cWE=SUSE

SUSE CaaS Platform 4.2.4

Administration Guide

Administration Guide: This guide describes general and specialized adminis-
trative tasks for SUSE CaaS Platform 4.2.4.
SUSE CaaS Platform 4.2.4

by Markus Napp and Nora Kofanova

Publication Date: 2022-05-06

SUSE LLC

1800 South Novell Place
Provo, UT 84606

USA

https://documentation.suse.com 7

https://documentation.suse.com

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

2.6

3.1

4.1

Contents

ix

About This Guide 1
Required Background 1
Available Documentation 1
Feedback 2

Documentation Conventions 2

Cluster Management 4
Prerequisites 4
Bootstrap and Initial Configuration 4

Adding Nodes 4
Adding Nodes from Template 5

Removing Nodes 5

Temporary Removal 5 ¢ Permanent Removal 6
Reconfiguring Nodes 7

Node Operations 7

Uncordon and Cordon 7 « Draining Nodes 7

Software Management 9

Software Installation 9

Base OS 9 « Kubernetes stack 11

Cluster Updates 18

Update Requirements 18

Administration Guide

4.2

4.3

4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Updating Kubernetes Components 18

Update Management Workstation 20 * Generating an Overview of Available
Platform Updates 20 + Generating an Overview of Available Addon

Updates 22

Updating Nodes 23
How To Update Nodes 24 + Check for Upgrades to New Version 25

Base OS Updates 25
Disabling Automatic Updates 25 + Completely Disabling
Reboots 26 ¢ Manual Unlock 27

Security 29

Network Access Considerations 29
Access Control 29

Role Management 29
List of Verbs 30 < List of Resources 30 ¢ Creating Roles 31 * Create
Role Bindings 33

Managing Users and Groups 34

Adding a New Organizational Unit 34 « Removing an Organizational

Unit 35 « Adding a New Group to an Organizational Unit 36 « Removing
a Group from an Organizational Unit 36

Role Based Access Control (RBAC) 41
Introduction 41 « Authentication Flow 42 < RBAC Operations 48

Configuring an External LDAP Server 53
Deploying an External 389 Directory Server 53 +« Deploying a 389 Directory
Server with an External Certificate 54 « Examples of Usage 55

Pod Security Policies 65
Default Policies 66 ¢ Policy Definition 66 * Creatinga
PodSecurityPolicy 69

NGINX Ingress Controller 69
Configure and deploy NGINX ingress controller 69 + Deploy Kubernetes

Dashboard as an example 73

Administration Guide

5.9

5.10

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4

Admission Controllers 75

Introduction 75 ¢ Configured admission controllers 76

Certificates 76

Communication Security 76 « Certificate Validity 77 « Certificate
Location 77 + Monitoring Certificates 79 + Using Custom Trusted CA
Certificates 83 + Deployment with a Custom CA Certificate 83 + Replace
OIDC Server Certificate Signed By A Trusted CA Certificate 84 + Automatic
Certificate Renewal 88 +« Manual Certificate Renewal 99 + How To
Generate Certificates 105

Logging 112
Introduction 112
Logging in skuba 112

Audit Log 113
Limitations 113 + Enable Auditing During Cluster Bootstrap 113 « Enable
Auditing On Running Cluster 115 « Disable Auditing 117

Centralized Logging 118

Prerequisites 118 ¢ Types of Logs 118 * Log

Formats 119 « Deployment 120 ¢ Queuing 121 + Optional
settings 122

Monitoring 125

Monitoring Stack 125

Introduction 125 < Prerequisites 126 < Installation 127 + Monitoring 150

Health Checks 153
Cluster Health Checks 153 ¢ Node Health Checks 155 * Service/
Application Health Checks 159 + General Health Checks 161

Horizontal Pod Autoscaler 162
Usage 162

Stratos Web Console 169
Introduction 169 + Prerequisites 170 < Installation 170 « Stratos

configuration 174

Administration Guide

Vi

8.1

9.1

9.2

10
10.1

10.2

Storage 175

vSphere Storage 175

Node Meta 175 + Static Persistent Volume 175 ¢ Dynamic Persistent

Volume 178

Integration 181

SUSE Enterprise Storage Integration 181

Prerequisites 181 +« Procedures According to Type of Integration 181

SUSE Cloud Application Platform Integration 193

Cluster Disaster Recovery 194

Backing Up etcd Cluster Data 194
Data To Backup 194 + Creating an etcd Cluster Database
Backup 195 + Scheduling etcd Cluster Backup 197

Recovering Master Nodes 199

Replacing a Single Master Node 199 « Recovering All Master Nodes 200

Backup and Restore with Velero 208

Limitations 208

Prerequisites 209

Helm 209 + Object Storage And It's Credentials 210 « Volume

Snapshotter 215 « Velero CLI 216
Known Issues 216

Deployment 217

Backup Kubernetes Cluster Objects Only 217 « Backup Kubernetes

Cluster 222
Operations 229

Backup 229
Backup Troubleshooting 232

Restore 233
Restore Troubleshooting 235

Administration Guide

12
12.1

12.2

12.3

12.4

13
13.1

13.2
13.3
13.4
13.5
13.6

13.7

13.8
13.9

13.10

13.11

vii

Use Cases 235
Disaster Recovery 235 « Cluster Migration 236

Uninstall 238

Miscellaneous 239
Configuring HTTP/HTTPS Proxy for CRI-O 239

Configuring Container Registries for CRI-O 240

Per-namespace Settings 241 « Remapping and Mirroring Registries 241
FlexVolume Configuration 243

Configuring kubelet 243

Troubleshooting 245

The supportconfig Tool 245

Cluster definition directory 246

Log collection 247

Debugging SLES Nodes provision 252

Debugging Cluster Deployment 252

Error x509: certificate signed by unknown authority 253

Error Invalid client credentials 253
Versions before SUSE CaaS Platform 4.2.2 254 + Versions after SUSE CaaS
Platform 4.2.2 254

Replacing a Lost Node 255
Rebooting an Undrained Node with RBD Volumes Mapped 255

ETCD Troubleshooting 256

Introduction 256 * ETCD

container 256 « logging 257 -« etcdctl 257 « curlasan
alternative 258

Kubernetes debugging tips 259

Administration Guide

viii

13.12

13.13

14

A1

Helm Error: context deadline exceeded 259

AWS Deployment fails with cannot attach profile error 260
Create IAM Role, Role Policy, and Instance Profile through AWS CLI 260

Glossary 264

GNU Licenses 267

GNU Free Documentation License 267

Administration Guide

@ Warning

This document is a work in progress.

The content in this document is subject to change without notice.

@ Note

This guide assumes a configured SUSE Linux Enterprise 15 SP1 environment.

Copyright © 2006 — 2020 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in

the section entitled “GNU Free Documentation License”.

For SUSE trademarks, see http://www.suse.com/company/legal/ 2. All other third-party trade-
marks are the property of their respective owners. Trademark symbols (®, ™, etc.) denote trade-

marks of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors, nor the

translators shall be held liable for possible errors or the consequences thereof.

ixX SUSE CaaS Platform 4.2.4

http://www.suse.com/company/legal/

1 About This Guide

1.1 Required Background

To keep the scope of these guidelines manageable, certain technical assumptions have been

made. These documents are not aimed at beginners in Kubernetes usage and require that:

® You have some computer experience and are familiar with common technical terms.

You are familiar with the documentation for your system and the network on which it runs.

You have a basic understanding of Linux systems.

You have an understanding of how to follow instructions aimed at experienced Linux ad-

ministrators and can fill in gaps with your own research.

You understand how to plan, deploy and manage Kubernetes applications.

1.2 Available Documentation

We provide HTML and PDF versions of our books in different languages. Documentation for our
products is available at https://documentation.suse.com/#, where you can also find the latest

updates and browse or download the documentation in various formats.

The following documentation is available for this product:

Deployment Guide
The SUSE CaaS Platform Deployment Guide gives you details about installation and con-
figuration of SUSE CaaS Platform along with a description of architecture and minimum

system requirements.

Quick Start Guide
The SUSE CaaS Platform Quick Start guides you through the installation of a minimum

cluster in the fastest way possible.

Admin Guide
The SUSE CaaS Platform Admin Guide discusses authorization, updating clusters and indi-
vidual nodes, monitoring, logging, use of Helm and Tiller, troubleshooting and integration
with SUSE Enterprise Storage and SUSE Cloud Application Platform.

1 Required Background SUSE CaasS Platform 4.2.4

https://documentation.suse.com/

1.3 Feedback

Several feedback channels are available:

Bugs and Enhancement Requests
For services and support options available for your product, refer to http://www.suse.com/
support/ <.
To report bugs for a product component, go to https://scc.suse.com/support/requests 4,

log in, and click Create New.

User Comments
We want to hear your comments about and suggestions for this manual and the other
documentation included with this product. Use the User Comments feature at the bottom
of each page in the online documentation or go to https://documentation.suse.com/ 7, click

Feedback at the bottom of the page and enter your comments in the Feedback Form.

Mail
For feedback on the documentation of this product, you can also send a mail to doc-
team@suse.com. Make sure to include the document title, the product version and the
publication date of the documentation. To report errors or suggest enhancements, provide
a concise description of the problem and refer to the respective section number and page
(or URL).

1.4 Documentation Conventions
The following notices and typographical conventions are used in this documentation:

® /etc/passwd : directory names and file names

® <PLACEHOLDER>: replace <PLACEHOLDER> with the actual value

PATH: the environment variable PATH

ls, --help: commands, options, and parameters

® user :users or groups

package name : name of a package

® ALt , ALt —F1 :a key to press or a key combination; keys are shown in uppercase as on

a keyboard

2 Feedback SUSE CaaS Platform 4.2.4

http://www.suse.com/support/
http://www.suse.com/support/
https://scc.suse.com/support/requests
https://documentation.suse.com/

® File > Save As : menu items, buttons

® Dancing Penguins (Chapter Penguins, 1Another Manual): This is a reference to a chapter in

another manual.

¢ Commands that must be run with root privileges. Often you can also prefix these commands

with the sudo command to run them as non-privileged user.

sudo command

® Commands that can be run by non-privileged users.

command

® Notices:

O

Warning

Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important

Important information you should be aware of before proceeding.

Note

Additional information, for example about differences in software versions.

Tip

Helpful information, like a guideline or a piece of practical advice.

Documentation Conventions SUSE CaaS Platform 4.2.4

2 Cluster Management

Cluster management refers to several processes in the life cycle of a cluster and its individual
nodes: bootstrapping, joining and removing nodes. For maximum automation and ease SUSE
CaaS Platform uses the skuba tool, which simplifies Kubernetes cluster creation and reconfig-

uration.

2.1 Prerequisites

You must have the proper SSH keys for accessing the nodes set up and allow passwordless
sudo on the nodes in order to perform many of these steps. If you have followed the standard

deployment procedures this should already be the case.

Please note: If you are using a different management workstation than the one you have used
during the initial deployment, you might have to transfer the SSH identities from the original

management workstation.

2.2 Bootstrap and Initial Configuration

Bootstrapping the cluster is the initial process of starting up a minimal viable cluster and joining
the first master node. Only the first master node needs to be bootstrapped, later nodes can simply

be joined as described in Section 2.3, “Adding Nodes”.

Before bootstrapping any nodes to the cluster, you need to create an initial cluster definition
folder (initialize the cluster). This is done using skuba cluster init andits --control-plane
flag.

For a step by step guide on how to initialize the cluster, configure updates using kured and
subsequently bootstrap nodes to it, refer to the SUSE Caa$S Platform Deployment Guide.

2.3 Adding Nodes

Once you have added the first master node to the cluster using skuba node bootstrap, use the
skuba node join command to add more nodes. Joining master or worker nodes to an existing
cluster should be done sequentially, meaning the nodes have to be added one after another and

not more of them in parallel.

4 Prerequisites SUSE CaasS Platform 4.2.4

skuba node join --role <MASTER/WORKER> --user <USER NAME> --sudo --target <IP/FQDN>
<NODE_NAME>

The mandatory flags for the join command are --role, --user, --sudo and --target.
® --role serves to specify if the node is a master or worker.

® --sudo is for running the command with superuser privileges, which is necessary for all
node operations.

® <USER NAME> is the name of the user that exists on your SLES machine (default: sles).
e --target <IP/FQDN> is the IP address or FQDN of the relevant machine.

® <NODE_NAME> is how you decide to name the node you are adding.

0 Important

New master nodes that you didn’t initially include in your Terraform’s configuration have

to be manually added to your load balancer’s configuration.

To add a new worker node, you would run something like:

skuba node join --role worker --user sles --sudo --target 10.86.2.164 workerl

2.3.1 Adding Nodes from Template

If you are using a virtual machine template for creating new cluster nodes, you must make sure
that before joining the cloned machine to the cluster it is updated to the same software versions

than the other nodes in the cluster.
Refer to Section 4.1, “Update Requirements”.

Nodes with mismatching package or container software versions might not be fully functional.

2.4 Removing Nodes

2.4.1 Temporary Removal

If you wish to remove a node temporarily, the recommended approach is to first drain the node.

5 Adding Nodes from Template SUSE CaasS Platform 4.2.4

When you want to bring the node back, you only have to uncordon it.

@ Tip

For instructions on how to perform these operations refer to Section 2.6, “Node Operations”.

2.4.2 Permanent Removal

o Important

Nodes removed with this method cannot be added back to the cluster or any other sku-

ba-initiated cluster. You must reinstall the entire node and then join it again to the cluster.

The skuba node remove command serves to permanently remove nodes. Running this com-
mand will work even if the target virtual machine is down, so it is the safest way to remove
the node.

skuba node remove <NODE NAME> [flags]

@ Note

Per default, node removal has an unlimited timeout on waiting for the node to drain.
If the node is unreachable it can not be drained and thus the removal will fail or get
stuck indefinitely. You can specify a time after which removal will be performed without
waiting for the node to drain with the flag --drain-timeout <DURATION>.

For example, waiting for the node to drain for 1 minute and 5 seconds:
skuba node remove caasp-workerl --drain-timeout 1m5s

For a list of supported time formats run skuba node remove -h.

o Important

After the removal of a master node, you have to manually delete its entries from your

load balancer’s configuration.

6 Permanent Removal SUSE CaaS Platform 4.2.4

2.5 Reconfiguring Nodes

To reconfigure a node, for example to change the node’s role from worker to master, you will

need to use a combination of commands.

1. Run skuba node remove <NODE NAME>.
2. Reinstall the node from scratch.

3. Run skuba node join --role <DESIRED ROLE> --user <USER NAME> --sudo --
target <IP/FQDN> <NODE NAME>.

2.6 Node Operations

2.6.1 Uncordon and Cordon

These to commands respectively define if a node is marked as schedulable or unschedulable.
This means that a node is allowed to or not allowed to receive any new workloads. This can be

useful when troubleshooting a node.

To mark a node as unschedulable run:
kubectl cordon <NODE_ NAME>
To mark a node as schedulable run:

kubectl uncordon <NODE_NAME>

2.6.2 Draining Nodes

Draining a node consists of evicting all the running pods from the current node in order to
perform maintenance. This is a mandatory step in order to ensure a proper functioning of the

workloads. This is achieved using kubectl.

To drain a node run:

kubectl drain <NODE NAME>

This action will also implicitly cordon the node. Therefore once the maintenance is done, un-

cordon the node to set it back to schedulable.

7 Reconfiguring Nodes SUSE CaasS Platform 4.2.4

Refer to the official Kubernetes documentation for more infor-
mation: https://v1-17.docs.kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/#use-

kubectl-drain-to-remove-a-node-from-service 7

8 Draining Nodes SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/#use-kubectl-drain-to-remove-a-node-from-service
https://v1-17.docs.kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/#use-kubectl-drain-to-remove-a-node-from-service

3 Software Management

3.1 Software Installation
Software can be installed in three basic layers

Base OS layer

Linux RPM packages, Kernel, etc. installation via AutoYaST, Terraform or Zypper.

Kubernetes stack

Software that helps/controls execution of workloads in Kubernetes.

Container image
Here it entirely depends on the actual makeup of the container what can be installed and

how. Please refer to your respecitve container image documentation for further details.

@ Note

Installation of software in container images is beyond the scope of this document.

3.1.1 Base OS

Applications that will be deployed to Kubernetes will typically contain all the required software
to be executed. In some cases, especially when it comes to the hardware layer abstraction (stor-
age backends, GPU), additional packages must be installed on the underlying operating system

outside of Kubernetes.

@ Note

The following examples show installation of required packages for Ceph, please adjust

the list of packages and repositories to whichever software you need to install.

While you can install any software package from the SLES ecosystem this falls outside of

the support scope for SUSE CaaS Platform.

9 Software Installation SUSE CaaS Platform 4.2.4

3.1.1.1 Initial Rollout

During the rollout of nodes you can use either AutoYaST or Terraform (depending on your

chosen deployment type) to automatically install packages to all nodes.

For example, to install additional packages required by the Ceph storage backend you can

modify your autoyast.xml or tfvars.yml files to include the additional repositories and
instructions to install xfsprogs and ceph-common.

1. tfvars.yml

EXAMPLE:

repositories = {

repositoryl = "http://example.my.repo.com/repositoryl/"
repository2 = "http://example.my.repo.com/repository2/"
}

repositories = {

Minimum required packages. Do not remove them.
Feel free to add more packages
packages = [

"kernel-default",

"-kernel-default-base",

"xfsprogs",

"ceph-common"

2. autoyast.xml

<!l-- install required packages -->
<software>
<image/>
<products config:type="1list">
<product>SLES</product>
</products>
<instsource/>
<patterns config:type="1list">
<pattern>base</pattern>
<pattern>enhanced base</pattern>
<pattern>minimal base</pattern>
<pattern>basesystem</pattern>
</patterns>
<packages config:type="1list">
<package>ceph-common</package>
<package>xfsprogs</package>

10 Base OS SUSE CaaS Platform 4.2.4

</packages>
</software>

3.1.1.2 Existing Cluster

To install software on existing cluster nodes, you must use zypper on each node individually.

Simply log in to a node via SSH and run:

sudo zypper in ceph-common xfsprogs

3.1.2 Kubernetes stack

3.1.2.1 Installing Helm

As of SUSE CaaS Platform 4.2.4, Helm is part of the SUSE CaaS Platform package repository, so
to use this, you only need to run the following command from the location where you normally

run skuba commands:
sudo zypper install helm

Helm 2 is the default for SUSE CaaS Platform 4.2.4. Helm 3 is offered as an alternate tool and

may be installed in parallel to aid migration.

sudo zypper install helm3
sudo update-alternatives --set helm /usr/bin/helm3

@ Warning

Unless you are migrating from SUSE CaaS Platform 4.2 with Helm charts already deployed

or have legacy Helm charts that only work with Helm 2, please use Helm 3.

Helm 2 is planned to end support in November 2020. Helm 3 is offered as an alternative
in SUSE CaaS Platform 4.5.0 and will become the default tool in the following release.
Please see Section 3.1.2.3, "Helm 2 to 3 Migration” for upgrade instructions and upgrade as

soon as feasible.

11 Kubernetes stack SUSE CaaS Platform 4.2.4

3.1.2.2 Installing Tiller

@ Note

Tiller is only a requirement for Helm 2 and has been removed from Helm 3. If using Helm

3, please skip this section.

As of SUSE CaaS Platform 4.2.4, Tiller is not part of the SUSE CaaS Platform package repository
but it is available as a helm chart from the chart repository. To install the Tiller server, choose

either way to deploy the Tiller server:

3.1.2.2.1 Unsecured Tiller Deployment

This will install Tiller without additional certificate security.

kubectl create serviceaccount --namespace kube-system tiller

kubectl create clusterrolebinding tiller \
--clusterrole=cluster-admin \
--serviceaccount=kube-system:tiller

helm init \

--tiller-image registry.suse.com/caasp/v4/helm-tiller:2.16.12 \
--service-account tiller

3.1.2.2.2 Secured Tiller Deployment with TLS certificate

This installs tiller with TLS certificate security.

3.1.2.2.2.1 Trusted Certificates

Please refer to Section 5.10.10.1.1, “Trusted Server Certificate” and Section 5.10.10.1.2, “Trusted Client
Certificate” on how to sign the trusted tiller and helm certificate. The server.conf for IP.1 is
127.0.0.1.

Then, import trusted certificate to Kubernetes cluster. In this example, trusted certificate are

ca.crt, tiller.crt, tiller.key, helm.crt and helm.key.

12 Kubernetes stack SUSE CaaS Platform 4.2.4

3.1.2.2.2.2 Self-signed Certificates (optional)

Please refer to Section 5.10.10.2.2, “Self-signed Server Certificate” and Section 5.10.10.2.3, “Self-signed
Client Certificate” on how to sign the self-signed tiller and helm certificate. The server.conf for
IP.1is 127.0.0.1.

Then, import trusted certificate to Kubernetes cluster. In this example, trusted certificate are
ca.crt, tiller.crt, tiller.key, helm.crt and helm.key.

1. Deploy Tiller server with TLS certificate

kubectl create serviceaccount --namespace kube-system tiller

kubectl create clusterrolebinding tiller \
--clusterrole=cluster-admin \
--serviceaccount=kube-system:tiller

helm init \
--tiller-tls \
--tiller-tls-verify \
--tiller-tls-cert tiller.crt \
--tiller-tls-key tiller.key \
--tls-ca-cert ca.crt \
--tiller-image registry.suse.com/caasp/v4/helm-tiller:2.16.12 \
--service-account tiller

2. Configure Helm client with TLS certificate
Setup $HELM_HOME environment and copy the CA certificate, helm client certificate and
key to the $HELM_HOME path.

export HELM HOME=<path/to/helm/home>

cp ca.crt $HELM HOME/ca.pem
cp helm.crt $HELM HOME/cert.pem
cp helm.key $HELM HOME/key.pem

Then, for helm commands, pass flag --tls. For example:

helm 1s --tls [flags]

helm install --tls <CHART> [flags]

helm upgrade --tls <RELEASE NAME> <CHART> [flags]
helm del --tls <RELEASE NAME> [flags]

13 Kubernetes stack SUSE CaaS Platform 4.2.4

3.1.2.3 Helm 2 to 3 Migration

@ Note

The process for migrating an installation from Helm 2 to Helm 3 has been documented

and tested by the Helm community. Refer to:

® https://v3.helm.sh/docs/topics/v2_v3_migration/a
® https://helm.sh/blog/migrate-from-helm-v2-to-helm-v3/#

® https://github.com/helm/helm-2to3 <

3.1.2.3.1 Preconditions

¢ A healthy SUSE CaaS Platform installation with applications deployed using Helm 2 and
Tiller.

® A system, which skuba and version 2 of helm have run on previously.

® The procedure below requires an available internet connection to install the 2to3
plugin. If the installation is in an air gapped environment, the system may need to

be moved back out of the air gapped environment.

¢ These instructions are written for a single cluster managed from a single Helm 2 instal-
lation. If more than one cluster is being managed by this installation of Helm 2, please
reference https://github.com/helm/helm-2to3 # for further details and do not do the clean-

up step until all clusters are migrated.

3.1.2.3.2 Migration Procedure

This is a procedure for migrating a SUSE CaaS Platform deployment that has used Helm 2 to
deploy applications.

14 Kubernetes stack SUSE CaaS Platform 4.2.4

https://v3.helm.sh/docs/topics/v2_v3_migration/
https://helm.sh/blog/migrate-from-helm-v2-to-helm-v3/
https://github.com/helm/helm-2to3
https://github.com/helm/helm-2to3

15

1. Install helm3 package in the same location you normally run skuba commands (alongside

the helm package):

sudo zypper in helm3

2. Install the 2to3 plugin:
helm3 plugin install https://github.com/helm/helm-2to3.git
3. Backup Helm 2 data found in the following:
a. Helm 2 home folder.

b. Release data from the cluster. Refer to How Helm Uses ConfigMaps to
Store Data (http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-
data.html) # for details on how Helm 2 stores release data in the cluster. This should

apply similarly if Helm 2 is configured for secrets.
4. Move configuration from 2 to 3:

helm3 2to3 move config

a. After the move, if you have installed any custom plugins, then check that they
work fine with Helm 3. If needed, remove and re-add them as described in https://

github.com/helm/helm-2to3s 2.

b. If you have configured any local helm chart repositories, you will need to remove

and re-add them. For example:

helm3 repo remove <my-custom-repo>
helm3 repo add <my-custom-repo> <url-to-custom-repo>
helm3 repo update

5. Migrate Helm releases (deployed charts) in place:

helm3 2to3 convert RELEASE

6. Clean up Helm 2 data:

@ Warning

Tiller will be cleaned up, and Helm 2 will not be usable on this cluster after cleanup.

Kubernetes stack SUSE CaaS Platform 4.2.4

http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-data.html
http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-data.html
http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-data.html
https://github.com/helm/helm-2to3s
https://github.com/helm/helm-2to3s

helm3 2to3 cleanup

7. You may now set the helm command line to use the the helm3 package from now on.

sudo update-alternatives --set helm /usr/bin/helm3

3.1.2.3.3 Migration Procedure (Air gap)

@ Note

If you are upgrading in an air gap environment, you must manually install the "developer"

version of the 2to3 plugin.

1. Install helm3 package in the same location you normally run skuba commands (alongside

the helm2 package):

sudo zypper in helm3

2. Download the latest release from https://github.com/helm/helm-2to3/releases 7
3. On your internal workstation unpack the archive file:

mkdir ./helm-2to3
tar -xvf helm-2to3 0.7.0 linux_amd64.tar.gz -C ./helm-2to3

4. Install the plugin

export HELM LINTER PLUGIN NO INSTALL HOOK=true
helm plugin install ./helm-2to3

The expected output should contain a message like:

Development mode: not downloading versioned release.
Installed plugin: 2to3

5. Now copy the installed plugin to a sub directory to allow manual execution
cd $HOME/.helm/plugins/helm-2to3/

mkdir bin
cp 2to3 bin/2to3

16 Kubernetes stack SUSE CaaS Platform 4.2.4

https://github.com/helm/helm-2to3/releases

6. Backup Helm 2 data found in the following:

a. Helm 2 home folder.

b. Release data from the cluster. Refer to How Helm Uses ConfigMaps to
Store Data (http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-
data.html) # for details on how Helm 2 stores release data in the cluster. This should

apply similarly if Helm 2 is configured for secrets.
7. Move configuration from 2 to 3:

helm3 2to3 move config

a. After the move, if you have installed any custom plugins, then check that they
work fine with Helm 3. If needed, remove and re-add them as described in https://
github.com/helm/helm-2to3s 2.

b. If you have configured any local helm chart repositories, you will need to remove

and re-add them. For example:

helm3 repo remove <my-custom-repo>
helm3 repo add <my-custom-repo> <url-to-custom-repo>
helm3 repo update

8. Migrate Helm releases (deployed charts) in place:

helm3 2to3 convert RELEASE

9. Clean up Helm 2 data:

@ Warning

Tiller will be cleaned up, and Helm 2 will not be usable on this cluster after cleanup.

helm3 2to3 cleanup

10. You may now uninstall the helm2 package and use the helm command line from the

helm3 package from now on.

sudo zypper remove helm2

17 Kubernetes stack SUSE CaaS Platform 4.2.4

http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-data.html
http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-data.html
http://technosophos.com/2017/03/23/how-helm-uses-configmaps-to-store-data.html
https://github.com/helm/helm-2to3s
https://github.com/helm/helm-2to3s

4 Cluster Updates

4.1 Update Requirements

o Important

Attempting a cluster update without updating the installed packages pattern on the man-

agement node, can lead to an incomplete or failed update.

Before updating a SUSE Caa$ Platform cluster, it’s required to update packages installed by the

SUSE-CaaSP-Management pattern on the management workstation.

The cluster update depends on updated skuba, but might also require new helm / Terraform or

other dependencies which will be updated with the refreshed pattern.

Run sudo zypper update on the management workstation before any attempt to update the
cluster.

4.2 Updating Kubernetes Components

Updating of Kubernetes and its components from one minor version to the next (for example
from 1.16 to 1.17) is handled by skuba. The reason for this is that minor updates require
special plan and apply procedures. These procedures differ for patch updates (for example
1.16.1 to 1.16.2), which are handled by skuba-update as described in Section 4.4, “Base OS
Updates”.

o Important

Generally speaking: If you have other deployments not installed via Kubernetes or helm,
update them last in the upgrade process.

