
SUSE Linux Enterprise Real Time 15 SP6

Shielding Linux Resources

Shielding Linux Resources
SUSE Linux Enterprise Real Time 15 SP6
by Alex Tsariounov

Publication Date: December 12, 2024

https://documentation.suse.com

Copyright © 2006–2024 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-

mentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright

notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation

License”.

https://documentation.suse.com

For SUSE trademarks, see https://www.suse.com/company/legal/ . All other third-party trademarks are the prop-

erty of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates.

Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

https://www.suse.com/company/legal/

Contents

1 Introduction 1

2 The basic shielding model 3

2.1 A simple shielding example 3

2.2 Setup and teardown of the shield 4

2.3 Moving interesting tasks into and out of the shield 6

Executing a process into the shield 6 • Moving a running task into and out

of the shield 8

3 Shielding with systemd 11

3.1 Setup of the shield 11

3.2 Running jobs in the shield 12

4 Full-featured cpuset manipulation commands 13

4.1 The set subcommand 13

Creating and destroying cpusets with set 13 • Listing cpusets with set 15

4.2 The proc subcommand 16

Listing tasks with proc 16 • Execing tasks with proc 18 • Moving tasks

with proc 20 • Destroying tasks 23

4.3 Implementing shielding with set and proc 23

4.4 Implementing hierarchy with set and proc 25

5 Using shortcuts 29

5.1 shield subcommand shortcuts 29

5.2 set subcommand shortcuts 30

5.3 proc subcommand shortcuts 31

iv Shielding Linux Resources

6 What to do if there are problems 33

A GNU Licenses 34

v Shielding Linux Resources

1 Introduction

Note: cset and cgroup version
The cset utility supports cpuset controller only on v1 hierarchy (legacy or hybrid in
systemd lingo). On a system with the unified (v2) hierarchy, cset is not supported and
cpuset controller can be used via systemd.

In the Linux kernel, the cpuset facility provides a mechanism for creating logical entities called
“cpusets” that encompass definitions of CPUs and NUMA Memory Nodes (if NUMA is available).
Cpusets constrain the CPU and Memory placement of a task to only the resources defined within
that cpuset. These cpusets can then be arranged into a nested hierarchy visible in the “cpuset”
virtual le system. Sets of tasks can be assigned to these cpusets to constrain the resources that
they use. The tasks can be moved from one cpuset to another to use other resources defined
in those other cpusets.

The cset command is a Python application that provides a command line front-end for the
Linux cpusets functionality. Working with cpusets directly can be confusing and slightly com-
plex. The cset tool hides that complexity behind an easy-to-use command line interface.

There are two distinct use cases for cset: the basic shielding use case and the “advanced” case
of using raw set and proc subcommands. The basic shielding function is accessed with the
shield subcommand and described in the next section. Using the raw set and proc subcom-
mands allows one to set up arbitrarily complex cpusets and is described in Chapter 4, Full-featured

cpuset manipulation commands.

Note that in general, one either uses the shield subcommand or a combination of the set and
proc subcommands. One rarely, if ever, uses all of these subcommands together. Doing so will
likely become too confusing. Additionally, the shield subcommand sets up its required cpusets
with exclusively marked CPUs. This can interfere with your cpuset strategy. If you nd that you
need more functionality for your strategy than shield provides, go ahead and transition to
using set and proc exclusively. It is straightforward to implement what shield does with a
few extra set and proc subcommands.

OBTAINING ONLINE HELP

For a full list of cset subcommands

tux > cset help

1 SLE RT 15 SP6

For in-depth help on individual subcommands

tux > cset help <subcommand>

For options on individual subcommands

tux > cset <subcommand> (-h | --help)

2 SLE RT 15 SP6

2 The basic shielding model

Although any setup of cpuset s can really be described as shielding, there is one prevalent shield-
ing model in use that is so common that cset has a subcommand that is dedicated to its use.
This subcommand is called shield .

The concept behind this model is the use of three cpuset s:

Root cpuset . is always present in all configurations and contains all CPUs.

System cpuset . contains CPUs which are used for system tasks. These are the normal tasks
that are not important, but which need to run on the system.

User cpuset . “the shield”, contains CPUs which are used for important tasks. Only those
tasks that are somehow important, usually tasks whose performance determines the overall
rating for the machine, are run in the user cpuset .

The shield subcommand manages all of these cpuset s and lets you define the CPUs and
memory nodes that are in the shielded and unshielded sets. The subcommand automatically
moves all movable tasks on the system into the unshielded cpuset on shield activation, and
back into the root cpuset on shield tear down. The subcommand lets you move tasks into
and out of the shield. Kernel threads are excluded from these migrations.

The shield subcommand abstracts the management of these cpuset s away from you. It pro-
vides options that drive how the shield is set up, which tasks are to be shielded or not, and the
status of the shield. In fact, you need not be bothered with the naming of the required cpuset s
or even where the cpuset le system is mounted. cset and the shield subcommand takes
care of all that.

If you need to define more cpuset s for your application, it is likely that this simple shielding
is not rich enough for you. In this case, you should transition to using the set and proc
subcommands described in Chapter 4, Full-featured cpuset manipulation commands.

2.1 A simple shielding example
Assume a four-core machine that has uniform memory access. This means there are four CPUs
at your disposal and there is only one memory node available. On such machines, there is no
need to specify any memory node parameters to cset, it sets up the only available memory node
by default.

3 A simple shielding example SLE RT 15 SP6

Usually, one wants to dedicate as many CPUs to the shield as possible and leave a minimal set of
CPUs for normal system processing. The reasoning for this is, the performance of the important
tasks will rule the performance of the installation as a whole. These important tasks need as
many resources available to them as possible, exclusive of other, unimportant tasks that are
running on the system.

