
SUSE Enterprise Storage 7.1

Deploying and
Administering SUSE
Enterprise Storage with
Rook

Deploying and Administering SUSE Enterprise Storage with Rook
SUSE Enterprise Storage 7.1
by Tomáš Bažant, Alexandra Settle, and Liam Proven

Deployment of containerized Ceph clusters on SUSE CaaS Platform is released under
limited availability for the SUSE Enterprise Storage 7.1 release.

For more details about the SUSE CaaS Platform product, see https://documenta-

tion.suse.com/suse-caasp/4.5/ .

Publication Date: 12 Dec 2024

https://documentation.suse.com

Copyright © 2020–2024 SUSE LLC and contributors. All rights reserved.

Except where otherwise noted, this document is licensed under Creative Commons Attribution-ShareAlike 4.0

International (CC-BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/legalcode .

https://documentation.suse.com/suse-caasp/4.5/
https://documentation.suse.com/suse-caasp/4.5/
https://documentation.suse.com
https://creativecommons.org/licenses/by-sa/4.0/legalcode

For SUSE trademarks, see http://www.suse.com/company/legal/ . All third-party trademarks are the property of

their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks

(*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

http://www.suse.com/company/legal/

Contents

About this guide ix
1 Available documentation ix

2 Improving the documentation x

3 Documentation conventions xi

4 Support xiii

Support statement for SUSE Enterprise Storage xiii • Technology

previews xiv

5 Ceph contributors xv

6 Commands and command prompts used in this guide xv

Salt-related commands xv • Ceph related commands xvi • General

Linux commands xvii • Additional information xvii

I QUICK START: DEPLOYING AND UPGRADING CEPH ON SUSE CAAS
PLATFORM 1

1 Quick start 2
1.1 Recommended hardware specifications 2

1.2 Prerequisites 2

1.3 Getting started with Rook 3

1.4 Deploying Ceph with Rook 4

1.5 Configuring the Ceph cluster 5

Configure CephFS 5 • Configure RADOS block device 6

1.6 Updating local images 6

1.7 Uninstalling 6

iv Deploying and Administering SUSE Enterprise Storage with Rook

2 Updating Rook 8

2.1 Recommended hardware specifications 8

2.2 Patch release upgrades 8

2.3 Rook-Ceph Updates 9

II ADMINISTRATING CEPH ON SUSE CAAS PLATFORM 11

3 Rook-Ceph administration 12

4 Ceph cluster administration 13

4.1 Shutting down and restarting the cluster 13

5 Block Storage 14

5.1 Provisioning Block Storage 14

5.2 Consuming storage: WordPress sample 16

5.3 Consuming the storage: Toolbox 17

5.4 Teardown 17

5.5 Advanced Example: Erasure-Coded Block Storage 17

Erasure coded CSI driver 18

6 CephFS 19

6.1 Shared File System 19

Prerequisites 19 • Creating the File System 19 • Provisioning

Storage 20 • Consuming the Shared File System: K8s Registry

Sample 22 • Consuming the Shared File System: Toolbox 24

7 Ceph cluster custom resource definitions 25

7.1 Ceph cluster CRD 25

Host-based cluster 25 • PVC-based

cluster 26 • Settings 27 • Samples 41

7.2 Ceph block pool CRD 60

Samples 60 • Pool settings 61

v Deploying and Administering SUSE Enterprise Storage with Rook

7.3 Ceph shared file system CRD 64

Samples 65 • File system settings 67 • Metadata server settings 67

8 Configuration 69

8.1 Ceph configuration 69

Required configurations 69 • Specifying configuration options 70

9 Toolboxes 71

9.1 Rook toolbox 71

Interactive toolbox 71 • Running the toolbox job 73

10 Ceph OSD management 76

10.1 Ceph OSD management 76

Analyzing OSD health 76 • Adding an OSD 76 • Adding an OSD on a

PVC 77 • Removing an OSD 77 • Replacing an OSD 79 • Removing

an OSD from a PVC 79

11 Ceph examples 81

11.1 Ceph examples 81

Creating common resources 81 • Creating the operator 81 • Creating

the cluster CRD 82 • Setting up consumable storage 82

12 Advanced configuration 85

12.1 Performing advanced configuration tasks 85

Prerequisites 85 • Using custom Ceph user and secret for

mounting 85 • Collecting logs 89 • OSD information 89 • Separate

storage groups 90 • Configure pools 91 • Creating custom ceph.conf

settings 92 • OSD CRUSH settings 94 • Removing phantom

OSD 95 • Changing the failure domain 96

13 Object Storage 97

13.1 Object Storage 97

Configuring the Object Storage 97 • Creating a bucket 99 • Consuming

the Object Storage 100 • Setting up external access to the

cluster 102 • Creating a user 103

vi Deploying and Administering SUSE Enterprise Storage with Rook

13.2 Ceph Object Storage CRD 104

Sample 105 • Object store settings 106 • Creating gateway

settings 107 • Zone settings 108 • Runtime settings 108 • Health

settings 109

13.3 Ceph object bucket claim 110

Sample 110

13.4 Ceph Object Storage user custom resource definitions (CRD) 114

Sample 114 • Object Storage user settings 114

14 Ceph Dashboard 115

14.1 Ceph Dashboard 115

Enabling the Ceph Dashboard 115 • Configuring the Ceph

Dashboard 116 • Viewing the Ceph Dashboard external to the cluster 117

III TROUBLESHOOTING CEPH ON SUSE CAAS PLATFORM 121

15 Troubleshooting 122
15.1 Debugging Rook 122

Setting the operator log level to debug 122 • Using the toolbox

pod 123 • Using the SES supportutils plugin 123

16 Common issues 124

16.1 Ceph common issues 124

Troubleshooting techniques 124 • Cluster failing to service

requests 126 • Monitors are the only PODs running 127 • PVCs stay

in pending state 130 • OSD pods are failing to start 132 • OSD pods

are not created on my devices 133 • Rook agent modprobe exec format

error 135 • Using multiple shared file systems (CephFS) is attempted on a

kernel version older than 4.7 136 • Activating log to file for a particular Ceph

daemon 136 • A worker node using RBD devices hangs up 137 • Too few

PGs per OSD warning is shown 138 • LVM metadata can be corrupted with

OSD on LV-backed PVC 138

vii Deploying and Administering SUSE Enterprise Storage with Rook

A Ceph maintenance updates based on upstream
'Pacific' point releases 140

Glossary 141

viii Deploying and Administering SUSE Enterprise Storage with Rook

About this guide

Part of the SUSE Enterprise Storage family is the Rook deployment tool, which runs on SUSE
CaaS Platform. Rook allows you to deploy and run Ceph on top of Kubernetes, in order to provide
container workloads with all their storage needs.

Deployment using Rook is currently in limited availability, meaning that it is only available to
nominated and approved customers. For information on how to get so nominated, contact your
SUSE sales team.

Rook is a so-called storage operator: it automates many steps that you need to do manually in
a "traditional" setup with cephadm. This guide explains how to install Rook after you installed
SUSE CaaS Platform, and how to administer it.

SUSE Enterprise Storage 7.1 is an extension to SUSE Linux Enterprise Server 15 SP3. It combines
the capabilities of the Ceph (http://ceph.com/) storage project with the enterprise engineering
and support of SUSE. SUSE Enterprise Storage 7.1 provides IT organizations with the ability
to deploy a distributed storage architecture that can support a number of use cases using com-
modity hardware platforms.

1 Available documentation

Note: Online documentation and latest updates
Documentation for our products is available at https://documentation.suse.com , where
you can also nd the latest updates, and browse or download the documentation in var-
ious formats. The latest documentation updates can be found in the English language
version.

In addition, the product documentation is available in your installed system under /usr/share/
doc/manual . It is included in an RPM package named ses-manual_LANG_CODE . Install it if it
is not already on your system, for example:

zypper install ses-manual_en

ix Available documentation SES 7.1

http://ceph.com/
https://documentation.suse.com

The following documentation is available for this product:

Deployment Guide (https://documentation.suse.com/ses/html/ses-all/book-storage-deploymen-

t.html)

This guide focuses on deploying a basic Ceph cluster, and how to deploy additional ser-
vices. It also cover the steps for upgrading to SUSE Enterprise Storage 7.1 from the previ-
ous product version.

Administration and Operations Guide (https://documentation.suse.com/ses/html/ses-all/book-

storage-admin.html)

This guide focuses on routine tasks that you as an administrator need to take care of after
the basic Ceph cluster has been deployed (day 2 operations). It also describes all the sup-
ported ways to access data stored in a Ceph cluster.

Security Hardening Guide (https://documentation.suse.com/ses/html/ses-all/book-storage-secu-

rity.html)

This guide focuses on how to ensure your cluster is secure.

Troubleshooting Guide (https://documentation.suse.com/ses/html/ses-all/book-storage-trou-

bleshooting.html)

This guide takes you through various common problems when running SUSE Enterprise
Storage 7.1 and other related issues to relevant components such as Ceph or Object Gate-
way.

SUSE Enterprise Storage for Windows Guide (https://documentation.suse.com/ses/html/ses-all/

book-storage-windows.html)

This guide describes the integration, installation, and configuration of Microsoft Windows
environments and SUSE Enterprise Storage using the Windows Driver.

2 Improving the documentation

Your feedback and contributions to this documentation are welcome. The following channels
for giving feedback are available:

Service requests and support

For services and support options available for your product, see http://www.suse.com/sup-

port/ .

x Improving the documentation SES 7.1

https://documentation.suse.com/ses/html/ses-all/book-storage-deployment.html
https://documentation.suse.com/ses/html/ses-all/book-storage-deployment.html
https://documentation.suse.com/ses/html/ses-all/book-storage-admin.html
https://documentation.suse.com/ses/html/ses-all/book-storage-admin.html
https://documentation.suse.com/ses/html/ses-all/book-storage-security.html
https://documentation.suse.com/ses/html/ses-all/book-storage-security.html
https://documentation.suse.com/ses/html/ses-all/book-storage-troubleshooting.html
https://documentation.suse.com/ses/html/ses-all/book-storage-troubleshooting.html
https://documentation.suse.com/ses/html/ses-all/book-storage-windows.html
https://documentation.suse.com/ses/html/ses-all/book-storage-windows.html
http://www.suse.com/support/
http://www.suse.com/support/

To open a service request, you need a SUSE subscription registered at SUSE Customer
Center. Go to https://scc.suse.com/support/requests , log in, and click Create New.

Bug reports

Report issues with the documentation at https://bugzilla.suse.com/ . A Bugzilla account
is required.
To simplify this process, you can use the Report Documentation Bug links next to headlines
in the HTML version of this document. These preselect the right product and category in
Bugzilla and add a link to the current section. You can start typing your bug report right
away.

Contributions

To contribute to this documentation, use the Edit Source links next to headlines in the
HTML version of this document. They take you to the source code on GitHub, where you
can open a pull request. A GitHub account is required.

Note: Edit Source only available for English
The Edit Source links are only available for the English version of each document.
For all other languages, use the Report Documentation Bug links instead.

For more information about the documentation environment used for this documentation,
see the repository's README at https://github.com/SUSE/doc-ses .

Mail

You can also report errors and send feedback concerning the documentation to doc-
team@suse.com . Include the document title, the product version, and the publication date
of the document. Additionally, include the relevant section number and title (or provide
the URL) and provide a concise description of the problem.

3 Documentation conventions
The following notices and typographic conventions are used in this document:

/etc/passwd : Directory names and le names

PLACEHOLDER : Replace PLACEHOLDER with the actual value

PATH : An environment variable

xi Documentation conventions SES 7.1

https://scc.suse.com/support/requests
https://bugzilla.suse.com/
https://github.com/SUSE/doc-ses

ls , --help : Commands, options, and parameters

user : The name of user or group

package_name : The name of a software package

Alt , Alt – F1 : A key to press or a key combination. Keys are shown in uppercase as
on a keyboard.

File, File Save As: menu items, buttons

AMD/Intel This paragraph is only relevant for the AMD64/Intel 64 architectures. The
arrows mark the beginning and the end of the text block.
IBM Z, POWER This paragraph is only relevant for the architectures IBM Z and POWER .

The arrows mark the beginning and the end of the text block.

Chapter 1, “Example chapter”: A cross-reference to another chapter in this guide.

Commands that must be run with root privileges. Often you can also prefix these com-
mands with the sudo command to run them as non-privileged user.

command
> sudo command

Commands that can be run by non-privileged users.

> command

Notices

Warning: Warning notice
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important: Important notice
Important information you should be aware of before proceeding.

Note: Note notice
Additional information, for example about differences in software versions.

xii Documentation conventions SES 7.1

Tip: Tip notice
Helpful information, like a guideline or a piece of practical advice.

Compact Notices

Additional information, for example about differences in software versions.

Helpful information, like a guideline or a piece of practical advice.

4 Support

Find the support statement for SUSE Enterprise Storage and general information about technolo-
gy previews below. For details about the product lifecycle, see https://www.suse.com/lifecycle .

If you are entitled to support, nd details on how to collect information for a support ticket at
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html .

4.1 Support statement for SUSE Enterprise Storage

To receive support, you need an appropriate subscription with SUSE. To view the specific support
offerings available to you, go to https://www.suse.com/support/ and select your product.

The support levels are defined as follows:

L1

Problem determination, which means technical support designed to provide compatibility
information, usage support, ongoing maintenance, information gathering and basic trou-
bleshooting using available documentation.

L2

Problem isolation, which means technical support designed to analyze data, reproduce
customer problems, isolate problem area and provide a resolution for problems not re-
solved by Level 1 or prepare for Level 3.

xiii Support SES 7.1

https://www.suse.com/lifecycle
https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html
https://www.suse.com/support/

L3

Problem resolution, which means technical support designed to resolve problems by en-
gaging engineering to resolve product defects which have been identified by Level 2 Sup-
port.

For contracted customers and partners, SUSE Enterprise Storage is delivered with L3 support
for all packages, except for the following:

Technology previews.

Sound, graphics, fonts, and artwork.

Packages that require an additional customer contract.

Some packages shipped as part of the module Workstation Extension are L2-supported only.

Packages with names ending in -devel (containing header les and similar developer
resources) will only be supported together with their main packages.

SUSE will only support the usage of original packages. That is, packages that are unchanged
and not recompiled.

4.2 Technology previews

Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses
into upcoming innovations. Technology previews are included for your convenience to give you
a chance to test new technologies within your environment. We would appreciate your feedback!
If you test a technology preview, please contact your SUSE representative and let them know
about your experience and use cases. Your input is helpful for future development.

Technology previews have the following limitations:

Technology previews are still in development. Therefore, they may be functionally incom-
plete, unstable, or in other ways not suitable for production use.

Technology previews are not supported.

Technology previews may only be available for specific hardware architectures.

xiv Technology previews SES 7.1

Details and functionality of technology previews are subject to change. As a result, up-
grading to subsequent releases of a technology preview may be impossible and require a
fresh installation.

SUSE may discover that a preview does not meet customer or market needs, or does not
comply with enterprise standards. Technology previews can be removed from a product
at any time. SUSE does not commit to providing a supported version of such technologies
in the future.

For an overview of technology previews shipped with your product, see the release notes at
https://www.suse.com/releasenotes/x86_64/SUSE-Enterprise-Storage/7.1 .

5 Ceph contributors
The Ceph project and its documentation is a result of the work of hundreds of contributors and
organizations. See https://ceph.com/contributors/ for more details.

6 Commands and command prompts used in this
guide
As a Ceph cluster administrator, you will be configuring and adjusting the cluster behavior by
running specific commands. There are several types of commands you will need:

6.1 Salt-related commands

These commands help you to deploy Ceph cluster nodes, run commands on several (or all) clus-
ter nodes at the same time, or assist you when adding or removing cluster nodes. The most
frequently used commands are ceph-salt and ceph-salt config . You need to run Salt com-
mands on the Salt Master node as root . These commands are introduced with the following
prompt:

root@master #

For example:

root@master # ceph-salt config ls

xv Ceph contributors SES 7.1

https://www.suse.com/releasenotes/x86_64/SUSE-Enterprise-Storage/7.1
https://ceph.com/contributors/

6.2 Ceph related commands

These are lower-level commands to configure and ne tune all aspects of the cluster and its
gateways on the command line, for example ceph , cephadm , rbd , or radosgw-admin .

To run Ceph related commands, you need to have read access to a Ceph key. The key's capabil-
ities then define your privileges within the Ceph environment. One option is to run Ceph com-
mands as root (or via sudo) and use the unrestricted default keyring 'ceph.client.admin.key'.

The safer and recommended option is to create a more restrictive individual key for each ad-
ministrator user and put it in a directory where the users can read it, for example:

~/.ceph/ceph.client.USERNAME.keyring

Tip: Path to Ceph keys
To use a custom admin user and keyring, you need to specify the user name and path to
the key each time you run the ceph command using the -n client.USER_NAME and --
keyring PATH/TO/KEYRING options.

To avoid this, include these options in the CEPH_ARGS variable in the individual users'
~/.bashrc les.

Although you can run Ceph-related commands on any cluster node, we recommend running
them on the Admin Node. This documentation uses the cephuser user to run the commands,
therefore they are introduced with the following prompt:

cephuser@adm >

For example:

cephuser@adm > ceph auth list

Tip: Commands for specific nodes
If the documentation instructs you to run a command on a cluster node with a specific
role, it will be addressed by the prompt. For example:

cephuser@mon >

xvi Ceph related commands SES 7.1

6.2.1 Running ceph-volume

Starting with SUSE Enterprise Storage 7, Ceph services are running containerized. If you need
to run ceph-volume on an OSD node, you need to prepend it with the cephadm command,
for example:

cephuser@adm > cephadm ceph-volume simple scan

6.3 General Linux commands

Linux commands not related to Ceph, such as mount , cat , or openssl , are introduced either
with the cephuser@adm > or # prompts, depending on which privileges the related command
requires.

6.4 Additional information

For more information on Ceph key management, refer to Book “Administration and Operations

Guide”, Chapter 30 “Authentication with cephx”, Section 30.2 “Key management”.

xvii General Linux commands SES 7.1

I Quick Start: Deploying and Upgrading
Ceph on SUSE CaaS Platform

1 Quick start 2

2 Updating Rook 8

1 Quick start

SUSE Enterprise Storage is a distributed storage system designed for scalability, reliability, and
performance, which is based on the Ceph technology. The traditional way to run a Ceph cluster
is setting up a dedicated cluster to provide block, le, and object storage to a variety of clients.

Rook manages Ceph as a containerized application on Kubernetes and allows a hyper-converged
setup, in which a single Kubernetes cluster runs applications and storage together. The primary
purpose of SUSE Enterprise Storage deployed with Rook is to provide storage to other applica-
tions running in the Kubernetes cluster. This can be block, le, or object storage.

This chapter describes how to quickly deploy containerized SUSE Enterprise Storage 7.1 on top
of a SUSE CaaS Platform 4.5 Kubernetes cluster.

1.1 Recommended hardware specifications
For SUSE Enterprise Storage deployed with Rook, the minimal configuration is preliminary, we
will update it based on real customer needs.

For the purpose of this document, consider the following minimum configuration:

A highly available Kubernetes cluster with 3 master nodes

Four physical Kubernetes worker nodes, each with two OSD disks and 5GB of RAM per
OSD disk

Allow additional 4GB of RAM per additional daemon deployed on a node

Dual-10 Gb ethernet as bonded network

If you are running a hyper-converged infrastructure (HCI), ensure you add any additional
requirements for your workloads.

1.2 Prerequisites
Ensure the following prerequisites are met before continuing with this quickstart guide:

Installation of SUSE CaaS Platform 4.5. See the SUSE CaaS Platform documentation for
more details on how to install: https://documentation.suse.com/en-us/suse-caasp/4.5/ .

Ensure ceph-csi (and required sidecars) are running in your Kubernetes cluster.

2 Recommended hardware specifications SES 7.1

https://documentation.suse.com/en-us/suse-caasp/4.5/

Installation of the LVM2 package on the host where the OSDs are running.

Ensure you have one of the following storage options to configure Ceph properly:

Raw devices (no partitions or formatted le systems)

Raw partitions (no formatted le system)

Ensure the SUSE CaaS Platform 4.5 repository is enabled for the installation of Helm 3.

1.3 Getting started with Rook

Note
The following instructions are designed for a quick start deployment only. For more infor-
mation on installing Helm, see https://documentation.suse.com/en-us/suse-caasp/4.5/ .

1. Install Helm v3:

zypper in helm

2. On a node with access to the Kubernetes cluster, execute the following:

> export HELM_EXPERIMENTAL_OCI=1

3. Create a local copy of the Helm chart to your local registry:

> helm chart pull registry.suse.com/ses/7.1/charts/rook-ceph:latest

If you are using a version of Helm >= 3.7, you do not need to specify the subcommand
chart . The protocol is also explicit and the version is presumed to be latest .

> helm pull oci://registry.suse.com/ses/7.1/charts/rook-ceph

4. Export the Helm charts to a Rook-Ceph sub-directory under your current working direc-
tory:

> helm chart export registry.suse.com/ses/7.1/charts/rook-ceph:latest

For Helm versions >= 3.7, you just need to extract the tarball yourself:

> tar -xzf rook-ceph-1.8.6.tar.gz

3 Getting started with Rook SES 7.1

https://documentation.suse.com/en-us/suse-caasp/4.5/

5. Create a le named myvalues.yaml based o the rook-ceph/values.yaml file .

6. Set local parameters in myvalues.yaml .

7. Create the namespace:

kubectl@adm > kubectl create namespace rook-ceph

8. Install the helm charts:

> helm install -n rook-ceph rook-ceph ./rook-ceph/ -f myvalues.yaml

9. Verify the rook-operator is running:

kubectl@adm > kubectl -n rook-ceph get pod -l app=rook-ceph-operator

1.4 Deploying Ceph with Rook
1. You need to apply labels to your Kubernetes nodes before deploying your Ceph cluster.

The key node-role.rook-ceph/cluster accepts one of the following values:

any

mon

mon-mgr

mon-mgr-osd

Run the following the get the names of your cluster's nodes:

kubectl@adm > kubectl get nodes

2. On the Master node, run the following:

kubectl@adm > kubectl label nodes node-name label-key=label-value

For example:

kubectl@adm > kubectl label node k8s-worker-node-1 node-role.rook-ceph/cluster=any

3. Verify the application of the label by re-running the following command:

kubectl@adm > kubectl get nodes --show-labels

4 Deploying Ceph with Rook SES 7.1

You can also use the describe command to get the full list of labels given to the node.
For example:

kubectl@adm > kubectl describe node node-name

4. Next, you need to apply a Ceph cluster manifest le, for example, cluster.yaml , to your
Kubernetes cluster. You can apply the example cluster.yaml as is without any additional
services or requirements from the Rook Helm chart.
To apply the example Ceph cluster manifest to your Kubernetes cluster, run the following
command:

> kubectl create -f rook-ceph/examples/cluster.yaml

1.5 Configuring the Ceph cluster

You can have two types of integration with your SUSE Enterprise Storage intregrated cluster.
These types are: CephFS or RADOS Block Device (RBD).

Before you start the SUSE CaaS Platform and SUSE Enterprise Storage integration, ensure you
have met the following prerequisites:

The SUSE CaaS Platform cluster must have ceph-common and xfsprogs installed on all
nodes. You can check this by running the rpm -q ceph-common command or the rpm -
q xfsprogs command.

That the SUSE Enterprise Storage cluster has a pool with a RBD device or CephFS enabled.

1.5.1 Configure CephFS

For more information on configuring CephFS, see https://documentation.suse.com/en-us/suse-

caasp/4.5/ for steps and more information. This section will also provide the necessary proce-
dure on attaching a pod to either an CephFS static or dynamic volume.

5 Configuring the Ceph cluster SES 7.1

https://documentation.suse.com/en-us/suse-caasp/4.5/
https://documentation.suse.com/en-us/suse-caasp/4.5/

1.5.2 Configure RADOS block device

For instructions on configuring the RADOS Block Device (RBD) in a pod, see https://documen-

tation.suse.com/en-us/suse-caasp/4.5/ for more information. This section will also provide the
necessary procedure on attaching a pod to either an RBD static or dynamic volume.

1.6 Updating local images

1. To update your local image to the latest tag, apply the new parameters in myvalues.yaml :

image:
refix: rook
repository: registry.suse.com/ses/7.1/rook/ceph
tag: LATEST_TAG
pullPolicy: IfNotPresent

2. Re-pull a new local copy of the Helm chart to your local registry:

> helm3 chart pull REGISTRY_URL

3. Export the Helm charts to a Rook-Ceph sub-directory under your current working direc-
tory:

> helm3 chart export REGISTRY_URL

4. Upgrade the Helm charts:

> helm3 upgrade -n rook-ceph rook-ceph ./rook-ceph/ -f myvalues.yaml

1.7 Uninstalling

1. Delete any Kubernetes applications that are consuming Rook storage.

2. Delete all object, le, and block storage artifacts.

3. Remove the CephCluster:

kubectl@adm > >kubectl delete -f cluster.yaml

6 Configure RADOS block device SES 7.1

https://documentation.suse.com/en-us/suse-caasp/4.5/
https://documentation.suse.com/en-us/suse-caasp/4.5/

4. Uninstall the operator:

> helm uninstall REGISTRY_URL

Or, if you are using Helm >= 3.7:

> helm uninstall -n rook-ceph rook-ceph

5. Delete any data on the hosts:

> rm -rf /var/lib/rook

6. Wipe the disks if necessary.

7. Delete the namespace:

> kubectl delete namespace rook-ceph

7 Uninstalling SES 7.1

2 Updating Rook

This chapter describes how to update containerized SUSE Enterprise Storage 7 on top of a SUSE
CaaS Platform 4.5 Kubernetes cluster.

This chapter takes you through the steps to update the software in a Rook-Ceph cluster from
one version to the next. This includes both the Rook-Ceph Operator software itself as well as
the Ceph cluster software.

