources:

Rancher deployed in the default namespace
kubectl patch helmchart rancher --type=merge -p "{\"spec\":{\"chartContent\":\"$(cat
 rancher-2.9.1.txt)\", \"version\":\"2.9.1\"}}" -n default

Metal3 deployed in the kube-system namespace
kubectl patch helmchart metal3 --type=merge -p "{\"spec\":{\"chartContent\":\"$(cat
 metal3-chart-0.8.1.txt)\", \"version\":\"0.8.1\"}}" -n kube-system

7. Locate the helm-controller created Rancher and Metal3 Pods:

Rancher:

kubectl get pods -l helmcharts.helm.cattle.io/chart=rancher -n default

Example output
NAME READY STATUS RESTARTS AGE
helm-install-rancher-wg7nf 0/1 Completed 0 5m2s

Metal3:

kubectl get pods -l helmcharts.helm.cattle.io/chart=metal3 -n kube-system

Example output

257 Edge Helm charts

NAME READY STATUS RESTARTS AGE
helm-install-metal3-57lz5 0/1 Completed 0 4m35s

8. View the logs of each pod using kubectl logs (https://kubernetes.io/docs/reference/kubectl/

generated/kubectl_logs/) :

Rancher:

kubectl logs helm-install-rancher-wg7nf -n default

Example successful output
...
Upgrading rancher
+ helm_v3 upgrade --namespace cattle-system --create-namespace --
version 2.9.1 --set-string global.clusterCIDR=10.42.0.0/16 --set-string
 global.clusterCIDRv4=10.42.0.0/16 --set-string global.clusterDNS=10.43.0.10 --
set-string global.clusterDomain=cluster.local --set-string global.rke2DataDir=/
var/lib/rancher/rke2 --set-string global.serviceCIDR=10.43.0.0/16 --set-string
 ingress.ingressClassName=nginx rancher /tmp/rancher.tgz --values /config/
values-01_HelmChart.yaml
Release "rancher" has been upgraded. Happy Helming!
...

Metal3:

kubectl logs helm-install-metal3-57lz5 -n kube-system

Example successful output
...
Upgrading metal3
+ echo 'Upgrading metal3'
+ shift 1
+ helm_v3 upgrade --namespace metal3-system --create-namespace --
version 0.8.1 --set-string global.clusterCIDR=10.42.0.0/16 --set-string
 global.clusterCIDRv4=10.42.0.0/16 --set-string global.clusterDNS=10.43.0.10 --
set-string global.clusterDomain=cluster.local --set-string global.rke2DataDir=/
var/lib/rancher/rke2 --set-string global.serviceCIDR=10.43.0.0/16 metal3 /tmp/
metal3.tgz --values /config/values-01_HelmChart.yaml
Release "metal3" has been upgraded. Happy Helming!
...

9. Validate that the pods for the specific chart are running:

For Rancher
kubectl get pods -n cattle-system

258 Edge Helm charts

https://kubernetes.io/docs/reference/kubectl/generated/kubectl_logs/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_logs/

For Metal3
kubectl get pods -n metal3-system

26.1.3.4 Edge Helm chart upgrade - non-EIB

This section explains how to upgrade a Helm chart from the Edge component stack, deployed
via Helm, to an Edge 3.1.0 compatible version.

Note
The below steps assume that kubectl has been configured to connect to the management
cluster that you wish to upgrade.

1. Locate the Edge 3.1.0 compatible chart version that you wish to migrate to by looking
at the release notes (Section 36.1, “Abstract”).

2. Get the custom values of the currently running helm chart:

helm get values <chart_name> -n <chart_namespace> -o yaml > <chart_name>-values.yaml

3. Check the Known Limitations (Section 26.1.3.1, “Known Limitations”) section if there are any
additional steps, or changes that need to be done for the charts.

4. Upgrade (https://helm.sh/docs/helm/helm_upgrade/) the helm chart to the desired ver-
sion:

For non air-gapped setups:

For charts hosted in HTTP repositories
helm upgrade <chart_name> <chart_repo>/<chart_name> --version <version> --
values <chart_name>-values.yaml -n <chart_namespace>

For charts hosted in OCI registries
helm upgrade <chart_name> oci://<oci_registry_url>/<chart_name> --namespace
 <chart_namespace> --values <chart_name>-values.yaml --version=X.Y.Z

For air-gapped setups:

On a machine with access to the internet, pull the desired chart version:

For charts hosted in HTTP repositories

259 Edge Helm charts

https://helm.sh/docs/helm/helm_upgrade/

helm pull <chart_repo_name>/<chart_name> --version=X.Y.Z

For charts hosted in OCI registries
helm pull oci://<chart_oci_url> --version=X.Y.Z

Transfer the chart archive to your management cluster:

scp <chart>.tgz <machine-address>:<filesystem-path>

Upgrade the chart:

helm upgrade <chart_name> <chart>.tgz --values <chart_name>-values.yaml -
n <chart_namespace>

5. Verify that the chart pods are running:

kubectl get pods -n <chart_namespace>

You may want to do additional verification of the upgrade by checking resources specific to
your chart. After this has been done, the upgrade can be considered successful.

For a full example, refer to the Example (Section 26.1.3.4.1, “Example”) section.

26.1.3.4.1 Example

This section provides an example of upgrading the Rancher and Metal3 Helm charts to a version
compatible with the Edge 3.1.0 release. It follows the steps outlined in the "Edge Helm chart
upgrade - non-EIB" (Section 26.1.3.4, “Edge Helm chart upgrade - non-EIB”) section.

Use-case:

Current Rancher and Metal3 charts need to be upgraded to an Edge 3.1.0 compatible
version.

260 Edge Helm charts

The Rancher helm chart is deployed from the Rancher Prime (https://charts.ranch-

er.com/server-charts/prime) repository in the cattle-system namespace. The
Rancher Prime repository was added in the following way:

helm repo add rancher-prime https://charts.rancher.com/server-charts/prime

The Metal3 is deployed from the registry.suse.com OCI registry in the met-
al3-system namespace.

Steps:

1. Locate the desired versions for Rancher and Metal3 from the release notes (Section 36.1,

“Abstract”). For Edge 3.1.0, these versions would be 2.9.1 for Rancher and 0.8.1 for
Metal3.

2. Get the custom values of the currently running Rancher and Metal3 helm charts:

For Rancher
helm get values rancher -n cattle-system -o yaml > rancher-values.yaml

For Metal3
helm get values metal3 -n metal3-system -o yaml > metal3-values.yaml

3. Check the Known Limitations (Section 26.1.3.1, “Known Limitations”) section if there are any
additional steps that need to be done for the charts.

For Rancher the --set ingress.ingressClassName=nginx option needs to be
added to the upgrade command.

4. Upgrade the Rancher and Metal3 helm charts:

For Rancher
helm upgrade rancher rancher-prime/rancher --version 2.9.1 --set
 ingress.ingressClassName=nginx --values rancher-values.yaml -n cattle-system

For Metal3
helm upgrade metal3 oci://registry.suse.com/edge/3.1/metal3-chart --version 0.8.1 --
values metal3-values.yaml -n metal3-system

5. Validate that the Rancher and Metal3 pods are running:

For Rancher
kubectl get pods -n cattle-system

261 Edge Helm charts

https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime

For Metal3
kubectl get pods -n metal3-system

26.2 Downstream clusters

This section covers how to migrate your Edge 3.0.X downstream clusters to Edge 3.1.0.

26.2.1 Prerequisites

This section covers any prerequisite steps that users should go through before beginning the
migration process.

26.2.1.1 Charts deployed through EIB

In Edge 3.1, EIB (Chapter 9, Edge Image Builder) changes the way it deploys charts
and no longer uses the RKE2 (https://docs.rke2.io/helm#automatically-deploying-manifests-and-

helm-charts) /K3s (https://docs.k3s.io/installation/packaged-components#auto-deploying-mani-

fests-addons) manifest auto-deploy mechanism.

This means that, before migrating to an Edge 3.1.0 compatible version, any Helm charts de-
ployed on an Edge 3.0 environment using EIB should have their chart manifests removed from
the manifests directory of the relevant Kubernetes distribution.

Warning
If this is not done, any chart upgrade will be reverted by the RKE2/K3s process upon
restart of the process or the operating system.

On downstream clusters, the removal of the EIB created chart manifest les is handled by
a Fleet called eib-charts-migration-prep (https://github.com/suse-edge/fleet-examples/tree/main/

fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep) located in the suse-

edge/fleet-examples (https://github.com/suse-edge/fleet-examples.git) repository.

262 Downstream clusters

https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://github.com/suse-edge/fleet-examples/tree/main/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep
https://github.com/suse-edge/fleet-examples/tree/main/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git

Warning
Using the eib-charts-migration-prep Fleet le from the main branch is not advised.
The Fleet le should always be used from a valid Edge release (https://github.com/suse-

edge/fleet-examples/releases) tag.

Important
This process requires that System Upgrade Controller (SUC) is already deployed. For in-
stallation details, refer to "Installing the System Upgrade Controller" (Section 19.2, “In-

stalling the System Upgrade Controller”).

Once created, the eib-charts-migration-prep Fleet ships an SUC (Chapter 19, System Upgrade

Controller) Plan that contains a script that will do the following:

1. Determine if the current node on which it is running is an initializer node. If it is not,
it won’t do anything.

2. If the node is an initializer, it will:

Detect all HelmChart resources deployed by EIB.

Locate the manifest le of each of the above HelmChart resources.

Note
HelmChart manifest les are located only on the initializer node under /
var/lib/rancher/rke2/server/manifests for RKE2 and /var/lib/ranch-
er/k3s/server/manifests for K3s.

To ensure disaster recovery, make a backup of each located manifest under /tmp.

263 Prerequisites

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

Note
The backup location can be changed by defining the MANIFEST_BACK-

UP_DIR (https://github.com/suse-edge/fleet-examples/blob/release-3.1.0/fleets/

day2/system-upgrade-controller-plans/eib-charts-migration-prep/

plan.yaml#L36) environment variable in the SUC Plan le of the Fleet.

Remove each manifest le related to a HelmChart resource deployed by EIB.

Note
Deleting manifests from the RKE2/K3s directory will not result in the re-
sources being removed from the cluster.

As per the RKE2 (https://docs.rke2.io/helm#automatically-deploying-mani-

fests-and-helm-charts) /K3s (https://docs.k3s.io/installation/packaged-compo-

nents#auto-deploying-manifests-addons) documentation:

"Deleting les out of this directory will not delete the corre-
sponding resources from the cluster."

Depending on your use-case, the eib-charts-migration-prep Fleet can be deployed in the
following two ways:

Through a GitRepo (https://fleet.rancher.io/ref-gitrepo) resource - for use-cases where an
external/local Git server is available. For more information, refer to EIB chart migration
preparation Fleet deployment - GitRepo (Section 26.2.1.1.1, “EIB chart manifest removal Fleet

deployment - GitRepo”).

Through a Bundle (https://fleet.rancher.io/bundle-add) resource - for air-gapped use-cases
that do not support a local Git server option. For more information, refer to EIB chart
manifest removal Fleet deployment - Bundle (Section 26.2.1.1.2, “EIB chart manifest removal

Fleet deployment - Bundle”).

264 Prerequisites

https://github.com/suse-edge/fleet-examples/blob/release-3.1.0/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep/plan.yaml#L36
https://github.com/suse-edge/fleet-examples/blob/release-3.1.0/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep/plan.yaml#L36
https://github.com/suse-edge/fleet-examples/blob/release-3.1.0/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep/plan.yaml#L36
https://github.com/suse-edge/fleet-examples/blob/release-3.1.0/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep/plan.yaml#L36
https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.rke2.io/helm#automatically-deploying-manifests-and-helm-charts
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://docs.k3s.io/installation/packaged-components#auto-deploying-manifests-addons
https://fleet.rancher.io/ref-gitrepo
https://fleet.rancher.io/bundle-add

26.2.1.1.1 EIB chart manifest removal Fleet deployment - GitRepo

1. On the management cluster, deploy the following GitRepo resource:

Note
Before deploying the resource below, you must provide a valid targets configura-
tion, so that Fleet knows on which downstream clusters to deploy your resource.
For information on how to map to downstream clusters, see Mapping to Downstream

Clusters (https://fleet.rancher.io/gitrepo-targets) .

kubectl apply -n fleet-default -f - <<EOF
apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
 name: eib-chart-migration-prep
spec:
 revision: release-3.1.0
 paths:
 - fleets/day2/system-upgrade-controller-plans/eib-charts-migration-prep
 repo: https://github.com/suse-edge/fleet-examples.git
 targets:
 - clusterSelector: CHANGEME
 # Example matching all clusters:
 # targets:
 # - clusterSelector: {}
EOF

Alternatively, you can also create the resource through Ranchers' UI, if such is available.
For more information, see Accessing Fleet in the Rancher UI (https://ranchermanager.doc-

s.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui) .

2. By creating the above GitRepo on your management cluster, Fleet will deploy a SUC Plan
(called eib-chart-migration-prep) on each downstream cluster that matches the tar-
gets specified in the GitRepo. To monitor the lifecycle of this plan, refer to "Monitoring
System Upgrade Controller Plans" (Section 19.3, “Monitoring System Upgrade Controller Plans”).

265 Prerequisites

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui

26.2.1.1.2 EIB chart manifest removal Fleet deployment - Bundle

This section describes how to convert the eib-chart-migration-prep Fleet to a Bundle (https://

fleet.rancher.io/bundle-add) resource that can then be used in air-gapped environments that
cannot utilize a local git server.

Steps:

1. On a machine with network access download the eet-cli:

Note
Make sure that the version of the eet-cli you download matches the version of
Fleet that has been deployed on your cluster.

For Mac users, there is a fleet-cli (https://formulae.brew.sh/formula/fleet-cli) Home-
brew Formulae.

For Linux users, the binaries are present as assets to each Fleet release (https://

github.com/rancher/fleet/releases) .

Retrieve the desired binary:

Linux AMD:

curl -L -o fleet-cli https://github.com/rancher/fleet/releases/
download/<FLEET_VERSION>/fleet-linux-amd64

Linux ARM:

curl -L -o fleet-cli https://github.com/rancher/fleet/releases/
download/<FLEET_VERSION>/fleet-linux-arm64

Move the binary to /usr/local/bin:

sudo mkdir -p /usr/local/bin
sudo mv ./fleet-cli /usr/local/bin/fleet-cli
sudo chmod 755 /usr/local/bin/fleet-cli

2. Clone the suse-edge/eet-examples release (https://github.com/suse-edge/fleet-exam-

ples/releases) that you wish to use the eib-chart-migration-prep eet from:

git clone -b release-3.1.0 https://github.com/suse-edge/fleet-examples.git

266 Prerequisites

https://fleet.rancher.io/bundle-add
https://fleet.rancher.io/bundle-add
https://formulae.brew.sh/formula/fleet-cli
https://github.com/rancher/fleet/releases
https://github.com/rancher/fleet/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

3. Navigate to the eib-chart-migration-prep eet, located in the eet-examples repo:

cd fleet-examples/fleets/day2/system-upgrade-controller-plans/eib-charts-migration-
prep

4. Create a targets.yaml le that will point to all downstream clusters on which you wish
to deploy the eet:

cat > targets.yaml <<EOF
targets:
- clusterSelector: CHANGEME
EOF

For information on how to map to downstream clusters, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets) .

5. Proceed to build the Bundle:

Note
Make sure you did not download the eet-cli in the fleet-examples/fleets/
day2/system-upgrade-controller-plans/eib-charts-migration-prep direc-
tory, otherwise it will be packaged with the Bundle, which is not advised.

fleet-cli apply --compress --targets-file=targets.yaml -n fleet-default -o - eib-
chart-migration-prep . > eib-chart-migration-prep-bundle.yaml

For more information about this process, see Convert a Helm Chart into a Bundle (https://

fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle) .
For more information about the fleet-cli apply command, see fleet apply (https://

fleet.rancher.io/cli/fleet-cli/fleet_apply) .

6. Transfer the eib-chart-migration-prep-bundle.yaml bundle to your management clus-
ter machine:

scp eib-chart-migration-prep-bundle.yaml <machine-address>:<filesystem-path>

7. On your management cluster, deploy the eib-chart-migration-prep-bundle.yaml Bun-
dle:

kubectl apply -f eib-chart-migration-prep-bundle.yaml

267 Prerequisites

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/cli/fleet-cli/fleet_apply
https://fleet.rancher.io/cli/fleet-cli/fleet_apply

8. On your management cluster, validate that the Bundle is deployed:

kubectl get bundle eib-chart-migration-prep -n fleet-default
NAME BUNDLEDEPLOYMENTS-READY STATUS
eib-chart-migration-prep 1/1

9. By creating the above Bundle on your management cluster, Fleet will deploy an SUC Plan
(called eib-chart-migration-prep) on each downstream cluster that matches the tar-
gets specified in the targets.yaml le. To monitor the lifecycle of this plan, refer to
"Monitoring System Upgrade Controller Plans" (Section 19.3, “Monitoring System Upgrade Con-

troller Plans”).

26.2.2 Migration steps

After executing the prerequisite (Section 26.2.1, “Prerequisites”) steps, you can proceed to follow
the downstream cluster (Chapter 28, Downstream clusters) upgrade documentation for the Edge
3.1.0 release.

268 Migration steps

27 Management Cluster

This section covers how to perform the various Day 2 operations related to upgrading your
management cluster from one Edge platform version to another.

The Day 2 operations are automated by the Upgrade Controller (Chapter 20, Upgrade Controller)
and include:

SL Micro (Chapter 7, SLE Micro) OS upgrade

RKE2 (Chapter 14, RKE2)/K3s (Chapter 13, K3s) upgrade

SUSE additional components (Rancher, Neuvector, etc.) upgrade

27.1 Prerequisites
Before upgrading your management cluster, the following prerequisites must be met:

1. SCC registered nodes - ensure your cluster nodes' OS are registered with a subscription
key that supports the OS version specified in the Edge release (Section 36.1, “Abstract”) you
intend to upgrade to.

2. Upgrade Controller - make sure that the Upgrade Controller has been deployed on
your management cluster. For installation steps, refer to Installing the Upgrade Controller
(Section 20.2, “Installing the Upgrade Controller”).

27.2 Upgrade

1. Determine the Edge release (Section 36.1, “Abstract”) version that you wish to upgrade your
management cluster to.

2. In the management cluster, deploy an UpgradePlan that specifies the desired release ver-
sion. The UpgradePlan must be deployed in the namespace of the Upgrade Controller.

kubectl apply -n <upgrade_controller_namespace> -f - <<EOF
apiVersion: lifecycle.suse.com/v1alpha1
kind: UpgradePlan
metadata:
 name: upgrade-plan-mgmt-3-1-X

269 Prerequisites

spec:
 # Version retrieved from release notes
 releaseVersion: 3.1.X
EOF

Note
There may be use-cases where you would want to make additional configurations
over the UpgradePlan. For all possible configurations, refer to the UpgradePlan
(Section 20.4.1, “UpgradePlan”) section.

3. Deploying the UpgradePlan to the Upgrade Controller’s namespace will begin the up-
grade process.

Note
For more information on the actual upgrade process, refer to How does the Up-
grade Controller work? (Section 20.3, “How does the Upgrade Controller work?”).

For information on how to track the upgrade process, refer to Tracking the up-
grade process (Section 20.5, “Tracking the upgrade process”).

270 Upgrade

28 Downstream clusters

This section covers how to do various Day 2 operations for different parts of your downstream
cluster using your management cluster.

28.1 Introduction
This section is meant to be a starting point for the Day 2 operations documentation. You can
nd the following information.

1. The default components (Section 28.1.1, “Components”) used to achieve Day 2 operations
over multiple downstream clusters.

2. Determining which Day 2 resources should you use for your specific use-case (Section 28.1.2,

“Determine your use-case”).

3. The suggested workflow sequence (Section 28.1.3, “Day 2 workflow”) for Day 2 operations.

28.1.1 Components

Below you can nd a description of the default components that should be set up on either your
management cluster or your downstream clusters so that you can successfully perform Day
2 operations.

28.1.1.1 Rancher

Note
For use-cases where you want to utilize Fleet (Chapter 6, Fleet) without Rancher, you can
skip the Rancher component altogether.

Responsible for the management of your downstream clusters. Should be deployed on your
management cluster.

For more information, see Chapter 4, Rancher.

271 Introduction

28.1.1.2 Fleet

Responsible for multi-cluster resource deployment.

Typically offered by the Rancher component. For use-cases where Rancher is not used, can be
deployed as a standalone component.

For more information on installing Fleet as a standalone component, see Fleet’s Installation De-

tails (https://fleet.rancher.io/installation) .

For more information regarding the Fleet component, see Chapter 6, Fleet.

Important
This documentation heavily relies on Fleet and more specifically on the GitRepo and
Bundle resources (more on this in Section 28.1.2, “Determine your use-case”) for establishing
a GitOps way of automating the deployment of resources related to Day 2 operations.

For use-cases, where a third party GitOps tool usage is desired, see:

1. For OS upgrades - Section 28.2.4.3, “SUC Plan deployment - third-party GitOps workflow”

2. For Kubernetes distribution upgrades - Section 28.3.4.3, “SUC Plan deployment -

third-party GitOps workflow”

3. For EIB deployed Helm chart upgrades - Section 28.4.3.3.4, “Helm chart upgrade

using a third-party GitOps tool”

4. For non-EIB deployed Helm chart upgrades - retrieve the chart version supported
by the desired Edge release from the Section 36.1, “Abstract” page and populate the
chart version and URL in your third party GitOps tool

28.1.1.3 System Upgrade Controller (SUC)

System Upgrade Controller (SUC) is responsible for executing tasks on specified nodes based
on configuration data provided through a custom resource, called a Plan.

Note
In order for SUC to be able to support different Day 2 operations, it is important that it
is deployed on each downstream cluster that requires an upgrade.

272 Components

https://fleet.rancher.io/installation
https://fleet.rancher.io/installation

For more information about the SUC component and how it ts in the Edge stack, see the System
Upgrade Controller (Chapter 19, System Upgrade Controller) component documentation.

For information on how to deploy SUC on your downstream clusters, rst determine your use-
case (Section 28.1.2, “Determine your use-case”) and then refer to System Upgrade Controller in-
stallation - GitRepo (Section 19.2.1.1, “System Upgrade Controller installation - GitRepo”), or System
Upgrade Controller installation - Bundle (Section 19.2.1.2, “System Upgrade Controller installation

- Bundle”).

28.1.2 Determine your use-case

As mentioned previously, resources related to Day 2 operations are propagated to downstream
clusters using Fleet’s GitRepo and Bundle resources.

Below you can nd more information regarding what these resources do and for which use-
cases should they be used for Day 2 operations.

28.1.2.1 GitRepo

A GitRepo is a Fleet (Chapter 6, Fleet) resource that represents a Git repository from which Fleet
can create Bundles. Each Bundle is created based on configuration paths defined inside of the
GitRepo resource. For more information, see the GitRepo (https://fleet.rancher.io/gitrepo-add)

documentation.

In terms of Day 2 operations, GitRepo resources are normally used to deploy SUC or SUC Plans
on non air-gapped environments that utilize a Fleet GitOps approach.

Alternatively, GitRepo resources can also be used to deploy SUC or SUC Plans on air-gapped
environments, if you mirror your repository setup through a local git server.

28.1.2.2 Bundle

Bundles hold raw Kubernetes resources that will be deployed on the targeted cluster. Usually
they are created from a GitRepo resource, but there are use-cases where they can be deployed
manually. For more information refer to the Bundle (https://fleet.rancher.io/bundle-add) doc-
umentation.

273 Determine your use-case

https://fleet.rancher.io/gitrepo-add
https://fleet.rancher.io/bundle-add

In terms of Day 2 operations, Bundle resources are normally used to deploy SUC or SUC Plans
on air-gapped environments that do not use some form of local GitOps procedure (e.g. a local
git server).

Alternatively, if your use-case does not allow for a GitOps workflow (e.g. using a Git repository),
Bundle resources could also be used to deploy SUC or SUC Plans on non air-gapped environ-
ments.

28.1.3 Day 2 workflow

The following is a Day 2 workflow that should be followed when upgrading a downstream
cluster to a specific Edge release.

1. OS upgrade (Section 28.2, “OS upgrade”)

2. Kubernetes version upgrade (Section 28.3, “Kubernetes version upgrade”)

3. Helm chart upgrade (Section 28.4, “Helm chart upgrade”)

28.2 OS upgrade

28.2.1 Components

This section covers the custom components that the OS upgrade process uses over the default
Day 2 components (Section 28.1.1, “Components”).

274 Day 2 workflow

28.2.1.1 systemd.service

A different systemd.service (https://www.freedesktop.org/software/systemd/man/latest/sys-

temd.service.html) is created depending on what upgrade your OS requires from one Edge
version to another:

For Edge versions that require the same OS version (e.g. 6.0), the os-pkg-update.ser-
vice will be created. It uses the transactional-update (https://kubic.opensuse.org/documen-

tation/man-pages/transactional-update.8.html) command to perform a normal package

upgrade (https://en.opensuse.org/SDB:Zypper_usage#Updating_packages) .

For Edge versions that require a OS version migration (e.g 5.5 → 6.0), the os-migra-
tion.service will be created. It uses transactional-update (https://kubic.opensuse.org/doc-

umentation/man-pages/transactional-update.8.html) to perform:

First a normal package upgrade (https://en.opensuse.org/SDB:Zypper_usage#Updat-

ing_packages) . Done in order to ensure that all packages are with the latest version
before the migration. Mitigating any failures related to old package version.

After that it proceeds with the OS migration process by utilizing the zypper migra-
tion command.

Shipped through a SUC plan, which should be located on each downstream cluster that is in
need of an OS upgrade.

28.2.2 Requirements

General:

1. SCC registered machine - All downstream cluster nodes should be registered to https://
scc.suse.com/. This is needed so that the os-pkg-update.service/os-migration.ser-
vice can successfully connect to the needed OS RPM repositories.

275 Requirements

https://www.freedesktop.org/software/systemd/man/latest/systemd.service.html
https://www.freedesktop.org/software/systemd/man/latest/systemd.service.html
https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html
https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html
https://kubic.opensuse.org/documentation/man-pages/transactional-update.8.html
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages
https://en.opensuse.org/SDB:Zypper_usage#Updating_packages

Important
For Edge releases that require a new OS version (e.g Edge 3.1), make sure that your
SCC key supports the migration to the new version (e.g. for Edge 3.1, the SCC key
should support SLE Micro 5.5 → 6.0 migration).

2. Make sure that SUC Plan tolerations match node tolerations - If your Kubernetes clus-
ter nodes have custom taints, make sure to add tolerations (https://kubernetes.io/docs/con-

cepts/scheduling-eviction/taint-and-toleration/) for those taints in the SUC Plans. By de-
fault SUC Plans have tolerations only for control-plane nodes. Default tolerations include:

CriticalAddonsOnly=true:NoExecute

node-role.kubernetes.io/control-plane:NoSchedule

node-role.kubernetes.io/etcd:NoExecute

Note
Any additional tolerations must be added under the .spec.tolerations sec-
tion of each Plan. SUC Plans related to the OS upgrade can be found in
the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-examples)

repository under fleets/day2/system-upgrade-controller-plans/os-

upgrade. Make sure you use the Plans from a valid repository release

(https://github.com/suse-edge/fleet-examples/releases) tag.

An example of defining custom tolerations for the control-plane SUC Plan,
would look like this:

apiVersion: upgrade.cattle.io/v1
kind: Plan
metadata:
 name: os-upgrade-control-plane
spec:
 ...
 tolerations:
 # default tolerations
 - key: "CriticalAddonsOnly"
 operator: "Equal"
 value: "true"
 effect: "NoExecute"

276 Requirements

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

 - key: "node-role.kubernetes.io/control-plane"
 operator: "Equal"
 effect: "NoSchedule"
 - key: "node-role.kubernetes.io/etcd"
 operator: "Equal"
 effect: "NoExecute"
 # custom toleration
 - key: "foo"
 operator: "Equal"
 value: "bar"
 effect: "NoSchedule"
...

Air-gapped:

1. Mirror SUSE RPM repositories - OS RPM repositories should be locally mirrored so that
os-pkg-update.service/os-migration.service can have access to them. This can be
achieved by using either RMT (https://documentation.suse.com/sles/15-SP6/html/SLES-all/

book-rmt.html) or SUMA (https://documentation.suse.com/suma/5.0/en/suse-manager/in-

dex.html) .

28.2.3 Update procedure

Note
This section assumes you will be deploying the OS upgrade SUC Plan using Fleet (Chap-

ter 6, Fleet). If you intend to deploy the SUC Plan using a different approach, refer to
Section 28.2.4.3, “SUC Plan deployment - third-party GitOps workflow”.

277 Update procedure

https://documentation.suse.com/sles/15-SP6/html/SLES-all/book-rmt.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/book-rmt.html
https://documentation.suse.com/suma/5.0/en/suse-manager/index.html
https://documentation.suse.com/suma/5.0/en/suse-manager/index.html

Important
For environments previously upgraded using this procedure, users should ensure that one
of the following steps is completed:

Remove any previously deployed SUC Plans related to older Edge re-

lease versions from the downstream cluster - can be done by removing the
desired downstream cluster from the existing GitRepo/Bundle target configuration,
or removing the GitRepo/Bundle resource altogether.

Reuse the existing GitRepo/Bundle resource - can be done by pointing the
resource’s revision to a new tag that holds the correct eets for the desired suse-
edge/fleet-examples release (https://github.com/suse-edge/fleet-examples/releas-

es) .

This is done in order to avoid clashes between SUC Plans for older Edge release versions.

If users attempt to upgrade, while there are existing SUC Plans on the downstream cluster,
they will see the following eet error:

Not installed: Unable to continue with install: Plan <plan_name> in namespace
 <plan_namespace> exists and cannot be imported into the current release: invalid
 ownership metadata; annotation validation error..

The OS upgrade procedure revolves around deploying SUC Plans to downstream clus-
ters. These plans hold information about how and on which nodes to deploy the os-pkg-
update.service/os-migration.service. For information regarding the structure of a SUC
Plan, refer to the upstream (https://github.com/rancher/system-upgrade-controller?tab=readme-

ov-file#example-plans) documentation.

OS upgrade SUC Plans are shipped in the following ways:

Through a GitRepo resources - Section 28.2.4.1, “SUC Plan deployment - GitRepo resource”

Through a Bundle resource - Section 28.2.4.2, “SUC Plan deployment - Bundle resource”

To determine which resource you should use, refer to Section 28.1.2, “Determine your use-case”.

For a full overview of what happens during the upgrade procedure, refer to the Section 28.2.3.1,

“Overview” section.

278 Update procedure

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans

28.2.3.1 Overview

This section aims to describe the full workflow that the OS upgrade process goes through from
start to finish.

279 Update procedure

FIGURE 28.1: OS UPGRADE WORKFLOW

280 Update procedure

OS upgrade steps:

1. Based on their use-case, the user determines whether to use a GitRepo or a Bundle re-
source for the deployment of the OS upgrade SUC Plans to the desired downstream clus-
ters. For information on how to map a GitRepo/Bundle to a specific set of downstream
clusters, see Mapping to Downstream Clusters (https://fleet.rancher.io/gitrepo-targets) .

a. If you are unsure whether you should use a GitRepo or a Bundle resource for the
SUC Plan deployment, refer to Section 28.1.2, “Determine your use-case”.

b. For GitRepo/Bundle configuration options, refer to Section 28.2.4.1, “SUC Plan deploy-

ment - GitRepo resource” or Section 28.2.4.2, “SUC Plan deployment - Bundle resource”.

2. The user deploys the configured GitRepo/Bundle resource to the fleet-default name-
space in his management cluster. This is done either manually or through the Rancher
UI if such is available.

3. Fleet (Chapter 6, Fleet) constantly monitors the fleet-default namespace and immediate-
ly detects the newly deployed GitRepo/Bundle resource. For more information regard-
ing what namespaces does Fleet monitor, refer to Fleet’s Namespaces (https://fleet.ranch-

er.io/namespaces) documentation.

4. If the user has deployed a GitRepo resource, Fleet will reconcile the GitRepo and
based on its paths and eet.yaml configurations it will deploy a Bundle resource in
the fleet-default namespace. For more information, refer to Fleet’s GitRepo Contents

(https://fleet.rancher.io/gitrepo-content) documentation.

5. Fleet then proceeds to deploy the Kubernetes resources from this Bundle to all the
targeted downstream clusters. In the context of OS upgrades, Fleet deploys the following
resources from the Bundle:

a. Worker SUC Plan - instructs SUC on how to do an OS upgrade on cluster worker
nodes. It is not interpreted if the cluster consists only from control-plane nodes. It
executes after all control-plane SUC plans have completed successfully.

b. Control Plane SUC Plan - instructs SUC on how to do an OS upgrade on cluster
control-plane nodes.

281 Update procedure

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

c. Script Secret - referenced in each SUC Plan; ships an upgrade.sh script responsi-
ble for creating the os-pkg-update.service/os-migration.service which will
do the actual OS upgrade.

d. Script Data ConfigMap - referenced in each SUC Plan; ships configurations used by
the upgrade.sh script.

Note
The above resources will be deployed in the cattle-system namespace of
each downstream cluster.

6. On the downstream cluster, SUC picks up the newly deployed SUC Plans and deploys an
Update Pod on each node that matches the node selector defined in the SUC Plan. For
information how to monitor the SUC Plan Pod, refer to Section 19.3, “Monitoring System

Upgrade Controller Plans”.

282 Update procedure

7. The Update Pod (deployed on each node) mounts the script Secret and executes the
upgrade.sh script that the Secret ships.

8. The upgrade.sh proceeds to do the following:

a. Based on its configurations, determine whether the OS needs a package update, or
it needs to be migrated.

b. Based on the above outcome it will create either a os-pkg-update.service (for
package updates), or a os-migration.service (for migration). The service will be
of type oneshot and will adopt the following workflow:

i. For os-pkg-update.service:

A. Update all package versions on the node OS, by running transaction-
al-update cleanup up

B. After a successful transactional-update, schedule a system reboot so
that the package version updates can take effect

ii. For os-migration.service:

A. Update all package versions on the node OS, by running transaction-
al-update cleanup up. This is done to ensure that no old package ver-
sions cause an OS migration error.

B. Proceed to migrate the OS to the desired values. Migration is done by
utilizing the zypper migration command.

C. Schedule a system reboot so that the migration can take effect

c. Start the os-pkg-update.service/os-migration.service and wait for it to com-
plete.

d. Cleanup the os-pkg-update.service/os-migration.service after the sys-
temd.service has done its job. It is removed from the system to ensure that no acci-
dental executions/reboots happen in the future.

The OS upgrade procedure finishes with the system reboot. After the reboot, the OS package
versions are upgraded and if the Edge release requires it, the OS might be migrated as well.

283 Update procedure

28.2.4 OS upgrade - SUC Plan deployment

This section describes how to orchestrate the deployment of SUC Plans related OS upgrades
using Fleet’s GitRepo and Bundle resources.

28.2.4.1 SUC Plan deployment - GitRepo resource

A GitRepo resource, that ships the needed OS upgrade SUC Plans, can be deployed in one of
the following ways:

1. Through the Rancher UI - Section 28.2.4.1.1, “GitRepo creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 28.2.4.1.2, “GitRepo creation - manual”) the resource to your
management cluster.

Once deployed, to monitor the OS upgrade process of the nodes of your targeted cluster, refer
to the Section 19.3, “Monitoring System Upgrade Controller Plans” documentation.

28.2.4.1.1 GitRepo creation - Rancher UI

To create a GitRepo resource through the Rancher UI, follow their official doc-

umentation (https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#ac-

cessing-fleet-in-the-rancher-ui) .

The Edge team maintains a ready to use fleet (https://github.com/suse-edge/fleet-examples/tree/

release-3.1.1/fleets/day2/system-upgrade-controller-plans/os-upgrade) that users can add as a
path for their GitRepo resource.

Important
Always use this eet from a valid Edge release (https://github.com/suse-edge/fleet-exam-

ples/releases) tag.

For use-cases where no custom tolerations need to be included to the SUC plans that the eet
ships, users can directly refer the os-upgrade eet from the suse-edge/fleet-examples repos-
itory.

284 OS upgrade - SUC Plan deployment

https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/os-upgrade
https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/os-upgrade
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

In cases where custom tolerations are needed, users should refer the os-upgrade eet from a
separate repository, allowing them to add the tolerations to the SUC plans as required.

An example of how a GitRepo can be configured to use the eet from the suse-edge/fleet-
examples repository, can be viewed here (https://github.com/suse-edge/fleet-examples/blob/re-

lease-3.1.1/gitrepos/day2/os-upgrade-gitrepo.yaml) .

28.2.4.1.2 GitRepo creation - manual

1. Pull the GitRepo resource:

curl -o os-upgrade-gitrepo.yaml https://raw.githubusercontent.com/suse-edge/fleet-
examples/refs/tags/release-3.1.1/gitrepos/day2/os-upgrade-gitrepo.yaml

2. Edit the GitRepo configuration, under spec.targets specify your desired target list. By
default the GitRepo resources from the suse-edge/fleet-examples are NOT mapped to
any downstream clusters.

To match all clusters change the default GitRepo target to:

spec:
 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

3. Apply the GitRepo resources to your management cluster:

kubectl apply -f os-upgrade-gitrepo.yaml

4. View the created GitRepo resource under the fleet-default namespace:

kubectl get gitrepo os-upgrade -n fleet-default

Example output
NAME REPO COMMIT
 BUNDLEDEPLOYMENTS-READY STATUS
os-upgrade https://github.com/suse-edge/fleet-examples.git release-3.1.1 0/0

285 OS upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/os-upgrade-gitrepo.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/os-upgrade-gitrepo.yaml
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

28.2.4.2 SUC Plan deployment - Bundle resource

A Bundle resource, that ships the needed OS upgrade SUC Plans, can be deployed in one of
the following ways:

1. Through the Rancher UI - Section 28.2.4.2.1, “Bundle creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 28.2.4.2.2, “Bundle creation - manual”) the resource to your
management cluster.

Once deployed, to monitor the OS upgrade process of the nodes of your targeted cluster, refer
to the Section 19.3, “Monitoring System Upgrade Controller Plans” documentation.

28.2.4.2.1 Bundle creation - Rancher UI

The Edge team maintains a ready to use bun-

dle (https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-up-

grade-controller-plans/os-upgrade/os-upgrade-bundle.yaml) that can be used in the below
steps.

Important
Always use this bundle from a valid Edge release (https://github.com/suse-edge/fleet-ex-

amples/releases) tag.

To create a bundle through Rancher’s UI:

1. In the upper left corner, click # → Continuous Delivery

2. Go to Advanced > Bundles

3. Select Create from YAML

4. From here you can create the Bundle in one of the following ways:

Note
There might be use-cases where you would need to include custom tolerations to
the SUC plans that the bundle ships. Make sure to include those tolerations in the
bundle that will be generated by the below steps.

286 OS upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

a. By manually copying the bundle content (https://raw.githubusercontent.com/suse-

edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/

system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml) from suse-
edge/fleet-examples to the Create from YAML page.

b. By cloning the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-exam-

ples.git) repository from the desired release (https://github.com/suse-edge/fleet-ex-

amples/releases) tag and selecting the Read from File option in the Create from
YAML page. From there, navigate to the bundle location (bundles/day2/sys-
tem-upgrade-controller-plans/os-upgrade) and select the bundle le. This will
auto-populate the Create from YAML page with the bundle content.

5. Change the target clusters for the Bundle:

To match all downstream clusters change the default Bundle .spec.targets to:

spec:
 targets:
 - clusterSelector: {}

For a more granular downstream cluster mappings, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets) .