However, if your applications/deployments in their current versions are incompatible
with the Kubernetes version that you are upgrading to, you must update these applica-

tions/deployments to a compatible version before attempting a cluster upgrade.

Refer to the individual application/deployment for the requirements for Kubernetes ver-

sion and dependencies.

18 Update Requirements SUSE CaasS Platform 4.2.4

The general procedure should look like this:

19

1. Check if all current versions of applications and deployments in the cluster will work on

the new Kubernetes version you plan to install.

¢ If an application/deployment is incompatible with the new Kubernetes version, up-
date the application/deployment before performing any of the other upgrade steps.

. Update the packages and reboot your management workstation to get all the latest changes

to skuba, helm and their dependencies.

. Run the commands on the management workstation.

® skuba addon refresh localconfig
® skuba addon upgrade plan

® skuba addon upgrade apply

. Apply all the configuration files that you modified for addons, the upgrade will have reset

the configurations to defaults.

. Check if there are addon upgrades available for the current cluster using skuba addon

upgrade plan.

® Check if all the deployments in the cluster are compatible with the Kubernetes re-
lease that will be installed (refer to your individual deployments' documentation). If
the deployment is not compatible you must update it to ensure it working with the
updated Kubernetes.

. Upgrade all master nodes by sequentially running skuba node upgrade plan and skuba

node upgrade apply.

® Make sure to wait until all PODs/deployments/DaemonSets are up and running as

expected before moving to the next node.

. Upgrade all worker nodes by sequentially running skuba node upgrade plan and skuba

node upgrade apply.

Updating Kubernetes Components SUSE CaasS Platform 4.2.4

® Make sure to wait until all PODs/deployments/DaemonSets are up and running as

expected before moving to the next node.
8. Check if new addons are available for the new version using skuba addon upgrade plan.

9. Once all nodes are up to date, update helm and tiller (as needed) and subsequently the

helm deployments.

4.2.1 Update Management Workstation

Run sudo zypper up on your management workstation to get the latest version of skuba and
its dependencies. Reboot the machine to make sure that all system changes are correctly applied.

4.2.2 Generating an Overview of Available Platform Updates

In order to get an overview of the updates available, you can run:

skuba cluster upgrade plan

This will show you a list of updates (if available) for different components installed on the
cluster. If the cluster is already running the latest available versions, the output should look
like this:

Current Kubernetes cluster version: 1.16.2
Latest Kubernetes version: 1.16.2

Congratulations! You are already at the latest version available

If the cluster has a new patch-level or minor Kubernetes version available, the output should
look like this:

Current Kubernetes cluster version: 1.15.2
Latest Kubernetes version: 1.16.2

Upgrade path to update from 1.15.2 to 1.16.2:
- 1.15.2 -> 1.16.2

Similarly, you can also fetch this information on a per-node basis with the following command:

skuba node upgrade plan <NODE>

20 Update Management Workstation SUSE CaasS Platform 4.2.4

For example, if the cluster has a node named worker® which is running the latest available

versions, the output should look like this:

Current Kubernetes cluster version: 1.16.2
Latest Kubernetes version: 1.16.2

Node worker® is up to date

On the other hand, if this same node has a new patch-level or minor Kubernetes version avail-
able, the output should look like this:

Current Kubernetes cluster version: 1.15.2
Latest Kubernetes version: 1.16.2

Current Node version: 1.15.2

Component versions in worker0®
- kubelet: 1.15.2 -> 1.16.2
- cri-o: 1.15.0 -> 1.16.0

You will get a similar output if there is a version available on a master node (named master0
in this example):

Current Kubernetes cluster version: 1.15.2
Latest Kubernetes version: 1.16.2

Current Node version: 1.15.2

Component versions in master0
- apiserver: 1.15.2 -> 1.16.2
- controller-manager: 1.15.2 -> 1.16.2
- scheduler: 1.15.2 -> 1.16.2
- etcd: 3.3.11 -> 3.3.15
- kubelet: 1.15.2 -> 1.16.2
- cri-o: 1.15.0 -> 1.16.0

It may happen that the Kubernetes version on the control plane is too outdated for the update

to progress. In this case, you would get output similar to the following:

Current Kubernetes cluster version: 1.15.0
Latest Kubernetes version: 1.15.0

Unable to plan node upgrade: at least one control plane does not tolerate the current
cluster version

21 Generating an Overview of Available Platform Updates SUSE CaasS Platform 4.2.4

@ Tip

The control plane consists of these components:

® apiserver

controller-manager

scheduler

e eted

kubelet

® cri-o

4.2.3 Generating an Overview of Available Addon Updates

@ Note

22

Due to changes to the way skuba handles addons some existing components might be
shown as new addon in the status output. This is expected and no cause for concern.
For any upgrade afterwards the addon will be considered known and only show available

upgrades.

Important

SUSE CaasS Platform 4.2.1 provides the update of Cilium from 1.5.3 to 1.6.6. The impor-
tant change in Cilium 1.6 is usage of Kubernetes CRDs instead of etcd. skuba performs
and automated migration of data from etcd to CRDs. If that migration is not successful,

skuba shows the following warning:

"Could not migrate data from etcd to CRD. Addons upgrade will be continued without it, which

will result in temporary connection loss for currently existing pods and services."

That warning means that Cilium is going to regenerate all internal data on the first run
after upgrade. It can result in temporary connection loss for pods and services which

might take few minutes.

Generating an Overview of Available Addon Updates SUSE CaasS Platform 4.2.4

Each Kubernetes cluster version comes with different addons base manifests. To update your

local addons cluster folder definition in-sync with current Kubernetes cluster version, please run:
skuba addon refresh localconfig

In order to get an overview of the addon updates available, you can run:
skuba addon upgrade plan

This will show you a list of updates (if available) for different addons installed on the cluster:

Current Kubernetes cluster version: 1.17.4
Latest Kubernetes version: 1.17.4

Addon upgrades for 1.17.4:
- cilium: 1.5.3 -> 1.6.6
- dex: 2.16.0 (manifest version from 5 to 6)
- gangway: 3.1.0-rev4 (manifest version from 4 to 5)
- metrics-server: 0.3.6 (new addon)

If the cluster is already running the latest available versions, the output should look like this:

Current Kubernetes cluster version: 1.17.4
Latest Kubernetes version: 1.17.4

Congratulations! Addons are already at the latest version available

Before updating the nodes you must apply the addon upgrades to your management workstation.

Please run:

skuba addon upgrade apply

4.3 Updating Nodes

@ Note

It is recommended to use a load balancer with active health checks and pool management

that will take care of adding/removing nodes to/from the pool during this process.

Updates have to be applied separately to each node, starting with the control plane all the way

down to the worker nodes.

23 Updating Nodes SUSE CaasS Platform 4.2.4

Note that the upgrade via skuba node upgrade apply will:
¢ Upgrade the containerized control plane.
¢ Upgrade the rest of the Kubernetes system stack (kubelet, cri-o).

e Restart services.

During the upgrade to a newer version, the API server will be unavailable.

During the upgrade all the pods in the worker node will be restarted so it is recommended to
drain the pods if your application requires high availability. In most cases, the restart is handled
by replicaSet.

4.3.1 How To Update Nodes

1. Upgrade the master nodes:

skuba node upgrade apply --target <MASTER NODE IP> --user <USER> --sudo
2. When all master nodes are upgraded, upgrade the worker nodes as well:

skuba node upgrade apply --target <WORKER NODE IP> --user <USER> --sudo
3. Verify that your cluster nodes are upgraded by running:

skuba cluster upgrade plan

@ Tip
The upgrade via skuba node upgrade apply will:
e upgrade the containerized control plane.

® upgrade the rest of the Kubernetes system stack (kubelet, cri-o).

¢ temporarily drain/cordon the node before starting the whole process, and then
undrain/uncordon the node after the upgrade has been successfully applied.

® restart services.

24 How To Update Nodes SUSE CaasS Platform 4.2.4

4.3.2 Check for Upgrades to New Version

Once you have upgraded all nodes, please run skuba cluster upgrade plan again. This will
show if any upgrades are available that required the versions you just installed. If there are

upgrades available please repeat the procedure until no more new upgrades are shown.

4.4 Base OS Updates

Base operating system updates are handled by skuba-update, which works together with the

kured reboot daemon.

44,1 Disabling Automatic Updates

Nodes added to a cluster have the service skuba-update.timer, which is responsible for run-

ning automatic updates, activated by default.

This service calls the skuba-update utility and it can be configured with the /etc/syscon-
fig/skuba-update file.

@ Note: How skuba-update non-interactive mode works

skuba-update wuses the flags --non-interactive and --non-interactive-in-
clude-reboot-patches. The --non-interactive flag causes zypper to use default an-
swers to questions rather than prompting a user for answers. In non-interactive mode,
the --non-interactive-include-reboot-patches flag causes patches with the re-
bootSuggested-flag to not be skipped. Zypper does not perform the reboot directly.
Instead, kured will be used to safely schedule reboots as needed.

To disable the automatic updates on a node, simply ssh to it and then configure the skuba-up-
date service by editing the /etc/sysconfig/skuba-update file with the following runtime

options:

Path : System/Management

Description : Extra switches for skuba-update
Type : string

Default "

ServiceRestart : skuba-update

#

SKUBA UPDATE_OPTIONS="--annotate-only"

25 Check for Upgrades to New Version SUSE CaasS Platform 4.2.4

@ Tip

It is not required to reload or restart skuba-update.timer.

The --annotate-only flag makes the skuba-update utility only check if updates are available
and annotate the node accordingly. When this flag is activated no updates are installed at all.

When OS updates are disabled, then you will have to manage OS updates manually. In order to

do so, you will have to call skuba-update manually on each node.

@ Warning

Do not use zypper up/zypper patch commands as these do not manage the Kubernetes
annotations used by kured. If you perform a manual update using these commands you

might render your cluster unusable.

After that, rebooting the node will depend on whether you have also disabled reboots or not.
If you have disabled reboots for this node, then you will have to follow the instructions as
given in Section 4.4.2, “Completely Disabling Reboots”. Otherwise, you will have to wait until kured

performs the reboot of the node

44,2 Completely Disabling Reboots

If you would like to take care of reboots manually, either as a temporary measure or perma-

nently, you can disable them by creating a lock:

kubectl -n kube-system annotate ds kured weave.works/kured-node-
lock="'{"nodeID":"manual"}"'

This command modifies an annotation (annotate) on the daemonset (ds) named kured.

When automatic reboots are disabled, you will have to manage reboots yourself. In order to
do this, you will have to follow some steps whenever you want to issue a reboot marker for
a node. First of all, you will have to cordon and drain (https://v1-17.docs.kubernetes.io/docs/

tasks/administer-cluster/safely-drain-node/) # the node:

kubectl cordon <NODE_ID>

kubectl drain --force=true \
--ignore-daemonsets=true \ @
--delete-local-data=false \ @
--grace-period 600 \ ©

26 Completely Disabling Reboots SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://v1-17.docs.kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/

--timeout=900s \ @
<NODE_ID>

@ Core components like kured and cilium are running as DaemonSet and draining those

pods will fail if this is not set to true.

® Continues even if there are pods using emptyDir (local data that will be deleted when the

node is drained; e.g: metrics-server).

© Running applications will be notified of termination and given 10 minutes (600 seconds)

to safely store data.

@ Draining of the node will fail after 15 minutes (900 seconds) have elapsed without success.

o Important

Depending on your deployed applications, you must adjust the values for --grace-pe-
riod and --timeout to grant the applications enough time to safely shut down without
losing data. The values here are meant to represent a conservative default for an appli-
cation like SUSE Cloud Application Platform.

If you do not set these values, applications might never finish and draining of the pod

will hang indefinitely.

Only then you will be able to manually reboot the node safely.

Once the node is back, remember to uncordon it so it is scheduleable again:

kubectl uncordon <NODE ID>

Perform the above steps first on control plane nodes, and afterwards on worker nodes.

Qw
If the node that should be rebooted does not contain any workload you can skip the above

steps and simply reboot the node.

4.4.3 Manual Unlock

In exceptional circumstances, such as a node experiencing a permanent failure whilst rebooting,

manual intervention may be required to remove the cluster lock:

kubectl -n kube-system annotate ds kured weave.works/kured-node-lock-

27 Manual Unlock SUSE CaaS Platform 4.2.4

This command modifies an annotation (annotate) on the daemonset (ds) named kured. It
explicitly performs an "unset" (-) for the value for the annotation named weave.works/kured-

node-lock.

28 Manual Unlock SUSE CaaS Platform 4.2.4

5 Security

5.1 Network Access Considerations

It is good security practice not to expose the kubernetes API server on the public internet. Use

network firewalls that only allow access from trusted subnets.

5.2 Access Control

Users access the API using kubectl, client libraries, or by making REST requests. Both human
users and Kubernetes service accounts can be authorized for API access. When a request reaches
the API, it goes through several stages, that can be explained with the following three questions:

1. Authentication: who are you? This is accomplished via client certificates, bearer tokens,
an authenticating proxy, or HTTP basic auth to authenticate API requests through authen-

tication plugins.

2. Authorization: what kind of access do you have? This is accomplished via Section 5.5,
“Role Based Access Control (RBAC)” AP, that is a set of permissions for the previously authen-
ticated user. Permissions are purely additive (there are no "deny" rules). A role can be

defined within a namespace with a Role, or cluster-wide with a ClusterRole.

3. Admission Control: what are you trying to do? This is accomplished via Section 5.9, “Ad-

mission Controllers”. They can modify (mutate) or validate (accept or reject) requests.

Unlike authentication and authorization, if any admission controller rejects, then the request

is immediately rejected.

5.3 Role Management

SUSE CaaS Platform uses role-based access control authorization for Kubernetes. Roles define,
which subjects (users or groups) can use which verbs (operations) on which resources. The fol-
lowing sections provide an overview of the resources, verbs and how to create roles. Roles can

then be assigned to users and groups.

29 Network Access Considerations SUSE CaaS Platform 4.2.4

5.3.1 List of Verbs

This section provides an overview of the most common verbs (operations) used for defining roles.

Verbs correspond to sub-commands of kubectl.

Create

Create a resource.

delete

Delete resources.

deletecollection

Delete a collection of a resource (can only be invoked using the Kubernetes API).

get

Display individual resource.

list

Display collections.

patch
Update an API object in place.

proxy
Allows running kubectl in a mode where it acts as a reverse proxy.

update

Update fields of a resource, for example annotations or labels.

watch

Watch resource.

5.3.2 List of Resources

This section provides an overview of the most common resources used for defining roles.

Autoscaler

https://v1-17.docs.kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/ <

ConfigMaps
https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-pod-

configmap/ @

30 List of Verbs SUSE CaaS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

Cronjob

https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/ @

DaemonSet

https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/daemonset/ #

Deployment

https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/deployment/ <

Ingress

https://v1-17.docs.kubernetes.io/docs/concepts/services-networking/ingress/ <

Job
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-

completion/#

Namespace
https://v1-17.docs.kubernetes.io/docs/concepts/overview/working-with-

objects/namespaces/ @

Node

https://v1-17.docs.kubernetes.io/docs/concepts/architecture/nodes/ 2

Pod

https://v1-17.docs.kubernetes.io/docs/concepts/workloads/pods/pod-overview/ <

Persistent Volumes

https://v1-17.docs.kubernetes.io/docs/concepts/storage/persistent-volumes/#

Secrets

https://v1-17.docs.kubernetes.io/docs/concepts/configuration/secret/ @

Service

https://v1-17.docs.kubernetes.io/docs/concepts/services-networking/service/ 7

ReplicaSets

https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/replicaset/ #

5.3.3 Creating Roles

Roles are defined in YAML files. To apply role definitions to Kubernetes, use kubectl apply -

f YAML FILE. The following examples provide an overview about different use cases of roles.

31 Creating Roles SUSE Caas Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://v1-17.docs.kubernetes.io/docs/concepts/services-networking/ingress/
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://v1-17.docs.kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://v1-17.docs.kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://v1-17.docs.kubernetes.io/docs/concepts/architecture/nodes/
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://v1-17.docs.kubernetes.io/docs/concepts/storage/persistent-volumes/
https://v1-17.docs.kubernetes.io/docs/concepts/configuration/secret/
https://v1-17.docs.kubernetes.io/docs/concepts/services-networking/service/
https://v1-17.docs.kubernetes.io/docs/concepts/workloads/controllers/replicaset/

EXAMPLE 5.1: SIMPLE ROLE FOR CORE RESOURCE

This example allows to get, watch and list all pods in the namespace default.

kind: Role
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: view-pods @
namespace: default @
rules:
- apiGroups: [""] ©
resources: ["pods"] @
verbs: ["get", "watch", "list"] @

@ Name of the role. This is required to associate the rule with a group or user. For

details, refer to Section 5.3.4, “Create Role Bindings”.

® Namespace the new group should be allowed to access. Use default for Kubernetes'
default namespace.

© Kubernetes API groups. Use "" for the core group. Use kubectl api-resources
to list all API groups.

@ Kubernetes resources. For a list of available resources, refer to Section 5.3.2, “List of
Resources”.

© Kubernetes verbs. For a list of available verbs, refer to Section 5.3.1, “List of Verbs”.

EXAMPLE 5.2: CLUSTER ROLE FOR CREATION OF PODS

This example creates a cluster role to allow create pods clusterwide. Note the Clus-
terRole value for kind.

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: admin-create-pods @
rules:
- apiGroups: [""] @&
resources: ["pods"] ©
verbs: ["create"] @

@ a group or user. For details, refer to Section 5.3.4, “Create Role Bindings”.

® Kubernetes API groups. Use "" for the core group. Use kubectl api-resources
to list all API groups.

© Kubernetes resources. For a list of available resources, refer to Section 5.3.2, “List of

Resources”.

32 Creating Roles SUSE CaasS Platform 4.2.4

| @ Kubernetes verbs. For a list of available verbs, refer to Section 5.3.1, “List of Verbs”.

5.3.4 Create Role Bindings

To bind a group or user to a role, create a YAML file that contains the role binding description.
Then apply the binding with kubectl apply -f YAML FILE. The following examples provide

an overview about different use cases of role bindings.

EXAMPLE 5.3: BINDING A GROUP TO A ROLE

This example shows how to bind a group to a defined role.

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: <ROLE BINDING NAME> @
namespace: <NAMESPACE> @
subjects:
- kind: Group
name: <LDAP_GROUP_NAME> ©
apiGroup: rbac.authorization.k8s.io
roleRef:
kind: Role
name: <ROLE NAME> @
apiGroup: rbac.authorization.k8s.io

Defines a name for this new role binding.
Name of the namespace to which the binding applies.
Name of the LDAP group to which this binding applies.

”

Name of the role used. For defining rules, refer to Section 5.3.3, “Creating Roles”.

© ®0 0

EXAMPLE 5.4: BINDING A GROUP TO A CLUSTER ROLE

This example shows how to bind a group to a defined cluster role.

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1l
metadata:

name: <CLUSTER ROLE BINDING NAME> @
subjects:
- kind: Group

name: <CLUSTER GROUP NAME> @

33 Create Role Bindings SUSE CaasS Platform 4.2.4

apiGroup: rbac.authorization.k8s.io
roleRef:

kind: ClusterRole

name: <CLUSER ROLE NAME> ©

apiGroup: rbac.authorization.k8s.io

@ Defines a name for this new cluster role binding.

® Name of the LDAP group to which this binding applies.

© Name of the role used. For defining rules, refer to Section 5.3.3, “Creating Roles”.

o Important

When creating new Roles, ClusterRoles, RoleBindings, and ClusterRoleBindings, it is im-

portant to keep in mind the Principle of Least Privilege:

"define rules such that the account bound to the Role or ClusterRole has the minimum amount

of permissions needed to fulfill its purpose and no more."

For instance, granting the admin ClusterRole to most accounts is most likely unnecessary,
when a reduced-scope role would be enough fulfill the account’s purpose. This helps

reduce the attack surface if an account is compromised.

It is also recommended to periodically review your Roles and ClusterRoles to ensure they

are still required and are not overly-permissive.

5.4 Managing Users and Groups

You can use standard LDAP administration tools for managing organizations, groups and users
remotely. To do so, install the openldap2-client package on a computer in your network and
make sure that the computer can connect to the LDAP server (389 Directory Server) on port

389 or secure port 636.

5.4.1 Adding a New Organizational Unit

1. To add a new organizational unit, create an LDIF file (create ou groups.ldif) like this:
dn: ou=0U NAME,dc=example,dc=org

changetype: add
objectclass: top

34 Managing Users and Groups SUSE CaasS Platform 4.2.4

objectclass: organizationalUnit
ou: OU NAME

¢ Substitute OU_NAME with an organizational unit name of your choice.

2. Run ldapmodify to add the new organizational unit:

LDAP_PROTOCOL=1dap # ldap, ldaps

LDAP_NODE FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN="cn=Directory Manager" # Admin User

LDIF FILE=./create ou groups.ldif # LDIF Configuration File

DS DM PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_ FQDN><LDAP_NODE PROTOCOL> -D
"<BIND DN>" -f <LDIF FILE> -w <DS DM PASSWORD>

5.4.2 Removing an Organizational Unit

1. Toremove an organizational unit, create an LDIF file (delete ou groups.ldif) like this:

dn: ou=0U NAME, dc=example,dc=0rg
changetype: delete

¢ Substitute OU_NAME with the name of the organizational unit you would like to

remove.

2. Execute ldapmodify to remove the organizational unit:

LDAP_PROTOCOL=1dap # ldap, ldaps

LDAP_NODE FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN="cn=Directory Manager" # Admin User

LDIF FILE=./delete ou groups.ldif # LDIF Configuration File

DS DM PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP NODE PROTOCOL> -D
"<BIND DN>" -f <LDIF FILE> -w <DS DM PASSWORD>

35 Removing an Organizational Unit SUSE CaasS Platform 4.2.4

5.4.3 Adding a New Group to an Organizational Unit

1. To add a new group to an organizational unit, create an LDIF file (create groups.ldif)
like this:
dn: cn=GROUP,ou=0U_NAME,dc=example,dc=org
changetype: add
objectClass: top

objectClass: groupOfNames
cn: GROUP

® GROUP: Group name
® OU_NAME: Organizational unit name

2. Run ldapmodify to add the new group to the organizational unit:

LDAP_PROTOCOL=1dap # ldap, ldaps

LDAP_NODE FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN="cn=Directory Manager" # Admin User

LDIF FILE=./create groups.ldif # LDIF Configuration File

DS DM PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE FQDN><LDAP NODE PROTOCOL> -D
"<BIND DN>" -f <LDIF FILE> -w <DS DM PASSWORD>

5.4.4 Removing a Group from an Organizational Unit

1. To remove a group from an organizational unit, create an LDIF file (delete ou group-
s.1ldif) like this:

dn: cn=GROUP,ou=0U NAME,dc=example,dc=org
changetype: delete

® GROUP: Group name
* OU_NAME: organizational unit name
2. Execute ldapmodify to remove the group from the organizational unit:

LDAP_PROTOCOL=1dap # ldap, ldaps
LDAP_NODE FQDN=localhost # FQDN of 389 Directory Server

36 Adding a New Group to an Organizational Unit SUSE CaasS Platform 4.2.4

LDAP_NODE PROTOCOL=:389 # Non-TLS (:389), TLS (:636)

BIND DN="cn=Directory Manager" # Admin User
LDIF FILE=./delete ou groups.ldif # LDIF Configuration File
DS DM PASSWORD= # Admin Password

ldapmodify -v -H <LDAP PROTOCOL>://<LDAP NODE FQDN><LDAP NODE PROTOCOL> -D

"<BIND DN>" -f <LDIF FILE> -w <DS DM PASSWORD>

5.4.4.1 Adding a New User

1. To add a new user, create an LDIF file (new user.ldif) like this:

dn: uid=USERID, ou=0U NAME,dc=example,dc=org
objectClass: person

objectClass: inetOrgPerson

objectClass: top

uid: USERID

userPassword: PASSWORD HASH

givenname: FIRST NAME

sn: SURNAME

cn: FULL NAME

mail: E-MAIL ADDRESS

e USERID: User ID (UID) of the new user. This value must be a unique number.

¢ OU_NAME: organizational unit name

® PASSWORD _HASH: The user’s hashed password.SSHA_PASSWORD: The user’s new

hashed password.
Use /usr/sbin/slappasswd to generate the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER PASSWORD>
Use /usr/bin/pwdhash to generate the SSHA hash.
/usr/bin/pwdhash -s SSHA <USER PASSWORD>

e FIRST NAME: The user’s first name

® SURNAME: The user’s last name

37 Removing a Group from an Organizational Unit

SUSE CaaS Platform 4.2.4

e FULL NAME: The user’s full name
e E-MAIL_ADDRESS: The user’s e-mail address

2. Execute ldapadd to add the new user:

LDAP_PROTOCOL=1dap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP _NODE PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN="cn=Directory Manager" # Admin User

LDIF FILE=./new user.ldif # LDIF Configuration File

DS DM PASSWORD= # Admin Password

ldapadd -v -H <LDAP_PROTOCOL>://<LDAP_NODE FQDN><LDAP_ NODE PROTOCOL> -D
"<BIND DN>" -f <LDIF FILE> -w <DS DM PASSWORD>

5.4.4.2 Showing User Attributes

1. To show the attributes of a user, use the ldapsearch command:

LDAP_PROTOCOL=1dap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)

USERID=userl

BASE DN="uid=<USERID>,dc=example,dc=org"

BIND DN="cn=Directory Manager" # Admin User

DS DM PASSWORD= # Admin Password

ldapsearch -v -x -H <LDAP PROTOCOL>://<LDAP NODE FQDN><LDAP NODE PROTOCOL> -b
"<BASE DN>" -D "<BIND DN>" -w <DS DM PASSWORD>

5.4.43 Modifying a User

The following procedure shows how to modify a user in the LDAP server. See the LDIF files
for examples of how to change rootdn password, a user password and add a user to the Admin-
istrators group. To modify other fields, you can use the password example, replacing user-

Password with other field names you want to change.
1. Create an LDIF file (modify rootdn.ldif), which contains the change to the LDAP server:

dn: cn=config

38 Removing a Group from an Organizational Unit SUSE CaasS Platform 4.2.4

changetype: modify
replace: nsslapd-rootpw
nsslapd-rootpw: NEW PASSWORD

* NEW_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd

to generate the SSHA hash.
Use /usr/sbin/slappasswd to generate the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER PASSWORD>
Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA <USER PASSWORD>

2. Create an LDIF file (modify user.ldif), which contains the change to the LDAP server:

dn: uid=USERID, ou=0U NAME,dc=example,dc=org
changetype: modify

replace: userPassword

userPassword: NEW_ PASSWORD

e USERID: The desired user’s ID

¢ OU_NAME: organizational unit name

© NEW_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd

to generate the SSHA hash.
Use /usr/sbin/slappasswd to generate the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER PASSWORD>
Use /usr/bin/pwdhash to generate the SSHA hash.

/usr/bin/pwdhash -s SSHA <USER PASSWORD>

3. Add the user to the Administrators group:

dn: cn=Administrators,ou=Groups,dc=example,dc=org
changetype: modify

add: uniqueMember

uniqueMember: uid=USERID,ou=0U NAME,dc=example,dc=0org

39 Removing a Group from an Organizational Unit

SUSE CaaS Platform 4.2.4

e USERID: Substitute with the user’s ID.
®* OU_NAME: organizational unit name

4. Execute ldapmodify to change user attributes:

LDAP_PROTOCOL=1dap # ldap, ldaps

LDAP_NODE FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN="cn=Directory Manager" # Admin User

LDIF FILE=./modify user.ldif # LDIF Configuration File

DS DM PASSWORD= # Admin Password

ldapmodify -v -H <LDAP_PROTOCOL>://<LDAP_NODE_FQDN><LDAP_NODE_PROTOCOL> -D
"<BIND DN>" -f <LDIF FILE> -w <DS_DM_PASSWORD>

5.4.4.4 Deleting a User

To delete a user from the LDAP server, follow these steps:

1. Create an LDIF file (delete user.ldif) that specifies the name of the entry:

dn: uid=USER ID,ou=0U NAME,dc=example,dc=o0rg
changetype: delete

e USERID: Substitute this with the user’s ID.
¢ OU_NAME: organizational unit name

2. Run ldapmodify to delete the user:

LDAP_PROTOCOL=1dap # ldap, ldaps
LDAP_NODE_FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE_PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN="cn=Directory Manager" # Admin User

LDIF FILE=./delete user.ldif # LDIF Configuration File

DS DM PASSWORD= # Admin Password

ldapmodify -v -H <LDAP PROTOCOL>://<LDAP NODE FQDN><LDAP NODE PROTOCOL> -D
"<BIND DN>" -f <LDIF FILE> -w <DS DM PASSWORD>

40 Removing a Group from an Organizational Unit SUSE CaasS Platform 4.2.4

5.4.4.5 Changing Your own LDAP Password from CLI

To perform a change to your own user password from CLI.