Note: Definition of task
In this document task is used to represent either a process or a thread that is running
on the system.

2.2 Setup and teardown of the shield
To set up a shield of three CPUs with one CPU left for low priority system processing, issue the
following command.

tux > cset shield -c 1-3
cset: --> activating shielding:
cset: moving 176 tasks from root into system cpuset...
[==]%
cset: "system" cpuset of CPUSPEC(0) with 176 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running

This command does several things. First, it creates a user cpuset with what is called a
CPUSPEC (CPU specification) from the -c/--cpu option. This CPUSPEC specifies to use CPUs
1 through 3 inclusively. Next, the command creates a system cpuset with a CPUSPEC that is
the inverse of the -c option for the current machine. On this machine that cpuset will only
contain the rst CPU, CPU0. Next, all user space processes running in the root cpuset are
transferred to the system cpuset . This makes all those processes run only on CPU0. The effect
of this is that the shield consists of CPUs 1 through 3 and they are now idling.

Note that the command did not move the kernel threads that are running in the root cpuset
to the system cpuset . This is because you may want these kernel threads to use all available
CPUs.

The shield setup command above outputs the information of which cpuset s were created and
how many tasks are running on each. To see the current status of the shield again, issue this
command:

tux > cset shield

4 Setup and teardown of the shield SLE RT 15 SP6

cset: --> shielding system active with
cset: "system" cpuset of CPUSPEC(0) with 176 tasks running
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running

Which shows us that the shield is set up and that 176 tasks are running in the system cpuset—
the unshielded cpuset .

It is important to move all possible tasks from the root cpuset to the unshielded system
cpuset because a task’s cpuset property is inherited by its children. As all running tasks
(including init) have been moved to the unshielded system cpuset , that means that any new
tasks that are spawned will also run in the unshielded system cpuset .

Note. There is a minor chance that a task forks during move and its child remains in the root
cpuset .

Kernel threads can be both unbound or bound to specific CPUs. If a kernel thread is bound to a
specific CPU, then it is generally not a good idea to move that thread to the system set because
at worst it may hang the system and at best it will slow the system down significantly. These
threads are usually the IRQ threads on a real time Linux kernel, for example, and you should
not move these kernel threads into system . If you leave them in the root cpuset , then they
will have access to all CPUs.

However, if your application demands an even “quieter” shield, you should look at isolcpus=
kernel command line argument.

You can get a detailed listing of what is running in the shield by adding either -s/--shield or
-u/--unshield to the shield subcommand and using the verbose ag. You will get output
similar to the following.

tux > cset shield --unshield -v
cset: "system" cpuset of CPUSPEC(0) with 251 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 1 0 Soth init [5]
root 2 0 Soth [kthreadd]
root 84 2 Sf50 [IRQ-9
]...
tux 31796 31789 Soth less
root 32653 25222 Roth python ./cset shield --unshield -v

The previous listing is abbreviated—there are 251 tasks running in the system set. However,
the SPPr eld may need a little explanation. SPPr stands for State, Policy and Priority .
You can see that the initial two tasks are Stopped and running in timeshare priority, marked as
oth (for other). The [IRQ-9] task is also stopped, but marked at real time FIFO policy with a

5 Setup and teardown of the shield SLE RT 15 SP6

priority of 50. The last task in the listing is the cset command itself and is marked as running.
Also note that adding a second -v/--verbose option will not restrict the output to t into an
80 character screen.

Tear down of the shield, stopping the shield in other words, is done with the -r/--reset option
to the shield subcommand. When this command is issued, both the system and user cpuset s
are deleted and any tasks that are running in both of those cpuset s are moved to the root
cpuset . Once so moved, all tasks will have access to all resources on the system. For example:

tux > cset shield --reset
cset: --> deactivating/reseting shielding
cset: moving 0 tasks from "/user" user set to root set...
cset: moving 250 tasks from "/system" system set to root set...
[==]%
cset: deleting "/user" and "/system" sets
cset: done

2.3 Moving interesting tasks into and out of the
shield
Now that a shield is running, the objective is to run processes that you have categorized as
important in that shield. These processes can be anything, but usually they are directly related
to the purpose of the machine. There are two ways to run tasks in the shield:

Execute a process into the shield

Move an already running task into the shield

2.3.1 Executing a process into the shield

Running a new process in the shield can be done with the -e / --exec option to the shield
subcommand. This is the simplest way to get a task to run in the shield. For this example, execute
a new Bash shell into the shield with the following commands.

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running
cset: done

6 Moving interesting tasks into and out of the shield SLE RT 15 SP6

tux > cset shield -e bash
cset: --> last message, executed args into cpuset "/user", new pid is: 13300

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 13300 8583 Soth bash
root 13329 13300 Roth python ./cset shield -s -v

tux > exit

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running
cset: done

The rst command above lists the status of the shield. You see that the shield is defined as CPUs
1 through 3 inclusive and currently there are no tasks running in it.

The second command executes the Bash shell into the shield with the -e option. The last mes-
sage of cset lists the PID of the new process.

Note: Separating the tool options from the cset command
cset follows the tradition of separating the tool options from the command to be exe-
cuted options with a double hyphen (--). This is not shown in this simple example, but
if the command you want to execute also takes options, separate them with the double
hyphen as follows:

tux > cset shield -e mycommand -- -v

The -v will be passed to mycommand, and not to cset.

The next command lists the status of the shield again. There are two tasks running shielded: our
new shell and the cset status command itself. Remember that the cpuset property of a task is
inherited by its children. Since running the new shell in the shield, its child, which is the status
command, also ran in the shield.

7 Executing a process into the shield SLE RT 15 SP6

Tip: Executing a shell into a shield
Executing a shell into a shield is a useful way to experiment with running tasks in the
shield since all children of the shell will also run in the shield.