6. Select Create

28.2.4.2.2 Bundle creation - manual

1. Pull the Bundle resource:

curl -o os-upgrade-bundle.yaml https://raw.githubusercontent.com/suse-edge/fleet-
examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-
upgrade/os-upgrade-bundle.yaml

2. Edit the Bundle target configurations, under spec.targets provide your desired tar-
get list. By default the Bundle resources from the suse-edge/fleet-examples are NOT
mapped to any downstream clusters.

To match all clusters change the default Bundle target to:

spec:

287 OS upgrade - SUC Plan deployment

https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/os-upgrade/os-upgrade-bundle.yaml
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

3. Apply the Bundle resources to your management cluster:

kubectl apply -f os-upgrade-bundle.yaml

4. View the created Bundle resource under the fleet-default namespace:

kubectl get bundles -n fleet-default

28.2.4.3 SUC Plan deployment - third-party GitOps workflow

There might be use-cases where users would like to incorporate the OS upgrade SUC Plans to
their own third-party GitOps workflow (e.g. Flux).

To get the OS upgrade resources that you need, rst determine the Edge release (https://

github.com/suse-edge/fleet-examples/releases) tag of the suse-edge/fleet-examples (https://

github.com/suse-edge/fleet-examples.git) repository that you would like to use.

After that, resources can be found at fleets/day2/system-upgrade-controller-plans/os-
upgrade, where:

plan-control-plane.yaml - system-upgrade-controller Plan resource for con-
trol-plane nodes.

plan-worker.yaml - system-upgrade-controller Plan resource for worker nodes.

secret.yaml - secret that ships the upgrade.sh script.

config-map.yaml - ConfigMap that provides upgrade configurations that are consumed
by the upgrade.sh script.

Important
These Plan resources are interpreted by the system-upgrade-controller and should
be deployed on each downstream cluster that you wish to upgrade. For information on
how to deploy the system-upgrade-controller, see Section 19.2, “Installing the System

Upgrade Controller”.

288 OS upgrade - SUC Plan deployment

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git

To better understand how your GitOps workflow can be used to deploy the SUC Plans for OS
upgrade, it can be beneficial to take a look at the overview (Section 28.2.3.1, “Overview”) of the
update procedure using Fleet.

28.3 Kubernetes version upgrade

Important
This section covers Kubernetes upgrades for downstream clusters that have NOT been cre-
ated through a Rancher (Chapter 4, Rancher) instance. For information on how to upgrade
the Kubernetes version of Rancher created clusters, see Upgrading and Rolling Back Ku-

bernetes (https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-

upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version) .

28.3.1 Components

This section covers the custom components that the Kubernetes upgrade process uses over the
default Day 2 components (Section 28.1.1, “Components”).

28.3.1.1 rke2-upgrade

Image responsible for upgrading the RKE2 version of a specific node.

Shipped through a Pod created by SUC based on a SUC Plan. The Plan should be located on
each downstream cluster that is in need of a RKE2 upgrade.

For more information regarding how the rke2-upgrade image performs the upgrade, see the
upstream (https://github.com/rancher/rke2-upgrade/tree/master) documentation.

28.3.1.2 k3s-upgrade

Image responsible for upgrading the K3s version of a specific node.

Shipped through a Pod created by SUC based on a SUC Plan. The Plan should be located on
each downstream cluster that is in need of a K3s upgrade.

289 Kubernetes version upgrade

https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version
https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version
https://ranchermanager.docs.rancher.com/v2.8/getting-started/installation-and-upgrade/upgrade-and-roll-back-kubernetes#upgrading-the-kubernetes-version
https://github.com/rancher/rke2-upgrade/tree/master

For more information regarding how the k3s-upgrade image performs the upgrade, see the
upstream (https://github.com/k3s-io/k3s-upgrade) documentation.

28.3.2 Requirements

1. Backup your Kubernetes distribution:

a. For imported RKE2 clusters, see the RKE2 Backup and Restore (https://doc-

s.rke2.io/backup_restore) documentation.

b. For imported K3s clusters, see the K3s Backup and Restore (https://docs.k3s.io/data-

store/backup-restore) documentation.

2. Make sure that SUC Plan tolerations match node tolerations - If your Kubernetes clus-
ter nodes have custom taints, make sure to add tolerations (https://kubernetes.io/docs/con-

cepts/scheduling-eviction/taint-and-toleration/) for those taints in the SUC Plans. By de-
fault SUC Plans have tolerations only for control-plane nodes. Default tolerations include:

CriticalAddonsOnly=true:NoExecute

node-role.kubernetes.io/control-plane:NoSchedule

node-role.kubernetes.io/etcd:NoExecute

Note
Any additional tolerations must be added under the .spec.tolerations sec-
tion of each Plan. SUC Plans related to the Kubernetes version upgrade can
be found in the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-

examples) repository under:

For RKE2 - fleets/day2/system-upgrade-controller-plans/rke2-
upgrade

For K3s - fleets/day2/system-upgrade-controller-plans/k3s-up-
grade

Make sure you use the Plans from a valid repository release (https://

github.com/suse-edge/fleet-examples/releases) tag.

290 Requirements

https://github.com/k3s-io/k3s-upgrade
https://docs.rke2.io/backup_restore
https://docs.rke2.io/backup_restore
https://docs.k3s.io/datastore/backup-restore
https://docs.k3s.io/datastore/backup-restore
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

An example of defining custom tolerations for the RKE2 control-plane SUC
Plan, would look like this:

apiVersion: upgrade.cattle.io/v1
kind: Plan
metadata:
 name: rke2-upgrade-control-plane
spec:
 ...
 tolerations:
 # default tolerations
 - key: "CriticalAddonsOnly"
 operator: "Equal"
 value: "true"
 effect: "NoExecute"
 - key: "node-role.kubernetes.io/control-plane"
 operator: "Equal"
 effect: "NoSchedule"
 - key: "node-role.kubernetes.io/etcd"
 operator: "Equal"
 effect: "NoExecute"
 # custom toleration
 - key: "foo"
 operator: "Equal"
 value: "bar"
 effect: "NoSchedule"
...

28.3.3 Upgrade procedure

Note
This section assumes you will be deploying SUC Plans using Fleet (Chapter 6, Fleet). If you
intend to deploy the SUC Plan using a different approach, refer to Section 28.3.4.3, “SUC

Plan deployment - third-party GitOps workflow”.

291 Upgrade procedure

Important
For environments previously upgraded using this procedure, users should ensure that one
of the following steps is completed:

Remove any previously deployed SUC Plans related to older Edge re-

lease versions from the downstream cluster - can be done by removing the
desired downstream cluster from the existing GitRepo/Bundle target configuration,
or removing the GitRepo/Bundle resource altogether.

Reuse the existing GitRepo/Bundle resource - can be done by pointing the
resource’s revision to a new tag that holds the correct eets for the desired suse-
edge/fleet-examples release (https://github.com/suse-edge/fleet-examples/releas-

es) .

This is done in order to avoid clashes between SUC Plans for older Edge release versions.

If users attempt to upgrade, while there are existing SUC Plans on the downstream cluster,
they will see the following eet error:

Not installed: Unable to continue with install: Plan <plan_name> in namespace
 <plan_namespace> exists and cannot be imported into the current release: invalid
 ownership metadata; annotation validation error..

The Kubernetes version upgrade procedure revolves around deploying SUC Plans to down-
stream clusters. These plans hold information that instructs the SUC on which nodes to create
Pods which run the rke2/k3s-upgrade images. For information regarding the structure of a SUC
Plan, refer to the upstream (https://github.com/rancher/system-upgrade-controller?tab=readme-

ov-file#example-plans) documentation.

Kubernetes upgrade Plans are shipped in the following ways:

Through a GitRepo resources - Section 28.3.4.1, “SUC Plan deployment - GitRepo resource”

Through a Bundle resource - Section 28.3.4.2, “SUC Plan deployment - Bundle resource”

To determine which resource you should use, refer to Section 28.1.2, “Determine your use-case”.

For a full overview of what happens during the update procedure, refer to the Section 28.3.3.1,

“Overview” section.

292 Upgrade procedure

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans
https://github.com/rancher/system-upgrade-controller?tab=readme-ov-file#example-plans

28.3.3.1 Overview

This section aims to describe the full workflow that the Kubernetes version upgrade process
goes through from start to finish.

293 Upgrade procedure

FIGURE 28.2: KUBERNETES VERSION UPGRADE WORKFLOW

294 Upgrade procedure

Kubernetes version upgrade steps:

1. Based on his use-case, the user determines whether to use a GitRepo or a Bundle resource
for the deployment of the Kubernetes upgrade SUC Plans to the desired downstream
clusters. For information on how to map a GitRepo/Bundle to a specific set of downstream
clusters, see Mapping to Downstream Clusters (https://fleet.rancher.io/gitrepo-targets) .

a. If you are unsure whether you should use a GitRepo or a Bundle resource for the
SUC Plan deployment, refer to Section 28.1.2, “Determine your use-case”.

b. For GitRepo/Bundle configuration options, refer to Section 28.3.4.1, “SUC Plan deploy-

ment - GitRepo resource” or Section 28.3.4.2, “SUC Plan deployment - Bundle resource”.

2. The user deploys the configured GitRepo/Bundle resource to the fleet-default name-
space in his management cluster. This is done either manually or through the Rancher
UI if such is available.

3. Fleet (Chapter 6, Fleet) constantly monitors the fleet-default namespace and immediate-
ly detects the newly deployed GitRepo/Bundle resource. For more information regard-
ing what namespaces does Fleet monitor, refer to Fleet’s Namespaces (https://fleet.ranch-

er.io/namespaces) documentation.

4. If the user has deployed a GitRepo resource, Fleet will reconcile the GitRepo and
based on its paths and eet.yaml configurations it will deploy a Bundle resource in
the fleet-default namespace. For more information, refer to Fleet’s GitRepo Contents

(https://fleet.rancher.io/gitrepo-content) documentation.

5. Fleet then proceeds to deploy the Kubernetes resources from this Bundle to all the
targeted downstream clusters. In the context of the Kubernetes version upgrade,
Fleet deploys the following resources from the Bundle (depending on the Kubernetes dis-
tribution):

a. rke2-upgrade-worker/k3s-upgrade-worker - instructs SUC on how to do a Kuber-
netes upgrade on cluster worker nodes. Will not be interpreted if the cluster consists
only from control-plane nodes.

b. rke2-upgrade-control-plane/k3s-upgrade-control-plane - instructs SUC on
how to do a Kubernetes upgrade on cluster control-plane nodes.

295 Upgrade procedure

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/namespaces
https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

Note
The above SUC Plans will be deployed in the cattle-system namespace of
each downstream cluster.

6. On the downstream cluster, SUC picks up the newly deployed SUC Plans and deploys an
Update Pod on each node that matches the node selector defined in the SUC Plan. For
information how to monitor the SUC Plan Pod, refer to Section 19.3, “Monitoring System

Upgrade Controller Plans”.

7. Depending on which SUC Plans you have deployed, the Update Pod will run either a rke2-

upgrade (https://hub.docker.com/r/rancher/rke2-upgrade/tags) or a k3s-upgrade (https://

hub.docker.com/r/rancher/k3s-upgrade/tags) image and will execute the following work-
flow on each cluster node:

a. Cordon (https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/)

cluster node - to ensure that no pods are scheduled accidentally on this node while
it is being upgraded, we mark it as unschedulable.

b. Replace the rke2/k3s binary that is installed on the node OS with the binary shipped
by the rke2-upgrade/k3s-upgrade image that the Pod is currently running.

c. Kill the rke2/k3s process that is running on the node OS - this instructs the super-
visor to automatically restart the rke2/k3s process using the new version.

d. Uncordon (https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncor-

don/) cluster node - after the successful Kubernetes distribution upgrade, the node
is again marked as schedulable.

Note
For further information regarding how the rke2-upgrade and k3s-up-
grade images work, see the rke2-upgrade (https://github.com/rancher/rke2-up-

grade) and k3s-upgrade (https://github.com/k3s-io/k3s-upgrade) upstream
projects.

296 Upgrade procedure

https://hub.docker.com/r/rancher/rke2-upgrade/tags
https://hub.docker.com/r/rancher/rke2-upgrade/tags
https://hub.docker.com/r/rancher/k3s-upgrade/tags
https://hub.docker.com/r/rancher/k3s-upgrade/tags
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_cordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncordon/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_uncordon/
https://github.com/rancher/rke2-upgrade
https://github.com/rancher/rke2-upgrade
https://github.com/k3s-io/k3s-upgrade

With the above steps executed, the Kubernetes version of each cluster node should have been up-
graded to the desired Edge compatible release (https://github.com/suse-edge/fleet-examples/re-

leases) .

28.3.4 Kubernetes version upgrade - SUC Plan deployment

This section describes how to orchestrate the deployment of SUC Plans related Kubernetes
upgrades using Fleet’s GitRepo and Bundle resources.

28.3.4.1 SUC Plan deployment - GitRepo resource

A GitRepo resource, that ships the needed Kubernetes upgrade SUC Plans, can be deployed
in one of the following ways:

1. Through the Rancher UI - Section 28.3.4.1.1, “GitRepo creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 28.3.4.1.2, “GitRepo creation - manual”) the resource to your
management cluster.

Once deployed, to monitor the Kubernetes upgrade process of the nodes of your targeted cluster,
refer to the Section 19.3, “Monitoring System Upgrade Controller Plans” documentation.

28.3.4.1.1 GitRepo creation - Rancher UI

To create a GitRepo resource through the Rancher UI, follow their official doc-

umentation (https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#ac-

cessing-fleet-in-the-rancher-ui) .

The Edge team maintains ready to use eets for
both rke2 (https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-up-

grade-controller-plans/rke2-upgrade) and k3s (https://github.com/suse-edge/fleet-exam-

ples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/k3s-upgrade) Kubernetes
distributions, that users can add as a path for their GitRepo resource.

297 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/rke2-upgrade
https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/rke2-upgrade
https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/k3s-upgrade
https://github.com/suse-edge/fleet-examples/tree/release-3.1.1/fleets/day2/system-upgrade-controller-plans/k3s-upgrade

Important
Always use this eets from a valid Edge release (https://github.com/suse-edge/fleet-exam-

ples/releases) tag.

For use-cases where no custom tolerations need to be included to the SUC plans that these eets
ship, users can directly refer the eets from the suse-edge/fleet-examples repository.

In cases where custom tolerations are needed, users should refer the eets from a separate
repository, allowing them to add the tolerations to the SUC plans as required.

Configuration examples for a GitRepo resource using the eets from suse-edge/fleet-exam-
ples repository:

RKE2 (https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/rke2-

upgrade-gitrepo.yaml)

K3s (https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/k3s-up-

grade-gitrepo.yaml)

28.3.4.1.2 GitRepo creation - manual

1. Pull the GitRepo resource:

For RKE2 clusters:

curl -o rke2-upgrade-gitrepo.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/refs/tags/release-3.1.1/gitrepos/day2/rke2-upgrade-gitrepo.yaml

For K3s clusters:

curl -o k3s-upgrade-gitrepo.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/refs/tags/release-3.1.1/gitrepos/day2/k3s-upgrade-gitrepo.yaml

2. Edit the GitRepo configuration, under spec.targets specify your desired target list. By
default the GitRepo resources from the suse-edge/fleet-examples are NOT mapped to
any downstream clusters.

To match all clusters change the default GitRepo target to:

spec:

298 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/rke2-upgrade-gitrepo.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/rke2-upgrade-gitrepo.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/k3s-upgrade-gitrepo.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/gitrepos/day2/k3s-upgrade-gitrepo.yaml

 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

3. Apply the GitRepo resources to your management cluster:

RKE2
kubectl apply -f rke2-upgrade-gitrepo.yaml

K3s
kubectl apply -f k3s-upgrade-gitrepo.yaml

4. View the created GitRepo resource under the fleet-default namespace:

RKE2
kubectl get gitrepo rke2-upgrade -n fleet-default

K3s
kubectl get gitrepo k3s-upgrade -n fleet-default

Example output
NAME REPO COMMIT
 BUNDLEDEPLOYMENTS-READY STATUS
k3s-upgrade https://github.com/suse-edge/fleet-examples.git release-3.1.1 0/0
rke2-upgrade https://github.com/suse-edge/fleet-examples.git release-3.1.1 0/0

28.3.4.2 SUC Plan deployment - Bundle resource

A Bundle resource, that ships the needed Kubernetes upgrade SUC Plans, can be deployed
in one of the following ways:

1. Through the Rancher UI - Section 28.3.4.2.1, “Bundle creation - Rancher UI” (when Rancher
is available).

2. By manually deploying (Section 28.3.4.2.2, “Bundle creation - manual”) the resource to your
management cluster.

Once deployed, to monitor the Kubernetes upgrade process of the nodes of your targeted cluster,
refer to the Section 19.3, “Monitoring System Upgrade Controller Plans” documentation.

299 Kubernetes version upgrade - SUC Plan deployment

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

28.3.4.2.1 Bundle creation - Rancher UI

The Edge team maintains ready to use bundles for both
rke2 (https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-up-

grade-controller-plans/rke2-upgrade/plan-bundle.yaml) and k3s (https://github.com/suse-edge/

fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-

upgrade/plan-bundle.yaml) Kubernetes distributions that can be used in the below steps.

Important
Always use this bundle from a valid Edge release (https://github.com/suse-edge/fleet-ex-

amples/releases) tag.

To create a bundle through Rancher’s UI:

1. In the upper left corner, click # → Continuous Delivery

2. Go to Advanced > Bundles

3. Select Create from YAML

4. From here you can create the Bundle in one of the following ways:

Note
There might be use-cases where you would need to include custom tolerations to
the SUC plans that the bundle ships. Make sure to include those tolerations in the
bundle that will be generated by the below steps.

a. By manually copying the bundle content for RKE2 (https://raw.githubusercon-

tent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/

system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml) or K3s (https://

raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/

release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-

bundle.yaml) from suse-edge/fleet-examples to the Create from YAML page.

b. By cloning the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-exam-

ples.git) repository from the desired release (https://github.com/suse-edge/fleet-

examples/releases) tag and selecting the Read from File option in the

300 Kubernetes version upgrade - SUC Plan deployment

https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://raw.githubusercontent.com/suse-edge/fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/k3s-upgrade/plan-bundle.yaml
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

Create from YAML page. From there, navigate to the bundle that you
need (bundles/day2/system-upgrade-controller-plans/rke2-upgrade/plan-
bundle.yaml for RKE2 and bundles/day2/system-upgrade-controller-plans/
k3s-upgrade/plan-bundle.yaml for K3s). This will auto-populate the Create from
YAML page with the bundle content.

5. Change the target clusters for the Bundle:

To match all downstream clusters change the default Bundle .spec.targets to:

spec:
 targets:
 - clusterSelector: {}

For a more granular downstream cluster mappings, see Mapping to Downstream Clus-

ters (https://fleet.rancher.io/gitrepo-targets) .

6. Create

28.3.4.2.2 Bundle creation - manual

1. Pull the Bundle resources:

For RKE2 clusters:

curl -o rke2-plan-bundle.yaml https://raw.githubusercontent.com/suse-edge/
fleet-examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-
plans/rke2-upgrade/plan-bundle.yaml

For K3s clusters:

curl -o k3s-plan-bundle.yaml https://raw.githubusercontent.com/suse-edge/fleet-
examples/refs/tags/release-3.1.1/bundles/day2/system-upgrade-controller-plans/
k3s-upgrade/plan-bundle.yaml

2. Edit the Bundle target configurations, under spec.targets provide your desired tar-
get list. By default the Bundle resources from the suse-edge/fleet-examples are NOT
mapped to any downstream clusters.

To match all clusters change the default Bundle target to:

spec:

301 Kubernetes version upgrade - SUC Plan deployment

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

 targets:
 - clusterSelector: {}

Alternatively, if you want a more granular cluster selection see Mapping to Down-

stream Clusters (https://fleet.rancher.io/gitrepo-targets)

3. Apply the Bundle resources to your management cluster:

For RKE2
kubectl apply -f rke2-plan-bundle.yaml

For K3s
kubectl apply -f k3s-plan-bundle.yaml

4. View the created Bundle resource under the fleet-default namespace:

For RKE2
kubectl get bundles rke2-upgrade -n fleet-default

For K3s
kubectl get bundles k3s-upgrade -n fleet-default

Example output
NAME BUNDLEDEPLOYMENTS-READY STATUS
k3s-upgrade 0/0
rke2-upgrade 0/0

28.3.4.3 SUC Plan deployment - third-party GitOps workflow

There might be use-cases where users would like to incorporate the Kubernetes upgrade re-
sources to their own third-party GitOps workflow (e.g. Flux).

To get the upgrade resources that you need, rst determine the Edge release (https://github.com/

suse-edge/fleet-examples/releases) tag of the suse-edge/fleet-examples (https://github.com/

suse-edge/fleet-examples.git) repository that you would like to use.

302 Kubernetes version upgrade - SUC Plan deployment

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples.git
https://github.com/suse-edge/fleet-examples.git

After that, the resources can be found at:

For a RKE2 cluster upgrade:

For control-plane nodes - fleets/day2/system-upgrade-controller-plans/
rke2-upgrade/plan-control-plane.yaml

For worker nodes - fleets/day2/system-upgrade-controller-plans/rke2-up-
grade/plan-worker.yaml

For a K3s cluster upgrade:

For control-plane nodes - fleets/day2/system-upgrade-controller-plans/
k3s-upgrade/plan-control-plane.yaml

For worker nodes - fleets/day2/system-upgrade-controller-plans/k3s-up-
grade/plan-worker.yaml

Important
These Plan resources are interpreted by the system-upgrade-controller and should
be deployed on each downstream cluster that you wish to upgrade. For information on
how to deploy the system-upgrade-controller, see Section 19.2, “Installing the System

Upgrade Controller”.

To better understand how your GitOps workflow can be used to deploy the SUC Plans for
Kubernetes version upgrade, it can be beneficial to take a look at the overview (Section 28.3.3.1,

“Overview”) of the update procedure using Fleet.

28.4 Helm chart upgrade

Note
The below sections focus on using Fleet functionalities to achieve a Helm chart update.

303 Helm chart upgrade

For use-cases, where a third party GitOps tool usage is desired, see:

For EIB deployed Helm chart upgrades - Section 28.4.3.3.4, “Helm chart upgrade

using a third-party GitOps tool”.

For non-EIB deployed Helm chart upgrades - retrieve the chart version supported
by the desired Edge release from the release notes (Section 36.1, “Abstract”) page and
populate the chart version and URL in your third party GitOps tool.

28.4.1 Components

Apart from the default Day 2 components (Section 28.1.1, “Components”), no other custom com-
ponents are needed for this operation.

28.4.2 Preparation for air-gapped environments

28.4.2.1 Ensure that you have access to your Helm chart upgrade Fleet

Depending on what your environment supports, you can take one of the following options:

1. Host your chart’s Fleet resources on a local Git server that is accessible by your management
cluster.

2. Use Fleet’s CLI to convert a Helm chart into a Bundle (https://fleet.rancher.io/bundle-ad-

d#convert-a-helm-chart-into-a-bundle) that you can directly use and will not need to be
hosted somewhere. Fleet’s CLI can be retrieved from their release (https://github.com/ranch-

er/fleet/releases) page, for Mac users there is a fleet-cli (https://formulae.brew.sh/formu-

la/fleet-cli) Homebrew Formulae.

304 Components

https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://github.com/rancher/fleet/releases
https://github.com/rancher/fleet/releases
https://formulae.brew.sh/formula/fleet-cli
https://formulae.brew.sh/formula/fleet-cli

28.4.2.2 Find the required assets for your Edge release version

1. Go to the Day 2 release (https://github.com/suse-edge/fleet-examples/releases) page and
nd the Edge 3.X.Y release that you want to upgrade your chart to and click Assets.

2. From the "Assets" section, download the following les:

Release File Description

edge-save-images.sh Pulls the images specified in the edge-
release-images.txt le and packages
them inside of a '.tar.gz' archive.

edge-save-oci-artefacts.sh Pulls the OCI chart images related to the
specific Edge release and packages them
inside of a '.tar.gz' archive.

edge-load-images.sh Loads images from a '.tar.gz' archive, re-
tags and pushes them to a private registry.

edge-load-oci-artefacts.sh Takes a directory containing Edge OCI
'.tgz' chart packages and loads them to a
private registry.

edge-release-helm-oci-artefacts.txt Contains a list of OCI chart images related
to a specific Edge release.

edge-release-images.txt Contains a list of images related to a spe-
cific Edge release.

305 Preparation for air-gapped environments

https://github.com/suse-edge/fleet-examples/releases

28.4.2.3 Create the Edge release images archive

On a machine with internet access:

1. Make edge-save-images.sh executable:

chmod +x edge-save-images.sh

2. Generate the image archive:

./edge-save-images.sh --source-registry registry.suse.com

3. This will create a ready to load archive named edge-images.tar.gz.

Note
If the -i|--images option is specified, the name of the archive may differ.

4. Copy this archive to your air-gapped machine:

scp edge-images.tar.gz <user>@<machine_ip>:/path

28.4.2.4 Create the Edge OCI chart images archive

On a machine with internet access:

1. Make edge-save-oci-artefacts.sh executable:

chmod +x edge-save-oci-artefacts.sh

2. Generate the OCI chart image archive:

./edge-save-oci-artefacts.sh --source-registry registry.suse.com

3. This will create an archive named oci-artefacts.tar.gz.

Note
If the -a|--archive option is specified, the name of the archive may differ.

4. Copy this archive to your air-gapped machine:

scp oci-artefacts.tar.gz <user>@<machine_ip>:/path

306 Preparation for air-gapped environments

28.4.2.5 Load Edge release images to your air-gapped machine

On your air-gapped machine:

1. Log into your private registry (if required):

podman login <REGISTRY.YOURDOMAIN.COM:PORT>

2. Make edge-load-images.sh executable:

chmod +x edge-load-images.sh

3. Execute the script, passing the previously copied edge-images.tar.gz archive:

./edge-load-images.sh --source-registry registry.suse.com --registry
 <REGISTRY.YOURDOMAIN.COM:PORT> --images edge-images.tar.gz

Note
This will load all images from the edge-images.tar.gz, retag and push them to
the registry specified under the --registry option.

28.4.2.6 Load the Edge OCI chart images to your air-gapped machine

On your air-gapped machine:

1. Log into your private registry (if required):

podman login <REGISTRY.YOURDOMAIN.COM:PORT>

2. Make edge-load-oci-artefacts.sh executable:

chmod +x edge-load-oci-artefacts.sh

3. Untar the copied oci-artefacts.tar.gz archive:

tar -xvf oci-artefacts.tar.gz

307 Preparation for air-gapped environments

4. This will produce a directory with the naming template edge-release-oci-tgz-<date>

5. Pass this directory to the edge-load-oci-artefacts.sh script to load the Edge OCI chart
images to your private registry:

Note
This script assumes the helm CLI has been pre-installed on your environment.
For Helm installation instructions, see Installing Helm (https://helm.sh/docs/intro/in-

stall/) .

./edge-load-oci-artefacts.sh --archive-directory edge-release-oci-tgz-<date> --
registry <REGISTRY.YOURDOMAIN.COM:PORT> --source-registry registry.suse.com

28.4.2.7 Create registry mirrors pointing to your private registry for your
Kubernetes distribution

For RKE2, see Containerd Registry Configuration (https://docs.rke2.io/install/containerd_reg-

istry_configuration)

For K3s, see Embedded Registry Mirror (https://docs.k3s.io/installation/registry-mirror)

28.4.3 Upgrade procedure

This section focuses on the following Helm upgrade procedure use-cases:

1. I have a new cluster and would like to deploy and manage a SUSE Helm chart (Sec-

tion 28.4.3.1, “I have a new cluster and would like to deploy and manage a SUSE Helm chart”)

2. I would like to upgrade a Fleet managed Helm chart (Section 28.4.3.2, “I would like to upgrade

a Fleet managed Helm chart”)

3. I would like to upgrade an EIB deployed Helm chart (Section 28.4.3.3, “I would like to upgrade

an EIB deployed Helm chart”)

308 Upgrade procedure

https://helm.sh/docs/intro/install/
https://helm.sh/docs/intro/install/
https://docs.rke2.io/install/containerd_registry_configuration
https://docs.rke2.io/install/containerd_registry_configuration
https://docs.k3s.io/installation/registry-mirror

Important
Manually deployed Helm charts cannot be reliably upgraded. We suggest to redeploy the
helm chart using the Section 28.4.3.1, “I have a new cluster and would like to deploy and manage

a SUSE Helm chart” method.

28.4.3.1 I have a new cluster and would like to deploy and manage a SUSE
Helm chart

For users that want to manage their Helm chart lifecycle through Fleet.

This section covers how to:

1. Prepare your Fleet resources (Section 28.4.3.1.1, “Prepare your Fleet resources”).

2. Deploy your Fleet resources (Section 28.4.3.1.2, “Deploy your Fleet”).

3. Manage the deployed Helm chart (Section 28.4.3.1.3, “Managing the deployed Helm chart”).

28.4.3.1.1 Prepare your Fleet resources

1. Acquire the Chart’s Fleet resources from the Edge release (https://github.com/suse-edge/

fleet-examples/releases) tag that you wish to use

a. From the selected Edge release tag revision, navigate to the Helm chart eet - fleets/
day2/chart-templates/<chart>

b. If you intend to use a GitOps workflow, copy the chart Fleet directory to the Git
repository from where you will do GitOps.

309 Upgrade procedure

https://github.com/suse-edge/fleet-examples/releases
https://github.com/suse-edge/fleet-examples/releases

c. Optionally, if the Helm chart requires configurations to its values, edit the
.helm.values configuration inside the fleet.yaml le of the copied directory.

d. Optionally, there may be use-cases where you need to add additional resources to
your chart’s eet so that it can better t your environment. For information on how to
enhance your Fleet directory, see Git Repository Contents (https://fleet.rancher.io/gitre-

po-content) .

An example for the longhorn helm chart would look like:

User Git repository structure:

<user_repository_root>
├── longhorn
│ └── fleet.yaml
└── longhorn-crd
 └── fleet.yaml

fleet.yaml content populated with user longhorn data:

defaultNamespace: longhorn-system

helm:
 releaseName: "longhorn"
 chart: "longhorn"
 repo: "https://charts.rancher.io/"
 version: "104.2.0+up1.7.1"
 takeOwnership: true
 # custom chart value overrides
 values:
 # Example for user provided custom values content
 defaultSettings:
 deletingConfirmationFlag: true

https://fleet.rancher.io/bundle-diffs
diff:
 comparePatches:
 - apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 name: engineimages.longhorn.io
 operations:
 - {"op":"remove", "path":"/status/conditions"}
 - {"op":"remove", "path":"/status/storedVersions"}
 - {"op":"remove", "path":"/status/acceptedNames"}
 - apiVersion: apiextensions.k8s.io/v1

310 Upgrade procedure

https://fleet.rancher.io/gitrepo-content
https://fleet.rancher.io/gitrepo-content

 kind: CustomResourceDefinition
 name: nodes.longhorn.io
 operations:
 - {"op":"remove", "path":"/status/conditions"}
 - {"op":"remove", "path":"/status/storedVersions"}
 - {"op":"remove", "path":"/status/acceptedNames"}
 - apiVersion: apiextensions.k8s.io/v1
 kind: CustomResourceDefinition
 name: volumes.longhorn.io
 operations:
 - {"op":"remove", "path":"/status/conditions"}
 - {"op":"remove", "path":"/status/storedVersions"}
 - {"op":"remove", "path":"/status/acceptedNames"}

Note
These are just example values that are used to illustrate custom configurations over
the longhorn chart. They should NOT be treated as deployment guidelines for the
longhorn chart.

28.4.3.1.2 Deploy your Fleet

If the environment supports working with a GitOps workflow, you can deploy your Chart Fleet
by either using a GitRepo (Section 28.4.3.1.2.1, “GitRepo”) or Bundle (Section 28.4.3.1.2.2, “Bundle”).

Note
While deploying your Fleet, if you get a Modified message, make sure to add a corre-
sponding comparePatches entry to the Fleet’s diff section. For more information, see
Generating Diffs to Ignore Modified GitRepos (https://fleet.rancher.io/bundle-diffs) .

28.4.3.1.2.1 GitRepo

Fleet’s GitRepo (https://fleet.rancher.io/ref-gitrepo) resource holds information on how to access
your chart’s Fleet resources and to which clusters it needs to apply those resources.

The GitRepo resource can be deployed through the Rancher UI (https://ranchermanager.doc-

s.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui) , or
manually, by deploying (https://fleet.rancher.io/tut-deployment) the resource to the manage-
ment cluster.

311 Upgrade procedure

https://fleet.rancher.io/bundle-diffs
https://fleet.rancher.io/ref-gitrepo
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://fleet.rancher.io/tut-deployment

Example Longhorn GitRepo resource for manual deployment:

apiVersion: fleet.cattle.io/v1alpha1
kind: GitRepo
metadata:
 name: longhorn-git-repo
 namespace: fleet-default
spec:
 # If using a tag
 # revision: <user_repository_tag>
 #
 # If using a branch
 # branch: <user_repository_branch>
 paths:
 # As seen in the 'Prepare your Fleet resources' example
 - longhorn
 - longhorn-crd
 repo: <user_repository_url>
 targets:
 # Match all clusters
 - clusterSelector: {}

28.4.3.1.2.2 Bundle

Bundle (https://fleet.rancher.io/bundle-add) resources hold the raw Kubernetes resources that
need to be deployed by Fleet. Normally it is encouraged to use the GitRepo approach, but for
use-cases where the environment is air-gapped and cannot support a local Git server, Bundles
can help you in propagating your Helm chart Fleet to your target clusters.

The Bundle can be deployed either through the Rancher UI (Continuous Delivery → Advanced
→ Bundles → Create from YAML) or by manually deploying the Bundle resource in the correct
Fleet namespace. For information about Fleet namespaces, see the upstream documentation

(https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups) .

312 Upgrade procedure

https://fleet.rancher.io/bundle-add
https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups
https://fleet.rancher.io/namespaces#gitrepos-bundles-clusters-clustergroups

Example Longhorn Bundle resource deployment using a manual approach:

1. Navigate to the Longhorn Chart eet located under fleets/day2/chart-tem-

plates/longhorn/longhorn:

cd fleets/day2/chart-templates/longhorn/longhorn

2. Create a targets.yaml le that will instruct Fleet to which clusters it should deploy the
Helm chart. In this case, we will deploy to a single downstream cluster. For information on
how to map more complex targets, see Mapping to Downstream Clusters (https://fleet.ranch-

er.io/gitrepo-targets) :

cat > targets.yaml <<EOF
targets:
- clusterName: foo
EOF

3. Convert the Longhorn Helm chart Fleet to a Bundle resource. For more information,
see Convert a Helm Chart into a Bundle (https://fleet.rancher.io/bundle-add#convert-a-helm-

chart-into-a-bundle) :

fleet apply --compress --targets-file=targets.yaml -n fleet-default -o - longhorn-
bundle > longhorn-bundle.yaml

4. Navigate to the Longhorn CRD Chart eet located under fleets/day2/chart-tem-
plates/longhorn/longhorn-crd:

cd fleets/day2/chart-templates/longhorn/longhorn-crd

5. Create a targets.yaml le that will instruct Fleet to which clusters it should deploy the
Helm chart. In this case, we will deploy to a single downstream cluster. For information on
how to map more complex targets, see Mapping to Downstream Clusters (https://fleet.ranch-

er.io/gitrepo-targets) :

cat > targets.yaml <<EOF
targets:
- clusterName: foo
EOF

313 Upgrade procedure

https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets

6. Convert the Longhorn CRD Helm chart Fleet to a Bundle resource. For more information,
see Convert a Helm Chart into a Bundle (https://fleet.rancher.io/bundle-add#convert-a-helm-

chart-into-a-bundle) :

fleet apply --compress --targets-file=targets.yaml -n fleet-default -o - longhorn-
crd-bundle > longhorn-crd-bundle.yaml

7. Deploy longhorn-bundle.yaml and longhorn-crd-bundle.yaml to your management
cluster:

kubectl apply -f longhorn-crd-bundle.yaml
kubectl apply -f longhorn-bundle.yaml

Following these steps will ensure that Longhorn is deployed on all of the specified target clusters.

28.4.3.1.3 Managing the deployed Helm chart

Once deployed with Fleet, for Helm chart upgrades, see Section 28.4.3.2, “I would like to upgrade

a Fleet managed Helm chart”.

28.4.3.2 I would like to upgrade a Fleet managed Helm chart

1. Determine the version to which you need to upgrade your chart so that it is compatible
with the desired Edge release. Helm chart version per Edge release can be viewed from
the release notes (Section 36.1, “Abstract”).

2. In your Fleet monitored Git repository, edit the Helm chart’s fleet.yaml le with the
correct chart version and repository from the release notes (Section 36.1, “Abstract”).

3. After committing and pushing the changes to your repository, this will trigger an upgrade
of the desired Helm chart

28.4.3.3 I would like to upgrade an EIB deployed Helm chart

EIB deploys Helm charts by creating a HelmChart resource and utilizing the helm-controller
introduced by the RKE2 (https://docs.rke2.io/helm) /K3s (https://docs.k3s.io/helm) Helm inte-
gration feature.

314 Upgrade procedure

https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://docs.rke2.io/helm
https://docs.k3s.io/helm

To ensure that an EIB deployed Helm chart is successfully upgraded, users need to do an upgrade
over the HelmChart resources created for the Helm chart by EIB.

Below you can nd information on:

The general overview (Section 28.4.3.3.1, “Overview”) of the EIB deployed Helm chart upgrade
process.

The necessary upgrade steps (Section 28.4.3.3.2, “Upgrade Steps”) needed for a successful EIB
deployed Helm chart upgrade.

An example (Section 28.4.3.3.3, “Example”) showcasing a Longhorn (https://longhorn.io)

chart upgrade using the explained method.

How to use the upgrade process with a different GitOps tool (Section 28.4.3.3.4, “Helm chart

upgrade using a third-party GitOps tool”).

28.4.3.3.1 Overview

This section is meant to give a high overview of the steps that need to be taken in order to
upgrade one or multiple Helm charts that have been deployed by EIB. For a detailed explanation
of the steps needed for a Helm chart upgrade, see Section 28.4.3.3.2, “Upgrade Steps”.

315 Upgrade procedure

https://longhorn.io

FIGURE 28.3: HELM CHART UPGRADE WORKFLOW

316 Upgrade procedure

1. The workflow begins with the user pulling (https://helm.sh/docs/helm/helm_pull/) the new
Helm chart archive(s) that he wishes to upgrade his chart(s) to.

2. The archive(s) should then be placed in a directory that will be processed by the gener-
ate-chart-upgrade-data.sh script.

3. The user then proceeds to execute the generate-chart-upgrade-data.sh script which
will generate a Kubernetes Secret (https://kubernetes.io/docs/concepts/configuration/se-

cret/) YAML le for each Helm chart archive in the provided archive directory. These
secrets will be automatically placed under the Fleet that will be used to upgrade the Helm
charts. This is further explained in the upgrade steps (Section 28.4.3.3.2, “Upgrade Steps”)
section.

4. After the script finishes successfully, the user should continue to the configuration and
deployment of either a Bundle or a GitRepo resource that will ship all the needed K8s
resources to the target clusters.

a. The resource is deployed on the management cluster under the fleet-default
namespace.

5. Fleet (Chapter 6, Fleet) detects the deployed resource, parses its data and deploys its re-
sources to the specified target clusters. The most notable resources that are deployed are:

a. eib-charts-upgrader - a Job that deploys the Chart Upgrade Pod. The eib-
charts-upgrader-script as well as all helm chart upgrade data secrets are
mounted inside of the Chart Upgrade Pod.

b. eib-charts-upgrader-script - a Secret shipping the script that will be used by the
Chart Upgrade Pod to patch an existing HelmChart resource.

c. Helm chart upgrade data secrets - Secret YAML les created by the gener-
ate-chart-upgrade-data.sh script based on the user provided data. Secret YAML
les should not be edited.