Note
Version

2.1 Recommended hardware specifications

For SUSE Enterprise Storage deployed with Rook, the minimal configuration is preliminary, we
will update it based on real customer needs.

For the purpose of this document, consider the following minimum configuration:

A highly available Kubernetes cluster with 3 master nodes

Four physical Kubernetes worker nodes, each with two OSD disks and 5 GB of RAM per
OSD disk

Allow additional 4 GB of RAM per additional daemon deployed on a node

Dual-10 Gb ethernet as bonded network

If you are running a hyper-converged infrastructure (HCI), ensure you add any additional
requirements for your workloads.

2.2 Patch release upgrades

To update a patch release of Rook to another, you need to update the common resources and
the image of the Rook Operator.

8 Recommended hardware specifications SES 7.1

1. Get the latest common resource manifests that contain the relevant changes to the latest
version:

> zypper in rook-k8s-yaml
> cd /usr/share/k8s-yaml/rook/ceph/

2. Apply the latest changes from the next version and update the Rook Operator image:

kubectl@adm > helm upgrade -n rook-ceph rook-ceph ./rook-ceph/ -f myvalues.yaml
kubectl@adm > kubectl -n rook-ceph set image deploy/rook-ceph-operator
 registry.suse.com/ses/7.1/rook/ceph:version-number

3. Upgrade the Ceph version:

kubectl@adm > kubectl -n ROOK_CLUSTER_NAMESPACE patch CephCluster CLUSTER_NAME --
type=merge -p "{\"spec\": {\"cephVersion\": {\"image\": \"registry.suse.com/ses/7.1/
ceph/ceph:version-number\"}}}"

4. Mark the Ceph cluster to only support the updated version:

from a ceph-toolbox
ceph osd require-osd-release version-name

Note
We recommend updating the Rook-Ceph common resources from the example manifests
before any update. The common resources and CRDs might not be updated with every
release, but K8s will only apply updates to the ones that changed.

2.3 Rook-Ceph Updates

This is a general guide for updating your Rook cluster. For detailed instructions on updating
to each supported version, refer to the upstream Rook upgrade documentation: https://rook.io/

docs/rook/v1.8/ceph-upgrade.html .

To successfully upgrade a Rook cluster, the following prerequisites must be met:

Cluster health status is healthy with full functionality.

All pods consuming Rook storage should be created, running, and in a steady state.

9 Rook-Ceph Updates SES 7.1

https://rook.io/docs/rook/v1.8/ceph-upgrade.html
https://rook.io/docs/rook/v1.8/ceph-upgrade.html

Each version upgrade has specific details outlined in the Rook documentation. Use the following
steps as a base guideline.

Note
These methods should work for any number of Rook-Ceph clusters and Rook Operators as
long as you parameterize the environment correctly. Merely repeat these steps for each
Rook-Ceph cluster (ROOK_CLUSTER_NAMESPACE), and be sure to update the ROOK_OPER-
ATOR_NAMESPACE parameter each time if applicable.

1. Update common resources and CRDs.

2. Update Ceph CSI versions.

3. Update the Rook Operator.

4. Wait for the upgrade to complete and verify the updated cluster.

5. Update CephRBDMirror and CephBlockPool configuration options.

10 Rook-Ceph Updates SES 7.1

II Administrating Ceph on SUSE CaaS
Platform

3 Rook-Ceph administration 12

4 Ceph cluster administration 13

5 Block Storage 14

6 CephFS 19

7 Ceph cluster custom resource definitions 25

8 Configuration 69

9 Toolboxes 71

10 Ceph OSD management 76

11 Ceph examples 81

12 Advanced configuration 85

13 Object Storage 97

14 Ceph Dashboard 115

3 Rook-Ceph administration

This part of the guide focuses on routine tasks that you as an administrator need to take care of
after the basic Ceph cluster has been deployed ("day two operations"). It also describes all the
supported ways to access data stored in a Ceph cluster.

The chapters in this part contain links to additional documentation resources. These include
additional documentation that is available on the system, as well as documentation available
on the Internet.

For an overview of the documentation available for your product and the latest documentation
updates, refer to https://documentation.suse.com .

12 SES 7.1

https://documentation.suse.com

4 Ceph cluster administration

This chapter introduces tasks that are performed on the whole cluster.

4.1 Shutting down and restarting the cluster
To shut down the whole Ceph cluster for planned maintenance tasks, follow these steps:

1. Stop all clients that are using the cluster.

2. Verify that the cluster is in a healthy state. Use the following commands:

cephuser@adm > ceph status
cephuser@adm > ceph health

3. Set the following OSD ags:

 cephuser@adm > ceph osd set noout
 cephuser@adm > ceph osd set nobackfill
 cephuser@adm > ceph osd set norecover

4. Shutdown service nodes one by one (non-storage workers).

5. Shutdown Ceph Monitor nodes one by one (masters by default).

6. Shutdown Admin Node (masters).

After you finish the maintenance, you can start the cluster again by running the above procedure
in reverse order.

13 Shutting down and restarting the cluster SES 7.1

5 Block Storage

Block Storage allows a single pod to mount storage. This guide shows how to create a simple,
multi-tier web application on Kubernetes using persistent volumes enabled by Rook.

5.1 Provisioning Block Storage
Before Rook can provision storage, a StorageClass and a CephBlockPool need to be created.
This will allow Kubernetes to interoperate with Rook when provisioning persistent volumes.

Note
This sample requires at least one OSD per node, with each OSD located on three different
nodes.

Each OSD must be located on a different node, because the failureDomain (https://github.com/

rook/rook/blob/master/Documentation/ceph-pool-crd.md#spec) is set to host and the repli-
cated.size is set to 3 .

Note
This example uses the CSI driver, which is the preferred driver going forward for Kuber-
netes 1.13 and newer. Examples are found in the CSI RBD (https://github.com/rook/rook/

tree/release-1.4/cluster/examples/kubernetes/ceph/csi/rbd) directory.

Save this StorageClass definition as storageclass.yaml :

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook-ceph
spec:
 failureDomain: host
 replicated:
 size: 3

14 Provisioning Block Storage SES 7.1

https://github.com/rook/rook/blob/master/Documentation/ceph-pool-crd.md#spec
https://github.com/rook/rook/blob/master/Documentation/ceph-pool-crd.md#spec
https://github.com/rook/rook/tree/release-1.4/cluster/examples/kubernetes/ceph/csi/rbd
https://github.com/rook/rook/tree/release-1.4/cluster/examples/kubernetes/ceph/csi/rbd

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-block
Change "rook-ceph" provisioner prefix to match the operator namespace if needed
provisioner: rook-ceph.rbd.csi.ceph.com
parameters:
 # clusterID is the namespace where the rook cluster is running
 clusterID: rook-ceph
 # Ceph pool into which the RBD image shall be created
 pool: replicapool

 # RBD image format. Defaults to "2".
 imageFormat: "2"

 # RBD image features. Available for imageFormat: "2". CSI RBD currently supports only
 `layering` feature.
 imageFeatures: layering

 # The secrets contain Ceph admin credentials.
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook-ceph
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph

 # Specify the filesystem type of the volume. If not specified, csi-provisioner
 # will set default as `ext4`. Note that `xfs` is not recommended due to potential
 deadlock
 # in hyperconverged settings where the volume is mounted on the same node as the
 osds.
 csi.storage.k8s.io/fstype: ext4

Delete the rbd volume when a PVC is deleted
reclaimPolicy: Delete

If you have deployed the Rook operator in a namespace other than “rook-ceph”, change the
prefix in the provisioner to match the namespace you used. For example, if the Rook operator is
running in the namespace “my-namespace” the provisioner value should be “my-namespace.rb-
d.csi.ceph.com”.

Create the storage class.

kubectl@adm > kubectl create -f cluster/examples/kubernetes/ceph/csi/rbd/
storageclass.yaml

15 Provisioning Block Storage SES 7.1

Note
As specified by Kubernetes (https://kubernetes.io/docs/concepts/storage/persistent-vol-

umes/#retain) , when using the Retain reclaim policy, any Ceph RBD image that is
backed by a PersistentVolume will continue to exist even after the PersistentVolume
has been deleted. These Ceph RBD images will need to be cleaned up manually using
rbd rm .

5.2 Consuming storage: WordPress sample
In this example, we will create a sample application to consume the block storage provisioned
by Rook with the classic WordPress and MySQL apps. Both of these applications will make use
of block volumes provisioned by Rook.

Start MySQL and WordPress from the cluster/examples/kubernetes folder:

kubectl@adm > kubectl create -f mysql.yaml
kubectl create -f wordpress.yaml

Both of these applications create a block volume, and mount it to their respective pod. You can
see the Kubernetes volume claims by running the following:

kubectl@adm > kubectl get pvc
NAME STATUS VOLUME CAPACITY
 ACCESSMODES AGE
mysql-pv-claim Bound pvc-95402dbc-efc0-11e6-bc9a-0cc47a3459ee 20Gi RWO
 1m
wp-pv-claim Bound pvc-39e43169-efc1-11e6-bc9a-0cc47a3459ee 20Gi RWO
 1m

Once the WordPress and MySQL pods are in the Running state, get the cluster IP of the Word-
Press app and enter it in your browser:

kubectl@adm > kubectl get svc wordpress
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
wordpress 10.3.0.155 <pending> 80:30841/TCP 2m

You should see the WordPress application running.

If you are using Minikube, the WordPress URL can be retrieved with this one-line command:

kubectl@adm > echo http://$(minikube ip):$(kubectl get service wordpress -o
 jsonpath='{.spec.ports[0].nodePort}')

16 Consuming storage: WordPress sample SES 7.1

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#retain
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#retain

Note
When running in a Vagrant environment, there will be no external IP address to reach
WordPress with. You will only be able to reach WordPress via the CLUSTER-IP from
inside the Kubernetes cluster.

5.3 Consuming the storage: Toolbox

With the pool that was created above, we can also create a block image and mount it directly
in a pod.

5.4 Teardown

To clean up all the artifacts created by the block-storage demonstration:

kubectl@adm > kubectl delete -f wordpress.yaml
kubectl@adm > kubectl delete -f mysql.yaml
kubectl@adm > kubectl delete -n rook-ceph cephblockpools.ceph.rook.io replicapool
kubectl@adm > kubectl delete storageclass rook-ceph-block

5.5 Advanced Example: Erasure-Coded Block Storage

If you want to use erasure-coded pools with RBD, your OSDs must use bluestore as their
storeType . Additionally, the nodes that will mount the erasure-coded RBD block storage must
have Linux kernel 4.11 or above.

This example requires at least three bluestore OSDs, with each OSD located on a different node.

The OSDs must be located on different nodes, because the failureDomain is set to host and
the erasureCoded chunk settings require at least three different OSDs (two dataChunks plus
one codingChunk).

To be able to use an erasure-coded pool, you need to create two pools (as seen below in the
definitions): one erasure-coded, and one replicated.

17 Consuming the storage: Toolbox SES 7.1

5.5.1 Erasure coded CSI driver

The erasure-coded pool must be set as the dataPool parameter in
storageclass-ec.yaml (https://github.com/rook/rook/blob/release-1.4/cluster/examples/kuber-

netes/ceph/csi/rbd/storageclass-ec.yaml) It is used for the data of the RBD images.

18 Erasure coded CSI driver SES 7.1

https://github.com/rook/rook/blob/release-1.4/cluster/examples/kubernetes/ceph/csi/rbd/storageclass-ec.yaml
https://github.com/rook/rook/blob/release-1.4/cluster/examples/kubernetes/ceph/csi/rbd/storageclass-ec.yaml

6 CephFS

6.1 Shared File System
A shared le system can be mounted with read/write permission from multiple pods. This may
be useful for applications which can be clustered using a shared le system.

This example runs a shared le system for the kube-registry (https://github.com/kubernetes/ku-

bernetes/tree/release-1.18/cluster/addons) .

6.1.1 Prerequisites

This guide assumes you have created a Rook cluster as explained in the main guide: Chapter 1,

Quick start.

Note
By default, only one shared le system can be created with Rook. Multiple le system
support in Ceph is still considered experimental, and can be enabled with the environment
variable ROOK_ALLOW_MULTIPLE_FILESYSTEMS defined in operator.yaml .

6.1.2 Creating the File System

Create the le system by specifying the desired settings for the metadata pool, data pools, and
metadata server in the CephFilesystem CRD. In this example, we create the metadata pool
with replication of three, and a single data pool with replication of three. For more options, see
the documentation Section 7.3, “Ceph shared file system CRD”.

Save this shared le system definition as filesystem.yaml :

apiVersion: ceph.rook.io/v1
kind: CephFilesystem
metadata:
 name: myfs
 namespace: rook-ceph
spec:
 metadataPool:
 replicated:

19 Shared File System SES 7.1

https://github.com/kubernetes/kubernetes/tree/release-1.18/cluster/addons
https://github.com/kubernetes/kubernetes/tree/release-1.18/cluster/addons

 size: 3
 dataPools:
 - replicated:
 size: 3
 preservePoolsOnDelete: true
 metadataServer:
 activeCount: 1
 activeStandby: true

The Rook operator will create all the pools and other resources necessary to start the service.
This may take a minute to complete.

Create the le system:

kubectl@adm > kubectl create -f filesystem.yaml

To confirm the le system is configured, wait for the MDS pods to start:

kubectl@adm > kubectl -n rook-ceph get pod -l app=rook-ceph-mds
NAME READY STATUS RESTARTS AGE
rook-ceph-mds-myfs-7d59fdfcf4-h8kw9 1/1 Running 0 12s
rook-ceph-mds-myfs-7d59fdfcf4-kgkjp 1/1 Running 0 12s

To see detailed status of the le system, start and connect to the Rook toolbox. A new line will
be shown with ceph status for the mds service. In this example, there is one active instance
of MDS which is up, with one MDS instance in standby-replay mode in case of failover.

cephuser@adm > ceph status
[...]
services:
mds: myfs-1/1/1 up {[myfs:0]=mzw58b=up:active}, 1 up:standby-replay

6.1.3 Provisioning Storage

Before Rook can start provisioning storage, a StorageClass needs to be created based on the
le system. This is needed for Kubernetes to interoperate with the CSI driver to create persistent
volumes.

Note
This example uses the CSI driver, which is the preferred driver going forward for Kuber-
netes 1.13 and newer.

20 Provisioning Storage SES 7.1

Save this storage class definition as storageclass.yaml :

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-cephfs
Change "rook-ceph" provisioner prefix to match the operator namespace if needed
provisioner: rook-ceph.cephfs.csi.ceph.com
parameters:
 # clusterID is the namespace where operator is deployed.
 clusterID: rook-ceph

 # CephFS file system name into which the volume shall be created
 fsName: myfs

 # Ceph pool into which the volume shall be created
 # Required for provisionVolume: "true"
 pool: myfs-data0

 # Root path of an existing CephFS volume
 # Required for provisionVolume: "false"
 # rootPath: /absolute/path

 # The secrets contain Ceph admin credentials. These are generated automatically by the
 operator
 # in the same namespace as the cluster.
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-cephfs-provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-cephfs-provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook-ceph
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-cephfs-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph

reclaimPolicy: Delete

If you have deployed the Rook operator in a namespace other than “rook-ceph”, change the
prefix in the provisioner to match the namespace you used. For example, if the Rook operator
is running in “rook-op”, the provisioner value should be “rook-op.rbd.csi.ceph.com”.

Create the storage class:

kubectl@adm > kubectl create -f cluster/examples/kubernetes/ceph/csi/cephfs/
storageclass.yaml

21 Provisioning Storage SES 7.1

Important
The CephFS CSI driver uses quotas to enforce the PVC size requested. Only newer kernels
support CephFS quotas (kernel version of at least 4.17).

6.1.4 Consuming the Shared File System: K8s Registry Sample

As an example, we will start the kube-registry pod with the shared le system as the backing
store. Save the following spec as kube-registry.yaml :

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: cephfs-pvc
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi
 storageClassName: rook-cephfs

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kube-registry
 namespace: kube-system
 labels:
 k8s-app: kube-registry
 kubernetes.io/cluster-service: "true"
spec:
 replicas: 3
 selector:
 matchLabels:
 k8s-app: kube-registry
 template:
 metadata:
 labels:
 k8s-app: kube-registry
 kubernetes.io/cluster-service: "true"
 spec:
 containers:
 - name: registry
 image: registry:2

22 Consuming the Shared File System: K8s Registry Sample SES 7.1

 imagePullPolicy: Always
 resources:
 limits:
 cpu: 100m
 memory: 100Mi
 env:
 # Configuration reference: https://docs.docker.com/registry/configuration/
 - name: REGISTRY_HTTP_ADDR
 value: :5000
 - name: REGISTRY_HTTP_SECRET
 value: "Ple4seCh4ngeThisN0tAVerySecretV4lue"
 - name: REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY
 value: /var/lib/registry
 volumeMounts:
 - name: image-store
 mountPath: /var/lib/registry
 ports:
 - containerPort: 5000
 name: registry
 protocol: TCP
 livenessProbe:
 httpGet:
 path: /
 port: registry
 readinessProbe:
 httpGet:
 path: /
 port: registry
 volumes:
 - name: image-store
 persistentVolumeClaim:
 claimName: cephfs-pvc
 readOnly: false

Create the Kube registry deployment:

kubectl@adm > kubectl create -f cluster/examples/kubernetes/ceph/csi/cephfs/kube-
registry.yaml

You now have a High-Availability Docker registry with persistent storage.

Note
If the Rook cluster has more than one le system and the application pod is scheduled
to a node with kernel version older than 4.7, inconsistent results may arise, since kernels
older than 4.7 do not support specifying le system namespaces.

23 Consuming the Shared File System: K8s Registry Sample SES 7.1

6.1.5 Consuming the Shared File System: Toolbox

Once you have pushed an image to the registry, verify that kube-registry is using the le
system that was configured above by mounting the shared le system in the toolbox pod.

6.1.5.1 Teardown

To clean up all the artifacts created by the le system demo:

kubectl@adm > kubectl delete -f kube-registry.yaml

To delete the le system components and backing data, delete the Filesystem CRD.

Note
WARNING: Data will be deleted if preservePoolsOnDelete=false .

kubectl@adm > kubectl -n rook-ceph delete cephfilesystem myfs

Note
If the “preservePoolsOnDelete” le system attribute is set to true, the above command
will not delete the pools. Creating the le system again with the same CRD will reuse
the previous pools.

24 Consuming the Shared File System: Toolbox SES 7.1

7 Ceph cluster custom resource definitions

7.1 Ceph cluster CRD
Rook allows the creation and customization of storage clusters through Custom Resource Defi-
nitions (CRDs). There are two different methods of cluster creation, depending on whether the
storage on which to base the Ceph cluster can be dynamically provisioned.

1. Specify the host paths and raw devices.

2. Specify the storage class Rook should use to consume storage via PVCs.

Examples for each of these approaches follow.

7.1.1 Host-based cluster

To get you started, here is a simple example of a CRD to configure a Ceph cluster with all nodes
and all devices. In the next example, the MONs and OSDs are backed by PVCs.

Note
In addition to your CephCluster object, you need to create the namespace, service ac-
counts, and RBAC rules for the namespace in which you will create the CephCluster.
These resources are defined in the example common.yaml le.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 # see the "Cluster Settings" section below for more details on which image of Ceph to
 run
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3

25 Ceph cluster CRD SES 7.1

 allowMultiplePerNode: true
 storage:
 useAllNodes: true
 useAllDevices: true

7.1.2 PVC-based cluster

Note
Kubernetes version 1.13.0 or greater is required to provision OSDs on PVCs.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 # see the "Cluster Settings" section below for more details on which image of Ceph to
 run
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi
 storage:
 storageClassDeviceSets:
 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false
 encrypted: false
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:

26 PVC-based cluster SES 7.1

 storage: 10Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, gp2)
 storageClassName: local-storage
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

For more advanced scenarios, such as adding a dedicated device, please refer to Section 7.1.4.8,

“Dedicated metadata and WAL device for OSD on PVC”.

7.1.3 Settings

Settings can be specified at the global level to apply to the cluster as a whole, while other settings
can be specified at more ne-grained levels. If any setting is unspecified, a suitable default will
be used automatically.

7.1.3.1 Cluster metadata

name : The name that will be used internally for the Ceph cluster. Most commonly, the
name is the same as the namespace since multiple clusters are not supported in the same
namespace.

namespace : The Kubernetes namespace that will be created for the Rook cluster. The
services, pods, and other resources created by the operator will be added to this namespace.
The common scenario is to create a single Rook cluster. If multiple clusters are created,
they must not have conflicting devices or host paths.

7.1.3.2 Cluster settings

external :

enable : if true , the cluster will not be managed by Rook but via an external entity.
This mode is intended to connect to an existing cluster. In this case, Rook will only
consume the external cluster. However, if an image is provided, Rook will be able to
deploy various daemons in Kubernetes, such as object gateways, MDS and NFS. If an
image is not provided, it will refuse. If this setting is enabled, all the other options will

27 Settings SES 7.1

be ignored except cephVersion.image and dataDirHostPath . See Section 7.1.4.9,

“External cluster”. If cephVersion.image is left blank, Rook will refuse the creation
of extra CRs such as object, le and NFS.

cephVersion : The version information for launching the Ceph daemons.

image : The image used for running the Ceph daemons. For example, ceph/

ceph:v16.2.7 or ceph/ceph:v15.2.4 . To ensure a consistent version of the image
is running across all nodes in the cluster, we recommend to use a very specific image
version. Tags also exist that would give the latest version, but they are only recom-
mended for test environments. Using the v14 or similar tag is not recommended in
production because it may lead to inconsistent versions of the image running across
different nodes in the cluster.

dataDirHostPath : The path on the host where config and data should be stored for each
of the services. If the directory does not exist, it will be created. Because this directory
persists on the host, it will remain after pods are deleted. You must not use the following
paths and any of their subpaths: /etc/ceph , /rook or /var/log/ceph .

On Minikube environments, use /data/rook . Minikube boots into a tmpfs but it
provides some directories where les can persist across reboots. Using one of these
directories will ensure that Rook’s data and configuration les persist and that enough
storage space is available.

Warning
WARNING: For test scenarios, if you delete a cluster and start a new cluster on
the same hosts, the path used by dataDirHostPath must be deleted. Other-
wise, stale keys and other configuration will remain from the previous cluster
and the new MONs will fail to start. If this value is empty, each pod will get
an ephemeral directory to store their config les that is tied to the lifetime of
the pod running on that node.

continueUpgradeAfterChecksEvenIfNotHealthy : if set to true , Rook will continue
the OSD daemon upgrade process even if the PGs are not clean, or continue with the MDS
upgrade even the le system is not healthy.

dashboard : Settings for the Ceph Dashboard. To view the dashboard in your browser, see
Book “Administration and Operations Guide”.

28 Settings SES 7.1

enabled : Whether to enable the dashboard to view cluster status.

urlPrefix : Allows serving the dashboard under a subpath (useful when you are
accessing the dashboard via a reverse proxy).

port : Allows changing the default port where the dashboard is served.

ssl : Whether to serve the dashboard via SSL; ignored on Ceph versions older than
13.2.2 .

monitoring : Settings for monitoring Ceph using Prometheus. To enable monitoring on
your cluster, see the Book “Administration and Operations Guide”, Chapter 16 “Monitoring and

alerting”.

enabled : Whether to enable-Prometheus based monitoring for this cluster.

rulesNamespace : Namespace to deploy prometheusRule . If empty, the namespace
of the cluster will be used. We recommend:

If you have a single Rook Ceph cluster, set the rulesNamespace to the same
namespace as the cluster, or leave it empty.

If you have multiple Rook Ceph clusters in the same Kubernetes cluster, choose
the same namespace to set rulesNamespace for all the clusters (ideally, name-
space with Prometheus deployed). Otherwise, you will get duplicate alerts with
duplicate alert definitions.

network : For the network settings for the cluster, refer to Section 7.1.3.5, “Network config-

uration settings”.

mon : contains MON related options Section 7.1.3.3, “MON settings”.

mgr : manager top level section.

modules : is the list of Ceph Manager modules to enable.

crashCollector : The settings for crash collector daemon(s).

disable : if set to true , the crash collector will not run on any node where a Ceph
daemon runs.

annotations : Section 7.1.3.10, “Annotations and labels”

29 Settings SES 7.1

labels : Section 7.1.3.10, “Annotations and labels”

placement : Section 7.1.3.11, “Placement configuration settings”

resources : Section 7.1.3.12, “Cluster-wide resources configuration settings”

priorityClassNames : Section 7.1.3.14, “Priority class names configuration settings”

storage : Storage selection and configuration that will be used across the cluster. Note
that these settings can be overridden for specific nodes.

useAllNodes : true or false , indicating if all nodes in the cluster should be used
for storage according to the cluster level storage selection and configuration values.
If individual nodes are specified under the nodes eld, then useAllNodes must be
set to false .

nodes : Names of individual nodes in the cluster that should have their storage in-
cluded in accordance with either the cluster level configuration specified above or
any node specific overrides described in the next section below. useAllNodes must
be set to false to use specific nodes and their configuration. See Section 7.1.3.6, “Node

settings” below.

config : Config settings applied to all OSDs on the node unless overridden by de-
vices .

Section 7.1.3.7, “Storage selection settings”

Section 7.1.3.8, “Storage class device sets”

disruptionManagement : The section for configuring management of daemon disruptions

managePodBudgets : if true , the operator will create and manage PodDisruption-
Budgets for OSD, MON, RGW, and MDS daemons. The operator will block eviction
of OSDs by default and unblock them safely when drains are detected.

osdMaintenanceTimeout : is a duration in minutes that determines how long an
entire failure domain like region/zone/host will be held in noout (in addition
to the default DOWN/OUT interval) when it is draining. This is only relevant when
managePodBudgets is true . The default value is 30 minutes.