LDAP_PROTOCOL=1dap # ldap, ldaps

LDAP_NODE FQDN=localhost # FQDN of 389 Directory Server
LDAP_NODE PROTOCOL=:389 # Non-TLS (:389), TLS (:636)
BIND DN= # User's binding dn

DS DM PASSWORD= # 0ld Password

NEW DS DM PASSWORD= # New Password

ldappasswd -v -H <LDAP_PROTOCOL>://<LDAP_NODE FQDN><LDAP NODE PROTOCOL> -x -D
"<BIND DN>" -w <DS DM PASSWORD> -a <DS DM PASSWORD> -s <NEW DS DM _PASSWORD>

5.5 Role Based Access Control (RBAQ)

5.5.1 Introduction

RBAC uses the rbac.authorization.k8s.io API group to drive authorization decisions, al-

lowing administrators to dynamically configure policies through the Kubernetes API.

The authentication components are deployed as part of the SUSE CaaS Platform installation.
Administrators can update LDAP identity providers before or after platform deployment. After
deploying SUSE CaaS Platform, administrators can use Kubernetes RBAC to design user or group
authorizations. Users can access with a Web browser or command line to do the authentication

and self-configure kubectl to access authorized resources.

41 Role Based Access Control (RBAC) SUSE CaaS Platform 4.2.4

5.5.2 Authentication Flow

Authentication is composed of:

® Dex (https://github.com/dexidp/dex #) is an identity provider service (idP) that uses OIDC
(Open ID Connect: https://openid.net/connect/ #) to drive authentication for client appli-
cations. It acts as a portal to defer authentication to provider through connected identity

providers (connectors).
¢ Client:

1. Web browser: Gangway (https://github.com/heptiolabs/gangway #): a Web applica-
tion that enables authentication flow for your SUSE CaaS Platform. The user can lo-

gin, authorize access, download kubeconfig or self-configure kubectl.

2. Command line: skuba auth login, a CLI application that enables authentication
flow for your SUSE CaaS Platform. The user can log in, authorize access, and get

kubeconfig.

For RBAC, administrators can use kubectl to create corresponding RoleBinding or Clus-

terRoleBinding for a user or group to limit resource access.

42 Authentication Flow SUSE CaaS Platform 4.2.4

https://github.com/dexidp/dex
https://openid.net/connect/
https://github.com/heptiolabs/gangway

5.5.2.1

Web Flow

Web
(Gangway)

Authenticate

Browser

43

(openLDAP)
. F 3
(3)
y Y
(4)
(5) QIDC
; (Dex)
- \ (9)
(9)
(2)
(3)
, 8)
Kubectl »—/
mj
User

Authentication Flow

SUSE CaaS Platform 4.2.4

44

. User requests access through Gangway.
. Gangway redirects to Dex.

. Dex redirects to connected identity provider (connector). User login and a request to ap-

prove access are generated.

. Dex continues with OIDC authentication flow on behalf of the user and creates/updates

data to Kubernetes CRDs.

. Dex redirects the user to Gangway. This redirect includes (ID/refresh) tokens.

. Gangway returns a link to download kubeconfig or self-configures kubectl instructions

to the user.

Authentication Flow SUSE CaaS Platform 4.2.4

SUSEs CaaS Platform

We

In order to get command-line ac
configure OpenlD Connect (OIL

Kubectl is the Kubernetes comr
Platform documentation for inst:

Once kubectl is installed, you r

echo "----- BEGIN CERTIFICATE-----

MIICyDCCAbCgAWIBAgIBADANBgkghkiG9wBBAQSFADAVMRMWEQYDV
cm51dGVzMB4A4XDTESMDgwNzAYNDABN1oXDTISMDgwNDAYNDABN] owF
AXMKa3ViZXJuZXR1czCCASIwDQYIKoZIhvcNAQEBBQADggEPADCCA
tts+T2DZAT+1iGLFn+5s/5d+DIGgRWeL8u8fVunbioSmtyFbenQs2e
3EoUQtelPUbwStyoeeGgP+Cd8nP3Q5rPeMEYDwyyCYHUTkdWVXKkItC
gw/1Krijvwtl7uYdysVCaadCxmjFJgP665n4Ar8giREQ8QIUdEpAS
zR30in70fdeL7DWtanLiWtAgKok8jk3P0O3nAHBHThavpcjVY/qmChi
OxxclWwSdymOgel4v1DHvhYrcESERODWAhGLURDByaB7Uo+CadkVKl
kOXSMN3jfFpl/Aywy/UCAWEAAaMjMCEWDgYDVROPAQH/BAQDAEKKM
/WQFMAMBAT8WDQYJIKoZIhvcNAQELBQADgEEBALEFr@jtvFNVnbelz

o e o O g L — BB E B BB B B E B BN R P E——

10.

46

. User downloads kubeconf or self-configures kubectl.
. User uses kubectl to connect to the Kubernetes API server.

. Kubernetes CRDs validate the Kubernetes API server request and return a response.

The kubectl connects to the authorized Kubernetes resources through the Kubernetes

API server.

Authentication Flow SUSE CaaS Platform 4.2.4

Authenticate
(openLDAP)
5.5.2.2 CLI Flow
. Y r
(2)
- ¥ "
(3) »
OIDC Stor
(Dex) (Ki
2) " (7) »
. . \ Y
(7)
- ™,
CLI (4) Al
(skuba auth (K
/. login)
% o "h-_
() (8)
, . (6) —
(1) ,_/ Resc
Kubectl (K
N) i LY
(6)
ser

47 Authentication Flow SUSE CaaS Platform 4.2.4

1. User requests access through skuba auth login with the Dex server URL, username and

password.

2. Dex uses received username and password to log in and approve the access request to the

connected identity providers (connectors).

3. Dex continues with the OIDC authentication flow on behalf of the user and creates/updates
data to the Kubernetes CRDs.

4. Dex returns the ID token and refresh token to skuba auth login.

5. skuba auth login generates the kubeconfig file kubeconf.txt.

6. User uses kubectl to connect the Kubernetes API server.

7. Kubernetes CRDs validate the Kubernetes API server request and return a response.

8. The kubectl connects to the authorized Kubernetes resources through Kubernetes API

Server.

5.5.3 RBAC Operations

5.5.3.1 Administration

5.5.3.1.1 Kubernetes Role Binding

Administrators can create Kubernetes RoleBinding or ClusterRoleBinding for users. This

grants permission to users on the Kubernetes cluster like in the example below.

In order to create a RoleBinding for <USER 1>, <USER 2>, and <GROUP 1> using the Clus-
terRole admin you would run the following:

kubectl create rolebinding admin --clusterrole=admin --user=<USER 1> --user=<USER 2> --
group=<GROUP_1>

48 RBAC Operations SUSE CaasS Platform 4.2.4

5.5.3.1.2 Update the Authentication Connector

o Important

Before any add-on upgrade, please backup any runtime configuration changes, then re-
store the modification back after upgraded. It is a known limitation of the addon cus-

tomization process.

Administrators can update the authentication connector settings after SUSE CaaS Platform de-

ployment as follows:

49

1. Based on the manifest in my-cluster/addons/dex/base/dex.yaml, provide a kustomize

patch to my-cluster/addons/dex/patches/custom.yaml of the form of strategic merge
patch or a JSON 6902 patch.

Read https://kubernetes-sigs.github.io/kustomize/api-reference/glossary/#patchstrate-
gicmerge® and https://kubernetes-sigs.github.io/kustomize/api-reference/glossary/#patchj-

son6902 7 to get more information.

. Adapt ConfigMap by adding LDAP configuration to the connector section. For detailed

configuration of the LDAP connector, refer to the Dex documentation: https://github.com/
dexidp/dex/blob/v2.16.0/Documentation/connectors/ldap.md #. The following is an exam-

ple LDAP connector:

connectors:
- type: ldap
id: 389ds
name: 389ds
config:
host: ldap.example.org:636
rootCAData: <base64 encoded PEM file>
bindDN: cn=Directory Manager
bindPW: <Password of Bind DN>
usernamePrompt: Email Address
userSearch:
baseDN: ou=Users,dc=example,dc=0rg
filter: "(objectClass=person)"
username: mail
idAttr: DN
emailAttr: mail
nameAttr: cn
groupSearch:
baseDN: ou=Groups,dc=example,dc=0rg

RBAC Operations SUSE CaasS Platform 4.2.4

https://kubernetes-sigs.github.io/kustomize/api-reference/glossary/#patchstrategicmerge
https://kubernetes-sigs.github.io/kustomize/api-reference/glossary/#patchstrategicmerge
https://kubernetes-sigs.github.io/kustomize/api-reference/glossary/#patchjson6902
https://kubernetes-sigs.github.io/kustomize/api-reference/glossary/#patchjson6902
https://github.com/dexidp/dex/blob/v2.16.0/Documentation/connectors/ldap.md
https://github.com/dexidp/dex/blob/v2.16.0/Documentation/connectors/ldap.md

filter: "(objectClass=groupOfNames)"
userAttr: uid

groupAttr: memberUid

nameAttr: cn

3. A base64 encoded PEM file can be generated by running:

cat <ROOT _CA PEM FILE> | base64 | awk '{print}' ORS='' && echo

Besides the LDAP connector you can also set up other connectors. For additional con-
nectors, refer to the available connector configurations in the Dex repository: https://

github.com/dexidp/dex/tree/v2.16.0/Documentation/connectors <.

4, Create a kustomization.yaml file in my-cluster/addons/dex/kustomization.yaml

apiVersion: kustomize.config.k8s.io/vlbetal
kind: Kustomization
resources:
- base/dex.yaml
patches:
- patches/custom.yaml

5. Apply the changes with:

kubectl apply -k my-cluster/addons/dex/

5.5.3.2 User Access

5.5.3.2.1 Setting up kubectl

5.5.3.2.1.1 In the Web Browser

50

N

w

H

. Go to the login page at https://<CONTROL PLANE IP/FQDN>:32001 in your browser.
. Click "Sign In".
. Choose the login method.

. Enter the login credentials.

. Download kubeconfig or self-configure kubectl with the provided setup instructions.

RBAC Operations SUSE CaasS Platform 4.2.4

https://github.com/dexidp/dex/tree/v2.16.0/Documentation/connectors
https://github.com/dexidp/dex/tree/v2.16.0/Documentation/connectors

5.5.3.2.1.2 Using the CLI

1. Use skuba auth login with Dex server URL https://<CON-

TROL _PLANE_IP/FQDN>:32000, login username and password.

2. The kubeconfig kubeconf.txt is generated locally.

5.5.3.2.1.3 OIDC Tokens

The kubeconfig file (kubeconf.txt) contains the OIDC tokens necessary to perform authenti-

cation and authorization in the cluster. OIDC tokens have an expiration date which means that

they need to be refreshed after some time.

o Important

51

If you use the same user in multiple kubeconfig files distributed among multiple ma-
chines, this can lead to issues. Due to the nature off access and refresh tokens (https://
tools.ietf.org/html/rfc6749#page-10 #) only one of the machines will be fully able to re-

fresh the token set at any given time.

The user will be able to download multiple kubeconfig files, but they will only work
until one of them needs to refresh the session. After that, only one machine will work,

namely the first machine which refreshed the token.

Dex regards one session per user and refreshes id-token and refresh-token together.
If there is a second user trying to login to get a new id-token, Dex will invalidate the
previous id-token and refresh-token for the first user. The first user will still be
able to use the old id-token until expiration but after that the first user is not allowed
to refresh the id-token with the now invalid refresh-token. Only the second user
will have a valid refresh-token. You will encounter an error like: "msg="failed to

rotate keys: keys already rotated by another server instance".

If sharing the same id-token in many places, all of them can be used until expiration.
The first user refreshing the id-token & refresh token will be able to continue ac-
cessing the cluster until the tokens expire. All other users will encounter an error Refresh
token is invalid or has already been claimed by another client because the

refresh-token got updated by the first user.

RBAC Operations SUSE CaasS Platform 4.2.4

https://tools.ietf.org/html/rfc6749#page-10
https://tools.ietf.org/html/rfc6749#page-10

Please use separate users for each kubeconfig file to avoid this situation. Find out how
to add more users in Section 5.4.4.1, "Adding a New User”. You can also check information
about the user and the respective OIDC tokens in the kubeconfig file under the users

section:

users:
- hame: myuser

user:
auth-provider:

config:
client-id: oidc
client-secret: <SECRET>
id-token: <ID TOKEN>
idp-issuer-url: https://<IP>:<PORT>
refresh-token: <REFRESH TOKEN>

name: oidc

5.5.3.2.2 Access Kubernetes Resources

The user can now access resources in the authorized <NAMESPACE>.

If the user has the proper permissions to access the resources, the output should look like this:

kubectl -n <NAMESPACE> get pod

NAMESPACE

kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system
kube-system

52

NAME

dex-844dc9b8bb-w2zkm
gangway-944dc9b8cb-w2zkm
cilium-76glw

cilium-fvgcv

cilium-j51px
cilium-operator-5d9cc4fbb7-g5plc
cilium-vjfép
coredns-559fbd6bb4-2r982
coredns-559fbd6bb4-89k2j
etcd-my-master
kube-apiserver-my-cluster
kube-controller-manager-my-master
kube-proxy-62hls
kube-proxy-fhswj
kube-proxy-r4h42
kube-proxy-xsdf4
kube-scheduler-my-master

READY
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

STATUS

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RBAC Operations

RESTARTS AGE
19d
19d
27d
27d
27d
34d
27d
46d
46d
46d
19d
46d
46d
46d
1 39d

39d
13 46d

© Ul © VWV 0 © © © © © ©

o b~ =
>

SUSE CaaS Platform 4.2.4

If the user does not have the right permissions to access a resource, they will receive a For-

bidden message.

Error from server (Forbidden): pods is forbidden

5.6 Configuring an External LDAP Server

SUSE CaaS Platform supports user authentication via an external LDAP server like "389 Direc-
tory Server" (389-ds) and "Active Directory" by updating the built-in Dex LDAP connector con-
figuration.

5.6.1 Deploying an External 389 Directory Server

The 389 Directory Server image registry.suse.com/caasp/v4/389-ds:1.4.0 will automat-
ically generate a self-signed certificate and key. The following instructions show how to de-

ploy the "389 Directory Server" with a customized configuration using container commands.

1. Prepare the customized 389 Directory configuration and enter it into the terminal in the
following format:

DS DM PASSWORD= # Admin Password
DS SUFFIX="dc=example,dc=org" # Domain Suffix
DATA DIR=<PWD>/389 ds data # Directory Server Data on Host

Machine to Mount

2. Execute the following docker command to deploy 389-ds in the same terminal. This will
start a non-TLS port (389) and a TLS port (636) together with an automatically self-signed
certificate and key.

docker run -d \

-p 389:3389 \

-p 636:636 \

-e DS DM PASSWORD=<DS DM PASSWORD> \

-e DS SUFFIX=<DS SUFFIX> \

-v <DATA DIR>:/data \

--name 389-ds registry.suse.com/caasp/v4/389-ds:1.4.0

53 Configuring an External LDAP Server SUSE CaasS Platform 4.2.4

5.6.2 Deploying a 389 Directory Server with an External Certificate

To replace the automatically generated certificate with your own, follow these steps:

1. Stop the running container:
docker stop 389-ds

2. Copy the external certificate ca.cert and pwdfile.txt to a mounted data directory

<DATA DIR>/ssca/.

® ca.cert: CA Certificate.
* pwdfile.txt: Password for the CA Certificate.

3. Copy the external certificate Server-Cert-Key.pem, Server-Cert.crt, and pwd-

file-import.txt to a mounted data directory <DATA DIR>/config/.

® Server-Cert-Key.pem: PRIVATE KEY.
® Server-Cert.crt: CERTIFICATE.
* pwdfile-import.txt: Password for the PRIVATE KEY.

4. Execute the docker command to run the 389 Directory Server with a mounted data di-

rectory from the previous step:

docker start 389-ds

5.6.2.1 Known Issues

¢ This error message is actually a warning for 389-ds version 1.4.0 when replacing external

certificates.

ERR - attrcrypt cipher init - No symmetric key found for cipher AES in backend

exampleDB, attempting to create one...
INFO - attrcrypt cipher init - Key for cipher AES successfully generated and stored

ERR - attrcrypt cipher init - No symmetric key found for cipher 3DES in backend

exampleDB, attempting to create one...
INFO - attrcrypt cipher init - Key for cipher 3DES successfully generated and stored

54 Deploying a 389 Directory Server with an External Certificate SUSE CaasS Platform 4.2.4

It is due to the encrypted key being stored in the dse.ldif. When replacing the key and
certificate in /data/config, 389ds will search in dse.ldif for a symmetric key and
create one if it does not exist. 389-ds developers are planning a fix that switches 389-ds

to use the nssdb exclusively.

5.6.3 Examples of Usage

In both directories, user-regularl and user-regular2 are members of the k8s-users

group, and user-admin is a member of the k8s-admins group.

In Active Directory, user-bind is a simple user that is a member of the default Domain Users
group. Hence, we can use it to authenticate, because it has read-only access to Active Directory.
The mail attribute is used to create the RBAC rules.

Q
The following examples might use PEM files encoded to a base64 string. These can be

generated using:

cat <ROOT_CA PEM FILE> | base64 | awk '{print}' ORS='"' && echo

5.6.3.1 389 Directory Server:

5.6.3.1.1 Example 1: 389-ds Content LDIF

Example LDIF configuration to initialize LDAP using an LDAP command:

dn: dc=example,dc=0rg
objectClass: top
objectClass: domain
dc: example

dn: cn=Directory Administrators,dc=example,dc=org
objectClass: top

objectClass: groupofuniquenames

cn: Directory Administrators

uniqueMember: cn=Directory Manager

55 Examples of Usage SUSE CaasS Platform 4.2.4

dn: ou=Groups,dc=example,dc=0rg
objectClass: top

objectClass: organizationalunit
ou: Groups

dn: ou=People,dc=example,dc=0org
objectClass: top

objectClass: organizationalunit
ou: People

dn: ou=Users,dc=example,dc=0rg
objectclass: top

objectclass: organizationalUnit
ou: Users

Example LDIF configuration to configure ACL using an LDAP command:

dn: dc=example,dc=org

changetype: modify

add: aci

aci: (targetattr!="userPassword || aci")(version 3.0; acl "Enable anonymous access";
allow (read, search, compare) userdn="ldap:///anyone";)

aci: (targetattr="carLicense || description || displayName || facsimileTelephoneNumber
| | homePhone || homePostalAddress || initials || jpegPhoto || labeledURI || mail

|| mobile || pager || photo || postOfficeBox || postalAddress || postalCode ||

preferredDeliveryMethod || preferredLanguage || registeredAddress || roomNumber |
secretary || seeAlso || st || street || telephoneNumber || telexNumber || title ||
userCertificate || userPassword || userSMIMECertificate || x500UniquelIdentifier")

(version 3.0; acl "Enable self write for common attributes"; allow (write)
userdn="1dap:///self";)

aci: (targetattr ="*")(version 3.0;acl "Directory Administrators Group";allow (all)
(groupdn = "ldap:///cn=Directory Administrators, dc=example,dc=org");)

Example LDIF configuration to create user user-regularl using an LDAP command:

dn: uid=user-regularl,ou=Users,dc=example,dc=org
changetype: add

uid: user-regularl

userPassword: SSHA PASSWORD
objectClass: posixaccount
objectClass: inetOrgPerson
objectClass: person

objectClass: inetUser
objectClass: organizationalPerson
uidNumber: 1200

gidNumber: 500

56 Examples of Usage SUSE CaasS Platform 4.2.4

givenName: User

mail: user-regularl@example.org
sn: Regularl

homeDirectory: /home/regularl
cn: User Regularl

SSHA_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd to generate
the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER PASSWORD>
Use /usr/bin/pwdhash to generate the SSHA hash.
/usr/bin/pwdhash -s SSHA <USER PASSWORD>

Example LDIF configuration to create user user-regular2 using an LDAP command:

dn: uid=user-regular2,ou=Users,dc=example,dc=org
changetype: add

uid: user-regular2

userPassword: SSHA PASSWORD
objectClass: posixaccount
objectClass: inetOrgPerson
objectClass: person

objectClass: inetUser
objectClass: organizationalPerson
uidNumber: 1300

gidNumber: 500

givenName: User

mail: user-regular2@example.org
sn: Regularl

homeDirectory: /home/regular2

cn: User Regular2

SSHA_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd to generate
the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER PASSWORD>
Use /usr/bin/pwdhash to generate the SSHA hash.
/usr/bin/pwdhash -s SSHA <USER PASSWORD>

Example LDIF configuration to create user user-admin using an LDAP command:

dn: uid=user-admin,ou=Users,dc=example,dc=org
changetype: add

57 Examples of Usage SUSE CaasS Platform 4.2.4

uid: user-admin
userPassword: SSHA PASSWORD
objectClass: posixaccount
objectClass: inetOrgPerson
objectClass: person
objectClass: inetUser
objectClass: organizationalPerson
uidNumber: 1000

gidNumber: 100

givenName: User

mail: user-admin@example.org
sn: Admin

homeDirectory: /home/admin
cn: User Admin

SSHA_PASSWORD: The user’s new hashed password. Use /usr/sbin/slappasswd to generate
the SSHA hash.

/usr/sbin/slappasswd -h {SSHA} -s <USER PASSWORD>
Use /usr/bin/pwdhash to generate the SSHA hash.
/usr/bin/pwdhash -s SSHA <USER PASSWORD>

Example LDIF configuration to create group k8s-users using an LDAP command:

dn: cn=k8s-users,ou=Groups,dc=example,dc=org
changetype: add

gidNumber: 500

objectClass: groupOfNames

objectClass: posixGroup

cn: k8s-users

ou: Groups

memberUid: user-regularl

memberUid: user-regular2

Example LDIF configuration to create group k8s-admins using an LDAP command:

dn: cn=k8s-admins,ou=Groups,dc=example,dc=0rg
changetype: add

gidNumber: 100

objectClass: groupOfNames

objectClass: posixGroup

cn: k8s-admins

ou: Groups

memberUid: user-admin

58 Examples of Usage SUSE CaasS Platform 4.2.4

5.6.3.1.2 Example 2: Dex LDAP TLS Connector Configuration (addons/dex/
patches/custom.yaml)

Dex connector template configured to use 389-DS:

apiVersion: vl
kind: ConfigMap
metadata:

name: oidc-dex-config
namespace: kube-system

data:

59

config.yaml: |
connectors:
- type: ldap
Required field for connector id.
id: 389ds
Required field for connector name.
name: 389ds
config:
Host and optional port of the LDAP server in the form "host:port".
If the port is not supplied, it will be guessed based on "insecureNoSSL",
and "startTLS" flags. 389 for insecure or StartTLS connections, 636
otherwise.
host: ldap.example.org:636

The following field is required if the LDAP host is not using TLS (port 389).
Because this option inherently leaks passwords to anyone on the same network
as dex, THIS OPTION MAY BE REMOVED WITHOUT WARNING IN A FUTURE RELEASE.

#

insecureNoSSL: true

If a custom certificate isn't provide, this option can be used to turn on

TLS certificate checks. As noted, it is insecure and shouldn't be used outside
of explorative phases.

#

insecureSkipVerify: true

When connecting to the server, connect using the ldap:// protocol then issue
a StartTLS command. If unspecified, connections will use the ldaps:// protocol
#

startTLS: true

H*

Path to a trusted root certificate file. Default: use the host's root CA.
rootCA: /etc/dex/pki/ca.crt

HH

A raw certificate file can also be provided inline.
rootCAData: <BASE64 ENCODED PEM FILE>

Examples of Usage SUSE CaasS Platform 4.2.4

60

The DN and password for an application service account. The connector uses

these credentials to search for users and groups. Not required if the LDAP

server provides access for anonymous auth.

Please note that if the bind password contains a "$°, it has to be saved in an
environment variable which should be given as the value to “bindPW".

bindDN: cn=Directory Manager

bindPW: <BIND DN PASSWORD>

The attribute to display in the provided password prompt. If unset, will
display "Username"
usernamePrompt: Email Address

User search maps a username and password entered by a user to a LDAP entry.
userSearch:

BaseDN to start the search from. It will translate to the query

"(&(objectClass=person) (mail=<USERNAME>))".

baseDN: ou=Users,dc=example,dc=0rg

Optional filter to apply when searching the directory.

filter: "(objectClass=person)"

username attribute used for comparing user entries. This will be translated

and combined with the other filter as "(<attr>=<USERNAME>)".

username: mail

The following three fields are direct mappings of attributes on the user
entry.

String representation of the user.

idAttr: DN

Required. Attribute to map to Email.

emailAttr: mail

Maps to display name of users. No default value.

nameAttr: cn

Group search queries for groups given a user entry.
groupSearch:
BaseDN to start the search from. It will translate to the query
"(&(objectClass=group) (member=<USER UID>))".
baseDN: ou=Groups,dc=example,dc=0rg
Optional filter to apply when searching the directory.
filter: "(objectClass=groupOfNames)"

Following two fields are used to match a user to a group. It adds an
additional

requirement to the filter that an attribute in the group must match the
user's

attribute value.

userAttr: uid

Examples of Usage SUSE CaasS Platform 4.2.4

groupAttr: memberUid

Represents group name.
nameAttr: cn

Then, refer to Section 5.5.3.1.2, “Update the Authentication Connector” to apply the Dex cus-
tom.yaml and Section 5.5.3.2, “User Access” to access through Web or CLI.

5.6.3.2 Active Directory

5.6.3.2.1 Example 1: Active Directory Content LDIF

Example LDIF configuration to create user user-regularl using an LDAP command:

dn: cn=user-regularl,ou=Users,dc=example,dc=org

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: user-regularl

sn: Regularl

givenName: User

distinguishedName: cn=user-regularl,ou=Users,dc=example,dc=org
displayName: User Regularl

member0f: cn=Domain Users,ou=Users,dc=example,dc=org

member0f: cn=k8s-users,ou=Groups,dc=example,dc=o0rg

name: user-regularl

sAMAccountName: user-regularl

objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-regularl@example.org

Example LDIF configuration to create user user-regular2 using an LDAP command:

dn: cn=user-regular2,ou=Users,dc=example,dc=o0rg
objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: user-regular2

sn: Regular2

givenName: User

distinguishedName: cn=user-regular2,ou=Users,dc=example,dc=org
displayName: User Regular2

member0f: cn=Domain Users,ou=Users,dc=example,dc=org
member0f: cn=k8s-users,ou=Groups,dc=example,dc=o0rg

61 Examples of Usage SUSE CaasS Platform 4.2.4

name: user-regular2

sAMAccountName: user-regular2

objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-regular2@example.org

Example LDIF configuration to create user user-bind using an LDAP command:

dn: cn=user-bind,ou=Users,dc=example,dc=org

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: user-bind

sn: Bind

givenName: User

distinguishedName: cn=user-bind,ou=Users,dc=example,dc=0rg
displayName: User Bind

member0f: cn=Domain Users,ou=Users,dc=example,dc=org

name: user-bind

sAMAccountName: user-bind

objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=org
mail: user-bind@example.org

Example LDIF configuration to create user user-admin using an LDAP command:

dn: cn=user-admin,ou=Users,dc=example,dc=o0rg

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: user

cn: user-admin

sn: Admin

givenName: User

distinguishedName: cn=user-admin,ou=Users,dc=example,dc=0rg
displayName: User Admin

member0f: cn=Domain Users,ou=Users,dc=example,dc=org
member0f: cn=k8s-admins,ou=Groups,dc=example,dc=org

name: user-admin

sAMAccountName: user-admin

objectCategory: cn=Person,cn=Schema,cn=Configuration,dc=example,dc=0rg
mail: user-admin@example.org

Example LDIF configuration to create group k8s-users using an LDAP command:
dn: cn=k8s-users,ou=Groups,dc=example,dc=o0rg
objectClass: top

objectClass: group
cn: k8s-users

62 Examples of Usage SUSE CaasS Platform 4.2.4

member: cn=user-regularl,ou=Users,dc=example,dc=org

member: cn=user-regular2,ou=Users,dc=example,dc=org
distinguishedName: cn=k8s-users,ou=Groups,dc=example,dc=0rg

name: k8s-users

sAMAccountName: k8s-users

objectCategory: cn=Group,cn=Schema,cn=Configuration,dc=example,dc=org

Example LDIF configuration to create group k8s-admins using an LDAP command:

dn: cn=k8s-admins, ou=Groups,dc=example,dc=org

objectClass: top

objectClass: group

cn: k8s-admins

member: cn=user-admin,ou=Users,dc=example,dc=o0org

distinguishedName: cn=k8s-admins,ou=Groups,dc=example,dc=0rg

name: k8s-admins

sAMAccountName: k8s-admins

objectCategory: cn=Group,cn=Schema,cn=Configuration,dc=example,dc=org

5.6.3.2.2 Example 2: Dex Active Directory TLS Connector Configuration

Run kubectl --namespace=kube-system edit configmap oidc-dex-config to edit Dex

ConfigMap. Configure Dex ConfigMap to use Active Directory using the following template:

connectors:
- type: ldap
Required field for connector id.
id: AD
Required field for connector name.
name: AD
config:
Host and optional port of the LDAP server in the form "host:port".
If the port is not supplied, it will be guessed based on "insecureNoSSL",
and "startTLS" flags. 389 for insecure or StartTLS connections, 636
otherwise.
host: ad.example.org:636

Following field is required if the LDAP host is not using TLS (port 389).
Because this option inherently leaks passwords to anyone on the same network
as dex, THIS OPTION MAY BE REMOVED WITHOUT WARNING IN A FUTURE RELEASE.