317 Upgrade procedure

https://helm.sh/docs/helm/helm_pull/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/

6. Once the Chart Upgrade Pod has been deployed, the script from the eib-charts-up-
grader-script secret is executed, which does the following:

a. Process all the Helm chart upgrade data provided by the other secrets.

b. Check if there is a HelmChart resource for each of the provided chart upgrade data.

c. Proceed to patch the HelmChart resource with the data provided from the secret for
the corresponding Helm chart.

7. RKE2/K3s helm-controller constantly monitors for edits over the existing HelmChart re-
source. It detects the patch of the HelmChart, reconciles the changes and then proceeds to
upgrade the chart behind the HelmChart resource.

28.4.3.3.2 Upgrade Steps

1. Clone the suse-edge/fleet-examples (https://github.com/suse-edge/fleet-examples) reposi-
tory from the Edge release tag (https://github.com/suse-edge/fleet-examples/releases) that
you wish to use.

2. Create a directory in which you will store the pulled Helm chart archive(s).

mkdir archives

3. Inside of the newly created archive directory, pull (https://helm.sh/docs/helm/helm_pull/)

the Helm chart archive(s) that you wish to upgrade to:

cd archives
helm pull [chart URL | repo/chartname]

Alternatively if you want to pull a specific version:
helm pull [chart URL | repo/chartname] --version 0.0.0

4. From the desired release tag (https://github.com/suse-edge/fleet-examples/releases)

download the generate-chart-upgrade-data.sh script.

5. Execute the generate-chart-upgrade-data.sh script:

Important
Users should not make any changes over what the generate-chart-upgrade-da-
ta.sh script generates.

318 Upgrade procedure

https://github.com/suse-edge/fleet-examples
https://github.com/suse-edge/fleet-examples/releases
https://helm.sh/docs/helm/helm_pull/
https://github.com/suse-edge/fleet-examples/releases

chmod +x ./generate-chart-upgrade-data.sh

./generate-chart-upgrade-data.sh --archive-dir /foo/bar/archives/ --fleet-path /foo/
bar/fleet-examples/fleets/day2/eib-charts-upgrader

The script will go through the following logic:

a. Validate that the user has provided --fleet-path points to a valid Fleet that can
initiate a Helm chart upgrade.

b. Process all Helm chart archives from the user-created archives dir (e.g. /foo/bar/
archives/).

c. For each Helm chart archive create a Kubernetes Secret YAML resource. This re-
source will hold:

i. The name of the HelmChart resource that needs to be patched.

ii. The new version for the HelmChart resource.

iii. The base64 encoded Helm chart archive that will be used to replace the Helm-
Chart’s currently running configuration.

319 Upgrade procedure

d. Each Kubernetes Secret YAML resource will be transferred to the base/secrets
directory inside of the path to the eib-charts-upgrader Fleet that was given under
--fleet-path.

e. Furthermore the generate-chart-upgrade-data.sh script ensures that the secrets
that it moved will be picked up and used in the Helm chart upgrade logic. It does
that by:

i. Editing the base/secrets/kustomization.yaml le to include the newly
added resources.

ii. Edit the base/patches/job-patch.yaml le to include the newly added se-
crets to the mount configurations.

6. After a successful generate-chart-upgrade-data.sh run you should have the changes
inside of the following directories of the suse-edge/fleet-examples repository:

a. fleets/day2/eib-charts-upgrader/base/patches

b. fleets/day2/eib-charts-upgrader/base/secrets

The steps below depend on the environment that you are running:

1. For an environment that supports GitOps (e.g. is non air-gapped, or is air-gapped, but
allows for local Git server support):

a. Copy the fleets/day2/eib-charts-upgrader Fleet to the repository that you will
use for GitOps. Make sure that the Fleet includes the changes that have been made
by the generate-chart-upgrade-data.sh script.

b. Configure a GitRepo resource that will be used to ship all the resources of the eib-
charts-upgrader Fleet.

320 Upgrade procedure

i. For GitRepo configuration and deployment through the Rancher UI, see Access-

ing Fleet in the Rancher UI (https://ranchermanager.docs.rancher.com/v2.8/inte-

grations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui) .

ii. For GitRepo manual configuration and deployment, see Creating a Deployment

(https://fleet.rancher.io/tut-deployment) .

2. For an environment that does not support GitOps (e.g. is air-gapped and does not allow
local Git server usage):

a. Download the fleet-cli binary from the rancher/fleet releases (https://

github.com/rancher/fleet/releases) page. For Mac users, there is a Homebrew For-
mulae that can be used - fleet-cli (https://formulae.brew.sh/formula/fleet-cli) .

b. Navigate to the eib-charts-upgrader Fleet:

cd /foo/bar/fleet-examples/fleets/day2/eib-charts-upgrader

c. Create a targets.yaml le that will instruct Fleet where to deploy your resources:

cat > targets.yaml <<EOF
targets:
- clusterSelector: {} # Change this with your target data
EOF

For information on how to map target clusters, see the upstream documentation

(https://fleet.rancher.io/gitrepo-targets) .

d. Use the fleet-cli to convert the Fleet to a Bundle resource:

fleet apply --compress --targets-file=targets.yaml -n fleet-default -o - eib-
charts-upgrade > bundle.yaml

This will create a Bundle (bundle.yaml) that will hold all the templated resource
from the eib-charts-upgrader Fleet.
For more information regarding the fleet apply command, see fleet apply (https://

fleet.rancher.io/cli/fleet-cli/fleet_apply) .

321 Upgrade procedure

https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://ranchermanager.docs.rancher.com/v2.8/integrations-in-rancher/fleet/overview#accessing-fleet-in-the-rancher-ui
https://fleet.rancher.io/tut-deployment
https://fleet.rancher.io/tut-deployment
https://github.com/rancher/fleet/releases
https://github.com/rancher/fleet/releases
https://formulae.brew.sh/formula/fleet-cli
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/gitrepo-targets
https://fleet.rancher.io/cli/fleet-cli/fleet_apply
https://fleet.rancher.io/cli/fleet-cli/fleet_apply

For more information regarding converting Fleets to Bundles, see Convert a Helm

Chart into a Bundle (https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-

bundle) .

e. Deploy the Bundle. This can be done in one of two ways:

i. Through Rancher’s UI - Navigate to Continuous Delivery → Advanced →
Bundles → Create from YAML and either paste the bundle.yaml contents, or
click the Read from File option and pass the le itself.

ii. Manually - Deploy the bundle.yaml le manually inside of your management
cluster.

Executing these steps will result in a successfully deployed GitRepo/Bundle resource. The re-
source will be picked up by Fleet and its contents will be deployed onto the target clusters that
the user has specified in the previous steps. For an overview of the process, refer to the overview
(Section 28.4.3.3.1, “Overview”) section.

For information on how to track the upgrade process, you can refer to the Example (Sec-

tion 28.4.3.3.3, “Example”) section of this documentation.

Important
Once the chart upgrade has been successfully verified, remove the Bundle/GitRepo re-
source.

This will remove the no longer necessary upgrade resources from your downstream clus-
ter, ensuring that no future version clashes might occur.

28.4.3.3.3 Example

Note
The example below illustrates how to do an upgrade of an EIB deployed Helm chart from
one version to another. The versions in the example should not be treated as version
recommendations. Version recommendations for a specific Edge release, should be taken
from the release notes (Section 36.1, “Abstract”).

322 Upgrade procedure

https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle
https://fleet.rancher.io/bundle-add#convert-a-helm-chart-into-a-bundle

Use-case:

A cluster named doc-example is running Ranchers' Longhorn (https://longhorn.io)

103.3.0+up1.6.1 version.

The cluster has been deployed through EIB, using the following image definition snippet:

kubernetes:
 helm:
 charts:
 - name: longhorn-crd
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 version: 103.3.0+up1.6.1
 - name: longhorn
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 version: 103.3.0+up1.6.1
 repositories:
 - name: rancher-charts
 url: https://charts.rancher.io/
...

323 Upgrade procedure

https://longhorn.io

FIGURE 28.4: DOC-EXAMPLE INSTALLED LONGHORN VERSION

Longhorn needs to be upgraded to a version that is compatible with the Edge 3.1 release.
Meaning it needs to be upgraded to 104.2.0+up1.7.1.

It is assumed that the management cluster in charge of managing the doc-example cluster
is air-gapped, without support for a local Git server and has a working Rancher setup.

324 Upgrade procedure

Follow the Upgrade Steps (Section 28.4.3.3.2, “Upgrade Steps”):

1. Clone the suse-edge/fleet-example repository from the release-3.1.1 tag.

git clone -b release-3.1.1 https://github.com/suse-edge/fleet-examples.git

2. Create a directory where the Longhorn upgrade archive will be stored.

mkdir archives

3. Pull the desired Longhorn chart archive version:

First add the Rancher Helm chart repository
helm repo add rancher-charts https://charts.rancher.io/

Pull the Longhorn 1.7.1 CRD archive
helm pull rancher-charts/longhorn-crd --version 104.2.0+up1.7.1

Pull the Longhorn 1.7.1 chart archive
helm pull rancher-charts/longhorn --version 104.2.0+up1.7.1

4. Outside of the archives directory, download the generate-chart-upgrade-data.sh
script from the release-3.1.1 release tag.

5. Directory setup should look similar to:

.
├── archives
| ├── longhorn-104.2.0+up1.7.1.tgz
│ └── longhorn-crd-104.2.0+up1.7.1.tgz
├── fleet-examples
...
│ ├── fleets
│ │ ├── day2
| | | ├── ...
│ │ │ ├── eib-charts-upgrader
│ │ │ │ ├── base
│ │ │ │ │ ├── job.yaml
│ │ │ │ │ ├── kustomization.yaml
│ │ │ │ │ ├── patches
│ │ │ │ │ │ └── job-patch.yaml
│ │ │ │ │ ├── rbac
│ │ │ │ │ │ ├── cluster-role-binding.yaml
│ │ │ │ │ │ ├── cluster-role.yaml
│ │ │ │ │ │ ├── kustomization.yaml
│ │ │ │ │ │ └── sa.yaml

325 Upgrade procedure

│ │ │ │ │ └── secrets
│ │ │ │ │ ├── eib-charts-upgrader-script.yaml
│ │ │ │ │ └── kustomization.yaml
│ │ │ │ ├── fleet.yaml
│ │ │ │ └── kustomization.yaml
│ │ │ └── ...
│ └── ...
└── generate-chart-upgrade-data.sh

6. Execute the generate-chart-upgrade-data.sh script:

First make the script executable
chmod +x ./generate-chart-upgrade-data.sh

Then execute the script
./generate-chart-upgrade-data.sh --archive-dir ./archives --fleet-path ./fleet-
examples/fleets/day2/eib-charts-upgrader

The directory structure after the script execution should look similar to:

.
├── archives
| ├── longhorn-104.2.0+up1.7.1.tgz
│ └── longhorn-crd-104.2.0+up1.7.1.tgz
├── fleet-examples
...
│ ├── fleets
│ │ ├── day2
│ │ │ ├── ...
│ │ │ ├── eib-charts-upgrader
│ │ │ │ ├── base
│ │ │ │ │ ├── job.yaml
│ │ │ │ │ ├── kustomization.yaml
│ │ │ │ │ ├── patches
│ │ │ │ │ │ └── job-patch.yaml
│ │ │ │ │ ├── rbac
│ │ │ │ │ │ ├── cluster-role-binding.yaml
│ │ │ │ │ │ ├── cluster-role.yaml
│ │ │ │ │ │ ├── kustomization.yaml
│ │ │ │ │ │ └── sa.yaml
│ │ │ │ │ └── secrets
│ │ │ │ │ ├── eib-charts-upgrader-script.yaml
│ │ │ │ │ ├── kustomization.yaml
│ │ │ │ │ ├── longhorn-104-2-0-up1-7-1.yaml <- secret created by the
 generate-chart-upgrade-data.sh script
│ │ │ │ │ └── longhorn-crd-104-2-0-up1-7-1.yaml <- secret created by
 the generate-chart-upgrade-data.sh script

326 Upgrade procedure

│ │ │ │ ├── fleet.yaml
│ │ │ │ └── kustomization.yaml
│ │ │ └── ...
│ └── ...
└── generate-chart-upgrade-data.sh

The les changed in git should look like this:

FIGURE 28.5: CHANGES OVER FLEET-EXAMPLES MADE BY GENERATE-CHART-UPGRADE-DATA.SH

7. Since the management cluster does not support for a GitOps workflow, a Bundle needs
to be created for the eib-charts-upgrader Fleet:

a. First, navigate to the Fleet itself:

cd ./fleet-examples/fleets/day2/eib-charts-upgrader

b. Then create a targets.yaml le targeting the doc-example cluster:

cat > targets.yaml <<EOF
targets:
- clusterName: doc-example
EOF

327 Upgrade procedure

c. Then use the fleet-cli binary to convert the Fleet to a Bundle:

fleet apply --compress --targets-file=targets.yaml -n fleet-default -o - eib-
charts-upgrade > bundle.yaml

d. Now, transfer the bundle.yaml on your management cluster machine.

328 Upgrade procedure

8. Since the management cluster is running Rancher, deploy the Bundle through the Ranch-
er UI:

FIGURE 28.6: DEPLOY BUNDLE THROUGH RANCHER UI

329 Upgrade procedure

From here, select Read from File and nd the bundle.yaml le on your system.

330 Upgrade procedure

This will auto-populate the Bundle inside of Rancher’s UI:

FIGURE 28.7: AUTO-POPULATED BUNDLE SNIPPET

331 Upgrade procedure

Select Create.

9. After a successful deployment, your Bundle would look similar to:

FIGURE 28.8: SUCCESSFULLY DEPLOYED BUNDLE

332 Upgrade procedure

After the successful deployment of the Bundle, to monitor the upgrade process:

1. First, verify the logs of the Upgrade Pod:

FIGURE 28.9: VIEW THE UPGRADE POD LOGS

2. Now verify the logs of the Pod created for the upgrade by the helm-controller:

a. The Pod name will be with the following template - helm-install-longhorn-<ran-
dom-suffix>

b. The Pod will be in the namespace where the HelmChart resource was deployed. In
our case this is default.

333 Upgrade procedure

FIGURE 28.10: LOGS FOR SUCCESSFULLY UPGRADED LONGHORN CHART

334 Upgrade procedure

3. Check that the HelmChart version has been bumped:

FIGURE 28.11: BUMPED LONGHORN VERSION

4. Finally check that the Longhorn Pods are running:

FIGURE 28.12: EXAMPLE FOR VALIDATING THE INSTANCE-MANAGER POD

335 Upgrade procedure

After making the above validations, it is safe to assume that the Longhorn Helm chart has been
upgraded from 103.3.0+up1.6.1 to 104.2.0+up1.7.1.

28.4.3.3.4 Helm chart upgrade using a third-party GitOps tool

There might be use-cases where users would like to use this upgrade procedure with a GitOps
workflow other than Fleet (e.g. Flux).

To produce the resources needed for the upgrade procedure, you can use the generate-chart-
upgrade-data.sh script to populate the eib-charts-upgrader Fleet with the user provided
data. For more information on how to do this, see the upgrade steps (Section 28.4.3.3.2, “Upgrade

Steps”).

After you have the full setup, you can use kustomize (https://kustomize.io) to generate a full
working solution that you can deploy in your cluster:

cd /foo/bar/fleets/day2/eib-charts-upgrader

kustomize build .

If you want to include the solution to your GitOps workflow, you can remove the fleet.yaml
le and use what is left as a valid Kustomize setup. Just do not forget to rst run the gener-
ate-chart-upgrade-data.sh script, so that it can populate the Kustomize setup with the data
for the Helm charts that you wish to upgrade to.

To understand how this workflow is intended to be used, it can be beneficial to look at the
overview (Section 28.4.3.3.1, “Overview”) and upgrade steps (Section 28.4.3.3.2, “Upgrade Steps”) sec-
tions as well.

336 Upgrade procedure

https://kustomize.io

VI Product Documentation

29 SUSE Adaptive Telco Infrastructure Platform (ATIP) 338

30 Concept & Architecture 339

31 Requirements & Assumptions 346

32 Setting up the management cluster 351

33 Telco features configuration 382

34 Fully automated directed network provisioning 412

35 Lifecycle actions 466

Find the ATIP documentation here

29 SUSE Adaptive Telco Infrastructure Platform (ATIP)

SUSE Adaptive Telco Infrastructure Platform (ATIP) is a Telco-optimized edge computing plat-
form that enables telecom companies to innovate and accelerate the modernization of their
networks.

ATIP is a complete Telco cloud stack for hosting CNFs such as 5G Packet Core and Cloud RAN.

Automates zero-touch rollout and lifecycle management of complex edge stack configura-
tions at Telco scale.

Continuously assures quality on Telco-grade hardware, using Telco-specific configurations
and workloads.

Consists of components that are purpose-built for the edge and hence have smaller footprint
and higher performance per Watt.

Maintains a flexible platform strategy with vendor-neutral APIs and 100% open source.

338

30 Concept & Architecture

SUSE ATIP is a platform designed for hosting modern, cloud native, Telco applications at scale
from core to edge.

This page explains the architecture and components used in ATIP. Knowledge of this helps
deploy and use ATIP.

30.1 ATIP Architecture
The following diagram shows the high-level architecture of ATIP:

339 ATIP Architecture

30.2 Components

There are two different blocks, the management stack and the runtime stack:

Management stack: This is the part of ATIP that is used to manage the provision and
lifecycle of the runtime stacks. It includes the following components:

Multi-cluster management in public and private cloud environments with Rancher
(Chapter 4, Rancher)

Bare-metal support with Metal3 (Chapter 8, Metal3), MetalLB (Chapter 17, MetalLB) and
CAPI (Cluster API) infrastructure providers

Comprehensive tenant isolation and IDP (Identity Provider) integrations

Large marketplace of third-party integrations and extensions

Vendor-neutral API and rich ecosystem of providers

Control the SLE Micro transactional updates

GitOps Engine for managing the lifecycle of the clusters using Git repositories with
Fleet (Chapter 6, Fleet)

Runtime stack: This is the part of ATIP that is used to run the workloads.

Kubernetes with secure and lightweight distributions like K3s (Chapter 13, K3s) and
RKE2 (Chapter 14, RKE2) (RKE2 is hardened, certified and optimized for government
use and regulated industries).

NeuVector (Chapter 16, NeuVector) to enable security features like image vulnerability
scanning, deep packet inspection and automatic intra-cluster traffic control.

Block Storage with Longhorn (Chapter 15, Longhorn) to enable a simple and easy way
to use a cloud native storage solution.

Optimized Operating System with SLE Micro (Chapter 7, SLE Micro) to enable a secure,
lightweight and immutable (transactional le system) OS for running containers.
SLE Micro is available on aarch64 and x86_64 architectures, and it also supports
Real-Time Kernel for Telco and edge use cases.

340 Components

30.3 Example deployment flows
The following are high-level examples of workflows to understand the relationship between the
management and the runtime components.

Directed network provisioning is the workflow that enables the deployment of a new down-
stream cluster with all the components preconfigured and ready to run workloads with no man-
ual intervention.

30.3.1 Example 1: Deploying a new management cluster with all
components installed

Using the Edge Image Builder (Chapter 9, Edge Image Builder) to create a new ISO image with
the management stack included. You can then use this ISO image to install a new management
cluster on VMs or bare-metal.

Note
For more information about how to deploy a new management cluster, see the ATIP
Management Cluster guide (Chapter 32, Setting up the management cluster).

Note
For more information about how to use the Edge Image Builder, see the Edge Image
Builder guide (Chapter 3, Standalone clusters with Edge Image Builder).

341 Example deployment flows

30.3.2 Example 2: Deploying a single-node downstream cluster
with Telco profiles to enable it to run Telco workloads

Once we have the management cluster up and running, we can use it to deploy a single-node
downstream cluster with all Telco capabilities enabled and configured using the directed net-
work provisioning workflow.

The following diagram shows the high-level workflow to deploy it:

342

Example 2: Deploying a single-node downstream cluster with Telco profiles to enable it to run Telco work-

loads

Note
For more information about how to deploy a downstream cluster, see the ATIP Automated
Provisioning guide. (Chapter 34, Fully automated directed network provisioning)

Note
For more information about Telco features, see the ATIP Telco Features guide. (Chapter 33,

Telco features configuration)

30.3.3 Example 3: Deploying a high availability downstream cluster
using MetalLB as a Load Balancer

Once we have the management cluster up and running, we can use it to deploy a high availability
downstream cluster with MetalLB as a load balancer using the directed network provisioning
workflow.

343 Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

The following diagram shows the high-level workflow to deploy it:

Note
For more information about how to deploy a downstream cluster, see the ATIP Automated
Provisioning guide. (Chapter 34, Fully automated directed network provisioning)

344 Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

Note
For more information about MetalLB, see here: (Chapter 17, MetalLB)

345 Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

31 Requirements & Assumptions

31.1 Hardware

The hardware requirements for the ATIP nodes are based on the following components:

Management cluster: The management cluster contains components like SLE Micro,
RKE2, Rancher Prime, Metal3, and it is used to manage several downstream clusters. De-
pending on the number of downstream clusters to be managed, the hardware requirements
for the server could vary.

Minimum requirements for the server (VM or bare-metal) are:

RAM: 8 GB Minimum (we recommend at least 16 GB)

CPU: 2 Minimum (we recommend at least 4 CPU)

Downstream clusters: The downstream clusters are the clusters deployed on the ATIP
nodes to run Telco workloads. Specific requirements are needed to enable certain Telco
capabilities like SR-IOV, CPU Performance Optimization, etc.

SR-IOV: to attach VFs (Virtual Functions) in pass-through mode to CNFs/VNFs, the
NIC must support SR-IOV and VT-d/AMD-Vi be enabled in the BIOS.

CPU Processors: To run specific Telco workloads, the CPU Processor model should be
adapted to enable most of the features available in this reference table (Chapter 33,

Telco features configuration).

Firmware requirements for installing with virtual media:

Server Hardware BMC Model Management

Dell hardware 15th Generation iDRAC9

Supermicro hardware 01.00.25 Supermicro SMC - redfish

HPE hardware 1.50 iLO6

346 Hardware

31.2 Network
As a reference for the network architecture, the following diagram shows a typical network
architecture for a Telco environment:

347 Network

The network architecture is based on the following components:

Management network: This network is used for the management of the ATIP nodes. It is
used for the out-of-band management. Usually, this network is also connected to a separate
management switch, but it can be connected to the same service switch using VLANs to
isolate the traffic.

Control-plane network: This network is used for the communication between the ATIP
nodes and the services that are running on them. This network is also used for the commu-
nication between the ATIP nodes and the external services, like the DHCP or DNS servers.
In some cases, for connected environments, the switch/router can handle traffic through
the Internet.

Other networks: In some cases, the ATIP nodes could be connected to other networks for
specific customer purposes.

Note
To use the directed network provisioning workflow, the management cluster must have
network connectivity to the downstream cluster server Baseboard Management Controller
(BMC) so that host preparation and provisioning can be automated.

31.3 Services (DHCP, DNS, etc.)
Some external services like DHCP, DNS, etc. could be required depending on the kind of environ-
ment where they are deployed:

Connected environment: In this case, the ATIP nodes will be connected to the Internet
(via routing L3 protocols) and the external services will be provided by the customer.

Disconnected / air-gap environment: In this case, the ATIP nodes will not have Internet
IP connectivity and additional services will be required to locally mirror content required
by the ATIP directed network provisioning workflow.

File server: A le server is used to store the OS images to be provisioned on the ATIP
nodes during the directed network provisioning workflow. The metal3 Helm chart can
deploy a media server to store the OS images — check the following section (Note), but it
is also possible to use an existing local webserver.

348 Services (DHCP, DNS, etc.)

31.4 Disabling systemd services

For Telco workloads, it is important to disable or configure properly some of the services running
on the nodes to avoid any impact on the workload performance running on the nodes (latency).

rebootmgr is a service which allows to configure a strategy for reboot when the system
has pending updates. For Telco workloads, it is really important to disable or configure
properly the rebootmgr service to avoid the reboot of the nodes in case of updates sched-
uled by the system, to avoid any impact on the services running on the nodes.

Note
For more information about rebootmgr, see rebootmgr GitHub repository (https://

github.com/SUSE/rebootmgr) .

Verify the strategy being used by running:

cat /etc/rebootmgr.conf
[rebootmgr]
window-start=03:30
window-duration=1h30m
strategy=best-effort
lock-group=default

and you could disable it by running:

sed -i 's/strategy=best-effort/strategy=off/g' /etc/rebootmgr.conf

or using the rebootmgrctl command:

rebootmgrctl strategy off

Note
This configuration to set the rebootmgr strategy can be automated using the directed
network provisioning workflow. For more information, check the ATIP Automated Pro-
visioning documentation (Chapter 34, Fully automated directed network provisioning).

349 Disabling systemd services

https://github.com/SUSE/rebootmgr
https://github.com/SUSE/rebootmgr

transactional-update is a service that allows automatic updates controlled by the sys-
tem. For Telco workloads, it is important to disable the automatic updates to avoid any
impact on the services running on the nodes.

To disable the automatic updates, you can run:

systemctl --now disable transactional-update.timer
systemctl --now disable transactional-update-cleanup.timer

fstrim is a service that allows to trim the filesystems automatically every week. For Telco
workloads, it is important to disable the automatic trim to avoid any impact on the services
running on the nodes.

To disable the automatic trim, you can run:

systemctl --now disable fstrim.timer

350 Disabling systemd services

32 Setting up the management cluster

32.1 Introduction

The management cluster is the part of ATIP that is used to manage the provision and lifecycle
of the runtime stacks. From a technical point of view, the management cluster contains the
following components:

SUSE Linux Enterprise Micro as the OS. Depending on the use case, some configurations
like networking, storage, users and kernel arguments can be customized.

RKE2 as the Kubernetes cluster. Depending on the use case, it can be configured to use
specific CNI plugins, such as Multus, Cilium, etc.

Rancher as the management platform to manage the lifecycle of the clusters.

Metal3 as the component to manage the lifecycle of the bare-metal nodes.

CAPI as the component to manage the lifecycle of the Kubernetes clusters (downstream
clusters). With ATIP, also the RKE2 CAPI Provider is used to manage the lifecycle of the
RKE2 clusters (downstream clusters).

With all components mentioned above, the management cluster can manage the lifecycle of
downstream clusters, using a declarative approach to manage the infrastructure and applica-
tions.

Note
For more information about SUSE Linux Enterprise Micro, see: SLE Micro (Chapter 7,

SLE Micro)

For more information about RKE2, see: RKE2 (Chapter 14, RKE2)

For more information about Rancher, see: Rancher (Chapter 4, Rancher)

For more information about Metal3, see: Metal3 (Chapter 8, Metal3)

351 Introduction

32.2 Steps to set up the management cluster

The following steps are necessary to set up the management cluster (using a single node):

The following are the main steps to set up the management cluster using a declarative approach:

1. Image preparation for connected environments (Section 32.3, “Image preparation for

connected environments”): The rst step is to prepare the manifests and les with all the
necessary configurations to be used in connected environments.

352 Steps to set up the management cluster

Directory structure for connected environments (Section 32.3.1, “Directory structure”):
This step creates a directory structure to be used by Edge Image Builder to store the
configuration les and the image itself.

Management cluster definition le (Section 32.3.2, “Management cluster definition file”):
The mgmt-cluster.yaml le is the main definition le for the management cluster.
It contains the following information about the image to be created:

Image Information: The information related to the image to be created using
the base image.

Operating system: The operating system configurations to be used in the image.

Kubernetes: Helm charts and repositories, kubernetes version, network config-
uration, and the nodes to be used in the cluster.

Custom folder (Section 32.3.3, “Custom folder”): The custom folder contains the config-
uration les and scripts to be used by Edge Image Builder to deploy a fully functional
management cluster.

Files: Contains the configuration les to be used by the management cluster.

Scripts: Contains the scripts to be used by the management cluster.

Kubernetes folder (Section 32.3.4, “Kubernetes folder”): The kubernetes folder contains
the configuration les to be used by the management cluster.

Manifests: Contains the manifests to be used by the management cluster.

Helm: Contains the Helm values les to be used by the management cluster.

Config: Contains the configuration les to be used by the management cluster.

Network folder (Section 32.3.5, “Networking folder”): The network folder contains the
network configuration les to be used by the management cluster nodes.

2. Image preparation for air-gap environments (Section 32.4, “Image preparation for air-

gap environments”): The step is to show the differences to prepare the manifests and les
to be used in an air-gap scenario.

353 Steps to set up the management cluster

Modifications in the definition le (Section 32.4.1, “Modifications in the definition file”):
The mgmt-cluster.yaml le must be modified to include the embeddedArtifac-
tRegistry section with the images eld set to all container images to be included
into the EIB output image.

Modifications in the custom folder (Section 32.4.2, “Modifications in the custom folder”):
The custom folder must be modified to include the resources needed to run the man-
agement cluster in an air-gap environment.

Register script: The custom/scripts/99-register.sh script must be removed
when you use an air-gap environment.

Modifications in the helm values folder (Section 32.4.3, “Modifications in the helm val-

ues folder”): The helm/values folder must be modified to include the configuration
needed to run the management cluster in an air-gap environment.

3. Image creation (Section 32.5, “Image creation”): This step covers the creation of the image
using the Edge Image Builder tool (for both, connected and air-gap scenarios). Check the
prerequisites (Chapter 9, Edge Image Builder) to run the Edge Image Builder tool on your
system.

4. Management Cluster Provision (Section 32.6, “Provision the management cluster”): This
step covers the provisioning of the management cluster using the image created in the
previous step (for both, connected and air-gap scenarios). This step can be done using a
laptop, server, VM or any other x86_64 system with a USB port.

Note
For more information about Edge Image Builder, see Edge Image Builder (Chapter 9, Edge

Image Builder) and Edge Image Builder Quick Start (Chapter 3, Standalone clusters with Edge

Image Builder).

32.3 Image preparation for connected environments

Edge Image Builder is used to create the image for the management cluster, in this document
we cover the minimal configuration necessary to set up the management cluster.

354 Image preparation for connected environments

Edge Image Builder runs inside a container, so a container runtime is required such as Podman

(https://podman.io) or Rancher Desktop (https://rancherdesktop.io) . For this guide, we assume
podman is available.

Also, as a prerequisite to deploy a highly available management cluster, you need to reserve
three IPs in your network: - apiVIP for the API VIP Address (used to access the Kubernetes API
server). - ingressVIP for the Ingress VIP Address (consumed, for example, by the Rancher UI).
- metal3VIP for the Metal3 VIP Address.

32.3.1 Directory structure

When running EIB, a directory is mounted from the host, so the rst thing to do is to create a
directory structure to be used by EIB to store the configuration les and the image itself. This
directory has the following structure:

eib
├── mgmt-cluster.yaml
├── network
│ └── mgmt-cluster-node1.yaml
├── kubernetes
│ ├── manifests
│ │ ├── rke2-ingress-config.yaml
│ │ ├── neuvector-namespace.yaml
│ │ ├── ingress-l2-adv.yaml
│ │ └── ingress-ippool.yaml
│ ├── helm
│ │ └── values
│ │ ├── rancher.yaml
│ │ ├── neuvector.yaml
│ │ ├── metal3.yaml
│ │ └── certmanager.yaml
│ └── config
│ └── server.yaml
├── custom
│ ├── scripts
│ │ ├── 99-register.sh
│ │ ├── 99-mgmt-setup.sh
│ │ └── 99-alias.sh
│ └── files
│ ├── rancher.sh
│ ├── mgmt-stack-setup.service
│ ├── metal3.sh
│ └── basic-setup.sh

355 Directory structure

https://podman.io
https://podman.io
https://rancherdesktop.io

└── base-images

Note
The image SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso must be
downloaded from the SUSE Customer Center (https://scc.suse.com/) or the SUSE Down-

load page (https://www.suse.com/download/sle-micro/) , and it must be located under the
base-images folder.

You should check the SHA256 checksum of the image to ensure it has not been tampered
with. The checksum can be found in the same location where the image was downloaded.

An example of the directory structure can be found in the SUSE Edge GitHub repository

under the "telco-examples" folder (https://github.com/suse-edge/atip) .

32.3.2 Management cluster definition file

The mgmt-cluster.yaml le is the main definition le for the management cluster. It contains
the following information:

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
 outputImageName: eib-mgmt-cluster-image.iso
operatingSystem:
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 packages:
 packageList:
 - git
 - jq
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}
kubernetes:
 version: ${KUBERNETES_VERSION}
 helm:
 charts:
 - name: cert-manager
 repositoryName: jetstack

356 Management cluster definition file

https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://github.com/suse-edge/atip
https://github.com/suse-edge/atip

 version: 1.15.3
 targetNamespace: cert-manager
 valuesFile: certmanager.yaml
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd
 version: 104.2.0+up1.7.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn
 version: 104.2.0+up1.7.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: metal3-chart
 version: 0.8.3
 repositoryName: suse-edge-charts
 targetNamespace: metal3-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: metal3.yaml
 - name: rancher-turtles-chart
 version: 0.3.3
 repositoryName: suse-edge-charts
 targetNamespace: rancher-turtles-system
 createNamespace: true
 installationNamespace: kube-system
 - name: neuvector-crd
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: neuvector
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: rancher
 version: 2.9.3
 repositoryName: rancher-prime

357 Management cluster definition file

 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: rancher.yaml
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-charts
 url: https://charts.rancher.io/
 - name: suse-edge-charts
 url: oci://registry.suse.com/edge/3.1
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
 network:
 apiHost: ${API_HOST}
 apiVIP: ${API_VIP}
 nodes:
 - hostname: mgmt-cluster-node1
 initializer: true
 type: server
- hostname: mgmt-cluster-node2
type: server
- hostname: mgmt-cluster-node3
type: server

To explain the elds and values in the mgmt-cluster.yaml definition le, we have divided it
into the following sections.

Image section (definition le):

image:
 imageType: iso
 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
 outputImageName: eib-mgmt-cluster-image.iso

where the baseImage is the original image you downloaded from the SUSE Customer Center or
the SUSE Download page. outputImageName is the name of the new image that will be used to
provision the management cluster.

Operating system section (definition le):

operatingSystem:
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root

358 Management cluster definition file

 encryptedPassword: ${ROOT_PASSWORD}
 packages:
 packageList:
 - jq
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}

where the installDevice is the device to be used to install the operating system, the username
and encryptedPassword are the credentials to be used to access the system, the packageList is
the list of packages to be installed (jq is required internally during the installation process), and
the sccRegistrationCode is the registration code used to get the packages and dependencies
at build time and can be obtained from the SUSE Customer Center. The encrypted password can
be generated using the openssl command as follows:

openssl passwd -6 MyPassword!123

This outputs something similar to:

6UrXB1sAGs46DOiSq$HSwi9GFJLCorm0J53nF2Sq8YEoyINhHcObHzX2R8h13mswUIsMwzx4eUzn/
rRx0QPV4JIb0eWCoNrxGiKH4R31

Kubernetes section (definition le):

kubernetes:
 version: ${KUBERNETES_VERSION}
 helm:
 charts:
 - name: cert-manager
 repositoryName: jetstack
 version: 1.15.3
 targetNamespace: cert-manager
 valuesFile: certmanager.yaml
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd
 version: 104.2.0+up1.7.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn
 version: 104.2.0+up1.7.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: metal3-chart

359 Management cluster definition file

 version: 0.8.3
 repositoryName: suse-edge-charts
 targetNamespace: metal3-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: metal3.yaml
 - name: rancher-turtles-chart
 version: 0.3.3
 repositoryName: suse-edge-charts
 targetNamespace: rancher-turtles-system
 createNamespace: true
 installationNamespace: kube-system
 - name: neuvector-crd
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: neuvector
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: rancher
 version: 2.9.3
 repositoryName: rancher-prime
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: rancher.yaml
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-charts
 url: https://charts.rancher.io/
 - name: suse-edge-charts
 url: oci://registry.suse.com/edge/3.1
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
 network:
 apiHost: ${API_HOST}
 apiVIP: ${API_VIP}
 nodes:
 - hostname: mgmt-cluster-node1

360 Management cluster definition file

 initializer: true
 type: server
- hostname: mgmt-cluster-node2
type: server
- hostname: mgmt-cluster-node3
type: server

where version is the version of Kubernetes to be installed. In our case, we are using an RKE2
cluster, so the version must be minor less than 1.29 to be compatible with Rancher (for example,
v1.30.5+rke2r1).

The helm section contains the list of Helm charts to be installed, the repositories to be used, and
the version configuration for all of them.

The network section contains the configuration for the network, like the apiHost and apiVIP
to be used by the RKE2 component. The apiVIP should be an IP address that is not used in the
network and should not be part of the DHCP pool (in case we use DHCP). Also, when we use
the apiVIP in a multi-node cluster, it is used to access the Kubernetes API server. The apiHost
is the name resolution to apiVIP to be used by the RKE2 component.

The nodes section contains the list of nodes to be used in the cluster. The nodes section contains
the list of nodes to be used in the cluster. In this example, a single-node cluster is being used, but
it can be extended to a multi-node cluster by adding more nodes to the list (by uncommenting
the lines).

Note

The names of the nodes must be unique in the cluster.

Optionally, use the initializer eld to specify the bootstrap host, otherwise it
will be the rst node in the list.

The names of the nodes must be the same as the host names defined in the Network
Folder (Section 32.3.5, “Networking folder”) when network configuration is required.

32.3.3 Custom folder

The custom folder contains the following subfolders:

...
├── custom

361 Custom folder

│ ├── scripts
│ │ ├── 99-register.sh
│ │ ├── 99-mgmt-setup.sh
│ │ └── 99-alias.sh
│ └── files
│ ├── rancher.sh
│ ├── mgmt-stack-setup.service
│ ├── metal3.sh
│ └── basic-setup.sh
...

The custom/files folder contains the configuration les to be used by the management
cluster.

The custom/scripts folder contains the scripts to be used by the management cluster.

The custom/files folder contains the following les:

basic-setup.sh: contains the configuration parameters about the Metal3 version to be
used, as well as the Rancher and MetalLB basic parameters. Only modify this le if you
want to change the versions of the components or the namespaces to be used.

#!/bin/bash
Pre-requisites. Cluster already running
export KUBECTL="/var/lib/rancher/rke2/bin/kubectl"
export KUBECONFIG="/etc/rancher/rke2/rke2.yaml"

##################
METAL3 DETAILS
##################
export METAL3_CHART_TARGETNAMESPACE="metal3-system"

###########
METALLB
###########
export METALLBNAMESPACE="metallb-system"

###########
RANCHER
###########
export RANCHER_CHART_TARGETNAMESPACE="cattle-system"
export RANCHER_FINALPASSWORD="adminadminadmin"

die(){
 echo ${1} 1>&2
 exit ${2}

362 Custom folder

}

metal3.sh: contains the configuration for the Metal3 component to be used (no modifi-
cations needed). In future versions, this script will be replaced to use instead Rancher
Turtles to make it easy.