The last command exits the shell. After this, shield status is requested again but again, it does
not contain any tasks.

You may have noticed in the output above that both the new shell and the status command are
running as the root user. This is because cset needs to run as root and so all it is children will
also run as root . If you need to run a process under a different user and or group, you may use
the --user and --group options for execution as follows.

tux > cset shield --user=tux --group=users -e bash
cset: --> last message, executed args into cpuset "/user", new pid is: 14212

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 14212 8583 Soth bash
tux 14241 14212 Roth python ./cset shield -s -v

2.3.2 Moving a running task into and out of the shield

While executing a process into the shield is undoubtedly useful, most of the time, you will
want to move already running tasks into and out of the shield. The cset shield subcommand
includes two options for doing this: -s/--shield and -u/--unshield . These options require
a PIDSPEC (process specification) to also be specified with the -p/--pid option. The PIDSPEC
defines which tasks get operated on. The PIDSPEC can be a single process ID, a list of process
IDs separated by commas, and a list of process ID ranges separated by dashes, groups of which
are separated by commas. For example:

--shield --pid 1234

This PIDSPEC argument specifies that PID 1234 be shielded.

--shield --pid 1234,42,1934,15000,15001,15002

This PIDSPEC argument specifies that this list of PIDs only be moved into the shield.

8 Moving a running task into and out of the shield SLE RT 15 SP6

--unshield -p 5000,5100,6010-7000,9232

This PIDSPEC argument specifies that PIDs 5000 , 5100 and 9232 be unshielded (moved
out of the shield) along with any existing PID that is in the range 6010 through 7000
inclusive.

Note: Information about the range in a PIDSPEC
A range in a PIDSPEC does not need to have tasks running for every number in that range.
In fact, it is not even an error if there are no tasks running in that range: none will be
moved in that case. The range only specifies to act on any tasks that have a PID or TID
that is within that range.

Use of the appropriate PIDSPEC can thus be handy to move tasks and groups of tasks into and out
of the shield. Additionally, there is one more option that can help with multi-threaded processes,
and that is the --threads ag. If this ag is used together with a shield or unshield com-
mand with a PIDSPEC and if any of the task IDs in the PIDSPEC belong to a thread in a process
container, then all the sibling threads in that process container will get shielded or unshielded
as well. This ag provides an easy mechanism to shield/unshield all threads of a process by
simply specifying one thread in that process.

The following example moves the current shell into the shield with a range PIDSPEC and back
out with the Bash variable for the current PID.

tux > echo $$
22018

tux > cset shield -s -p 22010-22020
cset: --> shielding following pidspec: 22010-22020
cset: done

tux > cset shield -s -v
cset: "user" cpuset of CPUSPEC(1-3) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 3770 22018 Roth python ./cset shield -s -v
root 22018 5034 Soth bash
cset: done

tux > cset shield -u -p $$

9 Moving a running task into and out of the shield SLE RT 15 SP6

cset: --> unshielding following pidspec: 22018
cset: done

tux > cset shield -s
cset: "user" cpuset of CPUSPEC(1-3) with 0 tasks running
cset: done

10 Moving a running task into and out of the shield SLE RT 15 SP6

3 Shielding with systemd

systemd has native support for the cpuset controller since SUSE Linux Enterprise Real Time 15
SP4. Shielding the sensitive workload can be achieved with the proper configuration of respec-
tive units. This is only supported with cgroup unified hierarchy (v2) and hence the shielded vs.
unshielded division copies the structure of typical systemd cgroup tree.

3.1 Setup of the shield
The general idea is to have one cpuset for the main sensitive workload and a complementary
cpuset for the supporting tasks. Resources are distributed in the top-down fashion, so to ensure
proper allocation for the main workload we must take into consideration all the top-level cgroups
on the system. systemd by default creates the following units: init.scope , system.slice ,
user.slice , and machine.slice .

We must configure all of these units not to stand in the way of our main workload. For in-
stance with following drop-in file(s) (https://documentation.suse.com/sles/15/html/SLES-all/cha-

systemd.html#sec-boot-systemd-custom-drop-in) :

root # cat /etc/systemd/system/init.scope.d/40-shielding.conf
[Scope]
AllowedCPUs=0-1

root # cat /etc/systemd/system/system.slice.d/40-shielding.conf
[Slice]
AllowedCPUs=0-1

This way we constrain the supporting system workload just to the rst two CPUs.

Finally, we create a dedicated slice for our sensitive workload with all the remaining system
CPUs:

root # cat /etc/systemd/system/workload.slice
[Slice]
AllowedCPUs=2-15

The setup can also be changed at runtime (for debugging reasons):

root # systemctl set-property --runtime workload.slice AllowedCPUs=4-15
root # systemctl set-property --runtime init.scope AllowedCPUs=0-3
root # systemctl set-property --runtime system.slice AllowedCPUs=0-3

11 Setup of the shield SLE RT 15 SP6

https://documentation.suse.com/sles/15/html/SLES-all/cha-systemd.html#sec-boot-systemd-custom-drop-in
https://documentation.suse.com/sles/15/html/SLES-all/cha-systemd.html#sec-boot-systemd-custom-drop-in

3.2 Running jobs in the shield
When the workload.slice is prepared according to the previous section, running the sensitive
jobs is as simple as configuring their service into that slice.

root # cat /etc/systemd/system/sensitive.service.d/40-shielding.conf
[Service]
Slice=workload.slice

Note
Beware that the Slice= directive only takes effect upon service (re)start.

Should not the sensitive job have a form of a service but an ad-hoc command, you may start
it in a systemd scope:

root # systemd-run --scope -p Slice=workload.slice command arg1 ...

Note
Existing processes cannot be moved under the shield since that would involve process
migration between cgroups which would cause distortion of the accounting state. But
sensitive workload should start with their resources secured in advance anyway.