H* H OB R H

insecureNoSSL: true

H*

If a custom certificate isn't provide, this option can be used to turn on

HH*

TLS certificate checks. As noted, it is insecure and shouldn't be used outside
of explorative phases.

63 Examples of Usage SUSE CaasS Platform 4.2.4

HH

insecureSkipVerify: true

When connecting to the server, connect using the ldap:// protocol then issue
a StartTLS command. If unspecified, connections will use the ldaps:// protocol

H R H O

startTLS: true

H*

Path to a trusted root certificate file. Default: use the host's root CA.
rootCA: /etc/dex/ldap.ca

HH

A raw certificate file can also be provided inline.
rootCAData: <BASE 64 ENCODED PEM FILE>

The DN and password for an application service account. The connector uses

these credentials to search for users and groups. Not required if the LDAP

server provides access for anonymous auth.

Please note that if the bind password contains a "$°, it has to be saved in an
environment variable which should be given as the value to “bindPW'.

bindDN: cn=user-admin,ou=Users,dc=example,dc=0rg

bindPW: <BIND DN PASSWORD>

The attribute to display in the provided password prompt. If unset, will
display "Username"
usernamePrompt: Email Address

User search maps a username and password entered by a user to a LDAP entry.
userSearch:

BaseDN to start the search from. It will translate to the query

"(&(objectClass=person) (mail=<USERNAME>))".

baseDN: ou=Users,dc=example,dc=0rg

Optional filter to apply when searching the directory.

filter: "(objectClass=person)"

username attribute used for comparing user entries. This will be translated

and combined with the other filter as "(<attr>=<USERNAME>)".

username: mail

The following three fields are direct mappings of attributes on the user entry.
String representation of the user.

idAttr: distinguishedName

Required. Attribute to map to Email.

emailAttr: mail

Maps to display name of users. No default value.

nameAttr: sAMAccountName

Group search queries for groups given a user entry.
groupSearch:

Examples of Usage SUSE CaasS Platform 4.2.4

BaseDN to start the search from. It will translate to the query
"(&(objectClass=group) (member=<USER UID>))".

baseDN: ou=Groups,dc=example,dc=o0rg

Optional filter to apply when searching the directory.

filter: "(objectClass=group)"

Following two fields are used to match a user to a group. It adds an additional
requirement to the filter that an attribute in the group must match the user's
attribute value.

userAttr: distinguishedName

groupAttr: member

Represents group name.
nameAttr: sAMAccountName

base64 encoded PEM file can be generated by running:
cat <ROOT_CA PEM FILE> | base64 | awk '{print}' ORS='"' && echo

Then, refer to Section 5.5.3.1.2, “Update the Authentication Connector” to apply the dex.yaml and
Section 5.5.3.2, “User Access” to access through Web or CLI.

5.7 Pod Security Policies

@ Note

Please note that criteria for designing PodSecurityPolicy are not part of this document.

"Pod Security Policy" (stylized as PodSecurityPolicy and abbreviated "PSP") is a security mea-
sure implemented by Kubernetes to control which specifications a pod must meet to be allowed
to run in the cluster. They control various aspects of execution of pods and interactions with

other parts of the software infrastructure.

You can find more general information about PodSecurityPolicy in the Kubernetes Docs (https://

v1-17.docs.kubernetes.io/docs/concepts/policy/pod-security-policy/) a.

User access to the cluster is controlled via "Role Based Access Control (RBAC)". Each PodSe-
curityPolicy is associated with one or more users or service accounts so they are allowed to
launch pods with the associated specifications. The policies are associated with users or service

accounts via role bindings.

65 Pod Security Policies SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/concepts/policy/pod-security-policy/
https://v1-17.docs.kubernetes.io/docs/concepts/policy/pod-security-policy/

@ Note

The default policies shipped with SUSE CaaS Platform are a good start, but depending
on security requirements, adjustments should be made or additional policies should be

created.

5.7.1 Default Policies

SUSE CaaS Platform 4 currently ships with two default policies:

e Privileged (full access everywhere)

¢ Unprivileged (only very basic access)

All pods running the containers for the basic SUSE CaaS Platform software are deployed into

the kube-system namespace and run with the "privileged" policy.

All authenticated system users (group system:authenticated) and service accounts in
kube-system (system:serviceaccounts:kube-system) have a RoleBinding (suse:caasp:p-
sp:privileged) to run pods using the privileged policy in the kube-system namespace.

Any other pods launched in any other namespace are, by default, deployed in unprivileged mode.

o Important

You must configure RBAC rules and PodSecurityPolicy to provide proper functionality

and security.

5.7.2 Policy Definition

The policy definitions are embedded in the cluster bootstrap manifest (GitHub) (https://
github.com/SUSE/skuba/blob/master/pkg/skuba/actions/cluster/init/manifests.go) <.

During the bootstrap with skuba, the policy files will be stored on your workstation in the
cluster definition folder under addons/psp/base. These policy files will be installed automat-

ically for all cluster nodes.

The file names of the files created are:

® podsecuritypolicy-unprivileged.yaml

66 Default Policies SUSE CaaS Platform 4.2.4

https://github.com/SUSE/skuba/blob/master/pkg/skuba/actions/cluster/init/manifests.go
https://github.com/SUSE/skuba/blob/master/pkg/skuba/actions/cluster/init/manifests.go

and

® podsecuritypolicy-privileged.yaml.

5.7.2.1

Policy File Examples

This is the unprivileged policy as a configuration file. You can use this as a basis to develop your

own PodSecurityPolicy which should be saved as custom-psp.yaml addons/psp/patches

directory.

apiVersion: policy/vlbetal

kind:

PodSecurityPolicy

metadata:

name: suse.caasp.psp.unprivileged

annotations:

apparmor.security.beta.kubernetes.
apparmor.security.beta.kubernetes.
seccomp.security.alpha.kubernetes.
seccomp.security.alpha.kubernetes.

spec:

Privileged
privileged: false

Volumes and File Systems

volumes:

#

67

Kubernetes Pseudo Volume Types

configMap

secret

emptyDir

downwardAPI
projected
persistentVolumeClaim
Networked Storage
nfs

rbd

cephFS

glusterfs

fc

iscsi

Cloud Volumes

cinder
gcePersistentDisk
awsElasticBlockStore
azureDisk

azureFile
vsphereVolume

io/allowedProfileNames: runtime/default
io/defaultProfileName: runtime/default
io/allowedProfileNames: runtime/default
io/defaultProfileName: runtime/default

Policy Definition

SUSE CaaS Platform 4.2.4

allowedHostPaths:

Note: We don't allow hostPath volumes above, but set this to a path we
control anyway as a belt+braces protection. /dev/null may be a better
option, but the implications of pointing this towards a device are
#

unclear.

pathPrefix: /opt/kubernetes-hostpath-volumes
readOnlyRootFilesystem: false
Users and groups
runAsUser:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
fsGroup:
rule: RunAsAny
Privilege Escalation
allowPrivilegeEscalation: false
defaultAllowPrivilegeEscalation: false
Capabilities
allowedCapabilities: []
defaultAddCapabilities: []
requiredDropCapabilities: []
Host namespaces
hostPID: false
hostIPC: false
hostNetwork: false
hostPorts:
- min: ©
max: 65535
SELinux
seLinux:
SELinux is unused in CaaSP
rule: 'RunAsAny'
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: suse:caasp:psp:unprivileged
rules:
- apiGroups: ['extensions']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames: ['suse.caasp.psp.unprivileged']
Allow all users and serviceaccounts to use the unprivileged
PodSecurityPolicy
apiVersion: rbac.authorization.k8s.io/v1l
kind: ClusterRoleBinding

68 Policy Definition

SUSE CaaS Platform 4.2.4

metadata:
name: suse:caasp:psp:default
roleRef:
kind: ClusterRole
name: suse:caasp:psp:unprivileged
apiGroup: rbac.authorization.k8s.io
subjects:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: system:serviceaccounts
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: system:authenticated

5.7.3 Creating a PodSecurityPolicy

In order to properly secure and run your Kubernetes workloads you must configure RBAC rules
for your desired users create a PodSecurityPolicy adequate for your respective workloads and

then link the user accounts to the PodSecurityPolicy using (Cluster)RoleBinding.

https://v1-17.docs.kubernetes.io/docs/concepts/policy/pod-security-policy/ 7

5.8 NGINX Ingress Controller

Kubernetes ingress exposes HTTP and HTTPS routes from the outside of a cluster to services
created inside the cluster. An Ingress controller with an ingress controller service is responsible
for supporting the Kubernetes ingress. In order to use Kubernetes ingress, you need to install
the ingress controller with the ingress controller service exposed to the outside of the cluster.
Traffic routing is controlled by rules defined on the Ingress resource from the backend services.

5.8.1 Configure and deploy NGINX ingress controller

5.8.1.1 Define networking configuration

Choose which networking configuration the ingress controller should have. Create a file ng-

inx-ingress-config-values.yaml with one of the following examples as content:

Enable the creation of pod security policy

69 Creating a PodSecurityPolicy SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/concepts/policy/pod-security-policy/

podSecurityPolicy:

enabled: false

Create a specific service account
serviceAccount:

create: true
name: nginx-ingress

controller:

70

Number of controller pods
replicaCount: 3
[ADD CONTENT HERE] @

Add one of the following sections at this point to configure for a specific type of exposing

the service.

® NodePort: The services will be publicly exposed on each node of the cluster, including
master nodes, at port 32443 for HTTPS.

Publish services on port HTTPS/32443
These services are exposed on each node
service:
enableHttp: false
type: NodePort
nodePorts:
https: 32443

¢ External IPs: The services will be exposed on specific nodes of the cluster, at port
443 for HTTPS.

These services are exposed on the node with IP 10.86.4.158
service:
enableHttp: false
externalIPs:
- 10.86.4.158

® LoadBalancer: The services will be exposed on the loadbalancer that the cloud

provider serves.

These services are exposed on IP from a cluster cloud provider
service:

enableHttp: false

type: LoadBalancer

Configure and deploy NGINX ingress controller SUSE CaasS Platform 4.2.4

5.8.1.2 Deploy ingress controller from helm chart

Q
For complete instructions on how to install Helm and Tiller refer to Section 3.7.2.1, “In-

stalling Helm”.

Add the SUSE helm charts repository (https://kubernetes-charts.suse.com/) # by running:
helm repo add suse https://kubernetes-charts.suse.com

Then you can deploy the ingress controller and use the previously created configuration file to
configure the networking type.

helm install --name nginx-ingress suse/nginx-ingress \

--namespace nginx-ingress \

--values nginx-ingress-config-values.yaml

The result should be two running pods:

kubectl -n nginx-ingress get pod

NAME READY STATUS RESTARTS AGE
nginx-ingress-controller-74cffccfc-p8xbb 1/1 Running 0 4s
nginx-ingress-default-backend-6b9b546dc8-mfkjk 1/1 Running 0 4s

Depending on the networking configuration you chose before, the result should be two services:
* NodePort

kubectl get svc -n nginx-ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
nginx-ingress-controller NodePort 10.100.108.7 <none>
443:32443/TCP 2d1h
nginx-ingress-default-backend ClusterIP 10.109.118.128 <none> 80/TCP
2d1lh

e External IPs

kubectl get svc -n nginx-ingress
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
nginx-ingress-controller LoadBalancer 10.103.103.27 10.86.4.158
443:30275/TCP 12s

71 Configure and deploy NGINX ingress controller SUSE CaasS Platform 4.2.4

https://kubernetes-charts.suse.com/

nginx-ingress-default-backend ClusterIP 10.100.48.17 <none> 80/TCP
12s

® LoadBalancer

kubectl get svc -n nginx-ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
nginx-ingress-controller LoadBalancer 10.106.160.255 10.86.5.176
443:31868/TCP 3h58m
nginx-ingress-default-backend ClusterIP 10.111.140.50 <none> 80/TCP
3h58m

5.8.1.3 Create DNS entries

You should configure proper DNS names in any production environment. k8s-dashboard.com
will be the domain name we will use in the ingress resource. These values are only for example

purposes.
e NodePort

The services will be publicly exposed on each node of the cluster at port 32443 for HTTPS. In

this example, we will use a worker node with IP 10.86.14.58.

k8s-dashboard.com IN A 10.86.14.58

Or add this entry to /etc/hosts

10.86.14.58 k8s-dashboard.com

e External IPs

The services will be exposed on a specific node of the cluster, at the assigned port for HTTPS.

In this example, we used the external IP 10.86.4.158.

k8s-dashboard. com IN A 10.86.4.158

Or add this entry to /etc/hosts

10.86.4.158 k8s-dashboard.com

e LoadBalancer

The services will be exposed on an assigned node of the cluster, at the assigned port for HTTPS.

In this example, LoadBalancer provided the external IP 10.86.5.176.

72 Configure and deploy NGINX ingress controller SUSE CaasS Platform 4.2.4

k8s-dashboard.com IN A 10.86.5.176
Or add this entry to /etc/hosts

10.86.5.176 k8s-dashboard.com

5.8.2 Deploy Kubernetes Dashboard as an example

o Important

This example uses the upstream chart for the Kubernetes dashboard. There is currently

no officially supported version of the Kubernetes dashboard available from SUSE.

1. Deploy Kubernetes dashboard.

kubectl apply -f https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-rc5/
aio/deploy/recommended.yaml

2. Create the cluster-admin account to access the Kubernetes dashboard.
This will show how to create simple admin user using Service Account, grant it the admin
permission then use the token to access the kubernetes dashboard.

kubectl create serviceaccount dashboard-admin -n kube-system

kubectl create clusterrolebinding dashboard-admin \
--clusterrole=cluster-admin \
--serviceaccount=kube-system:dashboard-admin

3. Create the TLS secret.
Please refer to Section 5.70.10.1.1, “Trusted Server Certificate” on how to sign the trusted cer-
tificate. In this example, crt and key are generated by a self-signed certificate.
openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /tmp/dashboard-tls.key -out /tmp/dashboard-tls.crt \
-subj "/CN=k8s-dashboard.com/0=k8s-dashboard"
kubectl create secret tls dashboard-tls \

--key /tmp/dashboard-tls.key --cert /tmp/dashboard-tls.crt \
-n kubernetes-dashboard

4. Create the ingress resource.

73 Deploy Kubernetes Dashboard as an example SUSE CaasS Platform 4.2.4

74

We will create an ingress to access the backend service using the ingress controller. Create

dashboard-ingress.yaml with the appropriate values

apiVersion: networking.k8s.io/vlbetal
kind: Ingress
metadata:
name: dashboard-ingress
namespace: kubernetes-dashboard
annotations:
kubernetes.io/ingress.class: nginx
ingress.kubernetes.io/ssl-passthrough: "true"
nginx.ingress.kubernetes.io/secure-backends: "true"
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
tls:
- hosts:
- k8s-dashboard.com
secretName: dashboard-tls
rules:
- host: k8s-dashboard.com
http:
paths:
- path: /
backend:
serviceName: kubernetes-dashboard
servicePort: 443

5. Deploy dashboard ingress.
kubectl apply -f dashboard-ingress.yaml
The result will look like this:

kubectl get ing -n kubernetes-dashboard

NAMESPACE NAME HOSTS ADDRESS PORTS
AGE
kubernetes-dashboard dashboard-ingress k8s-dashboard.com 80, 443 2d

6. Access Kubernetes Dashboard Kubernetes dashboard will be accessible through ingress

domain name with the configured ingress controller port.

@ Note: Access Token

Now we’re ready to get the token from dashboard-admin by following command.

Deploy Kubernetes Dashboard as an example SUSE CaasS Platform 4.2.4

kubectl describe secrets -n kube-system \
$(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

® NodePort: https://k8s-dashboard.com:32443
e External IPs: https://k8s-dashboard.com

* LoadBalancer: https://k8s-dashboard.com

5.9 Admission Controllers

5.9.1 Introduction

After user authentication and authorization, admission takes place to complete the access con-
trol for the Kubernetes API. As the final step in the access control process, admission enhances
the security layer by mandating a reasonable security baseline across a specific namespace or the
entire cluster. The built-in PodSecurityPolicy admission controller is perhaps the most promi-

nent example of it.

Apart from the security aspect, admission controllers can enforce custom policies to adhere to
certain best-practices such as having good labels, annotation, resource limits, or other settings.
It is worth noting that instead of only validating the request, admission controllers are also
capable of "fixing" a request by mutating it, such as automatically adding resource limits if the

user forgets to.

The admission is controlled by admission controllers which may only be configured by the

cluster administrator. The admission control process happens in two phases:

1. In the first phase, mutating admission controllers are run. They are empowered to auto-
matically change the requested object to comply with certain cluster policies by making

modifications to it if needed.

2. In the second phase, validating admission controllers are run. Based on the results of the
previous mutating phase, an admission controller can either allow the request to proceed

and reach etcd or deny it.

75 Admission Controllers SUSE CaaS Platform 4.2.4

o Important

If any of the controllers in either phase reject the request, the entire request is rejected

immediately and an error is returned to the end-user.

5.9.2 Configured admission controllers

0 Important

Any modification of this list prior to the creation of the cluster will be overwritten by

these default settings.

The ability to add or remove individual admission controllers will be provided with one

of the upcoming releases of SUSE CaaS Platform.

The complete list of admission controllers can be found at https://v1-17.docs.kubernetes.io/docs/

reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do <

The default admission controllers enabled in SUSE CaaS Platform are:

1. NodeRestriction

2. PodSecurityPolicy

5.10 Certificates

During the installation of SUSE CaaS Platform, a CA (Certificate Authority) certificate is gener-
ated, which is then used to authenticate and verify all communication. This process also creates

and distributes client and server certificates for the components.

5.10.1 Communication Security

Communication is secured with TLS v1.2 using the AES 128 CBC cipher. All certificates are 2048
bit RSA encrypted.

76 Configured admission controllers SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do
https://v1-17.docs.kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#what-does-each-admission-controller-do

5.10.2 Certificate Validity

The CA certificate is valid for 3650 days (10 years) by default. Client and server certificates are
valid for 365 days (1 year) by default.

5.10.3 Certificate Location

Required CAs for SUSE CaaS Platform are stored on all control plane nodes:

Common Name

kubernetes

etcd-ca

kubelet-ca

front-proxy-ca

Path

/etc/kubernetes/pki/

ca.crt,key

/etc/kubernetes/pki/etcd/

ca.crt,key

/var/lib/kubelet/pki/

Description

kubelet-ca.crt,key

/etc/kubernetes/pki/front-

proxy-ca.crt,key

kubernetes general CA

Etcd cluster

Kubelet components

Front-proxy components

The control plane certificates stored in the Kubernetes cluster on control plane nodes:

Common Name

kubernetes

kube-apiserver

kube-apiserver-etcd-

client

kube-apiserv-

er-kubelet-client

77

Parent CA

kubernetes

etcd-ca

kubernetes

Path

/etc/kubernetes/pki/
ca.crt,key

/etc/kubernetes/pki/
apiserver.crt,key

/etc/kubernetes/pki/
apiserver-etcd-clien-

t.crt,key

/etc/kubernetes/pki/
apiserver-kubelet-

client.crt,key

Certificate Validity

Kind

CA

Server

Client

Client

SUSE CaaS Platform 4.2.4

Common Name

etcd-ca

kube-etcd-
healthcheck-client

kube-etcd-peer

kube-etcd-server

kubelet-ca

system:node: <node-

Name >

system:node: <node-

Name >

front-proxy-ca

front-proxy-client

kubernetes-admin

system:kube-con-

troller-manager

78

Parent CA

etcd-ca

etcd-ca

etcd-ca

kubernetes

kubelet-ca

front-proxy-ca

kubernetes

kubernetes

Path

/etc/kubernetes/pki/
etcd/ca.crt,key

/etc/kubernetes/pki/
etcd/healthcheck-
client.crt,key

/etc/kubernetes/pki/
etcd/peer.crt,key

/etc/kubernetes/pki/
etcd/server.crt,key

/var/lib/kubeket/
pki/kubelet-

ca.crt,key

/var/lib/kubeket/
pki/kubelet-client-

current.pem

/var/lib/kubelet/
pki/kubelet-serv-

er-current.pem

/etc/kubernetes/pki/
front-proxy-ca.crt,key

/etc/kubernetes/pki/
front-proxy-clien-
t.crt,key

/etc/kubernetes/ad-

min.conf

/etc/kubernetes/con-

troller-manager.conf

Certificate Location

Kind

CA

Client

Server,Client

Server,Client

CA

Client

Server

CA

Client

Client

Client

SUSE CaaS Platform 4.2.4

Common Name Parent CA
system:kube-sched- kubernetes
uler

system:node: <node- kubernetes

Name >

Warning

Path

/etc/kuber-

netes/scheduler.conf

/etc/kuber-

netes/kubelet.conf

Kind

Client

Client

If a node was bootstrapped/joined before Kubernetes version 1.17, you have to manually

modify the contents of kubelet.conf to point to the automatically rotated kubelet client

certificates by replacing client-certificate-data and client-key-data with:

client-certificate: /var/lib/kubelet/pki/kubelet-client-current.pem

client-key: /var/lib/kubelet/pki/kubelet-client-current.pem

The addon certificates stored in the Kubernetes cluster Secret resource:

Common Name Parent CA
oidc-dex kubernetes
oidc-gangway kubernetes
metrics-server kubernetes
cilium-etcd-client etcd-ca

5.10.4 Monitoring Certificates

Secret Resource
Name

oidc-dex-cert
oidc-gangway-cert
metrics-server-cert

cilium-secret

Kind

Server

Server

Server

Client

We use cert-exporter to monitor nodes' on-host certificates and addons' secret certificates. The

cert-exporter collects the metrics of certificates expiration periodically (1 hour by default) and

exposes them through the /metrics endpoint. Then, the Prometheus server can scrape these

metrics from the endpoint periodically.

helm repo add suse https://kubernetes-charts.suse.com

79

Monitoring Certificates

SUSE CaaS Platform 4.2.4

helm install suse/cert-exporter --name ${RELEASE NAME}

5.10.4.1 Prerequisites

1. To monitor certificates, we need to set up monitoring stack by following the Section 7.7,

“Monitoring Stack” on how to deploy it.
2. Label the skuba addon certificates

kubectl label --overwrite secret oidc-dex-cert -n kube-system caasp.suse.com/skuba-
addon=true

kubectl label --overwrite secret oidc-gangway-cert -n kube-system caasp.suse.com/
skuba-addon=true

kubectl label --overwrite secret metrics-server-cert -n kube-system caasp.suse.com/
skuba-addon=true

kubectl label --overwrite secret cilium-secret -n kube-system caasp.suse.com/skuba-
addon=true

@ Note

You might see the following console output:
secret/oidc-dex-cert not labeled
secret/oidc-gangway-cert not labeled

secret/metrics-server-cert not labeled
secret/cilium-secret not labeled

This is because skuba has already added the labels for you.

5.10.4.2 Prometheus Alerts

Use Prometheus alerts to reactively receive the status of the certificates, follow the Sec-
tion 7.1.3.2.3, "Alertmanager Configuration Example” on how to configure the Prometheus Alertman-

ager and Prometheus Server.

5.10.4.3 Grafana Dashboards

Use Grafana to proactively monitor the status of the certificates, follow the Section 7.71.3.2.6,

"Adding Grafana Dashboards” to install the Grafana dashboard to monitors certificates.

80 Monitoring Certificates SUSE CaasS Platform 4.2.4

5.10.4.4 Monitor Custom Secret Certificates

You can monitor custom secret TLS certificates that you created manually or using cert-manager

(https://cert-manager.io/) A.

For example:

1. Monitor cert-manager issued certificates in the cert-managert-test namespace.

helm install suse/cert-exporter \

--name <RELEASE NAME> \

--set customSecret.enabled=true \

--set customSecret.certs[0].name=cert-manager \

--set customSecret.certs[0].namespace=cert-manager-test \

--set customSecret.certs[0].includeKeys="{*.crt,*.pem}" \

--set customSecret.certs[0].annotationSelector="{cert-manager.io/certificate-
name}"

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing Helm":

helm install <RELEASE NAME> suse/cert-exporter \

--set customSecret.enabled=true \

--set customSecret.certs[0].name=cert-manager \

--set customSecret.certs[0].namespace=cert-manager-test \

--set customSecret.certs[0].includeKeys="{*.crt,*.pem}" \

--set customSecret.certs[0].annotationSelector="{cert-manager.io/certificate-
name}"

2. Monitor certificates in all namespaces filtered by label selector.

helm install suse/cert-exporter \
--name ${RELEASE NAME} \
--set customSecret.enabled=true \
--set customSecret.certs[0].name=self-signed-cert \
--set customSecret.certs[0].includeKeys="{*.crt,*.pem}" \
--set customSecret.certs[0].labelSelector="{key=value}"

7,

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing Helm™:

helm install <RELEASE NAME> suse/cert-exporter \
--set customSecret.enabled=true \
--set customSecret.certs[0].name=self-signed-cert \
--set customSecret.certs[0].includeKeys="{*.crt,*.pem}" \
--set customSecret.certs[0].labelSelector="{key=value}"

3. Deploy both 1. and 2. together.

81 Monitoring Certificates SUSE CaasS Platform 4.2.4

https://cert-manager.io/
https://cert-manager.io/

helm install suse/cert-exporter \
--name <RELEASE NAME> \

--set
--set
--set
--set
--set
name}" \
--set
--set
--set

customSecret
customSecret

customSecret.
customSecret.
customSecret.

certs[0]
certs[0]
certs[0]

certs[1]
certs[1]
certs[1]

.enabled=true \
.certs[0]
customSecret.
customSecret.
customSecret.

.name=cert-manager \

.namespace=cert-manager-test \
.includeKeys="{*.crt,*.pem}" \
.annotationSelector="{cert-manager.io/certificate-

.name=self-signed-cert \
.includeKeys="{*.crt,*.pem}" \
.labelSelector="{key=value}"

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing Helm":

helm install <RELEASE NAME> suse/cert-exporter \

--set

customSecret

customSecret
customSecret

customSecret.
customSecret.
customSecret.

certs[0].

certs[0].

certs[1].
certs[1].
certs[1].

.enabled=true \
customSecret.
.certs[0].
.certs[0].
customSecret.

name=cert-manager \

namespace=cert-manager-test \
includeKeys="{*.crt,*.pem}" \
annotationSelector="{cert-manager.io/certificate-

name=self-signed-cert \
includeKeys="{*.crt,*.pem}" \
labelSelector="{key=value}"

4. Monitor custom certificates only, disregarding node and addon certificates.

helm install suse/cert-exporter \
--name ${RELEASE NAME} \

--set

node.enabled=

false \

addon.enabled=false \

customSecret
customSecret
customSecret

customSecret.
customSecret.
customSecret.

certs[0].
certs[0].

certs[1].
certs[1].
certs[1].