#!/bin/bash
set -euo pipefail

BASEDIR="$(dirname "$0")"
source ${BASEDIR}/basic-setup.sh

METAL3LOCKNAMESPACE="default"
METAL3LOCKCMNAME="metal3-lock"

trap 'catch $? $LINENO' EXIT

catch() {
 if ["$1" != "0"]; then
 echo "Error $1 occurred on $2"
 ${KUBECTL} delete configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE}
 fi
}

Get or create the lock to run all those steps just in a single node
As the first node is created WAY before the others, this should be enough
TODO: Investigate if leases is better
if [$(${KUBECTL} get cm -n ${METAL3LOCKNAMESPACE} ${METAL3LOCKCMNAME} -o name | wc
 -l) -lt 1]; then
 ${KUBECTL} create configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE} --from-
literal foo=bar
else
 exit 0
fi

Wait for metal3
while ! ${KUBECTL} wait --for condition=ready -n ${METAL3_CHART_TARGETNAMESPACE}
 $(${KUBECTL} get pods -n ${METAL3_CHART_TARGETNAMESPACE} -l app.kubernetes.io/
name=metal3-ironic -o name) --timeout=10s; do sleep 2 ; done

Get the ironic IP
IRONICIP=$(${KUBECTL} get cm -n ${METAL3_CHART_TARGETNAMESPACE} ironic-bmo -o
 jsonpath='{.data.IRONIC_IP}')

If LoadBalancer, use metallb, else it is NodePort

363 Custom folder

if [$(${KUBECTL} get svc -n ${METAL3_CHART_TARGETNAMESPACE} metal3-metal3-ironic -o
 jsonpath='{.spec.type}') == "LoadBalancer"]; then
 # Wait for metallb
 while ! ${KUBECTL} wait --for condition=ready -n ${METALLBNAMESPACE} $(${KUBECTL}
 get pods -n ${METALLBNAMESPACE} -l app.kubernetes.io/component=controller -o name)
 --timeout=10s; do sleep 2 ; done

 # Do not create the ippool if already created
 ${KUBECTL} get ipaddresspool -n ${METALLBNAMESPACE} ironic-ip-pool -o name || cat
 <<-EOF | ${KUBECTL} apply -f -
 apiVersion: metallb.io/v1beta1
 kind: IPAddressPool
 metadata:
 name: ironic-ip-pool
 namespace: ${METALLBNAMESPACE}
 spec:
 addresses:
 - ${IRONICIP}/32
 serviceAllocation:
 priority: 100
 serviceSelectors:
 - matchExpressions:
 - {key: app.kubernetes.io/name, operator: In, values: [metal3-ironic]}
 EOF

 # Same for L2 Advs
 ${KUBECTL} get L2Advertisement -n ${METALLBNAMESPACE} ironic-ip-pool-l2-adv -o
 name || cat <<-EOF | ${KUBECTL} apply -f -
 apiVersion: metallb.io/v1beta1
 kind: L2Advertisement
 metadata:
 name: ironic-ip-pool-l2-adv
 namespace: ${METALLBNAMESPACE}
 spec:
 ipAddressPools:
 - ironic-ip-pool
 EOF
fi

If rancher is deployed
if [$(${KUBECTL} get pods -n ${RANCHER_CHART_TARGETNAMESPACE} -l app=rancher -o
 name | wc -l) -ge 1]; then
 cat <<-EOF | ${KUBECTL} apply -f -
 apiVersion: management.cattle.io/v3
 kind: Feature
 metadata:
 name: embedded-cluster-api

364 Custom folder

 spec:
 value: false
 EOF

 # Disable Rancher webhooks for CAPI
 ${KUBECTL} delete --ignore-not-found=true
 mutatingwebhookconfiguration.admissionregistration.k8s.io mutating-webhook-
configuration
 ${KUBECTL} delete --ignore-not-found=true
 validatingwebhookconfigurations.admissionregistration.k8s.io validating-webhook-
configuration
 ${KUBECTL} wait --for=delete namespace/cattle-provisioning-capi-system --
timeout=300s
fi

Clean up the lock cm

${KUBECTL} delete configmap ${METAL3LOCKCMNAME} -n ${METAL3LOCKNAMESPACE}

rancher.sh: contains the configuration for the Rancher component to be used (no
modifications needed).

#!/bin/bash
set -euo pipefail

BASEDIR="$(dirname "$0")"
source ${BASEDIR}/basic-setup.sh

RANCHERLOCKNAMESPACE="default"
RANCHERLOCKCMNAME="rancher-lock"

if [-z "${RANCHER_FINALPASSWORD}"]; then
 # If there is no final password, then finish the setup right away
 exit 0
fi

trap 'catch $? $LINENO' EXIT

catch() {
 if ["$1" != "0"]; then
 echo "Error $1 occurred on $2"
 ${KUBECTL} delete configmap ${RANCHERLOCKCMNAME} -n ${RANCHERLOCKNAMESPACE}
 fi
}

Get or create the lock to run all those steps just in a single node

365 Custom folder

As the first node is created WAY before the others, this should be enough
TODO: Investigate if leases is better
if [$(${KUBECTL} get cm -n ${RANCHERLOCKNAMESPACE} ${RANCHERLOCKCMNAME} -o
 name | wc -l) -lt 1]; then
 ${KUBECTL} create configmap ${RANCHERLOCKCMNAME} -n ${RANCHERLOCKNAMESPACE}
 --from-literal foo=bar
else
 exit 0
fi

Wait for rancher to be deployed
while ! ${KUBECTL} wait --for condition=ready -n
 ${RANCHER_CHART_TARGETNAMESPACE} $(${KUBECTL} get pods -n
 ${RANCHER_CHART_TARGETNAMESPACE} -l app=rancher -o name) --timeout=10s; do
 sleep 2 ; done
until ${KUBECTL} get ingress -n ${RANCHER_CHART_TARGETNAMESPACE} rancher > /
dev/null 2>&1; do sleep 10; done

RANCHERBOOTSTRAPPASSWORD=$(${KUBECTL} get secret -n
 ${RANCHER_CHART_TARGETNAMESPACE} bootstrap-secret -o
 jsonpath='{.data.bootstrapPassword}' | base64 -d)
RANCHERHOSTNAME=$(${KUBECTL} get ingress -n ${RANCHER_CHART_TARGETNAMESPACE}
 rancher -o jsonpath='{.spec.rules[0].host}')

Skip the whole process if things have been set already
if [-z $(${KUBECTL} get settings.management.cattle.io first-login -
ojsonpath='{.value}')]; then
 # Add the protocol
 RANCHERHOSTNAME="https://${RANCHERHOSTNAME}"
 TOKEN=""
 while [-z "${TOKEN}"]; do
 # Get token
 sleep 2
 TOKEN=$(curl -sk -X POST ${RANCHERHOSTNAME}/v3-public/localProviders/local?
action=login -H 'content-type: application/json' -d "{\"username\":\"admin\",
\"password\":\"${RANCHERBOOTSTRAPPASSWORD}\"}" | jq -r .token)
 done

 # Set password
 curl -sk ${RANCHERHOSTNAME}/v3/users?action=changepassword -H 'content-type:
 application/json' -H "Authorization: Bearer $TOKEN" -d "{\"currentPassword\":
\"${RANCHERBOOTSTRAPPASSWORD}\",\"newPassword\":\"${RANCHER_FINALPASSWORD}\"}"

 # Create a temporary API token (ttl=60 minutes)
 APITOKEN=$(curl -sk ${RANCHERHOSTNAME}/v3/token -H 'content-
type: application/json' -H "Authorization: Bearer ${TOKEN}" -d
 '{"type":"token","description":"automation","ttl":3600000}' | jq -r .token)

366 Custom folder

 curl -sk ${RANCHERHOSTNAME}/v3/settings/server-url -H 'content-type:
 application/json' -H "Authorization: Bearer ${APITOKEN}" -X PUT -d "{\"name\":
\"server-url\",\"value\":\"${RANCHERHOSTNAME}\"}"
 curl -sk ${RANCHERHOSTNAME}/v3/settings/telemetry-opt -X PUT -H 'content-
type: application/json' -H 'accept: application/json' -H "Authorization: Bearer
 ${APITOKEN}" -d '{"value":"out"}'
fi

Clean up the lock cm
${KUBECTL} delete configmap ${RANCHERLOCKCMNAME} -n ${RANCHERLOCKNAMESPACE}

mgmt-stack-setup.service: contains the configuration to create the systemd ser-
vice to run the scripts during the rst boot (no modifications needed).

[Unit]
Description=Setup Management stack components
Wants=network-online.target
It requires rke2 or k3s running, but it will not fail if those services are
 not present
After=network.target network-online.target rke2-server.service k3s.service
At least, the basic-setup.sh one needs to be present
ConditionPathExists=/opt/mgmt/bin/basic-setup.sh

[Service]
User=root
Type=forking
Metal3 can take A LOT to download the IPA image
TimeoutStartSec=1800

ExecStartPre=/bin/sh -c "echo 'Setting up Management components...'"
Scripts are executed in StartPre because Start can only run a single on
ExecStartPre=/opt/mgmt/bin/rancher.sh
ExecStartPre=/opt/mgmt/bin/metal3.sh
ExecStart=/bin/sh -c "echo 'Finished setting up Management components'"
RemainAfterExit=yes
KillMode=process
Disable & delete everything
ExecStartPost=rm -f /opt/mgmt/bin/rancher.sh
ExecStartPost=rm -f /opt/mgmt/bin/metal3.sh
ExecStartPost=rm -f /opt/mgmt/bin/basic-setup.sh
ExecStartPost=/bin/sh -c "systemctl disable mgmt-stack-setup.service"
ExecStartPost=rm -f /etc/systemd/system/mgmt-stack-setup.service

[Install]
WantedBy=multi-user.target

367 Custom folder

The custom/scripts folder contains the following les:

99-alias.sh script: contains the alias to be used by the management cluster to load the
kubeconfig le at rst boot (no modifications needed).

#!/bin/bash
echo "alias k=kubectl" >> /etc/profile.local
echo "alias kubectl=/var/lib/rancher/rke2/bin/kubectl" >> /etc/profile.local
echo "export KUBECONFIG=/etc/rancher/rke2/rke2.yaml" >> /etc/profile.local

99-mgmt-setup.sh script: contains the configuration to copy the scripts during the rst
boot (no modifications needed).

#!/bin/bash

Copy the scripts from combustion to the final location
mkdir -p /opt/mgmt/bin/
for script in basic-setup.sh rancher.sh metal3.sh; do
 cp ${script} /opt/mgmt/bin/
done

Copy the systemd unit file and enable it at boot
cp mgmt-stack-setup.service /etc/systemd/system/mgmt-stack-setup.service
systemctl enable mgmt-stack-setup.service

99-register.sh script: contains the configuration to register the system using the SCC
registration code. The ${SCC_ACCOUNT_EMAIL} and ${SCC_REGISTRATION_CODE} have to
be set properly to register the system with your account.

#!/bin/bash
set -euo pipefail

Registration https://www.suse.com/support/kb/doc/?id=000018564
if ! which SUSEConnect > /dev/null 2>&1; then
 zypper --non-interactive install suseconnect-ng
fi
SUSEConnect --email "${SCC_ACCOUNT_EMAIL}" --url "https://scc.suse.com" --regcode
 "${SCC_REGISTRATION_CODE}"

32.3.4 Kubernetes folder

The kubernetes folder contains the following subfolders:

...

368 Kubernetes folder

├── kubernetes
│ ├── manifests
│ │ ├── rke2-ingress-config.yaml
│ │ ├── neuvector-namespace.yaml
│ │ ├── ingress-l2-adv.yaml
│ │ └── ingress-ippool.yaml
│ ├── helm
│ │ └── values
│ │ ├── rancher.yaml
│ │ ├── neuvector.yaml
│ │ ├── metal3.yaml
│ │ └── certmanager.yaml
│ └── config
│ └── server.yaml
...

The kubernetes/config folder contains the following les:

server.yaml: By default, the CNI plug-in installed by default is Cilium, so you do not
need to create this folder and le. Just in case you need to customize the CNI plug-in,
you can use the server.yaml le under the kubernetes/config folder. It contains the
following information:

cni:
- multus
- cilium

Note
This is an optional le to define certain Kubernetes customization, like the CNI plug-
ins to be used or many options you can check in the official documentation (https://doc-

s.rke2.io/install/configuration) .

The kubernetes/manifests folder contains the following les:

rke2-ingress-config.yaml: contains the configuration to create the Ingress service for
the management cluster (no modifications needed).

apiVersion: helm.cattle.io/v1
kind: HelmChartConfig
metadata:
 name: rke2-ingress-nginx
 namespace: kube-system

369 Kubernetes folder

https://docs.rke2.io/install/configuration
https://docs.rke2.io/install/configuration

spec:
 valuesContent: |-
 controller:
 config:
 use-forwarded-headers: "true"
 enable-real-ip: "true"
 publishService:
 enabled: true
 service:
 enabled: true
 type: LoadBalancer
 externalTrafficPolicy: Local

neuvector-namespace.yaml: contains the configuration to create the NeuVector name-
space (no modifications needed).

apiVersion: v1
kind: Namespace
metadata:
 labels:
 pod-security.kubernetes.io/enforce: privileged
 name: neuvector

ingress-l2-adv.yaml: contains the configuration to create the L2Advertisement for the
MetalLB component (no modifications needed).

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ingress-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - ingress-ippool

ingress-ippool.yaml: contains the configuration to create the IPAddressPool for the
rke2-ingress-nginx component. The ${INGRESS_VIP} has to be set properly to define
the IP address reserved to be used by the rke2-ingress-nginx component.

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: ingress-ippool
 namespace: metallb-system
spec:
 addresses:

370 Kubernetes folder

 - ${INGRESS_VIP}/32
 serviceAllocation:
 priority: 100
 serviceSelectors:
 - matchExpressions:
 - {key: app.kubernetes.io/name, operator: In, values: [rke2-ingress-
nginx]}

The kubernetes/helm/values folder contains the following les:

rancher.yaml: contains the configuration to create the Rancher component. The ${IN-
GRESS_VIP} must be set properly to define the IP address to be consumed by the Rancher
component. The URL to access the Rancher component will be https://rancher-${IN-
GRESS_VIP}.sslip.io.

hostname: rancher-${INGRESS_VIP}.sslip.io
bootstrapPassword: "foobar"
replicas: 1
global.cattle.psp.enabled: "false"

neuvector.yaml: contains the configuration to create the NeuVector component (no mod-
ifications needed).

controller:
 replicas: 1
 ranchersso:
 enabled: true
manager:
 enabled: false
cve:
 scanner:
 enabled: false
 replicas: 1
k3s:
 enabled: true
crdwebhook:
 enabled: false

metal3.yaml: contains the configuration to create the Metal3 component. The ${MET-
AL3_VIP} must be set properly to define the IP address to be consumed by the Metal3
component.

global:
 ironicIP: ${METAL3_VIP}
 enable_vmedia_tls: false

371 Kubernetes folder

 additionalTrustedCAs: false
metal3-ironic:
 global:
 predictableNicNames: "true"
 persistence:
 ironic:
 size: "5Gi"

Note
The Media Server is an optional feature included in Metal3 (by default is disabled). To use
the Metal3 feature, you need to configure it on the previous manifest. To use the Metal3

media server, specify the following variable:

add the enable_metal3_media_server to true to enable the media server feature
in the global section.

include the following configuration about the media server where ${MEDIA_VOL-
UME_PATH} is the path to the media volume in the media (e.g /home/metal3/bmh-
image-cache)

metal3-media:
 mediaVolume:
 hostPath: ${MEDIA_VOLUME_PATH}

An external media server can be used to store the images, and in the case you want to
use it with TLS, you will need to modify the following configurations:

set to true the additionalTrustedCAs in the previous metal3.yaml le to enable
the additional trusted CAs from the external media server.

include the following secret configuration in the folder kubernetes/mani-
fests/metal3-cacert-secret.yaml to store the CA certificate of the external me-
dia server.

apiVersion: v1
kind: Namespace
metadata:
 name: metal3-system

apiVersion: v1
kind: Secret
metadata:

372 Kubernetes folder

 name: tls-ca-additional
 namespace: metal3-system
type: Opaque
data:
 ca-additional.crt: {{ additional_ca_cert | b64encode }}

The additional_ca_cert is the base64-encoded CA certificate of the external media
server. You can use the following command to encode the certificate and generate the
secret doing manually:

kubectl -n meta3-system create secret generic tls-ca-additional --from-file=ca-
additional.crt=./ca-additional.crt

certmanager.yaml: contains the configuration to create the Cert-Manager component
(no modifications needed).

installCRDs: "true"

32.3.5 Networking folder

The network folder contains as many les as nodes in the management cluster. In our case, we
have only one node, so we have only one le called mgmt-cluster-node1.yaml. The name of
the le must match the host name defined in the mgmt-cluster.yaml definition le into the
network/node section described above.

If you need to customize the networking configuration, for example, to use a specific static
IP address (DHCP-less scenario), you can use the mgmt-cluster-node1.yaml le under the
network folder. It contains the following information:

${MGMT_GATEWAY}: The gateway IP address.

${MGMT_DNS}: The DNS server IP address.

${MGMT_MAC}: The MAC address of the network interface.

${MGMT_NODE_IP}: The IP address of the management cluster.

routes:
 config:
 - destination: 0.0.0.0/0
 metric: 100

373 Networking folder

 next-hop-address: ${MGMT_GATEWAY}
 next-hop-interface: eth0
 table-id: 254
dns-resolver:
 config:
 server:
 - ${MGMT_DNS}
 - 8.8.8.8
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: ${MGMT_MAC}
 ipv4:
 address:
 - ip: ${MGMT_NODE_IP}
 prefix-length: 24
 dhcp: false
 enabled: true
 ipv6:
 enabled: false

If you want to use DHCP to get the IP address, you can use the following configuration (the MAC
address must be set properly using the ${MGMT_MAC} variable):

This is an example of a dhcp network configuration for a management cluster
interfaces:
- name: eth0
 type: ethernet
 state: up
 mac-address: ${MGMT_MAC}
 ipv4:
 dhcp: true
 enabled: true
 ipv6:
 enabled: false

Note

Depending on the number of nodes in the management cluster, you can create more
les like mgmt-cluster-node2.yaml, mgmt-cluster-node3.yaml, etc. to configure
the rest of the nodes.

The routes section is used to define the routing table for the management cluster.

374 Networking folder

32.4 Image preparation for air-gap environments
This section describes how to prepare the image for air-gap environments showing only the
differences from the previous sections. The following changes to the previous section (Image
preparation for connected environments (Section 32.3, “Image preparation for connected environ-

ments”)) are required to prepare the image for air-gap environments:

The mgmt-cluster.yaml le must be modified to include the embeddedArtifactReg-
istry section with the images eld set to all container images to be included into the
EIB output image.

The mgmt-cluster.yaml le must be modified to include rancher-turtles-airgap-re-
sources helm chart.

The custom/scripts/99-register.sh script must be removed when use an air-gap en-
vironment.

32.4.1 Modifications in the definition file

The mgmt-cluster.yaml le must be modified to include the embeddedArtifactRegistry sec-
tion with the images eld set to all container images to be included into the EIB output image.
The images eld must contain the list of all container images to be included in the output image.
The following is an example of the mgmt-cluster.yaml le with the embeddedArtifactReg-
istry section included:

The rancher-turtles-airgap-resources helm chart must also be added, this creates re-
sources as described in the Rancher Turtles Airgap Documentation (https://turtles.docs.ranch-

er.com/getting-started/air-gapped-environment) . This also requires a turtles.yaml values le for
the rancher-turtles chart to specify the necessary configuration.

apiVersion: 1.0
image:
 imageType: iso
 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-SelfInstall-GM2.install.iso
 outputImageName: eib-mgmt-cluster-image.iso
operatingSystem:
 isoConfiguration:
 installDevice: /dev/sda
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}

375 Image preparation for air-gap environments

https://turtles.docs.rancher.com/getting-started/air-gapped-environment
https://turtles.docs.rancher.com/getting-started/air-gapped-environment

 packages:
 packageList:
 - jq
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}
kubernetes:
 version: ${KUBERNETES_VERSION}
 helm:
 charts:
 - name: cert-manager
 repositoryName: jetstack
 version: 1.15.3
 targetNamespace: cert-manager
 valuesFile: certmanager.yaml
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn-crd
 version: 104.2.0+up1.7.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: longhorn
 version: 104.2.0+up1.7.1
 repositoryName: rancher-charts
 targetNamespace: longhorn-system
 createNamespace: true
 installationNamespace: kube-system
 - name: metal3-chart
 version: 0.8.3
 repositoryName: suse-edge-charts
 targetNamespace: metal3-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: metal3.yaml
 - name: rancher-turtles-chart
 version: 0.3.3
 repositoryName: suse-edge-charts
 targetNamespace: rancher-turtles-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: turtles.yaml
 - name: rancher-turtles-airgap-resources-chart
 version: 0.3.3
 repositoryName: suse-edge-charts
 targetNamespace: rancher-turtles-system
 createNamespace: true
 installationNamespace: kube-system

376 Modifications in the definition file

 - name: neuvector-crd
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: neuvector
 version: 104.0.1+up2.7.9
 repositoryName: rancher-charts
 targetNamespace: neuvector
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: neuvector.yaml
 - name: rancher
 version: 2.9.3
 repositoryName: rancher-prime
 targetNamespace: cattle-system
 createNamespace: true
 installationNamespace: kube-system
 valuesFile: rancher.yaml
 repositories:
 - name: jetstack
 url: https://charts.jetstack.io
 - name: rancher-charts
 url: https://charts.rancher.io/
 - name: suse-edge-charts
 url: oci://registry.suse.com/edge/3.1
 - name: rancher-prime
 url: https://charts.rancher.com/server-charts/prime
 network:
 apiHost: ${API_HOST}
 apiVIP: ${API_VIP}
 nodes:
 - hostname: mgmt-cluster-node1
 initializer: true
 type: server
- hostname: mgmt-cluster-node2
type: server
- hostname: mgmt-cluster-node3
type: server
type: server
embeddedArtifactRegistry:
 images:
 - name: registry.rancher.com/rancher/backup-restore-operator:v5.0.2
 - name: registry.rancher.com/rancher/calico-cni:v3.28.1-rancher1
 - name: registry.rancher.com/rancher/cis-operator:v1.0.16

377 Modifications in the definition file

 - name: registry.rancher.com/rancher/flannel-cni:v1.4.1-rancher1
 - name: registry.rancher.com/rancher/fleet-agent:v0.10.4
 - name: registry.rancher.com/rancher/fleet:v0.10.4
 - name: registry.rancher.com/rancher/hardened-addon-resizer:1.8.20-build20240910
 - name: registry.rancher.com/rancher/hardened-calico:v3.28.1-build20240911
 - name: registry.rancher.com/rancher/hardened-cluster-autoscaler:v1.8.11-
build20240910
 - name: registry.rancher.com/rancher/hardened-cni-plugins:v1.5.1-build20240910
 - name: registry.rancher.com/rancher/hardened-coredns:v1.11.1-build20240910
 - name: registry.rancher.com/rancher/hardened-dns-node-cache:1.23.1-build20240910
 - name: registry.rancher.com/rancher/hardened-etcd:v3.5.13-k3s1-build20240910
 - name: registry.rancher.com/rancher/hardened-flannel:v0.25.6-build20240910
 - name: registry.rancher.com/rancher/hardened-k8s-metrics-server:v0.7.1-build20240910
 - name: registry.rancher.com/rancher/hardened-kubernetes:v1.30.5-rke2r1-build20240912
 - name: registry.rancher.com/rancher/hardened-multus-cni:v4.1.0-build20240910
 - name: registry.rancher.com/rancher/hardened-node-feature-discovery:v0.15.6-
build20240822
 - name: registry.rancher.com/rancher/hardened-whereabouts:v0.8.0-build20240910
 - name: registry.rancher.com/rancher/helm-project-operator:v0.2.1
 - name: registry.rancher.com/rancher/k3s-upgrade:v1.30.5-k3s1
 - name: registry.rancher.com/rancher/klipper-helm:v0.9.2-build20240828
 - name: registry.rancher.com/rancher/klipper-lb:v0.4.9
 - name: registry.rancher.com/rancher/kube-api-auth:v0.2.2
 - name: registry.rancher.com/rancher/kubectl:v1.29.7
 - name: registry.rancher.com/rancher/local-path-provisioner:v0.0.28
 - name: registry.rancher.com/rancher/machine:v0.15.0-rancher118
 - name: registry.rancher.com/rancher/mirrored-cluster-api-controller:v1.7.3
 - name: registry.rancher.com/rancher/nginx-ingress-controller:v1.10.4-hardened3
 - name: registry.rancher.com/rancher/prometheus-federator:v0.3.4
 - name: registry.rancher.com/rancher/pushprox-client:v0.1.3-rancher2-client
 - name: registry.rancher.com/rancher/pushprox-proxy:v0.1.3-rancher2-proxy
 - name: registry.rancher.com/rancher/rancher-agent:v2.9.3
 - name: registry.rancher.com/rancher/rancher-csp-adapter:v4.0.0
 - name: registry.rancher.com/rancher/rancher-webhook:v0.5.3
 - name: registry.rancher.com/rancher/rancher:v2.9.3
 - name: registry.rancher.com/rancher/rke-tools:v0.1.103
 - name: registry.rancher.com/rancher/rke2-cloud-provider:v1.30.4-build20240910
 - name: registry.rancher.com/rancher/rke2-runtime:v1.30.5-rke2r1
 - name: registry.rancher.com/rancher/rke2-upgrade:v1.30.5-rke2r1
 - name: registry.rancher.com/rancher/security-scan:v0.2.18
 - name: registry.rancher.com/rancher/shell:v0.2.2
 - name: registry.rancher.com/rancher/system-agent-installer-k3s:v1.30.5-k3s1
 - name: registry.rancher.com/rancher/system-agent-installer-rke2:v1.30.5-rke2r1
 - name: registry.rancher.com/rancher/system-agent:v0.3.10-suc
 - name: registry.rancher.com/rancher/system-upgrade-controller:v0.13.4
 - name: registry.rancher.com/rancher/ui-plugin-catalog:2.1.0
 - name: registry.rancher.com/rancher/kubectl:v1.20.2

378 Modifications in the definition file

 - name: registry.rancher.com/rancher/kubectl:v1.29.2
 - name: registry.rancher.com/rancher/shell:v0.1.24
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v1.4.1
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v1.4.3
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20230312-helm-chart-4.5.2-28-g66a760794
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231011-8b53cabe0
 - name: registry.rancher.com/rancher/mirrored-ingress-nginx-kube-webhook-
certgen:v20231226-1a7112e06
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-attacher:v4.6.1
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-provisioner:v4.0.1
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-resizer:v1.11.1
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-snapshotter:v7.0.2
 - name: registry.suse.com/rancher/mirrored-longhornio-csi-node-driver-
registrar:v2.12.0
 - name: registry.suse.com/rancher/mirrored-longhornio-livenessprobe:v2.14.0
 - name: registry.suse.com/rancher/mirrored-longhornio-openshift-origin-oauth-
proxy:4.15
 - name: registry.suse.com/rancher/mirrored-longhornio-backing-image-manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-engine:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-instance-
manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-share-manager:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-ui:v1.7.1
 - name: registry.suse.com/rancher/mirrored-longhornio-support-bundle-kit:v0.0.42
 - name: registry.suse.com/rancher/mirrored-longhornio-longhorn-cli:v1.7.1
 - name: registry.suse.com/edge/3.1/cluster-api-provider-rke2-bootstrap:v0.7.1
 - name: registry.suse.com/edge/3.1/cluster-api-provider-rke2-controlplane:v0.7.1
 - name: registry.suse.com/edge/3.1/cluster-api-controller:v1.7.5
 - name: registry.suse.com/edge/3.1/cluster-api-provider-metal3:v1.7.1
 - name: registry.suse.com/edge/3.1/ip-address-manager:v1.7.1

379 Modifications in the definition file

32.4.2 Modifications in the custom folder

The custom/scripts/99-register.sh script must be removed when using an air-gap
environment. As you can see in the directory structure, the 99-register.sh script is not
included in the custom/scripts folder.

32.4.3 Modifications in the helm values folder

The turtles.yaml: contains the configuration required to specify airgapped operation for
Rancher Turtles, note this depends on installation of the rancher-turtles-airgap-resources
chart.

cluster-api-operator:
 cluster-api:
 core:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"core\"}}"
 rke2:
 bootstrap:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"rke2-bootstrap
\"}}"
 controlPlane:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"rke2-control-
plane\"}}"
 metal3:
 infrastructure:
 fetchConfig:
 selector: "{\"matchLabels\": {\"provider-components\": \"metal3\"}}"

32.5 Image creation

Once the directory structure is prepared following the previous sections (for both, connected
and air-gap scenarios), run the following command to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
 build --definition-file mgmt-cluster.yaml

380 Modifications in the custom folder

This creates the ISO output image le that, in our case, based on the image definition described
above, is eib-mgmt-cluster-image.iso.

32.6 Provision the management cluster
The previous image contains all components explained above, and it can be used to provision
the management cluster using a virtual machine or a bare-metal server (using the virtual-media
feature).

381 Provision the management cluster

33 Telco features configuration

This section documents and explains the configuration of Telco-specific features on ATIP-de-
ployed clusters.

The directed network provisioning deployment method is used, as described in the ATIP Auto-
mated Provision (Chapter 34, Fully automated directed network provisioning) section.

The following topics are covered in this section:

Kernel image for real time (Section 33.1, “Kernel image for real time”): Kernel image to be used
by the real-time kernel.

Kernel arguments for low latency and high performance (Section 33.2, “Kernel arguments for

low latency and high performance”): Kernel arguments to be used by the real-time kernel for
maximum performance and low latency running telco workloads.

CPU tuned configuration (Section 33.3, “CPU tuned configuration”): Tuned configuration to be
used by the real-time kernel.

CNI configuration (Section 33.4, “CNI Configuration”): CNI configuration to be used by the
Kubernetes cluster.

SR-IOV configuration (Section 33.5, “SR-IOV”): SR-IOV configuration to be used by the Ku-
bernetes workloads.

DPDK configuration (Section 33.6, “DPDK”): DPDK configuration to be used by the system.

vRAN acceleration card (Section 33.7, “vRAN acceleration (Intel ACC100/ACC200)”): Accel-
eration card configuration to be used by the Kubernetes workloads.

Huge pages (Section 33.8, “Huge pages”): Huge pages configuration to be used by the Kuber-
netes workloads.

CPU pinning configuration (Section 33.9, “CPU pinning configuration”): CPU pinning configu-
ration to be used by the Kubernetes workloads.

NUMA-aware scheduling configuration (Section 33.10, “NUMA-aware scheduling”): NU-
MA-aware scheduling configuration to be used by the Kubernetes workloads.

Metal LB configuration (Section 33.11, “Metal LB”): Metal LB configuration to be used by the
Kubernetes workloads.

Private registry configuration (Section 33.12, “Private registry configuration”): Private registry
configuration to be used by the Kubernetes workloads.

382

33.1 Kernel image for real time
The real-time kernel image is not necessarily better than a standard kernel. It is a different
kernel tuned to a specific use case. The real-time kernel is tuned for lower latency at the cost of
throughput. The real-time kernel is not recommended for general purpose use, but in our case,
this is the recommended kernel for Telco Workloads where latency is a key factor.

There are four top features:

Deterministic execution:
Get greater predictability — ensure critical business processes complete in time, every
time and deliver high-quality service, even under heavy system loads. By shielding key
system resources for high-priority processes, you can ensure greater predictability for time-
sensitive applications.

Low jitter:
The low jitter built upon the highly deterministic technology helps to keep applications
synchronized with the real world. This helps services that need ongoing and repeated
calculation.

Priority inheritance:
Priority inheritance refers to the ability of a lower priority process to assume a higher
priority when there is a higher priority process that requires the lower priority process
to finish before it can accomplish its task. SUSE Linux Enterprise Real Time solves these
priority inversion problems for mission-critical processes.

Thread interrupts:
Processes running in interrupt mode in a general-purpose operating system are not pre-
emptible. With SUSE Linux Enterprise Real Time, these interrupts have been encapsulated
by kernel threads, which are interruptible, and allow the hard and soft interrupts to be
preempted by user-defined higher priority processes.
In our case, if you have installed a real-time image like SLE Micro RT, kernel real time is
already installed. From the SUSE Customer Center (https://scc.suse.com/) , you can down-
load the real-time kernel image.

Note
For more information about the real-time kernel, visit SUSE Real Time (https://

www.suse.com/products/realtime/) .

383 Kernel image for real time

https://scc.suse.com/
https://www.suse.com/products/realtime/
https://www.suse.com/products/realtime/

33.2 Kernel arguments for low latency and high
performance

The kernel arguments are important to be configured to enable the real-time kernel to work
properly giving the best performance and low latency to run telco workloads. There are some
important concepts to keep in mind when configuring the kernel arguments for this use case:

Remove kthread_cpus when using SUSE real-time kernel. This parameter controls on
which CPUs kernel threads are created. It also controls which CPUs are allowed for PID
1 and for loading kernel modules (the kmod user-space helper). This parameter is not
recognized and does not have any effect.

Add domain,nohz,managed_irq ags to isolcpus kernel argument. Without any ags,
isolcpus is equivalent to specifying only the domain ag. This isolates the specified CPUs
from scheduling, including kernel tasks. The nohz ag stops the scheduler tick on the
specified CPUs (if only one task is runnable on a CPU), and the managed_irq ag avoids
routing managed external (device) interrupts at the specified CPUs.

Remove intel_pstate=passive. This option configures intel_pstate to work with
generic cpufreq governors, but to make this work, it disables hardware-managed P-states
(HWP) as a side effect. To reduce the hardware latency, this option is not recommended
for real-time workloads.

Replace intel_idle.max_cstate=0 processor.max_cstate=1 with idle=poll. To
avoid C-State transitions, the idle=poll option is used to disable the C-State transitions
and keep the CPU in the highest C-State. The intel_idle.max_cstate=0 option disables
intel_idle, so acpi_idle is used, and acpi_idle.max_cstate=1 then sets max C-state
for acpi_idle. On x86_64 architectures, the rst ACPI C-State is always POLL, but it uses
a poll_idle() function, which may introduce some tiny latency by reading the clock pe-
riodically, and restarting the main loop in do_idle() after a timeout (this also involves
clearing and setting the TIF_POLL task ag). In contrast, idle=poll runs in a tight loop,
busy-waiting for a task to be rescheduled. This minimizes the latency of exiting the idle
state, but at the cost of keeping the CPU running at full speed in the idle thread.

Disable C1E in BIOS. This option is important to disable the C1E state in the BIOS to avoid
the CPU from entering the C1E state when idle. The C1E state is a low-power state that
can introduce latency when the CPU is idle.

384 Kernel arguments for low latency and high performance

Add nowatchdog to disable the soft-lockup watchdog which is implemented as a timer
running in the timer hard-interrupt context. When it expires (i.e. a soft lockup is detected),
it will print a warning (in the hard interrupt context), running any latency targets. Even if
it never expires, it goes onto the timer list, slightly increasing the overhead of every timer
interrupt. This option also disables the NMI watchdog, so NMIs cannot interfere.

Add nmi_watchdog=0. This option disables only the NMI watchdog.

This is an example of the kernel argument list including the aforementioned adjustments:

GRUB_CMDLINE_LINUX="skew_tick=1 BOOT_IMAGE=/boot/vmlinuz-6.4.0-9-rt
 root=UUID=77b713de-5cc7-4d4c-8fc6-f5eca0a43cf9 rd.timeout=60 rd.retry=45
 console=ttyS1,115200 console=tty0 default_hugepagesz=1G hugepages=0 hugepages=40
 hugepagesz=1G hugepagesz=2M ignition.platform.id=openstack intel_iommu=on iommu=pt
 irqaffinity=0,19,20,39 isolcpus=domain,nohz,managed_irq,1-18,21-38 mce=off
 nohz=on net.ifnames=0 nmi_watchdog=0 nohz_full=1-18,21-38 nosoftlockup nowatchdog
 quiet rcu_nocb_poll rcu_nocbs=1-18,21-38 rcupdate.rcu_cpu_stall_suppress=1
 rcupdate.rcu_expedited=1 rcupdate.rcu_normal_after_boot=1
 rcupdate.rcu_task_stall_timeout=0 rcutree.kthread_prio=99 security=selinux selinux=1"

33.3 CPU tuned configuration

The CPU Tuned configuration allows the possibility to isolate the CPU cores to be used by the
real-time kernel. It is important to prevent the OS from using the same cores as the real-time
kernel, because the OS could use the cores and increase the latency in the real-time kernel.

To enable and configure this feature, the rst thing is to create a profile for the CPU cores we
want to isolate. In this case, we are isolating the cores 1-30 and 33-62.

$ echo "export tuned_params" >> /etc/grub.d/00_tuned

$ echo "isolated_cores=1-18,21-38" >> /etc/tuned/cpu-partitioning-variables.conf

$ tuned-adm profile cpu-partitioning
Tuned (re)started, changes applied.

385 CPU tuned configuration

Then we need to modify the GRUB option to isolate CPU cores and other important parameters
for CPU usage. The following options are important to be customized with your current hardware
specifications:

parameter value description

isolcpus domain,nohz,man-
aged_irq,1-18,21-38

Isolate the cores 1-18 and
21-38

skew_tick 1 This option allows the kernel
to skew the timer interrupts
across the isolated CPUs.

nohz on This option allows the kernel
to run the timer tick on a sin-
gle CPU when the system is
idle.

nohz_full 1-18,21-38 kernel boot parameter is the
current main interface to
configure full dynticks along
with CPU Isolation.

rcu_nocbs 1-18,21-38 This option allows the kernel
to run the RCU callbacks on
a single CPU when the sys-
tem is idle.

irqaffinity 0,19,20,39 This option allows the kernel
to run the interrupts on a sin-
gle CPU when the system is
idle.

idle poll This minimizes the latency of
exiting the idle state, but at
the cost of keeping the CPU
running at full speed in the
idle thread.

386 CPU tuned configuration

parameter value description

nmi_watchdog 0 This option disables only the
NMI watchdog.

nowatchdog This option disables the soft-
lockup watchdog which is
implemented as a timer run-
ning in the timer hard-inter-
rupt context.

With the values shown above, we are isolating 60 cores, and we are using four cores for the OS.

The following commands modify the GRUB configuration and apply the changes mentioned
above to be present on the next boot:

Edit the /etc/default/grub le and add the parameters mentioned above:

GRUB_CMDLINE_LINUX="skew_tick=1 BOOT_IMAGE=/boot/vmlinuz-6.4.0-9-rt
 root=UUID=77b713de-5cc7-4d4c-8fc6-f5eca0a43cf9 rd.timeout=60 rd.retry=45
 console=ttyS1,115200 console=tty0 default_hugepagesz=1G hugepages=0 hugepages=40
 hugepagesz=1G hugepagesz=2M ignition.platform.id=openstack intel_iommu=on iommu=pt
 irqaffinity=0,19,20,39 isolcpus=domain,nohz,managed_irq,1-18,21-38 mce=off
 nohz=on net.ifnames=0 nmi_watchdog=0 nohz_full=1-18,21-38 nosoftlockup nowatchdog
 quiet rcu_nocb_poll rcu_nocbs=1-18,21-38 rcupdate.rcu_cpu_stall_suppress=1
 rcupdate.rcu_expedited=1 rcupdate.rcu_normal_after_boot=1
 rcupdate.rcu_task_stall_timeout=0 rcutree.kthread_prio=99 security=selinux selinux=1"

Update the GRUB configuration:

$ transactional-update grub.cfg
$ reboot

To validate that the parameters are applied after the reboot, the following command can be
used to check the kernel command line:

$ cat /proc/cmdline

There is another script that can be used to tune the CPU configuration, which basically is doing
the following steps:

Set the CPU governor to performance.

Unset the timer migration to the isolated CPUs.

387 CPU tuned configuration

Migrate the kdaemon threads to the housekeeping CPUs.

Set the isolated CPUs latency to the lowest possible value.

Delay the vmstat updates to 300 seconds.

The script is available at SUSE ATIP Github repository - perfor-

mance-settings.sh (https://raw.githubusercontent.com/suse-edge/atip/refs/heads/release-3.1/tel-

co-examples/edge-clusters/dhcp-less/eib/custom/files/performance-settings.sh) .

33.4 CNI Configuration

33.4.1 Cilium

Cilium is the default CNI plug-in for ATIP. To enable Cilium on RKE2 cluster as the default plug-
in, the following configurations are required in the /etc/rancher/rke2/config.yaml le:

cni:
- cilium

This can also be specified with command-line arguments, that is, --cni=cilium into the server
line in /etc/systemd/system/rke2-server le.