12 Running jobs in the shield SLE RT 15 SP6

4 Full-featured cpuset manipulation commands

While basic shielding as described above is useful and a common use model for cset , there
comes a time when more functionality will be desired to implement your strategy. To implement
this, cset provides two subcommands: set , which allows you to manipulate cpusets; and
proc , which allows you to manipulate processes within those cpusets.

4.1 The set subcommand
To do anything with cpusets, you must be able to create, adjust, rename, move, and destroy
them. The set subcommand allows the management of cpusets in such a manner.

4.1.1 Creating and destroying cpusets with set

The basic syntax of set for cpuset creation is:

tux > cset set -c 1-3 -s my_cpuset1
cset: --> created cpuset "my_cpuset1"

This creates a cpuset named my_cpuset1 with a CPUSPEC of CPU1, CPU2 and CPU3. The
CPUSPEC is the same concept as described in the Section 2.2, “Setup and teardown of the shield”.
The set subcommand also takes a -m / --mem option that lets you specify the memory nodes
the set will use and ags to make the CPUs and MEMs exclusive to the cpuset. If you are on a
non-NUMA machine, leave the -m option out and the default memory node 0 will be used.

Like with shield , you can adjust the CPUs and MEMs with subsequent calls to set. If, for
example, you want to adjust the my_cpuset1 cpuset to only use CPUs 1 and 3 (and omit CPU2),
then issue the following command.

tux > cset set -c 1,3 -s my_cpuset1
cset: --> modified cpuset "my_cpuset

cset will then adjust the CPUs that are assigned to the my_cpuset1 set to only use CPU1 and
CPU3.

To rename a cpuset, use the -n/--newname option. For example:

tux > cset set -s my_cpuset1 -n super_set
cset: --> renaming "/cpusets/my_cpuset1" to "super_set"

13 The set subcommand SLE RT 15 SP6

Renames the cpuset called my_cpuset1 to super_set .

To destroy a cpuset, use the -d/--destroy option as follows.

tux > cset set -d super_set
cset: --> processing cpuset "super_set", moving 0 tasks to parent "/"...
cset: --> deleting cpuset "/super_set"
cset: done

This command destroys the newly created cpuset called super_set . When a cpuset is destroyed,
all the tasks running in it are moved to the parent cpuset. The root cpuset, which always exists
and always contains all CPUs, cannot be destroyed. You may also give the --destroy option
a list of cpusets to destroy.

Note: Information about the mounted cpuset file system
The cset subcommand creates the cpusets based on a mounted cpuset le system. You
do not need to know where that le system is mounted, although it is easy to figure out
(by default it is on /cpusets). When you give the set subcommand a name for a new
cpuset, it is created wherever the cpuset le system is mounted.

To create a cpuset hierarchy, then you must give a path to the cset set subcommand. This
path will always begin with the root cpuset, for which the path is / . For example:

tux > cset set -c 1,3 -s top_set
cset: --> created cpuset "top_set"

tux > cset set -c 3 -s /top_set/sub_set
cset: --> created cpuset "/top_set/sub_set"

These commands created two cpusets: top_set and sub_set . The top_set uses CPU1 and
CPU3. It has a subset of sub_set which only uses CPU3. Once you have created a subset with
a path, then if the name is unique, you do not need to specify the path to affect it. If the name
is not unique, then cset will complain and ask you to use the path. For example:

tux > cset set -c 1,3 -s sub_set
cset: --> modified cpuset "sub_set

This command adds CPU1 to the sub_set cpuset for its use. Note that using the path in this
case is optional.

14 Creating and destroying cpusets with set SLE RT 15 SP6

If you attempt to destroy a cpuset which has sub-cpusets, cset will complain and not do it
unless you use the -r/--recurse and the --force options. If you do use --force , then all
the tasks running in all subsets of the deletion target cpuset will be moved to the target’s parent
cpuset and all cpusets.

Moving a cpuset from under a certain cpuset to a different location is not implemented.

4.1.2 Listing cpusets with set

To list cpusets, use the set subcommand with the -l/--list option. For example:

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 320 1 /
one 3 n 0 n 0 1 /one

This shows that there is currently one cpuset present called one . (Of course there is also the
root set, which is always present.) The output shows that the one cpuset has no tasks running in
it. The root cpuset has 320 tasks running. The -X for CPUs and MEMs elds denotes whether
the CPUs and MEMs in the cpusets are marked exclusive to those cpusets. Note that the one
cpuset has subsets as indicated by a 1 in the Subs eld. You can specify a cpuset to list with
the set subcommand as follows:

tux > cset set -l -s one
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
one 3 n 0 n 0 1 /one
two 3 n 0 n 0 1 /one/two

This output shows that there is a cpuset called two in cpuset one and it also has subset. You
can also ask for a recursive listing as follows:

tux > cset set -l -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 320 1 /
one 3 n 0 n 0 1 /one
two 3 n 0 n 0 1 /one/two

15 Listing cpusets with set SLE RT 15 SP6

three 3 n 0 n 0 0 /one/two/three

This command lists all cpusets existing on the system since it asks for a recursive listing beginning
at the root cpuset. Incidentally, should you need to specify the root cpuset you can use either
root or / to specify it explicitly—just remember that the root cpuset cannot be deleted or
modified.