.enabled=true \
.certs[0].
.certs[0].
customSecret.
customSecret.

name=cert-manager \

namespace=cert-manager-test \
includeKeys="{*.crt,*.pem}" \
annotationSelector="{cert-manager.io/certificate-

name=self-signed-cert \
includeKeys="{*.crt,*.pem}" \
labelSelector="{key=value}"

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing Helm":

helm install <RELEASE NAME> suse/cert-exporter \
--set node.enabled=false \
--set addon.enabled=false \

Monitoring Certificates SUSE CaasS Platform 4.2.4

--set customSecret.enabled=true \

--set customSecret.certs[0].name=cert-manager \

--set customSecret.certs[0].namespace=cert-manager-test \

--set customSecret.certs[0].includeKeys="{*.crt,*.pem}" \

--set customSecret.certs[0].annotationSelector="{cert-manager.io/certificate-

--set customSecret.certs[1l].name=self-signed-cert \

--set customSecret.certs[1].includeKeys="{*.crt,*.pem}" \
--set customSecret.certs[1l].labelSelector="{key=value}"

5.10.5 Using Custom Trusted CA Certificates

5.10.6 Deployment with a Custom CA Certificate

@ Warning

Please plan carefully when deploying with a custom CA certificate. This certificate can not

be reconfigured once deployed and requires a full re-installation of the cluster to replace.

Administrators can provide custom CA certificates (root CAs or intermediate CAs) during clus-
ter deployment and decide which CA components to replace (multiple CA certificates) or if to

replace all with a single CA certificate.

After you have run skuba cluster init, gotothe my-cluster folder that has been generated,

Create a pki folder and put your custom CA certificate into the pki folder.

@ Note: Extracting Certificate And Key From Combined PEM File

Some PKIs will issue certificates and keys in a combined .pem file. In order to use the

contained certificate, you must extract them into separate files using openssl.
1. Extract the certificate:
openssl x509 -in /path/to/file.pem -out /path/to/file.crt
2. Extract the key:

openssl rsa -in /path/to/file.pem -out /path/to/file.key

83 Using Custom Trusted CA Certificates SUSE CaasS Platform 4.2.4

® Replacing the Kubernetes CA certificate:

mkdir -p my-cluster/pki

cp <CUSTOM KUBERNETES CA CERT PATH> my-cluster/pki/ca.crt
cp <CUSTOM KUBERNETES CA KEY PATH> my-cluster/pki/ca.key
chmod 644 my-cluster/pki/ca.crt

chmod 600 my-cluster/pki/ca.key

® Replacing the etcd CA certificate:

mkdir -p my-cluster/pki/etcd

cp <CUSTOM ETCD CA CERT PATH> my-cluster/pki/etcd/ca.crt
cp <CUSTOM _ETCD CA KEY PATH> my-cluster/pki/etcd/ca.key
chmod 644 my-cluster/pki/etcd/ca.crt

chmod 600 my-cluster/pki/etcd/ca.key

® Replacing the kubelet CA certificate:

mkdir -p my-cluster/pki

cp <CUSTOM KUBELET CA CERT PATH> my-cluster/pki/kubelet-ca.crt
cp <CUSTOM KUBELET CA KEY PATH> my-cluster/pki/kubelet-ca.key
chmod 644 my-cluster/pki/kubelet-ca.crt

chmod 600 my-cluster/pki/kubelet-ca.key

® Replacing the front-end proxy CA certificate:

mkdir -p my-cluster/pki

cp <CUSTOM_FRONTPROXY CA CERT PATH> my-cluster/pki/front-proxy-ca.crt
cp <CUSTOM_FRONTPROXY CA KEY PATH> my-cluster/pki/front-proxy-ca.key
chmod 644 my-cluster/pki/front-proxy-ca.crt

chmod 600 my-cluster/pki/front-proxy-ca.key

After this process, bootstrap the cluster with skuba node bootstrap.

5.10.7 Replace OIDC Server Certificate Signed By A Trusted CA
Certificate

SUSE CaaS Platform uses oidc-dex and oidc-gangway servers to do authentication and au-
thorization. Administrators might choose to replace these server’s certificates by issuing a trust-
ed CA certificate after cluster deployment. This way, the user does not have to add specific

certificates to their trusted keychain.

Replace OIDC Server Certificate Signed By A Trusted CA Certificate SUSE Caas$ Platform
84 4.2.4

@ Warning

The custom trusted CA certificate key is not handled by skuba. Administrators must han-

dle server certificate rotation manually before the certificate expires.

@ Warning

The oidc-dex and oidc-gangway server certificate and key would be replaced when
skuba addon upgrade apply contains dex or gangway addon upgrade. Make sure to
reapply your changes after running skuba addon upgrade apply, had you modified
the default settings of oidc-dex and oidc-gangway addons.

® Replace the oidc-dex server certificate:
1. Backup the original oidc-dex server certificate and key from secret resource.

mkdir -p pki.bak
kubectl get secret oidc-dex-cert -n kube-system -o yaml | tee pki.bak/oidc-dex-
cert.yaml > /dev/null

cat pki.bak/oidc-dex-cert.yaml | grep tls.crt | awk '{print $2}' | base64 --
decode | tee pki.bak/oidc-dex.crt > /dev/null
cat pki.bak/oidc-dex-cert.yaml | grep tls.key | awk '{print $2}' | base64 --
decode | tee pki.bak/oidc-dex.key > /dev/null

2. Get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in pki.bak/oidc-dex.crt | grep -oP '(?<=IP Address:)
[~ 1+

openssl x509 -noout -text -in pki.bak/oidc-dex.crt | grep -oP '(?<=DNS:)[",]+'

3. Sign the oidc-dex server certificate with the trusted CA certificate.

Please refer to Section 5.10.70.1.1, “Trusted Server Certificate” on how to sign the trusted
certificate. The server.conf forIP.1 is the original SAN IP address if present, DNS.1
is the original SAN DNS if present.

Then, import your trusted certificate into the Kubernetes cluster. The trust-
ed CA certificates is <TRUSTED CA CERT PATH>, trusted server certificate and
key are <SIGNED OIDC DEX SERVER CERT PATH> and <SIGNED OIDC DEX SERV-
ER KEY PATH>.

Replace OIDC Server Certificate Signed By A Trusted CA Certificate SUSE Caas$ Platform
85 424

4. Create a secret manifest file oidc-dex-cert.yaml and update the secret data
ca.crt, tls.crt, and tls.key with base64; encoded with trusted CA certificate,
signed oidc-dex server certificate and key respectively.

apiVersion: vl
kind: Secret
metadata:
name: oidc-dex-cert
namespace: kube-system
labels:
caasp.suse.com/skuba-addon: "true"
type: kubernetes.io/tls
data:
ca.crt: cat <TRUSTED CA CERT PATH> | base64 | awk '\{print\}' ORS='' && echo
tls.crt: cat <SIGNED OIDC DEX SERVER CERT PATH> | base64 | awk '\{print\}'
ORS=""' && echo
tls.key: cat <SIGNED OIDC DEX SERVER KEY PATH> | base64 | awk '\{print\}'
ORS="" && echo

5. Apply the secret manifest file and restart oidc-dex pods.

kubectl replace -f oidc-dex-cert.yaml
kubectl rollout restart deployment/oidc-dex -n kube-system

® Replace the oidc-gangway server certificate:

1. Backup the original oidc-gangway server certificate and key from secret resource.

mkdir -p pki.bak
kubectl get secret oidc-gangway-cert -n kube-system -o yaml | tee pki.bak/oidc-
gangway-cert.yaml > /dev/null

cat pki.bak/oidc-gangway-cert.yaml | grep tls.crt | awk '{print $2}' | base64
--decode | tee pki.bak/oidc-gangway.crt > /dev/null

cat pki.bak/oidc-gangway-cert.yaml | grep tls.key | awk '{print $2}' | base64
--decode | tee pki.bak/oidc-gangway.key > /dev/null

2. Get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in pki.bak/oidc-gangway.crt | grep -oP '(?<=IP
Address:)[",]+

openssl x509 -noout -text -in pki.bak/oidc-gangway.crt | grep -oP '(?<=DNS:)
[~ 1+

3. Sign the oidc-gangway server certificate with the trusted CA certificate.

Replace OIDC Server Certificate Signed By A Trusted CA Certificate SUSE Caas$ Platform

4.24

87

Please refer to Section 5.10.10.1.1, “Trusted Server Certificate” on how to sign the trusted
certificate. The server.conf forIP.1 is the original SAN IP address if present, DNS.1
is the original SAN DNS if present.

Then, import your trusted certificate into the Kubernetes cluster. The trusted CA
certificates is <TRUSTED CA CERT PATH>, trusted server certificate and key are
<SIGNED OIDC GANGWAY SERVER CERT PATH> and <SIGNED OIDC GANGWAY SERV-
ER KEY PATH>.

4. Create a secret manifest file oidc-gangway-cert.yaml and update the secret data

ca.crt, tls.crt, and tls.key with base64; encoded with trusted CA certificate,
signed oidc-gangway server certificate and key respectively.

apiVersion: vl
kind: Secret
metadata:
name: oidc-gangway-cert
namespace: kube-system
labels:
caasp.suse.com/skuba-addon: "true"
type: kubernetes.io/tls
data:
ca.crt: cat <TRUSTED CA CERT PATH> | base64 | awk '\{print\}' ORS='' && echo
tls.crt: cat <SIGNED OIDC GANGWAY SERVER CERT PATH> | base64 | awk '\{print
\}' ORS='"' && echo
tls.key: cat <SIGNED OIDC GANGWAY SERVER KEY PATH> | base64 | awk '\{print\}'
ORS=""' && echo

5. Apply the secret manifest file and restart oidc-gangway pods.

kubectl replace -f oidc-gangway-cert.yaml
kubectl rollout restart deployment/oidc-gangway -n kube-system

Replace OIDC Server Certificate Signed By A Trusted CA Certificate SUSE Caas$ Platform
4.2.4

5.10.8 Automatic Certificate Renewal

SUSE CaasS Platform renews the control plane certificates and kubeconfigs automatically in two

ways:

1.

2.

S

S

88

During node upgrade: when the node is upgraded, all the kubeadm managed certificates
and kubeconfigs get rotated. Note that, during node upgrade, neither the kubelet client certifi-
cate nor server certificate get rotated. The time to rotate the kubelet client and server certifi-

cate is controlled by kubelet daemon.

Via the kucero addon: if the administrator is not willing to upgrade the cluster, the
kucero (KUbernetes control plane CErtificate ROtation) addon rotates all the kubeadm
managed certificates and kubeconfigs and signs kubelet server CSR. The kucero is a
kubeadm checker/renewer in the form of a DaemonSet. It’s job is to periodically check and
renew control plane kubeadm managed certificates/kubeconfigs, and check the kubelet

client and server enables auto rotation, and also a signer to sign kubelet server CSR.

Note: Time to rotate the kubelet client and server certificate

The kubelet client and server certificate renews automatically at approximately 70%-90%
of the total lifetime of the certificate, the kubelet daemon would use new client and server
certificates without downtime.

Note: Kubelet client and server certificate signing flow

The configuration which controls the kubelet daemon to send out the CSR within the
Kubernetes cluster or not is controlled by the configuration /var/lib/kubelet/con-
fig.yaml. The key rotateCertificates controls the kubelet client certificate; the key
serverTLSBootstrap controls the kubelet server certificate.

When the client or server certificate is going to expire, the kubelet daemon sends the
kubelet client or server CSR within the Kubernetes cluster. The kube-controller-man-
ager signs the kubelet client CSR with the Kubernetes CA cert/key pair, the kucero
signs the kubelet server CSR with the kubelet CA cert/key pair. Then, the kubelet daemon
saves the signed certificate under the folder /var/lib/kubelet/pki and updates the

client or server certificate symlink points to the latest signed certificate.

Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

The path of kubelet client certificate is /var/lib/kubelet/pki/kubelet-client-cur-
rent.pem. The path of kubelet server certificate is /var/lib/kubelet/pki/kubelet-

server-current.pem.

5.10.8.1

Control Plane Nodes Certificates Rotation

Control Plane Node Certificates are rotated in two ways:

1. During node upgrade: when doing a control plane update, skuba node upgrade apply

runs kubeadm upgrade commands behind the scenes. kubeadm upgrade apply and

kubeadm upgrade node renews and uses new kubeadm managed certificates on the node,

including those stored in kubeconfig files, regardless of the remaining time for which the

certificate was still valid.

2. Via the kucero addon:

a. kubeadm managed certificates/kubeconfigs: a kubeadm checker/renewer to periodi-

89

cal checks (default interval is 1 hour) the kubeadm managed certificates/kubeconfigs,
and rotates the certificates/kubeconfigs if the residual time is less than the total time
(default 720 hours). Administrators can change the default time to renew the cer-
tificates/kubeconfigs by adding - - renew-before=<duration>" (duration format is
XhYmZs) to the kucero daemonset or change the default polling period for checking
the certificates/kubeconfigs by adding --polling-period=<duration> (duration
format is XhYmZs).

kubelet client and server certificates: a kubelet configuration checker/updater to pe-
riodical checks (default interval is 1 hour) if the kubelet configuration enables the
client and server auto rotation. If not, kucero will helps enable the client and serv-
er auto-rotation by configuring the rotateCertificates: true and serverTLS-
Bootstrap: true in /var/lib/kubelet/config.yaml. After that, the kubelet dae-
mon will send out the CSR within Kubernetes cluster if the client or server is going
to expire, the corresponding CSR signer and approver will signs and approves the
CSR, then the kubelet daemon saves the signed certificate under the folder /var/

lib/kubelet/pki and updates the symlink points to the latest signed certificate.

Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

5.10.8.2 Worker Node Certificate Rotation

The kubelet client certificate are signed by kube-controller-manager and the kubelet server cer-

tificates are signed by the kucero addon.

5.10.8.3 Addon Certificate Rotation

The addon certificates can be automatically rotated by leveraging the functions of the open-
source solutions cert-manager and reloader. cert-manager is for automatically rotating
certificates stored in Secrets, and reloader is for watching and reconciling the updated Secrets

to execute a rolling upgrade of the affected Deployments or DaemonSet.

1. Install reloader via helm chart:

helm install \
--name <RELEASE NAME> \
--namespace cert-manager \
suse/reloader

Or if you have selected the Helm 3 alternative also see Section 3.7.2.1, “Installing Helm":

helm install <RELEASE NAME> \
--namespace cert-manager \
--create-namespace \
suse/reloader

2. Install cert-manager via helm chart:

helm install \
--name <RELEASE NAME> \
--namespace cert-manager \
--set global.leaderElection.namespace=cert-manager \
--set installCRDs=true \
suse/cert-manager

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing Helm™:

helm install <RELEASE NAME> \
--namespace cert-manager \
--create-namespace \
--set global.leaderElection.namespace=cert-manager \
--set installCRDs=true \
suse/cert-manager

90 Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

® Cert-Manager CA Issuer Resource
The cert-manager CA issuer is a Kubernetes resource that represents a certificate
authority (CA), which can generate signed certificates by honoring certificate signing
requests (CSR). Each cert-manager certificate resource requires one referenced issuer

in the ready state to be able to honor CSR requests.

@ Note

An Issuer is a namespaced resource, and it can not issue certificates to the

certificate resources in other namespaces.

If you want to create a single Issuer that can be consumed in multiple name-
spaces, you should consider creating a ClusterIssuer resource. This is al-
most identical to the Issuer resource, however, it is cluster-wide so it can be

used to issue certificates in all namespaces.

¢ Cert-Manager Certificate Resource
The cert-manager has a custom resource, Certificate, which can be used to define a
requested x509 certificate which will be renewed and kept up to date by an Issuer

or ClusterIssuer resource.

5.10.8.3.1 Client Certificate Rotation

@ Warning

If you are running a cluster using cilium version before 1.6, the cilium data is stored in
the ETCD cluster, not the custom resources (CR). “skuba™ generates a client certificate
to read/write the cilium date to the ETCD cluster and the client certificate will expire
after 1 year. Please follow the below steps to use cert-manager to automatically renew

the cilium client certificate.
1. Check the SUSE CaaS$ Platform cilium version before 1.6

CILIUM OPERATOR="kubectl get pod -1 name=cilium-operator --namespace kube-system -o
jsonpath='{.items[0].metadata.name}"'"

91 Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

92

kubectl exec -it ${CILIUM OPERATOR} --namespace kube-system -- cilium-operator --

version

2. To let reloader do an automatic rolling upgrade of the cilium addon DaemonSet, we

need to label the addons:

kubectl annotate --overwrite daemonset/cilium -n kube-system
secret.reloader.stakater.com/reload=cilium-secret

3. Upload the ETCD CA cert/key pair to Secret in the kube-system namespace

kubectl create secret tls etcd-ca --cert=pki/etcd/ca.crt --key=pki/etcd/ca.key -n

kube-system

4. Create a Cert-Manager CA Issuer Resource

Create a CA issuer called etcd-ca that will sign incoming certificate requests based on

the CA certificate and private key stored in the secret etcd-ca used to trust newly signed

certificates.

cat << EOF > issuer-etcd-ca.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Issuer
metadata:

name: etcd-ca

namespace: kube-system
spec:

ca:

secretName: etcd-ca

EOF

kubectl create -f issuer-etcd-ca.yaml

5. Create a Cert-Manager Certificate Resource

Create a certificate resource cilium-etcd-client that will watch and auto-renews the

secret cilium-secret if the certificate residual time is less than the renewBefore value.

cat << EOF > cilium-etcd-client-certificate.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Certificate
metadata:

name: cilium-etcd-client-cert

namespace: kube-system
spec:

subject:

organizations:

Automatic Certificate Renewal

SUSE CaaS Platform 4.2.4

- system:masters
commonName: cilium-etcd-client
duration: 8760h # 1 year
renewBefore: 720h # 1 month
secretName: cilium-secret
issuerRef:

name: etcd-ca

kind: Issuer

group: cert-manager.io
isCA: false
usages:

- digital signature

- key encipherment

- client auth
keySize: 2048
keyAlgorithm: rsa
keyEncoding: pkcsl

EOF

kubectl create -f cilium-etcd-client-certificate.yaml

5.10.8.3.2 Server Certificates Rotation
® Prerequisites

1. Tolet reloader do an automatic rolling upgrade of the addon Deployments or Dae-

monSet, we need to label the addons:

kubectl annotate --overwrite deployment/oidc-dex -n kube-system
secret.reloader.stakater.com/reload=oidc-dex-cert

kubectl annotate --overwrite deployment/oidc-gangway -n kube-system
secret.reloader.stakater.com/reload=oidc-gangway-cert

kubectl annotate --overwrite deployment/metrics-server -n kube-system
secret.reloader.stakater.com/reload=metrics-server-cert

2. Upload the Kubernetes CA cert/key pair to Secret in the kube-system namespace:

kubectl create secret tls kubernetes-ca --cert=pki/ca.crt --key=pki/ca.key -n
kube-system

93 Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

@ Note

If you want to use a custom trusted CA certificate/key to sign the certificate,

upload to the secret resource.

kubectl create secret tls custom-trusted-ca --
cert=<CUSTOM TRUSTED CA CERT> --key=<CUSTOM TRUSTED CA KEY> -n kube-

system

® Create a Cert-Manager CA Issuer Resource
Create a CA issuer called kubernetes-ca that will sign incoming certificate requests based

on the CA certificate and private key stored in the secret kubernetes-ca used to trust

newly signed certificates.

cat << EOF > issuer-kubernetes-ca.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Issuer
metadata:

name: kubernetes-ca @

namespace: kube-system
spec:

ca:

secretName: kubernetes-ca @

EOF

kubectl create -f issuer-kubernetes-ca.yaml

@ The issuer name.

® The secret reference name.

@ Note

If you want to use custom trusted CA certificate/key to sign the certificate, create

a custom trusted CA issuer.

cat << EOF > custom-trusted-kubernetes-ca-issuer.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Issuer @
metadata:
name: custom-trusted-kubernetes-ca
namespace: kube-system

94 Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

95

spec:
ca:
secretName: custom-trusted-kubernetes-ca
EOF

kubectl create -f custom-trusted-kubernetes-ca-issuer.yaml

@ Issuer or Clusterlssuer.

¢ Create a Cert-Manager Certificate Resource

Create a certificate resource that will watch and auto-renews the secret if the certificate

residual time is less than the renewBefore value.

® oidc-dex certificate

cat << EOF > oidc-dex-certificate.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Certificate
metadata:
name: oidc-dex-cert
namespace: kube-system
spec:
subject:
organizations:
- system:masters
commonName: oidc-dex
duration: 8760h # 1 year @
renewBefore: 720h # 1 month @
At least one of a DNS Name or IP address is required.

dnsNames:

- $(cat admin.conf | grep server | awk '{print $2}' | sed
sed 's/:6443//9') ©

ipAddresses:

- $(cat admin.conf | grep server | awk '{print $2}' | sed

sed 's/:6443//9') @
secretName: oidc-dex-cert
issuerRef:
name: kubernetes-ca ©
kind: Issuer @
group: cert-manager.io
isCA: false
usages:
- digital signature
- key encipherment
- server auth

Automatic Certificate Renewal

's/https:\/\///g"' |

's/https:\/\///g"' |

SUSE CaaS Platform 4.2.4

96

keySize: 2048

keyAlgorithm: rsa

keyEncoding: pkcsl
EOF

kubectl create -f oidc-dex-certificate.yaml

Default length of certificate validity, in the format (XhYmZs).
Certificate renewal time before validity expires, in the format (XhYmZs).
DNSNames is a list of subject alt names to be used on the Certificate.

IPAddresses is a list of IP addresses to be used on the Certificate.

®© 00600

The cert-manager issuer name.
® Issuer or Clusterlssuer.

This certificate will tell cert-manager to attempt to use the Issuer named kuber-
netes-ca to obtain a certificate key pair for the domain list in dnsNames and ipAd-
dresses. If successful, the resulting key and certificate will be stored in a secret named
oidc-dex-cert with keys of tls.key and tls.crt respectively.

The dnsNames and ipAddresses fields specify a list of Subject Alternative Names to
be associated with the certificate.

The referenced Issuer must exist in the same namespace as the Certificate. A Certifi-
cate can alternatively reference a ClusterIssuer which is cluster-wide so it can be ref-

erenced from any namespace.

@ Note

If you want to use a custom trusted CA Issuer/ClusterIssuer, change the value
of name under issuerRef to custom-trusted-ca and the value of kind

under issuerRef to Issuer/ClusterIssuer.

® oidc-gangway certificate

cat << EOF > oidc-gangway-certificate.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Certificate
metadata:
name: oidc-gangway-cert
namespace: kube-system
spec:
subject:

Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

97

©@ 6 0600

organizations:

- system:masters
commonName: oidc-gangway
duration: 8760h # 1 year @
renewBefore: 720h # 1 month @

At least one of a DNS Name or IP address is required.

dnsNames:

- $(cat admin.conf | grep server | awk '{print $2}'

sed 's/:6443//9') ©
ipAddresses:

- $(cat admin.conf | grep server | awk '{print $2}'

sed 's/:6443//9') ®
secretName: oidc-gangway-cert
issuerRef:
name: kubernetes-ca @
kind: Issuer @
group: cert-manager.io
isCA: false
usages:
- digital signature
- key encipherment
- server auth
keySize: 2048
keyAlgorithm: rsa
keyEncoding: pkcsl
EOF

kubectl create -f oidc-gangway-certificate.yaml

Issuer or ClusterIssuer.

The cert-manager issuer name.

| sed 's/https:\/\///g' |

| sed 's/https:\/\///g' |

Default length of certificate validity, in the format (XhYmZs).
Certificate renewal time before validity expires, in the format (XhYmZs).
DNSNames is a list of subject alt names to be used on the Certificate.

IPAddresses is a list of IP addresses to be used on the Certificate.

Automatic Certificate Renewal SUSE CaaS Platform 4.2.4

@ Note

If you want to use a custom trusted CA Issuer/ClusterIssuer, change the value

of name under issuerRef to custom-trusted-ca and the value of kind

under issuerRef to Issuer/ClusterIssuer.

® metrics-server certificate

cat << EOF > metrics-server-certificate.yaml
apiVersion: cert-manager.io/vlalpha3
kind: Certificate
metadata:
name: metrics-server-cert
namespace: kube-system
spec:
subject:
organizations:
- system:masters
commonName: metrics-server.kube-system.svc
duration: 8760h # 1 year @
renewBefore: 720h # 1 month @
At least one of a DNS Name or IP address is required.

dnsNames:

- $(cat admin.conf | grep server | awk '{print $2}' | sed
sed 's/:6443//9') ©

ipAddresses:

- $(cat admin.conf | grep server | awk '{print $2}' | sed

sed 's/:6443//9') @
secretName: metrics-server-cert
issuerRef:
name: kubernetes-ca @
kind: Issuer @
group: cert-manager.io
isCA: false
usages:
- digital signature
- key encipherment
- server auth
keySize: 2048
keyAlgorithm: rsa
keyEncoding: pkcsl
EOF

kubectl create -f metrics-server-certificate.yaml

98 Automatic Certificate Renewal

's/https:\/\///q" |

's/https:\/\///q" |

SUSE CaaS Platform 4.2.4

Default length of certificate validity, in the format (XhYmZs).

Certificate renewal time before validity expires, in the format (XhYmZs).
DNSNames is a list of subject alt names to be used on the Certificate.
IPAddresses is a list of IP addresses to be used on the Certificate.

The cert-manager issuer name.

©@ 6 0600

Issuer or ClusterIssuer.

@ Warning: Cert-Manager Known Issue

Once the cert-manager has issued a certificate to the secret, if you change the certificate
inside the secret manually, or you manually change the current certificate duration to a
value lower than the value renewBefore, the certificate won’t be renewed immediately

but will be scheduled to renew near the certificate expiry date.

This is because the cert-manager is not designed to pick up changes you make to the

certificate in the secret.

5.10.9 Manual Certificate Renewal

o Important

If you are running multiple control plane nodes, you need to run the followings commands

sequentially on all control plane nodes.

5.10.9.1 Renewing Control Plane Certificates

¢ Replace kubeadm-managed certificates:

1. To SSH into the control plane node, renew all kubeadm certificates and reboot, run

the following:

ssh <USERNAME>@<MASTER NODE IP ADDRESS/FQDN>
sudo cp -r /etc/kubernetes/pki /etc/kubernetes/pki.bak
sudo kubeadm alpha certs renew all

99 Manual Certificate Renewal SUSE CaaS Platform 4.2.4

100

sudo systemctl restart kubelet

2. Copy the renewed admin.conf from one of the control plane nodes to your local

environment:

ssh <USERNAME>@<MASTER NODE_IP_ ADDRESS/FQDN>
sudo cat /etc/kubernetes/admin.conf

¢ Replace the kubelet server certificate:

o Important

You need to generate kubelet server certificate for all the nodes on one of control
plane nodes. The kubelet CA certificate key only exists on the control plane nodes.
Therefore, after generating re-signed kubelet server certificate/key for worker
nodes, you have to copy each kubelet server certificate/key from the control plane
node to the corresponding worker node.