30 Settings SES 7.1

manageMachineDisruptionBudgets : if true , the operator will create and manage
MachineDisruptionBudgets to ensure OSDs are only fenced when the cluster is
healthy. Only available on OpenShift.

machineDisruptionBudgetNamespace : the namespace in which to watch the Ma-
chineDisruptionBudgets .

removeOSDsIfOutAndSafeToRemove : If true the operator will remove the OSDs that are
down and whose data has been restored to other OSDs.

cleanupPolicy : Section 7.1.4.10, “Cleanup policy”

7.1.3.3 MON settings

count : Set the number of MONs to be started. This should be an odd number between
one and nine. If not specified, the default is set to three, and allowMultiplePerNode is
also set to true .

allowMultiplePerNode : Enable (true) or disable (false) the placement of multiple
MONs on one node. Default is false .

volumeClaimTemplate : A PersistentVolumeSpec used by Rook to create PVCs for mon-
itor storage. This eld is optional, and when not provided, HostPath volume mounts are
used. The current set of elds from template that are used are storageClassName and
the storage resource request and limit. The default storage size request for new PVCs
is 10Gi . Ensure that associated storage class is configured to use volumeBindingMode:
WaitForFirstConsumer . This setting only applies to new monitors that are created when
the requested number of monitors increases, or when a monitor fails and is recreated.

If these settings are changed in the CRD, the operator will update the number of MONs during
a periodic check of the MON health, which by default is every 45 seconds.

To change the defaults that the operator uses to determine the MON health and whether to
failover a MON, refer to the Section 7.1.3.15, “Health settings”. The intervals should be small enough
that you have confidence the MONs will maintain quorum, while also being long enough to
ignore network blips where MONs are failed over too often.

31 Settings SES 7.1

7.1.3.4 Ceph Manager settings

You can use the cluster CR to enable or disable any manager module. For example, this can
be configured:

mgr:
 modules:
 - name: <name of the module>
 enabled: true

Some modules will have special configuration to ensure the module is fully functional after
being enabled. Specifically, the pg_autoscaler—Rook will configure all new pools with PG
autoscaling by setting: osd_pool_default_pg_autoscale_mode = on

7.1.3.5 Network configuration settings

If not specified, the default SDN will be used. Configure the network that will be enabled for
the cluster and services.

provider : Specifies the network provider that will be used to connect the network inter-
face.

selectors : List the network selector(s) that will be used associated by a key.

Note
Changing networking configuration after a Ceph cluster has been deployed is not sup-
ported and will result in a non-functioning cluster.

To use host networking, set provider: host .

7.1.3.6 Node settings

In addition to the cluster level settings specified above, each individual node can also specify
configuration to override the cluster level settings and defaults. If a node does not specify any
configuration, then it will inherit the cluster level settings.

32 Settings SES 7.1

name : The name of the node, which should match its kubernetes.io/hostname label.

config : Configuration settings applied to all OSDs on the node unless overridden by de-
vices .

Section 7.1.3.7, “Storage selection settings”

When useAllNodes is set to true , Rook attempts to make Ceph cluster management as hands-
o as possible while still maintaining reasonable data safety. If a usable node comes online,
Rook will begin to use it automatically. To maintain a balance between hands-o usability and
data safety, nodes are removed from Ceph as OSD hosts only (1) if the node is deleted from
Kubernetes itself or (2) if the node has its taints or affinities modified in such a way that the node
is no longer usable by Rook. Any changes to taints or affinities, intentional or unintentional, may
affect the data reliability of the Ceph cluster. In order to help protect against this somewhat,
deletion of nodes by taint or affinity modifications must be confirmed by deleting the Rook-
Ceph operator pod and allowing the operator deployment to restart the pod.

For production clusters, we recommend that useAllNodes is set to false to prevent the Ceph
cluster from suffering reduced data reliability unintentionally due to a user mistake. When use-
AllNodes is set to false , Rook relies on the user to be explicit about when nodes are added
to or removed from the Ceph cluster. Nodes are only added to the Ceph cluster if the node is
added to the Ceph cluster resource. Similarly, nodes are only removed if the node is removed
from the Ceph cluster resource.

7.1.3.6.1 Node updates

Nodes can be added and removed over time by updating the cluster CRD —for example, with
the following command:

kubectl -n rook-ceph edit cephcluster rook-ceph

This will bring up your default text editor and allow you to add and remove storage nodes from
the cluster. This feature is only available when useAllNodes has been set to false .

7.1.3.7 Storage selection settings

Below are the settings available, both at the cluster and individual node level, for selecting
which storage resources will be included in the cluster.

33 Settings SES 7.1

useAllDevices : true or false , indicating whether all devices found on nodes in the
cluster should be automatically consumed by OSDs. This is Not recommended unless you
have a very controlled environment where you will not risk formatting of devices with
existing data. When true , all devices/partitions will be used. Is overridden by device-
Filter if specified.

deviceFilter : A regular expression for short kernel names of devices (for example, sda)
that allows selection of devices to be consumed by OSDs. If individual devices have been
specified for a node then this filter will be ignored. For example:

sdb : Selects only the sdb device (if found).

^sd : Selects all devices starting with sd .

^sd[a-d] : Selects devices starting with sda , sdb , sdc , and sdd (if found).

^s : Selects all devices that start with s .

^[^r] : Selects all devices that do not start with r

devicePathFilter : A regular expression for device paths (for example, /dev/disk/by-
path/pci-0:1:2:3-scsi-1) that allows selection of devices to be consumed by OSDs. If
individual devices or deviceFilter have been specified for a node then this filter will
be ignored. For example:

^/dev/sd. : Selects all devices starting with sd

^/dev/disk/by-path/pci-.* : Selects all devices which are connected to PCI bus

devices : A list of individual device names belonging to this node to include in the storage
cluster.

name : The name of the device (for example, sda), or full udev path (such as, /dev/
disk/by-id/ata-ST4000DM004-XXXX — this will not change after reboots).

config : Device-specific configuration settings.

storageClassDeviceSets : Explained in Section 7.1.3.8, “Storage class device sets”.

34 Settings SES 7.1

7.1.3.8 Storage class device sets

The following are the settings for Storage Class Device Sets which can be configured to create
OSDs that are backed by block mode PVs.

name : A name for the set.

count : The number of devices in the set.

resources : The CPU and RAM requests or limits for the devices (optional).

placement : The placement criteria for the devices (optional; default is no placement cri-
teria).
The syntax is the same as for Section 7.1.3.11, “Placement configuration settings”. It supports
nodeAffinity , podAffinity , podAntiAffinity and tolerations keys.
We recommend configuring the placement such that the OSDs will be as evenly spread
across nodes as possible. At a minimum, anti-affinity should be added, so at least one OSD
will be placed on each available node.
However, if there are more OSDs than nodes, this anti-affinity will not be effective. Another
placement scheme to consider is adding labels to the nodes in such a way that the OSDs
can be grouped on those nodes, create multiple storageClassDeviceSets , and add node
affinity to each of the device sets that will place the OSDs in those sets of nodes.

preparePlacement : The placement criteria for the preparation of the OSD devices. Cre-
ating OSDs is a two-step process and the prepare job may require different placement than
the OSD daemons. If the preparePlacement is not specified, the placement will instead
be applied for consistent placement for the OSD prepare jobs and OSD deployments. The
preparePlacement is only useful for portable OSDs in the device sets. OSDs that are
not portable will be tied to the host where the OSD prepare job initially runs.

For example, provisioning may require topology spread constraints across zones, but
the OSD daemons may require constraints across hosts within the zones.

portable : If true , the OSDs will be allowed to move between nodes during failover. This
requires a storage class that supports portability (for example, aws-ebs , but not the local
storage provisioner). If false , the OSDs will be assigned to a node permanently. Rook
will configure Ceph’s CRUSH map to support the portability.

tuneDeviceClass : If true , because the OSD can be on a slow device class, Rook will
adapt to that by tuning the OSD process. This will make Ceph perform better under that
slow device.

35 Settings SES 7.1

volumeClaimTemplates : A list of PVC templates to use for provisioning the underlying
storage devices.

resources.requests.storage : The desired capacity for the underlying storage de-
vices.

storageClassName : The StorageClass to provision PVCs from. The default is
to use the cluster-default StorageClass. This StorageClass should provide a raw
block device, multipath device, or logical volume. Other types are not support-
ed. If you want to use logical volumes, please see the known issue of OSD on
LV-backed PVC: https://github.com/rook/rook/blob/master/Documentation/ceph-com-

mon-issues.md#lvm-metadata-can-be-corrupted-with-osd-on-lv-backed-pvc

volumeMode : The volume mode to be set for the PVC.

accessModes : The access mode for the PVC to be bound by OSD.

schedulerName : Scheduler name for OSD pod placement (optional).

encrypted : whether to encrypt all the OSDs in a given storageClassDeviceSet.

7.1.3.9 Storage selection via Ceph DriveGroups

Ceph DriveGroups allow for specifying highly advanced OSD layouts. Refer to Book “Adminis-

tration and Operations Guide”, Chapter 13 “Operational tasks”, Section 13.4.3 “Adding OSDs using Drive-

Groups specification” for both general information and detailed specification of DriveGroups with
useful examples.

Important
When managing a Rook/Ceph cluster’s OSD layouts with DriveGroups, the storage con-
figuration is mostly ignored. storageClassDeviceSets can still be used to create OSDs
on PVC, but Rook will no longer use storage configurations for creating OSDs on a
node's devices. To avoid confusion, we recommend using the storage configuration or
DriveGroups , but never both. Because storage and DriveGroups should not be used
simultaneously, Rook only supports provisioning OSDs with DriveGroups on new Rook-
Ceph clusters.

DriveGroups are defined by a name, a Ceph DriveGroups spec, and a Rook placement.

36 Settings SES 7.1

https://github.com/rook/rook/blob/master/Documentation/ceph-common-issues.md#lvm-metadata-can-be-corrupted-with-osd-on-lv-backed-pvc
https://github.com/rook/rook/blob/master/Documentation/ceph-common-issues.md#lvm-metadata-can-be-corrupted-with-osd-on-lv-backed-pvc

name : A name for the DriveGroups.

spec : The Ceph DriveGroups spec. Some components of the spec are treated differently
in the context of Rook as noted below.

Rook overrides Ceph’s definition of placement in order to use Rook’s placement
below.

Rook overrides Ceph’s service_id eld to be the same as the DriveGroups name
above.

placement : The placement criteria for nodes to provision with the DriveGroups (optional;
default is no placement criteria, which matches all untainted nodes). The syntax is the
same as for Section 7.1.3.11, “Placement configuration settings”.

7.1.3.10 Annotations and labels

Annotations and Labels can be specified so that the Rook components will have those annotations
or labels added to them.

You can set annotations and labels for Rook components for the list of key value pairs:

all : Set annotations / labels for all components

mgr : Set annotations / labels for MGRs

mon : Set annotations / labels for MONs

osd : Set annotations / labels for OSDs

prepareosd : Set annotations / labels for OSD Prepare Jobs

When other keys are set, all will be merged together with the specific component.

7.1.3.11 Placement configuration settings

Placement configuration for the cluster services. It includes the following keys: mgr , mon , osd ,
cleanup , and all . Each service will have its placement configuration generated by merging the
generic configuration under all with the most specific one (which will override any attributes).

37 Settings SES 7.1

Note
Placement of OSD pods is controlled using the Section 7.1.3.8, “Storage class device sets”, not
the general placement configuration.

A placement configuration is specified (according to the Kubernetes PodSpec) as:

nodeAffinity

podAffinity

podAntiAffinity

tolerations

topologySpreadConstraints

If you use labelSelector for OSD pods, you must write two rules both for rook-ceph-osd
and rook-ceph-osd-prepare .

The Rook Ceph operator creates a job called rook-ceph-detect-version to detect the full
Ceph version used by the given cephVersion.image . The placement from the MON section is
used for the job except for the PodAntiAffinity eld.

7.1.3.12 Cluster-wide resources configuration settings

Resources should be specified so that the Rook components are handled after Kubernetes Pod
Quality of Service classes. This allows to keep Rook components running when for example a
node runs out of memory and the Rook components are not killed depending on their Quality
of Service class.

You can set resource requests/limits for Rook components through the Section 7.1.3.13, “Resource

requirements and limits” structure in the following keys:

mgr : Set resource requests/limits for MGRs.

mon : Set resource requests/limits for MONs.

osd : Set resource requests/limits for OSDs.

prepareosd : Set resource requests/limits for OSD prepare job.

38 Settings SES 7.1

crashcollector : Set resource requests and limits for crash. This pod runs wherever there
is a Ceph pod running. It scrapes for Ceph daemon core dumps and sends them to the Ceph
manager crash module so that core dumps are centralized and can be easily listed/accessed.

cleanup : Set resource requests and limits for cleanup job, responsible for wiping cluster’s
data after uninstall.

In order to provide the best possible experience running Ceph in containers, Rook internally
recommends minimum memory limits if resource limits are passed. If a user configures a limit
or request value that is too low, Rook will still run the pod(s) and print a warning to the operator
log.

mon : 1024 MB

mgr : 512 MB

osd : 2048 MB

mds : 4096 MB

prepareosd : 50 MB

crashcollector : 60MB

7.1.3.13 Resource requirements and limits

requests : Requests for CPU or memory.

cpu : Request for CPU (example: one CPU core 1 , 50% of one CPU core 500m).

memory : Limit for Memory (example: one gigabyte of memory 1Gi , half a gigabyte
of memory 512Mi).

limits : Limits for CPU or memory.

cpu : Limit for CPU (example: one CPU core 1 , 50% of one CPU core 500m).

memory : Limit for Memory (example: one gigabyte of memory 1Gi , half a gigabyte
of memory 512Mi).

39 Settings SES 7.1

7.1.3.14 Priority class names configuration settings

Priority class names can be specified so that the Rook components will have those priority class
names added to them.

You can set priority class names for Rook components for the list of key value pairs:

all : Set priority class names for MGRs, MONs, OSDs.

mgr : Set priority class names for MGRs.

mon : Set priority class names for MONs.

osd : Set priority class names for OSDs.

The specific component keys will act as overrides to all .

7.1.3.15 Health settings

Rook-Ceph will monitor the state of the CephCluster on various components by default. The
following CRD settings are available:

healthCheck : main Ceph cluster health monitoring section

Currently three health checks are implemented:

mon : health check on the Ceph monitors. Basic check as to whether monitors are members
of the quorum. If after a certain timeout a given monitor has not rejoined the quorum, it
will be failed over and replaced by a new monitor.

osd : health check on the Ceph OSDs.

status : Ceph health status check; periodically checks the Ceph health state, and reflects
it in the CephCluster CR status eld.

The liveness probe of each daemon can also be controlled via livenessProbe . The setting is
valid for mon , mgr and osd . Here is a complete example for both daemonHealth and live-
nessProbe :

healthCheck:
 daemonHealth:
 mon:
 disabled: false
 interval: 45s
 timeout: 600s

40 Settings SES 7.1

 osd:
 disabled: false
 interval: 60s
 status:
 disabled: false
 livenessProbe:
 mon:
 disabled: false
 mgr:
 disabled: false
 osd:
 disabled: false

You can change the mgr probe by applying the following:

healthCheck:
 livenessProbe:
 mgr:
 disabled: false
 probe:
 httpGet:
 path: /
 port: 9283
 initialDelaySeconds: 3
 periodSeconds: 3

Changing the liveness probe is an advanced operation and should rarely be necessary. If you
want to change these settings, start with the probe specification that Rook generates by default
and then modify the desired settings.

7.1.4 Samples

Here are several samples for configuring Ceph clusters. Each of the samples must also include
the namespace and corresponding access granted for management by the Ceph operator. See
the common cluster resources below.

7.1.4.1 Storage configuration: All devices

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph

41 Samples SES 7.1

spec:
 cephVersion:
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: true
 dashboard:
 enabled: true
 # cluster level storage configuration and selection
 storage:
 useAllNodes: true
 useAllDevices: true
 deviceFilter:
 config:
 metadataDevice:
 databaseSizeMB: "1024" # this value can be removed for environments with normal
 sized disks (100 GB or larger)
 journalSizeMB: "1024" # this value can be removed for environments with normal
 sized disks (20 GB or larger)
 osdsPerDevice: "1"

7.1.4.2 Storage configuration: Specific devices

Individual nodes and their configurations can be specified so that only the named nodes be-
low will be used as storage resources. Each node’s “name” eld should match their “kuber-
netes.io/hostname” label.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: true
 dashboard:
 enabled: true
 # cluster level storage configuration and selection
 storage:
 useAllNodes: false

42 Samples SES 7.1

 useAllDevices: false
 deviceFilter:
 config:
 metadataDevice:
 databaseSizeMB: "1024" # this value can be removed for environments with normal
 sized disks (100 GB or larger)
 nodes:
 - name: "172.17.4.201"
 devices: # specific devices to use for storage can be specified for
 each node
 - name: "sdb" # Whole storage device
 - name: "sdc1" # One specific partition. Should not have a file system on it.
 - name: "/dev/disk/by-id/ata-ST4000DM004-XXXX" # both device name and explicit udev
 links are supported
 config: # configuration can be specified at the node level which overrides
 the cluster level config
 storeType: bluestore
 - name: "172.17.4.301"
 deviceFilter: "^sd."

7.1.4.3 Node affinity

To control where various services will be scheduled by Kubernetes, use the placement configu-
ration sections below. The example under “all” would have all services scheduled on Kubernetes
nodes labeled with “role=storage-node” and tolerate taints with a key of “storage-node”.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: true
 # enable the Ceph dashboard for viewing cluster status
 dashboard:
 enabled: true
 placement:
 all:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:

43 Samples SES 7.1

 nodeSelectorTerms:
 - matchExpressions:
 - key: role
 operator: In
 values:
 - storage-node
 tolerations:
 - key: storage-node
 operator: Exists
 mgr:
 nodeAffinity:
 tolerations:
 mon:
 nodeAffinity:
 tolerations:
 osd:
 nodeAffinity:
 tolerations:

7.1.4.4 Resource requests and limits

To control how many resources the Rook components can request/use, you can set requests and
limits in Kubernetes for them. You can override these requests and limits for OSDs per node
when using useAllNodes: false in the node item in the nodes list.

Warning
Before setting resource requests/limits, review the Ceph documentation for hardware
recommendations for each component.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: true
 # enable the Ceph dashboard for viewing cluster status

44 Samples SES 7.1

 dashboard:
 enabled: true
 # cluster level resource requests/limits configuration
 resources:
 storage:
 useAllNodes: false
 nodes:
 - name: "172.17.4.201"
 resources:
 limits:
 cpu: "2"
 memory: "4096Mi"
 requests:
 cpu: "2"
 memory: "4096Mi"

7.1.4.5 OSD topology

The topology of the cluster is important in production environments where you want your data
spread across failure domains. The topology can be controlled by adding labels to the nodes.
When the labels are found on a node at rst OSD deployment, Rook will add them to the desired
level in the CRUSH map.

The complete list of labels in hierarchy order from highest to lowest is:

topology.kubernetes.io/region
topology.kubernetes.io/zone
topology.rook.io/datacenter
topology.rook.io/room
topology.rook.io/pod
topology.rook.io/pdu
topology.rook.io/row
topology.rook.io/rack
topology.rook.io/chassis

For example, if the following labels were added to a node:

kubectl label node mynode topology.kubernetes.io/zone=zone1
kubectl label node mynode topology.rook.io/rack=rack1

Note
For versions previous to K8s 1.17, use the topology key: failure-domain.beta.kuber-
netes.io/zone or region.

45 Samples SES 7.1

These labels would result in the following hierarchy for OSDs on that node (this command can
be run in the Rook toolbox):

[root@mynode /]# ceph osd tree
ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF
-1 0.01358 root default
-5 0.01358 zone zone1
-4 0.01358 rack rack1
-3 0.01358 host mynode
 0 hdd 0.00679 osd.0 up 1.00000 1.00000
 1 hdd 0.00679 osd.1 up 1.00000 1.00000

Ceph requires unique names at every level in the hierarchy (CRUSH map). For example, you
cannot have two racks with the same name that are in different zones. Racks in different zones
must be named uniquely.

Note that the host is added automatically to the hierarchy by Rook. The host cannot be specified
with a topology label. All topology labels are optional.

Tip
When setting the node labels prior to CephCluster creation, these settings take imme-
diate effect. However, applying this to an already deployed CephCluster requires re-
moving each node from the cluster rst and then re-adding it with new configuration to
take effect. Do this node by node to keep your data safe! Check the result with ceph osd
tree from the Chapter 9, Toolboxes. The OSD tree should display the hierarchy for the
nodes that already have been re-added.

To utilize the failureDomain based on the node labels, specify the corresponding option in
the CephBlockPool .

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook-ceph
spec:
 failureDomain: rack # this matches the topology labels on nodes
 replicated:
 size: 3

This configuration will split the replication of volumes across unique racks in the data center
setup.

46 Samples SES 7.1

7.1.4.6 Using PVC storage for monitors

In the CRD specification below three monitors are created each using a 10Gi PVC created by
Rook using the local-storage storage class.

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 cephVersion:
 image: ceph/ceph:v15.2.4
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: false
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi
 dashboard:
 enabled: true
 storage:
 useAllNodes: true
 useAllDevices: true
 deviceFilter:
 config:
 metadataDevice:
 databaseSizeMB: "1024" # this value can be removed for environments with normal
 sized disks (100 GB or larger)
 journalSizeMB: "1024" # this value can be removed for environments with normal
 sized disks (20 GB or larger)
 osdsPerDevice: "1"

7.1.4.7 Using StorageClassDeviceSets

In the CRD specification below, three OSDs (having specific placement and resource values)
and three MONs with each using a 10Gi PVC, are created by Rook using the local-storage
storage class.

apiVersion: ceph.rook.io/v1
kind: CephCluster

47 Samples SES 7.1

metadata:
 name: rook-ceph
 namespace: rook-ceph
spec:
 dataDirHostPath: /var/lib/rook
 mon:
 count: 3
 allowMultiplePerNode: false
 volumeClaimTemplate:
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 10Gi
 cephVersion:
 image: ceph/ceph:v15.2.4
 allowUnsupported: false
 dashboard:
 enabled: true
 network:
 hostNetwork: false
 storage:
 storageClassDeviceSets:
 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false
 resources:
 limits:
 cpu: "500m"
 memory: "4Gi"
 requests:
 cpu: "500m"
 memory: "4Gi"
 placement:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: "rook.io/cluster"
 operator: In
 values:
 - cluster1
 topologyKey: "topology.kubernetes.io/zone"
 volumeClaimTemplates:

48 Samples SES 7.1

 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 10Gi
 storageClassName: local-storage
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

7.1.4.8 Dedicated metadata and WAL device for OSD on PVC

In the simplest case, Ceph OSD BlueStore consumes a single (primary) storage device. BlueStore
is the engine used by the OSD to store data.

The storage device is normally used as a whole, occupying the full device that is managed
directly by BlueStore. It is also possible to deploy BlueStore across additional devices such as
a DB device. This device can be used for storing BlueStore’s internal metadata. BlueStore (or
rather, the embedded RocksDB) will put as much metadata as it can on the DB device to improve
performance. If the DB device lls up, metadata will spill back onto the primary device (where
it would have been otherwise). Again, it is only helpful to provision a DB device if it is faster
than the primary device.

You can have multiple volumeClaimTemplates where each might either represent a device or
a metadata device. So just taking the storage section this will give something like:

 storage:
 storageClassDeviceSets:
 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 10Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, gp2)
 storageClassName: gp2
 volumeMode: Block

49 Samples SES 7.1

 accessModes:
 - ReadWriteOnce
 - metadata:
 name: metadata
 spec:
 resources:
 requests:
 # Find the right size https://docs.ceph.com/docs/master/rados/
configuration/bluestore-config-ref/#sizing
 storage: 5Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, io1)
 storageClassName: io1
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

Note
Rook only supports three naming conventions for a given template:

data: represents the main OSD block device, where your data is being stored.

metadata: represents the metadata (including block.db and block.wal) device
used to store the Ceph Bluestore database for an OSD.

“wal”: represents the block.wal device used to store the Ceph BlueStore database
for an OSD. If this device is set, “metadata” device will refer specifically to the
block.db device. It is recommended to use a faster storage class for the metadata or
wal device, with a slower device for the data. Otherwise, having a separate metadata
device will not improve the performance.

The BlueStore partition has the following reference combinations supported by the ceph-volume
utility:

A single “data” device.

 storage:
 storageClassDeviceSets:
 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false

50 Samples SES 7.1

 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 10Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, gp2)
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

A data device and a metadata device.

 storage:
 storageClassDeviceSets:
 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 10Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, gp2)
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: metadata
 spec:
 resources:
 requests:
 # Find the right size https://docs.ceph.com/docs/master/rados/
configuration/bluestore-config-ref/#sizing
 storage: 5Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, io1)
 storageClassName: io1
 volumeMode: Block

51 Samples SES 7.1

 accessModes:
 - ReadWriteOnce

A data device and a WAL device. A WAL device can be used for BlueStore’s internal journal
or write-ahead log (block.wal). It is only useful to use a WAL device if the device is faster
than the primary device (the data device). There is no separate metadata device in this
case; the data of main OSD block and block.db are located in data device.

 storage:
 storageClassDeviceSets:
 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 10Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, gp2)
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: wal
 spec:
 resources:
 requests:
 # Find the right size https://docs.ceph.com/docs/master/rados/
configuration/bluestore-config-ref/#sizing
 storage: 5Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, io1)
 storageClassName: io1
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

A data device, a metadata device and a wal device.

 storage:
 storageClassDeviceSets:

52 Samples SES 7.1

 - name: set1
 count: 3
 portable: false
 tuneDeviceClass: false
 volumeClaimTemplates:
 - metadata:
 name: data
 spec:
 resources:
 requests:
 storage: 10Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, gp2)
 storageClassName: gp2
 volumeMode: Block
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: metadata
 spec:
 resources:
 requests:
 # Find the right size https://docs.ceph.com/docs/master/rados/
configuration/bluestore-config-ref/#sizing
 storage: 5Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, io1)
 storageClassName: io1
 volumeMode: Block
 accessModes:
 - ReadWriteOnce
 - metadata:
 name: wal
 spec:
 resources:
 requests:
 # Find the right size https://docs.ceph.com/docs/master/rados/
configuration/bluestore-config-ref/#sizing
 storage: 5Gi
 # IMPORTANT: Change the storage class depending on your environment (e.g.
 local-storage, io1)
 storageClassName: io1
 volumeMode: Block
 accessModes:
 - ReadWriteOnce

53 Samples SES 7.1

With the present configuration, each OSD will have its main block allocated a 10 GB device as
well a 5 GB device to act as a BlueStore database.