4.2 The proc subcommand

Now that you know how to create, rename and destroy cpusets with the set subcommand, the
next step is to manage threads and processes in those cpusets. The subcommand to do this is
called proc and it allows you to execute processes into a cpuset, move existing tasks around
existing cpusets, and list tasks running in specified cpusets. For the following examples, let us
assume a cpuset setup of two sets as follows:

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 309 2 /
two 2 n 0 n 3 0 /two
three 3 n 0 n 10 0 /three

4.2.1 Listing tasks with proc

Operation of the proc subcommand follows the same model as the set subcommand. For
example, to list tasks in a cpuset, you need to use the -l/--list option and specify the cpuset
by name or, if the name exists multiple times in the cpuset hierarchy, by path. For example:

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 3 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 16141 4300 Soth bash
root 16171 16141 Soth bash
root 16703 16171 Roth python ./cset proc -l two

16 The proc subcommand SLE RT 15 SP6

This output shows us that the cpuset called two has CPU2 only attached to it and is running three
tasks: two shells and the python command to list it. Note that cpusets are inherited so that if a
process is contained in a cpuset, then any children it spawns also run within that set. In this case,
the python command to list set two was run from a shell already running in set two . This can
be seen by the PPID (parent process ID) of the python command matching the PID of the shell.

Additionally, the SPPr eld needs explanation. SPPr stands for State, Policy and Priority .
You can see that the initial two tasks are stopped and running in timeshare priority, marked as
oth (for other). The last task is marked as running, R and at timeshare priority, oth . If any
of these tasks would have been at real time priority, the policy would be shown as f for FIFO
or r for round robin. The priority would be a number from 1 to 99. See below for an example.

tux > cset proc -l -s root | head -7
cset: "root" cpuset of CPUSPEC(0-3) with 309 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 1 0 Soth init [5]
root 2 0 Soth [kthreadd]
root 3 2 Sf99 [migration/0]
root 4 2 Sf99 [posix_cpu_timer]

This output shows the rst few tasks in the root cpuset. Note that both init and [kthread]
are running at timeshare; however, the [migration/0] and [posix_cpu_timer] kernel
threads are running at real-time policy of FIFO and priority of 99 . Incidentally, this output is
from a system running the real-time Linux kernel which runs some kernel threads at real-time
priorities. And finally, note that you can use cset as any other Linux tool and include it in
pipelines as in the example above.

Taking a peek into the third cpuset called three , you can see output such as:

tux > cset proc -l -s three
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17265 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...

17 Listing tasks with proc SLE RT 15 SP6

This output shows that a lot of beagled tasks are running in this cpuset and it also shows an
ellipsis (…) at the end of their listings. If you see this ellipsis, that means that the command
was too long to t onto an 80 character screen. To see the entire command line, use the -v/--
verbose ag:

tux > cset proc -l -s three -v | head -4
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg --autostarted
 --indexing-delay 300

4.2.2 Execing tasks with proc

To execute a task into a cpuset, the proc subcommand needs to be employed with the -e/--
exec option. Let us execute a shell into the cpuset named two in our set. First, check to see
what is running that set:

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

tux > cset proc -s two -e bash
cset: --> last message, executed args into cpuset "/two", new pid is: 20955

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 20955 19253 Soth bash
root 20981 20955 Roth python ./cset proc -l two

You can see that initially, two had nothing running in it. After the completion of the second
command, list two again and see that there are two tasks running: the shell which you executed
and the python cset command that is listing the cpuset. The reason for the second task is that
the cpuset property of a running task is inherited by all its children. Because you executed the
listing command from the new shell which was bound to cpuset two, the resulting process for
the listing is also bound to cpuset two . Let us test that by running a new shell with no prefixed
cset command.

tux > bash

18 Execing tasks with proc SLE RT 15 SP6

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 3 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 20955 19253 Soth bash
root 21118 20955 Soth bash
root 21147 21118 Roth python ./cset proc -l two

Here again, you can see that the second shell, PID 21118 , has a parent PID of 20955 which is
the rst shell. Both shells, and the listing command, are running in the two cpuset.

Note: Separating the Tool Options From the cset Command
cset follows the tradition of separating the tool options from the command to be exe-
cuted options with a double hyphen (--). This is not shown in this simple example, but
if the command you want to execute also takes options, separate them with the double
hyphen as follows:

tux > cset proc -s myset -e mycommand -- -v

The -v will be passed to mycommand , and not to cset .

Tip: Executing a shell into a cpuset
Executing a shell into a cpuset is a useful way to experiment with running tasks in that
cpuset since all children of the shell will also run in the same cpuset.

If you misspell the command to be executed, the result may be puzzling. For example:

tux > cset proc -s two -e blah-blah
cset: --> last message, executed args into cpuset "/two", new pid is: 21655
cset: **> [Errno 2] No such file or directory

The result is no new process even though a new PID is output. The reason for the message is of
course that the cset process forked in preparation of the execution, but the command blah-
blah was not found to execute it.

19 Execing tasks with proc SLE RT 15 SP6

4.2.3 Moving tasks with proc

Although the ability to execute a task into a cpuset is fundamental, you will most likely be
moving tasks between cpusets more often. Moving tasks is accomplished with the -m/--move
and -p/--pid options to the proc subcommand of cset . The move option tells the proc
subcommand that a task move is requested. The -p/--pid option takes an argument called a
PIDSPEC (PID Specification). The PIDSPEC defines which tasks get operated on.

The PIDSPEC can be a single process ID, a list of process IDs separated by commas, and a list of
process ID ranges also separated by commas. For example:

--pid 1234

This PIDSPEC argument specifies that PID 1234 will be moved.

--pid 1234,42,1934,15000,15001,15002

This PIDSPEC argument specifies that only listed tasks will be moved.

-p 5000,5100,6010-7000,9232

This PIDSPEC argument specifies that tasks 5000 , 5100 and 9232 will be moved along
with any existing task with PID in the range 6010 through 7000 inclusive.

Note: Information about the range in a PIDSPEC
A range in a PIDSPEC does not need to have running tasks for every number in that range.
In fact, it is not even an error if there are no tasks running in that range; none will be
moved in that case. The range simply specifies to act on any tasks that have a PID or TID
that is within that range.

