Jump to contentJump to page navigation: previous page [access key p]/next page [access key n]
Applies to SUSE Linux Enterprise Server 15 SP3, Rancher Kubernetes Engine 1.2.16

4 Component model

This section describes the various components being used to create a Rancher Kubernetes Engine solution deployment, in the perspective of top to bottom ordering. Once completed, the Rancher Kubernetes Engine instance can be used as the application infrastructure for cloud-native workloads and can be imported into SUSE Rancher for management.

4.1 Component overview

By using:

  • Kubernetes Platform - Rancher Kubernetes Engine

  • Operating System - SUSE Linux Enterprise Server

  • Compute Platform

you can create the necessary infrastructure and services. Further details for these components are described in the following sections.

4.2 Software - Rancher Kubernetes Engine

Rancher Kubernetes Engine is a CNCF-certified Kubernetes distribution that runs entirely within Docker containers. It solves the common frustration of installation complexity with Kubernetes by removing most host dependencies and presenting a stable path for deployment, upgrades, and rollbacks.

With Rancher Kubernetes Engine [RKE], the operation of Kubernetes is easily automated and entirely independent of the operating system and platform you’re running. As long as you can run a supported version of Docker, you can deploy and run Kubernetes with RKE. It builds a cluster from a single command in just a few minutes, and its declarative configuration makes Kubernetes upgrades atomic and safe.

What is provided with Rancher Kubernetes Engine
  • CNCF Certification

    • Rancher Kubernetes Engine CNCF certification means that every release supports the same APIs as upstream Kubernetes. This gives enterprises the confidence that their Kubernetes resources are portable between RKE and other CNCF-certified Kubernetes distributions.

  • Simplified installation

    • Installation is via a single binary and it uses a single YAML file, meaning that even non-experts can deploy Kubernetes with a single command. The command connects to remote hosts via SSH, so Rancher or any staff member with SSH access can deploy and manage RKE instances anywhere in the world.

  • Automated Operation

    • When used with SUSE Rancher, operators can perform automated installation and upgrades of RKE clusters with just a few clicks.

  • Vendor Independence

    • RKE is not locked into a specific vendor operating system, Kubernetes Management Platform or proprietary tooling.

  • Safe, Atomic Upgrades

    • Since RKE is built using containers, it doesn’t have any touch points with the underlying operating system beyond the container engine. Containers make it easy to upgrade to a new version and to roll back to the previous version if necessary.

  • 24x7 Enterprise-level Support

    • Ensures around-the-clock support from technical experts when you need it.

The fundamental roles for the nodes and core functionality of Rancher Kubernetes Engine are represented in the following figure:

RKE1 overview
Figure 4.1: Component Overview - Rancher Kubernetes Engine
  • Kubernetes API Server,

    • interacts with kubelet on all the nodes, plus addresses authentication, user interface (UI), command-line interface (CLI) and API for external access and cluster management via SUSE Rancher cluster controller to agent

While all Rancher Kubernetes Engine roles can be installed on a single system, for the best availability, performance and security, the recommended deployment of a Rancher Kubernetes Engine cluster is a pair of nodes for the control plane role, at least three etcd role-based nodes and three or more worker nodes.

Rancher Kubernetes Engine can run as a complete cluster on a single node or can be expanded into a multi-node cluster. Besides the core Kubernetes components, these are also configurable and included:

  • Multiple Kubernetes versions

  • CoreDNS, Metrics, Ingress controller

  • CNI : Canal, Calico, Flannel, Weave

  • Support for a Windows worker agent node (only with Flannel)

  • Fleet Agent : for GitOps deployment of cloud-native applications

All of these components are configurable and can be swapped out for your implementation of choice. With these included components, you get a fully functional and CNCF-conformant cluster so you can start running apps right away.

Tip
Tip

Learn more information about Rancher Kubernetes Engine at https://rancher.com/docs/rke/latest/en/.

While all Rancher Kubernetes Engine roles can be installed on a single system, a multi-node cluster, is a more production-like approach and will be described in the deployment section.

Tip
Tip

To improve availability, performance and security, the recommended deployment of a Rancher Kubernetes Engine cluster is a pair of nodes for the control plane role, at least three etcd role-based nodes and three or more worker nodes.

4.3 Software - SUSE Linux Enterprise Server

SUSE Linux Enterprise Server (SLES) is an adaptable and easy-to-manage platform that allows developers and administrators to deploy business-critical workloads on-premises, in the cloud and at the edge. It is a Linux operating system that is adaptable to any environment – optimized for performance, security and reliability. As a multimodal operating system that paves the way for IT transformation in the software-defined era, this simplifies multimodal IT, makes traditional IT infrastructure efficient and provides an engaging platform for developers. As a result, one can easily deploy and transition business-critical workloads across on-premise and public cloud environments.

Designed for interoperability, SUSE Linux Enterprise Server integrates into classical Unix and Windows environments, supports open standard interfaces for systems management, and has been certified for IPv6 compatibility. This modular, general purpose operating system runs on four processor architectures and is available with optional extensions that provide advanced capabilities for tasks such as real time computing and high availability clustering. SUSE Linux Enterprise Server is optimized to run as a high performing guest on leading hypervisors and supports an unlimited number of virtual machines per physical system with a single subscription. This makes it the perfect guest operating system for virtual computing.