7.1.4.9 External cluster

The minimum supported Ceph version for the External Cluster is Luminous 12.2.x.

The features available from the external cluster will vary depending on the version of Ceph. The
following table shows the minimum version of Ceph for some of the features:

FEATURE CEPH VERSION

Dynamic provisioning RBD 12.2.X

Configure extra CRDs (object, le, NFS)a 13.2.3

Dynamic provisioning CephFS 14.2.3

a Configure an object store, shared le system, or NFS resources in the local cluster to connect to the external Ceph cluster

7.1.4.9.1 Prerequisites

In order to configure an external Ceph cluster with Rook, we need to inject some information
in order to connect to that cluster. You can use the cluster/examples/kubernetes/ceph/
import-external-cluster.sh script to achieve that. The script will look for the following
populated environment variables:

NAMESPACE : the namespace where the configmap and secrets should be injected

ROOK_EXTERNAL_FSID : the FSID of the external Ceph cluster. This can be retrieved via
the ceph fsid command.

ROOK_EXTERNAL_CEPH_MON_DATA : this is a comma- separated list of run-
ning monitors' IP addresses along with their ports. For example,
a=172.17.0.4:6789,b=172.17.0.5:6789,c=172.17.0.6:6789 . You do not need to
specify all the monitors; you can simply pass one, and the operator will discover the rest.
The name of the monitor is the name that appears in the ceph status output.

54 Samples SES 7.1

Now, we need to give Rook a key to connect to the cluster in order to perform various operations,
such as cluster health checks, CSI keys management, etc. We recommend generating keys with
minimal access, so the admin key does not need to be used by the external cluster. In this case,
the admin key is only needed to generate the keys that will be used by the external cluster. If
the admin key is to be used by the external cluster, however, set the following variable:

ROOK_EXTERNAL_ADMIN_SECRET : OPTIONAL: the external Ceph cluster admin secret key.
This can be retrieved via the ceph auth get-key client.admin command.

Note
WARNING: If you plan to create CRs (pool, rgw, mds, nfs) in the external cluster, you
MUST inject the client.admin keyring as well as injecting cluster-external-manage-
ment.yaml

Example:

export NAMESPACE=rook-ceph-external
export ROOK_EXTERNAL_FSID=3240b4aa-ddbc-42ee-98ba-4ea7b2a61514
export ROOK_EXTERNAL_CEPH_MON_DATA=a=172.17.0.4:6789
export ROOK_EXTERNAL_ADMIN_SECRET=AQC6Ylxdja+NDBAAB7qy9MEAr4VLLq4dCIvxtg==

If the Ceph admin key is not provided, the following script needs to be executed on a ma-
chine that can connect to the Ceph cluster using the Ceph admin key. On that machine,
run cluster/examples/kubernetes/ceph/create-external-cluster-resources.sh . The
script will automatically create users and keys with the lowest possible privileges and populate
the necessary environment variables for cluster/examples/kubernetes/ceph/import-ex-
ternal-cluster.sh to work correctly.

Finally, execute the script like this from a machine that has access to your Kubernetes cluster:

bash cluster/examples/kubernetes/ceph/import-external-cluster.sh

7.1.4.9.2 CephCluster example (consumer)

Assuming the above section has successfully completed, here is a CR example:

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph-external

55 Samples SES 7.1

 namespace: rook-ceph-external
spec:
 external:
 enable: true
 crashCollector:
 disable: true
 # optionally, the ceph-mgr IP address can be pass to gather metric from the prometheus
 exporter
 #monitoring:
 #enabled: true
 #rulesNamespace: rook-ceph
 #externalMgrEndpoints:
 #- ip: 192.168.39.182

Choose the namespace carefully; if you have an existing cluster managed by Rook, you have
likely already injected common.yaml . Additionally, you need to inject common-external.yaml
too.

You can now create it like this:

kubectl create -f cluster/examples/kubernetes/ceph/cluster-external.yaml

If the previous section has not been completed, the Rook Operator will still acknowledge the CR
creation but will wait forever to receive connection information.

Warning
If no cluster is managed by the current Rook Operator, you need to inject common.yaml ,
then modify cluster-external.yaml and specify rook-ceph as namespace .

If this is successful, you will see the CephCluster status as connected .

kubectl get CephCluster -n rook-ceph-external
NAME DATADIRHOSTPATH MONCOUNT AGE STATE HEALTH
rook-ceph-external /var/lib/rook 162m Connected HEALTH_OK

Before you create a StorageClass with this cluster you will need to create a pool in your external
Ceph Cluster.

7.1.4.9.3 Example StorageClass based on external Ceph pool

In the cluster, list the pools available:

rados df

56 Samples SES 7.1

POOL_NAME USED OBJECTS CLONES COPIES MISSING_ON_PRIMARY UNFOUND DEGRADED RD_OPS RD
 WR_OPS WR USED COMPR UNDER COMPR
replicated_2g 0 B 0 0 0 0 0 0 0 0 B
 0 0 B 0 B 0 B

Here is an example StorageClass configuration that uses the replicated_2g pool from the
external cluster:

cat << EOF | kubectl apply -f -
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: rook-ceph-block-ext
Change "rook-ceph" provisioner prefix to match the operator namespace if needed
provisioner: rook-ceph.rbd.csi.ceph.com
parameters:
 # clusterID is the namespace where the rook cluster is running
 clusterID: rook-ceph-external
 # Ceph pool into which the RBD image shall be created
 pool: replicated_2g

 # RBD image format. Defaults to "2".
 imageFormat: "2"

 # RBD image features. Available for imageFormat: "2". CSI RBD currently supports only
 `layering` feature.
 imageFeatures: layering

 # The secrets contain Ceph admin credentials.
 csi.storage.k8s.io/provisioner-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/provisioner-secret-namespace: rook-ceph-external
 csi.storage.k8s.io/controller-expand-secret-name: rook-csi-rbd-provisioner
 csi.storage.k8s.io/controller-expand-secret-namespace: rook-ceph-external
 csi.storage.k8s.io/node-stage-secret-name: rook-csi-rbd-node
 csi.storage.k8s.io/node-stage-secret-namespace: rook-ceph-external

 # Specify the filesystem type of the volume. If not specified, csi-provisioner
 # will set default as `ext4`. Note that `xfs` is not recommended due to potential
 deadlock
 # in hyperconverged settings where the volume is mounted on the same node as the
 osds.
 csi.storage.k8s.io/fstype: ext4

Delete the rbd volume when a PVC is deleted
reclaimPolicy: Delete
allowVolumeExpansion: true
EOF

57 Samples SES 7.1

You can now create a persistent volume based on this StorageClass.

7.1.4.9.4 CephCluster example (management)

The following CephCluster CR represents a cluster that will perform management tasks on the
external cluster. It will not only act as a consumer, but will also allow the deployment of other
CRDs such as CephFilesystem or CephObjectStore. As mentioned above, you would need to inject
the admin keyring for that.

The corresponding YAML example:

apiVersion: ceph.rook.io/v1
kind: CephCluster
metadata:
 name: rook-ceph-external
 namespace: rook-ceph-external
spec:
 external:
 enable: true
 dataDirHostPath: /var/lib/rook
 cephVersion:
 image: ceph/ceph:v15.2.4 # Should match external cluster version

7.1.4.10 Cleanup policy

Rook has the ability to cleanup resources and data that were deployed when a delete ceph-
cluster command is issued. The policy represents the confirmation that cluster data should be
forcibly deleted. The cleanupPolicy should only be added to the cluster when the cluster is

58 Samples SES 7.1

about to be deleted. After the confirmation eld of the cleanup policy is set, Rook will stop
configuring the cluster as if the cluster is about to be destroyed in order to prevent these settings
from being deployed unintentionally. The cleanupPolicy CR settings has different elds:

confirmation : Only an empty string and yes-really-destroy-data are valid values
for this eld. If an empty string is set, Rook will only remove Ceph’s metadata. A re-instal-
lation will not be possible unless the hosts are cleaned rst. If yes-really-destroy-da-
ta the operator will automatically delete data on the hostpath of cluster nodes and clean
devices with OSDs. The cluster can then be re-installed if desired with no further steps.

sanitizeDisks : sanitizeDisks represents advanced settings that can be used to sanitize
drives. This eld only affects if confirmation is set to yes-really-destroy-data . How-
ever, the administrator might want to sanitize the drives in more depth with the following
ags:

method : indicates whether the entire disk should be sanitized or Ceph metadata only.
Possible choices are “quick” (default) or “complete”.

dataSource : indicate where to get random bytes from to write on the disk. Possible
choices are “zero” (default) or “random”. Using random sources will consume entropy
from the system and will take much more time then the zero source.

iteration : overwrite N times instead of the default (1). Takes an integer value.

allowUninstallWithVolumes : If set to true, then the cephCluster deletion does not wait
for the PVCs to be deleted. Default is false .

To automate activation of the cleanup, you can use the following command:

Warning
Data will be permanently deleted.

kubectl -n rook-ceph patch cephcluster rook-ceph --type merge \
 -p '{"spec":{"cleanupPolicy":{"confirmation":"yes-really-destroy-data"}}}'

Nothing will happen until the deletion of the CR is requested, so this can still be reverted.
However, all new configuration by the operator will be blocked with this cleanup policy enabled.

Rook waits for the deletion of PVs provisioned using the CephCluster before proceeding to delete
the CephCluster. To force deletion of the CephCluster without waiting for the PVs to be deleted,
you can set the allowUninstallWithVolumes to true under spec.CleanupPolicy .

59 Samples SES 7.1

7.2 Ceph block pool CRD

Rook allows creation and customization of storage pools through the custom resource definitions
(CRDs). The following settings are available for pools.

7.2.1 Samples

7.2.1.1 Replicated

For optimal performance, while also adding redundancy, this sample will configure Ceph to
make three full copies of the data on multiple nodes.

Note
This sample requires at least one OSD per node, with each OSD located on three different
nodes.

Each OSD must be located on a different node, because the failureDomain is set to host and
the replicated.size is set to three.

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook-ceph
spec:
 failureDomain: host
 replicated:
 size: 3
 deviceClass: hdd

7.2.1.2 Erasure coded

This sample will lower the overall storage capacity requirement, while also adding redundancy
by using Section 7.2.2.4, “Erasure coding”.

60 Ceph block pool CRD SES 7.1

Note
This sample requires at least three BlueStore OSDs.

The OSDs can be located on a single Ceph node or spread across multiple nodes, because the
failureDomain is set to osd and the erasureCoded chunk settings require at least three
different OSDs (two dataChunks + one codingChunks).

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: ecpool
 namespace: rook-ceph
spec:
 failureDomain: osd
 erasureCoded:
 dataChunks: 2
 codingChunks: 1
 deviceClass: hdd

High performance applications typically will not use erasure coding due to the performance
overhead of creating and distributing the chunks in the cluster.

When creating an erasure-coded pool, we recommend creating the pool when you have BlueS-
tore OSDs in your cluster.

7.2.2 Pool settings

7.2.2.1 Metadata

name : The name of the pool to create.

namespace : The namespace of the Rook cluster where the pool is created.

7.2.2.2 Specification

replicated : Settings for a replicated pool. If specified, erasureCoded settings must not
be specified.

61 Pool settings SES 7.1

size : The desired number of copies to make of the data in the pool.

requireSafeReplicaSize : set to false if you want to create a pool with size one,
setting pool size one could lead to data loss without recovery.

erasureCoded : Settings for an erasure-coded pool. If specified, replicated settings must
not be specified. See below for more details on Section 7.2.2.4, “Erasure coding”.

dataChunks : Number of chunks to divide the original object into

codingChunks : Number of coding chunks to generate

failureDomain : The failure domain across which the data will be spread. This can be set
to a value of either osd or host , with host being the default setting. A failure domain
can also be set to a different type (for example, rack), if it is added as a location Storage
Selection Settings. If a replicated pool of size three is configured and the failureDomain
is set to host , all three copies of the replicated data will be placed on OSDs located on
three different Ceph hosts. This case is guaranteed to tolerate a failure of two hosts without
a loss of data. Similarly, a failure domain set to osd , can tolerate a loss of two OSD devices.
If erasure coding is used, the data and coding chunks are spread across the configured
failure domain.

Note
Neither Rook, nor Ceph, prevent the creation of a cluster where the replicated data
(or erasure coded chunks) can be written safely. By design, Ceph will delay checking
for suitable OSDs until a write request is made and this write can hang if there are
not sufficient OSDs to satisfy the request.

deviceClass : Sets up the CRUSH rule for the pool to distribute data only on the specified
device class. If left empty or unspecified, the pool will use the cluster’s default CRUSH
root, which usually distributes data over all OSDs, regardless of their class.

crushRoot : The root in the crush map to be used by the pool. If left empty or unspecified,
the default root will be used. Creating a crush hierarchy for the OSDs currently requires
the Rook toolbox to run the Ceph tools.

62 Pool settings SES 7.1

enableRBDStats : Enables collecting RBD per-image IO statistics by enabling dynamic
OSD performance counters. Defaults to false .

parameters : Sets any parameters listed to the given pool

target_size_ratio: gives a hint (%) to Ceph in terms of expected consumption of
the total cluster capacity of a given pool.

compression_mode : Sets up the pool for inline compression when using a BlueStore
OSD. If left unspecified does not setup any compression mode for the pool. Values
supported are the same as BlueStore inline compression modes, such as none , pas-
sive , aggressive , and force .

7.2.2.3 Add specific pool properties

With poolProperties you can set any pool property:

spec:
 parameters:
 <name of the parameter>: <parameter value>

For example:

spec:
 parameters:
 min_size: 1

7.2.2.4 Erasure coding

Erasure coding (http://docs.ceph.com/docs/master/rados/operations/erasure-code/) allows you
to keep your data safe while reducing the storage overhead. Instead of creating multiple replicas
of the data, erasure coding divides the original data into chunks of equal size, then generates
extra chunks of that same size for redundancy.

For example, if you have an object of size 2 MB, the simplest erasure coding with two data
chunks would divide the object into two chunks of size 1 MB each (data chunks). One more
chunk (coding chunk) of size 1 MB will be generated. In total, 3 MB will be stored in the cluster.
The object will be able to suffer the loss of any one of the chunks and still be able to reconstruct
the original object.

63 Pool settings SES 7.1

http://docs.ceph.com/docs/master/rados/operations/erasure-code/

The number of data and coding chunks you choose will depend on your resiliency to loss and
how much storage overhead is acceptable in your storage cluster. Here are some examples to
illustrate how the number of chunks affects the storage and loss toleration.

Data chunks (k) Coding chunks
(m)

Total storage Losses Tolerated OSDs re-
quired

2 1 1.5x 1 3

2 2 2x 2 4

4 2 1.5x 2 6

16 4 1.25x 4 20

The failureDomain must be also be taken into account when determining the number of
chunks. The failure domain determines the level in the Ceph CRUSH hierarchy where the chunks
must be uniquely distributed. This decision will impact whether node losses or disk losses are
tolerated. There could also be performance differences of placing the data across nodes or OSDs.

host : All chunks will be placed on unique hosts

osd : All chunks will be placed on unique OSDs

If you do not have a sufficient number of hosts or OSDs for unique placement the pool can be
created, writing to the pool will hang.

Rook currently only configures two levels in the CRUSH map. It is also possible to configure
other levels such as rack with by adding topology labels to the nodes.

7.3 Ceph shared file system CRD

Rook allows creation and customization of shared le systems through the custom resource
definitions (CRDs). The following settings are available for Ceph le systems.

64 Ceph shared file system CRD SES 7.1

7.3.1 Samples

7.3.1.1 Replicated

Note
This sample requires at least one OSD per node, with each OSD located on three different
nodes.

Each OSD must be located on a different node, because both of the defined pools set the fail-
ureDomain to host and the replicated.size to three.

The failureDomain can also be set to another location type (for example, rack), if it has been
added as a location in the Storage Selection Settings.

 apiVersion: ceph.rook.io/v1
 kind: CephFilesystem
 metadata:
 name: myfs
 namespace: rook-ceph
 spec:
 metadataPool:
 failureDomain: host
 replicated:
 size: 3
 dataPools:
 - failureDomain: host
 replicated:
 size: 3
 preservePoolsOnDelete: true
 metadataServer:
 activeCount: 1
 activeStandby: true
 # A key/value list of annotations
 annotations:
 # key: value
 placement:
 # nodeAffinity:
 # requiredDuringSchedulingIgnoredDuringExecution:
 # nodeSelectorTerms:
 # - matchExpressions:
 # - key: role
 # operator: In

65 Samples SES 7.1

 # values:
 # - mds-node
 # tolerations:
 # - key: mds-node
 # operator: Exists
 # podAffinity:
 # podAntiAffinity:
 # topologySpreadConstraints:
 resources:
 # limits:
 # cpu: "500m"
 # memory: "1024Mi"
 # requests:
 # cpu: "500m"
 # memory: "1024Mi"

These definitions can be found in the filesystem.yaml le.

7.3.1.2 Erasure coded

Erasure coded pools require the OSDs to use BlueStore for the configured storeType . Addi-
tionally, erasure coded pools can only be used with dataPools . The metadataPool must use
a replicated pool.

Note
This sample requires at least three BlueStore OSDs, with each OSD located on a different
node.

The OSDs must be located on different nodes, because the failureDomain will be set to host
by default, and the erasureCoded chunk settings require at least three different OSDs (two
dataChunks + one codingChunks).

 apiVersion: ceph.rook.io/v1
 kind: CephFilesystem
 metadata:
 name: myfs-ec
 namespace: rook-ceph
 spec:
 metadataPool:
 replicated:
 size: 3
 dataPools:

66 Samples SES 7.1

 - erasureCoded:
 dataChunks: 2
 codingChunks: 1
 metadataServer:
 activeCount: 1
 activeStandby: true

These definitions can also be found in the filesystem-ec.yaml le.

7.3.2 File system settings

7.3.2.1 Metadata

name : The name of the le system to create, which will be reflected in the pool and other
resource names.

namespace : The namespace of the Rook cluster where the le system is created.

7.3.2.2 Pools

The pools allow all of the settings defined in the Pool CRD spec. In the example above, there
must be at least three hosts (size three) and at least eight devices (six data + two coding chunks)
in the cluster.

metadataPool : The settings used to create the filesystem metadata pool. Must use repli-
cation.

dataPools : The settings to create the le system data pools. If multiple pools are specified,
Rook will add the pools to the le system. The data pools can use replication or erasure
coding. If erasure coding pools are specified, the cluster must be running with BlueStore
enabled on the OSDs.

preservePoolsOnDelete : If it is set to true the pools used to support the le system will
remain when the le system will be deleted. This is a security measure to avoid accidental
loss of data. It is set to false by default. If not specified is also deemed as false .

7.3.3 Metadata server settings

The metadata server settings correspond to the MDS daemon settings.

67 File system settings SES 7.1

activeCount : The number of active MDS instances. As load increases, CephFS will auto-
matically partition the le system across the MDS instances. Rook will create double the
number of MDS instances as requested by the active count. The extra instances will be in
standby mode for failover.

activeStandby : If true, the extra MDS instances will be in active standby mode and will
keep a warm cache of the le system metadata for faster failover. The instances will be
assigned by CephFS in failover pairs. If false, the extra MDS instances will all be on passive
standby mode and will not maintain a warm cache of the metadata.

annotations : Key value pair list of annotations to add.

labels : Key value pair list of labels to add.

placement : The mds pods can be given standard Kubernetes placement restrictions with
nodeAffinity , tolerations , podAffinity , and podAntiAffinity similar to place-
ment defined for daemons configured by the cluster CRD.

resources : Set resource requests and limits for the Filesystem MDS Pod(s).

priorityClassName : Set priority class name for the File system MDS Pod(s)

68 Metadata server settings SES 7.1

8 Configuration

8.1 Ceph configuration

For almost any Ceph cluster, the user will want—and may need— to change some Ceph config-
urations. These changes often may be warranted in order to alter performance to meet SLAs, or
to update default data resiliency settings.

Warning
Modify Ceph settings carefully, and review the Ceph configuration documentation before
making any changes. Changing the settings could result in unhealthy daemons or even
data loss if used incorrectly.

8.1.1 Required configurations

Rook and Ceph both strive to make configuration as easy as possible, but there are some con-
figuration options which users are well advised to consider for any production cluster.

8.1.1.1 Default PG and PGP counts

The number of PGs and PGPs can be configured on a per-pool basis, but it is highly advised to
set default values that are appropriate for your Ceph cluster. Appropriate values depend on the
number of OSDs the user expects to have backing each pool.

Pools created prior to v1.1 will have a default PG count of 100. Pools created after v1.1 will
have Ceph's default PG count.

As of the Ceph Octopus (v15.2.x) release, the PG auto-scaler mgr module is enabled by default.

With that setting, the autoscaler will be enabled for all new pools. If you do not desire to have
the autoscaler enabled for all new pools, you will need to use the Rook toolbox to enable the
module and enable the autoscaling on individual pools.

The autoscaler is not enabled for the existing pools after enabling the module. So if you want
to enable the autoscaling for these existing pools, they must be configured from the toolbox.

69 Ceph configuration SES 7.1

8.1.2 Specifying configuration options

8.1.2.1 Toolbox and the Ceph CLI

The most recommended way of configuring Ceph is to set Ceph's configuration directly. The rst
method for doing so is to use Ceph's CLI from the Rook-Ceph toolbox pod. From the toolbox,
the user can change Ceph configurations, enable manager modules, create users and pools, and
much more.

8.1.2.2 Ceph Dashboard

The Ceph Dashboard is another way of setting some of Ceph’s configuration directly. Configu-
ration by the Ceph Dashboard is recommended with the same priority as configuration via the
Ceph CLI (above).

8.1.2.3 Advanced configuration via ceph.conf overrides ConfigMap

Setting configuration options via Ceph’s CLI requires that at least one MON be available for the
configuration options to be set, and setting configuration options via dashboard requires at least
one mgr to be available. Ceph may also have a small number of very advanced settings that
are not able to be modified easily via CLI or dashboard. The least recommended method for
configuring Ceph is intended as a last-resort fallback in situations like these.

70 Specifying configuration options SES 7.1

9 Toolboxes

9.1 Rook toolbox
The Rook toolbox is a container with common tools used for rook debugging and testing. The
toolbox is based on SUSE Linux Enterprise Server, so more tools of your choosing can be installed
with zypper .

The toolbox can be run in two modes:

Section 9.1.1, “Interactive toolbox”: Start a toolbox pod where you can connect and execute
Ceph commands from a shell.

Section 9.1.2, “Running the toolbox job”: Run a script with Ceph commands and collect the
results from the job log.

Note
Prerequisite: Before running the toolbox you should have a running Rook cluster de-
ployed.

9.1.1 Interactive toolbox

The Rook toolbox can run as a deployment in a Kubernetes cluster where you can connect and
run arbitrary Ceph commands.

Save the tools spec as toolbox.yaml :

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: rook-ceph-tools
 namespace: rook-ceph
 labels:
 app: rook-ceph-tools
 spec:
 replicas: 1
 selector:
 matchLabels:

71 Rook toolbox SES 7.1

 app: rook-ceph-tools
 template:
 metadata:
 labels:
 app: rook-ceph-tools
 spec:
 dnsPolicy: ClusterFirstWithHostNet
 containers:
 - name: rook-ceph-tools
 image: registry.suse.com/ses/7.1/rook/ceph:LATEST_TAG
 command: ["/tini"]
 args: ["-g", "--", "/usr/bin/toolbox.sh"]
 imagePullPolicy: IfNotPresent
 env:
 - name: ROOK_CEPH_USERNAME
 valueFrom:
 secretKeyRef:
 name: rook-ceph-mon
 key: ceph-username
 - name: ROOK_CEPH_SECRET
 valueFrom:
 secretKeyRef:
 name: rook-ceph-mon
 key: ceph-secret
 volumeMounts:
 - mountPath: /etc/ceph
 name: ceph-config
 - name: mon-endpoint-volume
 mountPath: /etc/rook
 volumes:
 - name: mon-endpoint-volume
 configMap:
 name: rook-ceph-mon-endpoints
 items:
 - key: data
 path: mon-endpoints
 - name: ceph-config
 emptyDir: {}
 tolerations:
 - key: "node.kubernetes.io/unreachable"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 5

Launch the rook-ceph-tools pod:

kubectl@adm > kubectl create -f toolbox.yaml

72 Interactive toolbox SES 7.1

Wait for the toolbox pod to download its container and get to the running state:

kubectl@adm > kubectl -n rook-ceph get pod -l "app=rook-ceph-tools"

Once the rook-ceph-tools pod is running, you can connect to it with:

kubectl@adm > kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-
ceph-tools" -o jsonpath='{.items[0].metadata.name}') bash

All available tools in the toolbox are ready for your troubleshooting needs.

Example:

ceph status
ceph osd status
ceph df
rados df

When you are done with the toolbox, you can remove the deployment:

kubectl@adm > kubectl -n rook-ceph delete deployment rook-ceph-tools

9.1.2 Running the toolbox job

If you want to run Ceph commands as a one-time operation and collect the results later from the
logs, you can run a script as a Kubernetes job. The toolbox job will run a script that is embedded
in the job specification. The script has the full flexibility of a bash script.