1. Backup the original kubelet certificates and keys.

sudo cp -r /var/lib/kubelet/pki /var/lib/kubelet/pki.bak

2. Sign each node kubelet server certificate with the CA certificate/key /

var/lib/kubelet/pki/kubelet-ca.crt and /var/lib/kubelet/pki/kubelet-
ca.key, make sure that the signed server certificate SAN is the same as the origin.
To get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in /var/lib/kubelet/pki.bak/kubelet.crt | grep -oP
'(?<=IP Address:)[", 1+

openssl x509 -noout -text -in /var/lib/kubelet/pki.bak/kubelet.crt | grep -oP
"(?<=DNS:)[", 1+

3. Finally, update the kubelet server certificate and key file /var/lib/kubelet/

kubelet.crt and /var/lib/kubelet/kubelet.key respectively, and restart
kubelet service.

sudo cp <CUSTOM KUBELET SERVER CERT PATH> /var/lib/kubelet/pki/kubelet.crt
sudo cp <CUSTOM KUBELET SERVER KEY PATH> /var/lib/kubelet/pki/kubelet.key
chmod 644 /var/lib/kubelet/pki/kubelet.crt
chmod 600 /var/lib/kubelet/pki/kubelet.key

Manual Certificate Renewal SUSE CaaS Platform 4.2.4

sudo systemctl restart kubelet

5.10.9.2 Renewing Addon Certificates:

In the admin node, regenerate the certificates:

® Replace the oidc-dex server certificate:
1. Backup the original oidc-dex server certificate and key from secret resource.

mkdir -p <CLUSTER NAME>/pki.bak

kubectl get secret oidc-dex-cert -n kube-system -o "jsonpath={.data['tls
\.crt']}" | base64 --decode | tee <CLUSTER NAME>/pki.bak/oidc-dex.crt > /dev/
null

kubectl get secret oidc-dex-cert -n kube-system -o "jsonpath={.data['tls
\.key']}" | base64 --decode | tee <CLUSTER NAME>/pki.bak/oidc-dex.key > /dev/
null

2. Get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in <CLUSTER NAME>/pki.bak/oidc-dex.crt | grep -oP
'(?<=IP Address:)[",]+'

openssl x509 -noout -text -in <CLUSTER NAME>/pki.bak/oidc-dex.crt | grep -oP
'(?<=DNS:) [, 1+

3. Sign the oidc-dex server certificate with the default kubernetes CA certificate or

trusted CA certificate.

a. Default kubernetes CA certificate
Please refer to Section 5.10.10.2.2, “Self-signed Server Certificate” on how to sign
the self signed server certificate. The default kubernetes CA certificate and key
are located at /etc/kubernetes/pki/ca.crt and /etc/kubernetes/pki/
ca.key. The server.conf for IP.1 is the original SAN IP address if present,
DNS.1 is the original SAN DNS if present.

b. Trusted CA certificate
Please refer to Section 5.10.10.1.1, “Trusted Server Certificate” on how to sign the
trusted server certificate. The server.conf for IP.1 is the original SAN IP ad-
dress if present, DNS.1 is the original SAN DNS if present.

101 Manual Certificate Renewal SUSE CaaS Platform 4.2.4

4. Import your certificate into the Kubernetes cluster. The CA certificate is
<CA CERT PATH>, server certificate and key are <SIGNED OIDC DEX SERV-
ER CERT PATH> and <SIGNED OIDC DEX SERVER KEY PATH>.

5. Create a secret manifest file oidc-dex-cert.yaml and update the secret data
ca.crt, tls.crt, and tls.key with base64; encoded with CA certificate, signed
oidc-dex server certificate and key respectively.

apiVersion: vl
kind: Secret
metadata:
name: oidc-dex-cert
namespace: kube-system
labels:
caasp.suse.com/skuba-addon: "true"
type: kubernetes.io/tls
data:
ca.crt: cat <CA CERT PATH> | base64 | awk '\{print\}' ORS='"' && echo
tls.crt: cat <SIGNED OIDC DEX SERVER CERT PATH> | base64 | awk ‘\{print\}'
ORS="'"' && echo
tls.key: cat <SIGNED OIDC DEX SERVER KEY PATH> | base64 | awk '\{print\}'
ORS="'" && echo

6. Apply the secret manifest file and restart oidc-dex pods.

kubectl replace -f oidc-dex-cert.yaml
kubectl rollout restart deployment/oidc-dex -n kube-system

® Replace the oidc-gangway server certificate:

1. Backup the original oidc-gangway server certificate and key from secret resource.

mkdir -p <CLUSTER NAME>/pki.bak
kubectl get secret oidc-gangway-cert -n kube-system -o "jsonpath={.data['tls

\.crt']}" | base64 --decode | tee <CLUSTER NAME>/pki.bak/oidc-gangway.crt > /
dev/null

kubectl get secret oidc-gangway-cert -n kube-system -o "jsonpath={.data['tls
\.key']}" | base64 --decode | tee <CLUSTER NAME>/pki.bak/oidc-gangway.key > /
dev/null

2. Get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in <CLUSTER NAME>/pki.bak/oidc-gangway.crt | grep -
oP '(?<=IP Address:)[",]+'

102 Manual Certificate Renewal SUSE CaaS Platform 4.2.4

103

openssl x509 -noout -text -in <CLUSTER NAME>/pki.bak/oidc-gangway.crt | grep -
oP '(?<=DNS:)[~",]+'

3. Sign the oidc-gangway server certificate with the default kubernetes CA certificate
or trusted CA certificate.

a. Default kubernetes CA certificate
Please refer to Section 5.10.10.2.2, “Self-signed Server Certificate” on how to sign
the self signed server certificate. The default kubernetes CA certificate and key
are located at /etc/kubernetes/pki/ca.crt and /etc/kubernetes/pki/
ca.key. The server.conf for IP.1 is the original SAN IP address if present,
DNS.1 is the original SAN DNS if present.

b. Trusted CA certificate
Please refer to Section 5.10.10.1.1, “Trusted Server Certificate” on how to sign the
trusted server certificate. The server.conf for IP.1 is the original SAN IP ad-
dress if present, DNS.1 is the original SAN DNS if present.

4. Import your certificate into the Kubernetes cluster. The CA certificates is
<CA CERT_PATH>, server certificate and key are <SIGNED OIDC GANGWAY SERV-
ER CERT PATH> and <SIGNED OIDC GANGWAY SERVER KEY PATH>.

5. Create a secret manifest file oidc-gangway-cert.yaml and update the secret data
ca.crt, tls.crt, and tls.key with base64; encoded with CA certificate, signed
oidc-gangway server certificate and key respectively.

apiVersion: vl
kind: Secret
metadata:
name: oidc-gangway-cert
namespace: kube-system
labels:
caasp.suse.com/skuba-addon: "true"
type: kubernetes.io/tls
data:
ca.crt: cat <CA CERT PATH> | base64 | awk '\{print\}' ORS='"' && echo
tls.crt: cat <SIGNED OIDC GANGWAY SERVER CERT PATH> | base64 | awk '\{print
\}' ORS='' && echo
tls.key: cat <SIGNED OIDC GANGWAY SERVER KEY PATH> | base64 | awk '\{print\}'
ORS=""' && echo

6. Apply the secret manifest file and restart oidc-gangway pods.

Manual Certificate Renewal SUSE CaaS Platform 4.2.4

104

kubectl replace -f oidc-gangway-cert.yaml
kubectl rollout restart deployment/oidc-gangway -n kube-system

® Replace the metrics-server server certificate:

1. Backup the original metrics-server server certificate and key from secret resource.

mkdir -p <CLUSTER NAME>/pki.bak

kubectl get secret metrics-server-cert -n kube-system -o "jsonpath={.data['tls
\.crt']}" | base64 --decode | tee <CLUSTER NAME>/pki.bak/metrics-server.crt > /
dev/null

kubectl get secret metrics-server-cert -n kube-system -o "jsonpath={.data['tls
\.key']}" | base64 --decode | tee <CLUSTER NAME>/pki.bak/metrics-server.key > /
dev/null

. Get the O/0OU/CN, run:

openssl x509 -noout -subject -in <CLUSTER NAME>/pki.bak/metrics-server.crt

. Get the original SAN IP address(es) and DNS(s), run:

openssl x509 -noout -text -in <CLUSTER NAME>/pki.bak/metrics-server.crt | grep
-oP '(?<=IP Address:)[",]+

openssl x509 -noout -text -in <CLUSTER NAME>/pki.bak/metrics-server.crt | grep
-oP '(?<=DNS:)[",]1+'

. Sign the metrics-server-cert server certificate with the default Kubernetes CA

certificate

Please refer to Section 5.10.10.2.2, “Self-signed Server Certificate” on how to sign the self
signed server certificate. The default Kubernetes CA certificate and key are located
at /etc/kubernetes/pki/ca.crt and /etc/kubernetes/pki/ca.key. The serv-
er.conf for O/OU/CN must be the same as original one, IP.1 is the original SAN
IP address if present, DNS. 1 is the original SAN DNS if present.

. Import your certificate into the Kubernetes cluster. The CA certificates

is <CA CERT PATH>, server certificate and key are <SIGNED METRICS SERV-
ER CERT PATH> and <SIGNED METRICS SERVER KEY PATH>.

. Create a secret manifest file oidc-metrics-server-cert.yaml and update the se-

cretdata ca.crt, tls.crt,and tls.key with base64; encoded with CA certificate,

signed metrics-server server certificate and key respectively.

Manual Certificate Renewal SUSE CaaS Platform 4.2.4

apiVersion: vl
kind: Secret
metadata:
name: metrics-server-cert
namespace: kube-system
labels:
caasp.suse.com/skuba-addon: "true"
type: kubernetes.io/tls
data:
ca.crt: cat <CA CERT PATH> | base64 | awk '\{print\}' ORS='"' && echo
tls.crt: cat <SIGNED METRICS SERVER CERT PATH> | base64 | awk '\{print\}'

ORS="'"' && echo
tls.key: cat <SIGNED METRICS SERVER KEY PATH> | base64 | awk '\{print\}'
ORS="" && echo

7. Apply the secret manifest file and restart metrics-server pods.

kubectl replace -f metrics-server-cert.yaml
kubectl rollout restart deployment/metrics-server -n kube-system

5.10.10 How To Generate Certificates

5.10.10.1 Trusted 3rd-Party Signed Certificate

5.10.10.1.1 Trusted Server Certificate
1. Generate a private key by following the steps below from a terminal window:
openssl genrsa -aes256 -out server.key 2048

Type the pass phrase to protect the key and press [Enter]

Re-enter the pass phrase.

2. Create a file server.conf with the appropriate values

[req]

distinguished name = req distinguished name
req_extensions = v3 req

prompt = no

105 How To Generate Certificates SUSE CaaS Platform 4.2.4

[req distinguished name]

cC=CZ @

ST =(CZ @

L = Prague ©

0 = example @

ou com @

CN = server.example.com @
emailAddress = admin@example.com @

[v3 reql

basicConstraints = critical, CA:FALSE

keyUsage = critical,digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

subjectAltName = @alt names

[alt names]
IP.1 = <SERVER-IP-ADDRESS> @
DNS.1 = <SERVER-FQDN> ©

Country Name (2 letter code).

State or Province Name (full name).

Locality Name (eg, city).

Organization Name (eg, company).
Organizational Unit Name (eg, section).

Common Name (e.g. server FQDN or YOUR name)

Email Address

©0 066 00O

Server IP address if present. Add more IP.X below if the server has more than one IP
address. Remove IP.1 if the server uses FQDN.

Server FQDN if present. Add more DNS.X below if the server has more than one

o)

domain name. Remove DNS.1 if the server uses an IP address.
3. Generate a certificate signing request (CSR)

openssl req -new -key server.key -config server.conf -out server.csr

Enter the pass phrase of the private key created in Step 1.
Check the certificate signing request (CSR)

openssl req -text -noout -verify -in server.csr

4. Sign the certificate

106 How To Generate Certificates SUSE CaaS Platform 4.2.4

Send the certificate signing request (CSR) to the 3rd party for signing. You should receive

the following files in return:

a. Server certificate (public key)

b. Intermediate CA and/or bundles that chain to the Trusted Root CA

5.10.10.1.2 Trusted Client Certificate

1. Generate a private key by following the steps below from a terminal window:

openssl genrsa -aes256 -out client.key 2048

Type the pass phrase to protect the key and press [Enter]

Re-enter the pass phrase.

2. Create a file client.conf with the appropriate values

107

[req]

distinguished name = req distinguished name
req_extensions = v3 req

prompt = no

[req distinguished name]

C=CZ ©

ST =(CZ @

L = Prague ©

0 = example @

ou com @

CN client.example.com @
emailAddress = admin@example.com @

[v3 reql

basicConstraints = critical, CA:FALSE

keyUsage = critical,digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth

@ Country Name (2 letter code).
State or Province Name (full name).
Locality Name (eg, city).

Organization Name (eg, company).

® 0600

Organizational Unit Name (eg, section).

How To Generate Certificates

SUSE CaaS Platform 4.2.4

@ Common Name (e.g. client FQDN or YOUR name)
@ Email Address

3. Generate a certificate signing request (CSR)
openssl req -new -key client.key -config client.conf -out client.csr

Enter the pass phrase of the private key created in Step 1.
Check the certificate signing request (CSR)

openssl req -text -noout -verify -in client.csr

4. Sign the certificate
Send the certificate signing request (CSR) to the 3rd party for signing. You should receive

the following files in return:
a. Client certificate (public key)

b. Intermediate CA and/or bundles that chain to the Trusted Root CA

5.10.10.2 Self-signed Server Certificate

@ Note

In the case that you decide to use self-signed certificates, make sure that the Certificate
Authority used for signing is configured securely as a trusted Certificate Authority on the

clients.

In some cases you want to create self-signed certificates for testing. If you are using proper
trusted 3rd-party CA signed certificates, skip the following steps and refer to Section 5.70.70.1.7,

“Trusted Server Certificate”.

5.10.10.2.1 Self-signed CA Certificate
1. Create a file ca.conf with the appropriate values

[req]
distinguished name = req distinguished name
x509 extensions = v3 ca

108 How To Generate Certificates SUSE CaaS Platform 4.2.4

prompt = no

[req distinguished name]
C=CZ ©
ST=(CZ @
L = Prague ©

0

example @

OU = com ©

CN = Root CA O

emailAddress =

[v3 cal
basicConstraints

keyUsage = critical,digitalSignature,keyEncipherment, keyCertSign

© ®©060 60600

admin@example.com @

= critical,CA:TRUE

Country Name (2 letter code).

State or Province Name (full name).

Locality Name (eg, city).

Organization Name (eg, company).

Organizational Unit Name (eg, section).

Common Name (e.g. server FQDN or YOUR name)

Email Address

2. Sign the CA certificate

5.10.10.2.2

openssl genrsa -out ca.key 2048
openssl req -key ca.key -new -x509 -days 3650 -sha256 -config ca.conf -out ca.crt

Self-signed Server Certificate

1. Create a file server.conf with the appropriate values

109

[req]
distinguished name = req distinguished name

req_extensions
prompt = no

v3 req

[req distinguished name]

C=CZ @

ST =(CZ @

L = Prague ©
= example @

How To Generate Certificates

SUSE CaaS Platform 4.2.4

ou
CN example.com @
emailAddress = admin@example.com @

com @

[v3 reql

basicConstraints = critical, CA:FALSE

keyUsage = critical,digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

subjectAltName = @alt names

[alt names]
IP.1 = <SERVER-IP-ADDRESS> ©
DNS.1 = <SERVER-FQDN> @

Country Name (2 letter code).

State or Province Name (full name).
Locality Name (eg, city).

Organization Name (eg, company).
Organizational Unit Name (eg, section).

Common Name (e.g. server FQDN or YOUR name)

Email Address

0 06 6000O

Server IP address if present. Add more IP.X below if the server has more than one IP
address. Remove IP.1 if the server uses FQDN.

©

Server FQDN if present. Add more DNS.X below if the server has more than one

domain name. Remove DNS.1 if the server uses an IP address.

2. Generate the certificate
openssl genrsa -out server.key 2048
openssl req -key server.key -new -sha256 -out server.csr -config server.conf

openssl x509 -req -CA ca.crt -CAkey ca.key -CAcreateserial -in server.csr -out
server.crt -days 365 -extensions v3 req -extfile server.conf

Check the signed certificate

openssl x509 -text -noout -in server.crt

5.10.10.2.3 Self-signed Client Certificate

1. Create a file client.conf with the appropriate values

110 How To Generate Certificates SUSE CaaS Platform 4.2.4

111

[req]

distinguished name = req distinguished name
req_extensions = v3 req

prompt = no

[req distinguished name]

C=CZ @

ST=CZ ®

L = Prague ©

example @

OU = com ©

CN = client.example.com @
emailAddress = admin@example.com @

[v3 reql

basicConstraints = critical, CA:FALSE

keyUsage = critical,digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth

Country Name (2 letter code).

State or Province Name (full name).

Locality Name (eg, city).

Organization Name (eg, company).
Organizational Unit Name (eg, section).

Common Name (e.g. server FQDN or YOUR name)

Email Address

O OO0 60600

Generate the certificate

openssl genrsa -out client.key 2048

openssl req -key client.key -new -sha256 -out client.csr -config client.conf
openssl x509 -req -CA ca.crt -CAkey ca.key -CAcreateserial -in client.csr -out
client.crt -days 365 -extensions v3 req -extfile client.conf

Check the signed certificate

openssl x509 -text -noout -in client.crt

How To Generate Certificates SUSE CaaS Platform 4.2.4

6 Logging

6.1 Introduction

Logging is ubiquitous throughout SUSE CaaS Platform. Some tools will only print their outputs

to the currently running session shell and not create a "log file".

If you need to retain the output of these files you can tee them into a separate file (refer to

Section 6.2, “Logging in skuba”).

Many other service components will produce log files or other log info streams. You can collect,
store and evaluate these logs via Section 6.4, “Centralized Logging” for use with the Section 7.7,

“Monitoring Stack”.

@ Note

If you are looking for troubleshooting logs please refer to Section 13.3, “Log collection”.

6.2 Logging in skuba

One important part of deploying and maintaining a product is to have reliable logs. Tools like
skuba take the approach of printing the output to the standard output directly. This is not just
common practice, but it also has the advantage that then the user has more flexibility on how

to manage said output.

Thus, whenever throughout this guide we write a skuba command, take into account that the
output will be printed into the standard output. If you would also like to have the logs stored

somewhere else for later inspection, you can use tools like tee. For example:

skuba node bootstrap --user sles --sudo --target <IP/FQDN> <NODE NAME> | tee <NODE_ NAME>-
skuba-node-bootstrap.log

Otherwise, you might want to use other tools to manage the logs for later inspection. The point
being that this guide will never consider how to manage these logs because skuba itself does

not. It’s up to you to manage these logs in any way you find desirable.

Moreover, skuba has also various levels of log verbosity. This is managed by the -v, --
verbosity flag. This flag accepts an integer argument, ranging from O to 5, where a higher
number means a higher level of verbosity. If you don’t pass any arguments, then 0 is assumed.

112 Introduction SUSE CaaS Platform 4.2.4

We recommend using the default argument, since it will already log warnings and errors, among
other relevant output, whereas 5 can be a bit overwhelming. Thus, for the above example, we

would recommend something like:

skuba node bootstrap -v --user sles --sudo --target <IP/FQDN> <NODE NAME> | tee
<NODE_NAME>-skuba-node-bootstrap.log

Now the <NODE NAME>-skuba-node-bootstrap.log will have more useful information than
without the -v flag. We strongly recommend using this flag in order to get as much useful

information as possible from a single run.

6.3 Audit Log

To track actions that have been performed on the cluster, you can enable the Kubernetes audit
log during cluster bootstrap or on a running cluster.

This allows the audit logs to be written on the Kubernetes master nodes at /var/log/kube-

apiserver/audit.log or the given path.

For more information on the audit log and its contents, see: https://kubernetes.io/docs/tasks/

debug-application-cluster/audit/ @

6.3.1 Limitations

The Kubernetes audit log only collects and stores actions performed on the level of the cluster.

This does not include any resulting actions of application services.

6.3.2 Enable Auditing During Cluster Bootstrap

1. Create audit policy file - audit.yaml. Here uses a simple policy for demonstration.

apiVersion: audit.k8s.io/vlbetal
kind: Policy
rules:

- level: Metadata @

113 Audit Log SUSE CaasS Platform 4.2.4

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

@ The audit level of the event. This sample will log all requests at the Metadata lev-

el. For detailed information, refer to: https://kubernetes.io/docs/tasks/debug-applica-

tion-cluster/audit/#audit-policy @

2. Create audit policy file directory on all master nodes.

sudo mkdir -p /etc/kubernetes/policies

3. Copy audit policy file - audit.yaml to /etc/kubernetes/policies/audit.yaml on all

master nodes.

4. Edit kubeadm-init.conf file in skuba init folder to add audit related configurations.

114

vi <my cluster>/kubeadm-init.conf

apiServer:
extraArgs:

audit-log-path: /var/log/kube-apiserver/audit.log
audit-policy-file: /etc/kubernetes/policies/audit.yaml @
audit-log-maxage: "30" @

audit-log-maxsize: "100" ©

audit-log-maxbackup: "5" @

audit-log-format: json @

extraVolumes:
- name: audit-policy

hostPath: /etc/kubernetes/policies/audit.yaml @
mountPath: /etc/kubernetes/policies/audit.yaml @
readOnly: true

pathType: File

name: audit-logs

hostPath: /var/log/kube-apiserver @

mountPath: /var/log/kube-apiserver ©

pathType: DirectoryOrCreate

Path to the YAML file that defines the audit policy configuration.

The maximum number of days to retain old audit log files based on the timestamp

encoded in their filename. (Default: 15)

The maximum size in megabytes of the audit log file before it gets rotated. (Default:
10)

The maximum number of old audit log files to retain. (Default: 20)

Enable Auditing During Cluster Bootstrap SUSE CaasS Platform 4.2.4

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy

"nons non

Format of saved audits. Known formats are "legacy", "json". "legacy" indicates 1-line

text format for each event. "json" indicates structured json format.

()

The audit policy configuration file path from the host node’s filesystem.
The audit policy configuration file path on the api-server pod.

The audit log file directory from the host node’s filesystem.

®© 000

The audit log file directory on the api-server pod.

Proceed with Cluster Bootstrap (https://documentation.suse.com/suse-caasp/4.2//sin-

gle-html/caasp-deployment/#bootstrap) .

If everything is setup correctly, you should be able to see audit logs are written to /var/

log/kube-apiserver/audit.log.

6.3.3 Enable Auditing On Running Cluster

@ Note

1.

115

The following steps take effect only on the updated master nodes. You need to repeat the

following steps on every master node in the cluster.

Create audit policy file - audit.yaml. Here uses a simple policy for demonstration.

apiVersion: audit.k8s.io/vlbetal
kind: Policy
rules:

- level: Metadata @

@ The audit level of the event. This sample will log all requests at the Metadata lev-
el. For detailed information, refer to: https://kubernetes.io/docs/tasks/debug-applica-

tion-cluster/audit/#audit-policy @
Create audit policy file directory on master node.
sudo mkdir -p /etc/kubernetes/policies

Copy audit policy file - audit.yaml to /etc/kubernetes/policies/audit.yaml on

master node.

Edit /etc/kubernetes/manifests/kube-apiserver.yaml.

Enable Auditing On Running Cluster SUSE CaasS Platform 4.2.4

https://documentation.suse.com/suse-caasp/4.2//single-html/caasp-deployment/#bootstrap
https://documentation.suse.com/suse-caasp/4.2//single-html/caasp-deployment/#bootstrap
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy
https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy

116

spec:
containers:

command :

- kube-apiserver

- --audit-log-path=/var/log/kube-apiserver/audit.log

- --audit-policy-file=/etc/kubernetes/policies/audit.yaml @
- --audit-log-maxage=30 @

- --audit-log-maxsize=100 ©

- --audit-log-maxbackup=5 @

- --audit-log-format=json ©

volumeMounts:

- mountPath: /etc/kubernetes/policies/audit.yaml @
name: audit-policy
readOnly: true

- mountPath: /var/log/kube-apiserver @
name: audit-logs

volumes:

hostPath:
path: /etc/kubernetes/policies/audit.yaml @
type: File
name: audit-policy
hostPath:
path: /var/log/kube-apiserver ©
type: DirectoryOrCreate
name: audit-logs

Path to the YAML file that defines the audit policy configuration.

The maximum number of days to retain old audit log files based on the timestamp

encoded in their filename. (Default: 15)

The maximum size in megabytes of the audit log file before it gets rotated. (Default:
10)
The maximum number of old audit log files to retain. (Default: 20)

"nons non

Format of saved audits. Known formats are "legacy", "json". "legacy" indicates 1-line
text format for each event. "json" indicates structured json format.

The audit policy configuration file path on the api-server pod.

The audit log file directory on the api-server pod.

The audit policy configuration file path from the host node’s filesystem.

Enable Auditing On Running Cluster SUSE CaasS Platform 4.2.4

© The audit log file directory from the host node’s filesystem.
5. Restart kubelet.

sudo systemctl restart kubelet

6. If everything is set up correctly, you should be able to see audit logs being written to /

var/log/kube-apiserver/audit. log.

6.3.4 Disable Auditing

@ Note

The following steps take effect only on the updated master nodes. You need to repeat the

following steps on every master node in the cluster.

1. Remote access to the master node.
ssh sles@<master node>

1. Edit /etc/kubernetes/manifests/kube-apiserver.yaml and remove the following

lines.

- --audit-log-path=/var/log/kube-apiserver/audit.log

- --audit-policy-file=/etc/kubernetes/policies/audit.yaml
- --audit-log-maxage=30

- --audit-log-maxsize=100

- --audit-log-maxbackup=5

- --audit-log-format=json

- mountPath: /etc/kubernetes/policies/audit.yaml
name: audit-policy
readOnly: true

- mountPath: /var/log/kube-apiserver
name: audit-logs

- hostPath:
path: /etc/kubernetes/policies/audit.yaml
type: File
name: audit-policy
- hostPath:

117 Disable Auditing SUSE CaasS Platform 4.2.4

path: /var/log/kube-apiserver
type: DirectoryOrCreate
name: audit-logs

2. Restart kubelet.

sudo systemctl restart kubelet

6.4 Centralized Logging

Centralized Logging is a means of collecting logs from the SUSE CaaS Platform for centralized
management. It forwards system and Kubernetes cluster logs to a specified external logging

service, for example, Rsyslog server.

Collecting logs in a central location can be useful for audit or debug purposes or to analyze and

visually present data.

6.4.1 Prerequisites

In order to successfully use Centralized Logging, you first need to install Helm, and Tiller if
using Helm 2. Helm is used to install the log agents and provide custom logging settings.

Refer to Section 3.1.2.1, “Installing Helm”.

6.4.2 Types of Logs

You can log the following groups of services. See Section 6.4.4, “Deployment” for more information

on how to select and customize the logs.
Kubernetes System Components

¢ Kubelet

® Cri-o
Kubernetes Control Plane Components

e API Server

¢ Controller Manager

118 Centralized Logging SUSE CaasS Platform 4.2.4

Scheduler

Cilium

Kube-proxy

All resources in the kube-system namespaces
Kubernetes Namespaces Pods

¢ All namespaces in cluster except kube-system
OS Components

e Kernel
e Audit

® Zypper

e Network (wicked)

Centralized Logging is also restricted to the following protocols: UDP, TCP, TCP + TLS, TCP
+ mTLS.

6.4.3 Log Formats

The two supported syslog message formats are RFC 5424 and RFC 3164.

@ Note

The Kubernetes cluster metadata is included in the RFC 5424 message.

Example RFC 3164

2019-05-30T09:11:21.968458+00:00 workerl k8s.system/

crio[12080] level=debug msg="Endpoint successfully created"
containerID=caa46f14a68e766b877af01442e58731845bb45d8celf856553440a02c958b2f
eventUUID=e2405f2a-82ba-11e9-9a06-fal63eebdfd6 subsys=cilium-cni

Example RFC 5424

119 Log Formats SUSE CaasS Platform 4.2.4

<133>1 2019-05-30T08:28:38.784214+00:00 master0® k8s.pod/kube-system/kube-apiserver-

master0/kube-apiserver - - [kube meta namespace id="1e030def-8ldb-11e9-a62b-
fal63el876c9" container name="kube-apiserver" creation timestamp="2019-05-29T06:29:312"
host="master0" namespace name="kube-system" master url="https://
kubernetes.default.svc.cluster.local:443" pod id="4aafl0f9-81ldb-11e9-a62b-fal63e1876c9"
pod name="kube-apiserver-master0"] 2019-05-30T08:28:38.783780355+00:00 stderr F I0530
08:28:38.783710 1 log.go:172] http: TLS handshake error from 172.28.0.19:45888:
tls: client offered only unsupported versions: [300]

6.4.4 Deployment

After you have successfully installed it, use Helm CLI to install log agents on each node, and

provide customized settings via specific command options.

The only three mandatory parameters for a successful deployment of Centralized Logging are:

® server.host, default value = rsyslog-server.default.svc.cluster.local
® server.port, default value = 514
® server.protocol, default value = TCP
See Section 6.4.6, “Optional settings” for the optional parameters and their default values.

® Running the following will create the minimal working setup:

helm repo add suse https://kubernetes-charts.suse.com
helm install suse/log-agent-rsyslog --name <RELEASE NAME> --namespace kube-system --set
server.host=${SERVER HOST} --set server.port=${SERVER PORT}

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing Helm":

helm repo add suse https://kubernetes-charts.suse.com
helm install <RELEASE NAME> suse/log-agent-rsyslog --namespace kube-system --set
server.host=${SERVER HOST} --set server.port=${SERVER PORT}

@ Note

If not specified otherwise, Helm will install log agents with TCP as the default value for

server.protocol.