To use the SR-IOV network operator described in the next section (Section 33.5, “SR-

IOV” (page 394)), use Multus with another CNI plug-in, like Cilium or Calico, as a secondary
plug-in.

cni:
- multus
- cilium

Note
For more information about CNI plug-ins, visit Network Options (https://docs.rke2.io/in-

stall/network_options) .

388 CNI Configuration

https://raw.githubusercontent.com/suse-edge/atip/refs/heads/release-3.1/telco-examples/edge-clusters/dhcp-less/eib/custom/files/performance-settings.sh
https://raw.githubusercontent.com/suse-edge/atip/refs/heads/release-3.1/telco-examples/edge-clusters/dhcp-less/eib/custom/files/performance-settings.sh
https://raw.githubusercontent.com/suse-edge/atip/refs/heads/release-3.1/telco-examples/edge-clusters/dhcp-less/eib/custom/files/performance-settings.sh
https://docs.rke2.io/install/network_options
https://docs.rke2.io/install/network_options

33.5 SR-IOV
SR-IOV allows a device, such as a network adapter, to separate access to its resources among
various PCIe hardware functions. There are different ways to deploy SR-IOV, and here, we show
two different options:

Option 1: using the SR-IOV CNI device plug-ins and a config map to configure it properly.

Option 2 (recommended): using the SR-IOV Helm chart from Rancher Prime to make this
deployment easy.

Option 1 - Installation of SR-IOV CNI device plug-ins and a config map to configure it
properly

Prepare the config map for the device plug-in

Get the information to ll the config map from the lspci command:

$ lspci | grep -i acc
8a:00.0 Processing accelerators: Intel Corporation Device 0d5c

$ lspci | grep -i net
19:00.0 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
19:00.1 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
19:00.2 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
19:00.3 Ethernet controller: Broadcom Inc. and subsidiaries BCM57504 NetXtreme-E
 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet (rev 11)
51:00.0 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev
 02)
51:00.1 Ethernet controller: Intel Corporation Ethernet Controller E810-C for QSFP (rev
 02)
51:01.0 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:01.1 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:01.2 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:01.3 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:11.0 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:11.1 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)

389 SR-IOV

51:11.2 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)
51:11.3 Ethernet controller: Intel Corporation Ethernet Adaptive Virtual Function (rev
 02)

The config map consists of a JSON le that describes devices using filters to discover, and creates
groups for the interfaces. The key is understanding filters and groups. The filters are used to
discover the devices and the groups are used to create the interfaces.

It could be possible to set filters:

vendorID: 8086 (Intel)

deviceID: 0d5c (Accelerator card)

driver: vfio-pci (driver)

pfNames: p2p1 (physical interface name)

It could be possible to also set filters to match more complex interface syntax, for example:

pfNames: ["eth1#1,2,3,4,5,6"] or [eth1#1-6] (physical interface name)

Related to the groups, we could create a group for the FEC card and another group for the Intel
card, even creating a prefix depending on our use case:

resourceName: pci_sriov_net_bh_dpdk

resourcePrefix: Rancher.io

There are a lot of combinations to discover and create the resource group to allocate some VFs
to the pods.

Note
For more information about the filters and groups, visit sr-iov network device plug-in

(https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin) .

After setting the filters and groups to match the interfaces depending on the hardware and the
use case, the following config map shows an example to be used:

apiVersion: v1
kind: ConfigMap
metadata:
 name: sriovdp-config
 namespace: kube-system

390 SR-IOV

https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin

data:
 config.json: |
 {
 "resourceList": [
 {
 "resourceName": "intel_fec_5g",
 "devicetype": "accelerator",
 "selectors": {
 "vendors": ["8086"],
 "devices": ["0d5d"]
 }
 },
 {
 "resourceName": "intel_sriov_odu",
 "selectors": {
 "vendors": ["8086"],
 "devices": ["1889"],
 "drivers": ["vfio-pci"],
 "pfNames": ["p2p1"]
 }
 },
 {
 "resourceName": "intel_sriov_oru",
 "selectors": {
 "vendors": ["8086"],
 "devices": ["1889"],
 "drivers": ["vfio-pci"],
 "pfNames": ["p2p2"]
 }
 }
]
 }

Prepare the daemonset le to deploy the device plug-in.

The device plug-in supports several architectures (arm, amd, ppc64le), so the same le can be
used for different architectures deploying several daemonset for each architecture.

apiVersion: v1
kind: ServiceAccount
metadata:
 name: sriov-device-plugin
 namespace: kube-system

apiVersion: apps/v1
kind: DaemonSet
metadata:

391 SR-IOV

 name: kube-sriov-device-plugin-amd64
 namespace: kube-system
 labels:
 tier: node
 app: sriovdp
spec:
 selector:
 matchLabels:
 name: sriov-device-plugin
 template:
 metadata:
 labels:
 name: sriov-device-plugin
 tier: node
 app: sriovdp
 spec:
 hostNetwork: true
 nodeSelector:
 kubernetes.io/arch: amd64
 tolerations:
 - key: node-role.kubernetes.io/master
 operator: Exists
 effect: NoSchedule
 serviceAccountName: sriov-device-plugin
 containers:
 - name: kube-sriovdp
 image: rancher/hardened-sriov-network-device-plugin:v3.7.0-build20240816
 imagePullPolicy: IfNotPresent
 args:
 - --log-dir=sriovdp
 - --log-level=10
 securityContext:
 privileged: true
 resources:
 requests:
 cpu: "250m"
 memory: "40Mi"
 limits:
 cpu: 1
 memory: "200Mi"
 volumeMounts:
 - name: devicesock
 mountPath: /var/lib/kubelet/
 readOnly: false
 - name: log
 mountPath: /var/log
 - name: config-volume

392 SR-IOV

 mountPath: /etc/pcidp
 - name: device-info
 mountPath: /var/run/k8s.cni.cncf.io/devinfo/dp
 volumes:
 - name: devicesock
 hostPath:
 path: /var/lib/kubelet/
 - name: log
 hostPath:
 path: /var/log
 - name: device-info
 hostPath:
 path: /var/run/k8s.cni.cncf.io/devinfo/dp
 type: DirectoryOrCreate
 - name: config-volume
 configMap:
 name: sriovdp-config
 items:
 - key: config.json
 path: config.json

After applying the config map and the daemonset, the device plug-in will be deployed and
the interfaces will be discovered and available for the pods.

$ kubectl get pods -n kube-system | grep sriov
kube-system kube-sriov-device-plugin-amd64-twjfl 1/1 Running 0 2m

Check the interfaces discovered and available in the nodes to be used by the pods:

$ kubectl get $(kubectl get nodes -oname) -o jsonpath='{.status.allocatable}' | jq
{
 "cpu": "64",
 "ephemeral-storage": "256196109726",
 "hugepages-1Gi": "40Gi",
 "hugepages-2Mi": "0",
 "intel.com/intel_fec_5g": "1",
 "intel.com/intel_sriov_odu": "4",
 "intel.com/intel_sriov_oru": "4",
 "memory": "221396384Ki",
 "pods": "110"
}

The FEC is intel.com/intel_fec_5g and the value is 1.

The VF is intel.com/intel_sriov_odu or intel.com/intel_sriov_oru if you deploy it
with a device plug-in and the config map without Helm charts.

393 SR-IOV

Important
If there are no interfaces here, it makes little sense to continue because the interface will
not be available for pods. Review the config map and filters to solve the issue rst.

Option 2 (recommended) - Installation using Rancher using Helm chart for SR-IOV CNI
and device plug-ins

Get Helm if not present:

$ curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

Install SR-IOV.

This part could be done in two ways, using the CLI or using the Rancher UI.

Install Operator from CLI

helm install sriov-crd oci://registry.suse.com/edge/3.1/sriov-crd-chart -n sriov-
network-operator
helm install sriov-network-operator oci://registry.suse.com/edge/3.1/sriov-network-
operator-chart -n sriov-network-operator

Install Operator from Rancher UI

Once your cluster is installed, and you have access to the Rancher UI, you can install the
SR-IOV Operator from the Rancher UI from the apps tab:

Note
Make sure you select the right namespace to install the operator, for example, sriov-net-
work-operator.

+ image::features_sriov.png[sriov.png]

Check the deployed resources crd and pods:

$ kubectl get crd
$ kubectl -n sriov-network-operator get pods

394 SR-IOV

Check the label in the nodes.

With all resources running, the label appears automatically in your node:

$ kubectl get nodes -oyaml | grep feature.node.kubernetes.io/network-sriov.capable

feature.node.kubernetes.io/network-sriov.capable: "true"

Review the daemonset to see the new sriov-network-config-daemon and sriov-ranch-
er-nfd-worker as active and ready:

$ kubectl get daemonset -A
NAMESPACE NAME DESIRED CURRENT READY UP-TO-
DATE AVAILABLE NODE SELECTOR AGE
calico-system calico-node 1 1 1 1
 1 kubernetes.io/os=linux 15h
sriov-network-operator sriov-network-config-daemon 1 1 1 1
 1 feature.node.kubernetes.io/network-sriov.capable=true 45m
sriov-network-operator sriov-rancher-nfd-worker 1 1 1 1
 1 <none> 45m
kube-system rke2-ingress-nginx-controller 1 1 1 1
 1 kubernetes.io/os=linux 15h
kube-system rke2-multus-ds 1 1 1 1
 1 kubernetes.io/arch=amd64,kubernetes.io/os=linux 15h

In a few minutes (can take up to 10 min to be updated), the nodes are detected and configured
with the SR-IOV capabilities:

$ kubectl get sriovnetworknodestates.sriovnetwork.openshift.io -A
NAMESPACE NAME AGE
sriov-network-operator xr11-2 83s

Check the interfaces detected.

The interfaces discovered should be the PCI address of the network device. Check this informa-
tion with the lspci command in the host.

$ kubectl get sriovnetworknodestates.sriovnetwork.openshift.io -n kube-system -oyaml
apiVersion: v1
items:
- apiVersion: sriovnetwork.openshift.io/v1
 kind: SriovNetworkNodeState
 metadata:
 creationTimestamp: "2023-06-07T09:52:37Z"

395 SR-IOV

 generation: 1
 name: xr11-2
 namespace: sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
 uid: 80b72499-e26b-4072-a75c-f9a6218ec357
 resourceVersion: "356603"
 uid: e1f1654b-92b3-44d9-9f87-2571792cc1ad
 spec:
 dpConfigVersion: "356507"
 status:
 interfaces:
 - deviceID: "1592"
 driver: ice
 eSwitchMode: legacy
 linkType: ETH
 mac: 40:a6:b7:9b:35:f0
 mtu: 1500
 name: p2p1
 pciAddress: "0000:51:00.0"
 totalvfs: 128
 vendor: "8086"
 - deviceID: "1592"
 driver: ice
 eSwitchMode: legacy
 linkType: ETH
 mac: 40:a6:b7:9b:35:f1
 mtu: 1500
 name: p2p2
 pciAddress: "0000:51:00.1"
 totalvfs: 128
 vendor: "8086"
 syncStatus: Succeeded
kind: List
metadata:
 resourceVersion: ""

Note
If your interface is not detected here, ensure that it is present in the next config map:

$ kubectl get cm supported-nic-ids -oyaml -n sriov-network-operator

396 SR-IOV

If your device is not there, edit the config map, adding the right values to be discovered
(should be necessary to restart the sriov-network-config-daemon daemonset).

Create the NetworkNode Policy to configure the VFs.

Some VFs (numVfs) from the device (rootDevices) will be created, and it will be configured
with the driver deviceType and the MTU:

Note
The resourceName eld must not contain any special characters and must be unique
across the cluster. The example uses the deviceType: vfio-pci because dpdk will be
used in combination with sr-iov. If you don’t use dpdk, the deviceType should be de-
viceType: netdevice (default value).

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-dpdk
 namespace: sriov-network-operator
spec:
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 resourceName: intelnicsDpdk
 deviceType: vfio-pci
 numVfs: 8
 mtu: 1500
 nicSelector:
 deviceID: "1592"
 vendor: "8086"
 rootDevices:
 - 0000:51:00.0

Validate configurations:

$ kubectl get $(kubectl get nodes -oname) -o jsonpath='{.status.allocatable}' | jq
{
 "cpu": "64",
 "ephemeral-storage": "256196109726",
 "hugepages-1Gi": "60Gi",
 "hugepages-2Mi": "0",

397 SR-IOV

 "intel.com/intel_fec_5g": "1",
 "memory": "200424836Ki",
 "pods": "110",
 "rancher.io/intelnicsDpdk": "8"
}

Create the sr-iov network (optional, just in case a different network is needed):

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: network-dpdk
 namespace: sriov-network-operator
spec:
 ipam: |
 {
 "type": "host-local",
 "subnet": "192.168.0.0/24",
 "rangeStart": "192.168.0.20",
 "rangeEnd": "192.168.0.60",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "192.168.0.1"
 }
 vlan: 500
 resourceName: intelnicsDpdk

Check the network created:

$ kubectl get network-attachment-definitions.k8s.cni.cncf.io -A -oyaml

apiVersion: v1
items:
- apiVersion: k8s.cni.cncf.io/v1
 kind: NetworkAttachmentDefinition
 metadata:
 annotations:
 k8s.v1.cni.cncf.io/resourceName: rancher.io/intelnicsDpdk
 creationTimestamp: "2023-06-08T11:22:27Z"
 generation: 1
 name: network-dpdk
 namespace: sriov-network-operator
 resourceVersion: "13124"
 uid: df7c89f5-177c-4f30-ae72-7aef3294fb15
 spec:

398 SR-IOV

 config: '{ "cniVersion":"0.4.0", "name":"network-
dpdk","type":"sriov","vlan":500,"vlanQoS":0,"ipam":{"type":"host-
local","subnet":"192.168.0.0/24","rangeStart":"192.168.0.10","rangeEnd":"192.168.0.60","routes":
[{"dst":"0.0.0.0/0"}],"gateway":"192.168.0.1"}
 }'
kind: List
metadata:
 resourceVersion: ""

33.6 DPDK

DPDK (Data Plane Development Kit) is a set of libraries and drivers for fast packet processing. It is
used to accelerate packet processing workloads running on a wide variety of CPU architectures.
The DPDK includes data plane libraries and optimized network interface controller (NIC) drivers
for the following:

1. A queue manager implements lockless queues.

2. A buer manager pre-allocates xed size buers.

3. A memory manager allocates pools of objects in memory and uses a ring to store free
objects; ensures that objects are spread equally on all DRAM channels.

4. Poll mode drivers (PMD) are designed to work without asynchronous notifications, reducing
overhead.

5. A packet framework as a set of libraries that are helpers to develop packet processing.

The following steps will show how to enable DPDK and how to create VFs from the NICs to be
used by the DPDK interfaces:

Install the DPDK package:

$ transactional-update pkg install dpdk dpdk-tools libdpdk-23
$ reboot

399 DPDK

Kernel parameters:

To use DPDK, employ some drivers to enable certain parameters in the kernel:

parameter value description

iommu pt This option enables the use
of the vfio driver for the
DPDK interfaces.

intel_iommu on This option enables the use
of vfio for VFs.

To enable the parameters, add them to the /etc/default/grub le:

GRUB_CMDLINE_LINUX="skew_tick=1 BOOT_IMAGE=/boot/vmlinuz-6.4.0-9-rt
 root=UUID=77b713de-5cc7-4d4c-8fc6-f5eca0a43cf9 rd.timeout=60 rd.retry=45
 console=ttyS1,115200 console=tty0 default_hugepagesz=1G hugepages=0 hugepages=40
 hugepagesz=1G hugepagesz=2M ignition.platform.id=openstack intel_iommu=on iommu=pt
 irqaffinity=0,19,20,39 isolcpus=domain,nohz,managed_irq,1-18,21-38 mce=off
 nohz=on net.ifnames=0 nmi_watchdog=0 nohz_full=1-18,21-38 nosoftlockup nowatchdog
 quiet rcu_nocb_poll rcu_nocbs=1-18,21-38 rcupdate.rcu_cpu_stall_suppress=1
 rcupdate.rcu_expedited=1 rcupdate.rcu_normal_after_boot=1
 rcupdate.rcu_task_stall_timeout=0 rcutree.kthread_prio=99 security=selinux selinux=1"

Update the GRUB configuration and reboot the system to apply the changes:

$ transactional-update grub.cfg
$ reboot

Load vfio-pci kernel module and enable SR-IOV on the NICs:

$ modprobe vfio-pci enable_sriov=1 disable_idle_d3=1

Create some virtual functions (VFs) from the NICs.

To create for VFs, for example, for two different NICs, the following commands are required:

$ echo 4 > /sys/bus/pci/devices/0000:51:00.0/sriov_numvfs
$ echo 4 > /sys/bus/pci/devices/0000:51:00.1/sriov_numvfs

Bind the new VFs with the vfio-pci driver:

$ dpdk-devbind.py -b vfio-pci 0000:51:01.0 0000:51:01.1 0000:51:01.2 0000:51:01.3 \
 0000:51:11.0 0000:51:11.1 0000:51:11.2 0000:51:11.3

400 DPDK

Review the configuration is correctly applied:

$ dpdk-devbind.py -s

Network devices using DPDK-compatible driver
==
0000:51:01.0 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.1 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.2 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.3 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:01.0 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:11.1 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:21.2 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio
0000:51:31.3 'Ethernet Adaptive Virtual Function 1889' drv=vfio-pci unused=iavf,igb_uio

Network devices using kernel driver
===================================
0000:19:00.0 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em1
 drv=bnxt_en unused=igb_uio,vfio-pci *Active*
0000:19:00.1 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em2
 drv=bnxt_en unused=igb_uio,vfio-pci
0000:19:00.2 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em3
 drv=bnxt_en unused=igb_uio,vfio-pci
0000:19:00.3 'BCM57504 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb/200Gb Ethernet 1751' if=em4
 drv=bnxt_en unused=igb_uio,vfio-pci
0000:51:00.0 'Ethernet Controller E810-C for QSFP 1592' if=eth13 drv=ice
 unused=igb_uio,vfio-pci
0000:51:00.1 'Ethernet Controller E810-C for QSFP 1592' if=rename8 drv=ice
 unused=igb_uio,vfio-pci

33.7 vRAN acceleration (Intel ACC100/ACC200)
As communications service providers move from 4 G to 5 G networks, many are adopting vir-
tualized radio access network (vRAN) architectures for higher channel capacity and easier de-
ployment of edge-based services and applications. vRAN solutions are ideally located to deliver
low-latency services with the flexibility to increase or decrease capacity based on the volume
of real-time traffic and demand on the network.

One of the most compute-intensive 4 G and 5 G workloads is RAN layer 1 (L1) FEC, which re-
solves data transmission errors over unreliable or noisy communication channels. FEC technol-
ogy detects and corrects a limited number of errors in 4 G or 5 G data, eliminating the need for
retransmission. Since the FEC acceleration transaction does not contain cell state information,
it can be easily virtualized, enabling pooling benefits and easy cell migration.

401 vRAN acceleration (Intel ACC100/ACC200)

Kernel parameters

To enable the vRAN acceleration, we need to enable the following kernel parameters (if not
present yet):

parameter value description

iommu pt This option enables the use
of vo for the DPDK inter-
faces.

intel_iommu on This option enables the use
of vo for VFs.

Modify the GRUB le /etc/default/grub to add them to the kernel command line:

GRUB_CMDLINE_LINUX="skew_tick=1 BOOT_IMAGE=/boot/vmlinuz-6.4.0-9-rt
 root=UUID=77b713de-5cc7-4d4c-8fc6-f5eca0a43cf9 rd.timeout=60 rd.retry=45
 console=ttyS1,115200 console=tty0 default_hugepagesz=1G hugepages=0 hugepages=40
 hugepagesz=1G hugepagesz=2M ignition.platform.id=openstack intel_iommu=on iommu=pt
 irqaffinity=0,19,20,39 isolcpus=domain,nohz,managed_irq,1-18,21-38 mce=off
 nohz=on net.ifnames=0 nmi_watchdog=0 nohz_full=1-18,21-38 nosoftlockup nowatchdog
 quiet rcu_nocb_poll rcu_nocbs=1-18,21-38 rcupdate.rcu_cpu_stall_suppress=1
 rcupdate.rcu_expedited=1 rcupdate.rcu_normal_after_boot=1
 rcupdate.rcu_task_stall_timeout=0 rcutree.kthread_prio=99 security=selinux selinux=1"

Update the GRUB configuration and reboot the system to apply the changes:

$ transactional-update grub.cfg
$ reboot

To verify that the parameters are applied after the reboot, check the command line:

$ cat /proc/cmdline

Load vo-pci kernel modules to enable the vRAN acceleration:

$ modprobe vfio-pci enable_sriov=1 disable_idle_d3=1

Get interface information Acc100:

$ lspci | grep -i acc

402 vRAN acceleration (Intel ACC100/ACC200)

8a:00.0 Processing accelerators: Intel Corporation Device 0d5c

Bind the physical interface (PF) with vfio-pci driver:

$ dpdk-devbind.py -b vfio-pci 0000:8a:00.0

Create the virtual functions (VFs) from the physical interface (PF).

Create 2 VFs from the PF and bind with vfio-pci following the next steps:

$ echo 2 > /sys/bus/pci/devices/0000:8a:00.0/sriov_numvfs
$ dpdk-devbind.py -b vfio-pci 0000:8b:00.0

Configure acc100 with the proposed configuration le:

$ pf_bb_config ACC100 -c /opt/pf-bb-config/acc100_config_vf_5g.cfg
Tue Jun 6 10:49:20 2023:INFO:Queue Groups: 2 5GUL, 2 5GDL, 2 4GUL, 2 4GDL
Tue Jun 6 10:49:20 2023:INFO:Configuration in VF mode
Tue Jun 6 10:49:21 2023:INFO: ROM version MM 99AD92
Tue Jun 6 10:49:21 2023:WARN:* Note: Not on DDR PRQ version 1302020 != 10092020
Tue Jun 6 10:49:21 2023:INFO:PF ACC100 configuration complete
Tue Jun 6 10:49:21 2023:INFO:ACC100 PF [0000:8a:00.0] configuration complete!

Check the new VFs created from the FEC PF:

$ dpdk-devbind.py -s
Baseband devices using DPDK-compatible driver
===
0000:8a:00.0 'Device 0d5c' drv=vfio-pci unused=
0000:8b:00.0 'Device 0d5d' drv=vfio-pci unused=

Other Baseband devices
======================
0000:8b:00.1 'Device 0d5d' unused=

33.8 Huge pages

When a process uses RAM, the CPU marks it as used by that process. For efficiency, the CPU
allocates RAM in chunks 4K bytes is the default value on many platforms. Those chunks are named
pages. Pages can be swapped to disk, etc.

403 Huge pages

Since the process address space is virtual, the CPU and the operating system need to remember
which pages belong to which process, and where each page is stored. The greater the number
of pages, the longer the search for memory mapping. When a process uses 1 GB of memory,
that is 262144 entries to look up (1 GB / 4 K). If a page table entry consumes 8 bytes, that is
2 MB (262144 * 8) to look up.

Most current CPU architectures support larger-than-default pages, which give the CPU/OS fewer
entries to look up.

Kernel parameters

To enable the huge pages, we should add the next kernel parameters:

parameter value description

hugepagesz 1G This option allows to set the
size of huge pages to 1 G

hugepages 40 This is the number of huge
pages defined before

default_hugepagesz 1G This is the default value to
get the huge pages

Modify the GRUB le /etc/default/grub to add them to the kernel command line:

GRUB_CMDLINE_LINUX="skew_tick=1 BOOT_IMAGE=/boot/vmlinuz-6.4.0-9-rt
 root=UUID=77b713de-5cc7-4d4c-8fc6-f5eca0a43cf9 rd.timeout=60 rd.retry=45
 console=ttyS1,115200 console=tty0 default_hugepagesz=1G hugepages=0 hugepages=40
 hugepagesz=1G hugepagesz=2M ignition.platform.id=openstack intel_iommu=on iommu=pt
 irqaffinity=0,19,20,39 isolcpus=domain,nohz,managed_irq,1-18,21-38 mce=off
 nohz=on net.ifnames=0 nmi_watchdog=0 nohz_full=1-18,21-38 nosoftlockup nowatchdog
 quiet rcu_nocb_poll rcu_nocbs=1-18,21-38 rcupdate.rcu_cpu_stall_suppress=1
 rcupdate.rcu_expedited=1 rcupdate.rcu_normal_after_boot=1
 rcupdate.rcu_task_stall_timeout=0 rcutree.kthread_prio=99 security=selinux selinux=1"

Update the GRUB configuration and reboot the system to apply the changes:

$ transactional-update grub.cfg
$ reboot

To validate that the parameters are applied after the reboot, you can check the command line:

$ cat /proc/cmdline

404 Huge pages

Using huge pages

To use the huge pages, we need to mount them:

$ mkdir -p /hugepages
$ mount -t hugetlbfs nodev /hugepages

Deploy a Kubernetes workload, creating the resources and the volumes:

...
 resources:
 requests:
 memory: "24Gi"
 hugepages-1Gi: 16Gi
 intel.com/intel_sriov_oru: '4'
 limits:
 memory: "24Gi"
 hugepages-1Gi: 16Gi
 intel.com/intel_sriov_oru: '4'
...

...
volumeMounts:
 - name: hugepage
 mountPath: /hugepages
...
volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages
...

33.9 CPU pinning configuration
Requirements

1. Must have the CPU tuned to the performance profile covered in this section (Sec-

tion 33.3, “CPU tuned configuration”).

2. Must have the RKE2 cluster kubelet configured with the CPU management arguments
adding the following block (as an example) to the /etc/rancher/rke2/config.yaml
le:

kubelet-arg:

405 CPU pinning configuration

- "cpu-manager=true"
- "cpu-manager-policy=static"
- "cpu-manager-policy-options=full-pcpus-only=true"
- "cpu-manager-reconcile-period=0s"
- "kubelet-reserved=cpu=1"
- "system-reserved=cpu=1"

Using CPU pinning on Kubernetes

There are three ways to use that feature using the Static Policy defined in kubelet depending
on the requests and limits you define on your workload:

1. BestEffort QoS Class: If you do not define any request or limit for CPU, the pod is sched-
uled on the rst CPU available on the system.
An example of using the BestEffort QoS Class could be:

spec:
 containers:
 - name: nginx
 image: nginx

2. Burstable QoS Class: If you define a request for CPU, which is not equal to the limits,
or there is no CPU request.
Examples of using the Burstable QoS Class could be:

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

or

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"

406 CPU pinning configuration

 requests:
 memory: "100Mi"
 cpu: "1"

3. Guaranteed QoS Class: If you define a request for CPU, which is equal to the limits.
An example of using the Guaranteed QoS Class could be:

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 requests:
 memory: "200Mi"
 cpu: "2"

33.10 NUMA-aware scheduling

Non-Uniform Memory Access or Non-Uniform Memory Architecture (NUMA) is a physical memory
design used in SMP (multiprocessors) architecture, where the memory access time depends on
the memory location relative to a processor. Under NUMA, a processor can access its own local
memory faster than non-local memory, that is, memory local to another processor or memory
shared between processors.

33.10.1 Identifying NUMA nodes

To identify the NUMA nodes, on your system use the following command:

$ lscpu | grep NUMA
NUMA node(s): 1
NUMA node0 CPU(s): 0-63

Note
For this example, we have only one NUMA node showing 64 CPUs.

407 NUMA-aware scheduling

NUMA needs to be enabled in the BIOS. If dmesg does not have records of NUMA initial-
ization during the bootup, then NUMA-related messages in the kernel ring buer might
have been overwritten.

33.11 Metal LB
MetalLB is a load-balancer implementation for bare-metal Kubernetes clusters, using standard
routing protocols like L2 and BGP as advertisement protocols. It is a network load balancer that
can be used to expose services in a Kubernetes cluster to the outside world due to the need to
use Kubernetes Services type LoadBalancer with bare-metal.

To enable MetalLB in the RKE2 cluster, the following steps are required:

Install MetalLB using the following command:

$ kubectl apply <<EOF -f
apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata:
 name: metallb
 namespace: kube-system
spec:
 chart: oci://registry.suse.com/edge/3.1/metallb-chart
 targetNamespace: metallb-system
 version: 0.14.9
 createNamespace: true

apiVersion: helm.cattle.io/v1
kind: HelmChart
metadata:
 name: endpoint-copier-operator
 namespace: kube-system
spec:
 chart: oci://registry.suse.com/edge/3.1/endpoint-copier-operator-chart
 targetNamespace: endpoint-copier-operator
 version: 0.2.1
 createNamespace: true
EOF

Create the IpAddressPool and the L2advertisement configuration:

apiVersion: metallb.io/v1beta1
kind: IPAddressPool

408 Metal LB

metadata:
 name: kubernetes-vip-ip-pool
 namespace: metallb-system
spec:
 addresses:
 - 10.168.200.98/32
 serviceAllocation:
 priority: 100
 namespaces:
 - default

apiVersion: metallb.io/v1beta1
kind: L2Advertisement
metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
spec:
 ipAddressPools:
 - kubernetes-vip-ip-pool

Create the endpoint service to expose the VIP:

apiVersion: v1
kind: Service
metadata:
 name: kubernetes-vip
 namespace: default
spec:
 internalTrafficPolicy: Cluster
 ipFamilies:
 - IPv4
 ipFamilyPolicy: SingleStack
 ports:
 - name: rke2-api
 port: 9345
 protocol: TCP
 targetPort: 9345
 - name: k8s-api
 port: 6443
 protocol: TCP
 targetPort: 6443
 sessionAffinity: None
 type: LoadBalancer

Check the VIP is created and the MetalLB pods are running:

$ kubectl get svc -n default

409 Metal LB

$ kubectl get pods -n default

33.12 Private registry configuration
Containerd can be configured to connect to private registries and use them to pull private
images on each node.

Upon startup, RKE2 checks if a registries.yaml le exists at /etc/rancher/rke2/ and in-
structs containerd to use any registries defined in the le. If you wish to use a private registry,
create this le as root on each node that will use the registry.

To add the private registry, create the le /etc/rancher/rke2/registries.yaml with the
following content:

mirrors:
 docker.io:
 endpoint:
 - "https://registry.example.com:5000"
configs:
 "registry.example.com:5000":
 auth:
 username: xxxxxx # this is the registry username
 password: xxxxxx # this is the registry password
 tls:
 cert_file: # path to the cert file used to authenticate to the registry
 key_file: # path to the key file for the certificate used to
 authenticate to the registry
 ca_file: # path to the ca file used to verify the registry's
 certificate
 insecure_skip_verify: # may be set to true to skip verifying the registry's
 certificate

or without authentication:

mirrors:
 docker.io:
 endpoint:
 - "https://registry.example.com:5000"
configs:
 "registry.example.com:5000":
 tls:
 cert_file: # path to the cert file used to authenticate to the registry
 key_file: # path to the key file for the certificate used to
 authenticate to the registry

410 Private registry configuration

 ca_file: # path to the ca file used to verify the registry's
 certificate
 insecure_skip_verify: # may be set to true to skip verifying the registry's
 certificate

For the registry changes to take effect, you need to either configure this le before starting RKE2
on the node, or restart RKE2 on each configured node.

Note
For more information about this, please check containerd registry configura-

tion rke2 (https://docs.rke2.io/install/containerd_registry_configuration#registries-configu-

ration-file) .

411 Private registry configuration

https://docs.rke2.io/install/containerd_registry_configuration#registries-configuration-file
https://docs.rke2.io/install/containerd_registry_configuration#registries-configuration-file
https://docs.rke2.io/install/containerd_registry_configuration#registries-configuration-file

34 Fully automated directed network provisioning

34.1 Introduction
Directed network provisioning is a feature that allows you to automate the provisioning of
downstream clusters. This feature is useful when you have many downstream clusters to provi-
sion, and you want to automate the process.

A management cluster (Chapter 32, Setting up the management cluster) automates deployment of
the following components:

SUSE Linux Enterprise Micro RT as the OS. Depending on the use case, configurations
like networking, storage, users and kernel arguments can be customized.

RKE2 as the Kubernetes cluster. The default CNI plug-in is Cilium. Depending on the use
case, certain CNI plug-ins can be used, such as Cilium+Multus.

Longhorn as the storage solution.

NeuVector as the security solution.

MetalLB can be used as the load balancer for highly available multi-node clusters.

Note
For more information about SUSE Linux Enterprise Micro, see Chapter 7, SLE Micro For
more information about RKE2, see Chapter 14, RKE2 For more information about Longhorn,
see Chapter 15, Longhorn For more information about NeuVector, see Chapter 16, NeuVector

The following sections describe the different directed network provisioning workflows and some
additional features that can be added to the provisioning process:

Section 34.2, “Prepare downstream cluster image for connected scenarios”

Section 34.3, “Prepare downstream cluster image for air-gap scenarios”

Section 34.4, “Downstream cluster provisioning with Directed network provisioning (single-node)”

Section 34.5, “Downstream cluster provisioning with Directed network provisioning (multi-node)”

Section 34.6, “Advanced Network Configuration”

Section 34.7, “Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)”

412 Introduction

Section 34.8, “Private registry”

Section 34.9, “Downstream cluster provisioning in air-gapped scenarios”

The following sections show how to prepare the different scenarios for the directed network
provisioning workflow using ATIP. For examples of the different configurations options for de-
ployment (incl. air-gapped environments, DHCP and DHCP-less networks, private container reg-
istries, etc.), see the SUSE ATIP repository (https://github.com/suse-edge/atip/tree/release-3.1/tel-

co-examples/edge-clusters) .

34.2 Prepare downstream cluster image for
connected scenarios
Edge Image Builder (Chapter 9, Edge Image Builder) is used to prepare a modified SLEMicro base
image which is provisioned on downstream cluster hosts.

Much of the configuration via Edge Image Builder is possible, but in this guide, we cover the
minimal configurations necessary to set up the downstream cluster.

34.2.1 Prerequisites for connected scenarios

A container runtime such as Podman (https://podman.io) or Rancher Desktop (https://

rancherdesktop.io) is required to run Edge Image Builder.

The base image SL-Micro.x86_64-6.0-Base-RT-GM2.raw must be downloaded from
the SUSE Customer Center (https://scc.suse.com/) or the SUSE Download page (https://

www.suse.com/download/sle-micro/) .

34.2.2 Image configuration for connected scenarios

When running Edge Image Builder, a directory is mounted from the host, so it is necessary to
create a directory structure to store the configuration les used to define the target image.

downstream-cluster-config.yaml is the image definition le, see Chapter 3, Standalone

clusters with Edge Image Builder for more details.

The base image when downloaded is xz compressed, which must be uncompressed with
unxz and copied/moved under the base-images folder.

413 Prepare downstream cluster image for connected scenarios

https://github.com/suse-edge/atip/tree/release-3.1/telco-examples/edge-clusters
https://github.com/suse-edge/atip/tree/release-3.1/telco-examples/edge-clusters
https://podman.io
https://rancherdesktop.io
https://rancherdesktop.io
https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

The network folder is optional, see Section 34.2.2.6, “Additional script for Advanced Network

Configuration” for more details.

The custom/scripts directory contains scripts to be run on rst-boot:

1. 01-fix-growfs.sh script is required to resize the OS root partition on deployment

2. 02-performance.sh script is optional and can be used to configure the system for
performance tuning.

3. 03-sriov.sh script is optional and can be used to configure the system for SR-IOV.

The custom/files directory contains the performance-settings.sh and sriov-au-
to-filler.sh les to be copied to the image during the image creation process.

├── downstream-cluster-config.yaml
├── base-images/
│ └ SL-Micro.x86_64-6.0-Base-RT-GM2.raw
├── network/
| └ configure-network.sh
└── custom/
 └ scripts/
 | └ 01-fix-growfs.sh
 | └ 02-performance.sh
 | └ 03-sriov.sh
 └ files/
 └ performance-settings.sh
 └ sriov-auto-filler.sh

34.2.2.1 Downstream cluster image definition file

The downstream-cluster-config.yaml le is the main configuration le for the downstream
cluster image. The following is a minimal example for deployment via Metal3:

apiVersion: 1.0
image:
 imageType: RAW
 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-RT-GM2.raw
 outputImageName: eibimage-slmicro60rt-telco.raw
operatingSystem:
 kernelArgs:
 - ignition.platform.id=openstack
 - net.ifnames=1

414 Image configuration for connected scenarios

 systemd:
 disable:
 - rebootmgr
 - transactional-update.timer
 - transactional-update-cleanup.timer
 - fstrim
 - time-sync.target
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 sshKeys:
 - ${USERKEY1}

${ROOT_PASSWORD} is the encrypted password for the root user, which can be useful for test/
debugging. It can be generated with the openssl passwd -6 PASSWORD command

For the production environments, it is recommended to use the SSH keys that can be added to
the users block replacing the ${USERKEY1} with the real SSH keys.

Note
net.ifnames=1 enables Predictable Network Interface Naming (https://documenta-

tion.suse.com/smart/network/html/network-interface-predictable-naming/index.html)

This matches the default configuration for the metal3 chart, but the setting must match
the configured chart predictableNicNames value.

Also note ignition.platform.id=openstack is mandatory, without this argument
SLEMicro configuration via ignition will fail in the Metal3 automated ow.

34.2.2.2 Growfs script

Currently, a custom script (custom/scripts/01-fix-growfs.sh) is required to grow the le
system to match the disk size on rst-boot after provisioning. The 01-fix-growfs.sh script
contains the following information:

#!/bin/bash
growfs() {
 mnt="$1"
 dev="$(findmnt --fstab --target ${mnt} --evaluate --real --output SOURCE --noheadings)"
 # /dev/sda3 -> /dev/sda, /dev/nvme0n1p3 -> /dev/nvme0n1
 parent_dev="/dev/$(lsblk --nodeps -rno PKNAME "${dev}")"
 # Last number in the device name: /dev/nvme0n1p42 -> 42
 partnum="$(echo "${dev}" | sed 's/^.*[^0-9]\([0-9]\+\)$/\1/')"

415 Image configuration for connected scenarios

https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html
https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html

 ret=0
 growpart "$parent_dev" "$partnum" || ret=$?
 [$ret -eq 0] || [$ret -eq 1] || exit 1
 /usr/lib/systemd/systemd-growfs "$mnt"
}
growfs /

34.2.2.3 Performance script

The following optional script (custom/scripts/02-performance.sh) can be used to configure
the system for performance tuning:

#!/bin/bash

create the folder to extract the artifacts there
mkdir -p /opt/performance-settings

copy the artifacts
cp performance-settings.sh /opt/performance-settings/

The content of custom/files/performance-settings.sh is a script that can be used to
configure the system for performance tuning and can be downloaded from the follow-
ing link (https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/

eib/custom/files/performance-settings.sh) .

34.2.2.4 SR-IOV script

The following optional script (custom/scripts/03-sriov.sh) can be used to configure the
system for SR-IOV:

#!/bin/bash

create the folder to extract the artifacts there
mkdir -p /opt/sriov
copy the artifacts
cp sriov-auto-filler.sh /opt/sriov/sriov-auto-filler.sh

The content of custom/files/sriov-auto-filler.sh is a script that can be used
to configure the system for SR-IOV and can be downloaded from the follow-
ing link (https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/

eib/custom/files/sriov-auto-filler.sh) .

416 Image configuration for connected scenarios

https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/performance-settings.sh
https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/performance-settings.sh
https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/sriov-auto-filler.sh
https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/sriov-auto-filler.sh

Note
Add your own custom scripts to be executed during the provisioning process using the
same approach. For more information, see Chapter 3, Standalone clusters with Edge Image

Builder.