In this example, the ceph status command is executed when the job is created.

 apiVersion: batch/v1
 kind: Job
 metadata:
 name: rook-ceph-toolbox-job
 namespace: rook-ceph
 labels:
 app: ceph-toolbox-job
 spec:
 template:
 spec:
 initContainers:
 - name: config-init
 image: registry.suse.com/ses/7.1/rook/ceph:LATEST_TAG
 command: ["/usr/bin/toolbox.sh"]
 args: ["--skip-watch"]
 imagePullPolicy: IfNotPresent

73 Running the toolbox job SES 7.1

 env:
 - name: ROOK_CEPH_USERNAME
 valueFrom:
 secretKeyRef:
 name: rook-ceph-mon
 key: ceph-username
 - name: ROOK_CEPH_SECRET
 valueFrom:
 secretKeyRef:
 name: rook-ceph-mon
 key: ceph-secret
 volumeMounts:
 - mountPath: /etc/ceph
 name: ceph-config
 - name: mon-endpoint-volume
 mountPath: /etc/rook
 containers:
 - name: script
 image: registry.suse.com/ses/7.1/rook/ceph:LATEST_TAG
 volumeMounts:
 - mountPath: /etc/ceph
 name: ceph-config
 readOnly: true
 command:
 - "bash"
 - "-c"
 - |
 # Modify this script to run any ceph, rbd, radosgw-admin, or other commands
 that could
 # be run in the toolbox pod. The output of the commands can be seen by
 getting the pod log.
 #
 # example: print the ceph status
 ceph status
 volumes:
 - name: mon-endpoint-volume
 configMap:
 name: rook-ceph-mon-endpoints
 items:
 - key: data
 path: mon-endpoints
 - name: ceph-config
 emptyDir: {}
 restartPolicy: Never

74 Running the toolbox job SES 7.1

Create the toolbox job:

kubectl@adm > kubectl create -f toolbox-job.yaml

After the job completes, see the results of the script:

kubectl@adm > kubectl -n rook-ceph logs -l job-name=rook-ceph-toolbox-job

75 Running the toolbox job SES 7.1

10 Ceph OSD management

10.1 Ceph OSD management

Ceph Object Storage Daemons (OSDs) are the heart and soul of the Ceph storage platform.
Each OSD manages a local device and together they provide the distributed storage. Rook will
automate creation and management of OSDs to hide the complexity based on the desired state
in the CephCluster CR as much as possible. This guide will walk through some of the scenarios
to configure OSDs where more configuration may be required.

10.1.1 Analyzing OSD health

The rook-ceph-tools pod provides a simple environment to run Ceph tools. The Ceph com-
mands mentioned in this document should be run from the toolbox.

Once created, connect to the pod to execute the ceph commands to analyze the health of the
cluster, in particular the OSDs and placement groups (PGs). Some common commands to analyze
OSDs include:

cephuser@adm > ceph status
cephuser@adm > ceph osd tree
cephuser@adm > ceph osd status
cephuser@adm > ceph osd df
cephuser@adm > ceph osd utilization

kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-ceph-tools" -o
 jsonpath='{.items[0].metadata.name}') bash

10.1.2 Adding an OSD

To add more OSDs, Rook automatically watches for new nodes and devices being added to your
cluster. If they match the filters or other settings in the storage section of the cluster CR, the
operator will create new OSDs.

76 Ceph OSD management SES 7.1

10.1.3 Adding an OSD on a PVC

In more dynamic environments where storage can be dynamically provisioned with a raw block
storage provider, the OSDs can be backed by PVCs.

To add more OSDs, you can either increase the count of the OSDs in an existing device set or
you can add more device sets to the cluster CR. The operator will then automatically create new
OSDs according to the updated cluster CR.

10.1.4 Removing an OSD

Removal of OSDs is intentionally not automated. Rook’s charter is to keep your data safe, not
to delete it. If you are sure you need to remove OSDs, it can be done. We just want you to be
in control of this action.

To remove an OSD due to a failed disk or other re-configuration, consider the following to ensure
the health of the data through the removal process:

1. Confirm you will have enough space on your cluster after removing your OSDs to properly
handle the deletion.

2. Confirm the remaining OSDs and their placement groups (PGs) are healthy in order to
handle the rebalancing of the data.

3. Do not remove too many OSDs at once, wait for rebalancing between removing multiple
OSDs.

4. On host-based clusters, you may need to stop the Rook Operator while performing OSD
removal steps in order to prevent Rook from detecting the old OSD and trying to re-create
it before the disk is wiped or removed.

If all the PGs are active+clean and there are no warnings about being low on space, this
means the data is fully replicated and it is safe to proceed. If an OSD is failing, the PGs will not
be perfectly clean, and you will need to proceed anyway.

77 Adding an OSD on a PVC SES 7.1

10.1.4.1 From the toolbox

1. Determine the OSD ID for the OSD to be removed. The OSD pod may be in an error state,
such as CrashLoopBackoff , or the ceph commands in the toolbox may show which OSD
is down .

2. Mark the OSD as out if not already marked as such by Ceph. This signals Ceph to start
moving (backfilling) the data that was on that OSD to another OSD.

ceph osd out osd.ID

For example:

cephuserceph osd out osd.23

3. Wait for the data to finish backfilling to other OSDs.
ceph status will indicate the backfilling is done when all of the PGs are active+clean .
It is safe to remove the disk after that.

4. Update your CephCluster CR such that the operator will not create an OSD on the device
anymore. Depending on your CR settings, you may need to remove the device from the
list or update the device filter. If you are using useAllDevices: true , no change to the
CR is necessary.

5. Remove the OSD from the Ceph cluster:

cephuser@adm > ceph osd purge ID --yes-i-really-mean-it

6. Verify the OSD is removed from the node in the CRUSH map:

cephuser@adm > ceph osd tree

10.1.4.2 Removing the OSD deployment

The operator can automatically remove OSD deployments that are considered “safe-to-destroy”
by Ceph. After the steps above, the OSD will be considered safe to remove since the data has
all been moved to other OSDs. But this will only be done automatically by the operator if you
have this setting in the cluster CR:

removeOSDsIfOutAndSafeToRemove: true

Otherwise, you will need to delete the deployment directly:

kubectl@adm > kubectl delete deployment -n rook-ceph rook-ceph-osd-ID

78 Removing an OSD SES 7.1

10.1.5 Replacing an OSD

To replace a disk that has failed:

1. Run the steps in the previous section to Section 10.1.4, “Removing an OSD”.

2. Replace the physical device and verify the new device is attached.

3. Check if your cluster CR will nd the new device. If you are using useAllDevices: true
you can skip this step. If your cluster CR lists individual devices or uses a device filter you
may need to update the CR.

4. The operator ideally will automatically create the new OSD within a few minutes of adding
the new device or updating the CR. If you do not see a new OSD automatically created,
restart the operator (by deleting the operator pod) to trigger the OSD creation.

5. Verify if the OSD is created on the node by running ceph osd tree from the toolbox.

Note
The OSD might have a different ID than the previous OSD that was replaced.

10.1.6 Removing an OSD from a PVC

If you have installed your OSDs on top of PVCs and you desire to reduce the size of your cluster
by removing OSDs:

1. Shrink the number of OSDs in the storageClassDeviceSet in the CephCluster CR.

kubectl@adm > kubectl -n rook-ceph edit cephcluster rook-ceph

Reduce the count of the OSDs to the desired number. Rook will not take any action to
automatically remove the extra OSD(s), but will effectively stop managing the orphaned
OSD.

2. Identify the orphaned PVC that belongs to the orphaned OSD.

Note
The orphaned PVC will have the highest index among the PVCs for the device set.

79 Replacing an OSD SES 7.1

kubectl@adm > kubectl -n rook-ceph get pvc -l ceph.rook.io/DeviceSet=deviceSet

For example if the device set is named set1 and the count was reduced from 3 to 2 ,
the orphaned PVC would have the index 2 and might be named set1-2-data-vbwcf

3. Identify the orphaned OSD.

Note
The OSD assigned to the PVC can be found in the labels on the PVC.

kubectl@adm > kubectl -n rook-ceph get pod -l ceph.rook.io/pvc=ORPHANED_PVC -o yaml
 | grep ceph-osd-id

For example, this might return:

cephuser@adm > ceph-osd-id: "0"

4. Now, proceed with the steps in the section above to Section 10.1.4, “Removing an OSD” for
the orphaned OSD ID.

5. If desired, delete the orphaned PVC after the OSD is removed.

80 Removing an OSD from a PVC SES 7.1

11 Ceph examples

11.1 Ceph examples

Configuration for Rook and Ceph can be configured in multiple ways to provide block devices,
shared le system volumes, or object storage in a Kubernetes namespace. We have provided
several examples to simplify storage setup, but remember there are many tunables and you will
need to decide what settings work for your use case and environment.

11.1.1 Creating common resources

The rst step to deploy Rook is to create the common resources. The configuration for these
resources will be the same for most deployments. The common.yaml sets these resources up.

kubectl@adm > kubectl create -f common.yaml

The examples all assume the operator and all Ceph daemons will be started in the same name-
space. If you want to deploy the operator in a separate namespace, see the comments throughout
common.yaml .

11.1.2 Creating the operator

After the common resources are created, the next step is to create the Operator deployment.

operator.yaml : The most common settings for production deployments

kubectl@adm > kubectl create -f operator.yaml

operator-openshift.yaml : Includes all of the operator settings for running a basic Rook
cluster in an OpenShift environment.

kubectl@adm > oc create -f operator-openshift.yaml

Settings for the operator are configured through environment variables on the operator deploy-
ment. The individual settings are documented in the common.yaml .

81 Ceph examples SES 7.1

11.1.3 Creating the cluster CRD

Now that your operator is running, create your Ceph storage cluster. This CR contains the most
critical settings that will influence how the operator configures the storage. It is important to
understand the various ways to configure the cluster. These examples represent a very small set
of the different ways to configure the storage.

cluster.yaml : This le contains common settings for a production storage cluster. Re-
quires at least three nodes.

cluster-test.yaml : Settings for a test cluster where redundancy is not configured. Re-
quires only a single node.

cluster-on-pvc.yaml : This le contains common settings for backing the Ceph MONs
and OSDs by PVs. Useful when running in cloud environments or where local PVs have
been created for Ceph to consume.

cluster-with-drive-groups.yaml : This le contains example configurations for creat-
ing advanced OSD layouts on nodes using Ceph Drive Groups.

cluster-external : Connect to an external Ceph cluster with minimal access to monitor
the health of the cluster and connect to the storage.

cluster-external-management : Connect to an external Ceph cluster with the admin key
of the external cluster to enable remote creation of pools and configure services such as
an Object Storage or Shared le system.

11.1.4 Setting up consumable storage

Now we are ready to setup block, shared le system or object storage in the Rook Ceph cluster.
These kinds of storage are respectively referred to as CephBlockPool , Cephfilesystem and
CephObjectStore in the spec les.

11.1.4.1 Provisioning block devices

Ceph can provide raw block device volumes to pods. Each example below sets up a storage class
which can then be used to provision a block device in Kubernetes pods.

82 Creating the cluster CRD SES 7.1

storageclass.yaml : This example illustrates replication of three for production scenarios
and requires at least three nodes. Your data is replicated on three different Kubernetes
worker nodes and intermittent or long-lasting single node failures will not result in data
unavailability or loss.

storageclass-ec.yaml : Configures erasure coding for data durability rather than repli-
cation.

storageclass-test.yaml : Replication of one for test scenarios and it requires only a
single node. Do not use this for applications that store valuable data or have high-avail-
ability storage requirements, since a single node failure can result in data loss.

The storage classes are found in different sub-directories depending on the driver:

csi/rbd : The CSI driver for block devices.

11.1.4.2 Shared file system

CephFS (CephFS) allows the user to mount a shared POSIX-compliant folder into one or more
hosts (pods in the container world). This storage is similar to NFS shared storage or CIFS shared
folders.

File storage contains multiple pools that can be configured for different scenarios:

filesystem.yaml : Replication of three for production scenarios. Requires at least three
nodes.

filesystem-ec.yaml : Erasure coding for production scenarios. Requires at least three
nodes.

filesystem-test.yaml : Replication of one for test scenarios. Requires only a single node.

Dynamic provisioning is possible with the CSI driver. The storage class for shared le systems
is found in the csi/cephfs directory.

11.1.4.3 Object Storage

Ceph supports storing blobs of data called objects that support HTTP[S]-type get/put/post and
delete semantics.

83 Setting up consumable storage SES 7.1

Object Storage contains multiple pools that can be configured for different scenarios:

object.yaml : Replication of three for production scenarios. Requires at least three nodes.

object-openshift.yaml : Replication of three with Object Gateway in a port range valid
for OpenShift. Requires at least three nodes.

object-ec.yaml : Erasure coding rather than replication for production scenarios. Re-
quires at least three nodes.

object-test.yaml : Replication of one for test scenarios. Requires only a single node.

11.1.4.4 Object Storage user

object-user.yaml : Creates a simple object storage user and generates credentials for
the S3 API.

11.1.4.5 Object Storage buckets

The Ceph operator also runs an object store bucket provisioner which can grant access to existing
buckets or dynamically provision new buckets.

object-bucket-claim-retain.yaml : Creates a request for a new bucket by referencing
a StorageClass which saves the bucket when the initiating OBC is deleted.

object-bucket-claim-delete.yaml : Creates a request for a new bucket by referencing
a StorageClass which deletes the bucket when the initiating OBC is deleted.

storageclass-bucket-retain.yaml : Creates a new StorageClass which defines the Ceph
Object Store, a region, and retains the bucket after the initiating OBC is deleted.

storageclass-bucket-delete.yaml Creates a new StorageClass which defines the Ceph
Object Store, a region, and deletes the bucket after the initiating OBC is deleted.

84 Setting up consumable storage SES 7.1

12 Advanced configuration

12.1 Performing advanced configuration tasks
These examples show how to perform advanced configuration tasks on your Rook storage cluster.

Section 12.1.1, “Prerequisites”

Section 12.1.2, “Using custom Ceph user and secret for mounting”

Section 12.1.3, “Collecting logs”

Section 12.1.4, “OSD information”

Section 12.1.5, “Separate storage groups”

Section 12.1.6, “Configure pools”

Section 12.1.7, “Creating custom ceph.conf settings”

Section 12.1.8, “OSD CRUSH settings”

Section 12.1.9, “Removing phantom OSD”

Section 12.1.10, “Changing the failure domain”

12.1.1 Prerequisites

Most of the examples make use of the ceph client command. A quick way to use the Ceph
client suite is from a Rook Toolbox container (https://github.com/rook/rook/blob/master/Docu-

mentation/ceph-toolbox.md) .

The Kubernetes based examples assume Rook OSD pods are in the rook-ceph namespace. If you
run them in a different namespace, modify kubectl -n rook-ceph [...] to t your situation.

12.1.2 Using custom Ceph user and secret for mounting

Note
For extensive info about creating Ceph users, refer to Book “Administration and Operations

Guide”, Chapter 30 “Authentication with cephx”, Section 30.2.2 “Managing users”

Using a custom Ceph user and secret key can be done for both le system and block storage.

85 Performing advanced configuration tasks SES 7.1

https://github.com/rook/rook/blob/master/Documentation/ceph-toolbox.md
https://github.com/rook/rook/blob/master/Documentation/ceph-toolbox.md

Create a custom user in Ceph with read-write access in the /bar directory on CephFS (For Ceph
Mimic or newer, use data=POOL_NAME instead of pool=POOL_NAME):

cephuser@adm > ceph auth get-or-create-key client.user1 mon \
 'allow r' osd 'allow rw tag cephfs pool=YOUR_FS_DATA_POOL' \
 mds 'allow r, allow rw path=/bar'

The command will return a Ceph secret key. This key should be added as a secret in Kubernetes
like this:

kubectl@adm > kubectl create secret generic ceph-user1-secret --from-
literal=key=YOUR_CEPH_KEY

Note
This secret key must be created with the same name in each namespace where the Stor-
ageClass will be used.

In addition to this secret key, you must create a RoleBinding to allow the Rook Ceph agent to get
the secret from each namespace. The RoleBinding is optional if you are using a ClusterRoleBind-
ing for the Rook Ceph agent secret-key access. A ClusterRole which contains the permissions
which are needed and used for the Bindings is shown as an example after the next step.

On a StorageClass parameters set the following options:

mountUser: user1
mountSecret: ceph-user1-secret

If you want the Rook-Ceph agent to require a mountUser and mountSecret to be set in Stor-
ageClasses using Rook, you need to set the environment variable AGENT_MOUNT_SECURITY_MODE
to Restricted on the Rook-Ceph Operator deployment.

For more information on using the Ceph feature to limit access to CephFS paths, see http://

docs.ceph.com/docs/mimic/cephfs/client-auth/#path-restriction .

86 Using custom Ceph user and secret for mounting SES 7.1

http://docs.ceph.com/docs/mimic/cephfs/client-auth/#path-restriction
http://docs.ceph.com/docs/mimic/cephfs/client-auth/#path-restriction

12.1.2.1 Creating the ClusterRole

Note
When you are using the Helm chart to install the Rook-Ceph Operator, and have set
mountSecurityMode to, for example, Restricted , then the below ClusterRole has
already been created for you.

This ClusterRole is needed no matter whether you want to use one RoleBinding per
namespace or a ClusterRoleBinding .

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: rook-ceph-agent-mount
 labels:
 operator: rook
 storage-backend: ceph
rules:
- apiGroups:
 - ""
 resources:
 - secrets
 verbs:
 - get

12.1.2.2 Creating the RoleBinding

Note
You either need a RoleBinding in each namespace in which a mount secret resides in, or
create a ClusterRoleBinding with which the Rook Ceph agent has access to Kubernetes
secrets in all namespaces.

Create the RoleBinding shown here in each namespace for which the Rook Ceph agent should
read secrets for mounting. The RoleBinding subjects' namespace must be the one the Rook-
Ceph agent runs in (default rook-ceph for version 1.0 and newer; for previous versions, the
default namespace was rook-ceph-system).

87 Using custom Ceph user and secret for mounting SES 7.1

Replace namespace: name-of-namespace-with-mountsecret according to the name of all
namespaces a mountSecret can be in.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: rook-ceph-agent-mount
 namespace: name-of-namespace-with-mountsecret
 labels:
 operator: rook
 storage-backend: ceph
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: rook-ceph-agent-mount
subjects:
- kind: ServiceAccount
 name: rook-ceph-system
 namespace: rook-ceph

12.1.2.3 Creating the ClusterRoleBinding

This ClusterRoleBinding only needs to be created once, as it covers the whole cluster.

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: rook-ceph-agent-mount
 labels:
 operator: rook
 storage-backend: ceph
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: rook-ceph-agent-mount
subjects:
- kind: ServiceAccount
 name: rook-ceph-system
 namespace: rook-ceph

88 Using custom Ceph user and secret for mounting SES 7.1

12.1.3 Collecting logs

All Rook logs can be collected in a Kubernetes environment with the following command:

for p in $(kubectl -n rook-ceph get pods -o jsonpath='{.items[*].metadata.name}')
do
 for c in $(kubectl -n rook-ceph get pod ${p} -o jsonpath='{.spec.containers[*].name}')
 do
 echo "BEGIN logs from pod: ${p} ${c}"
 kubectl -n rook-ceph logs -c ${c} ${p}
 echo "END logs from pod: ${p} ${c}"
 done
done

This gets the logs for every container in every Rook pod, and then compresses them into a .gz
archive for easy sharing. Note that instead of gzip , you could instead pipe to less or to a
single text le.

12.1.4 OSD information

Keeping track of OSDs and their underlying storage devices can be difficult. The following scripts
will clear things up quickly.

12.1.4.1 Kubernetes

Get OSD Pods
This uses the example/default cluster name "rook"
OSD_PODS=$(kubectl get pods --all-namespaces -l \
app=rook-ceph-osd,rook_cluster=rook-ceph -o jsonpath='{.items[*].metadata.name}')

Find node and drive associations from OSD pods
for pod in $(echo ${OSD_PODS})
do
 echo "Pod: ${pod}"
 echo "Node: $(kubectl -n rook-ceph get pod ${pod} -o jsonpath='{.spec.nodeName}')"
 kubectl -n rook-ceph exec ${pod} -- sh -c '\
 for i in /var/lib/ceph/osd/ceph-*; do
 [-f ${i}/ready] || continue
 echo -ne "-$(basename ${i}) "
 echo $(lsblk -n -o NAME,SIZE ${i}/block 2> /dev/null || \
 findmnt -n -v -o SOURCE,SIZE -T ${i}) $(cat ${i}/type)
 done | sort -V
 echo'

89 Collecting logs SES 7.1

done

The output should look as follows:

Pod: osd-m2fz2
Node: node1.zbrbdl
-osd0 sda3 557.3G bluestore
-osd1 sdf3 110.2G bluestore
-osd2 sdd3 277.8G bluestore
-osd3 sdb3 557.3G bluestore
-osd4 sde3 464.2G bluestore
-osd5 sdc3 557.3G bluestore

Pod: osd-nxxnq
Node: node3.zbrbdl
-osd6 sda3 110.7G bluestore
-osd17 sdd3 1.8T bluestore
-osd18 sdb3 231.8G bluestore
-osd19 sdc3 231.8G bluestore

Pod: osd-tww1h
Node: node2.zbrbdl
-osd7 sdc3 464.2G bluestore
-osd8 sdj3 557.3G bluestore
-osd9 sdf3 66.7G bluestore
-osd10 sdd3 464.2G bluestore
-osd11 sdb3 147.4G bluestore
-osd12 sdi3 557.3G bluestore
-osd13 sdk3 557.3G bluestore
-osd14 sde3 66.7G bluestore
-osd15 sda3 110.2G bluestore
-osd16 sdh3 135.1G bluestore

12.1.5 Separate storage groups

Note
Instead of manually needing to set this, the deviceClass property can be used on pool
structures in CephBlockPool , CephFilesystem and CephObjectStore CRD objects.

By default Rook-Ceph puts all storage under one replication rule in the CRUSH Map which
provides the maximum amount of storage capacity for a cluster. If you would like to use different
storage endpoints for different purposes, you need to create separate storage groups.

90 Separate storage groups SES 7.1

In the following example we will separate SSD drives from spindle-based drives, a common prac-
tice for those looking to target certain workloads onto faster (database) or slower (le archive)
storage.

12.1.6 Configure pools

12.1.6.1 Sizing placement groups

Note
Since Ceph Nautilus (v14.x), you can use the Ceph Manager pg_autoscaler module to
auto-scale the PGs as needed. If you want to enable this feature, refer to Section 8.1.1.1,

“Default PG and PGP counts”.

The general rules for deciding how many PGs your pool(s) should contain is:

Less than ve OSDs: set pg_num to 128.

Between 5 and 10 OSDs: set pg_num to 512.

Between 10 and 50 OSDs: set pg_num to 1024.

If you have more than 50 OSDs, you need to know how to calculate the pg_num value by
yourself. For calculating pg_num yourself, please make use of the pgcalc tool at http://ceph.com/

pgcalc/ .

If you are already using a pool, it is generally safe to set pg_count on the y (see Section 12.1.6.2,

“Setting PG count”). Decreasing the PG count is not recommended on a pool that is in use. The
safest way to decrease the PG count is to back up the data, delete the pool, and recreate it.

12.1.6.2 Setting PG count

Be sure to read the Section 12.1.6.1, “Sizing placement groups” section before changing the number
of PGs.

Set the number of PGs in the rbd pool to 512
cephuser@adm > ceph osd pool set rbd pg_num 512

91 Configure pools SES 7.1

http://ceph.com/pgcalc/
http://ceph.com/pgcalc/

12.1.7 Creating custom ceph.conf settings

Warning
The advised method for controlling Ceph configuration is to manually use the Ceph CLI
or the Ceph Dashboard, because this offers the most flexibility. We recommend that this
is used only when absolutely necessary, and that the config is reset to an empty string
if or when the configurations are no longer necessary. Configurations in the config le
will make the Ceph cluster less configurable from the CLI and Ceph Dashboard and may
make future tuning or debugging difficult.

Setting configs via Ceph's CLI requires that at least one MON is available for the configs to be set,
and setting configs via Ceph Dashboard requires at least one MGR to be available. Ceph may also
have a small number of very advanced settings that are not able to be modified easily via CLI or
Ceph Dashboard. In order to set configurations before MONs are available or to set problematic
configuration settings, the rook-config-override ConfigMap exists, and the config eld can
be set with the contents of a ceph.conf le. The contents will be propagated to all MON, MGR,
OSD, MDS, and RGW daemons as an /etc/ceph/ceph.conf le.

Warning
Rook performs no validation on the config, so the validity of the settings is the user's
responsibility.

If the rook-config-override ConfigMap is created before the cluster is started, the Ceph
daemons will automatically pick up the settings. If you add the settings to the ConfigMap after
the cluster has been initialized, each daemon will need to be restarted where you want the
settings applied:

MONs: ensure all three MONs are online and healthy before restarting each mon pod, one
at a time.
MGRs: the pods are stateless and can be restarted as needed, but note that this will disrupt
the Ceph dashboard during restart.
OSDs: restart your the pods by deleting them, one at a time, and running ceph -s between
each restart to ensure the cluster goes back to “active/clean” state.
RGW: the pods are stateless and can be restarted as needed.
MDS: the pods are stateless and can be restarted as needed.

92 Creating custom ceph.conf settings SES 7.1

After the pod restart, the new settings should be in effect. Note that if the ConfigMap in the
Ceph cluster's namespace is created before the cluster is created, the daemons will pick up the
settings at rst launch.

12.1.7.1 Custom ceph.conf example

In this example we will set the default pool size to two, and tell OSD daemons not to change
the weight of OSDs on startup.

Warning
Modify Ceph settings carefully. You are leaving the sandbox tested by Rook. Changing
the settings could result in unhealthy daemons or even data loss if used incorrectly.

When the Rook Operator creates a cluster, a placeholder ConfigMap is created that will allow
you to override Ceph configuration settings. When the daemon pods are started, the settings
specified in this ConfigMap will be merged with the default settings generated by Rook.