The following example moves the current shell into the cpuset named two with a range PIDSPEC
and back out to the root cpuset with the Bash variable for the current PID.

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

tux > echo $$
19253

tux > cset proc -m -p 19250-19260 -t two
cset: moving following pidspec: 19253
cset: moving 1 userspace tasks to /two

20 Moving tasks with proc SLE RT 15 SP6

cset: done

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 2 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
root 19253 16447 Roth bash
root 29456 19253 Roth python ./cset proc -l -s two

tux > cset proc -m -p $$ -t root
cset: moving following pidspec: 19253
cset: moving 1 userspace tasks to /
cset: done

tux > cset proc -l -s two
cset: "two" cpuset of CPUSPEC(2) with 0 tasks running

Use of the appropriate PIDSPEC can thus be handy to move tasks and groups of tasks. Addition-
ally, there is one more option that can help with multi-threaded processes, and that is the --
threads ag. If this ag is used together with the proc move command with a PIDSPEC and if
any of the task IDs in the PIDSPEC belongs to a thread in a process container, then all the sibling
threads in that process container will also get moved. This ag provides an easy mechanism to
move all threads of a process by simply specifying one thread in that process. The following ex-
ample moves all threads running in cpuset three to cpuset two by using the --threads ag.

tux > cset set two three
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 0 0 /two
three 3 n 0 n 10 0 /three

tux > cset proc -l -s three
cset: "three" cpuset of CPUSPEC(3) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...

21 Moving tasks with proc SLE RT 15 SP6

tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 27133 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...

tux > cset proc -m -p 16165 --threads -t two
cset: moving following pidspec:
 16491,16493,16492,16170,16165,16169,27133,17244,17243,16237
cset: moving 10 userspace tasks to /two
[==]%
cset: done

tux > cset set two three
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 10 0 /two
three 3 n 0 n 0 0 /three

4.2.3.1 Moving all tasks from one cpuset to another

There is a special case for moving all tasks currently running in one cpuset to another. This
can be a common use case, and when you need to do it, specifying a PIDSPEC with -p is not
necessary so long as you use the -f/--fromset and the -t/--toset options.

The following example moves all 10 beagled threads back to cpuset three with this method.

tux > cset proc -l two three
cset: "two" cpuset of CPUSPEC(2) with 10 tasks running
USER PID PPID SPPr TASK NAME
-------- ----- ----- ---- ---------
tux 16165 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -…
tux 16169 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16170 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16237 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16491 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16492 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 16493 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17243 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 17244 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
tux 27133 1 Soth beagled /usr/lib64/beagle/BeagleDaemon.exe --bg -...
cset: "three" cpuset of CPUSPEC(3) with 0 tasks running

22 Moving tasks with proc SLE RT 15 SP6

tux > cset proc -m -f two -t three
cset: moving all tasks from two to /three
cset: moving 10 userspace tasks to /three
[==]%
cset: done

tux > cset set two three
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
two 2 n 0 n 0 0 /two
three 3 n 0 n 10 0 /three

4.2.3.2 Kernel threads and proc

Kernel threads are special and cset detects tasks that are kernel threads and will refuse to move
them (since they typically play a vital role on particular CPU).

Warning: Use -k or --force with care
Overriding a task move command with -k or --force can have dire consequences for
the system. Be sure of the command before you force it.

4.2.4 Destroying tasks

There actually is no cset subcommand or option to destroy tasks—it is not really needed. Tasks
exist and are accessible on the system as normal, even if they happen to be running in one cpuset
or another. To destroy tasks, use the usual Ctrl – C method or by using the kill(1) command.

4.3 Implementing shielding with set and proc
With the preceding material on the set and proc subcommands, you now have the background
to implement the basic shielding model, like the shield subcommand.

23 Destroying tasks SLE RT 15 SP6

While shield provides this functionality already, doing this manually can still be useful. For
example, to implement a shielding strategy that need more functionality than shield can pro-
vide. In such cases, you need to rst stop using shield since that subcommand will interfere
with the further application of set and proc . However, you will still need to implement the
functionality of shield to implement successful shielding.

Remember from the above sections describing shield , that shielding has at minimum three
cpusets: root , which is always present and contains all CPUs; system which is the non-shielded
set of CPUs and runs unimportant system tasks; and user , which is the shielded set of CPUs and
runs your important tasks. Remember also that shield moves all movable tasks into system
(except for kernel threads).

You start rst by creating the system and user cpusets as follows. Let us assume that the
machine is a four-CPU machine without NUMA memory features. The system cpuset should hold
only CPU0 while the user cpuset should hold the rest of the CPUs.

tux > cset set -c 0 -s system
cset: --> created cpuset "system"

tux > cset set -c 1-3 -s user
cset: --> created cpuset "user"

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 333 2 /
user 1-3 n 0 n 0 0 /user
system 0 n 0 n 0 0 /system

Now, move all running user processes into the system cpuset:

tux > cset proc -m -f root -t system
cset: moving all tasks from root to /system
cset: moving 188 userspace tasks to /system
[==]%
cset: done

tux > cset set -l
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------

24 Implementing shielding with set and proc SLE RT 15 SP6

root 0-3 y 0 y 146 2 /
user 1-3 n 0 n 0 0 /user
system 0 n 0 n 187 0 /system

This completes the basic shielding setup. Since all user space tasks are running in system ,
anything that is spawned from them will also run in system . The user cpuset has nothing
running in it unless you put tasks there with the proc subcommand as described above. If you
also want to eliminate kernel threads from root that could interfere with user workload (to
achieve a form of “interrupt shielding” on a real time Linux kernel, for example), you should
look at isolcpus= kernel command line argument.

At this point, you have achieved the simple shielding model that the shield subcommand
provides. You can now add other cpuset definitions to expand your shielding strategy beyond
that simple model.