34.2.2.5 Additional configuration for Telco workloads

To enable Telco features like dpdk, sr-iov or FEC, additional packages may be required as
shown in the following example.

apiVersion: 1.0
image:
 imageType: RAW
 arch: x86_64
 baseImage: SL-Micro.x86_64-6.0-Base-RT-GM2.raw
 outputImageName: eibimage-slmicro60rt-telco.raw
operatingSystem:
 kernelArgs:
 - ignition.platform.id=openstack
 - net.ifnames=1
 systemd:
 disable:
 - rebootmgr
 - transactional-update.timer
 - transactional-update-cleanup.timer
 - fstrim
 - time-sync.target
 users:
 - username: root
 encryptedPassword: ${ROOT_PASSWORD}
 sshKeys:
 - ${user1Key1}
 packages:
 packageList:
 - jq
 - dpdk
 - dpdk-tools
 - libdpdk-23
 - pf-bb-config
 additionalRepos:
 - url: https://download.opensuse.org/repositories/isv:/SUSE:/Edge:/Telco/SL-
Micro_6.0_images/
 sccRegistrationCode: ${SCC_REGISTRATION_CODE}

417 Image configuration for connected scenarios

Where ${SCC_REGISTRATION_CODE} is the registration code copied from SUSE Customer Center

(https://scc.suse.com/) , and the package list contains the minimum packages to be used for the
Telco profiles. To use the pf-bb-config package (to enable the FEC feature and binding with
drivers), the additionalRepos block must be included to add the SUSE Edge Telco repository.

34.2.2.6 Additional script for Advanced Network Configuration

If you need to configure static IPs or more advanced networking scenarios as described in Sec-

tion 34.6, “Advanced Network Configuration”, the following additional configuration is required.

In the network folder, create the following configure-network.sh le - this consumes config-
uration drive data on rst-boot, and configures the host networking using the NM Configurator

tool (https://github.com/suse-edge/nm-configurator) .

#!/bin/bash

set -eux

Attempt to statically configure a NIC in the case where we find a network_data.json
In a configuration drive

CONFIG_DRIVE=$(blkid --label config-2 || true)
if [-z "${CONFIG_DRIVE}"]; then
 echo "No config-2 device found, skipping network configuration"
 exit 0
fi

mount -o ro $CONFIG_DRIVE /mnt

NETWORK_DATA_FILE="/mnt/openstack/latest/network_data.json"

if [! -f "${NETWORK_DATA_FILE}"]; then
 umount /mnt
 echo "No network_data.json found, skipping network configuration"
 exit 0
fi

DESIRED_HOSTNAME=$(cat /mnt/openstack/latest/meta_data.json | tr ',{}' '\n' | grep
 '\"metal3-name\"' | sed 's/.*\"metal3-name\": \"\(.*\)\"/\1/')
echo "${DESIRED_HOSTNAME}" > /etc/hostname

mkdir -p /tmp/nmc/{desired,generated}
cp ${NETWORK_DATA_FILE} /tmp/nmc/desired/_all.yaml
umount /mnt

418 Image configuration for connected scenarios

https://scc.suse.com/
https://scc.suse.com/
https://github.com/suse-edge/nm-configurator
https://github.com/suse-edge/nm-configurator

./nmc generate --config-dir /tmp/nmc/desired --output-dir /tmp/nmc/generated

./nmc apply --config-dir /tmp/nmc/generated

34.2.3 Image creation

Once the directory structure is prepared following the previous sections, run the following com-
mand to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
 build --definition-file downstream-cluster-config.yaml

This creates the output ISO image le named eibimage-slmicro60rt-telco.raw, based on the
definition described above.

The output image must then be made available via a webserver, either the media-server con-
tainer enabled via the Management Cluster Documentation (Note) or some other locally acces-
sible server. In the examples below, we refer to this server as imagecache.local:8080

34.3 Prepare downstream cluster image for air-gap
scenarios

Edge Image Builder (Chapter 9, Edge Image Builder) is used to prepare a modified SLEMicro base
image which is provisioned on downstream cluster hosts.

Much of the configuration is possible with Edge Image Builder, but in this guide, we cover the
minimal configurations necessary to set up the downstream cluster for air-gap scenarios.

419 Image creation

34.3.1 Prerequisites for air-gap scenarios

A container runtime such as Podman (https://podman.io) or Rancher Desktop (https://

rancherdesktop.io) is required to run Edge Image Builder.

The base image SL-Micro.x86_64-6.0-Base-RT-GM2.raw must be downloaded from
the SUSE Customer Center (https://scc.suse.com/) or the SUSE Download page (https://

www.suse.com/download/sle-micro/) .

If you want to use SR-IOV or any other workload which require a container image, a
local private registry must be deployed and already configured (with/without TLS and/
or authentication). This registry will be used to store the images and the helm chart OCI
images.

34.3.2 Image configuration for air-gap scenarios

When running Edge Image Builder, a directory is mounted from the host, so it is necessary to
create a directory structure to store the configuration les used to define the target image.

downstream-cluster-airgap-config.yaml is the image definition le, see Chapter 3,

Standalone clusters with Edge Image Builder for more details.

The base image when downloaded is xz compressed, which must be uncompressed with
unxz and copied/moved under the base-images folder.

The network folder is optional, see Section 34.2.2.6, “Additional script for Advanced Network

Configuration” for more details.

The custom/scripts directory contains scripts to be run on rst-boot:

1. 01-fix-growfs.sh script is required to resize the OS root partition on deployment.

2. 02-airgap.sh script is required to copy the images to the right place during the
image creation process for air-gapped environments.

420 Prerequisites for air-gap scenarios

https://podman.io
https://rancherdesktop.io
https://rancherdesktop.io
https://scc.suse.com/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

3. 03-performance.sh script is optional and can be used to configure the system for
performance tuning.

4. 04-sriov.sh script is optional and can be used to configure the system for SR-IOV.

The custom/files directory contains the rke2 and the cni images to be copied to the
image during the image creation process. Also, the optional performance-settings.sh
and sriov-auto-filler.sh les can be included.

├── downstream-cluster-airgap-config.yaml
├── base-images/
│ └ SL-Micro.x86_64-6.0-Base-RT-GM2.raw
├── network/
| └ configure-network.sh
└── custom/
 └ files/
 | └ install.sh
 | └ rke2-images-cilium.linux-amd64.tar.zst
 | └ rke2-images-core.linux-amd64.tar.zst
 | └ rke2-images-multus.linux-amd64.tar.zst
 | └ rke2-images.linux-amd64.tar.zst
 | └ rke2.linux-amd64.tar.zst
 | └ sha256sum-amd64.txt
 | └ performance-settings.sh
 | └ sriov-auto-filler.sh
 └ scripts/
 └ 01-fix-growfs.sh
 └ 02-airgap.sh
 └ 03-performance.sh
 └ 04-sriov.sh

34.3.2.1 Downstream cluster image definition file

The downstream-cluster-airgap-config.yaml le is the main configuration le for the
downstream cluster image and the content has been described in the previous section (Sec-

tion 34.2.2.5, “Additional configuration for Telco workloads”).

421 Image configuration for air-gap scenarios

34.3.2.2 Growfs script

Currently, a custom script (custom/scripts/01-fix-growfs.sh) is required to grow the le
system to match the disk size on rst-boot after provisioning. The 01-fix-growfs.sh script
contains the following information:

#!/bin/bash
growfs() {
 mnt="$1"
 dev="$(findmnt --fstab --target ${mnt} --evaluate --real --output SOURCE --noheadings)"
 # /dev/sda3 -> /dev/sda, /dev/nvme0n1p3 -> /dev/nvme0n1
 parent_dev="/dev/$(lsblk --nodeps -rno PKNAME "${dev}")"
 # Last number in the device name: /dev/nvme0n1p42 -> 42
 partnum="$(echo "${dev}" | sed 's/^.*[^0-9]\([0-9]\+\)$/\1/')"
 ret=0
 growpart "$parent_dev" "$partnum" || ret=$?
 [$ret -eq 0] || [$ret -eq 1] || exit 1
 /usr/lib/systemd/systemd-growfs "$mnt"
}
growfs /

34.3.2.3 Air-gap script

The following script (custom/scripts/02-airgap.sh) is required to copy the images to the
right place during the image creation process:

#!/bin/bash

create the folder to extract the artifacts there
mkdir -p /opt/rke2-artifacts
mkdir -p /var/lib/rancher/rke2/agent/images

copy the artifacts
cp install.sh /opt/
cp rke2-images*.tar.zst rke2.linux-amd64.tar.gz sha256sum-amd64.txt /opt/rke2-artifacts/

34.3.2.4 Performance script

The following optional script (custom/scripts/03-performance.sh) can be used to configure
the system for performance tuning:

#!/bin/bash

422 Image configuration for air-gap scenarios

create the folder to extract the artifacts there
mkdir -p /opt/performance-settings

copy the artifacts
cp performance-settings.sh /opt/performance-settings/

The content of custom/files/performance-settings.sh is a script that can be used to
configure the system for performance tuning and can be downloaded from the follow-
ing link (https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/

eib/custom/files/performance-settings.sh) .

34.3.2.5 SR-IOV script

The following optional script (custom/scripts/04-sriov.sh) can be used to configure the
system for SR-IOV:

#!/bin/bash

create the folder to extract the artifacts there
mkdir -p /opt/sriov
copy the artifacts
cp sriov-auto-filler.sh /opt/sriov/sriov-auto-filler.sh

The content of custom/files/sriov-auto-filler.sh is a script that can be used
to configure the system for SR-IOV and can be downloaded from the follow-
ing link (https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/

eib/custom/files/sriov-auto-filler.sh) .

34.3.2.6 Custom files for air-gap scenarios

The custom/files directory contains the rke2 and the cni images to be copied to the im-
age during the image creation process. To easily generate the images, prepare them locally us-
ing following script (https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/

edge-save-rke2-images.sh) and the list of images here (https://github.com/suse-edge/fleet-ex-

amples/blob/release-3.0/scripts/day2/edge-release-rke2-images.txt) to generate the artifacts re-
quired to be included in custom/files. Also, you can download the latest rke2-install script
from here (https://get.rke2.io/) .

$./edge-save-rke2-images.sh -o custom/files -l ~/edge-release-rke2-images.txt

423 Image configuration for air-gap scenarios

https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/performance-settings.sh
https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/performance-settings.sh
https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/sriov-auto-filler.sh
https://github.com/suse-edge/atip/blob/release-3.1/telco-examples/edge-clusters/dhcp/eib/custom/files/sriov-auto-filler.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-rke2-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-save-rke2-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-release-rke2-images.txt
https://github.com/suse-edge/fleet-examples/blob/release-3.0/scripts/day2/edge-release-rke2-images.txt
https://get.rke2.io/

After downloading the images, the directory structure should look like this:

└── custom/
 └ files/
 └ install.sh
 └ rke2-images-cilium.linux-amd64.tar.zst
 └ rke2-images-core.linux-amd64.tar.zst
 └ rke2-images-multus.linux-amd64.tar.zst
 └ rke2-images.linux-amd64.tar.zst
 └ rke2.linux-amd64.tar.zst
 └ sha256sum-amd64.txt

34.3.2.7 Preload your private registry with images required for air-gap
scenarios and SR-IOV (optional)

If you want to use SR-IOV in your air-gap scenario or any other workload images, you must
preload your local private registry with the images following the next steps:

Download, extract, and push the helm-chart OCI images to the private registry

Download, extract, and push the rest of images required to the private registry

The following scripts can be used to download, extract, and push the images to the private
registry. We will show an example to preload the SR-IOV images, but you can also use the same
approach to preload any other custom images:

1. Preload with helm-chart OCI images for SR-IOV:

a. You must create a list with the helm-chart OCI images required:

$ cat > edge-release-helm-oci-artifacts.txt <<EOF
edge/sriov-network-operator-chart:1.3.0
edge/sriov-crd-chart:1.3.0
EOF

b. Generate a local tarball le using the following script (https://github.com/suse-edge/

fleet-examples/blob/release-3.1/scripts/day2/edge-save-oci-artefacts.sh) and the list
created above:

$./edge-save-oci-artefacts.sh -al ./edge-release-helm-oci-artifacts.txt -s
 registry.suse.com
Pulled: registry.suse.com/edge/3.1/sriov-network-operator-chart:1.3.0

424 Image configuration for air-gap scenarios

https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-save-oci-artefacts.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-save-oci-artefacts.sh

Pulled: registry.suse.com/edge/3.1/sriov-crd-chart:1.3.0
a edge-release-oci-tgz-20240705
a edge-release-oci-tgz-20240705/sriov-network-operator-chart-1.3.0.tgz
a edge-release-oci-tgz-20240705/sriov-crd-chart-1.3.0.tgz

c. Upload your tarball le to your private registry (e.g. myregistry:5000) using the
following script (https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/

day2/edge-load-oci-artefacts.sh) to preload your registry with the helm chart OCI
images downloaded in the previous step:

$ tar zxvf edge-release-oci-tgz-20240705.tgz
$./edge-load-oci-artefacts.sh -ad edge-release-oci-tgz-20240705 -r
 myregistry:5000

2. Preload with the rest of the images required for SR-IOV:

a. In this case, we must include the `sr-iov container images for telco
workloads (e.g. as a reference, you could get them from helm-chart val-

ues (https://github.com/suse-edge/charts/blob/release-3.1/charts/sriov-network-opera-

tor/1.3.0%2Bup0.1.0/values.yaml))

$ cat > edge-release-images.txt <<EOF
rancher/hardened-sriov-network-operator:v1.3.0-build20240816
rancher/hardened-sriov-network-config-daemon:v1.3.0-build20240816
rancher/hardened-sriov-cni:v2.8.1-build20240820
rancher/hardened-ib-sriov-cni:v1.1.1-build20240816
rancher/hardened-sriov-network-device-plugin:v3.7.0-build20240816
rancher/hardened-sriov-network-resources-injector:v1.6.0-build20240816
rancher/hardened-sriov-network-webhook:v1.3.0-build20240816
EOF

b. Using the following script (https://github.com/suse-edge/fleet-examples/blob/re-

lease-3.1/scripts/day2/edge-save-images.sh) and the list created above, you must
generate locally the tarball le with the images required:

$./edge-save-images.sh -l ./edge-release-images.txt -s registry.suse.com
Image pull success: registry.suse.com/rancher/hardened-sriov-network-
operator:v1.3.0-build20240816
Image pull success: registry.suse.com/rancher/hardened-sriov-network-config-
daemon:v1.3.0-build20240816
Image pull success: registry.suse.com/rancher/hardened-sriov-cni:v2.8.1-
build20240820
Image pull success: registry.suse.com/rancher/hardened-ib-sriov-cni:v1.1.1-
build20240816

425 Image configuration for air-gap scenarios

https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-load-oci-artefacts.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-load-oci-artefacts.sh
https://github.com/suse-edge/charts/blob/release-3.1/charts/sriov-network-operator/1.3.0%2Bup0.1.0/values.yaml
https://github.com/suse-edge/charts/blob/release-3.1/charts/sriov-network-operator/1.3.0%2Bup0.1.0/values.yaml
https://github.com/suse-edge/charts/blob/release-3.1/charts/sriov-network-operator/1.3.0%2Bup0.1.0/values.yaml
https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-save-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-save-images.sh

Image pull success: registry.suse.com/rancher/hardened-sriov-network-device-
plugin:v3.7.0-build20240816
Image pull success: registry.suse.com/rancher/hardened-sriov-network-resources-
injector:v1.6.0-build20240816
Image pull success: registry.suse.com/rancher/hardened-sriov-network-
webhook:v1.3.0-build20240816
Creating edge-images.tar.gz with 7 images

c. Upload your tarball le to your private registry (e.g. myregistry:5000) using the
following script (https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/

day2/edge-load-images.sh) to preload your private registry with the images down-
loaded in the previous step:

$ tar zxvf edge-release-images-tgz-20240705.tgz
$./edge-load-images.sh -ad edge-release-images-tgz-20240705 -r myregistry:5000

34.3.3 Image creation for air-gap scenarios

Once the directory structure is prepared following the previous sections, run the following com-
mand to build the image:

podman run --rm --privileged -it -v $PWD:/eib \
 registry.suse.com/edge/3.1/edge-image-builder:1.1.0 \
 build --definition-file downstream-cluster-airgap-config.yaml

This creates the output ISO image le named eibimage-slmicro60rt-telco.raw, based on the
definition described above.

The output image must then be made available via a webserver, either the media-server con-
tainer enabled via the Management Cluster Documentation (Note) or some other locally acces-
sible server. In the examples below, we refer to this server as imagecache.local:8080.

34.4 Downstream cluster provisioning with Directed
network provisioning (single-node)
This section describes the workflow used to automate the provisioning of a single-node down-
stream cluster using directed network provisioning. This is the simplest way to automate the
provisioning of a downstream cluster.

Requirements

426 Image creation for air-gap scenarios

https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-load-images.sh
https://github.com/suse-edge/fleet-examples/blob/release-3.1/scripts/day2/edge-load-images.sh

The image generated using EIB, as described in the previous section (Section 34.2, “Prepare

downstream cluster image for connected scenarios”), with the minimal configuration to set up
the downstream cluster has to be located in the management cluster exactly on the path
you configured on this section (Note).

The management server created and available to be used on the following sections. For
more information, refer to the Management Cluster section Chapter 32, Setting up the man-

agement cluster.

Workflow

The following diagram shows the workflow used to automate the provisioning of a single-node
downstream cluster using directed network provisioning:

427 Downstream cluster provisioning with Directed network provisioning (single-node)

There are two different steps to automate the provisioning of a single-node downstream cluster
using directed network provisioning:

1. Enroll the bare-metal host to make it available for the provisioning process.

2. Provision the bare-metal host to install and configure the operating system and the Kuber-
netes cluster.

Enroll the bare-metal host

The rst step is to enroll the new bare-metal host in the management cluster to make it available
to be provisioned. To do that, the following le (bmh-example.yaml) has to be created in the
management cluster, to specify the BMC credentials to be used and the BaremetalHost object
to be enrolled:

apiVersion: v1
kind: Secret
metadata:
 name: example-demo-credentials
type: Opaque
data:
 username: ${BMC_USERNAME}
 password: ${BMC_PASSWORD}

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: example-demo
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: ${BMC_MAC}
 rootDeviceHints:
 deviceName: /dev/nvme0n1
 bmc:
 address: ${BMC_ADDRESS}
 disableCertificateVerification: true
 credentialsName: example-demo-credentials

where:

${BMC_USERNAME} — The user name for the BMC of the new bare-metal host.

${BMC_PASSWORD} — The password for the BMC of the new bare-metal host.

428 Downstream cluster provisioning with Directed network provisioning (single-node)

${BMC_MAC} — The MAC address of the new bare-metal host to be used.

${BMC_ADDRESS} — The URL for the bare-metal host BMC (for example, redfish-virtual-
media://192.168.200.75/redfish/v1/Systems/1/). To learn more about the different
options available depending on your hardware provider, check the following link (https://

github.com/metal3-io/baremetal-operator/blob/main/docs/api.md) .

Once the le is created, the following command has to be executed in the management cluster
to start enrolling the new bare-metal host in the management cluster:

$ kubectl apply -f bmh-example.yaml

The new bare-metal host object will be enrolled, changing its state from registering to inspecting
and available. The changes can be checked using the following command:

$ kubectl get bmh

Note
The BaremetalHost object is in the registering state until the BMC credentials are val-
idated. Once the credentials are validated, the BaremetalHost object changes its state to
inspecting, and this step could take some time depending on the hardware (up to 20
minutes). During the inspecting phase, the hardware information is retrieved and the Ku-
bernetes object is updated. Check the information using the following command: kubectl
get bmh -o yaml.

Provision step

Once the bare-metal host is enrolled and available, the next step is to provision the bare-metal
host to install and configure the operating system and the Kubernetes cluster. To do that, the
following le (capi-provisioning-example.yaml) has to be created in the management-clus-
ter with the following information (the capi-provisioning-example.yaml can be generated
by joining the following blocks).

Note
Only values between $\{…\} must be replaced with the real values.

429 Downstream cluster provisioning with Directed network provisioning (single-node)

https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md
https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md

The following block is the cluster definition, where the networking can be configured using
the pods and the services blocks. Also, it contains the references to the control plane and the
infrastructure (using the Metal3 provider) objects to be used.

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 name: single-node-cluster
 namespace: default
spec:
 clusterNetwork:
 pods:
 cidrBlocks:
 - 192.168.0.0/18
 services:
 cidrBlocks:
 - 10.96.0.0/12
 controlPlaneRef:
 apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
 kind: RKE2ControlPlane
 name: single-node-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3Cluster
 name: single-node-cluster

The Metal3Cluster object specifies the control-plane endpoint (replacing the
${DOWNSTREAM_CONTROL_PLANE_IP}) to be configured and the noCloudProvider because a
bare-metal node is used.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3Cluster
metadata:
 name: single-node-cluster
 namespace: default
spec:
 controlPlaneEndpoint:
 host: ${DOWNSTREAM_CONTROL_PLANE_IP}
 port: 6443
 noCloudProvider: true

The RKE2ControlPlane object specifies the control-plane configuration to be used and the Met-
al3MachineTemplate object specifies the control-plane image to be used. Also, it contains the
information about the number of replicas to be used (in this case, one) and the CNI plug-in to
be used (in this case, Cilium). The agentConfig block contains the Ignition format to be used

430 Downstream cluster provisioning with Directed network provisioning (single-node)

and the additionalUserData to be used to configure the RKE2 node with information like a
systemd named rke2-preinstall.service to replace automatically the BAREMETALHOST_UUID
and node-name during the provisioning process using the Ironic information. To enable multus
with cilium a le is created in the rke2 server manifests directory named rke2-cilium-con-
fig.yaml with the configuration to be used. The last block of information contains the Kuber-
netes version to be used. ${RKE2_VERSION} is the version of RKE2 to be used replacing this value
(for example, v1.30.5+rke2r1).

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 serverConfig:
 cni: cilium
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"

431 Downstream cluster provisioning with Directed network provisioning (single-node)

 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 storage:
 files:
 # https://docs.rke2.io/networking/multus_sriov#using-multus-with-cilium
 - path: /var/lib/rancher/rke2/server/manifests/rke2-cilium-config.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChartConfig
 metadata:
 name: rke2-cilium
 namespace: kube-system
 spec:
 valuesContent: |-
 cni:
 exclusive: false
 mode: 0644
 user:
 name: root
 group:
 name: root
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

The Metal3MachineTemplate object specifies the following information:

The dataTemplate to be used as a reference to the template.

The hostSelector to be used matching with the label created during the enrollment
process.

The image to be used as a reference to the image generated using EIB on the previous sec-
tion (Section 34.2, “Prepare downstream cluster image for connected scenarios”), and the check-
sum and checksumType to be used to validate the image.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: single-node-cluster-controlplane
 namespace: default

432 Downstream cluster provisioning with Directed network provisioning (single-node)

spec:
 template:
 spec:
 dataTemplate:
 name: single-node-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/eibimage-slmicro60rt-telco.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/eibimage-slmicro60rt-telco.raw

The Metal3DataTemplate object specifies the metaData for the downstream cluster.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: single-node-cluster-controlplane-template
 namespace: default
spec:
 clusterName: single-node-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname
 object: machine

Once the le is created by joining the previous blocks, the following command must be executed
in the management cluster to start provisioning the new bare-metal host:

$ kubectl apply -f capi-provisioning-example.yaml

433 Downstream cluster provisioning with Directed network provisioning (single-node)

34.5 Downstream cluster provisioning with Directed
network provisioning (multi-node)

This section describes the workflow used to automate the provisioning of a multi-node down-
stream cluster using directed network provisioning and MetalLB as a load-balancer strategy.
This is the simplest way to automate the provisioning of a downstream cluster. The following
diagram shows the workflow used to automate the provisioning of a multi-node downstream
cluster using directed network provisioning and MetalLB.

Requirements

The image generated using EIB, as described in the previous section (Section 34.2, “Prepare

downstream cluster image for connected scenarios”), with the minimal configuration to set up
the downstream cluster has to be located in the management cluster exactly on the path
you configured on this section (Note).

The management server created and available to be used on the following sections. For
more information, refer to the Management Cluster section: Chapter 32, Setting up the man-

agement cluster.

Workflow

434 Downstream cluster provisioning with Directed network provisioning (multi-node)

The following diagram shows the workflow used to automate the provisioning of a multi-node
downstream cluster using directed network provisioning:

1. Enroll the three bare-metal hosts to make them available for the provisioning process.

2. Provision the three bare-metal hosts to install and configure the operating system and the
Kubernetes cluster using MetalLB.

Enroll the bare-metal hosts

435 Downstream cluster provisioning with Directed network provisioning (multi-node)

The rst step is to enroll the three bare-metal hosts in the management cluster to make them
available to be provisioned. To do that, the following les (bmh-example-node1.yaml, bmh-ex-
ample-node2.yaml and bmh-example-node3.yaml) must be created in the management clus-
ter, to specify the BMC credentials to be used and the BaremetalHost object to be enrolled in
the management cluster.

Note

Only the values between $\{…\} have to be replaced with the real values.

We will walk you through the process for only one host. The same steps apply to
the other two nodes.

apiVersion: v1
kind: Secret
metadata:
 name: node1-example-credentials
type: Opaque
data:
 username: ${BMC_NODE1_USERNAME}
 password: ${BMC_NODE1_PASSWORD}

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: node1-example
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: ${BMC_NODE1_MAC}
 bmc:
 address: ${BMC_NODE1_ADDRESS}
 disableCertificateVerification: true
 credentialsName: node1-example-credentials

Where:

${BMC_NODE1_USERNAME} — The username for the BMC of the rst bare-metal host.

${BMC_NODE1_PASSWORD} — The password for the BMC of the rst bare-metal host.

436 Downstream cluster provisioning with Directed network provisioning (multi-node)

${BMC_NODE1_MAC} — The MAC address of the rst bare-metal host to be used.

${BMC_NODE1_ADDRESS} — The URL for the rst bare-metal host BMC (for example,
redfish-virtualmedia://192.168.200.75/redfish/v1/Systems/1/). To learn more
about the different options available depending on your hardware provider, check the fol-
lowing link (https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md) .

Once the le is created, the following command must be executed in the management cluster
to start enrolling the bare-metal hosts in the management cluster:

$ kubectl apply -f bmh-example-node1.yaml
$ kubectl apply -f bmh-example-node2.yaml
$ kubectl apply -f bmh-example-node3.yaml

The new bare-metal host objects are enrolled, changing their state from registering to inspecting
and available. The changes can be checked using the following command:

$ kubectl get bmh -o wide

Note
The BaremetalHost object is in the registering state until the BMC credentials are val-
idated. Once the credentials are validated, the BaremetalHost object changes its state to
inspecting, and this step could take some time depending on the hardware (up to 20
minutes). During the inspecting phase, the hardware information is retrieved and the Ku-
bernetes object is updated. Check the information using the following command: kubectl
get bmh -o yaml.

Provision step

Once the three bare-metal hosts are enrolled and available, the next step is to provision the
bare-metal hosts to install and configure the operating system and the Kubernetes cluster, cre-
ating a load balancer to manage them. To do that, the following le (capi-provisioning-ex-
ample.yaml) must be created in the management cluster with the following information (the
`capi-provisioning-example.yaml can be generated by joining the following blocks).

437 Downstream cluster provisioning with Directed network provisioning (multi-node)

https://github.com/metal3-io/baremetal-operator/blob/main/docs/api.md

Note

Only values between $\{…\} must be replaced with the real values.

The VIP address is a reserved IP address that is not assigned to any node and is used
to configure the load balancer.

Below is the cluster definition, where the cluster network can be configured using the pods and
the services blocks. Also, it contains the references to the control plane and the infrastructure
(using the Metal3 provider) objects to be used.

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 name: multinode-cluster
 namespace: default
spec:
 clusterNetwork:
 pods:
 cidrBlocks:
 - 192.168.0.0/18
 services:
 cidrBlocks:
 - 10.96.0.0/12
 controlPlaneRef:
 apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
 kind: RKE2ControlPlane
 name: multinode-cluster
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3Cluster
 name: multinode-cluster

The Metal3Cluster object specifies the control-plane endpoint that uses the VIP address al-
ready reserved (replacing the ${DOWNSTREAM_VIP_ADDRESS}) to be configured and the noCloud-
Provider because the three bare-metal nodes are used.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3Cluster
metadata:
 name: multinode-cluster
 namespace: default
spec:
 controlPlaneEndpoint:

438 Downstream cluster provisioning with Directed network provisioning (multi-node)

 host: ${EDGE_VIP_ADDRESS}
 port: 6443
 noCloudProvider: true

The RKE2ControlPlane object specifies the control-plane configuration to be used, and the
Metal3MachineTemplate object specifies the control-plane image to be used.

The number of replicas to be used (in this case, three).

The advertisement mode to be used by the Load Balancer (address uses the L2 implemen-
tation), as well as the address to be used (replacing the ${EDGE_VIP_ADDRESS} with the
VIP address).

The serverConfig with the CNI plug-in to be used (in this case, Cilium), and the tlsSan
to be used to configure the VIP address.

The agentConfig block contains the Ignition format to be used and the additionalUser-
Data to be used to configure the RKE2 node with information like:

The systemd service named rke2-preinstall.service to replace automatically the
BAREMETALHOST_UUID and node-name during the provisioning process using the Iron-
ic information.

The storage block which contains the Helm charts to be used to install the MetalLB
and the endpoint-copier-operator.

The metalLB custom resource le with the IPaddressPool and the L2Advertise-
ment to be used (replacing ${EDGE_VIP_ADDRESS} with the VIP address).

The endpoint-svc.yaml le to be used to configure the kubernetes-vip service to
be used by the MetalLB to manage the VIP address.

The last block of information contains the Kubernetes version to be used. The
${RKE2_VERSION} is the version of RKE2 to be used replacing this value (for example,
v1.30.5+rke2r1).

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: multinode-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate

439 Downstream cluster provisioning with Directed network provisioning (multi-node)

 name: multinode-cluster-controlplane
 replicas: 3
 registrationMethod: "address"
 registrationAddress: ${EDGE_VIP_ADDRESS}
 serverConfig:
 cni: cilium
 tlsSan:
 - ${EDGE_VIP_ADDRESS}
 - https://${EDGE_VIP_ADDRESS}.sslip.io
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 storage:
 files:
 # https://docs.rke2.io/networking/multus_sriov#using-multus-with-cilium
 - path: /var/lib/rancher/rke2/server/manifests/rke2-cilium-config.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChartConfig
 metadata:
 name: rke2-cilium

440 Downstream cluster provisioning with Directed network provisioning (multi-node)

 namespace: kube-system
 spec:
 valuesContent: |-
 cni:
 exclusive: false
 mode: 0644
 user:
 name: root
 group:
 name: root
 - path: /var/lib/rancher/rke2/server/manifests/endpoint-copier-operator.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: endpoint-copier-operator
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/3.1/endpoint-copier-operator-
chart
 targetNamespace: endpoint-copier-operator
 version: 0.2.1
 createNamespace: true
 - path: /var/lib/rancher/rke2/server/manifests/metallb.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: metallb
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/3.1/metallb-chart
 targetNamespace: metallb-system
 version: 0.14.9
 createNamespace: true

 - path: /var/lib/rancher/rke2/server/manifests/metallb-cr.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: metallb.io/v1beta1
 kind: IPAddressPool
 metadata:

441 Downstream cluster provisioning with Directed network provisioning (multi-node)

 name: kubernetes-vip-ip-pool
 namespace: metallb-system
 spec:
 addresses:
 - ${EDGE_VIP_ADDRESS}/32
 serviceAllocation:
 priority: 100
 namespaces:
 - default
 serviceSelectors:
 - matchExpressions:
 - {key: "serviceType", operator: In, values: [kubernetes-vip]}

 apiVersion: metallb.io/v1beta1
 kind: L2Advertisement
 metadata:
 name: ip-pool-l2-adv
 namespace: metallb-system
 spec:
 ipAddressPools:
 - kubernetes-vip-ip-pool
 - path: /var/lib/rancher/rke2/server/manifests/endpoint-svc.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 kind: Service
 metadata:
 name: kubernetes-vip
 namespace: default
 labels:
 serviceType: kubernetes-vip
 spec:
 ports:
 - name: rke2-api
 port: 9345
 protocol: TCP
 targetPort: 9345
 - name: k8s-api
 port: 6443
 protocol: TCP
 targetPort: 6443
 type: LoadBalancer
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}

442 Downstream cluster provisioning with Directed network provisioning (multi-node)

 nodeName: "Node-multinode-cluster"

The Metal3MachineTemplate object specifies the following information:

The dataTemplate to be used as a reference to the template.

The hostSelector to be used matching with the label created during the enrollment
process.

The image to be used as a reference to the image generated using EIB on the previous sec-
tion (Section 34.2, “Prepare downstream cluster image for connected scenarios”), and checksum
and checksumType to be used to validate the image.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: multinode-cluster-controlplane
 namespace: default
spec:
 template:
 spec:
 dataTemplate:
 name: multinode-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/eibimage-slmicro60rt-telco.raw.sha256
 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/eibimage-slmicro60rt-telco.raw

The Metal3DataTemplate object specifies the metaData for the downstream cluster.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: multinode-node-cluster-controlplane-template
 namespace: default
spec:
 clusterName: single-node-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname

443 Downstream cluster provisioning with Directed network provisioning (multi-node)

 object: machine
 - key: local_hostname
 object: machine

Once the le is created by joining the previous blocks, the following command has to be executed
in the management cluster to start provisioning the new three bare-metal hosts:

$ kubectl apply -f capi-provisioning-example.yaml

34.6 Advanced Network Configuration
The directed network provisioning workflow allows downstream clusters network configura-
tions such as static IPs, bonding, VLAN’s, etc.

The following sections describe the additional steps required to enable provisioning downstream
clusters using advanced network configuration.

Requirements

The image generated using EIB has to include the network folder and the script following
this section (Section 34.2.2.6, “Additional script for Advanced Network Configuration”).

Configuration

Use the following two sections as the base to enroll and provision the hosts:

Downstream cluster provisioning with Directed network provisioning (single-node) (Sec-

tion 34.4, “Downstream cluster provisioning with Directed network provisioning (single-node)”)

Downstream cluster provisioning with Directed network provisioning (multi-node) (Sec-

tion 34.5, “Downstream cluster provisioning with Directed network provisioning (multi-node)”)

The changes required to enable the advanced network configuration are the following:

Enrollment step: The following new example le with a secret containing the information
about the networkData to be used to configure, for example, the static IPs and VLAN for
the downstream cluster

apiVersion: v1
kind: Secret
metadata:
 name: controlplane-0-networkdata
type: Opaque

444 Advanced Network Configuration

stringData:
 networkData: |
 interfaces:
 - name: ${CONTROLPLANE_INTERFACE}
 type: ethernet
 state: up
 mtu: 1500
 mac-address: "${CONTROLPLANE_MAC}"
 ipv4:
 address:
 - ip: "${CONTROLPLANE_IP}"
 prefix-length: "${CONTROLPLANE_PREFIX}"
 enabled: true
 dhcp: false
 - name: floating
 type: vlan
 state: up
 vlan:
 base-iface: ${CONTROLPLANE_INTERFACE}
 id: ${VLAN_ID}
 dns-resolver:
 config:
 server:
 - "${DNS_SERVER}"
 routes:
 config:
 - destination: 0.0.0.0/0
 next-hop-address: "${CONTROLPLANE_GATEWAY}"
 next-hop-interface: ${CONTROLPLANE_INTERFACE}

This le contains the networkData in a nmstate format to be used to configure the advance
network configuration (for example, static IPs and VLAN) for the downstream cluster. As you
can see, the example shows the configuration to enable the interface with static IPs, as well
as the configuration to enable the VLAN using the base interface. Any other nmstate example
could be defined to be used to configure the network for the downstream cluster to adapt to the
specific requirements, where the following variables have to be replaced with real values:

${CONTROLPLANE1_INTERFACE} — The control-plane interface to be used for the edge clus-
ter (for example, eth0).

${CONTROLPLANE1_IP} — The IP address to be used as an endpoint for the edge cluster
(must match with the kubeapi-server endpoint).

${CONTROLPLANE1_PREFIX} — The CIDR to be used for the edge cluster (for example, 24
if you want /24 or 255.255.255.0).

445 Advanced Network Configuration

${CONTROLPLANE1_GATEWAY} — The gateway to be used for the edge cluster (for example,
192.168.100.1).

${CONTROLPLANE1_MAC} — The MAC address to be used for the control-plane interface
(for example, 00:0c:29:3e:3e:3e).

${DNS_SERVER} — The DNS to be used for the edge cluster (for example, 192.168.100.2).

${VLAN_ID} — The VLAN ID to be used for the edge cluster (for example, 100).

Also, the reference to that secret using preprovisioningNetworkDataName is needed in the
BaremetalHost object at the end of the le to be enrolled in the management cluster.

apiVersion: v1
kind: Secret
metadata:
 name: example-demo-credentials
type: Opaque
data:
 username: ${BMC_USERNAME}
 password: ${BMC_PASSWORD}

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: example-demo
 labels:
 cluster-role: control-plane
spec:
 online: true
 bootMACAddress: ${BMC_MAC}
 rootDeviceHints:
 deviceName: /dev/nvme0n1
 bmc:
 address: ${BMC_ADDRESS}
 disableCertificateVerification: true
 credentialsName: example-demo-credentials
 preprovisioningNetworkDataName: controlplane-0-networkdata

Note
If you need to deploy a multi-node cluster, the same process must be done for the other
nodes.

446 Advanced Network Configuration

Provision step: The block of information related to the network data has to be removed
because the platform includes the network data configuration into the secret control-
plane-0-networkdata.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3DataTemplate
metadata:
 name: multinode-cluster-controlplane-template
 namespace: default
spec:
 clusterName: multinode-cluster
 metaData:
 objectNames:
 - key: name
 object: machine
 - key: local-hostname
 object: machine
 - key: local_hostname
 object: machine

Note
The Metal3DataTemplate, networkData and Metal3 IPAM are currently not supported;
only the configuration via static secrets is fully supported.

34.7 Telco features (DPDK, SR-IOV, CPU isolation,
huge pages, NUMA, etc.)

The directed network provisioning workflow allows to automate the Telco features to be used
in the downstream clusters to run Telco workloads on top of those servers.

Requirements

447 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

The image generated using EIB has to include the specific Telco packages following this
section (Section 34.2.2.5, “Additional configuration for Telco workloads”).

The image generated using EIB, as described in the previous section (Section 34.2, “Prepare

downstream cluster image for connected scenarios”), has to be located in the management
cluster exactly on the path you configured on this section (Note).

The management server created and available to be used on the following sections. For
more information, refer to the Management Cluster section: Chapter 32, Setting up the man-

agement cluster.

Configuration

Use the following two sections as the base to enroll and provision the hosts:

Downstream cluster provisioning with Directed network provisioning (single-node) (Sec-

tion 34.4, “Downstream cluster provisioning with Directed network provisioning (single-node)”)

Downstream cluster provisioning with Directed network provisioning (multi-node) (Sec-

tion 34.5, “Downstream cluster provisioning with Directed network provisioning (multi-node)”)

The Telco features covered in this section are the following:

DPDK and VFs creation

SR-IOV and VFs allocation to be used by the workloads

CPU isolation and performance tuning

Huge pages configuration

Kernel parameters tuning

Note
For more information about the Telco features, see Chapter 33, Telco features configuration.

The changes required to enable the Telco features shown above are all inside the RKE2Control-
Plane block in the provision le capi-provisioning-example.yaml. The rest of the informa-
tion inside the le capi-provisioning-example.yaml is the same as the information provid-
ed in the provisioning section (Section 34.4, “Downstream cluster provisioning with Directed network

provisioning (single-node)” (page 429)).

448 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

To make the process clear, the changes required on that block (RKE2ControlPlane) to enable
the Telco features are the following:

The preRKE2Commands to be used to execute the commands before the RKE2 installation
process. In this case, use the modprobe command to enable the vfio-pci and the SR-IOV
kernel modules.