The default override settings are blank. Cutting out the extraneous properties, we would see the
following defaults after creating a cluster:

kubectl@adm > kubectl -n rook-ceph get ConfigMap rook-config-override -o yaml
kind: ConfigMap
apiVersion: v1
metadata:
 name: rook-config-override
 namespace: rook-ceph
data:
 config: ""

To apply your desired configuration, you will need to update this ConfigMap. The next time the
daemon pod(s) start, they will use the updated configs.

kubectl@adm > kubectl -n rook-ceph edit configmap rook-config-override

Modify the settings and save. Each line you add should be indented from the config property
as such:

apiVersion: v1
kind: ConfigMap

93 Creating custom ceph.conf settings SES 7.1

metadata:
 name: rook-config-override
 namespace: rook-ceph
data:
 config: |
 [global]
 osd crush update on start = false
 osd pool default size = 2

12.1.8 OSD CRUSH settings

A useful view of the CRUSH Map (see Book “Administration and Operations Guide”, Chapter 17 “Stored

data management” for more details) is generated with the following command:

cephuser@adm > ceph osd tree

In this section we will be tweaking some of the values seen in the output.

12.1.8.1 OSD weight

The CRUSH weight controls the ratio of data that should be distributed to each OSD. This also
means a higher or lower amount of disk I/O operations for an OSD with higher or lower weight,
respectively.

By default, OSDs get a weight relative to their storage capacity, which maximizes overall cluster
capacity by filling all drives at the same rate, even if drive sizes vary. This should work for most
use-cases, but the following situations could warrant weight changes:

Your cluster has some relatively slow OSDs or nodes. Lowering their weight can reduce
the impact of this bottleneck.

You are using BlueStore drives provisioned with Rook v0.3.1 or older. In this case, you
may notice OSD weights did not get set relative to their storage capacity. Changing the
weight can x this and maximize cluster capacity.

This example sets the weight of osd.0 which is 600 GiB.

cephuser@adm > ceph osd crush reweight osd.0 .600

94 OSD CRUSH settings SES 7.1

12.1.8.2 OSD primary affinity

When pools are set with a size setting greater than one, data is replicated between nodes and
OSDs. For every chunk of data a Primary OSD is selected to be used for reading that data to
be sent to clients. You can control how likely it is for an OSD to become a Primary using the
Primary Affinity setting. This is similar to the OSD weight setting, except it only affects reads
on the storage device, not capacity or writes.

In this example, we will make sure osd.0 is only selected as Primary if all other OSDs holding
replica data are unavailable:

cephuser@adm > osd primary-affinity osd.0 0

12.1.9 Removing phantom OSD

If you have OSDs in which are not showing any disks, you can remove those “Phantom OSDs”
by following the instructions below. To check for “Phantom OSDs”, you can run:

cephuser@adm > ceph osd tree

An example output looks like this:

ID CLASS WEIGHT TYPE NAME STATUS REWEIGHT PRI-AFF
-1 57.38062 root default
-13 7.17258 host node1.example.com
2 hdd 3.61859 osd.2 up 1.00000 1.00000
-7 0 host node2.example.com down 0 1.00000

The host node2.example.com in the output has no disks, so it is most likely a “Phantom OSD”.

Now to remove it, use the ID in the rst column of the output and replace <ID> with it. In the
example output above the ID would be -7 . The commands are:

cephuser@adm > ceph osd out ID
cephuser@adm > ceph osd crush remove osd.ID
cephuser@adm > ceph auth del osd.ID
cephuser@adm > ceph osd rm ID

To recheck that the phantom OSD was removed, re-run the following command and check if
the OSD with the ID does not show up anymore:

ceph osd tree

95 Removing phantom OSD SES 7.1

12.1.10 Changing the failure domain

In Rook, it is now possible to indicate how the default CRUSH failure domain rule must be
configured in order to ensure that replicas or erasure code shards are separated across hosts,
and a single host failure does not affect availability. For instance, this is an example manifest of
a block pool named replicapool configured with a failureDomain set to osd :

apiVersion: ceph.rook.io/v1
kind: CephBlockPool
metadata:
 name: replicapool
 namespace: rook
spec:
 # The failure domain will spread the replicas of the data across different failure
 zones
 failureDomain: osd
[...]

However, due to several reasons, we may need to change such failure domain to its other value:
host . Unfortunately, changing it directly in the YAML manifest is not currently handled by
Rook, so we need to perform the change directly using Ceph commands using the Rook tools
pod, for instance:

cephuser@adm > ceph osd pool get replicapool crush_rule
crush_rule: replicapool
cephuser@adm > ceph osd crush rule create-replicated replicapool_host_rule default host

Notice that the suffix host_rule in the name of the rule is just for clearness about the type of
rule we are creating here, and can be anything else as long as it is different from the existing
one. Once the new rule has been created, we simply apply it to our block pool:

cephuser@adm > ceph osd pool set replicapool crush_rule replicapool_host_rule

And validate that it has been actually applied properly:

cephuser@adm > ceph osd pool get replicapool crush_rule
crush_rule: replicapool_host_rule

If the cluster's health was HEALTH_OK when we performed this change, immediately, the new
rule is applied to the cluster transparently without service disruption.

Exactly the same approach can be used to change from host back to osd .

96 Changing the failure domain SES 7.1

13 Object Storage

13.1 Object Storage
Object Storage exposes an S3 API to the storage cluster for applications to put and get data.

13.1.1 Configuring the Object Storage

Rook has the ability to either deploy an Object Storage in Kubernetes or to connect to an external
Object Gateway service. Most commonly, the Object Storage will be configured locally by Rook.

13.1.1.1 Creating a local Object Storage

The below sample will create a CephObjectStore that starts the Object Gateway service in the
cluster with an S3 API.

Note
This sample requires at least three BlueStore OSDs, with each OSD located on a different
node.

The OSDs must be located on different nodes, because the failureDomain is set to host and
the erasureCoded chunk settings require at least three different OSDs (two dataChunks +
one codingChunks).

 apiVersion: ceph.rook.io/v1
 kind: CephObjectStore
 metadata:
 name: my-store
 namespace: rook-ceph
 spec:
 metadataPool:
 failureDomain: host
 replicated:
 size: 3
 dataPool:
 failureDomain: host

97 Object Storage SES 7.1

 erasureCoded:
 dataChunks: 2
 codingChunks: 1
 preservePoolsOnDelete: true
 gateway:
 type: s3
 sslCertificateRef:
 port: 80
 securePort:
 instances: 1
 healthCheck:
 bucket:
 disabled: false
 interval: 60s

After the CephObjectStore is created, the Rook Operator will then create all the pools and
other resources necessary to start the service. This may take a minute to complete.

Create the object store:

kubectl@adm > kubectl create -f object.yaml

To confirm the object store is configured, wait for the rgw pod to start:

kubectl@adm > kubectl -n rook-ceph get pod -l app=rook-ceph-rgw

13.1.1.2 Connecting to an external Object Storage

Rook can connect to existing Object Gateway gateways to work in conjunction with the external
mode of the CephCluster CRD. If you have an external CephCluster CR, you can instruct Rook
to consume external gateways with the following:

 apiVersion: ceph.rook.io/v1
 kind: CephObjectStore
 metadata:
 name: external-store
 namespace: rook-ceph
 spec:
 gateway:
 port: 8080
 externalRgwEndpoints:
 - ip: 192.168.39.182
 healthCheck:
 bucket:
 enabled: true

98 Configuring the Object Storage SES 7.1

 interval: 60s

You can use the existing object-external.yaml le. When ready the ceph-object-con-
troller will output a message in the Operator log similar to this one:

ceph-object-controller: ceph object store gateway service running at 10.100.28.138:8080

You can now get and access the store via:

kubectl@adm > kubectl -n rook-ceph get svc -l app=rook-ceph-rgw
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
rook-ceph-rgw-my-store ClusterIP 10.100.28.138 none 8080/TCP 6h59m

Any pod from your cluster can now access this endpoint:

kubectl@adm > curl 10.100.28.138:8080

It is also possible to use the internally registered DNS name:

kubectl@adm > curl rook-ceph-rgw-my-store.rook-ceph:8080

The DNS name is created with the following schema: rook-ceph-rgw-$STORE_NAME.$NAMES-
PACE .

13.1.2 Creating a bucket

Now that the object store is configured, next we need to create a bucket where a client can read
and write objects. A bucket can be created by defining a storage class, similar to the pattern
used by block and le storage. First, define the storage class that will allow object clients to
create a bucket. The storage class defines the object storage system, the bucket retention policy,
and other properties required by the administrator. Save the following as storageclass-buck-
et-delete.yaml (the example is named as such due to the Delete reclaim policy).

 apiVersion: storage.k8s.io/v1
 kind: StorageClass
 metadata:
 name: rook-ceph-bucket
 provisioner: rook-ceph.ceph.rook.io/bucket
 reclaimPolicy: Delete
 parameters:
 objectStoreName: my-store
 objectStoreNamespace: rook-ceph
 region: us-east-1

99 Creating a bucket SES 7.1

kubectl@adm > kubectl create -f storageclass-bucket-delete.yaml

Based on this storage class, an object client can now request a bucket by creating an Object
Bucket Claim (OBC). When the OBC is created, the Rook-Ceph bucket provisioner will create
a new bucket. Notice that the OBC references the storage class that was created above. Save
the following as object-bucket-claim-delete.yaml (the example is named as such due to
the Delete reclaim policy):

 apiVersion: objectbucket.io/v1alpha1
 kind: ObjectBucketClaim
 metadata:
 name: ceph-bucket
 spec:
 generateBucketName: ceph-bkt
 storageClassName: rook-ceph-bucket

kubectl@adm > kubectl create -f object-bucket-claim-delete.yaml

Now that the claim is created, the operator will create the bucket as well as generate other
artifacts to enable access to the bucket. A secret and ConfigMap are created with the same name
as the OBC and in the same namespace. The secret contains credentials used by the application
pod to access the bucket. The ConfigMap contains bucket endpoint information and is also
consumed by the pod.

13.1.2.1 Client connections

The following commands extract key pieces of information from the secret and configmap:

#config-map, secret, OBC will part of default if no specific name space mentioned
export AWS_HOST=$(kubectl -n default get cm ceph-bucket -o yaml | grep BUCKET_HOST | awk
 '{print $2}')
export AWS_ACCESS_KEY_ID=$(kubectl -n default get secret ceph-bucket -o yaml | grep
 AWS_ACCESS_KEY_ID | awk '{print $2}' | base64 --decode)
export AWS_SECRET_ACCESS_KEY=$(kubectl -n default get secret ceph-bucket -o yaml | grep
 AWS_SECRET_ACCESS_KEY | awk '{print $2}' | base64 --decode)

13.1.3 Consuming the Object Storage

Now that you have the Object Storage configured and a bucket created, you can consume the
object storage from an S3 client.

100 Consuming the Object Storage SES 7.1

This section will guide you through testing the connection to the CephObjectStore and up-
loading and downloading from it. Run the following commands after you have connected to
the Rook toolbox.

13.1.3.1 Setting environment variables

To simplify the S3 client commands, you will want to set the four environment variables for
use by your client (for example, inside the toolbox). See above for retrieving the variables for
a bucket created by an ObjectBucketClaim .

export AWS_HOST=HOST
export AWS_ENDPOINT=ENDPOINT
export AWS_ACCESS_KEY_ID=ACCESS_KEY
export AWS_SECRET_ACCESS_KEY=SECRET_KEY

Host : The DNS host name where the Object Gateway service is found in the cluster.
Assuming you are using the default rook-ceph cluster, it will be rook-ceph-rgw-my-
store.rook-ceph .

Endpoint : The endpoint where the Object Gateway service is listening. Run the following
command and then combine the clusterIP and the port.

kubectl@adm > kubectl -n rook-ceph get svc rook-ceph-rgw-my-store

Access key : The user’s access_key as printed above

Secret key : The user’s secret_key as printed above

The variables for the user generated in this example might be:

export AWS_HOST=rook-ceph-rgw-my-store.rook-ceph
export AWS_ENDPOINT=10.104.35.31:80
export AWS_ACCESS_KEY_ID=XEZDB3UJ6X7HVBE7X7MA
export AWS_SECRET_ACCESS_KEY=7yGIZON7EhFORz0I40BFniML36D2rl8CQQ5kXU6l

The access key and secret key can be retrieved as described in the section above on Sec-

tion 13.1.2.1, “Client connections” or below in the section Section 13.1.5, “Creating a user” if you are
not creating the buckets with an ObjectBucketClaim .

13.1.3.2 Installing the s3cmd package

To test the CephObjectStore we will install the s3cmd tool into the toolbox pod.

101 Consuming the Object Storage SES 7.1

zypper --assumeyes install s3cmd

13.1.3.3 PUT or GET an object

Upload a le to the newly created bucket:

echo "Hello Rook" > /tmp/rookObj
s3cmd put /tmp/rookObj --no-ssl --host=${AWS_HOST} --host-bucket= s3://rookbucket

Download and verify the le from the bucket:

s3cmd get s3://rookbucket/rookObj /tmp/rookObj-download --no-ssl --host=${AWS_HOST} --
host-bucket=
cat /tmp/rookObj-download

13.1.4 Setting up external access to the cluster

Rook sets up the object storage so pods will have access internal to the cluster. If your appli-
cations are running outside the cluster, you will need to setup an external service through a
NodePort .

First, note the service that exposes RGW internal to the cluster. We will leave this service intact
and create a new service for external access.

kubectl@adm > kubectl -n rook-ceph get service rook-ceph-rgw-my-store
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
rook-ceph-rgw-my-store 10.3.0.177 none 80/TCP 2m

Save the external service as rgw-external.yaml :

 apiVersion: v1
 kind: Service
 metadata:
 name: rook-ceph-rgw-my-store-external
 namespace: rook-ceph
 labels:
 app: rook-ceph-rgw
 rook_cluster: rook-ceph
 rook_object_store: my-store
 spec:
 ports:
 - name: rgw
 port: 80
 protocol: TCP

102 Setting up external access to the cluster SES 7.1

 targetPort: 80
 selector:
 app: rook-ceph-rgw
 rook_cluster: rook-ceph
 rook_object_store: my-store
 sessionAffinity: None
 type: NodePort

Now, create the external service:

kubectl@adm > kubectl create -f rgw-external.yaml

See both Object Gateway services running and notice what port the external service is running
on:

kubectl@adm > kubectl -n rook-ceph get service rook-ceph-rgw-my-store rook-ceph-rgw-my-
store-external
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
rook-ceph-rgw-my-store ClusterIP 10.104.82.228 none 80/TCP
 4m
rook-ceph-rgw-my-store-external NodePort 10.111.113.237 none 80:31536/TCP
 39s

Internally the Object Gateway service is running on port 80. The external port in this case is
31536.

13.1.5 Creating a user

If you need to create an independent set of user credentials to access the S3 endpoint, create
a CephObjectStoreUser . The user will be used to connect to the Object Gateway service in
the cluster using the S3 API. The user will be independent of any object bucket claims that you
might have created in the earlier instructions in this document.

 apiVersion: ceph.rook.io/v1
 kind: CephObjectStoreUser
 metadata:
 name: my-user
 namespace: rook-ceph
 spec:
 store: my-store
 displayName: "my display name"

103 Creating a user SES 7.1

When the CephObjectStoreUser is created, the Rook operator will then create the RGW user
on the specified CephObjectStore and store the Access Key and Secret Key in a kubernetes
secret in the same namespace as the CephObjectStoreUser .

Create the object store user:

kubectl@adm > kubectl create -f object-user.yaml

To confirm the object store user is configured, describe the secret:

kubectl@adm > kubectl -n rook-ceph describe secret rook-ceph-object-user-my-store-my-user
 Name: rook-ceph-object-user-my-store-my-user
 Namespace: rook-ceph
 Labels: app=rook-ceph-rgw
 rook_cluster=rook-ceph
 rook_object_store=my-store
 Annotations: none

 Type: kubernetes.io/rook

 Data
 ====
 AccessKey: 20 bytes
 SecretKey: 40 bytes

The AccessKey and SecretKey data elds can be mounted in a pod as an environment variable.

To directly retrieve the secrets:

kubectl@adm > kubectl -n rook-ceph get secret rook-ceph-object-user-my-store-my-user -o
 yaml \
 | grep AccessKey | awk '{print $2}' | base64 --decode
kubectl@adm > kubectl -n rook-ceph get secret rook-ceph-object-user-my-store-my-user -o
 yaml \
 | grep SecretKey | awk '{print $2}' | base64 --decode

13.2 Ceph Object Storage CRD

Rook allows creation and customization of object stores through the custom resource definitions
(CRDs). The following settings are available for Ceph Object Storage.

104 Ceph Object Storage CRD SES 7.1

13.2.1 Sample

13.2.1.1 Erasure code

Erasure coded pools require the OSDs to use bluestore for the configured storeType . Addi-
tionally, erasure coded pools can only be used with dataPools . The metadataPool must use
a replicated pool.

Note
This sample requires at least three BlueStore OSDs, with each OSD located on a different
node.

The OSDs must be located on different nodes, because the failureDomain is set to host and
the erasureCoded chunk settings require at least three different OSDs (two dataChunks +
one codingChunks).

 apiVersion: ceph.rook.io/v1
 kind: CephObjectStore
 metadata:
 name: my-store
 namespace: rook-ceph
 spec:
 metadataPool:
 failureDomain: host
 replicated:
 size: 3
 dataPool:
 failureDomain: host
 erasureCoded:
 dataChunks: 2
 codingChunks: 1
 preservePoolsOnDelete: true
 gateway:
 type: s3
 sslCertificateRef:
 port: 80
 securePort:
 instances: 1
 # A key/value list of annotations
 annotations:
 # key: value

105 Sample SES 7.1

 placement:
 # nodeAffinity:
 # requiredDuringSchedulingIgnoredDuringExecution:
 # nodeSelectorTerms:
 # - matchExpressions:
 # - key: role
 # operator: In
 # values:
 # - rgw-node
 # tolerations:
 # - key: rgw-node
 # operator: Exists
 # podAffinity:
 # podAntiAffinity:
 # topologySpreadConstraints:
 resources:
 # limits:
 # cpu: "500m"
 # memory: "1024Mi"
 # requests:
 # cpu: "500m"
 # memory: "1024Mi"
 #zone:
 #name: zone-a

13.2.2 Object store settings

13.2.2.1 Metadata

name : The name of the object store to create, which will be reflected in the pool and other
resource names.

namespace : The namespace of the Rook cluster where the object store is created.

13.2.2.2 Pools

The pools allow all of the settings defined in the pool CRD specification. In the example above,
there must be at least three hosts (size 3) and at least three devices (two data + one coding
chunks) in the cluster.

106 Object store settings SES 7.1

When the zone section is set, pools with the object store's name will not be created, since the
object-store will the using the pools created by the ceph-object-zone.

metadataPool : The settings used to create all of the object store metadata pools. Must
use replication.

dataPool : The settings to create the object store data pool. Can use replication or erasure
coding.

preservePoolsOnDelete : If it is set to “true”, the pools used to support the object store
will remain when the object store will be deleted. This is a security measure to avoid
accidental loss of data. It is set to “false” by default. If it is not specified, this is also deemed
as “false”.

13.2.3 Creating gateway settings

The gateway settings correspond to the Object Gateway daemon settings.

type : S3 is supported

sslCertificateRef : If the certificate is not specified, SSL will not be configured. If spec-
ified, this is the name of the Kubernetes secret that contains the SSL certificate to be used
for secure connections to the object store. Rook will look in the secret provided at the
cert key name. The value of the cert key must be in the format expected by the Object
Gateway service: “The server key, server certificate, and any other CA or intermediate
certificates be supplied in one le. Each of these items must be in pem form.”

port : The port on which the Object service will be reachable. If host networking is en-
abled, the Object Gateway daemons will also listen on that port. If running on SDN, the
Object Gateway daemon listening port will be 8080 internally.

securePort : The secure port on which Object Gateway pods will be listening. An SSL
certificate must be specified.

instances : The number of pods that will be started to load-balance this object store.

externalRgwEndpoints : A list of IP addresses to connect to external existing Object Gate-
ways (works with external mode). This setting will be ignored if the CephCluster does
not have external spec enabled.

annotations : Key-value pair list of annotations to add.

107 Creating gateway settings SES 7.1

labels : Key-value pair list of labels to add.

placement : The Kubernetes placement settings to determine where the Object Gateway
pods should be started in the cluster.

resources : Set resource requests/limits for the Gateway Pod(s).

priorityClassName : Set priority class name for the Gateway Pod(s).

Example of external Object Gateway endpoints to connect to:

 gateway:
 port: 80
 externalRgwEndpoints:
 - ip: 192.168.39.182

This will create a service with the endpoint 192.168.39.182 on port 80 , pointing to the Ceph
object external gateway. All the other settings from the gateway section will be ignored, except
for securePort .

13.2.4 Zone settings

The zone (https://github.com/rook/rook/blob/master/Documentation/ceph-object-multisite.md)

settings allow the object store to join custom created ceph-object-zone (https://github.com/rook/

rook/blob/master/Documentation/ceph-object-multisite-crd.md) .

name : the name of the ceph-object-zone the object store will be in.

13.2.5 Runtime settings

13.2.5.1 MIME types

Rook provides a default mime.types le for each Ceph Object Storage. This le is stored
in a Kubernetes ConfigMap with the name rook-ceph-rgw-<STORE-NAME>-mime-types . For
most users, the default le should suffice, however, the option is available to users to edit the
mime.types le in the ConfigMap as they desire. Users may have their own special le types,
and particularly security conscious users may wish to pare down the le to reduce the possibility
of a le type execution attack.

108 Zone settings SES 7.1

https://github.com/rook/rook/blob/master/Documentation/ceph-object-multisite.md
https://github.com/rook/rook/blob/master/Documentation/ceph-object-multisite-crd.md
https://github.com/rook/rook/blob/master/Documentation/ceph-object-multisite-crd.md

Rook will not overwrite an existing mime.types ConfigMap so that user modifications will
not be destroyed. If the object store is destroyed and re-created, the ConfigMap will also be
destroyed and re-created.

13.2.6 Health settings

Rook-Ceph will be default monitor the state of the object store endpoints. The following CRD
settings are available:

healthCheck : main object store health monitoring section

For example:

 healthCheck:
 bucket:
 disabled: false
 interval: 60s

The endpoint health check procedure is the following:

1. Create an S3 user.

2. Create a bucket with that user.

3. PUT the le in the object store.

4. GET the le from the object store.

5. Verify object consistency.

6. Update CR health status check.

Rook-Ceph always keeps the bucket and the user for the health check; it just does a PUT and
GET of an S3 object, since creating a bucket is an expensive operation.

109 Health settings SES 7.1

13.3 Ceph object bucket claim
Rook supports the creation of new buckets and access to existing buckets via two custom re-
sources:

An Object Bucket Claim (OBC) is custom resource which requests a bucket (new or
existing) and is described by a Custom Resource Definition (CRD) shown below.

An Object Bucket (OB) is a custom resource automatically generated when a bucket is
provisioned. It is a global resource, typically not visible to non-admin users, and contains
information specific to the bucket. It is described by an OB CRD, also shown below.

An OBC references a storage class which is created by an administrator. The storage class defines
whether the bucket requested is a new bucket or an existing bucket. It also defines the bucket
retention policy. Users request a new or existing bucket by creating an OBC which is shown
below. The ceph provisioner detects the OBC and creates a new bucket or grants access to an
existing bucket, depending the the storage class referenced in the OBC. It also generates a Secret
which provides credentials to access the bucket, and a ConfigMap which contains the bucket’s
endpoint. Application pods consume the information in the Secret and ConfigMap to access
the bucket. Please note that to make provisioner watch the cluster namespace only you need
to set ROOK_OBC_WATCH_OPERATOR_NAMESPACE to true in the operator manifest, otherwise it
watches all namespaces.

13.3.1 Sample

13.3.1.1 OBC custom resource

 apiVersion: objectbucket.io/v1alpha1
 kind: ObjectBucketClaim
 metadata:
 name: ceph-bucket [1]
 namespace: rook-ceph [2]
 spec:
 bucketName: [3]
 generateBucketName: photo-booth [4]
 storageClassName: rook-ceph-bucket [4]
 additionalConfig: [5]
 maxObjects: "1000"

110 Ceph object bucket claim SES 7.1

 maxSize: "2G"

1. name of the ObjectBucketClaim . This name becomes the name of the Secret and Con-
figMap.

2. namespace (optional) of the ObjectBucketClaim , which is also the namespace of the
ConfigMap and Secret.

3. bucketName name of the bucket . Not recommended for new buckets, since names must
be unique within an entire object store.

4. generateBucketName value becomes the prefix for a randomly-generated name; if sup-
plied, then bucketName must be empty. If both bucketName and generateBucketName
are supplied, then BucketName has precedence and GenerateBucketName is ignored. If
both bucketName and generateBucketName are blank or omitted, then the storage class
is expected to contain the name of an existing bucket. It is an error if all three bucket-re-
lated names are blank or omitted.

5. storageClassName which defines the StorageClass which contains the names of the buck-
et provisioner, the object store, and specifies the bucket-retention policy.

6. additionalConfig is an optional list of key-value pairs used to define attributes specific
to the bucket being provisioned by this OBC. This information is typically tuned to a par-
ticular bucket provisioner, and may limit application portability. Options supported:

maxObjects : The maximum number of objects in the bucket

maxSize : The maximum size of the bucket, please note minimum recommended
value is 4K.

13.3.1.2 OBC custom resource after bucket provisioning

 apiVersion: objectbucket.io/v1alpha1
 kind: ObjectBucketClaim
 metadata:
 creationTimestamp: "2019-10-18T09:54:01Z"
 generation: 2
 name: ceph-bucket
 namespace: default [1]
 resourceVersion: "559491"
 spec:

111 Sample SES 7.1

 ObjectBucketName: obc-default-ceph-bucket [2]
 additionalConfig: null
 bucketName: photo-booth-c1178d61-1517-431f-8408-ec4c9fa50bee [3]
 cannedBucketAcl: ""
 ssl: false
 storageClassName: rook-ceph-bucket [4]
 versioned: false
 status:
 Phase: bound [5]

1. namespace where OBC got created.