4.4 Compute Platform

Leveraging the enterprise grade functionality of the operating system mentioned in the previous section, many compute platforms can be the foundation of the deployment:

  • Virtual machines on supported hypervisors or hosted on cloud service providers

  • Physical, baremetal or single-board computers, either on-premise or hosted by cloud service providers

Note
Note

To complete self-testing of hardware with SUSE YES Certified Process, you can download and install the respective SUSE operating system support-pack version of SUSE Linux Enterprise Server and the YES test suite. Then run the tests per the instructions in the test kit, fixing any problems encountered and once corrected, re-run all tests to obtain clean test results. Submit the test results into the SUSE Bulletin System (SBS) for audit, review and validation.

Tip
Tip

Certified systems and hypervisors can be verified via SUSE YES Certified Bulletins and then can be leveraged as supported nodes for this deployment, as long as the certification refers to the respective version of the underlying SUSE operating system required.

Supermicro servers take advantage of the latest CPU technologies available. The new servers have been shown to produce more work per watt than ever before. Thus, additional workloads can not only be performed in less time, but at a lower cost as well. Supermicro systems can support up to 6TB of memory per socket.

4.4.1 SYS-120C-TN10R Rack Servers

Note
Note

The Supermicro SYS-120C-TN10R is SUSE YES Certified Hardware.

The SYS-120C-TN10R Rack Servers provide the following attributes:

Ultimate Flexibility
  • CPU: Up to 270W and 40 cores

  • Memory: 4TB DDR4-3200 memory in 16 DIMM slots w/ support of Intel Optane PMEM 200 series

  • Storage: Up to 10x all hybrid drive bays (NVMe/SAS/SATA) + Flexible internal storage options (dual NVMe M.2 / SATADOM)

  • Expansion: Up to 2 standard PCIe 4.0 FHHL expansion slots + 2 AIOM for OCP 3.0 NIC; Building block solution for different applications and environment

  • 860W Platinum level redundant PWS

Efficient and Cost-Effective
  • Cost optimized for large volume deployment

  • Tool-less mechanical design for rapid deployment

  • Hot-swap storage and PWS for easy maintenance.

  • IPMI, serial port and service tag for easy management

Compact
  • Compact system design makes no waste of internal space

  • < 600mm chassis depth

  • Fully utilized system resource with 12 NVMe, 4 PCIe 4.0 x16 + 2 PCIe 4.0 x8 expansion

Secure
  • Security is top priority

  • TPM 1.2/2.0, signed firmware, Silicon Root of Trust

  • Secure Boot, System Erase

  • FIPS Compliance, Trusted Execution Environment

Application Ready
  • Balanced architecture between CPUs and optimized for scalable compute, database, GPU, tiered storage and I/O intensive applications

  • Support open standards like OpenBMC and OCP 3.0

Keep it Green
  • Optimized thermal design

  • High efficiency Platinum level PWS (AC/DC)

  • Reduced waste with bulk packaging and customizable accessories

4.4.2 SYS-620C-TN12R Rack Servers

Note
Note

The Supermicro SYS-620C-TN12R is SUSE YES Certified Hardware.

The SYS-620C-TN12R Rack Servers provide the following attributes:

Ultimate Flexibility
  • CPU: Up to 270W and 40 cores

  • Memory: 4TB DDR4-3200 memory in 16 DIMM slots w/ support of Intel Optane PMEM 200 series

  • Storage: Up to 12 all hybrid drive bays (NVMe/SAS/SATA) + Flexible internal storage options (dual NVMe M.2 / SATADOM)

  • Expansion: Up to 6 standard PCIe 4.0 expansion slots + 2 AIOM for OCP 3.0 NIC; Up to 2 FHFL DW GPUs or 6 LP GPUs

  • Building block solution for different applications and environment

  • 1200W Titanium level redundant PWS

Efficient and Cost-Effective
  • Cost optimized for large volume deployment

  • Tool-less mechanical design for rapid deployment

  • Hot-swap storage and PWS for easy maintenance.

  • IPMI, serial port and service tag for easy management

Compact
  • Compact system design makes no waste of internal space

  • < 650mm chassis depth

  • Fully utilized system resource with 12 NVMe, 4 PCIe 4.0 x16 + 2 PCIe 4.0 x8 expansion

Secure
  • Security is top priority

  • TPM 1.2/2.0, signed firmware, Silicon Root of Trust

  • Secure Boot, System Erase

  • FIPS Compliance, Trusted Execution Environment

Application Ready
  • Balanced architecture between CPUs and optimized for scalable compute, database, GPU, tiered storage and I/O intensive applications

  • Cost and performance optimized down to component level

  • Support open standards like OpenBMC and OCP 3.0

We Keep it Green
  • Optimized thermal design

  • High efficiency Titanium level PWS (AC/DC)

  • Reduced waste with bulk packaging and customizable accessories

Note
Note

A sample bill of materials, in the Chapter 9, Appendix, cites the necessary quantites of all components, along with a reference to the minimum resource requirements needed by the software components.

Print this page