The ignition le /var/lib/rancher/rke2/server/manifests/configmap-sriov-cus-
tom-auto.yaml to be used to define the interfaces, drivers and the number of VFs to be
created and exposed to the workloads.

The values inside the config map sriov-custom-auto-config are the only values
to be replaced with real values.

${RESOURCE_NAME1} — The resource name to be used for the rst PF interface
(for example, sriov-resource-du1). It is added to the prefix rancher.io to
be used as a label to be used by the workloads (for example, rancher.io/sri-
ov-resource-du1).

${SRIOV-NIC-NAME1} — The name of the rst PF interface to be used (for ex-
ample, eth0).

${PF_NAME1} — The name of the rst physical function PF to be used. Generate
more complex filters using this (for example, eth0#2-5).

${DRIVER_NAME1} — The driver name to be used for the rst VF interface (for
example, vfio-pci).

${NUM_VFS1} — The number of VFs to be created for the rst PF interface (for
example, 8).

The /var/sriov-auto-filler.sh to be used as a translator between the high-level config
map sriov-custom-auto-config and the sriovnetworknodepolicy which contains the
low-level hardware information. This script has been created to abstract the user from the
complexity to know in advance the hardware information. No changes are required in this
le, but it should be present if we need to enable sr-iov and create VFs.

The kernel arguments to be used to enable the following features:

Parameter Value Description

449 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

isolcpus domain,nohz,man-
aged_irq,1-30,33-62

Isolate the cores 1-30 and
33-62.

skew_tick 1 Allows the kernel to skew the
timer interrupts across the
isolated CPUs.

nohz on Allows the kernel to run the
timer tick on a single CPU
when the system is idle.

nohz_full 1-30,33-62 kernel boot parameter is the
current main interface to
configure full dynticks along
with CPU Isolation.

rcu_nocbs 1-30,33-62 Allows the kernel to run the
RCU callbacks on a single
CPU when the system is idle.

irqaffinity 0,31,32,63 Allows the kernel to run the
interrupts on a single CPU
when the system is idle.

idle poll Minimizes the latency of exit-
ing the idle state.

iommu pt Allows to use vo for the
dpdk interfaces.

intel_iommu on Enables the use of vo for
VFs.

hugepagesz 1G Allows to set the size of huge
pages to 1 G.

hugepages 40 Number of huge pages de-
fined before.

450 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

default_hugepagesz 1G Default value to enable huge
pages.

nowatchdog Disables the watchdog.

nmi_watchdog 0 Disables the NMI watchdog.

The following systemd services are used to enable the following:

rke2-preinstall.service to replace automatically the BAREMETALHOST_UUID and
node-name during the provisioning process using the Ironic information.

cpu-partitioning.service to enable the isolation cores of the CPU (for example,
1-30,33-62).

performance-settings.service to enable the CPU performance tuning.

sriov-custom-auto-vfs.service to install the sriov Helm chart, wait until cus-
tom resources are created and run the /var/sriov-auto-filler.sh to replace the
values in the config map sriov-custom-auto-config and create the sriovnetwor-
knodepolicy to be used by the workloads.

The ${RKE2_VERSION} is the version of RKE2 to be used replacing this value (for example,
v1.30.5+rke2r1).

With all these changes mentioned, the RKE2ControlPlane block in the capi-provision-
ing-example.yaml will look like the following:

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 serverConfig:
 cni: calico
 cniMultusEnable: true
 preRKE2Commands:
 - modprobe vfio-pci enable_sriov=1 disable_idle_d3=1

451 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 storage:
 files:
 - path: /var/lib/rancher/rke2/server/manifests/configmap-sriov-custom-
auto.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: sriov-custom-auto-config
 namespace: kube-system
 data:
 config.json: |
 [
 {
 "resourceName": "${RESOURCE_NAME1}",
 "interface": "${SRIOV-NIC-NAME1}",
 "pfname": "${PF_NAME1}",
 "driver": "${DRIVER_NAME1}",
 "numVFsToCreate": ${NUM_VFS1}
 },
 {
 "resourceName": "${RESOURCE_NAME2}",
 "interface": "${SRIOV-NIC-NAME2}",
 "pfname": "${PF_NAME2}",
 "driver": "${DRIVER_NAME2}",
 "numVFsToCreate": ${NUM_VFS2}
 }
]
 mode: 0644
 user:
 name: root
 group:
 name: root
 - path: /var/lib/rancher/rke2/server/manifests/sriov-crd.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart

452 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 metadata:
 name: sriov-crd
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/3.1/sriov-crd-chart
 targetNamespace: sriov-network-operator
 version: 1.3.0
 createNamespace: true
 - path: /var/lib/rancher/rke2/server/manifests/sriov-network-operator.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: sriov-network-operator
 namespace: kube-system
 spec:
 chart: oci://registry.suse.com/edge/3.1/sriov-network-operator-chart
 targetNamespace: sriov-network-operator
 version: 1.3.0
 createNamespace: true
 kernel_arguments:
 should_exist:
 - intel_iommu=on
 - iommu=pt
 - idle=poll
 - mce=off
 - hugepagesz=1G hugepages=40
 - hugepagesz=2M hugepages=0
 - default_hugepagesz=1G
 - irqaffinity=${NON-ISOLATED_CPU_CORES}
 - isolcpus=domain,nohz,managed_irq,${ISOLATED_CPU_CORES}
 - nohz_full=${ISOLATED_CPU_CORES}
 - rcu_nocbs=${ISOLATED_CPU_CORES}
 - rcu_nocb_poll
 - nosoftlockup
 - nowatchdog
 - nohz=on
 - nmi_watchdog=0
 - skew_tick=1
 - quiet
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |

453 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 - name: cpu-partitioning.service
 enabled: true
 contents: |
 [Unit]
 Description=cpu-partitioning
 Wants=network-online.target
 After=network.target network-online.target
 [Service]
 Type=oneshot
 User=root
 ExecStart=/bin/sh -c "echo isolated_cores=${ISOLATED_CPU_CORES} > /etc/
tuned/cpu-partitioning-variables.conf"
 ExecStartPost=/bin/sh -c "tuned-adm profile cpu-partitioning"
 ExecStartPost=/bin/sh -c "systemctl enable tuned.service"
 [Install]
 WantedBy=multi-user.target
 - name: performance-settings.service
 enabled: true
 contents: |
 [Unit]
 Description=performance-settings
 Wants=network-online.target
 After=network.target network-online.target cpu-partitioning.service
 [Service]
 Type=oneshot
 User=root
 ExecStart=/bin/sh -c "/opt/performance-settings/performance-settings.sh"
 [Install]
 WantedBy=multi-user.target
 - name: sriov-custom-auto-vfs.service
 enabled: true

454 Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)

 contents: |
 [Unit]
 Description=SRIOV Custom Auto VF Creation
 Wants=network-online.target rke2-server.target
 After=network.target network-online.target rke2-server.target
 [Service]
 User=root
 Type=forking
 TimeoutStartSec=900
 ExecStart=/bin/sh -c "while ! /var/lib/rancher/rke2/bin/kubectl --
kubeconfig=/etc/rancher/rke2/rke2.yaml wait --for condition=ready nodes --all ; do sleep
 2 ; done"
 ExecStartPost=/bin/sh -c "while [$(/var/lib/rancher/
rke2/bin/kubectl --kubeconfig=/etc/rancher/rke2/rke2.yaml get
 sriovnetworknodestates.sriovnetwork.openshift.io --ignore-not-found --no-headers -A | wc
 -l) -eq 0]; do sleep 1; done"
 ExecStartPost=/bin/sh -c "/opt/sriov/sriov-auto-filler.sh"
 RemainAfterExit=yes
 KillMode=process
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

Once the le is created by joining the previous blocks, the following command must be executed
in the management cluster to start provisioning the new downstream cluster using the Telco
features:

$ kubectl apply -f capi-provisioning-example.yaml

34.8 Private registry
It is possible to configure a private registry as a mirror for images used by workloads.

To do this we create the secret containing the information about the private registry to be used
by the downstream cluster.

apiVersion: v1
kind: Secret
metadata:
 name: private-registry-cert
 namespace: default

455 Private registry

data:
 tls.crt: ${TLS_CERTIFICATE}
 tls.key: ${TLS_KEY}
 ca.crt: ${CA_CERTIFICATE}
type: kubernetes.io/tls

apiVersion: v1
kind: Secret
metadata:
 name: private-registry-auth
 namespace: default
data:
 username: ${REGISTRY_USERNAME}
 password: ${REGISTRY_PASSWORD}

The tls.crt, tls.key and ca.crt are the certificates to be used to authenticate the private
registry. The username and password are the credentials to be used to authenticate the private
registry.

Note
The tls.crt, tls.key, ca.crt , username and password have to be encoded in base64
format before to be used in the secret.

With all these changes mentioned, the RKE2ControlPlane block in the capi-provision-
ing-example.yaml will look like the following:

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 privateRegistriesConfig:
 mirrors:
 "registry.example.com":
 endpoint:
 - "https://registry.example.com:5000"
 configs:
 "registry.example.com":

456 Private registry

 authSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-auth
 tls:
 tlsConfigSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-cert
 serverConfig:
 cni: calico
 cniMultusEnable: true
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

457 Private registry

Where the registry.example.com is the example name of the private registry to be used by
the downstream cluster, and it should be replaced with the real values.

34.9 Downstream cluster provisioning in air-gapped
scenarios

The directed network provisioning workflow allows to automate the provisioning of downstream
clusters in air-gapped scenarios.

34.9.1 Requirements for air-gapped scenarios

1. The raw image generated using EIB must include the specific container images (helm-chart
OCI and container images) required to run the downstream cluster in an air-gapped sce-
nario. For more information, refer to this section (Section 34.3, “Prepare downstream cluster

image for air-gap scenarios”).

2. In case of using SR-IOV or any other custom workload, the images required to run the
workloads must be preloaded in your private registry following the preload private registry
section (Section 34.3.2.7, “Preload your private registry with images required for air-gap scenarios

and SR-IOV (optional)”).

34.9.2 Enroll the bare-metal hosts in air-gap scenarios

The process to enroll the bare-metal hosts in the management cluster is the same as described in
the previous section (Section 34.4, “Downstream cluster provisioning with Directed network provisioning

(single-node)” (page 428)).

458 Downstream cluster provisioning in air-gapped scenarios

34.9.3 Provision the downstream cluster in air-gap scenarios

There are some important changes required to provision the downstream cluster in air-gapped
scenarios:

1. The RKE2ControlPlane block in the capi-provisioning-example.yaml le must include
the spec.agentConfig.airGapped: true directive.

2. The private registry configuration must be included in the RKE2ControlPlane block in
the capi-provisioning-airgap-example.yaml le following the private registry section
(Section 34.8, “Private registry”).

3. If you are using SR-IOV or any other AdditionalUserData configuration (combustion
script) which requires the helm-chart installation, you must modify the content to reference
the private registry instead of using the public registry.

The following example shows the SR-IOV configuration in the AdditionalUserData block in the
capi-provisioning-airgap-example.yaml le with the modifications required to reference
the private registry

Private Registry secrets references

Helm-Chart definition using the private registry instead of the public OCI images.

secret to include the private registry certificates
apiVersion: v1
kind: Secret
metadata:
 name: private-registry-cert
 namespace: default
data:
 tls.crt: ${TLS_BASE64_CERT}
 tls.key: ${TLS_BASE64_KEY}
 ca.crt: ${CA_BASE64_CERT}
type: kubernetes.io/tls

secret to include the private registry auth credentials
apiVersion: v1
kind: Secret
metadata:
 name: private-registry-auth
 namespace: default
data:
 username: ${REGISTRY_USERNAME}
 password: ${REGISTRY_PASSWORD}

459 Provision the downstream cluster in air-gap scenarios

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 privateRegistriesConfig: # Private registry configuration to add your own mirror
 and credentials
 mirrors:
 docker.io:
 endpoint:
 - "https://$(PRIVATE_REGISTRY_URL)"
 configs:
 "192.168.100.22:5000":
 authSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-auth
 tls:
 tlsConfigSecret:
 apiVersion: v1
 kind: Secret
 namespace: default
 name: private-registry-cert
 insecureSkipVerify: false
 serverConfig:
 cni: calico
 cniMultusEnable: true
 preRKE2Commands:
 - modprobe vfio-pci enable_sriov=1 disable_idle_d3=1
 agentConfig:
 airGapped: true # Airgap true to enable airgap mode
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 storage:
 files:

460 Provision the downstream cluster in air-gap scenarios

 - path: /var/lib/rancher/rke2/server/manifests/configmap-sriov-custom-
auto.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: sriov-custom-auto-config
 namespace: sriov-network-operator
 data:
 config.json: |
 [
 {
 "resourceName": "${RESOURCE_NAME1}",
 "interface": "${SRIOV-NIC-NAME1}",
 "pfname": "${PF_NAME1}",
 "driver": "${DRIVER_NAME1}",
 "numVFsToCreate": ${NUM_VFS1}
 },
 {
 "resourceName": "${RESOURCE_NAME2}",
 "interface": "${SRIOV-NIC-NAME2}",
 "pfname": "${PF_NAME2}",
 "driver": "${DRIVER_NAME2}",
 "numVFsToCreate": ${NUM_VFS2}
 }
]
 mode: 0644
 user:
 name: root
 group:
 name: root
 - path: /var/lib/rancher/rke2/server/manifests/sriov.yaml
 overwrite: true
 contents:
 inline: |
 apiVersion: v1
 data:
 .dockerconfigjson: ${REGISTRY_AUTH_DOCKERCONFIGJSON}
 kind: Secret
 metadata:
 name: privregauth
 namespace: kube-system
 type: kubernetes.io/dockerconfigjson

 apiVersion: v1

461 Provision the downstream cluster in air-gap scenarios

 kind: ConfigMap
 metadata:
 namespace: kube-system
 name: example-repo-ca
 data:
 ca.crt: |-
 -----BEGIN CERTIFICATE-----
 ${CA_BASE64_CERT}
 -----END CERTIFICATE-----

 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: sriov-crd
 namespace: kube-system
 spec:
 chart: oci://${PRIVATE_REGISTRY_URL}/sriov-crd
 dockerRegistrySecret:
 name: privregauth
 repoCAConfigMap:
 name: example-repo-ca
 createNamespace: true
 set:
 global.clusterCIDR: 192.168.0.0/18
 global.clusterCIDRv4: 192.168.0.0/18
 global.clusterDNS: 10.96.0.10
 global.clusterDomain: cluster.local
 global.rke2DataDir: /var/lib/rancher/rke2
 global.serviceCIDR: 10.96.0.0/12
 targetNamespace: sriov-network-operator
 version: ${SRIOV_CRD_VERSION}

 apiVersion: helm.cattle.io/v1
 kind: HelmChart
 metadata:
 name: sriov-network-operator
 namespace: kube-system
 spec:
 chart: oci://${PRIVATE_REGISTRY_URL}/sriov-network-operator
 dockerRegistrySecret:
 name: privregauth
 repoCAConfigMap:
 name: example-repo-ca
 createNamespace: true
 set:
 global.clusterCIDR: 192.168.0.0/18
 global.clusterCIDRv4: 192.168.0.0/18

462 Provision the downstream cluster in air-gap scenarios

 global.clusterDNS: 10.96.0.10
 global.clusterDomain: cluster.local
 global.rke2DataDir: /var/lib/rancher/rke2
 global.serviceCIDR: 10.96.0.0/12
 targetNamespace: sriov-network-operator
 version: ${SRIOV_OPERATOR_VERSION}
 mode: 0644
 user:
 name: root
 group:
 name: root
 kernel_arguments:
 should_exist:
 - intel_iommu=on
 - iommu=pt
 - idle=poll
 - mce=off
 - hugepagesz=1G hugepages=40
 - hugepagesz=2M hugepages=0
 - default_hugepagesz=1G
 - irqaffinity=${NON-ISOLATED_CPU_CORES}
 - isolcpus=domain,nohz,managed_irq,${ISOLATED_CPU_CORES}
 - nohz_full=${ISOLATED_CPU_CORES}
 - rcu_nocbs=${ISOLATED_CPU_CORES}
 - rcu_nocb_poll
 - nosoftlockup
 - nowatchdog
 - nohz=on
 - nmi_watchdog=0
 - skew_tick=1
 - quiet
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete
 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"

463 Provision the downstream cluster in air-gap scenarios

 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 - name: cpu-partitioning.service
 enabled: true
 contents: |
 [Unit]
 Description=cpu-partitioning
 Wants=network-online.target
 After=network.target network-online.target
 [Service]
 Type=oneshot
 User=root
 ExecStart=/bin/sh -c "echo isolated_cores=${ISOLATED_CPU_CORES} > /etc/
tuned/cpu-partitioning-variables.conf"
 ExecStartPost=/bin/sh -c "tuned-adm profile cpu-partitioning"
 ExecStartPost=/bin/sh -c "systemctl enable tuned.service"
 [Install]
 WantedBy=multi-user.target
 - name: performance-settings.service
 enabled: true
 contents: |
 [Unit]
 Description=performance-settings
 Wants=network-online.target
 After=network.target network-online.target cpu-partitioning.service
 [Service]
 Type=oneshot
 User=root
 ExecStart=/bin/sh -c "/opt/performance-settings/performance-settings.sh"
 [Install]
 WantedBy=multi-user.target
 - name: sriov-custom-auto-vfs.service
 enabled: true
 contents: |
 [Unit]
 Description=SRIOV Custom Auto VF Creation
 Wants=network-online.target rke2-server.target
 After=network.target network-online.target rke2-server.target
 [Service]
 User=root
 Type=forking
 TimeoutStartSec=900

464 Provision the downstream cluster in air-gap scenarios

 ExecStart=/bin/sh -c "while ! /var/lib/rancher/rke2/bin/kubectl --
kubeconfig=/etc/rancher/rke2/rke2.yaml wait --for condition=ready nodes --all ; do sleep
 2 ; done"
 ExecStartPost=/bin/sh -c "while [$(/var/lib/rancher/
rke2/bin/kubectl --kubeconfig=/etc/rancher/rke2/rke2.yaml get
 sriovnetworknodestates.sriovnetwork.openshift.io --ignore-not-found --no-headers -A | wc
 -l) -eq 0]; do sleep 1; done"
 ExecStartPost=/bin/sh -c "/opt/sriov/sriov-auto-filler.sh"
 RemainAfterExit=yes
 KillMode=process
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_VERSION}
 nodeName: "localhost.localdomain"

465 Provision the downstream cluster in air-gap scenarios

35 Lifecycle actions

This section covers the lifecycle management actions of deployed ATIP clusters.

35.1 Management cluster upgrades
The upgrade of the management cluster involves several components. For a list of the general
components that require an upgrade, see the Day 2 management cluster (Chapter 27, Management

Cluster) documentation.

The upgrade procedure for comoponents specific to this setup can be seen below.

Upgrading Metal3

To upgrade Metal3, use the following command to update the Helm repository cache and fetch
the latest chart to install Metal3 from the Helm chart repository:

helm repo update
helm fetch suse-edge/metal3

After that, the easy way to upgrade is to export your current configurations to a le, and then
upgrade the Metal3 version using that previous le. If any change is required in the new version,
the le can be edited before the upgrade.

helm get values metal3 -n metal3-system -o yaml > metal3-values.yaml
helm upgrade metal3 suse-edge/metal3 \
 --namespace metal3-system \
 -f metal3-values.yaml \
 --version=0.8.3

35.2 Downstream cluster upgrades
Upgrading downstream clusters involves updating several components. The following sections
cover the upgrade process for each of the components.

Upgrading the operating system

For this process, check the following reference (Section 34.2, “Prepare downstream cluster image for

connected scenarios”) to build the new image with a new operating system version. With this new
image generated by EIB, the next provision phase uses the new operating version provided. In
the following step, the new image is used to upgrade the nodes.

466 Management cluster upgrades

Upgrading the RKE2 cluster

The changes required to upgrade the RKE2 cluster using the automated workflow are the fol-
lowing:

Change the block RKE2ControlPlane in the capi-provisioning-example.yaml shown
in the following section (Section 34.4, “Downstream cluster provisioning with Directed network

provisioning (single-node)” (page 429)):

Add the rollout strategy in the spec le.

Change the version of the RKE2 cluster to the new version replacing
${RKE2_NEW_VERSION}.

apiVersion: controlplane.cluster.x-k8s.io/v1alpha1
kind: RKE2ControlPlane
metadata:
 name: single-node-cluster
 namespace: default
spec:
 infrastructureRef:
 apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
 kind: Metal3MachineTemplate
 name: single-node-cluster-controlplane
 replicas: 1
 serverConfig:
 cni: cilium
 rolloutStrategy:
 rollingUpdate:
 maxSurge: 0
 agentConfig:
 format: ignition
 additionalUserData:
 config: |
 variant: fcos
 version: 1.4.0
 systemd:
 units:
 - name: rke2-preinstall.service
 enabled: true
 contents: |
 [Unit]
 Description=rke2-preinstall
 Wants=network-online.target
 Before=rke2-install.service
 ConditionPathExists=!/run/cluster-api/bootstrap-success.complete

467 Downstream cluster upgrades

 [Service]
 Type=oneshot
 User=root
 ExecStartPre=/bin/sh -c "mount -L config-2 /mnt"
 ExecStart=/bin/sh -c "sed -i \"s/BAREMETALHOST_UUID/$(jq -r .uuid /mnt/
openstack/latest/meta_data.json)/\" /etc/rancher/rke2/config.yaml"
 ExecStart=/bin/sh -c "echo \"node-name: $(jq -r .name /mnt/openstack/
latest/meta_data.json)\" >> /etc/rancher/rke2/config.yaml"
 ExecStartPost=/bin/sh -c "umount /mnt"
 [Install]
 WantedBy=multi-user.target
 kubelet:
 extraArgs:
 - provider-id=metal3://BAREMETALHOST_UUID
 version: ${RKE2_NEW_VERSION}
 nodeName: "localhost.localdomain"

Change the block Metal3MachineTemplate in the capi-provisioning-example.yaml
shown in the following section (Section 34.4, “Downstream cluster provisioning with Directed

network provisioning (single-node)” (page 429)):

Change the image name and checksum to the new version generated in the previous
step.

Add the directive nodeReuse to true to avoid creating a new node.

Add the directive automatedCleaningMode to metadata to enable the automated
cleaning for the node.

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1
kind: Metal3MachineTemplate
metadata:
 name: single-node-cluster-controlplane
 namespace: default
spec:
 nodeReuse: True
 template:
 spec:
 automatedCleaningMode: metadata
 dataTemplate:
 name: single-node-cluster-controlplane-template
 hostSelector:
 matchLabels:
 cluster-role: control-plane
 image:
 checksum: http://imagecache.local:8080/${NEW_IMAGE_GENERATED}.sha256

468 Downstream cluster upgrades

 checksumType: sha256
 format: raw
 url: http://imagecache.local:8080/${NEW_IMAGE_GENERATED}.raw

After making these changes, the capi-provisioning-example.yaml le can be applied to the
cluster using the following command:

kubectl apply -f capi-provisioning-example.yaml

469 Downstream cluster upgrades

VII Appendix

36 Release Notes 471

36 Release Notes

36.1 Abstract

SUSE Edge 3.1 is a tightly integrated and comprehensively validated end-to-end solution for
addressing the unique challenges of the deployment of infrastructure and cloud-native appli-
cations at the edge. Its driving focus is to provide an opinionated, yet highly flexible, highly
scalable, and secure platform that spans initial deployment image building, node provisioning
and onboarding, application deployment, observability, and lifecycle management.

The solution is designed with the notion that there is no "one-size-ts-all" edge platform due
to our customers’ widely varying requirements and expectations. Edge deployments push us
to solve, and continually evolve, some of the most challenging problems, including massive
scalability, restricted network availability, physical space constraints, new security threats and
attack vectors, variations in hardware architecture and system resources, the requirement to
deploy and interface with legacy infrastructure and applications, and customer solutions that
have extended lifespans.

SUSE Edge is built on best-of-breed open source software from the ground up, consistent with
both our 30-year history in delivering secure, stable, and certified SUSE Linux platforms and
our experience in providing highly scalable and feature-rich Kubernetes management with our
Rancher portfolio. SUSE Edge builds on-top of these capabilities to deliver functionality that can
address a wide number of market segments, including retail, medical, transportation, logistics,
telecommunications, smart manufacturing, and Industrial IoT.

Note
SUSE Adaptive Telco Infrastructure Platform (ATIP) is a derivative (or downstream prod-
uct) of SUSE Edge, with additional optimizations and components that enable the plat-
form to address the requirements found in telecommunications use-cases. Unless explicit-
ly stated, all the release notes are applicable for both SUSE Edge 3.1, and SUSE ATIP 3.1.

471 Abstract

36.2 About

These Release Notes are, unless explicitly specified and explained, identical across all architec-
tures, and the most recent version, along with the release notes of all other SUSE products are
always available online at https://www.suse.com/releasenotes .

Entries are only listed once, but they can be referenced in several places if they are important
and belong to more than one section. Release notes usually only list changes that happened
between two subsequent releases. Certain important entries from the release notes of previous
product versions may be repeated. To make these entries easier to identify, they contain a note
to that effect.

However, repeated entries are provided as a courtesy only. Therefore, if you are skipping one
or releases, check the release notes of the skipped releases also. If you are only reading the
release notes of the current release, you could miss important changes that may affect system
behavior. SUSE Edge versions are defined as x.y.z, where 'x' denotes the major version, 'y' denotes
the minor, and 'z' denotes the patch version, also known as the "z-stream". SUSE Edge product
lifecycles are defined based around a given minor release, e.g. "3.1", but ship with subsequent
patch updates through its lifecycle, e.g. "3.1.1".

Note
SUSE Edge z-stream releases are tightly integrated and thoroughly tested as a versioned
stack. Upgrade of any individual components to a different versions to those listed above
is likely to result in system downtime. While it’s possible to run Edge clusters in untest-
ed configurations, it is not recommended, and it may take longer to provide resolution
through the support channels.

36.3 Release 3.1.1

Availability Date: 15th November 2024

Summary: SUSE Edge 3.1.1 is the rst release z-stream in the SUSE Edge 3.1 release stream.

472 About

https://www.suse.com/releasenotes

36.3.1 New Features

The NeuVector version is updated to 5.4.0 which provides several new features: Release

Notes (https://open-docs.neuvector.com/releasenotes/5x#release-notes-for-5x)

36.3.2 Bug & Security Fixes

The Rancher version is updated to 2.9.3: Release Notes (https://github.com/rancher/ranch-

er/releases/tag/v2.9.3)

The RKE2 version is updated to 1.30.5: Release Notes (https://docs.rke2.io/release-notes/

v1.30.X#release-v1305rke2r1)

The K3s version is updated to 1.30.5: Release Notes (https://docs.k3s.io/release-notes/

v1.30.X#release-v1305k3s1)

The Metal3 chart fixes an issue with the handling of the predictableNicNames parameter:
SUSE Edge issue #160 (https://github.com/suse-edge/charts/pull/160)

The Metal3 chart resolves security issues identified in CVE-2024-43803 (https://www.cve.org/

CVERecord?id=CVE-2024-43803:) : SUSE Edge issue #162 (https://github.com/suse-edge/

charts/pull/162)

The Metal3 chart resolves security issues identified in CVE-2024-44082 (https://www.cve.org/

CVERecord?id=CVE-2024-44082:) : SUSE Edge issue #160 (https://github.com/suse-edge/

charts/pull/160)

The RKE2 CAPI provider is updated to resolve an issue where ETCD becomes unavailable
on update: RKE2 provider issue #449 (https://github.com/rancher/cluster-api-provider-rke2/

issues/449)

36.3.3 Components Versions

The following table describes the individual components that make up the 3.1.1 release, includ-
ing the version, the Helm chart version (if applicable), and from where the released artifact
can be pulled in the binary format. Please follow the associated documentation for usage and
deployment examples. Note that items in bold are highlighted changes from the previous z-
stream release.

473 New Features

https://open-docs.neuvector.com/releasenotes/5x#release-notes-for-5x
https://open-docs.neuvector.com/releasenotes/5x#release-notes-for-5x
https://github.com/rancher/rancher/releases/tag/v2.9.3
https://github.com/rancher/rancher/releases/tag/v2.9.3
https://docs.rke2.io/release-notes/v1.30.X#release-v1305rke2r1
https://docs.rke2.io/release-notes/v1.30.X#release-v1305rke2r1
https://docs.k3s.io/release-notes/v1.30.X#release-v1305k3s1
https://docs.k3s.io/release-notes/v1.30.X#release-v1305k3s1
https://github.com/suse-edge/charts/pull/160
https://www.cve.org/CVERecord?id=CVE-2024-43803:
https://www.cve.org/CVERecord?id=CVE-2024-43803:
https://github.com/suse-edge/charts/pull/162
https://github.com/suse-edge/charts/pull/162
https://www.cve.org/CVERecord?id=CVE-2024-44082:
https://www.cve.org/CVERecord?id=CVE-2024-44082:
https://github.com/suse-edge/charts/pull/160
https://github.com/suse-edge/charts/pull/160
https://github.com/rancher/cluster-api-provider-rke2/issues/449
https://github.com/rancher/cluster-api-provider-rke2/issues/449

Name Version Helm Chart Version Artifact Location
(URL/Image)

SLE Micro 6.0 (latest) N/A SLE Micro Down-

load Page (https://

www.suse.com/down-

load/sle-micro/)

SL-Mi-
cro.x86_64-6.0-Base-
SelfInstall-GM2.in-
stall.iso (sha256
bc7c3210c8a9b688d2713ad87f17e2c90cb99fd6dee1d-
b528a5f-
f7f239cbcf79)
SL-Mi-
cro.x86_64-6.0-Base-
RT-SelfIn-
stall-GM2.in-
stall.iso (sha256
8242895e21745aec15e-
f526a95272887fa95d-
d832782b2cea4a95f41493f6648)
SL-Mi-
cro.x86_64-6.0-Base-
GM2.raw.xz (sha256
7ae13d080e66c8b35624b6566b5eaf-
f0875c8c141d0def9f-
baee5876781ed81b)
SL-Mi-
cro.x86_64-6.0-Base-
RT-GM2.raw.xz
(sha256
9a19078c062ab52c62c0254e11f5a5a9fac938fd094abf-
f5aa5eac2ec00b2d4e)

474 Components Versions

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

SUSE Manager 5.0.0 N/A SUSE Manager Down-

load Page (https://

www.suse.com/down-

load/suse-manag-

er/)

K3s 1.30.5 N/A Upstream K3s

Release (https://

github.com/k3s-io/

k3s/releases/tag/

v1.30.5%2Bk3s1)

RKE2 1.30.5 N/A Upstream RKE2

Release (https://

github.com/ranch-

er/rke2/releases/tag/

v1.30.5%2Brke2r1)

Rancher Prime 2.9.3 2.9.3 Rancher 2.9.3 Images

(https://github.com/

rancher/ranch-

er/releases/down-

load/v2.9.3/ranch-

er-images.txt)

Rancher Prime Helm

Repo (https://chart-

s.rancher.com/serv-

er-charts/prime)

Longhorn 1.7.1 104.2.0+up1.7.1 Longhorn 1.7.1

Images (https://

raw.githubuser-

content.com/long-

horn/longhorn/v1.7.1/

deploy/longhorn-im-

ages.txt)

475 Components Versions

https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://github.com/k3s-io/k3s/releases/tag/v1.30.5%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.5%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.5%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.5%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.5%2Bk3s1
https://github.com/rancher/rke2/releases/tag/v1.30.5%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.5%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.5%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.5%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.5%2Brke2r1
https://github.com/rancher/rancher/releases/download/v2.9.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.3/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.3/rancher-images.txt
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt

Longhorn Helm Repo

(https://charts.long-

horn.io)

NM Configurator 0.3.1 N/A NMConfigurator

Upstream Release

(https://github.com/

suse-edge/nm-config-

urator/releases/tag/

v0.3.1)

NeuVector 5.4.0 104.0.2+up2.8.0 reg-
istry.suse.com/ranch-
er/mirrored-neu-
vector-con-
troller:5.4.0
reg-
istry.suse.com/ranch-
er/mirrored-neu-
vector-en-
forcer:5.4.0
reg-
istry.suse.com/ranch-
er/mirrored-neu-
vector-manag-
er:5.4.0
reg-
istry.suse.com/ranch-
er/mirrored-neu-
vector-prometheus-
exporter:5.4.0
reg-
istry.suse.com/ranch-
er/mirrored-neu-
vector-compli-
ance-config:1.0.0

476 Components Versions

https://charts.longhorn.io
https://charts.longhorn.io
https://charts.longhorn.io
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1

reg-
istry.suse.com/ranch-
er mirrored-neu-
vector-reg-
istry-adapter:0.1.2
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-scanner:latest
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-updater:latest

Rancher Turtles
(CAPI)

0.11 0.3.3 reg-
istry.suse.com/edge/3.1/
rancher-tur-
tles-chart:0.3.3
registry.ranch-
er.com/ranch-
er/rancher/tur-
tles:v0.11.0
reg-
istry.suse.com/edge/3.1/
cluster-api-opera-
tor:0.12.0
reg-
istry.suse.com/edge/3.1/
cluster-api-con-
troller:1.7.5
reg-
istry.suse.com/edge/3.1/
cluster-api-provider-
metal3:1.7.1

477 Components Versions

reg-
istry.suse.com/edge/3.1/
cluster-api-
provider-rke2-boot-
strap:0.7.1
reg-
istry.suse.com/edge/3.1/
cluster-api-
provider-rke2-con-
trolplane:0.7.1

Metal3 0.8.3 0.8.3 reg-
istry.suse.com/edge/3.1/
metal3-chart:0.8.3
reg-
istry.suse.com/edge/3.1/
baremetal-opera-
tor:0.6.2
reg-
istry.suse.com/edge/3.1/
ip-address-manag-
er:1.7.1
reg-
istry.suse.com/edge/3.1/
ironic:24.1.3.0
reg-
istry.suse.com/edge/3.1/
ironic-ipa-down-
loader:2.0.1
reg-
istry.suse.com/edge/3.1/
kube-rbac-prox-
y:v0.18.0
reg-
istry.suse.com/edge/
mariadb:10.6.15.1

478 Components Versions

MetalLB 0.14.9 0.14.9 reg-
istry.suse.com/edge/3.1/
metallb-chart:0.14.9
reg-
istry.suse.com/edge/3.1/
metallb-con-
troller:v0.14.9
reg-
istry.suse.com/edge/3.1/
metallb-speak-
er:v0.14.9
reg-
istry.suse.com/edge/3.1/
frr:8.4
reg-
istry.suse.com/edge/3.1/
frr-k8s:v0.0.14

Elemental 1.6.4 104.2.0+up1.6.4 reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-chart:1.6.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-crds-chart:1.6.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor:1.6.4

Elemental Dashboard
Extension

2.0.0 2.0.0 Elemental Exten-

sion chart (https://

github.com/ranch-

479 Components Versions

https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0

er/ui-plugin-charts/

tree/2.1.0/charts/ele-

mental/2.0.0)

Edge Image Builder 1.1 N/A reg-
istry.suse.com/edge/3.1/
edge-im-
age-builder:1.1.0

KubeVirt 1.3.1 0.4.0 reg-
istry.suse.com/edge/3.1/
kubevirt-chart:0.4.0
reg-
istry.suse.com/suse/
sles/15.6/virt-opera-
tor:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-
api:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-con-
troller:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-export-
proxy:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-export-
server:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-han-
dler:1.3.1

480 Components Versions

https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0

reg-
istry.suse.com/suse/
sles/15.6/virt-
launcher:1.3.1

KubeVirt Dashboard
Extension

1.1.0 1.1.0 reg-
istry.suse.com/edge/3.1/
kubevirt-dash-
board-exten-
sion-chart:1.1.0

Containerized Data
Importer

1.60.1 0.4.0 reg-
istry.suse.com/edge/3.1/
cdi-chart:0.4.0
reg-
istry.suse.com/suse/
sles/15.6/cdi-opera-
tor:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-con-
troller:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-im-
porter:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-clon-
er:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-apis-
erver:1.60.1

481 Components Versions

reg-
istry.suse.com/suse/
sles/15.6/cdi-upload-
server:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-upload-
proxy:1.60.1

Endpoint Copier Op-
erator

0.2.0 0.2.1 reg-
istry.suse.com/edge/3.1/
endpoint-copier-oper-
ator:v0.2.1
reg-
istry.suse.com/edge/3.1/
endpoint-copier-oper-
ator-chart:0.2.1

Akri (Tech Preview) 0.12.20 0.12.20 reg-
istry.suse.com/edge/3.1/
akri-chart:0.12.20
reg-
istry.suse.com/edge/3.1/
akri-dashboard-ex-
tension-chart:1.1.0
reg-
istry.suse.com/edge/3.1/
akri-agent:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-con-
troller:v0.12.20

482 Components Versions

reg-
istry.suse.com/edge/3.1/
akri-debug-echo-
discovery-han-
dler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-onvif-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-opcua-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-udev-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-webhook-config-
uration:v0.12.20

SR-IOV Network Op-
erator

1.3.0 1.3.0 reg-
istry.suse.com/edge/3.1/
sriov-network-opera-
tor-chart:1.3.0
reg-
istry.suse.com/edge/3.1/
sriov-crd-chart:1.3.0

System Upgrade Con-
troller

0.13.4 104.0.0+up0.7.0 System Upgrade Con-

troller chart (https://

charts.rancher.io)

483 Components Versions

https://charts.rancher.io
https://charts.rancher.io
https://charts.rancher.io

reg-
istry.suse.com/ranch-
er/system-up-
grade-con-
troller:v0.13.4

Upgrade Controller 0.1.0 0.1.0 reg-
istry.suse.com/edge/3.1/
upgrade-con-
troller-chart:0.1.0
reg-
istry.suse.com/edge/3.1/
upgrade-con-
troller:0.1.0
reg-
istry.suse.com/edge/3.1/
kubectl:1.30.3
reg-
istry.suse.com/edge/3.1/
release-mani-
fest:3.1.1

36.4 Release 3.1.0
Availability Date: 11th October 2024

Summary: SUSE Edge 3.1.0 is the rst release in the SUSE Edge 3.1 release stream.

36.4.1 New Features

Updated to SUSE Linux Micro 6.0, Kubernetes 1.30, and Rancher Prime 2.9

Updated Cluster API and Metal3/Ironic versions

The management cluster CAPI components are now managed via Rancher Turtles

Management cluster upgrades are now managed via Upgrade Controller (Chapter 20, Up-

grade Controller)

484 Release 3.1.0

Stack Validation results are now published at ci.edge.suse.com (https://ci.edge.suse.com)

nm-configurator is now utilizing nmstate 2.2.36 (upgraded from 2.2.26)

Edge Image Builder enhancements:

Added support for customizing SL Micro 6.0 base images

Added the ability to build aarch64 images on an aarch64 host machine (Tech Pre-
view)

Added the ability to automatically copy les into the built images filesystem

Added the ability to enable FIPS mode

Added caching for container images

Leftover combustion artifacts are now removed on rst boot

OS les and user provided certificates now maintain original permissions when
copied to the final image

Dependency upgrades

"Phone Home" deployments are now utilizing Elemental v1.6 (upgraded from
v1.4)

Embedded registry is now utilizing Hauler v1.0.7 (upgraded from v1.0.1)

Network customizations are now utilizing nm-configurator v0.3.1 (upgraded
from v0.3.0)

Image Definition Changes

The current version of the image definition has been incremented to 1.1 to
include the changes below

Introduced a dedicated FIPS mode option (enableFIPS) which will enable
FIPS mode on the node

Existing definitions using the 1.0 version of the schema will continue to
work with EIB

Image Configuration Directory Changes

485 New Features

https://ci.edge.suse.com

An optional directory named os-les may be included to copy les into the
resulting image’s filesystem at runtime

The custom/les directory may now include subdirectories, which will be main-
tained when copied to the image

Elemental configuration now requires a registration code in order to install the
necessary RPMs from the official sources

36.4.2 Bug & Security Fixes

The RKE2 CAPI provider now works with cisProfile enabled on SLE Micro: RKE2 provider

issue #402 (https://github.com/rancher/cluster-api-provider-rke2/issues/402)

The RKE2 CAPI provider NTP configuration now works on SLE Micro: RKE2 provider issue

#436 (https://github.com/rancher/cluster-api-provider-rke2/issues/436)

The RKE2 CAPI provider resolved node drain issue related to rolling upgrades: RKE2

provider issue #431 (https://github.com/rancher/cluster-api-provider-rke2/issues/431)

Edge Image Builder Fixes

Certain Helm charts fail when templated without specified API Versions: EIB issue

#481 (https://github.com/suse-edge/edge-image-builder/issues/481)

Large Helm manifests fail to install: EIB issue #491 (https://github.com/suse-edge/

edge-image-builder/issues/491)

36.4.3 Components Versions

The following table describes the individual components that make up the 3.1 release, includ-
ing the version, the Helm chart version (if applicable), and from where the released artifact
can be pulled in the binary format. Please follow the associated documentation for usage and
deployment examples.

