
Networking with Wicked in
SUSE® Linux Enterprise 12
Something Wicked This Way Comes

Solution Guide

Guide
www.suse.com

Server

http://www.suse.com

2

Server Solution Guide
Networking with Wicked in SUSE Linux Enterprise 12

This paper covers the basics of Wicked with an emphasis on
providing correlations between how things were done previ-
ously and how they need to be done now.

Introduction
When S.u.S.E.1 first introduced its Linux distribution, network-
ing requirements were relatively simple and static. Over time
networking evolved to become far more complex and dynamic.
For example, automatic address configuration protocols such as
DHCP or IPv6 auto-configuration entered the picture along with
a plethora of new classes of network devices.

While this evolution was happening, the concepts behind man-
aging a Linux system’s network configuration didn’t change
much. The basic idea of storing a configuration in some files
and applying it at system boot up using a collection of scripts
and system programs was pretty much the same. To help cope
with dynamic environments, various helper daemons were in-
troduced, and a lot of time and effort went into ensuring that all
the components played properly with each other.

Recently, new technologies have accelerated the trend toward
complexity. Virtualization requires on-demand provisioning of
resources, including networks. Converged networks that mix
data and storage traffic on a shared link require a tighter integra-
tion between stacks that were previously mostly independent.

Today, more than 20 years after the first SUSE distribution, net-
work configurations are very difficult to manage properly, let
alone easily (see Figure 1).

Modern Network Landscape

Wicked QuickStart Guide
Abstract: Introduced with SUSE® Linux Enterprise 12,
Wicked is the new network management tool for Linux,
largely replacing the sysconfig package to manage
the ever-more-complicated network configurations.
Wicked provides network configuration as a service,
enabling you to change your configuration dynamically.

1	 That was indeed how we referred to our company back then.
Now, of course, it’s SUSE.

Figure 1

3www.suse.com

This makes it fairly obvious that in today’s data centers, the tra-
ditional approach of using the ifup scripts of yore has reached
its end. During the past few years, a number of attempts have
been made to implement more flexible and sophisticated net-
work management tools with some level of success. It seemed
clear, however, that something more was needed, which lead to
the creation of Wicked2.

Design Considerations
There were a number of ideas/constraints that went into the
design of Wicked. We’ll discuss some of the more important
ones here:

Compatibility
Compatibility with the prior sysconfig package was considered
extremely important. The intent was that, as much as possible,
Wicked would be a “drop-in” replacement for the old ifup script,
etc. As a result, Wicked is able to use the familiar /etc/sysconfig/
network/ifcfg-* configuration files. If their contents contain
only the functionality covered by the variables documented in the
ifcfg* man pages, there should be no modifications necessary
to work with Wicked. Along the same lines, commands such as
ifup, ifdown, ifprobe and netconfig are still provided and work
as expected. See the section on “Important Commands and Tools”
for more information.

Capability
Given the need to cope with increasingly complex and dynamic
configurations that drove its creation in the first place, Wicked
is expected to work with a wide variety of network objects, such
as Ethernet, Infiniband, Channel to Channel (CTC), Inter-User
Communication Vehicle (IUCV), HiperSockets, Open System

Adapters (OSA), IEEE VLANs, bridges, macvlan, macvtap, wire-
less (wifi) and more.

This is partly achieved by implementing Wicked in such a way
as to provide “network configuration as a service.” Wicked will
react flexibly to network changes whether initiated by the system
administrator, hypervisor, external network events, etc.

With the range of hardware platforms that SUSE Linux Enterprise
runs on, Wicked had to be architecture-independent and extensible.

Usability
The target audience for Wicked was both data center staff and
end users. Therefore, it needed to be straightforward to use and
understand.

Finally, the intent is not to replace NetworkManager completely.
While NetworkManager is mainly targeted at desktop/laptop
users, Wicked is aimed more at servers.

Important Commands and Tools

Working with Individual Network Interfaces

COMMAND BACKWARD COMPATIBILITY

As mentioned previously, the traditional methods of working
with network interfaces have been preserved. This is both for
smoothing the transition from the old method and for compat-
ibility with existing scripts that may have been written by system
administrators. For example:

ifup eth0
ifdown wlan0
ifstatus br0
ifcheck eth1

These commands wind up invoking the /usr/sbin/wicked
command “under the covers” so the functionality they provide
is no different from using the “wicked sub-command” form
described next.