120 Deployment SUSE CaasS Platform 4.2.4

@ Warning

Running Rsyslog in the host machine as well as in the Kubernetes cluster with imjournal
and imfile input modules enabled may causes issues. Rsyslog can crash. To avoid that,
it is possible to disable the imjournal module in the helm chart installation adding the

following command line argument:

--set logs.osSystem.enabled=false

After this step, all of the log agents will initialize then start to forward logs from each node to

the configured remote Rsyslog server.

¢ To check the installation progress, use the helm status command:
helm status <RELEASE NAME>
* To uninstall log agents, use the helm delete command:

helm delete --purge <RELEASE NAME>
Or if you have selected the Helm 3 alternative also see Section 3.7.2.1, “Installing Helm":

helm uninstall <RELEASE NAME>

6.4.5 Queuing

Centralized Logging supports a configurable buffered queue. This can be used to improve log
processing throughput and eliminate possible data loss, for instance after log agents shutdown,
restart or in case of an unresponsive remote server. The queue files are located under /var/
log/containers/{RELEASE NAME}-log-agent-rsyslog on every node in the cluster. Queue

files remain even after the log agents are deleted.
The buffered queue can be enabled/disabled with the following parameter:
queue.enabled, default value = false

Setting queue.enabled to false means that data will be stored in-memory only. Setting the
parameter to true will set the data store to a mixture of in-memory and in-disk. Data will then
be stored in memory until the queue is filled up, after which storing is switched to disk. Enabling

the queue also automatically saves the queue to disk at service shutdown.

121 Queuing SUSE CaasS Platform 4.2.4

Additional parameters to define queue size and its disk usage are:

queue.size, default value = 50000

This option sets the number of messages allowed for the in-memory queue. This setting af-

fects the Kubernetes cluster logs (kubernetes-control-plane and kubernetes-USER NAME-

space).

queue.maxDiskSpace, default value = 2147483648

This option sets the maximum size allowed for disk storage (in bytes). The storage is divided so

that 20 percent of it is for journal logs and 80 percent for the remaining logs.

6.4.6 Optional settings

@ Note

Options with empty default values are set as not specified.

Parameter

image.repository

image.tag

kubernetesPodAnnotation-
sEnabled

kubernetesPodLabelsEnabled

logs.kubernetesControl-

Plane.enabled

logs.kubernetesSystem.en-
abled

logs.kubernetesUserName-

spaces.enabled

122

Function

specifies image repository to

pull from
specifies image tag to pull

enables kubernetes meta an-

notations in pod logs

enables kubernetes meta la-

bels in pod logs

enables Kubernetes control

plane logs

enables Kubernetes system

logs (kubelet, crio)

enables Kubernetes user

namespaces lOgS

Optional settings

Default value

registry.suse.com/caasp/v4/

rsyslog
8.39.0

false

false

true

true

false

SUSE CaaS Platform 4.2.4

Parameter

logs.kubernetesUserName-

spaces.exclude

logs.osSystem.enabled

persistStateInterval

queue.enabled

queue.maxDiskSpace

queue.size

resources.limits.cpu
resources.limits.memory
resources.requests.cpu
resources.requests.memory

resumelnterval

resumeRetryCount

server.tls.clientCert

server.tls.clientKey

123

Function

excludes Kubernetes logs for

specific namespaces

enables OS logs (auditd, ker-
nel, wicked, zypper)

sets interval (number-of-mes-
sages) for data state persis-

tency
enables Rsyslog queue

sets maximum Rsyslog queue

disk space in bytes

sets Rsyslog queue size in

bytes

sets CPU limits

sets memory limits

sets CPU for requests
sets memory for requests

specifies time (seconds) af-
ter failure before retry is at-

tempted

sets number of retries after
first failure before the log is
discarded. -1 is unlimited

sets TLS client certificate

sets TLS client key

Optional settings

Default value

m

true

100

false

2147483648

50000

512 Mi

100m

512 Mi

30

SUSE CaaS Platform 4.2.4

Parameter Function Default value
server.tls.enabled enables TLS false

server.tls.permittedPeer sets a list of TLS/fingerprints
or TLS/names with permis-

sion to access the server

server.tls.rootCa specifies TLS root certificate

authority

124 Optional settings SUSE CaasS Platform 4.2.4

7

7.1

Monitoring

Monitoring Stack

o Important

The described monitoring approach in this document is a generalized example of one way

of monitoring a SUSE CaaS$ Platform cluster.

Please apply best practices to develop your own monitoring approach using the described

examples and available health checking endpoints.

7.1.1 Introduction

This document aims to describe monitoring in a Kubernetes cluster.

The monitoring stack consists of a metrics server and a visualization platform.

125

Prometheus

Prometheus is an open-source metrics server with a dimensional data model, flexible query
language, efficient time series database and modern alerting approach. The time series
collection happens via a pull mode over HTTP.

The Prometheus consists of multiple components:

¢ Prometheus server: scrapes and stores data to time series database

® Alertmanager (https://prometheus.io/docs/alerting/alertmanager/)# handles client

alerts, sanitizes duplicates and noise and routes them to configurable receivers.

® Pushgateway (https://prometheus.io/docs/practices/pushing/) # is an intermediate ser-

vice which allows you to push metrics from jobs which cannot be scraped.

@ Note

Deploying Prometheus Pushgateway (https://prometheus.io/docs/practices/push-

ing/) 7 is out of the scope of this document.

Monitoring Stack SUSE CaasS Platform 4.2.4

https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/pushing/
https://prometheus.io/docs/practices/pushing/

® Exporters (https://prometheus.io/docs/instrumenting/exporters/) @ are libraries which

help to exports existing metrics from 3rd-party system as Prometheus metric.

e Grafana

Grafana is an open-source system for querying, analysing and visualizing metrics.

7.1.2 Prerequisites

126

. NGINX Ingress Controller

Please refer to Section 5.8, “NGINX Ingress Controller” on how to configure ingress in your clus-
ter. Deploying NGINX Ingress Controller also allows us to provide TLS termination to our

services and to provide basic authentication to the Prometheus Expression browser/API.

Monitoring namespace

We will deploy our monitoring stack in its own namespace and therefore create one.

kubectl create namespace monitoring

. Configure Authentication

We need to create a basic-auth secret so the NGINX Ingress Controller can perform
authentication.

Install apache2-utils, which contains htpasswd, on your local workstation.
zypper in apache2-utils
Create the secret file auth

htpasswd -c auth admin

New password:

Re-type new password:

Adding password for user admin

o Important

It is very important that the filename is auth. During creation, a key in the config-
uration containing the secret is created that is named after the used filename. The
ingress controller will expect a key named auth. And when you access the moni-

toring WebUI, you need to enter the username and password.

Prerequisites SUSE CaasS Platform 4.2.4

https://prometheus.io/docs/instrumenting/exporters/

Create secret in Kubernetes cluster

kubectl create secret generic -n monitoring prometheus-basic-auth --from-file=auth

7.1.3 Installation

There will be two different ways of using ingress for accessing the monitoring system.

e Section 7.1.3.1, “Installation For Subdomains™ Using subdomains for accessing monitoring
system such as prometheus.example.com, prometheus-alertmanager.example.com,

and grafana.example.com.

® Section 7.1.3.3, “Installation For Subpaths”: Using subpaths for accessing monitoring
system such as example.com/prometheus, example.com/alertmanager, and exam-

ple.com/grafana.

7.1.3.1 Installation For Subdomains

This installation example shows how to install and configure Prometheus and Grafana using sub-
domains such as prometheus.example.com, prometheus-alertmanager.example.com, and

grafana.example.com.

o Important

In order to provide additional security by using TLS certificates, please make sure you

have the Section 5.8, “NGINX Ingress Controller” installed and configured.

If you don’t need TLS, you may use other methods for exposing these web services as
native LBaaS in OpenStack, haproxy service or k8s native methods as port-forwarding

or NodePort but this is out of scope of this document.

7.1.3.2 Create DNS entries

In this example, we will use a master node with IP 10.86.4.158 in the case of NodePort service

of the Ingress Controller.

127 Installation SUSE CaaS Platform 4.2.4

@ Note

You should configure proper DNS names in any production environment. These values

are only for example purposes.

1. Configure the DNS server

monitoring.example.com IN A 10.86.4.158

prometheus.example.com IN CNAME monitoring.example.com
prometheus-alertmanager.example.com IN CNAME monitoring.example.com
grafana.example.com IN CNAME monitoring.example.com

2. Configure the management workstation /etc/hosts (optional)

10.86.4.158 prometheus.example.com prometheus-alertmanager.example.com
grafana.example.com

7.1.3.2.1 TLS Certificate

You must configure your certificates for the components as secrets in the Kubernetes cluster.

Get certificates from your certificate authority.

1. Individual certificate
Single-name TLS certificate protects a single sub-domain, and it means each sub-domain
owns its private key. From the security perspective, it is recommended to use individual
certificates. However, you have to manage the private key and the certificate rotation

separately.

0 Important: Note Down Secret Names For Configuration

When you choose to secure each service with an individual certificate, you must
repeat the step below for each component and adjust the name for the individual

secret each time. Please note down the names of the secrets you have created.

In this example, the secret name is monitoring-tls.

2. Wildcard certificate

128 Installation SUSE CaaS Platform 4.2.4

Wildcard TLS allows you to secure multiple sub-domains with one certificate and it means
multiple sub-domains share the same private key. You can then add more sub-domains
without having to redeploy the certificate and moreover, save the additional certificate

costs.

Refer to Section 5.10.10.1.1, “Trusted Server Certificate” on how to sign the trusted certificate or refer
to Section 5.10.10.2.2, “Self-signed Server Certificate” on how to sign the self-signed certificate. The
server.conf for DNS.1 is prometheus.example.com and prometheus-alertmanager.ex-
ample.com grafana.example.com for individual certificates separately. The server.conf for

DNS.1 is *.example.com for a wildcard certificate.

Then, import your certificate and key pair into the Kubernetes cluster secret name monitor-

ing-tls. In this example, the certificate and key are monitoring.crt and monitoring.key.

kubectl create -n monitoring secret tls monitoring-tls \
--key ./monitoring.key \
--cert ./monitoring.crt

7.1.3.2.2 Prometheus

1. Create a configuration file prometheus-config-values.yaml
We need to configure the storage for our deployment. Choose among the options and
uncomment the line in the config file. In production environments you must configure

persistent storage.

® Use an existing PersistentVolumeClaim

e Use a StorageClass (preferred)

Alertmanager configuration
alertmanager:
enabled: true
ingress:
enabled: true
hosts:
- prometheus-alertmanager.example.com
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/auth-type: basic
nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
tls:

129 Installation SUSE CaaS Platform 4.2.4

- hosts:
- prometheus-alertmanager.example.com
secretName: monitoring-tls
persistentVolume:
enabled: true
Use a StorageClass
storageClass: my-storage-class
Create a PersistentVolumeClaim of 2Gi
size: 2Gi
Use an existing PersistentVolumeClaim (my-pvc)
#existingClaim: my-pvc

Alertmanager is configured through alertmanager.yml. This file and any others
listed in alertmanagerFiles will be mounted into the alertmanager pod.

See configuration options https://prometheus.io/docs/alerting/configuration/
#alertmanagerFiles:

alertmanager.yml:

Create a specific service account
serviceAccounts:
nodeExporter:

name: prometheus-node-exporter

Node tolerations for node-exporter scheduling to nodes with taints
Allow scheduling of node-exporter on master nodes
nodeExporter:
hostNetwork: false
hostPID: false
podSecurityPolicy:
enabled: true
annotations:
apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
seccomp.security.alpha.kubernetes.io/allowedProfileNames: runtime/default
seccomp.security.alpha.kubernetes.io/defaultProfileName: runtime/default
tolerations:
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule

Disable Pushgateway
pushgateway:
enabled: false

Prometheus configuration

server:
ingress:

130 Installation SUSE CaaS Platform 4.2.4

enabled: true
hosts:
- prometheus.example.com
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/auth-type: basic
nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
tls:
- hosts:
- prometheus.example.com
secretName: monitoring-tls
persistentVolume:
enabled: true
Use a StorageClass
storageClass: my-storage-class
Create a PersistentVolumeClaim of 8Gi
size: 8Gi
Use an existing PersistentVolumeClaim (my-pvc)
#existingClaim: my-pvc
Prometheus is configured through prometheus.yml. This file and any others
listed in serverFiles will be mounted into the server pod.
See configuration options
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

#serverFiles:
prometheus.yml:

2. Add SUSE helm charts repository
helm repo add suse https://kubernetes-charts.suse.com
3. Deploy SUSE prometheus helm chart and pass our configuration values file.
helm install --name prometheus suse/prometheus \
--namespace monitoring \
--values prometheus-config-values.yaml

There need to be 3 pods running (3 node-exporter pods because we have 3 nodes).

kubectl -n monitoring get pod | grep prometheus

NAME READY STATUS RESTARTS AGE
prometheus-alertmanager-5487596d54-kcdd6 2/2 Running 0 2m
prometheus-kube-state-metrics-566669df8c-krblx 1/1 Running 0 2m
prometheus-node-exporter-jnc5w 1/1 Running 0 2m
prometheus-node-exporter-qfwp9 1/1 Running 0 2m
prometheus-node-exporter-sc4ls 1/1 Running 0 2m

131 Installation SUSE CaaS Platform 4.2.4

prometheus-server-6488f6c4cd-5n9w8 2/2 Running 0 2m

There need to be be 2 ingresses configured

kubectl get ingress -n monitoring

NAME HOSTS ADDRESS PORTS
AGE
prometheus-alertmanager prometheus-alertmanager.example.com 80, 443
87s
prometheus-server prometheus.example.com 80, 443
87s

4. At this stage, the Prometheus Expression browser/API should be accessible, depending on

your network configuration

® NodePort: https://prometheus.example.com:32443
e External IPs: https://prometheus.example.com

* LoadBalancer: https://prometheus.example.com

7.1.3.2.3 Alertmanager Configuration Example

The configuration example sets one "receiver" to get notified by email when one of below con-

ditions is met:

® Node is unschedulable: severity is critical because the node cannot accept new pods

® Node runs out of disk space: severity is critical because the node cannot accept new
pods

® Node has memory pressure: severity is warning

® Node has disk pressure: severity is warning

e Certificates is going to expire in 7 days: severity is critical
® Certificates is going to expire in 30 days: severity is warning
e Certificates is going to expire in 3 months: severity is info

1. Configure alerting receiver in Alertmanager
The Alertmanager handles alerts sent by Prometheus server, it takes care of dedupli-
cating, grouping, and routing them to the correct receiver integration such as email.

It also takes care of silencing and inhibition of alerts.

132 Installation SUSE CaaS Platform 4.2.4

Add the alertmanagerFiles section to your Prometheus configuration file
prometheus-config-values.yaml.
For more information on how to configure Alertmanager, refer to Prometheus: Alert-

ing - Configuration (https://prometheus.io/docs/alerting/configuration) 7.

alertmanagerFiles:
alertmanager.yml:
global:
The smarthost and SMTP sender used for mail notifications.
smtp from: alertmanager@example.com
smtp smarthost: smtp.example.com:587
smtp _auth username: admin@example.com
smtp_auth password: <PASSWORD>
smtp_require tls: true

route:
The labels by which incoming alerts are grouped together.
group by: ['node']

When a new group of alerts is created by an incoming alert, wait at

least 'group wait' to send the initial notification.

This way ensures that you get multiple alerts for the same group that
start

firing shortly after another are batched together on the first

notification.

group wait: 30s

When the first notification was sent, wait 'group interval' to send a
batch

of new alerts that started firing for that group.

group_interval: 5m

If an alert has successfully been sent, wait 'repeat interval' to
resend them.
repeat_interval: 3h

A default receiver
receiver: admin-example

receivers:
- name: 'admin-example'

email configs:
- to: 'admin@example.com'

2. Configures alerting rules in Prometheus server

133 Installation SUSE CaaS Platform 4.2.4

https://prometheus.io/docs/alerting/configuration
https://prometheus.io/docs/alerting/configuration

134

Replace the serverFiles section of the Prometheus configuration file prometheus -
config-values.yaml.
For more information on how to configure alerts, refer to: Prometheus: Alerting

- Notification Template Examples (https://prometheus.io/docs/alerting/notification_ex-

amples/)a
serverFiles:
alerts: {}
rules:
groups:
- name: caasp.node.rules
rules:
- alert: NodeIsNotReady
expr: kube node status condition{condition="Ready",b status="false"} == 1
or kube node status condition{condition="Ready",status="unknown"} == 1
for: 1m
labels:
severity: critical
annotations:

description: '{{ $labels.node }} is not ready'
- alert: NodeIsOutOfDisk
expr: kube node status condition{condition="OutOfDisk",status="true"}

labels:
severity: critical
annotations:
description: '{{ $labels.node }} has insufficient free disk space'
- alert: NodeHasDiskPressure
expr:
kube node status condition{condition="DiskPressure",status="true"} == 1
labels:
severity: warning
annotations:
description: '{{ $labels.node }} has insufficient available disk
space’
- alert: NodeHasInsufficientMemory
expr:
kube node status condition{condition="MemoryPressure",status="true"} == 1
labels:
severity: warning
annotations:
description: '{{ $labels.node }} has insufficient available memory'
- name: caasp.certs.rules
rules:
- alert: KubernetesCertificateExpiry3Months
expr: (cert _exporter cert expires in seconds / 86400) < 90

Installation SUSE CaaS Platform 4.2.4

https://prometheus.io/docs/alerting/notification_examples/
https://prometheus.io/docs/alerting/notification_examples/
https://prometheus.io/docs/alerting/notification_examples/

labels:
severity: info
annotations:
description: 'The cert for {{ $labels.filename }} on
{{ $labels.nodename }} node is going to expire in 3 months'
- alert: KubernetesCertificateExpiry30Days
expr: (cert exporter cert expires in seconds / 86400) < 30
labels:
severity: warning
annotations:
description: 'The cert for {{ $labels.filename }} on
{{ $labels.nodename }} node is going to expire in 30 days'
- alert: KubernetesCertificateExpiry7Days
expr: (cert exporter cert expires in seconds / 86400) < 7
labels:
severity: critical
annotations:
description: 'The cert for {{ $labels.filename }} on
{{ $labels.nodename }} node is going to expire in 7 days'
- alert: KubeconfigCertificateExpiry3Months
expr: (cert exporter kubeconfig expires in seconds / 86400) < 90
labels:
severity: info
annotations:
description: 'The cert for {{ $labels.filename }} on
{{ $labels.nodename }} node is going to expire in 3 months'
- alert: KubeconfigCertificateExpiry30Days
expr: (cert exporter kubeconfig expires in seconds / 86400) < 30
labels:
severity: warning
annotations:
description: 'The cert for {{ $labels.filename }} on
{{ $labels.nodename }} node is going to expire in 30 days'
- alert: KubeconfigCertificateExpiry7Days
expr: (cert exporter kubeconfig expires in seconds / 86400) < 7
labels:
severity: critical
annotations:
description: 'The cert for {{ $labels.filename }} on
{{ $labels.nodename }} node is going to expire in 7 days'
- alert: AddonCertificateExpiry3Months
expr: (cert exporter secret expires in seconds / 86400) < 90
labels:
severity: info
annotations:
description: 'The cert for {{ $labels.secret name }} is going to
expire in 3 months'

135 Installation SUSE CaaS Platform 4.2.4

- alert: AddonCertificateExpiry30Days
expr: (cert _exporter secret expires in seconds / 86400) < 30
labels:
severity: warning
annotations:
description: 'The cert for {{ $labels.secret name }} is going to
expire in 30 days'
- alert: AddonCertificateExpiry7Days
expr: (cert exporter secret expires in seconds / 86400) < 7
labels:
severity: critical
annotations:
description: 'The cert for {{ $labels.secret name }} is going to
expire in 7 days'

3. To apply the changed configuration, run:

helm upgrade prometheus suse/prometheus --namespace monitoring --values
prometheus-config-values.yaml

4. You should now be able to see your Alertmanager, depending on your network con-

figuration
® NodePort: https://prometheus-alertmanager.example.com:32443
¢ External IPs: https://prometheus-alertmanager.example.com

¢ LoadBalancer: https://prometheus-alertmanager.example.com

7.1.3.2.4 Recording Rules Configuration Example

Recording rules allow you to precompute frequently needed or computationally expensive ex-
pressions and save their result as a new set of time series. Querying the precomputed result
will then often be much faster than executing the original expression every time it is needed.
This is especially useful for dashboards, which need to query the same expression repeatedly
every time they refresh. Another common use case is federation where precomputed metrics are

scraped from one Prometheus instance by another.

For more information on how to configure recording rules, refer to Prometheus:Record-
ing Rules - Configuration (https://prometheus.io/docs/prometheus/latest/configuration/record-

ing_rules/#recording-rules) A.

1. Configuring recording rules

136 Installation SUSE CaaS Platform 4.2.4

https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules
https://prometheus.io/docs/prometheus/latest/configuration/recording_rules/#recording-rules

Add the following group of rules in the serverFiles section of the prometheus-con-

fig-values.yaml configuration file.

serverFiles:
alerts: {}
rules:
groups:
- name: node-exporter.rules
rules:
- expr: count by (instance) (count without (mode)
(node_cpu_seconds_total{component="node-exporter"}))
record: instance:node _num_cpu:sum
- expr: 1 - avg by (instance) (rate(node cpu seconds total{component="node-
exporter",mode="idle"}[5m]))
record: instance:node cpu utilisation:rate5m
- expr: node loadl{component="node-exporter"} / on (instance)
instance:node num_cpu:sum
record: instance:node loadl per cpu:ratio
- expr: node memory MemAvailable bytes / on (instance)
node _memory MemTotal bytes
record: instance:node memory utilisation:ratio
- expr: rate(node vmstat pgmajfault{component="node-exporter"}[5m])
record: instance:node vmstat pgmajfault:rate5m
- expr: rate(node disk io time seconds total{component="node-exporter",
device=~"nvme.+|rbd.+|sd.+|vd.+|xvd.+|dm-.+|dasd.+"}[5m])
record: instance device:node disk io time seconds:rate5m
- expr: rate(node disk io time weighted seconds total{component="node-
exporter", device=~"nvme.+|rbd.+|sd.+|vd.+|xvd.+|dm-.+|dasd.+"}[5m])
record: instance device:node disk io time weighted seconds:rate5m
- expr: sum by (instance)
(rate(node network receive bytes total{component="node-exporter", device!="1l0"}
[5m]))
record: instance:node network receive bytes excluding lo:rate5m
- expr: sum by (instance)
(rate(node network transmit bytes total{component="node-exporter", device!="1lo0"}
[5m]))
record: instance:node network transmit bytes excluding lo:rate5m
- expr: sum by (instance)
(rate(node network receive drop total{component="node-exporter", device!="10"}
[5m]))
record: instance:node network receive drop excluding lo:rate5m
- expr: sum by (instance)
(rate(node_network transmit drop total{component="node-exporter", device!="1o0"}
[5m]))

137 Installation SUSE CaaS Platform 4.2.4

2. To apply the changed configuration, run:

record: instance:node network transmit drop excluding lo:rate5m

helm upgrade prometheus suse/prometheus --namespace monitoring --values prometheus-

config-values.yaml

3. You should now be able to see your configured rules, depending on your network config-

uration

® NodePort: https://prometheus.example.com:32443/rules

¢ External IPs: https://prometheus.example.com/rules

* LoadBalancer: https://prometheus.example.com/rules

7.1.3.2.5 Grafana

Starting from Grafana 5.0, it is possible to dynamically provision the data sources and dash-
boards via files. In a Kubernetes cluster, these files are provided via the utilization of ConfigMap,

editing a ConfigMap will result by the modification of the configuration without having to

delete/recreate the pod.

138

. Configure Grafana provisioning

Create the default datasource configuration file grafana-datasources.yaml which point

to our Prometheus server

kind: ConfigMap
apiVersion: vl
metadata:
name: grafana-datasources
namespace: monitoring
labels:
grafana datasource: "1"
data:
datasource.yaml: |-
apiVersion: 1
deleteDatasources:
- name: Prometheus
orgId: 1
datasources:
- name: Prometheus
type: prometheus

Installation

SUSE CaaS Platform 4.2.4

url: http://prometheus-server.monitoring.svc.cluster.local:80
access: proxy

orgId: 1

isDefault: true

2. Create the ConfigMap in Kubernetes cluster

kubectl create -f grafana-datasources.yaml

3. Configure storage for the deployment
Choose among the options and uncomment the line in the config file. In production envi-

ronments you must configure persistent storage.

® Use an existing PersistentVolumeClaim

e Use a StorageClass (preferred)
Create a file grafana-config-values.yaml with the appropriate values

Configure admin password
adminPassword: <PASSWORD>

Ingress configuration
ingress:
enabled: true
annotations:
kubernetes.io/ingress.class: nginx
hosts:
- grafana.example.com
tls:
- hosts:
- grafana.example.com
secretName: monitoring-tls

Configure persistent storage
persistence:
enabled: true
accessModes:
- ReadWriteOnce
Use a StorageClass
storageClassName: my-storage-class
Create a PersistentVolumeClaim of 10Gi
size: 10Gi
Use an existing PersistentVolumeClaim (my-pvc)
#existingClaim: my-pvc

Enable sidecar for provisioning

139 Installation SUSE CaaS Platform 4.2.4

sidecar:
datasources:
enabled: true
label: grafana datasource
dashboards:
enabled: true
label: grafana dashboard

4. Add SUSE helm charts repository

helm repo add suse https://kubernetes-charts.suse.com

5. Deploy SUSE grafana helm chart and pass our configuration values file
helm install --name grafana suse/grafana \

--namespace monitoring \
--values grafana-config-values.yaml

6. The result should be a running Grafana pod

kubectl -n monitoring get pod | grep grafana
NAME READY STATUS RESTARTS AGE
grafana-dbf7ddb7d-fxg6d 3/3 Running 0 2m

7. At this stage, Grafana should be accessible, depending on your network configuration
® NodePort: https://grafana.example.com:32443
e External IPs: https://grafana.example.com
* LoadBalancer: https://grafana.example.com

8. Now you can add Grafana dashboards.

7.1.3.2.6 Adding Grafana Dashboards
There are three ways to add dashboards to Grafana:
® Deploy an existing dashboard from Grafana dashboards (https://grafana.com/dashboards) #
1. Open the deployed Grafana in your browser and log in.

2. On the home page of Grafana, hover your mousecursor over the + button on the left

sidebar and click on the import menuitem.

140 Installation SUSE CaaS Platform 4.2.4

https://grafana.com/dashboards

141

3. Select an existing dashboard for your purpose from Grafana dashboards. Copy the
URL to the clipboard.

4. Paste the URL (for example) https://grafana.com/dashboards/3131 into the first
input field to import the "Kubernetes All Nodes" Grafana Dashboard. After pasting in
the url, the view will change to another form.

5. Now select the "Prometheus" datasource in the prometheus field and click on the

import button.
6. The browser will redirect you to your newly created dashboard.

® Use our pre-built dashboards (https://github.com/SUSE/caasp-monitoring) # to monitor the
SUSE CaaS Platform system

monitor SUSE CaaS Platform cluster

kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-cluster.yaml

monitor SUSE CaaS Platform etcd cluster

kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-etcd-cluster.yaml

monitor SUSE CaaS Platform nodes

kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-nodes.yaml

monitor SUSE CaaS Platform namespaces

kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-namespaces.yaml

monitor SUSE CaaS Platform pods

kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-pods.yaml

monitor SUSE CaaS Platform certificates

kubectl apply -f https://raw.githubusercontent.com/SUSE/caasp-monitoring/master/
grafana-dashboards-caasp-certificates.yaml

® Build your own dashboard Deploy your own dashboard by configuration file containing
the dashboard definition.