2. ObjectBucketName generated OB name created using name space and OBC name.

3. The generated (in this case), unique bucket name for the new bucket.

4. Name of the storage class from OBC got created.

5. Phases of bucket creation:

Pending: the operator is processing the request.

Bound: the operator finished processing the request and linked the OBC and OB

Released: the OB has been deleted, leaving the OBC unclaimed but unavailable.

Failed: not currently set.

13.3.1.3 App pod

 apiVersion: v1
 kind: Pod
 metadata:
 name: app-pod
 namespace: dev-user
 spec:
 containers:
 - name: mycontainer
 image: redis
 envFrom: [1]
 - configMapRef:
 name: ceph-bucket [2]
 - secretRef:
 name: ceph-bucket [3]

112 Sample SES 7.1

1. Use env: if mapping of the defined key names to the environment-variable names used
by the app is needed.

2. Makes available to the pod as environment variables: BUCKET_HOST , BUCKET_PORT , BUCK-
ET_NAME

3. makes available to the pod as environment variables: AWS_ACCESS_KEY_ID , AWS_SE-
CRET_ACCESS_KEY

13.3.1.4 StorageClass

 apiVersion: storage.k8s.io/v1
 kind: StorageClass
 metadata:
 name: rook-ceph-bucket
 labels:
 aws-s3/object [1]
 provisioner: rook-ceph.ceph.rook.io/bucket [2]
 parameters: [3]
 objectStoreName: my-store
 objectStoreNamespace: rook-ceph
 region: us-west-1
 bucketName: ceph-bucket [4]
 reclaimPolicy: Delete [5]

1. label (optional) here associates this StorageClass to a specific provisioner.

2. provisioner responsible for handling OBCs referencing this StorageClass .

3. all parameter required.

4. bucketName is required for access to existing buckets but is omitted when provisioning
new buckets. Unlike greenfield provisioning, the brownfield bucket name appears in the
StorageClass , not the OBC .

5. Rook-Ceph provisioner decides how to treat the reclaimPolicy when an OBC is deleted
for the bucket.

Delete = physically delete the bucket.

Retain = do not physically delete the bucket.

113 Sample SES 7.1

13.4 Ceph Object Storage user custom resource
definitions (CRD)
Rook allows creation and customization of object store users through the custom resource def-
initions (CRDs). The following settings are available for Ceph object store users.

13.4.1 Sample

 apiVersion: ceph.rook.io/v1
 kind: CephObjectStoreUser
 metadata:
 name: my-user
 namespace: rook-ceph
 spec:
 store: my-store
 displayName: my-display-name

13.4.2 Object Storage user settings

13.4.2.1 Metadata

name : The name of the object store user to create, which will be reflected in the secret
and other resource names.

namespace : The namespace of the Rook cluster where the object store user is created.

13.4.2.2 Specification

store : The object store in which the user will be created. This matches the name of the
Object Storage CRD.

displayName : The display name which will be passed to the radosgw-admin user cre-
ate command.

114 Ceph Object Storage user custom resource definitions (CRD) SES 7.1

14 Ceph Dashboard

14.1 Ceph Dashboard
The Ceph Dashboard is a helpful tool to give you an overview of the status of your Ceph cluster,
including overall health, status of the MOPN quorum, status of the MGR, OSD, and other Ceph
daemons, view pools and PG status, show logs for the daemons, and more. Rook makes it simple
to enable the dashboard.

FIGURE 14.1: THE CEPH DASHBOARD

14.1.1 Enabling the Ceph Dashboard

The dashboard (http://docs.ceph.com/docs/mimic/mgr/dashboard/) can be enabled with set-
tings in the CephCluster CRD. The CephCluster CRD must have the dashboard enabled setting
set to true . This is the default setting in the example manifests.

 spec:
 dashboard:
 enabled: true

115 Ceph Dashboard SES 7.1

http://docs.ceph.com/docs/mimic/mgr/dashboard/

The Rook operator will enable the ceph-mgr dashboard module. A service object will be created
to expose that port inside the Kubernetes cluster. Rook will enable port 8443 for HTTPS access.

This example shows that port 8443 was configured:

kubectl@adm > kubectl -n rook-ceph get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
 AGE
rook-ceph-mgr ClusterIP 10.108.111.192 <none> 9283/TCP
 3h
rook-ceph-mgr-dashboard ClusterIP 10.110.113.240 <none> 8443/TCP
 3h

The rst service is for reporting the Prometheus metrics, while the latter service is for the dash-
board. If you are on a node in the cluster, you will be able to connect to the dashboard by using
either the DNS name of the service at https://rook-ceph-mgr-dashboard-https:8443 or by
connecting to the cluster IP, in this example at https://10.110.113.240:8443 .

Important
The dashboard will only be enabled for the rst Ceph object store created by Rook.

14.1.1.1 Creating login credentials

After you connect to the dashboard, you will need to login for secure access. Rook creates a
default user named admin and generates a secret called rook-ceph-dashboard-admin-pass-
word in the namespace where the Rook-Ceph cluster is running. To retrieve the generated pass-
word, you can run the following:

kubectl@adm > kubectl -n rook-ceph get secret rook-ceph-dashboard-password \
 -o jsonpath="{['data']['password']}" | base64 --decode && echo

14.1.2 Configuring the Ceph Dashboard

The following dashboard configuration settings are supported:

 spec:
 dashboard:
 urlPrefix: /ceph-dashboard
 port: 8443

116 Configuring the Ceph Dashboard SES 7.1

 ssl: true

urlPrefix If you are accessing the dashboard via a reverse proxy, you may wish to serve
it under a URL prefix. To get the dashboard to use hyperlinks that include your prefix, you
can set the urlPrefix setting.
port The port that the dashboard is served on may be changed from the default using
the port setting. The corresponding K8s service exposing the port will automatically be
updated.
ssl The dashboard may be served without SSL by setting the ssl option to false.

14.1.3 Viewing the Ceph Dashboard external to the cluster

Commonly, you will want to view the dashboard from outside the cluster. For example, on a
development machine with the cluster running inside minikube, you will want to access the
dashboard from the host.

There are several ways to expose a service, which will depend on the environment you are
running in. You can use an Ingress Controller or other methods for exposing services such as
NodePort, LoadBalancer, or ExternalIPs.

14.1.3.1 Node port

The simplest way to expose the service in minikube or similar environments is using the Node-
Port to open a port on the VM that can be accessed by the host. To create a service with the
NodePort, save this YAML le as dashboard-external-https.yaml .

 apiVersion: v1
 kind: Service
 metadata:
 name: rook-ceph-mgr-dashboard-external-https
 namespace: rook-ceph
 labels:
 app: rook-ceph-mgr
 rook_cluster: rook-ceph
 spec:
 ports:
 - name: dashboard
 port: 8443
 protocol: TCP
 targetPort: 8443

117 Viewing the Ceph Dashboard external to the cluster SES 7.1

 selector:
 app: rook-ceph-mgr
 rook_cluster: rook-ceph
 sessionAffinity: None
 type: NodePort

Now create the service:

kubectl@adm > kubectl create -f dashboard-external-https.yaml

You will see the new service rook-ceph-mgr-dashboard-external-https created:

kubectl@adm > kubectl -n rook-ceph get service
NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
rook-ceph-mgr ClusterIP 10.108.111.192 <none> 9283/
TCP 4h
rook-ceph-mgr-dashboard ClusterIP 10.110.113.240 <none> 8443/
TCP 4h
rook-ceph-mgr-dashboard-external-https NodePort 10.101.209.6 <none>
 8443:31176/TCP 4h

In this example, port 31176 will be opened to expose port 8443 from the ceph-mgr pod. Find
the IP address of the VM. If using minikube, you can run minikube ip to nd the IP address.
Now you can enter the URL in your browser such as https://192.168.99.110:31176 and the
dashboard will appear.

14.1.3.2 Creating the load balancer service

If you have a cluster on a cloud provider that supports load balancers, you can create a ser-
vice that is provisioned with a public hostname. The yaml is the same as dashboard-exter-
nal-https.yaml except for the following property:

 spec:
 [...]
 type: LoadBalancer

Now create the service:

kubectl@adm > kubectl create -f dashboard-loadbalancer.yaml

You will see the new service rook-ceph-mgr-dashboard-loadbalancer created:

kubectl@adm > kubectl -n rook-ceph get service

118 Viewing the Ceph Dashboard external to the cluster SES 7.1

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
rook-ceph-mgr ClusterIP 172.30.11.40 <none>
 9283/TCP 4h
rook-ceph-mgr-dashboard ClusterIP 172.30.203.185 <none>
 8443/TCP 4h
rook-ceph-mgr-dashboard-loadbalancer LoadBalancer 172.30.27.242
 a7f23e8e2839511e9b7a5122b08f2038-1251669398.us-east-1.elb.amazonaws.com 8443:32747/TCP
 4h

Now you can enter the URL in your browser such
as https://a7f23e8e2839511e9b7a5122b08f2038-1251669398.us-east-1.elb.amazon-

aws.com:8443 and the dashboard will appear.

14.1.3.3 Ingress controller

If you have a cluster with an Nginx Ingress Controller and a certificate manager, then you can
create an ingress like the one below. This example achieves four things:

1. Exposes the dashboard on the Internet (using an reverse proxy).
2. Issues an valid TLS Certificate for the specified domain name.
3. Tells the reverse proxy that the dashboard itself uses HTTPS.
4. Tells the reverse proxy that the dashboard itself does not have a valid certificate (it is self-

signed).

 apiVersion: extensions/v1beta1
 kind: Ingress
 metadata:
 name: rook-ceph-mgr-dashboard
 namespace: rook-ceph
 annotations:
 kubernetes.io/ingress.class: "nginx"
 kubernetes.io/tls-acme: "true"
 nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"
 nginx.ingress.kubernetes.io/server-snippet: |
 proxy_ssl_verify off;
 spec:
 tls:
 - hosts:
 - rook-ceph.example.com
 secretName: rook-ceph.example.com
 rules:
 - host: rook-ceph.example.com

119 Viewing the Ceph Dashboard external to the cluster SES 7.1

 http:
 paths:
 - path: /
 backend:
 serviceName: rook-ceph-mgr-dashboard
 servicePort: https-dashboard

Customise the ingress resource to match your cluster. Replace the example domain name rook-
ceph.example.com with a domain name that will resolve to your Ingress Controller (creating
the DNS entry if required).

Now create the ingress:

kubectl@adm > kubectl create -f dashboard-ingress-https.yaml

You will see the new ingress rook-ceph-mgr-dashboard created:

kubectl@adm > kubectl -n rook-ceph get ingress
NAME HOSTS ADDRESS PORTS AGE
rook-ceph-mgr-dashboard rook-ceph.example.com 80, 443 5m

And the new secret for the TLS certificate:

kubectl@adm > kubectl -n rook-ceph get secret rook-ceph.example.com
NAME TYPE DATA AGE
rook-ceph.example.com kubernetes.io/tls 2 4m

You can now browse to https://rook-ceph.example.com/ to log into the dashboard.

120 Viewing the Ceph Dashboard external to the cluster SES 7.1

III Troubleshooting Ceph on SUSE CaaS
Platform

15 Troubleshooting 122

16 Common issues 124

15 Troubleshooting

15.1 Debugging Rook

There are a number of basic actions a user might need to take during debugging. These actions
are defined here for reference when they are mentioned in more documentation below.

Important
This document is not devoted to an in-depth explanation of what Kubernetes is, what its
features are, how it is used, how to navigate it, or how to debug applications that run on
it. This document will use Kubernetes terms, and users are expected to know how to look
up Kubernetes information they do not already have. This document will give an outline
of how to use Kubernetes tools to get any information needed in the Rook-Ceph context
and, when relevant, will briey explain how Rook uses Kubernetes features.

15.1.1 Setting the operator log level to debug

In general, the rst place to look when encountering a failure is to get logs for the rook-ceph-
operator pod. To get the most informative logs possible, set the operator log level to DEBUG .

To do this, modify Helm's values.yaml or modify the operator.yaml manifest. Regardless
of the method chosen, the log level can always be set by editing the deployment directly with
kubectl . For example:

kubectl@adm > kubectl --namespace rook-ceph set env deployment/rook-ceph-operator
 ROOK_LOG_LEVEL=DEBUG

After editing the deployment, the operator pod will restart automatically and will start out-
putting logs with the new log level.

Note
If you are experiencing a particular failure, it may take some time for the Rook operator
to reach the failure location again to report debug logs.

122 Debugging Rook SES 7.1

15.1.2 Using the toolbox pod

Use the Rook toolbox pod to interface directly with the Ceph cluster via the CLI. For example:

kubectl@adm > kubectl --namespace rook-ceph exec -it deploy/rook-ceph-tools -- bash

If the rook-ceph-tools deployment does not exist, it should be created using the tool-
box.yaml manifest.

Note
To set log levels for Ceph daemons, it is advised to use the Ceph CLI from the toolbox
pod.

15.1.3 Using the SES supportutils plugin

The supportutils plugin for SUSE Enterprise Storage works with Rook clusters. It is installed
by the supportutils-plugin-ses package. The plugin collects container logs and more infor-
mation about a Rook-Ceph cluster, making collection of logs easy. Once the logs are collected,
you can browse the collected information and logs without needing to progressively collect more
detailed information at each step.

The supportutils plugin does not alter the Rook log level to DEBUG , and it is advised to set
this to DEBUG before running the plugin. The plugin also does not change any Ceph log levels;
also consider changing those if the failure merits it before running the plugin.

123 Using the toolbox pod SES 7.1

16 Common issues

16.1 Ceph common issues

Many of these problem cases are hard to summarize down to a short phrase that adequately
describes the problem. Each problem will start with a bulleted list of symptoms. Keep in mind
that all symptoms may not apply, depending on the configuration of Rook. If the majority of the
symptoms are seen, then there is a fair chance that you are experiencing that problem.

16.1.1 Troubleshooting techniques

There are two main categories of information you will need to investigate issues in the cluster:

1. Kubernetes status and logs.

2. Ceph cluster status.

16.1.1.1 Running Ceph tools

After you verify the basic health of the running pods, next you will want to run Ceph tools for
status of the storage components. There are two ways to run the Ceph tools, either in the Rook
toolbox or inside other Rook pods that are already running.

124 Ceph common issues SES 7.1

Logs on a specific node to nd why a PVC is failing to mount: Rook agent errors around
the attach and detach:

kubectl@adm > kubectl logs -n rook-ceph rook-ceph-agent-pod

See the Section 12.1.3, “Collecting logs” for a script that will help you gather the logs.

Other artifacts:

The monitors that are expected to be in quorum:

kubectl@adm > kubectl -n <cluster-namespace> get configmap rook-ceph-mon-
endpoints -o yaml | grep data

16.1.1.1.1 Using tools in the Rook toolbox

The rook-ceph-tools pod provides a simple environment to run Ceph tools. Once the pod is
up and running, connect to the pod to execute Ceph commands to evaluate that current state
of the cluster.

kubectl@adm > kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-
ceph-tools" -o jsonpath='{.items[0].metadata.name}') bash

16.1.1.1.2 Ceph commands

Here are some common commands to troubleshoot a Ceph cluster:

ceph status

ceph osd status

ceph osd df

ceph osd utilization

ceph osd pool stats

ceph osd tree

ceph pg stat

125 Troubleshooting techniques SES 7.1

The rst two status commands provide the overall cluster health. The normal state for cluster
operations is HEALTH_OK , but will still function when the state is in a HEALTH_WARN state. If you
are in a WARN state, then the cluster is in a condition that it may enter the HEALTH_ERROR state
at which point all disk I/O operations are halted. If a HEALTH_WARN state is observed, then one
should take action to prevent the cluster from halting when it enters the HEALTH_ERROR state.

16.1.2 Cluster failing to service requests

16.1.2.1 Identifying symptoms

Execution of the Ceph command hangs.

PersistentVolumes are not being created.

Large amount of slow requests are blocking.

Large amount of stuck requests are blocking.

One or more MONs are restarting periodically.

16.1.2.2 Investigating the current state of Ceph

Create a rook-ceph-tools pod to investigate the current state of Ceph. The following is an
example of the output. In this case, the ceph status command would just hang and the process
would need to be killed.

kubectl@adm > kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get pod -l "app=rook-
ceph-tools" -o jsonpath='{.items[0].metadata.name}') bash
cephuser@adm > ceph status
^CCluster connection interrupted or timed out

Another indication is when one or more of the MON pods restart frequently. Note the “mon107”
that has only been up for 16 minutes in the following output.

kubectl@adm > kubectl -n rook-ceph get all -o wide --show-all
 NAME READY STATUS RESTARTS AGE IP
 NODE
 po/rook-ceph-mgr0-2487684371-gzlbq 1/1 Running 0 17h
 192.168.224.46 k8-host-0402
 po/rook-ceph-mon107-p74rj 1/1 Running 0 16m
 192.168.224.28 k8-host-0402

126 Cluster failing to service requests SES 7.1

 rook-ceph-mon1-56fgm 1/1 Running 0 2d
 192.168.91.135 k8-host-0404
 rook-ceph-mon2-rlxcd 1/1 Running 0 2d
 192.168.123.33 k8-host-0403
 rook-ceph-osd-bg2vj 1/1 Running 0 2d
 192.168.91.177 k8-host-0404
 rook-ceph-osd-mwxdm 1/1 Running 0 2d
 192.168.123.31 k8-host-0403

16.1.2.3 Identifying the solution

What is happening here is that the MON pods are restarting and one or more of the Ceph daemons
are not getting configured with the proper cluster information. This is commonly the result of
not specifying a value for dataDirHostPath in your Cluster CRD.

The dataDirHostPath setting specifies a path on the local host for the Ceph daemons to store
configuration and data. Setting this to a path like /var/lib/rook , reapplying your cluster CRD
and restarting all the Ceph daemons (MON, MGR, OSD, RGW) should solve this problem. After
the Object Gateway daemons have been restarted, it is advisable to restart the rook-tools pod.

16.1.3 Monitors are the only PODs running

16.1.3.1 Identifying symptoms

Rook operator is running.

Either a single mon starts or the MONs skip letters, specifically named a , d , and f .

No MGR, OSD, or other daemons are created.

16.1.3.2 Investigating MON health

When the operator is starting a cluster, the operator will start one MON at a time and check that
they are healthy before continuing to bring up all three MONs. If the rst MON is not detected
healthy, the operator will continue to check until it is healthy. If the rst MON fails to start, a
second and then a third MON may attempt to start. However, they will never form a quorum,
and orchestration will be blocked from proceeding.

127 Monitors are the only PODs running SES 7.1

The likely causes for the MON health not being detected:

The operator pod does not have network connectivity to the MON pod.

The MON pod is failing to start.

One or more MON pods are in running state, but are not able to form a quorum.

16.1.3.2.1 Failing to connect to the MON

Firstly, look at the logs of the operator to confirm if it is able to connect to the MONs.

kubectl@adm > kubectl -n rook-ceph logs -l app=rook-ceph-operator

Likely you will see an error similar to the following that the operator is timing out when con-
necting to the MON. The last command is ceph mon_status , followed by a timeout message
ve minutes later.

 2018-01-21 21:47:32.375833 I | exec: Running command: ceph mon_status --cluster=rook
 --conf=/var/lib/rook/rook-ceph/rook.config --keyring=/var/lib/rook/rook-ceph/
client.admin.keyring --format json --out-file /tmp/442263890
 2018-01-21 21:52:35.370533 I | exec: 2018-01-21 21:52:35.071462 7f96a3b82700 0
 monclient(hunting): authenticate timed out after 300
 2018-01-21 21:52:35.071462 7f96a3b82700 0 monclient(hunting): authenticate timed out
 after 300
 2018-01-21 21:52:35.071524 7f96a3b82700 0 librados: client.admin authentication error
 (110) Connection timed out
 2018-01-21 21:52:35.071524 7f96a3b82700 0 librados: client.admin authentication error
 (110) Connection timed out
 [errno 110] error connecting to the cluster

The error would appear to be an authentication error, but it is misleading. The real issue is a
timeout.

16.1.3.2.2 Identifying the solution

If you see the timeout in the operator log, verify if the MON pod is running (see the next section).
If the MON pod is running, check the network connectivity between the operator pod and the
MON pod. A common issue is that the CNI is not configured correctly.

16.1.3.2.3 Failing MON pod

We need to verify if the MON pod started successfully.

128 Monitors are the only PODs running SES 7.1

kubectl@adm > kubectl -n rook-ceph get pod -l app=rook-ceph-mon
NAME READY STATUS RESTARTS AGE
rook-ceph-mon-a-69fb9c78cd-58szd 1/1 CrashLoopBackOff 2 47s

If the MON pod is failing as in this example, you will need to look at the mon pod status
or logs to determine the cause. If the pod is in a crash loop backoff state, you should see the
reason by describing the pod.

The pod shows a termination status that the keyring does not match the existing keyring.

kubectl@adm > kubectl -n rook-ceph describe pod -l mon=rook-ceph-mon0
[...]
Last State: Terminated
Reason: Error
Message: The keyring does not match the existing keyring in /var/lib/rook/rook-ceph-
mon0/data/keyring.
You may need to delete the contents of dataDirHostPath on the host from a previous
 deployment.
[...]

See the solution in the next section regarding cleaning up the dataDirHostPath on the nodes.

If you see the three mons running with the names a , d , and f , they likely did not form quorum
even though they are running.

NAME READY STATUS RESTARTS AGE
rook-ceph-mon-a-7d9fd97d9b-cdq7g 1/1 Running 0 10m
rook-ceph-mon-d-77df8454bd-r5jwr 1/1 Running 0 9m2s
rook-ceph-mon-f-58b4f8d9c7-89lgs 1/1 Running 0 7m38s

16.1.3.2.4 Identifying the solution

This is a common problem reinitializing the Rook cluster when the local directory used for
persistence has not been purged. This directory is the dataDirHostPath setting in the cluster
CRD, and is typically set to /var/lib/rook . To x the issue, you will need to delete all com-
ponents of Rook and then delete the contents of /var/lib/rook (or the directory specified by
dataDirHostPath) on each of the hosts in the cluster. Then, when the cluster CRD is applied
to start a new cluster, the rook-operator should start all the pods as expected.

Important
Deleting the dataDirHostPath folder is destructive to the storage. Only delete the folder
if you are trying to permanently purge the Rook cluster.

129 Monitors are the only PODs running SES 7.1

16.1.4 PVCs stay in pending state

16.1.4.1 Identifying symptoms

When you create a PVC based on a Rook storage class, it stays pending indefinitely.

For the Wordpress example, you might see two PVCs in the pending state.

kubectl@adm > kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mysql-pv-claim Pending rook-ceph-block 8s
wp-pv-claim Pending rook-ceph-block 16s

16.1.4.2 Investigating common causes

There are two common causes for the PVCs staying in the pending state:

1. There are no OSDs in the cluster.

2. The CSI provisioner pod is not running or is not responding to the request to provision
the storage.

16.1.4.2.1 Confirming if there are OSDs

To confirm if you have OSDs in your cluster, connect to the Rook Toolbox and run the ceph
status command. You should see that you have at least one OSD up and in . The minimum
number of OSDs required depends on the replicated.size setting in the pool created for the
storage class. In a “test” cluster, only one OSD is required (see storageclass-test.yaml). In
the production storage class example (storageclass.yaml), three OSDs would be required.

cephuser@adm > ceph status
 cluster:
 id: a0452c76-30d9-4c1a-a948-5d8405f19a7c
 health: HEALTH_OK

 services:
 mon: 3 daemons, quorum a,b,c (age 11m)
 mgr: a(active, since 10m)
 osd: 1 osds: 1 up (since 46s), 1 in (since 109m)

130 PVCs stay in pending state SES 7.1

16.1.4.2.2 Preparing OSD logs

If you do not see the expected number of OSDs, investigate why they were not created. On each
node where Rook looks for OSDs to configure, you will see an “osd prepare” pod.

kubectl@adm > kubectl -n rook-ceph get pod -l app=rook-ceph-osd-prepare
NAME ... READY STATUS RESTARTS AGE
rook-ceph-osd-prepare-minikube-9twvk 0/2 Completed 0 30m

See the section on Section 16.1.6, “OSD pods are not created on my devices” to investigate the logs.

16.1.4.2.3 Checking CSI driver

The CSI driver may not be responding to the requests. Look in the logs of the CSI provisioner
pod to see if there are any errors during the provisioning.

There are two provisioner pods:

kubectl@adm > kubectl -n rook-ceph get pod -l app=csi-rbdplugin-provisioner

Get the logs of each of the pods. One of them should be the leader and be responding to requests.

kubectl@adm > kubectl -n rook-ceph logs csi-cephfsplugin-provisioner-d77bb49c6-q9hwq csi-
provisioner

16.1.4.2.4 Restarting the operator

Lastly, if you have OSDs up and in , the next step is to confirm the operator is responding to the
requests. Look in the operator pod logs around the time when the PVC was created to confirm if
the request is being raised. If the operator does not show requests to provision the block image,
the operator may be stuck on some other operation. In this case, restart the operator pod to
get things going again.

131 PVCs stay in pending state SES 7.1

16.1.4.3 Identifying the solution

If the OSD prepare logs did not give you enough clues about why the OSDs were not being
created, review your cluster.yaml configuration. The common mistakes include:

If useAllDevices: true , Rook expects to nd local devices attached to the nodes. If no
devices are found, no OSDs will be created.

If useAllDevices: false , OSDs will only be created if deviceFilter is specified.

Only local devices attached to the nodes will be configurable by Rook. In other words, the
devices must show up under /dev .