2	 The name “Wicked” comes from early in development when experi-
ments with a Representational State Transfer interface (REST) led
the developers to decide against using that in the design. Humor
being important when things are not going well resulted in “No
REST for… the wicked.”

http://www.suse.com

4

Server Solution Guide
Networking with Wicked in SUSE Linux Enterprise 12

WICKED

The /usr/sbin/wicked command is the primary method for
working with the various pieces of the wicked service. Both
/usr/sbin/wicked and /usr/sbin/ifup are frequently re-
ferred to as the “wicked client.” /usr/sbin/wicked has a num-
ber of sub-commands that be invoked to manage individual
interfaces, such as ifup, ifdown, show-config, etc. For example:

wicked ifup eth0
wicked ifdown wlan0
wicked ifreload br0
wicked ifstatus all

See Appendix B for a complete list of sub-commands.

At this time, YaST® is the only tool provided that creates/modi-
fies/deletes network interface files in /etc/sysconfig/network.

Working with the Network Service

COMMAND BACKWARD COMPATIBILITY

To start, stop or restart the network service, the /sbin/rcnetwork
symbolic link is still provided, as part of the sysconfig RPM. This
means that you can still issue the rcnetwork command with the
start, stop, restart, etc., options. Instead of being a symbolic
link to the init script at /etc/init.d/network, however, it now
points to /usr/sbin/service, which in turn will invoke the ap-
propriate systemctl command for systemd to execute. See the
following section on systemd for more details.

SYSTEMD

Wicked was implemented as a group of DBus services that are
integrated with systemd. So the usual systemctl commands
will apply to Wicked.

systemctl start network.service (—› wicked.service) 	
Configures the network interfaces (and triggers wicked
daemons to start).

systemctl stop network.service (—› wicked.service) 	
Unconfigures the network interfaces (but leaves the Wicked
daemons running).

systemctl restart network.service (—› wicked.service) 	
Restarts the network interface configuration.

systemctl restart wickedd.service	
Restarts Wicked daemons without reconfiguring the network
interfaces.

systemctl enable wicked.service
This will automatically enable the wickedd.service also.
Additionally, it will create a network.service “alias.” This is
so that starting, stopping, etc., the network service doesn’t
require knowing whether Wicked or NetworkManager will be
handling the request.

systemctl disable wicked.service
This will automatically disable wickedd.service also. Note that
disabling a service does not stop that service.

systemctl show -p Id network.service
Shows the currently enabled network service (Wicked or
Network Manager).

systemctl start wickedd.service
Starts all Wicked daemons.

And finally, the usual “rc*” symbolic links for services are pro
vided by the wicked-service package: rcwicked, rcwickedd,
rcwickedd-auto4, rcwickedd-dhcp4, rcwickedd-dhcp6,
rcwickedd-nanny.

Configuration Files
The format of the /etc/sysconfig/network/ifcfg-* files that
most people are familiar with hasn’t been changed. As was dis-
cussed in the “Design Considerations” section on compatibility,
nearly everything should continue to work as before.

Internally, Wicked uses a structured, and much richer, represen-
tation of all configuration data. This is currently in XML, and we
plan to expose all of this in a future release.

There is a variety of new configuration files shipped with wicked.
Most of them should never need to be modified by the system
administrator unless requested by SUSE technical support when
performing debugging.

/etc/dbus-1/system.d/—contains the various org.opensuse.
Network.* files provided by Wicked for its use of DBus.

5www.suse.com

/etc/sysconfig/network/—traditionally contains the various
network interface configuration files, “hook” scripts, etc. This is
still true with Wicked.

/etc/wicked/common.xml—contains common definitions that
should be used by all applications. It is sourced/included by
the other configuration files in this directory. While it could be
used to enable debugging across all Wicked components, for
instance, the recommendation is to put things like that in /etc/
wicked/local.xml, which is included by common.xml if it exists.

/etc/wicked/server.xml—read by the wickedd server pro-
cess at startup.

/etc/wicked/client.xml—read by the wicked command.

/etc/wicked/nanny.xml—read by the wickedd-nanny server
process at startup.

For wickedd, wicked, and wickedd-nanny, if their respective
XML file does not exist, the program will try to read common.
xml directly.

Block Diagram of the Components

Figure 2 shows a high-level view of Wicked’s architecture. As
in prior releases, static configuration information is kept under
/etc/sysconfig/network/. When invoked, the Wicked client
reads these configuration files and sends requests to nanny.