4.4 Implementing hierarchy with set and proc

One popular extended shielding model is based on hierarchical cpusets, each with diminishing
numbers of CPUs. This model is used to create priority cpusets that allow assignment of CPU
resources to tasks based on some arbitrary priority definition. The idea is that a higher priority
task will get access to more CPU resources than a lower priority task.

The example provided here once again assumes a machine with four CPUs and no NUMA mem-
ory features. This base serves to illustrate the point well; however, note that if your machine
has (many) more CPUs, then strategies such as this and others get more interesting.

Define a shielding setup as in the previous section where there is a system cpuset with only
CPU0 that takes care of “unimportant” system tasks. You will usually require this type of cpuset
since it forms the basis of shielding. Modify the strategy to not use a user cpuset—instead
create several new cpusets each holding one more CPU than the other. These cpusets will be
called prio_low with one CPU, prio_med with two CPUs, prio_high with three CPUs, and
prio_all with all CPUs.

25 Implementing hierarchy with set and proc SLE RT 15 SP6

Note: The sense behind creating a prio_all cpuset with all CPUs
You may ask, why create a prio_all with all CPUs when that is substantially the def-
inition of the root cpuset? The answer is that it is best to keep a separation between
the root cpuset and everything else, even if a particular cpuset duplicates root exactly.
Usually, automation is build on top of a cpuset strategy. In these cases, it is best to avoid
using invariant names of cpusets, such as root for example, in this automation.

All of these prio_* cpusets can be created under root, in a at way; however, it is advantageous
to create them as a hierarchy. The reasoning for this is twofold: rst, if a cpuset is destroyed,
all its tasks are moved to its parent; second, one can use exclusive CPUs in a hierarchy.

If a cpuset has CPUs that are exclusive to it, then other cpusets may not use those CPUs unless
they are children of that cpuset. This has more relevance to machines with many CPUs and
more complex strategies.

Start with a clean slate and build the appropriate cpusets as follows:

tux > cset set -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 344 0 /

tux > cset set -c 0-3 prio_all
cset: --> created cpuset "prio_all"

tux > cset set -c 1-3 /prio_all/prio_high
cset: --> created cpuset "/prio_all/prio_high"

tux > cset set -c 2-3 /prio_all/prio_high/prio_med
cset: --> created cpuset "/prio_all/prio_high/prio_med"

tux > cset set -c 3 /prio_all/prio_high/prio_med/prio_low
cset: --> created cpuset "/prio_all/prio_high/prio_med/prio_low"

tux > cset set -c 0 system
cset: --> created cpuset "system"

26 Implementing hierarchy with set and proc SLE RT 15 SP6

tux > cset set -l -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 344 2 /
system 0 n 0 n 0 0 /system
prio_all 0-3 n 0 n 0 1 /prio_all
prio_high 1-3 n 0 n 0 1 /prio_all/prio_high
prio_med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio_low 3 n 0 n 0 0 /prio_all/pr...rio_med/prio_low

Note: Why -r/--recurse is needed in this case
The option -r / --recurse lists all the sets in the last command above. If you execute that
command without -r/--recurse , prio_med and prio_low cpusets would not appear.

The strategy is now implemented. This means that you can move all user space tasks into the
system cpuset to activate the shield.

tux > cset proc -m -f root -t system
cset: moving all tasks from root to /system
cset: moving 198 userspace tasks to /system
cset: *** not moving kernel threads, need both --force and --kthread
[==]%
cset: done

tux > cset set -l -r
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 146 2 /
system 0 n 0 n 198 0 /system
prio_all 0-3 n 0 n 0 1 /prio_all
prio_high 1-3 n 0 n 0 1 /prio_all/prio_high
prio_med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio_low 3 n 0 n 0 0 /prio_all/pr...rio_med/prio_low

The shield is now active. Since the prio_* cpuset names are unique, you can assign tasks to
them either via their simple name, or their full path (as described in Section 4.2.2, “Execing tasks

with proc”).

27 Implementing hierarchy with set and proc SLE RT 15 SP6

You may have noted that there is an ellipsis in the path of the prio_low cpuset in the listing
above. This is done to t the output onto an 80 character screen. To see the entire line, use the
-v / --verbose ag as follows:

tux > cset set -l -r -v
cset:
Name CPUs-X MEMs-X Tasks Subs Path
------------ ---------- - ------- - ----- ---- ----------
root 0-3 y 0 y 146 2 /
system 0 n 0 n 198 0 /system
prio_all 0-3 n 0 n 0 1 /prio_all
prio_high 1-3 n 0 n 0 1 /prio_all/prio_high
prio_med 2-3 n 0 n 0 1 /prio_all/prio_high/prio_med
prio_low 3 n 0 n 0 0 /prio_all/prio_high/prio_med/prio_low

28 Implementing hierarchy with set and proc SLE RT 15 SP6

5 Using shortcuts

The commands listed in the previous sections always used all the required options. However,
cset does have a shortcut facility that will execute certain commands without specifying all
options. An effort has been made to do this with the “principle of least surprise”. This means
that if you do not specify options, but do specify parameters, then the outcome of the command
should be intuitive as possible.

Using shortcuts is not necessary. In fact, you can use either shortcuts or long options. However,
using long options instead of shortcuts does have a use case: when you write a script intended
to be self-documenting, or perhaps when you generate cset documentation.

To begin, the subcommands shield , set and proc can themselves be shortened to the fewest
number of characters that are unambiguous. For example, the following commands are identical:

Long method Short method

tux > cset shield -s -p 1234 tux > cset sh -s -p 1234

tux > cset set -c 1,3 -s newset tux > cset se -c 1,3 -s newset

tux > cset proc -s newset -e bash tux > cset p -s newset -e bash

The proc command can be shortened to p , while shield and set need two letters to disam-
biguate.