The devices must not have any partitions or le systems on them. Rook will only
configure raw devices. Partitions are not yet supported.

16.1.5 OSD pods are failing to start

16.1.5.1 Identifying symptoms

OSD pods are failing to start.

You have started a cluster after tearing down another cluster.

16.1.5.2 Investigating configuration errors

When an OSD starts, the device or directory will be configured for consumption. If there is an
error with the configuration, the pod will crash and you will see the CrashLoopBackoff status
for the pod. Look in the OSD pod logs for an indication of the failure.

kubectl@adm > kubectl -n rook-ceph logs rook-ceph-osd-fl8fs

One common case for failure is that you have re-deployed a test cluster and some state may
remain from a previous deployment. If your cluster is larger than a few nodes, you may get
lucky enough that the monitors were able to start and form a quorum. However, now the OSDs
pods may fail to start due to the old state. Looking at the OSD pod logs, you will see an error
about the le already existing.

132 OSD pods are failing to start SES 7.1

kubectl -n rook-ceph logs rook-ceph-osd-fl8fs
[...]
2017-10-31 20:13:11.187106 I | mkfs-osd0: 2017-10-31 20:13:11.186992 7f0059d62e00 -1
 bluestore(/var/lib/rook/osd0) _read_fsid unparsable uuid
2017-10-31 20:13:11.187208 I | mkfs-osd0: 2017-10-31 20:13:11.187026 7f0059d62e00 -1
 bluestore(/var/lib/rook/osd0) _setup_block_symlink_or_file failed to create block
 symlink to /dev/disk/by-partuuid/651153ba-2dfc-4231-ba06-94759e5ba273: (17) File exists
2017-10-31 20:13:11.187233 I | mkfs-osd0: 2017-10-31 20:13:11.187038 7f0059d62e00 -1
 bluestore(/var/lib/rook/osd0) mkfs failed, (17) File exists
2017-10-31 20:13:11.187254 I | mkfs-osd0: 2017-10-31 20:13:11.187042 7f0059d62e00 -1
 OSD::mkfs: ObjectStore::mkfs failed with error (17) File exists
2017-10-31 20:13:11.187275 I | mkfs-osd0: 2017-10-31 20:13:11.187121 7f0059d62e00 -1 **
 ERROR: error creating empty object store in /var/lib/rook/osd0: (17) File exists

16.1.5.3 Solution

If the error is from the le that already exists, this is a common problem reinitializing the Rook
cluster when the local directory used for persistence has not been purged. This directory is the
dataDirHostPath setting in the cluster CRD and is typically set to /var/lib/rook . To x the
issue you will need to delete all components of Rook and then delete the contents of /var/
lib/rook (or the directory specified by dataDirHostPath) on each of the hosts in the cluster.
Then when the cluster CRD is applied to start a new cluster, the rook-operator should start all
the pods as expected.

16.1.6 OSD pods are not created on my devices

16.1.6.1 Identifying symptoms

No OSD pods are started in the cluster.

Devices are not configured with OSDs even though specified in the cluster CRD.

One OSD pod is started on each node instead of multiple pods for each device.

133 OSD pods are not created on my devices SES 7.1

16.1.6.2 Investigating

First, ensure that you have specified the devices correctly in the CRD. The cluster CRD has
several ways to specify the devices that are to be consumed by the Rook storage:

useAllDevices: true : Rook will consume all devices it determines to be available.

deviceFilter : Consume all devices that match this regular expression.

devices : Explicit list of device names on each node to consume.

Second, if Rook determines that a device is not available (has existing partitions or a formatted
le system), Rook will skip consuming the devices. If Rook is not starting OSDs on the devices
you expect, Rook may have skipped it for this reason. To see if a device was skipped, view the
OSD preparation log on the node where the device was skipped. Note that it is completely normal
and expected for OSD prepare pod to be in the completed state. After the job is complete, Rook
leaves the pod around in case the logs need to be investigated.

Get the prepare pods in the cluster:

kubectl@adm > kubectl -n rook-ceph get pod -l app=rook-ceph-osd-prepare
NAME READY STATUS RESTARTS AGE
rook-ceph-osd-prepare-node1-fvmrp 0/1 Completed 0 18m
rook-ceph-osd-prepare-node2-w9xv9 0/1 Completed 0 22m
rook-ceph-osd-prepare-node3-7rgnv 0/1 Completed 0 22m

View the logs for the node of interest in the "provision" container:

kubectl@adm > kubectl -n rook-ceph logs rook-ceph-osd-prepare-node1-fvmrp provision

Here are some key lines to look for in the log. A device will be skipped if Rook sees it has
partitions or a le system:

2019-05-30 19:02:57.353171 W | cephosd: skipping device sda that is in use
2019-05-30 19:02:57.452168 W | skipping device "sdb5": ["Used by ceph-disk"]

Other messages about a disk being unusable by Ceph include:

Insufficient space (<5GB) on vgs
Insufficient space (<5GB)
LVM detected
Has BlueStore device label
locked
read-only

A device is going to be configured:

2019-05-30 19:02:57.535598 I | cephosd: device sdc to be configured by ceph-volume

134 OSD pods are not created on my devices SES 7.1

For each device configured, you will see a report in the log:

2019-05-30 19:02:59.844642 I | Type Path
 LV Size % of device
2019-05-30 19:02:59.844651 I
2019-05-30 19:02:59.844677 I | [data] /dev/sdc
 7.00 GB 100%

16.1.6.3 Solution

Either update the CR with the correct settings, or clean the partitions or le system from your
devices.

After the settings are updated or the devices are cleaned, trigger the operator to analyze the
devices again by restarting the operator. Each time the operator starts, it will ensure all the
desired devices are configured. The operator does automatically deploy OSDs in most scenarios,
but an operator restart will cover any scenarios that the operator does not detect automatically.

Restart the operator to ensure devices are configured. A new pod will automatically be started
when the current operator pod is deleted.

kubectl@adm > kubectl -n rook-ceph delete pod -l app=rook-ceph-operator

16.1.7 Rook agent modprobe exec format error

16.1.7.1 Identifying symptoms

PersistentVolumes from Ceph fail or timeout to mount.

Rook Agent logs contain modinfo: ERROR: could not get modinfo from 'rbd': Exec
format error lines.

16.1.7.2 Solution

If it is feasible to upgrade your kernel, you should upgrade to 4.x, even better is 4.7 or above,
due to a feature for CephFS added to the kernel.

135 Rook agent modprobe exec format error SES 7.1

If you are unable to upgrade the kernel, you need to go to each host that will consume storage
and run:

modprobe rbd

This command inserts the rbd module into the kernel.

To persist this x, you need to add the rbd kernel module to either /etc/modprobe.d/ or /
etc/modules-load.d/ . For both paths create a le called rbd.conf with the following con-
tent:

rbd

Now when a host is restarted, the module should be loaded automatically.

16.1.8 Using multiple shared file systems (CephFS) is attempted on
a kernel version older than 4.7

16.1.8.1 Identifying symptoms

More than one shared le system (CephFS) has been created in the cluster.

A pod attempts to mount any other shared le system besides the rst one that was created.

The pod incorrectly gets the rst le system mounted instead of the intended le system.

16.1.8.2 Solution

The only solution to this problem is to upgrade your kernel to 4.7 or higher. This is due to a
mount ag added in kernel version 4.7, which allows choosing the le system by name.

16.1.9 Activating log to file for a particular Ceph daemon

They are cases where looking at Kubernetes logs is not enough for various reasons, but just to
name a few:

Not everyone is familiar for Kubernetes logging and expects to nd logs in traditional
directories.

Logs get eaten (buer limit from the log engine) and thus not requestable from Kubernetes.

136

Using multiple shared file systems (CephFS) is attempted on a kernel version older than

4.7 SES 7.1

So for each daemon, dataDirHostPath is used to store logs, if logging is activated. Rook will
bind-mount dataDirHostPath for every pod. As of Ceph Nautilus 14.2.1, it is possible to enable
logging for a particular daemon on the y. Let us say you want to enable logging for mon.a ,
but only for this daemon. Using the toolbox or from inside the operator run:

cephuser@adm > ceph config daemon mon.a log_to_file true

This will activate logging on the le system, you will be able to nd logs in dataDirHost-
Path/$NAMESPACE/log , so typically this would mean /var/lib/rook/rook-ceph/log . You
do not need to restart the pod, the effect will be immediate.

To disable the logging on le, simply set log_to_file to false .

For Ceph Luminous and Mimic releases, mon_cluster_log_file and cluster_log_file can
be set to /var/log/ceph/XXXX in the config override ConfigMap to enable logging.

16.1.10 A worker node using RBD devices hangs up

16.1.10.1 Identifying symptoms

There is no progress on I/O from/to one of RBD devices (/dev/rbd* or /dev/nbd*).

After that, the whole worker node hangs up.

16.1.10.2 Investigating

This happens when the following conditions are satisfied.

The problematic RBD device and the corresponding OSDs are co-located.

There is an XFS le system on top of this device.

In addition, when this problem happens, you can see the following messages in dmesg .

dmesg
...
[51717.039319] INFO: task kworker/2:1:5938 blocked for more than 120 seconds.
[51717.039361] Not tainted 4.15.0-72-generic #81-Ubuntu
[51717.039388] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
...

137 A worker node using RBD devices hangs up SES 7.1

This is the so-called hung_task problem and means that there is a deadlock in the kernel.

16.1.10.3 Solution

You can bypass this problem by using ext4 or any other le systems rather than XFS. The le
system type can be specified with csi.storage.k8s.io/fstype in StorageClass resource.

16.1.11 Too few PGs per OSD warning is shown

16.1.11.1 Identifying symptoms

ceph status shows “too few PGs per OSD” warning as follows.

cephuser@adm > ceph status
cluster:
id: fd06d7c3-5c5c-45ca-bdea-1cf26b783065
health: HEALTH_WARN
too few PGs per OSD (16 < min 30)

16.1.11.2 Solution

See Book “Troubleshooting Guide”, Chapter 5 “Troubleshooting placement groups (PGs)” for more in-
formation.

16.1.12 LVM metadata can be corrupted with OSD on LV-backed
PVC

16.1.12.1 Identifying symptoms

There is a critical aw in OSD on LV-backed PVC. LVM metadata can be corrupted if both the
host and OSD container modify it simultaneously. For example, the administrator might modify
it on the host, while the OSD initialization process in a container could modify it too. In addition,
if lvmetad is running, the possibility of occurrence gets higher. In this case, the change of LVM
metadata in OSD container is not reflected to LVM metadata cache in host for a while.

138 Too few PGs per OSD warning is shown SES 7.1

If you still decide to configure an OSD on LVM, keep the following in mind to reduce the prob-
ability of this issue.

16.1.12.2 Solution

Disable lvmetad .

Avoid configuration of LVs from the host. In addition, do not touch the VGs and physical
volumes that back these LVs.

Avoid incrementing the count eld of storageClassDeviceSets and create a new LV
that backs a OSD simultaneously.

You can know whether the above-mentioned tag exists tag by running

lvs -o lv_name,lv_tags

If the lv_tag eld is empty in an LV corresponding to the OSD lv_tags, this OSD encountered
the problem. In this case, retire this OSD or replace with other new OSD before restarting.

139 LVM metadata can be corrupted with OSD on LV-backed PVC SES 7.1

A Ceph maintenance updates based on upstream
'Pacific' point releases

Several key packages in SUSE Enterprise Storage 7.1 are based on the Pacific release series of
Ceph. When the Ceph project (https://github.com/ceph/ceph) publishes new point releases in
the Pacific series, SUSE Enterprise Storage 7.1 is updated to ensure that the product benefits
from the latest upstream bug fixes and feature backports.

This chapter contains summaries of notable changes contained in each upstream point release
that has been—or is planned to be—included in the product.

140 SES 7.1

https://github.com/ceph/ceph

Glossary

General

Admin node
The host from which you run the Ceph-related commands to administer cluster hosts.

Alertmanager
A single binary which handles alerts sent by the Prometheus server and notifies the end user.

archive sync module
Module that enables creating an Object Gateway zone for keeping the history of S3 object
versions.

Bucket
A point that aggregates other nodes into a hierarchy of physical locations.

Ceph Client
The collection of Ceph components which can access a Ceph Storage Cluster. These include
the Object Gateway, the Ceph Block Device, the CephFS, and their corresponding libraries,
kernel modules, and FUSE clients.

Ceph Dashboard
A built-in Web-based Ceph management and monitoring application to administer various
aspects and objects of the cluster. The dashboard is implemented as a Ceph Manager module.

Ceph Manager
Ceph Manager or MGR is the Ceph manager software, which collects all the state from the
whole cluster in one place.

Ceph Monitor
Ceph Monitor or MON is the Ceph monitor software.

Ceph Object Storage
The object storage "product", service or capabilities, which consists of a Ceph Storage Cluster
and a Ceph Object Gateway.

141 SES 7.1

Ceph OSD Daemon
The ceph-osd daemon is the component of Ceph that is responsible for storing objects on
a local le system and providing access to them over the network.

Ceph Storage Cluster
The core set of storage software which stores the user's data. Such a set consists of Ceph
monitors and OSDs.

ceph-salt

Provides tooling for deploying Ceph clusters managed by cephadm using Salt.

cephadm
cephadm deploys and manages a Ceph cluster by connecting to hosts from the manager
daemon via SSH to add, remove, or update Ceph daemon containers.

CephFS
The Ceph le system.

CephX
The Ceph authentication protocol. Cephx operates like Kerberos, but it has no single point
of failure.

CRUSH rule
The CRUSH data placement rule that applies to a particular pool or pools.

CRUSH, CRUSH Map
Controlled Replication Under Scalable Hashing: An algorithm that determines how to store and
retrieve data by computing data storage locations. CRUSH requires a map of the cluster to
pseudo-randomly store and retrieve data in OSDs with a uniform distribution of data across
the cluster.

DriveGroups
DriveGroups are a declaration of one or more OSD layouts that can be mapped to physical
drives. An OSD layout defines how Ceph physically allocates OSD storage on the media
matching the specified criteria.

Grafana
Database analytics and monitoring solution.

Metadata Server
Metadata Server or MDS is the Ceph metadata software.

142 SES 7.1

Multi-zone

Node
Any single machine or server in a Ceph cluster.

Object Gateway
The S3/Swift gateway component for Ceph Object Store. Also known as the RADOS Gateway
(RGW).

OSD
Object Storage Device: A physical or logical storage unit.

OSD node
A cluster node that stores data, handles data replication, recovery, backfilling, rebalancing,
and provides some monitoring information to Ceph monitors by checking other Ceph OSD
daemons.

PG
Placement Group: a sub-division of a pool, used for performance tuning.

Point Release
Any ad-hoc release that includes only bug or security fixes.

Pool
Logical partitions for storing objects such as disk images.

Prometheus
Systems monitoring and alerting toolkit.

RADOS Block Device (RBD)
The block storage component of Ceph. Also known as the Ceph block device.

Reliable Autonomic Distributed Object Store (RADOS)
The core set of storage software which stores the user's data (MON+OSD).

Routing tree
A term given to any diagram that shows the various routes a receiver can run.

Rule Set
Rules to determine data placement for a pool.

143 SES 7.1

Samba
Windows integration software.

Samba Gateway
The Samba Gateway joins the Active Directory in the Windows domain to authenticate and
authorize users.

zonegroup

144 SES 7.1

	Deploying and Administering SUSE Enterprise Storage with Rook
	About this guide
	1. Available documentation
	2. Improving the documentation
	3. Documentation conventions
	4. Support
	4.1. Support statement for SUSE Enterprise Storage
	4.2. Technology previews

	5. Ceph contributors
	6. Commands and command prompts used in this guide
	6.1. Salt-related commands
	6.2. Ceph related commands
	6.2.1. Running ceph-volume

	6.3. General Linux commands
	6.4. Additional information

	Part I. Quick Start: Deploying and Upgrading Ceph on SUSE CaaS Platform
	Chapter 1. Quick start
	1.1. Recommended hardware specifications
	1.2. Prerequisites
	1.3. Getting started with Rook
	1.4. Deploying Ceph with Rook
	1.5. Configuring the Ceph cluster
	1.5.1. Configure CephFS
	1.5.2. Configure RADOS block device

	1.6. Updating local images
	1.7. Uninstalling

	Chapter 2. Updating Rook
	2.1. Recommended hardware specifications
	2.2. Patch release upgrades
	2.3. Rook-Ceph Updates

	Part II. Administrating Ceph on SUSE CaaS Platform
	Chapter 3. Rook-Ceph administration
	Chapter 4. Ceph cluster administration
	4.1. Shutting down and restarting the cluster

	Chapter 5. Block Storage
	5.1. Provisioning Block Storage
	5.2. Consuming storage: WordPress sample
	5.3. Consuming the storage: Toolbox
	5.4. Teardown
	5.5. Advanced Example: Erasure-Coded Block Storage
	5.5.1. Erasure coded CSI driver

	Chapter 6. CephFS
	6.1. Shared File System
	6.1.1. Prerequisites
	6.1.2. Creating the File System
	6.1.3. Provisioning Storage
	6.1.4. Consuming the Shared File System: K8s Registry Sample
	6.1.5. Consuming the Shared File System: Toolbox
	6.1.5.1. Teardown

	Chapter 7. Ceph cluster custom resource definitions
	7.1. Ceph cluster CRD
	7.1.1. Host-based cluster
	7.1.2. PVC-based cluster
	7.1.3. Settings
	7.1.3.1. Cluster metadata
	7.1.3.2. Cluster settings
	7.1.3.3. MON settings
	7.1.3.4. Ceph Manager settings
	7.1.3.5. Network configuration settings
	7.1.3.6. Node settings
	7.1.3.6.1. Node updates

	7.1.3.7. Storage selection settings
	7.1.3.8. Storage class device sets
	7.1.3.9. Storage selection via Ceph DriveGroups
	7.1.3.10. Annotations and labels
	7.1.3.11. Placement configuration settings
	7.1.3.12. Cluster-wide resources configuration settings
	7.1.3.13. Resource requirements and limits
	7.1.3.14. Priority class names configuration settings
	7.1.3.15. Health settings

	7.1.4. Samples
	7.1.4.1. Storage configuration: All devices
	7.1.4.2. Storage configuration: Specific devices
	7.1.4.3. Node affinity
	7.1.4.4. Resource requests and limits
	7.1.4.5. OSD topology
	7.1.4.6. Using PVC storage for monitors
	7.1.4.7. Using StorageClassDeviceSets
	7.1.4.8. Dedicated metadata and WAL device for OSD on PVC
	7.1.4.9. External cluster
	7.1.4.9.1. Prerequisites
	7.1.4.9.2. CephCluster example (consumer)
	7.1.4.9.3. Example StorageClass based on external Ceph pool
	7.1.4.9.4. CephCluster example (management)

	7.1.4.10. Cleanup policy

	7.2. Ceph block pool CRD
	7.2.1. Samples
	7.2.1.1. Replicated
	7.2.1.2. Erasure coded

	7.2.2. Pool settings
	7.2.2.1. Metadata
	7.2.2.2. Specification
	7.2.2.3. Add specific pool properties
	7.2.2.4. Erasure coding

	7.3. Ceph shared file system CRD
	7.3.1. Samples
	7.3.1.1. Replicated
	7.3.1.2. Erasure coded

	7.3.2. File system settings
	7.3.2.1. Metadata
	7.3.2.2. Pools

	7.3.3. Metadata server settings

	Chapter 8. Configuration
	8.1. Ceph configuration
	8.1.1. Required configurations
	8.1.1.1. Default PG and PGP counts

	8.1.2. Specifying configuration options
	8.1.2.1. Toolbox and the Ceph CLI
	8.1.2.2. Ceph Dashboard
	8.1.2.3. Advanced configuration via ceph.conf overrides ConfigMap

	Chapter 9. Toolboxes
	9.1. Rook toolbox
	9.1.1. Interactive toolbox
	9.1.2. Running the toolbox job

	Chapter 10. Ceph OSD management
	10.1. Ceph OSD management
	10.1.1. Analyzing OSD health
	10.1.2. Adding an OSD
	10.1.3. Adding an OSD on a PVC
	10.1.4. Removing an OSD
	10.1.4.1. From the toolbox
	10.1.4.2. Removing the OSD deployment

	10.1.5. Replacing an OSD
	10.1.6. Removing an OSD from a PVC

	Chapter 11. Ceph examples
	11.1. Ceph examples
	11.1.1. Creating common resources
	11.1.2. Creating the operator
	11.1.3. Creating the cluster CRD
	11.1.4. Setting up consumable storage
	11.1.4.1. Provisioning block devices
	11.1.4.2. Shared file system
	11.1.4.3. Object Storage
	11.1.4.4. Object Storage user
	11.1.4.5. Object Storage buckets

	Chapter 12. Advanced configuration
	12.1. Performing advanced configuration tasks
	12.1.1. Prerequisites
	12.1.2. Using custom Ceph user and secret for mounting
	12.1.2.1. Creating the ClusterRole
	12.1.2.2. Creating the RoleBinding
	12.1.2.3. Creating the ClusterRoleBinding

	12.1.3. Collecting logs
	12.1.4. OSD information
	12.1.4.1. Kubernetes

	12.1.5. Separate storage groups
	12.1.6. Configure pools
	12.1.6.1. Sizing placement groups
	12.1.6.2. Setting PG count

	12.1.7. Creating custom ceph.conf settings
	12.1.7.1. Custom ceph.conf example

	12.1.8. OSD CRUSH settings
	12.1.8.1. OSD weight
	12.1.8.2. OSD primary affinity

	12.1.9. Removing phantom OSD
	12.1.10. Changing the failure domain

	Chapter 13. Object Storage
	13.1. Object Storage
	13.1.1. Configuring the Object Storage
	13.1.1.1. Creating a local Object Storage
	13.1.1.2. Connecting to an external Object Storage

	13.1.2. Creating a bucket
	13.1.2.1. Client connections

	13.1.3. Consuming the Object Storage
	13.1.3.1. Setting environment variables
	13.1.3.2. Installing the s3cmd package
	13.1.3.3. PUT or GET an object

	13.1.4. Setting up external access to the cluster
	13.1.5. Creating a user

	13.2. Ceph Object Storage CRD
	13.2.1. Sample
	13.2.1.1. Erasure code

	13.2.2. Object store settings
	13.2.2.1. Metadata
	13.2.2.2. Pools

	13.2.3. Creating gateway settings
	13.2.4. Zone settings
	13.2.5. Runtime settings
	13.2.5.1. MIME types

	13.2.6. Health settings

	13.3. Ceph object bucket claim
	13.3.1. Sample
	13.3.1.1. OBC custom resource
	13.3.1.2. OBC custom resource after bucket provisioning
	13.3.1.3. App pod
	13.3.1.4. StorageClass

	13.4. Ceph Object Storage user custom resource definitions (CRD)
	13.4.1. Sample
	13.4.2. Object Storage user settings
	13.4.2.1. Metadata
	13.4.2.2. Specification

	Chapter 14. Ceph Dashboard
	14.1. Ceph Dashboard
	14.1.1. Enabling the Ceph Dashboard
	14.1.1.1. Creating login credentials

	14.1.2. Configuring the Ceph Dashboard
	14.1.3. Viewing the Ceph Dashboard external to the cluster
	14.1.3.1. Node port
	14.1.3.2. Creating the load balancer service
	14.1.3.3. Ingress controller

	Part III. Troubleshooting Ceph on SUSE CaaS Platform
	Chapter 15. Troubleshooting
	15.1. Debugging Rook
	15.1.1. Setting the operator log level to debug
	15.1.2. Using the toolbox pod
	15.1.3. Using the SES supportutils plugin

	Chapter 16. Common issues
	16.1. Ceph common issues
	16.1.1. Troubleshooting techniques
	16.1.1.1. Running Ceph tools
	16.1.1.1.1. Using tools in the Rook toolbox
	16.1.1.1.2. Ceph commands

	16.1.2. Cluster failing to service requests
	16.1.2.1. Identifying symptoms
	16.1.2.2. Investigating the current state of Ceph
	16.1.2.3. Identifying the solution

	16.1.3. Monitors are the only PODs running
	16.1.3.1. Identifying symptoms
	16.1.3.2. Investigating MON health
	16.1.3.2.1. Failing to connect to the MON
	16.1.3.2.2. Identifying the solution
	16.1.3.2.3. Failing MON pod
	16.1.3.2.4. Identifying the solution

	16.1.4. PVCs stay in pending state
	16.1.4.1. Identifying symptoms
	16.1.4.2. Investigating common causes
	16.1.4.2.1. Confirming if there are OSDs
	16.1.4.2.2. Preparing OSD logs
	16.1.4.2.3. Checking CSI driver
	16.1.4.2.4. Restarting the operator

	16.1.4.3. Identifying the solution

	16.1.5. OSD pods are failing to start
	16.1.5.1. Identifying symptoms
	16.1.5.2. Investigating configuration errors
	16.1.5.3. Solution

	16.1.6. OSD pods are not created on my devices
	16.1.6.1. Identifying symptoms
	16.1.6.2. Investigating
	16.1.6.3. Solution

	16.1.7. Rook agent modprobe exec format error
	16.1.7.1. Identifying symptoms
	16.1.7.2. Solution

	16.1.8. Using multiple shared file systems (CephFS) is attempted on a kernel version older than 4.7
	16.1.8.1. Identifying symptoms
	16.1.8.2. Solution

	16.1.9. Activating log to file for a particular Ceph daemon
	16.1.10. A worker node using RBD devices hangs up
	16.1.10.1. Identifying symptoms
	16.1.10.2. Investigating
	16.1.10.3. Solution

	16.1.11. Too few PGs per OSD warning is shown
	16.1.11.1. Identifying symptoms
	16.1.11.2. Solution

	16.1.12. LVM metadata can be corrupted with OSD on LV-backed PVC
	16.1.12.1. Identifying symptoms
	16.1.12.2. Solution

	Appendix A. Ceph maintenance updates based on upstream 'Pacific' point releases
	Glossary