The nanny daemon is a policy engine that is responsible for
asynchronous or unsolicited events such as hot-plugging devices
and interacts with wickedd to have those requests executed.
Wickedd makes calls to the kernel to actually implement the
request. Status information is sent back to nanny. In turn, nanny
will send progress updates back to the client as events occur.
The wickedd daemon also listens for netlink events from the
kernel and can respond to them dynamically. Information about
these events is also passed along to nanny. In order to manage
all the complexities inherent in this, wickedd was implemented
as a finite-state machine (FSM).3

Finally, there are several “helper” services (or supplicants) for
managing protocols such as DHCP (Dynamic Host Configuration
Protocol), or WPA (Wi-Fi Protected Access).

Note: The nanny framework is not enabled by default in SUSE
Linux Enterprise 12. It will be enabled by default with SUSE Linux
Enterprise 12 Service Pack 1. To enable it before then, see the
following section.

When nanny is not enabled, /sbin/ifup is a “one shot” com-
mand that talks directly to wickedd. In this state, Wicked will
not react to hot-plugging of interfaces or carrier/link becoming
available.

Enabling Nanny
Since the nanny framework is not enabled by default in SUSE
Linux Enterprise 12, it must be enabled manually by the system
administrator. Before doing so, it is recommended to have at
least wicked-0.6.15 installed.

Nanny can be enabled either by specifying “nanny=1” in the in-
staller (linuxrc) as a boot parameter or after installation by creating
or modifying /etc/wicked/local.xml to contain the following:

<config>
<use-nanny>true</use-nanny>
<config>

Figure 2

3	 http://en.wikipedia.org/wiki/Finite-state_machine

http://www.suse.com
http://en.wikipedia.org/wiki/Finite-state_machine

6

Server Solution Guide
Networking with Wicked in SUSE Linux Enterprise 12

Save the change and then restart the network:

systemctl restart wickedd.service
wicked ifup all

Note that /etc/wicked/common.xml contains:

<use-nanny>false</use-nanny>

Adding the <use-nanny>true</use-nanny> statement to
local.xml will override that.

Troubleshooting
When problems arise, there are a number of ways to generate
diagnostic information:

Command Line Options
There are three important debug-related command line options
for the wicked command: --debug, --log-level, and --log-
target. The --debug option specifies one or more Wicked “facili-
ties” in a comma-separated list to be traced and reported on. The
list of all available facilities can be determined by executing the

wicked --debug help

command. Three of those facilities, mini, most, and all will re-
sult in multiple facilities being traced. When using one of these
names, you can also turn off individual facilities by prepending
them with a minus sign, “-”. For example,

wicked --debug all,-events,-socket,-objectmodel

will trace all facilities except events, socket, and objectmodel.

The --log-level option determines how verbose Wicked will
be when writing out events to be logged. In order of increasing
verbosity you can specify one of the following: error, warn-
ing, notice, info, debug. If wicked --debug has been
executed or the WICKED_DEBUG environment variable has been
set (see below), Wicked will automatically set the log level to
“debug” for you.

The --log-target option can be used to direct the debugging
output to either stderr or syslog. For example:

wicked –debug all –log-target syslog ifstatus all

See man 8 wicked for details on what specific parameters are
available for both targets.

Environment Variables
All Wicked binaries will accept/respect the WICKED_DEBUG and
WICKED_LOG_LEVEL environment variables, if specified. If WICKED_
DEBUG is not set, a check is also made for DEBUG=yes. If it is set to
“yes,” that is equivalent to having WICKED_DEBUG=most specified.
System-wide settings for these variables can be found in /etc/
sysconfig/network/config.

Just as with the –-debug command line option, WICKED_DEBUG
can specify a single facility or a comma-separated list of facilities
to be reported on or excluded.

Note that these environment variables are applied very early:
before command line parsing is performed. That means that the
–-debug and –-log-level command line options will override
them.

Wicked Configuration File Options
As mentioned previously, /etc/wicked/local.xml can be used
to turn on debugging systemwide. This is done via inserting the
following XML stanza:

<config>
 <debug>all</debug>
</config>

As with the –-debug command line option and the WICKED_DEBUG
environment variable, the debug element in /etc/wicked/local.
xml can specify a single facility or a comma-separated list of
facilities.

The debug values set in /etc/wicked/local.xml will be used
only if no command line debug options or environment variables
are specified.