5.1 shield subcommand shortcuts
The shield subcommand supports two areas with shortcuts: the short method (when there are
no options given and where to shield is the common use case), and the long method (which
makes -p/--pid optional for the -s/--shield and -u/--unshield options).

For the common use case of actually shielding either a PIDSPEC or executing a command into
the shield, the following cset commands are equivalent.

Long method Short method

tux > cset shield -s -p 1234,500-649 tux > cset sh 1234,500-649

29 shield subcommand shortcuts SLE RT 15 SP6

Long method Short method

tux > cset shield -s -e bash tux > cset sh bash

When using the -s or -u shield/unshield options, it is optional to use the -p option to specify
a PIDSPEC. For example:

Long method Short method

tux > cset shield -s -p 1234 tux > cset sh -s 1234

tux > cset shield -u -p 1234 tux > cset sh -u 1234

5.2 set subcommand shortcuts
The set subcommand has a limited number of shortcuts. The option --set is optional usually
and the --list option is also optional to list sets. For example, these commands are equivalent:

Long method Short method

tux > cset set -l -s myset tux > cset se -l myset

tux > cset se -l myset tux > cset se myset

tux > cset set -c 1,2,3 -s newset tux > cset se -c 1,2,3 newset

tux > cset set -d -s newset tux > cset se -d newset

tux > cset set -n newname -s oldname tux > cset se -n newname oldname

In fact, if you want to apply either the list or the destroy options to multiple cpuset s with one
cset command, you will not need to use the -s option. For example:

cset se -d myset yourset ourset
--> destroys cpusets: myset, yourset and ourset

cset se -l prio_high prio_med prio_low
--> lists only cpusets prio_high, prio_med and prio_low

30 set subcommand shortcuts SLE RT 15 SP6

--> the -l is optional in this case since list is default

5.3 proc subcommand shortcuts
For the proc subcommand, the -s , -t and -f options to specify the cpuset , the origination
cpuset and the destination cpuset can sometimes be optional. For example, the following
commands are equivalent. To list tasks in cpuset s:

Long method Short method

tux > cset proc -l -s myset

or

tux > cset proc -l -f myset

or

tux > cset proc -l -t myset

tux > cset p -l myset

tux > cset p -l myset tux > cset p myset

tux > cset proc -l -s one two tux > cset p -l one two

tux > cset p -l one two tux > cset p one two

To execute a process into a cpuset :

Long method Short method

tux > cset proc -s myset -e bash tux > cset p myset -e bash

Moving tasks into and out of cpuset s have the following shortcuts. To move a PIDSPEC into
a cpuset :

Long method Short method

tux > cset proc -m -p 4242,4243 -s myset tux > cset p -m 4242,4243 myset

31 proc subcommand shortcuts SLE RT 15 SP6

Long method Short method

tux > cset proc -m -p 12 -t myset tux > cset p -m 12 myset

To move all tasks from one cpuset to another:

Long method Short method

tux > cset proc -m -f set1 -t set2

or

tux > cset proc -m -s set1 -t set2

or

tux > cset proc -m -f set1 -s set2

tux > cset p -m set1 set2

32 proc subcommand shortcuts SLE RT 15 SP6

6 What to do if there are problems

If you are using cset on a supported operating system such as SUSE Linux Enterprise Server 15
SP6 or SUSE Linux Enterprise Real Time 15 SP6, then should use the following Bugzilla product
listing here:

https://bugzilla.suse.com

cset contains a logging application that is invaluable for our developers to diagnose problems
and nd quick solutions. To create a log of your issue, use the --log option with a le name
as an argument to the main cset application. For example:

tux > cset -l logfile.txt set -n newname oldname

If the issue persists and is reproducible, Including this report in your bug submission greatly
reduces development time. This command saves debugging information within the le log-
file.txt .

33 SLE RT 15 SP6

https://bugzilla.suse.com

A GNU Licenses
This appendix contains the GNU Free Docu-
mentation License version 1.2.

GNU Free Documentation License

Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor,
Boston, MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near the
most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when
you modify the Document means that it remains a section "Entitled XYZ" according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

34 SLE RT 15 SP6

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least ve
of the principal authors of the Document (all of its principal authors, if it has fewer
than ve), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled "History" in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
"History" section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation's users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

35 SLE RT 15 SP6

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/

copyleft/ (https://www.gnu.org/copyleft/) .

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled “GNU
 Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

36 SLE RT 15 SP6

https://www.gnu.org/copyleft/
https://www.gnu.org/copyleft/

	Shielding Linux Resources
	Chapter 1. Introduction
	Chapter 2. The basic shielding model
	2.1. A simple shielding example
	2.2. Setup and teardown of the shield
	2.3. Moving interesting tasks into and out of the shield
	2.3.1. Executing a process into the shield
	2.3.2. Moving a running task into and out of the shield

	Chapter 3. Shielding with systemd
	3.1. Setup of the shield
	3.2. Running jobs in the shield

	Chapter 4. Full-featured cpuset manipulation commands
	4.1. The set subcommand
	4.1.1. Creating and destroying cpusets with set
	4.1.2. Listing cpusets with set

	4.2. The proc subcommand
	4.2.1. Listing tasks with proc
	4.2.2. Execing tasks with proc
	4.2.3. Moving tasks with proc
	4.2.3.1. Moving all tasks from one cpuset to another
	4.2.3.2. Kernel threads and proc

	4.2.4. Destroying tasks

	4.3. Implementing shielding with set and proc
	4.4. Implementing hierarchy with set and proc

	Chapter 5. Using shortcuts
	5.1. shield subcommand shortcuts
	5.2. set subcommand shortcuts
	5.3. proc subcommand shortcuts

	Chapter 6. What to do if there are problems
	Appendix A. GNU Licenses
	A.1. GNU Free Documentation License