Name Version Helm Chart Version Artifact Location
(URL/Image)

486 Bug & Security Fixes

https://github.com/rancher/cluster-api-provider-rke2/issues/402
https://github.com/rancher/cluster-api-provider-rke2/issues/402
https://github.com/rancher/cluster-api-provider-rke2/issues/436
https://github.com/rancher/cluster-api-provider-rke2/issues/436
https://github.com/rancher/cluster-api-provider-rke2/issues/431
https://github.com/rancher/cluster-api-provider-rke2/issues/431
https://github.com/suse-edge/edge-image-builder/issues/481
https://github.com/suse-edge/edge-image-builder/issues/481
https://github.com/suse-edge/edge-image-builder/issues/491
https://github.com/suse-edge/edge-image-builder/issues/491

SLE Micro 6.0 (latest) N/A SLE Micro Down-

load Page (https://

www.suse.com/down-

load/sle-micro/)

SL-Mi-
cro.x86_64-6.0-Base-
SelfInstall-GM2.in-
stall.iso (sha256
bc7c3210c8a9b688d2713ad87f17e2c90cb99fd6dee1d-
b528a5f-
f7f239cbcf79)
SL-Mi-
cro.x86_64-6.0-Base-
RT-SelfIn-
stall-GM2.in-
stall.iso (sha256
8242895e21745aec15e-
f526a95272887fa95d-
d832782b2cea4a95f41493f6648)
SL-Mi-
cro.x86_64-6.0-Base-
GM2.raw.xz (sha256
7ae13d080e66c8b35624b6566b5eaf-
f0875c8c141d0def9f-
baee5876781ed81b)
SL-Mi-
cro.x86_64-6.0-Base-
RT-GM2.raw.xz
(sha256
9a19078c062ab52c62c0254e11f5a5a9fac938fd094abf-
f5aa5eac2ec00b2d4e)

487 Components Versions

https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

SUSE Manager 5.0.0 N/A SUSE Manager Down-

load Page (https://

www.suse.com/down-

load/suse-manag-

er/)

K3s 1.30.3 N/A Upstream K3s

Release (https://

github.com/k3s-io/

k3s/releases/tag/

v1.30.3%2Bk3s1)

RKE2 1.30.3 N/A Upstream RKE2

Release (https://

github.com/ranch-

er/rke2/releases/tag/

v1.30.3%2Brke2r1)

Rancher Prime 2.9.1 2.9.1 Rancher 2.9.1 Images

(https://github.com/

rancher/ranch-

er/releases/down-

load/v2.9.1/ranch-

er-images.txt)

Rancher Prime Helm

Repo (https://chart-

s.rancher.com/serv-

er-charts/prime)

Longhorn 1.7.1 104.2.0+up1.7.1 Longhorn 1.7.1

Images (https://

raw.githubuser-

content.com/long-

horn/longhorn/v1.7.1/

deploy/longhorn-im-

ages.txt)

488 Components Versions

https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://www.suse.com/download/suse-manager/
https://github.com/k3s-io/k3s/releases/tag/v1.30.3%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.3%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.3%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.3%2Bk3s1
https://github.com/k3s-io/k3s/releases/tag/v1.30.3%2Bk3s1
https://github.com/rancher/rke2/releases/tag/v1.30.3%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.3%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.3%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.3%2Brke2r1
https://github.com/rancher/rke2/releases/tag/v1.30.3%2Brke2r1
https://github.com/rancher/rancher/releases/download/v2.9.1/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.1/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.1/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.1/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.1/rancher-images.txt
https://github.com/rancher/rancher/releases/download/v2.9.1/rancher-images.txt
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://charts.rancher.com/server-charts/prime
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt
https://raw.githubusercontent.com/longhorn/longhorn/v1.7.1/deploy/longhorn-images.txt

Longhorn Helm Repo

(https://charts.long-

horn.io)

NM Configurator 0.3.1 N/A NMConfigurator

Upstream Release

(https://github.com/

suse-edge/nm-config-

urator/releases/tag/

v0.3.1)

NeuVector 5.3.4 104.0.1+up2.7.9 reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-controller:5.3.4
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-enforcer:5.3.4
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-manager:5.3.4
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-prometheus-ex-
porter:5.3.4
reg-
istry.suse.com/ranch-
er mirrored-neu-
vector-reg-
istry-adapter:0.1.1-s1

489 Components Versions

https://charts.longhorn.io
https://charts.longhorn.io
https://charts.longhorn.io
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1
https://github.com/suse-edge/nm-configurator/releases/tag/v0.3.1

reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-scanner:latest
reg-
istry.suse.com/ranch-
er/mirrored-neuvec-
tor-updater:latest

Rancher Turtles
(CAPI)

0.11 0.3.2 reg-
istry.suse.com/edge/3.1/
rancher-tur-
tles-chart:0.3.2
registry.ranch-
er.com/ranch-
er/rancher/tur-
tles:v0.11.0
reg-
istry.suse.com/edge/3.1/
cluster-api-opera-
tor:0.12.0
reg-
istry.suse.com/edge/3.1/
cluster-api-con-
troller:1.7.5
reg-
istry.suse.com/edge/3.1/
cluster-api-provider-
metal3:1.7.1
reg-
istry.suse.com/edge/3.1/
cluster-api-provider-
rke2-bootstrap:0.7.0

490 Components Versions

reg-
istry.suse.com/edge/3.1/
cluster-api-provider-
rke2-control-
plane:0.7.0

Metal3 0.8.1 0.8.1 reg-
istry.suse.com/edge/3.1/
metal3-chart:0.8.1
reg-
istry.suse.com/edge/3.1/
baremetal-opera-
tor:0.6.1
reg-
istry.suse.com/edge/3.1/
ip-address-manag-
er:1.7.1
reg-
istry.suse.com/edge/3.1/
ironic:24.1.2.0
reg-
istry.suse.com/edge/3.1/
ironic-ipa-down-
loader:2.0.0
reg-
istry.suse.com/edge/3.1/
kube-rbac-prox-
y:v0.18.0
reg-
istry.suse.com/edge/
mariadb:10.6.15.1

MetalLB 0.14.9 0.14.9 reg-
istry.suse.com/edge/3.1/
metallb-chart:0.14.9

491 Components Versions

reg-
istry.suse.com/edge/3.1/
metallb-con-
troller:v0.14.9
reg-
istry.suse.com/edge/3.1/
metallb-speak-
er:v0.14.9
reg-
istry.suse.com/edge/3.1/
frr:8.4
reg-
istry.suse.com/edge/3.1/
frr-k8s:v0.0.14

Elemental 1.6.4 104.2.0+up1.6.4 reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-chart:1.6.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor-crds-chart:1.6.4
reg-
istry.suse.com/ranch-
er/elemental-opera-
tor:1.6.4

Elemental Dashboard
Extension

2.0.0 2.0.0 Elemental Exten-

sion chart (https://

github.com/ranch-

er/ui-plugin-charts/

tree/2.1.0/charts/ele-

mental/2.0.0)

492 Components Versions

https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0
https://github.com/rancher/ui-plugin-charts/tree/2.1.0/charts/elemental/2.0.0

Edge Image Builder 1.1 N/A reg-
istry.suse.com/edge/3.1/
edge-im-
age-builder:1.1.0

KubeVirt 1.3.1 0.4.0 reg-
istry.suse.com/edge/3.1/
kubevirt-chart:0.4.0
reg-
istry.suse.com/suse/
sles/15.6/virt-opera-
tor:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-
api:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-con-
troller:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-export-
proxy:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-export-
server:1.3.1
reg-
istry.suse.com/suse/
sles/15.6/virt-han-
dler:1.3.1

493 Components Versions

reg-
istry.suse.com/suse/
sles/15.6/virt-
launcher:1.3.1

KubeVirt Dashboard
Extension

1.1.0 1.1.0 reg-
istry.suse.com/edge/3.1/
kubevirt-dash-
board-exten-
sion-chart:1.1.0

Containerized Data
Importer

1.60.1 0.4.0 reg-
istry.suse.com/edge/3.1/
cdi-chart:0.4.0
reg-
istry.suse.com/suse/
sles/15.6/cdi-opera-
tor:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-con-
troller:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-im-
porter:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-clon-
er:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-apis-
erver:1.60.1

494 Components Versions

reg-
istry.suse.com/suse/
sles/15.6/cdi-upload-
server:1.60.1
reg-
istry.suse.com/suse/
sles/15.6/cdi-upload-
proxy:1.60.1

Endpoint Copier Op-
erator

0.2.0 0.2.1 reg-
istry.suse.com/edge/3.1/
endpoint-copier-oper-
ator:v0.2.1
reg-
istry.suse.com/edge/3.1/
endpoint-copier-oper-
ator-chart:0.2.1

Akri (Tech Preview) 0.12.20 0.12.20 reg-
istry.suse.com/edge/3.1/
akri-chart:0.12.20
reg-
istry.suse.com/edge/3.1/
akri-dashboard-ex-
tension-chart:1.1.0
reg-
istry.suse.com/edge/3.1/
akri-agent:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-con-
troller:v0.12.20

495 Components Versions

reg-
istry.suse.com/edge/3.1/
akri-debug-echo-
discovery-han-
dler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-onvif-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-opcua-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-udev-discov-
ery-handler:v0.12.20
reg-
istry.suse.com/edge/3.1/
akri-webhook-config-
uration:v0.12.20

SR-IOV Network Op-
erator

1.3.0 1.3.0 reg-
istry.suse.com/edge/3.1/
sriov-network-opera-
tor-chart:1.3.0
reg-
istry.suse.com/edge/3.1/
sriov-crd-chart:1.3.0

System Upgrade Con-
troller

0.13.4 104.0.0+up0.7.0 System Upgrade Con-

troller chart (https://

charts.rancher.io)

496 Components Versions

https://charts.rancher.io
https://charts.rancher.io
https://charts.rancher.io

reg-
istry.suse.com/ranch-
er/system-up-
grade-con-
troller:v0.13.4

Upgrade Controller 0.1.0 0.1.0 reg-
istry.suse.com/edge/3.1/
upgrade-con-
troller-chart:0.1.0
reg-
istry.suse.com/edge/3.1/
upgrade-con-
troller:0.1.0
reg-
istry.suse.com/edge/3.1/
kubectl:1.30.3
reg-
istry.suse.com/edge/3.1/
release-mani-
fest:3.1.0

36.5 Components Verification
The components mentioned above may be verified using the Software Bill Of Materials (SBOM)
data - for example using cosign as outlined below:

Download the SUSE Edge Container public key from the SUSE Signing Keys source (https://

www.suse.com/support/security/keys/) :

> cat key.pem
-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEA7N0S2d8LFKW4WU43bq7Z
IZT537xlKe17OQEpYjNrdtqnSwA0/jLtK83m7bTzfYRK4wty/so0g3BGo+x6yDFt
SVXTPBqnYvabU/j7UKaybJtX3jc4SjaezeBqdi96h6yEslvg4VTZDpy6TFP5ZHxZ
A0fX6m5kU2/RYhGXItoeUmL5hZ+APYgYG4/455NBaZT2yOywJ6+1zRgpR0cRAekI
OZXl51k0ebsGV6ui/NGECO6MB5e3arAhszf8eHDE02FeNJw5cimXkgDh/1Lg3KpO
dvUNm0EPWvnkNYeMCKR+687QG0bXqSVyCbY6+HG/HLkeBWkv6Hn41oeTSLrjYVGa
T3zxPVQM726sami6pgZ5vULyOleQuKBZrlFhFLbFyXqv1/DokUqEppm2Y3xZQv77

497 Components Verification

https://www.suse.com/support/security/keys/
https://www.suse.com/support/security/keys/

fMNogapp0qYz+nE3wSK4UHPd9z+2bq5WEkQSalYxadyuqOzxqZgSoCNoX5iIuWte
Zf1RmHjiEndg/2UgxKUysVnyCpiWoGbalM4dnWE24102050Gj6M4B5fe73hbaRlf
NBqP+97uznnRlSl8FizhXzdzJiVPcRav1tDdRUyDE2XkNRXmGfD3aCmILhB27SOA
Lppkouw849PWBt9kDMvzelUYLpINYpHRi2+/eyhHNlufeyJ7e7d6N9VcvjR/6qWG
64iSkcF2DTW61CN5TrCe0k0CAwEAAQ==
-----END PUBLIC KEY-----

Verify the container image hash, for example using crane:

> crane digest registry.suse.com/edge/3.1/baremetal-operator:0.6.1
sha256:cacd1496f59c47475f3cfc9774e647ef08ca0aa1c1e4a48e067901cf7635af8a

Verify with cosign:

> cosign verify-attestation --type spdxjson --key key.pem registry.suse.com/edge/3.1/
baremetal-
operator@sha256:cacd1496f59c47475f3cfc9774e647ef08ca0aa1c1e4a48e067901cf7635af8a > /dev/
null
#
Verification for registry.suse.com/edge/3.1/baremetal-
operator@sha256:cacd1496f59c47475f3cfc9774e647ef08ca0aa1c1e4a48e067901cf7635af8a --
The following checks were performed on each of these signatures:
 - The cosign claims were validated
 - The claims were present in the transparency log
 - The signatures were integrated into the transparency log when the certificate was
 valid
 - The signatures were verified against the specified public key

Extract SBOM data as described at the upstream documentation (https://www.suse.com/sup-

port/security/sbom/) :

> cosign verify-attestation --type spdxjson --key key.pem registry.suse.com/edge/3.1/
baremetal-
operator@sha256:cacd1496f59c47475f3cfc9774e647ef08ca0aa1c1e4a48e067901cf7635af8a | jq
 '.payload | @base64d | fromjson | .predicate'

36.6 Upgrade Steps

Refer to the Part V, “Day 2 Operations” for details around how to upgrade to a new release.

498 Upgrade Steps

https://www.suse.com/support/security/sbom/
https://www.suse.com/support/security/sbom/

Below are some technical considerations to be aware of when upgrading from Edge 3.0:

36.6.1 SSH root login on SUSE Linux Micro 6.0

In SUSE Linux Micro 5.5 it was possible to SSH as root using password-based authentication,
but SUSE Linux Micro 6.0 only key-based authentication is allowed by default.

Systems upgraded to 6.0 from 5.x carry over the old behavior. New installations will enforce
the new behavior.

It is recommended to create a non-root user or use key based authentication, but if necessary
installing the package openssh-server-config-rootlogin restores the old behavior and al-
lows password-based login for the root user.

36.7 Known Limitations
Unless otherwise stated these apply to the 3.1.0 release and all subsequent z-stream versions.

Akri is a Technology Preview offering, and is not subject to the standard scope of support.

Edge Image Builder on aarch64 is a Technology Preview offering, and is not subject to the
standard scope of support.

36.8 Product Support Lifecycle
SUSE Edge is backed by award-winning support from SUSE, an established technology leader
with a proven history of delivering enterprise-quality support services. For more information,
see https://www.suse.com/lifecycle and the Support Policy page at https://www.suse.com/sup-

port/policy.html . If you have any questions about raising a support case, how SUSE classifies
severity levels, or the scope of support, please see the Technical Support Handbook at https://

www.suse.com/support/handbook/ .

SUSE Edge "3.1" is supported for 24-months of production support, with an initial 6-months of
"full support", followed by 18-months of "maintenance support". In the "full support" coverage
period, SUSE may introduce new features (that do not break existing functionality), introduce
bug fixes, and deliver security patches. During the "maintenance support" window, only critical
security and bug fixes will be introduced, with other fixes delivered at our discretion.

499 SSH root login on SUSE Linux Micro 6.0

https://www.suse.com/lifecycle
https://www.suse.com/support/policy.html
https://www.suse.com/support/policy.html
https://www.suse.com/support/handbook/
https://www.suse.com/support/handbook/

Unless explicitly stated, all components listed are considered Generally Available (GA), and are
covered by SUSE’s standard scope of support. Some components may be listed as "Technology
Preview", where SUSE is providing customers with access to early pre-GA features and func-
tionality for evaluation, but are not subject to the standard support policies and are not recom-
mended for production use-cases. SUSE very much welcomes feedback and suggestions on the
improvements that can be made to Technology Preview components, but SUSE reserves the right
to deprecate a Technology Preview feature before it becomes Generally Available if it doesn’t
meet the needs of our customers or doesn’t reach a state of maturity that we require.

Please note that SUSE must occasionally deprecate features or change API specifications. Rea-
sons for feature deprecation or API change could include a feature being updated or replaced
by a new implementation, a new feature set, upstream technology is no longer available, or the
upstream community has introduced incompatible changes. It is not intended that this will ever
happen within a given minor release (x.z), and so all z-stream releases will maintain API com-
patibility and feature functionality. SUSE will endeavor to provide deprecation warnings with
plenty of notice within the release notes, along with workarounds, suggestions, and mitigations
to minimize service disruption.

The SUSE Edge team also welcomes community feedback, where issues can be raised within the
respective code repository within https://www.github.com/suse-edge .

36.9 Obtaining source code

This SUSE product includes materials licensed to SUSE under the GNU General Public License
(GPL) and various other open source licenses. The GPL requires SUSE to provide the source
code that corresponds to the GPL-licensed material, and SUSE conforms to all other open-source
license requirements. As such, SUSE makes all source code available, and can generally be found
in the SUSE Edge GitHub repository (https://www.github.com/suse-edge), the SUSE Rancher
GitHub repository (https://www.github.com/rancher) for dependent components, and specifi-
cally for SLE Micro, the source code is available for download at https://www.suse.com/down-

load/sle-micro (https://www.suse.com/download/sle-micro/) on "Medium 2".

500 Obtaining source code

https://www.github.com/suse-edge
https://www.github.com/suse-edge
https://www.github.com/rancher
https://www.suse.com/download/sle-micro/
https://www.suse.com/download/sle-micro/

36.10 Legal notices
SUSE makes no representations or warranties with regard to the contents or use of this docu-
mentation, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Further, SUSE reserves the right to revise this publication
and to make changes to its content, at any time, without the obligation to notify any person or
entity of such revisions or changes.

Further, SUSE makes no representations or warranties with regard to any software, and specifi-
cally disclaims any express or implied warranties of merchantability or fitness for any particular
purpose. Further, SUSE reserves the right to make changes to any and all parts of SUSE software,
at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S.
export controls and the trade laws of other countries. You agree to comply with all export control
regulations and to obtain any required licenses or classifications to export, re-export, or import
deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion
lists or to any embargoed or terrorist countries as specified in U.S. export laws. You agree to not
use deliverables for prohibited nuclear, missile, or chemical/biological weaponry end uses. Refer
to https://www.suse.com/company/legal/ for more information on exporting SUSE software.
SUSE assumes no responsibility for your failure to obtain any necessary export approvals.

Copyright © 2024 SUSE LLC.

This release notes document is licensed under a Creative Commons Attribution-NoDerivatives
4.0 International License (CC-BY-ND-4.0). You should have received a copy of the license along
with this document. If not, see https://creativecommons.org/licenses/by-nd/4.0/ .

SUSE has intellectual property rights relating to technology embodied in the product that is de-
scribed in this document. In particular, and without limitation, these intellectual property rights
may include one or more of the U.S. patents listed at https://www.suse.com/company/legal/ and
one or more additional patents or pending patent applications in the U.S. and other countries.

For SUSE trademarks, see the SUSE Trademark and Service Mark list (https://www.suse.com/

company/legal/). All third-party trademarks are the property of their respective owners. For
SUSE brand information and usage requirements, please see the guidelines published at https://

brand.suse.com/ .

501 Legal notices

https://www.suse.com/company/legal/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.suse.com/company/legal/
https://www.suse.com/company/legal/
https://www.suse.com/company/legal/
https://brand.suse.com/
https://brand.suse.com/

	SUSE Edge Documentation
	Contents
	SUSE Edge Documentation
	1. What is SUSE Edge?
	2. Design Philosophy
	3. High Level Architecture
	3.1. Components used in SUSE Edge
	3.1.1. Management Cluster
	3.1.2. Downstream Clusters

	3.2. Connectivity

	4. Common Edge Deployment Patterns
	4.1. Directed network provisioning
	4.2. "Phone Home" network provisioning
	4.3. Image-based provisioning

	5. SUSE Edge Stack Validation
	6. Full Component List

	Part I. Quick Starts
	Chapter 1. BMC automated deployments with Metal3
	1.1. Why use this method
	1.2. High-level architecture
	1.3. Prerequisites
	1.3.1. Setup Management Cluster
	1.3.2. Installing Metal3 dependencies
	1.3.3. Installing cluster API dependencies
	1.3.4. Prepare downstream cluster image
	1.3.4.1. Image configuration
	1.3.4.1.1. Downstream cluster image definition file
	1.3.4.1.2. Growfs script

	1.3.4.2. Image creation

	1.3.5. Adding BareMetalHost inventory
	1.3.5.1. Configuring Static IPs
	1.3.5.1.1. Additional script for static network configuration
	1.3.5.1.2. Additional secret with host network configuration

	1.3.5.2. BareMetalHost preparation

	1.3.6. Creating downstream clusters
	1.3.7. Control plane deployment
	1.3.8. Worker/Compute deployment
	1.3.9. Cluster deprovisioning

	1.4. Known issues
	1.5. Planned changes
	1.6. Additional resources
	1.6.1. Single-node configuration
	1.6.2. Disabling TLS for virtualmedia ISO attachment

	Chapter 2. Remote host onboarding with Elemental
	2.1. High-level architecture
	2.2. Resources needed
	2.3. Build bootstrap cluster
	2.3.1. Create Kubernetes cluster
	2.3.2. Set up DNS

	2.4. Install Rancher
	2.5. Install Elemental
	2.5.1. (Optionally) Install the Elemental UI extension

	2.6. Configure Elemental
	2.7. Build the image
	2.8. Boot the downstream nodes
	2.9. Create downstream clusters
	2.10. Node Reset (Optional)
	2.11. Next steps

	Chapter 3. Standalone clusters with Edge Image Builder
	3.1. Prerequisites
	3.1.1. Getting the EIB Image

	3.2. Creating the image configuration directory
	3.3. Creating the image definition file
	3.3.1. Configuring OS Users
	3.3.2. Configuring RPM packages
	3.3.3. Configuring Kubernetes cluster and user workloads
	3.3.4. Configuring the network

	3.4. Building the image
	3.5. Debugging the image build process
	3.6. Testing your newly built image

	Part II. Components Used
	Chapter 4. Rancher
	4.1. Key Features of Rancher
	4.2. Rancher’s use in SUSE Edge
	4.2.1. Centralized Kubernetes management
	4.2.2. Simplified cluster deployment
	4.2.3. Application deployment and management
	4.2.4. Security and policy enforcement

	4.3. Best practices
	4.3.1. GitOps
	4.3.2. Observability

	4.4. Installing with Edge Image Builder
	4.5. Additional Resources

	Chapter 5. Rancher Dashboard Extensions
	5.1. Installation
	5.1.1. Installing with Rancher Dashboard UI
	5.1.2. Installing with Helm
	5.1.3. Installing with Fleet

	5.2. KubeVirt Dashboard Extension
	5.3. Akri Dashboard Extension

	Chapter 6. Fleet
	6.1. Installing Fleet with Helm
	6.2. Using Fleet with Rancher
	6.3. Accessing Fleet in the Rancher UI
	6.3.1. Dashboard
	6.3.2. Git repos
	6.3.3. Clusters
	6.3.4. Cluster groups
	6.3.5. Advanced

	6.4. Example of installing KubeVirt with Rancher and Fleet using Rancher dashboard
	6.5. Debugging and troubleshooting
	6.6. Fleet examples

	Chapter 7. SLE Micro
	7.1. How does SUSE Edge use SLE Micro?
	7.2. Best practices
	7.2.1. Installation media
	7.2.2. Local administration

	7.3. Known issues

	Chapter 8. Metal3
	8.1. How does SUSE Edge use Metal3?
	8.2. Known issues

	Chapter 9. Edge Image Builder
	9.1. How does SUSE Edge use Edge Image Builder?
	9.2. Getting started
	9.3. Known issues

	Chapter 10. Edge Networking
	10.1. Overview of NetworkManager
	10.2. Overview of nmstate
	10.3. Enter: NetworkManager Configurator (nmc)
	10.4. How does SUSE Edge use NetworkManager Configurator?
	10.5. Configuring with Edge Image Builder
	10.5.1. Prerequisites
	10.5.2. Getting the Edge Image Builder container image
	10.5.3. Creating the image configuration directory
	10.5.4. Creating the image definition file
	10.5.5. Defining the network configurations
	10.5.6. Building the OS image
	10.5.7. Provisioning the edge nodes
	10.5.7.1. Provisioning the first node
	10.5.7.2. Provisioning the second node
	10.5.7.3. Provisioning the third node
	10.5.7.4. Provisioning the fourth node

	10.5.8. Unified node configurations
	10.5.9. Custom network configurations

	Chapter 11. Elemental
	11.1. How does SUSE Edge use Elemental?
	11.2. Best practices
	11.2.1. Installation media
	11.2.2. Labels

	11.3. Known issues

	Chapter 12. Akri
	12.1. How does SUSE Edge use Akri?
	12.1.1. Installing Akri
	12.1.2. Configuring Akri
	12.1.3. Writing and deploying additional Discovery Handlers
	12.1.4. Akri Rancher Dashboard Extension

	Chapter 13. K3s
	13.1. How does SUSE Edge use K3s
	13.2. Best practices
	13.2.1. Installation
	13.2.2. Fleet for GitOps workflow
	13.2.3. Storage management
	13.2.4. Load balancing and HA

	Chapter 14. RKE2
	14.1. RKE2 vs K3s
	14.2. How does SUSE Edge use RKE2?
	14.3. Best practices
	14.3.1. Installation
	14.3.2. High availability
	14.3.3. Networking
	14.3.4. Storage

	Chapter 15. Longhorn
	15.1. Prerequisites
	15.2. Manual installation of Longhorn
	15.2.1. Installing Open-iSCSI
	15.2.2. Installing Longhorn

	15.3. Creating Longhorn volumes
	15.4. Accessing the UI
	15.5. Installing with Edge Image Builder

	Chapter 16. NeuVector
	16.1. How does SUSE Edge use NeuVector?
	16.2. Important notes
	16.3. Installing with Edge Image Builder

	Chapter 17. MetalLB
	17.1. How does SUSE Edge use MetalLB?
	17.2. Best practices
	17.3. Known issues

	Chapter 18. Edge Virtualization
	18.1. KubeVirt overview
	18.2. Prerequisites
	18.3. Manual installation of Edge Virtualization
	18.4. Deploying virtual machines
	18.5. Using virtctl
	18.6. Simple ingress networking
	18.7. Using the Rancher UI extension
	18.7.1. Installation
	18.7.2. Using KubeVirt Rancher Dashboard Extension
	18.7.2.1. Creating a virtual machine
	18.7.2.2. Starting and stopping virtual machines
	18.7.2.3. Accessing virtual machine console

	18.8. Installing with Edge Image Builder

	Chapter 19. System Upgrade Controller
	19.1. How does SUSE Edge use System Upgrade Controller?
	19.2. Installing the System Upgrade Controller
	19.2.1. System Upgrade Controller Fleet installation
	19.2.1.1. System Upgrade Controller installation - GitRepo
	19.2.1.2. System Upgrade Controller installation - Bundle

	19.2.2. System Upgrade Controller Helm installation

	19.3. Monitoring System Upgrade Controller Plans
	19.3.1. Monitoring System Upgrade Controller Plans - Rancher UI
	19.3.2. Monitoring System Upgrade Controller Plans - Manual

	Chapter 20. Upgrade Controller
	20.1. How does SUSE Edge use Upgrade Controller?
	20.2. Installing the Upgrade Controller
	20.2.1. Prerequisites
	20.2.2. Steps

	20.3. How does the Upgrade Controller work?
	20.3.1. Operating System upgrade
	20.3.2. Kubernetes upgrade
	20.3.3. Additional components upgrades

	20.4. Kubernetes API extensions
	20.4.1. UpgradePlan
	20.4.2. ReleaseManifest

	20.5. Tracking the upgrade process
	20.5.1. General
	20.5.2. Helm Controller

	20.6. Known Limitations

	Part III. How-To Guides
	Chapter 21. MetalLB on K3s (using L2)
	21.1. Why use this method
	21.2. MetalLB on K3s (using L2)
	21.3. Prerequisites
	21.3.1. Deployment
	21.3.2. Configuration
	21.3.3. Traefik and MetalLB
	21.3.4. Usage

	21.4. Ingress with MetalLB

	Chapter 22. MetalLB in front of the Kubernetes API server
	22.1. Prerequisites
	22.2. Installing RKE2/K3s
	22.3. Configuring an existing cluster
	22.4. Installing MetalLB
	22.5. Installing the Endpoint Copier Operator
	22.6. Adding control-plane nodes

	Chapter 23. Air-gapped deployments with Edge Image Builder
	23.1. Intro
	23.2. Prerequisites
	23.3. Libvirt Network Configuration
	23.4. Base Directory Configuration
	23.5. Base Definition File
	23.6. Rancher Installation
	23.7. NeuVector Installation
	23.8. Longhorn Installation
	23.9. KubeVirt and CDI Installation
	23.10. Troubleshooting

	Part IV. Third-Party Integration
	Chapter 24. NATS
	24.1. Architecture
	24.1.1. NATS client applications
	24.1.2. NATS service infrastructure
	24.1.3. Simple messaging design
	24.1.4. NATS JetStream

	24.2. Installation
	24.2.1. Installing NATS on top of K3s
	24.2.1.1. Testing the setup
	24.2.1.2. Cleaning up

	24.2.2. NATS as a back-end for K3s
	24.2.2.1. Building K3s
	24.2.2.2. Installing NATS CLI
	24.2.2.3. Running NATS as K3s back-end
	24.2.2.4. Troubleshooting

	Chapter 25. NVIDIA GPUs on SLE Micro
	25.1. Intro
	25.2. Prerequisites
	25.3. Manual installation
	25.4. Further validation of the manual installation
	25.5. Implementation with Kubernetes
	25.6. Bringing it together via Edge Image Builder
	25.7. Resolving issues
	25.7.1. nvidia-smi does not find the GPU

	Part V. Day 2 Operations
	Chapter 26. Edge 3.1 migration
	26.1. Management cluster
	26.1.1. Operating System (OS)
	26.1.1.1. Prerequisites
	26.1.1.2. Migration steps

	26.1.2. RKE2
	26.1.3. Edge Helm charts
	26.1.3.1. Known Limitations
	26.1.3.1.1. Rancher upgrade

	26.1.3.2. Cluster API controllers migration
	26.1.3.2.1. Rancher Turtles air-gapped installation

	26.1.3.3. Edge Helm chart upgrade - EIB
	26.1.3.3.1. Prerequisites
	26.1.3.3.2. Upgrade steps
	26.1.3.3.3. Example

	26.1.3.4. Edge Helm chart upgrade - non-EIB
	26.1.3.4.1. Example

	26.2. Downstream clusters
	26.2.1. Prerequisites
	26.2.1.1. Charts deployed through EIB
	26.2.1.1.1. EIB chart manifest removal Fleet deployment - GitRepo
	26.2.1.1.2. EIB chart manifest removal Fleet deployment - Bundle

	26.2.2. Migration steps

	Chapter 27. Management Cluster
	27.1. Prerequisites
	27.2. Upgrade

	Chapter 28. Downstream clusters
	28.1. Introduction
	28.1.1. Components
	28.1.1.1. Rancher
	28.1.1.2. Fleet
	28.1.1.3. System Upgrade Controller (SUC)

	28.1.2. Determine your use-case
	28.1.2.1. GitRepo
	28.1.2.2. Bundle

	28.1.3. Day 2 workflow

	28.2. OS upgrade
	28.2.1. Components
	28.2.1.1. systemd.service

	28.2.2. Requirements
	28.2.3. Update procedure
	28.2.3.1. Overview

	28.2.4. OS upgrade - SUC Plan deployment
	28.2.4.1. SUC Plan deployment - GitRepo resource
	28.2.4.1.1. GitRepo creation - Rancher UI
	28.2.4.1.2. GitRepo creation - manual

	28.2.4.2. SUC Plan deployment - Bundle resource
	28.2.4.2.1. Bundle creation - Rancher UI
	28.2.4.2.2. Bundle creation - manual

	28.2.4.3. SUC Plan deployment - third-party GitOps workflow

	28.3. Kubernetes version upgrade
	28.3.1. Components
	28.3.1.1. rke2-upgrade
	28.3.1.2. k3s-upgrade

	28.3.2. Requirements
	28.3.3. Upgrade procedure
	28.3.3.1. Overview

	28.3.4. Kubernetes version upgrade - SUC Plan deployment
	28.3.4.1. SUC Plan deployment - GitRepo resource
	28.3.4.1.1. GitRepo creation - Rancher UI
	28.3.4.1.2. GitRepo creation - manual

	28.3.4.2. SUC Plan deployment - Bundle resource
	28.3.4.2.1. Bundle creation - Rancher UI
	28.3.4.2.2. Bundle creation - manual

	28.3.4.3. SUC Plan deployment - third-party GitOps workflow

	28.4. Helm chart upgrade
	28.4.1. Components
	28.4.2. Preparation for air-gapped environments
	28.4.2.1. Ensure that you have access to your Helm chart upgrade Fleet
	28.4.2.2. Find the required assets for your Edge release version
	28.4.2.3. Create the Edge release images archive
	28.4.2.4. Create the Edge OCI chart images archive
	28.4.2.5. Load Edge release images to your air-gapped machine
	28.4.2.6. Load the Edge OCI chart images to your air-gapped machine
	28.4.2.7. Create registry mirrors pointing to your private registry for your Kubernetes distribution

	28.4.3. Upgrade procedure
	28.4.3.1. I have a new cluster and would like to deploy and manage a SUSE Helm chart
	28.4.3.1.1. Prepare your Fleet resources
	28.4.3.1.2. Deploy your Fleet
	28.4.3.1.2.1. GitRepo
	28.4.3.1.2.2. Bundle

	28.4.3.1.3. Managing the deployed Helm chart

	28.4.3.2. I would like to upgrade a Fleet managed Helm chart
	28.4.3.3. I would like to upgrade an EIB deployed Helm chart
	28.4.3.3.1. Overview
	28.4.3.3.2. Upgrade Steps
	28.4.3.3.3. Example
	28.4.3.3.4. Helm chart upgrade using a third-party GitOps tool

	Part VI. Product Documentation
	Chapter 29. SUSE Adaptive Telco Infrastructure Platform (ATIP)
	Chapter 30. Concept & Architecture
	30.1. ATIP Architecture
	30.2. Components
	30.3. Example deployment flows
	30.3.1. Example 1: Deploying a new management cluster with all components installed
	30.3.2. Example 2: Deploying a single-node downstream cluster with Telco profiles to enable it to run Telco workloads
	30.3.3. Example 3: Deploying a high availability downstream cluster using MetalLB as a Load Balancer

	Chapter 31. Requirements & Assumptions
	31.1. Hardware
	31.2. Network
	31.3. Services (DHCP, DNS, etc.)
	31.4. Disabling systemd services

	Chapter 32. Setting up the management cluster
	32.1. Introduction
	32.2. Steps to set up the management cluster
	32.3. Image preparation for connected environments
	32.3.1. Directory structure
	32.3.2. Management cluster definition file
	32.3.3. Custom folder
	32.3.4. Kubernetes folder
	32.3.5. Networking folder

	32.4. Image preparation for air-gap environments
	32.4.1. Modifications in the definition file
	32.4.2. Modifications in the custom folder
	32.4.3. Modifications in the helm values folder

	32.5. Image creation
	32.6. Provision the management cluster

	Chapter 33. Telco features configuration
	33.1. Kernel image for real time
	33.2. Kernel arguments for low latency and high performance
	33.3. CPU tuned configuration
	33.4. CNI Configuration
	33.4.1. Cilium

	33.5. SR-IOV
	33.6. DPDK
	33.7. vRAN acceleration (Intel ACC100/ACC200)
	33.8. Huge pages
	33.9. CPU pinning configuration
	33.10. NUMA-aware scheduling
	33.10.1. Identifying NUMA nodes

	33.11. Metal LB
	33.12. Private registry configuration

	Chapter 34. Fully automated directed network provisioning
	34.1. Introduction
	34.2. Prepare downstream cluster image for connected scenarios
	34.2.1. Prerequisites for connected scenarios
	34.2.2. Image configuration for connected scenarios
	34.2.2.1. Downstream cluster image definition file
	34.2.2.2. Growfs script
	34.2.2.3. Performance script
	34.2.2.4. SR-IOV script
	34.2.2.5. Additional configuration for Telco workloads
	34.2.2.6. Additional script for Advanced Network Configuration

	34.2.3. Image creation

	34.3. Prepare downstream cluster image for air-gap scenarios
	34.3.1. Prerequisites for air-gap scenarios
	34.3.2. Image configuration for air-gap scenarios
	34.3.2.1. Downstream cluster image definition file
	34.3.2.2. Growfs script
	34.3.2.3. Air-gap script
	34.3.2.4. Performance script
	34.3.2.5. SR-IOV script
	34.3.2.6. Custom files for air-gap scenarios
	34.3.2.7. Preload your private registry with images required for air-gap scenarios and SR-IOV (optional)

	34.3.3. Image creation for air-gap scenarios

	34.4. Downstream cluster provisioning with Directed network provisioning (single-node)
	34.5. Downstream cluster provisioning with Directed network provisioning (multi-node)
	34.6. Advanced Network Configuration
	34.7. Telco features (DPDK, SR-IOV, CPU isolation, huge pages, NUMA, etc.)
	34.8. Private registry
	34.9. Downstream cluster provisioning in air-gapped scenarios
	34.9.1. Requirements for air-gapped scenarios
	34.9.2. Enroll the bare-metal hosts in air-gap scenarios
	34.9.3. Provision the downstream cluster in air-gap scenarios

	Chapter 35. Lifecycle actions
	35.1. Management cluster upgrades
	35.2. Downstream cluster upgrades

	Part VII. Appendix
	Chapter 36. Release Notes
	36.1. Abstract
	36.2. About
	36.3. Release 3.1.1
	36.3.1. New Features
	36.3.2. Bug & Security Fixes
	36.3.3. Components Versions

	36.4. Release 3.1.0
	36.4.1. New Features
	36.4.2. Bug & Security Fixes
	36.4.3. Components Versions

	36.5. Components Verification
	36.6. Upgrade Steps
	36.6.1. SSH root login on SUSE Linux Micro 6.0

	36.7. Known Limitations
	36.8. Product Support Lifecycle
	36.9. Obtaining source code
	36.10. Legal notices