7www.suse.com

Collecting Logs
You may be asked to provide system logs by technical support.
The easiest way to do that is with the journalctl command
included with the systemd package:

journalctl -b -o short-precise > journal.txt

The -o short-precise option is preferred because timestamps
are written to the microsecond level, which can be necessary to
determine just what events happened in what order.

Appendix A

Terminology
Interface(s)—Network device(s)

Nanny—Policy engine that is responsible for asynchronous or
unsolicited events such as hotplugging devices

FSM—Finite State Machine

Wicked client—The wicked command or any script calling ifup,
ifdown, etc.

Appendix B

Wicked Sub-Commands
ifup—bring up one or more interfaces

ifdown—bring down one or more interfaces

ifreload—checks whether a configuration has changed
and applies accordingly

ifstatus/show—displays detailed interface information

ifcheck—inspects particular interface details or state

show-config—reads, converts and displays all available
configuration files

show-xml—displays the internal XML for an interface

convert—convert configuration files to internal XML

getnames—obtain different names for an interface

xpath—retrieve data from an XML blob

nanny—send configuration commands to wickedd-nanny

arp—check to see if an IP address is already in use on a local
subnet

For details and additional parameters see man 8 wicked.

Appendix C

Samples of Output from Wicked Commands
wicked ifstatus all
lo up
 link: #1, state up
 type: loopback
 config: compat:/etc/sysconfig/network/ifcfg-lo
 leases: ipv4 static granted
 addr: ipv4 127.0.0.1/8 [static]

eth0 up
 link: #2, state up, mtu 1500
 type: ethernet, hwaddr 52:54:00:5a:ec:a4
 config: compat:/etc/sysconfig/network/ifcfg-eth0
 leases: ipv4 dhcp granted
 addr: ipv4 192.168.0.141/24 [dhcp]
 route: ipv4 default via 192.168.0.30

wicked ifdown eth0
eth0 device-ready

wicked ifstatus all
eth0 device-ready
lo up
 link: #1, state up
 type: loopback
 config: compat:/etc/sysconfig/network/ifcfg-lo
 leases: ipv4 static granted
 addr: ipv4 127.0.0.1/8 [static]

eth0 device-unconfigured
 link: #2, state down, mtu 1500
 type: ethernet, hwaddr 52:54:00:5a:ec:a4

wicked ifup eth0
eth0 up

http://www.suse.com

264-000015-001 | 07/15 | © 2015 SUSE LLC. All rights reserved. SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the

United States and other countries. All third-party trademarks are the property of their respective owners.

Contact your local SUSE Solutions
Provider, or call SUSE at:

1 800 796 3700 U.S./Canada
1 801 861 4500 Worldwide

SUSE
Maxfeldstrasse 5
90409 Nuremberg
Germany

Appendix D

Future Enhancements (Roadmap)
To provide a baseline, the following net-
work tasks and objects were supported
with the initial release of SUSE Linux En
terprise Server 12:

	 Setup of existing interfaces

Ethernet, Infiniband, Channel to Channel
(CTC), Inter-User Communication Vehicle
(IUCV), Hipersockets, IBM Open System
Adapters (OSA)

	 Creation and setup of new interfaces

IEEE VLANs, bridge, dummy, macvlan,
macvtap, Infiniband-child, Infiniband/
Ethernet-bond, sit, gre, ipip

	 Creation and setup, but no driver
support. These have to be started by
another service after network setup
is complete. For example, openvpn.

	 –  Tun, tap.

	 Setup of wireless (WiFi). This is cur-
rently limited to one (1) WPA-PSK/EAP
network as is the case within YaST.

	 Address configuration

	 –  Static IP addresses
	 – � Dynamic Host Configuration

Protocol (dhcp) for both IPv4
and IPv6

	 –  IPv6 auto configuration
	 –  IPv4 zeroconf

Point-to-Point Protocol over Ethernet
(pppoe) is not yet available, but is inten
ded to be delivered as a maintenance
update to SUSE Linux Enterprise Server 12.

With SUSE Linux Enterprise Server 12 Ser
vice Pack 1, the following new network ob
jects are intended to be supported:

	 PPP (point-to-point) devices

	 –  Serial modems
	 – � Universal Mobile Telecommunica

tions System modems (UMTS)
	 – � Long-Term Evolution (LTE, frequently

also referred to as 4G networking)

	 Teaming. A user space bonding vari-
ant using a teamd driver daemon

	 Multiple routing tables when using
policy routing rules

www.suse.com

http://www.suse.com