1. Create your dashboard definition file as a ConfigMap, for example grafana-dash-
boards-caasp-cluster.yaml.

apiVersion: vl
kind: ConfigMap
metadata:

Installation SUSE CaaS Platform 4.2.4

https://github.com/SUSE/caasp-monitoring

name: grafana-dashboards-caasp-cluster
namespace: monitoring

labels:
grafana dashboard: "1"
data:
caasp-cluster.json: |-
{
" inputs": [
{
"name": "DS PROMETHEUS",
"label": "Prometheus",
"description": "",
"type": "datasource",
"pluginId": "prometheus",
"pluginName": "Prometheus"
}

]I
" requires": [
{

"type": "grafana",

[oaall
continues with definition of dashboard JSON

[...]
2. Apply the ConfigMap to the cluster.

kubectl apply -f grafana-dashboards-caasp-cluster.yaml

7.1.3.3 Installation For Subpaths

This installation example shows how to install and configure Prometheus and Grafana
using subpaths such as example.com/prometheus, example.com/alertmanager, and exam-

ple.com/grafana.

o Important

Overlapped instructions from subdomains will be omitted. Refer to the instruction from

subdomains.

142 Installation SUSE CaaS Platform 4.2.4

7.1.3.4 Create DNS entries

In this example, we will use a master node with IP 10.86.4.158 in the case of NodePort service

of the Ingress Controller.

@ Note

You should configure proper DNS names in any production environment. These values

are only for example purposes.

1. Configure the DNS server

example.com IN A 10.86.4.158

2. Configure the management workstation /etc/hosts (optional)

10.86.4.158 example.com

7.1.3.4.1 TLS Certificate

You must configure your certificates for the components as secrets in the Kubernetes cluster.

Get certificates from your certificate authority.

Refer to Section 5.10.10.1.1, “Trusted Server Certificate” on how to sign the trusted certificate or refer
to Section 5.10.10.2.2, “Self-signed Server Certificate” on how to sign the self-signed certificate. The

server.conf for DNS.1 is example.com.

Then, import your certificate and key pair into the Kubernetes cluster secret name monitor-

ing-tls. In this example, the certificate and key are monitoring.crt and monitoring.key.

kubectl create -n monitoring secret tls monitoring-tls \
--key ./monitoring.key \
--cert ./monitoring.crt

7.1.3.4.2 Prometheus

1. Create a configuration file prometheus-config-values.yaml
We need to configure the storage for our deployment. Choose among the options and
uncomment the line in the config file. In production environments you must configure

persistent storage.

143 Installation SUSE CaaS Platform 4.2.4

144

® Use an existing PersistentVolumeClaim

e Use a StorageClass (preferred)

e Add the external URL to baseURL at which the server can be accessed. The baseURL

depends on your network configuration.

® NodePort: https://example.com:32443/prometheus# and https://exam-

ple.com:32443/alertmanager 2

¢ External IPs: https://example.com/prometheus # and https://example.com/alert-

manager <

¢ LoadBalancer: https://example.com/prometheus & and https://exam-

ple.com/alertmanager 2

Alertmanager configuration

alertmanager:
enabled: true
baseURL: https://example.com:32443/alertmanager
prefixURL: /alertmanager

ingress:
enabled: true
annotations:

kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/auth-type: basic
nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"

hosts:
- example.com/alertmanager
tls:
- secretName: monitoring-tls
hosts:

- example.com
persistentVolume:
enabled: true
Use a StorageClass
storageClass: my-storage-class
Create a PersistentVolumeClaim of 2Gi
size: 2Gi
Use an existing PersistentVolumeClaim (my-pvc)
#existingClaim: my-pvc

Alertmanager is configured through alertmanager.yml. This file and any others
listed in alertmanagerFiles will be mounted into the alertmanager pod.

Installation SUSE CaaS Platform 4.2.4

https://example.com:32443/prometheus
https://example.com:32443/alertmanager
https://example.com:32443/alertmanager
https://example.com/prometheus
https://example.com/alertmanager
https://example.com/alertmanager
https://example.com/prometheus
https://example.com/alertmanager
https://example.com/alertmanager

See configuration options https://prometheus.io/docs/alerting/configuration/
#alertmanagerFiles:
alertmanager.yml:

Create a specific service account
serviceAccounts:
nodeExporter:

name: prometheus-node-exporter

Node tolerations for node-exporter scheduling to nodes with taints
Allow scheduling of node-exporter on master nodes
nodeExporter:
hostNetwork: false
hostPID: false
podSecurityPolicy:
enabled: true
annotations:
apparmor.security.beta.kubernetes.io/allowedProfileNames: runtime/default
apparmor.security.beta.kubernetes.io/defaultProfileName: runtime/default
seccomp.security.alpha.kubernetes.io/allowedProfileNames: runtime/default
seccomp.security.alpha.kubernetes.io/defaultProfileName: runtime/default
tolerations:
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule

Disable Pushgateway
pushgateway:
enabled: false

Prometheus configuration
server:
baseURL: https://example.com:32443/prometheus
prefixURL: /prometheus
ingress:
enabled: true
annotations:
kubernetes.io/ingress.class: nginx
nginx.ingress.kubernetes.io/auth-type: basic
nginx.ingress.kubernetes.io/auth-secret: prometheus-basic-auth
nginx.ingress.kubernetes.io/auth-realm: "Authentication Required"
hosts:
- example.com/prometheus
tls:
- secretName: monitoring-tls
hosts:
- example.com

145 Installation SUSE CaaS Platform 4.2.4

persistentVolume:
enabled: true
Use a StorageClass
storageClass: my-storage-class
Create a PersistentVolumeClaim of 8Gi
size: 8Gi
Use an existing PersistentVolumeClaim (my-pvc)
#existingClaim: my-pvc

Prometheus is configured through prometheus.yml. This file and any others
listed in serverFiles will be mounted into the server pod.

See configuration options

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
#serverFiles:

prometheus.yml:

2. Add SUSE helm charts repository
helm repo add suse https://kubernetes-charts.suse.com

3. Deploy SUSE prometheus helm chart and pass our configuration values file.
helm install --name prometheus suse/prometheus \

--namespace monitoring \
--values prometheus-config-values.yaml

There need to be 3 pods running (3 node-exporter pods because we have 3 nodes).

kubectl -n monitoring get pod | grep prometheus

NAME READY STATUS RESTARTS AGE
prometheus-alertmanager-5487596d54-kcdd6 2/2 Running 0 2m
prometheus-kube-state-metrics-566669df8c-krblx 1/1 Running 0 2m
prometheus-node-exporter-jnc5w 1/1 Running 0 2m
prometheus-node-exporter-qfwp9 1/1 Running 0 2m
prometheus-node-exporter-sc4ls 1/1 Running 0 2m
prometheus-server-6488f6c4cd-5n9w8 2/2 Running 0 2m

7.1.3.4.3 Alertmanager Configuration Example

Refer to Section 7.1.3.2.3, “Alertmanager Configuration Example”

7.1.3.4.4 Recording Rules Configuration Example

Refer to Section 7.1.3.2.4, “Recording Rules Configuration Example”

146 Installation SUSE CaaS Platform 4.2.4

7.1.3.4.5 Grafana

Starting from Grafana 5.0, it is possible to dynamically provision the data sources and dash-
boards via files. In Kubernetes cluster, these files are provided via the utilization of ConfigMap,

editing a ConfigMap will result by the modification of the configuration without having to

delete/recreate the pod.

1. Configure Grafana provisioning
Create the default datasource configuration file grafana-datasources.yaml which point

to our Prometheus server

kind: ConfigMap
apiVersion: vl
metadata:
name: grafana-datasources
namespace: monitoring
labels:
grafana datasource: "1"
data:
datasource.yaml: |-
apiVersion: 1
deleteDatasources:
- name: Prometheus
orgld: 1
datasources:
- name: Prometheus
type: prometheus
url: http://prometheus-server.monitoring.svc.cluster.local:80
access: proxy
orgld: 1
isDefault: true

2. Create the ConfigMap in Kubernetes cluster

kubectl create -f grafana-datasources.yaml

3. Configure storage for the deployment
Choose among the options and uncomment the line in the config file. In production envi-

ronments you must configure persistent storage.

147 Installation SUSE CaaS Platform 4.2.4

® Use an existing PersistentVolumeClaim

e Use a StorageClass (preferred)

¢ Add the external URL to root url at which the server can be accessed. The
root _url depends on your network configuration.

¢ NodePort: https://example.com:32443/grafana <
e External IPs: https://example.com/grafana #

® LoadBalancer: https://example.com/grafana <

Create a file grafana-config-values.yaml with the appropriate values
+

Configure admin password
adminPassword: <PASSWORD>

Ingress configuration

ingress:
enabled: true
annotations:

kubernetes.io/ingress.class: nginx

nginx.ingress.kubernetes.io/rewrite-target: /
hosts:

- example.com
path: /grafana
tls:
- secretName: monitoring-tls
hosts:
- example.com

subpath for grafana
grafana.ini:
server:

root _url: https://example.com:32443/grafana

Configure persistent storage
persistence:
enabled: true
accessModes:
- ReadWriteOnce
Use a StorageClass
storageClassName: my-storage-class

148 Installation SUSE CaaS Platform 4.2.4

https://example.com:32443/grafana
https://example.com/grafana
https://example.com/grafana

Create a PersistentVolumeClaim of 10Gi
size: 10Gi
Use an existing PersistentVolumeClaim (my-pvc)
#existingClaim: my-pvc
Enable sidecar for provisioning
sidecar:
datasources:
enabled: true
label: grafana datasource
dashboards:

enabled: true
label: grafana dashboard

4. Add SUSE helm charts repository

helm repo add suse https://kubernetes-charts.suse.com

5. Deploy SUSE grafana helm chart and pass our configuration values file

helm install --name grafana suse/grafana \
--namespace monitoring \
--values grafana-config-values.yaml

6. The result should be a running Grafana pod

kubectl -n monitoring get pod | grep grafana
NAME READY STATUS RESTARTS AGE
grafana-dbf7ddb7d-fxg6d 3/3 Running 0 2m

7. Access Prometheus, Alertmanager, and Grafana
At this stage, the Prometheus Expression browser/API, Alertmanager, and Grafana should

be accessible, depending on your network configuration
® Prometheus Expression browser/API
® NodePort: https://example.com:32443/prometheus
e External IPs: https://example.com/prometheus

e LoadBalancer: https://example.com/prometheus

® Alertmanager

149 Installation SUSE CaaS Platform 4.2.4

* NodePort: https://example.com:32443/alertmanager
¢ External IPs: https://example.com/alertmanager
* LoadBalancer: https://example.com/alertmanager

e Grafana

®* NodePort: https://example.com:32443/grafana
* External IPs: https://example.com/grafana
* LoadBalancer: https://example.com/grafana

8. Now you can add the Grafana dashboards.

7.1.3.4.6 Adding Grafana Dashboards

Refer to Section 7.1.3.2.6, “Adding Grafana Dashboards”

7.1.4 Monitoring

7.1.4.1 Prometheus Jobs

The Prometheus SUSE helm chart includes the following predefined jobs that will scrape metrics

from these jobs using service discovery.

¢ prometheus: Get metrics from prometheus server
® kubernetes-apiservers: Get metrics from Kubernetes apiserver
¢ kubernetes-nodes: Get metrics from Kubernetes nodes

¢ kubernetes-service-endpoints: Get metrics from Services which have annotation

prometheus.io/scrape=true in the metadata

¢ kubernetes-pods: Get metrics from Pods which have annotation prometheus.io/

scrape=true in the metadata

150 Monitoring SUSE CaasS Platform 4.2.4

If you want to monitor new pods and services, you don’t need to change prometheus.yaml but
add annotation prometheus.io/scrape=true, prometheus.io/port=<TARGET PORT> and
prometheus.io/path=<METRIC_ENDPOINT> to your pods and services metadata. Prometheus

will automatically scrape the target.

7.1.4.2 ETCD Cluster

ETCD server exposes metrics on the /metrics endpoint. Prometheus jobs do not scrape it by
default. Edit the prometheus.yaml file if you want to monitor the etcd cluster. Since the etcd

cluster runs on https, we need to create a certificate to access the endpoint.

1. Create a new etcd client certificate signed by etcd CA cert/key pair:

cat << EOF > my-cluster/pki/etcd/openssl-monitoring-client.conf
[req]

distinguished name = req distinguished name

req_extensions = v3 req

prompt = no

[v3 reql
keyUsage = digitalSignature,keyEncipherment
extendedKeyUsage = clientAuth

[req distinguished name]

0 = system:masters

CN = kube-etcd-monitoring-client
EOF

openssl req -nodes -new -newkey rsa:2048 -config my-cluster/pki/etcd/openssl-
monitoring-client.conf -out my-cluster/pki/etcd/monitoring-client.csr -keyout my-
cluster/pki/etcd/monitoring-client.key

openssl x509 -req -days 365 -CA my-cluster/pki/etcd/ca.crt -CAkey my-cluster/pki/
etcd/ca.key -CAcreateserial -in my-cluster/pki/etcd/monitoring-client.csr -out my-
cluster/pki/etcd/monitoring-client.crt -sha256 -extfile my-cluster/pki/etcd/openssl-
monitoring-client.conf -extensions v3 req

2. Create the etcd client certificate to secret in monitoring namespace:

kubectl -n monitoring create secret generic etcd-certs --from-file=my-cluster/pki/
etcd/ca.crt --from-file=my-cluster/pki/etcd/monitoring-client.crt --from-file=my-
cluster/pki/etcd/monitoring-client.key

151 Monitoring SUSE CaasS Platform 4.2.4

3. Get all etcd cluster private IP address:

kubectl get pods -n kube-system -1 component=etcd -o wide

NAME READY STATUS RESTARTS AGE IP NODE NOMINATED

NODE READINESS GATES

etcd-master0 1/1 Running 2 21h 192.168.0.6 master® <none>
<none>

etcd-masterl 1/1 Running 2 21h 192.168.0.20 masterl <none>
<none>

4. Edit the configuration file prometheus-config-values.yaml, add extraSecretMounts
and extraScrapeConfigs parts, change the extraScrapeConfigs targets IP address(es) as
your environment and change the target numbers if you have different etcd cluster mem-

bers:

Prometheus configuration
server:

extraSecretMounts:

- name: etcd-certs
mountPath: /etc/secrets
secretName: etcd-certs
readOnly: true

extraScrapeConfigs: |
- job name: etcd
static_configs:
- targets: ['192.168.0.32:2379','192.168.0.17:2379"','192.168.0.5:2379"]
scheme: https
tls _config:
ca file: /etc/secrets/ca.crt
cert_file: /etc/secrets/monitoring-client.crt
key file: /etc/secrets/monitoring-client.key

5. Upgrade prometheus helm deployment:

helm upgrade prometheus suse/prometheus \
--namespace monitoring \
--values prometheus-config-values.yaml

152 Monitoring SUSE CaasS Platform 4.2.4

7.2 Health Checks

Although Kubernetes cluster takes care of a lot of the traditional deployment problems on its
own, it is good practice to monitor the availability and health of your services and applications

in order to react to problems should they go beyond the automated measures.

There are three levels of health checks.

e Cluster
® Node

e Service / Application

7.2.1 Cluster Health Checks

The basic check if a cluster is working correctly is based on a few criteria:

® Are all services running as expected?

¢ Is there at least one Kubernetes master fully working? Even if the deployment is configured
to be highly available, it’s useful to know if kube-controller-manager is down on one

of the machines.

@ Note

For further understanding cluster health information, consider reading https://v1-17.doc-

s.kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/ <

7.2.1.1 Kubernetes master

All components in Kubernetes cluster expose a /healthz endpoint. The expected (healthy)

HTTP response status code is 200.

The minimal services for the master to work properly are:

® kube-apiserver:
The component that receives your requests from kubectl and from the rest of the Kuber-
netes components. The URL is https://<CONTROL_PLANE_IP/FQDN>:6443/healthz #

® Local Check

153 Health Checks SUSE CaaS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://%3CCONTROL_PLANE_IP/FQDN%3E:6443/healthz

curl -k -i https://localhost:6443/healthz

e Remote Check

curl -k -i https://<CONTROL PLANE IP/FQDN>:6443/healthz

¢ kube-controller-manager:
The component that contains the control loop, driving current state to the desired state.
The URL is http://<CONTROL_PLANE_IP/FQDN>:10252/healthz &

® Local Check

curl -i http://localhost:10252/healthz

® Remote Check
Make sure firewall allows port 10252.

curl -i http://<CONTROL PLANE IP/FQDN>:10252/healthz

e kube-scheduler:
The component that schedules workloads to nodes. The URL is http://<CON-
TROL_PLANE_IP/FQDN>:10251/healthz @

® Local Check
curl -i http://localhost:10251/healthz

® Remote Check
Make sure firewall allows port 10251.

curl -i http://<CONTROL PLANE IP/FQDN>:10251/healthz

@ Note: High-Availability Environments

154

In a HA environment you can monitor kube-apiserver on https://<LOAD BAL-
ANCER IP/FQDN>:6443/healthz.

If any one of the master nodes is running correctly, you will receive a valid response.

This does, however, not mean that all master nodes necessarily work correctly. To ensure
that all master nodes work properly, the health checks must be repeated individually for

each deployed master node.

Cluster Health Checks SUSE CaaS Platform 4.2.4

http://%3CCONTROL_PLANE_IP/FQDN%3E:10252/healthz
http://%3CCONTROL_PLANE_IP/FQDN%3E:10251/healthz
http://%3CCONTROL_PLANE_IP/FQDN%3E:10251/healthz

This endpoint will return a successful HTTP response if the cluster is operational; other-
wise it will fail. It will for example check that it can access etcd. This should not be used
to infer that the overall cluster health is ideal. It will return a successful response even

when only minimal operational cluster health exists.

To probe for full cluster health, you must perform individual health checking for all

machines.

7.2.1.2 ETCD Cluster

The etcd cluster exposes an endpoint /health. The expected (healthy) HTTP response body
is {"health":"true"}. The etcd cluster is accessed through HTTPS only, so be sure to have

etcd certificates.

® Local Check

curl --cacert /etc/kubernetes/pki/etcd/ca.crt
--cert /etc/kubernetes/pki/etcd/healthcheck-client.crt
--key /etc/kubernetes/pki/etcd/healthcheck-client.key https://localhost:2379/health

® Remote Check
Make sure firewall allows port 2379.

curl --cacert <ETCD ROOT CA CERT> --cert <ETCD CLIENT CERT>
--key <ETCD CLIENT KEY> https://<CONTROL PLANE IP/FQDN>:2379/health

7.2.2 Node Health Checks

This basic node health check consists of two parts. It checks:

1. The kubelet endpoint

2. CNI (Container Networking Interface) pod state

7.2.2.1 kubelet

First, determine if kubelet is up and working on the node.

155 Node Health Checks SUSE CaaS Platform 4.2.4

Kubelet has two ports exposed on all machines:

® Port https/10250: exposes kubelet services to the entire cluster and is available from all

nodes through authentication.

¢ Port http/10248: is only available on local host.

You can send an HTTP request to the endpoint to find out if kubelet is healthy on that machine.
The expected (healthy) HTTP response status code is 200.

7.2.2.1.1 Local Check

If there is an agent running on each node, this agent can simply fetch the local healthz port:

curl -i http://localhost:10248/healthz

7.2.2.1.2 Remote Check

There are two ways to fetch endpoints remotely (metrics, healthz, etc.). Both methods use HTTPS

and a token.

The first method is executed against the APIServer and mostly used with Prometheus and
Kubernetes discovery kubernetes sd config. It allows automatic discovery of the nodes
and avoids the task of defining monitoring for each node. For more information see the Ku-
bernetes documentation: https://prometheus.io/docs/prometheus/latest/configuration/configura-

tion/#kubernetes_sd_config#

The second method directly talks to kubelet and can be used in more traditional monitoring

where one must configure each node to be checked.

® Configuration and Token retrieval:
Create a Service Account (monitoring) with an associated secondary Token (monitor-
ing-secret-token). The token will be used in HTTP requests to authenticate against the
API server.
This Service Account can only fetch information about nodes and pods. Best practice is not
to use the token that has been created default. Using a secondary token is also easier for

management. Create a file kubelet.yaml with the following as content.

apiVersion: vl
kind: ServiceAccount

156 Node Health Checks SUSE CaaS Platform 4.2.4

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

metadata:
name: monitoring
namespace: kube-system
secrets:
- name: monitoring-secret-token
apiVersion: vl
kind: Secret
metadata:
name: monitoring-secret-token
namespace: kube-system
annotations:
kubernetes.io/service-account.name: monitoring
type: kubernetes.io/service-account-token
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: monitoring-clusterrole
namespace: kube-system

rules:

- apiGroups: [""]
resources:
- nodes/metrics
- nodes/proxy
- pods

verbs: ["get", "list"]
- nonResourceURLs: ["/metrics", "/healthz", "/healthz/*"]
verbs: ["get"]
apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRoleBinding
metadata:
name: monitoring-clusterrole-binding
namespace: kube-system
roleRef:
kind: ClusterRole
name: monitoring-clusterrole
apiGroup: rbac.authorization.k8s.io
subjects:
- kind: ServiceAccount
name: monitoring
namespace: kube-system

Apply the yaml file:

kubectl apply -f kubelet.yaml

157 Node Health Checks SUSE CaaS Platform 4.2.4

Export the token to an environment variable:

TOKEN=$ (kubectl -n kube-system get secrets monitoring-secret-token
-0 jsonpath='{.data.token}' | base64 -d)

This token can now be passed through the --header argument as: "Authorization: Bearer
$TOKEN".

Now export important values as environment variables:
¢ Environment Variables Setup

1. Choose a Kubernetes master node or worker node. The NODE_IP FQDN here must be
a node’s IP address or FQDN. The NODE NAME here must be a node name in your
Kubernetes cluster. Export the variables NODE IP FQDN and NODE NAME so it can

be reused.

NODE IP FQDN="10.86.4.158"
NODE_NAME=worker0

2. Retrieve the TOKEN with kubectl.

TOKEN=$ (kubectl -n kube-system get secrets monitoring-secret-token
-0 jsonpath='{.data.token}' | base64 -d)

3. Get the control plane <IP/FQDN> from the configuration file. You can skip this

step if you only want to use the kubelet endpoint.

CONTROL_PLANE=$(kubectl config view | grep server | cut -f 2- -d ":" | tr -d "
II)

Now the key information to retrieve data from the endpoints should be available in

the environment and you can poll the endpoints.
* Fetching Information from kubelet Endpoint
1. Make sure firewall allows port 10250.
2. Fetching metrics

curl -k https://$NODE_IP FQDN:10250/metrics --header "Authorization: Bearer
$TOKEN"

3. Fetching healthz

158 Node Health Checks SUSE CaaS Platform 4.2.4

curl -k https://$NODE IP FQDN:10250/healthz --header "Authorization: Bearer
$TOKEN"

* Fetching Information from APISERVER Endpoint
1. Fetching metrics

curl -k $CONTROL PLANE/api/v1l/nodes/$NODE_NAME/proxy/metrics --header
"Authorization: Bearer $TOKEN"

2. Fetching healthz

curl -k $CONTROL PLANE/api/v1l/nodes/$NODE_NAME/proxy/healthz --header
"Authorization: Bearer $TOKEN"

7.2.2.2 CNI

You can check if the CNI (Container Networking Interface) is working as expected by check if the

coredns service is running. If CNI has some kind of trouble coredns will not be able to start:

kubectl get deployments -n kube-system

NAME READY UP-TO-DATE AVAILABLE AGE
cilium-operator 1/1 1 1 8d
coredns 2/2 2 2 8d
oidc-dex 1/1 1 1 8d
oidc-gangway 1/1 1 1 8d

If coredns is running and you are able to create pods then you can be certain that CNI and
your CNI plugin are working correctly.

There’s also the Monitor Node Health (https://v1-17.docs.kubernetes.io/docs/tasks/debug-applica-
tion-cluster/monitor-node-health/) # check. This is a DaemonSet that runs on every node, and
reports to the apiserver back as NodeCondition and Events.

7.2.3 Service/Application Health Checks

If the deployed services contain a health endpoint, or if they contain an endpoint that can be

used to determine if the service is up, you can use livenessProbes and/or readinessProbes.

@ Note: Health check endpoints vs. functional endpoints
A proper health check is always preferred if designed correctly.

159 Service/Application Health Checks SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/monitor-node-health/

Despite the fact that any endpoint could potentially be used to infer if your application
is up, it is better to have an endpoint specifically for health in your application. Such
an endpoint will only respond affirmatively when all your setup code on the server has

finished and the application is running in a desired state.

The livenessProbes and readinessProbes share configuration options and probe types.

initialDelaySeconds

Number of seconds to wait before performing the very first liveness probe.

periodSeconds

Number of seconds that the kubelet should wait between liveness probes.

successThreshold

Number of minimum consecutive successes for the probe to be considered successful (De-
fault: 1).

failureThreshold
Number of times this probe is allowed to fail in order to assume that the service is not

responding (Default: 3).

timeoutSeconds

Number of seconds after which the probe times out (Default: 1).
There are different options for the livenessProbes to check:

Command
A command executed within a container; a return code of 0 means success. All other return

codes mean failure.

TCP

If a TCP connection can be established is considered success.

HTTP

Any HTTP response between 200 and 400 indicates success.

160 Service/Application Health Checks SUSE CaasS Platform 4.2.4

7.2.3.1 livenessProbe

livenessProbes are used to detect running but misbehaving pods/a service that might be running
(the process didn’t die), but that is not responding as expected. You can find out more about
livenessProbes here: https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/config-

ure-liveness-readiness-probes/ 2

Probes are executed by each kubelet against the pods that define them and that are running
in that specific node. When a livenessProbe fails, Kubernetes will automatically restart the
pod and increase the RESTARTS count for that pod. These probes will be executed every peri-

odSeconds starting from initialDelaySeconds.

7.2.3.2 readinessProbe

readinessProbes are used to wait for processes that take some time to start. Find out more about
readinessProbes here: https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/con-
figure-liveness-readiness-probes/#define-readiness-probes # Despite the container running, it
might be performing some time consuming initialization operations. During this time, you don’t
want Kubernetes to route traffic to that specific pod. You also don’t want that container to be

restarted because it will appear unresponsive.
These probes will be executed every periodSeconds starting from initialDelaySeconds un-
til the service is ready.

Both probe types can be used at the same time. If a service is running, but misbehaving, the
livenessProbe will ensure that it’s restarted, and the readinessProbe will ensure that Ku-
bernetes won’t route traffic to that specific pod until it’s considered to be fully functional and

running again.

7.2.4 General Health Checks

We recommend to apply other best practices from system administration to your monitoring and
health checking approach. These steps are not specific to SUSE CaaS Platform and are beyond

the scope of this document.

161 General Health Checks SUSE CaaS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/
https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes
https://v1-17.docs.kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#define-readiness-probes

7.3 Horizontal Pod Autoscaler

Horizontal Pod Autoscaler (HPA) is a tool that automatically increases or decreases the number
of pods in a replication controller, deployment, replica set or stateful set, based on metrics

collected from pods.

In order to leverage HPA, skuba now supports an addon metrics-server. The metrics-server
(https://github.com/kubernetes-sigs/metrics-server) # addon is first installed into the Kubernetes
cluster. After that, HPA fetches metrics from the aggregated API metrics.k8s.io and according
to the user configuration determines whether to increase or decrease the scale of a replication

controller, deployment, replica set or stateful set.

The HPA metrics.target.type can be one of the following:

e Utilization: the value returned from the metrics server API is calculated as the average
resource utilization across all relevant pods and subsequently compared with the metric-

s.target.averageUtilization.

* AverageValue: the value returned from the metrics server API is divided by the number

of all relevant pods, then compared to the metrics.target.averageValue.

® Value: the value returned from the metrics server API is directly compared to the met-

rics.target.value.

@ Note

The metrics supported by metrics-server are the CPU and memory of a pod or node.

o Important

API versions supported by the HPA:

® CPU metric: autoscaling/vl,autoscaling/v2beta2

® Memory metric: autoscaling/v2beta2.

7.3.1 Usage

It is useful to first find out about the available resources of your cluster.

162 Horizontal Pod Autoscaler SUSE CaaS Platform 4.2.4

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server

163

$ kubectl top node

® To display resource (CPU/Memory) usage for nodes, run:

the expected output should look like the following:

NAME CPU(cores) CPU%s MEMORY (bytes)
master000 207m 10% 1756Mi
worker000 100m 10% 602Mi

$ kubectl top pod

MEMORY®s
45%
31%

® To display resource (CPU/Memory) usage for pods, run:

the expected output should look like the following:

NAME

cilium-9fjw2

cilium-cqng5
cilium-operator-7d6ddddbf5-2jwgr
coredns-69c4947958-2br4b
coredns-69c4947958-kb6dq
etcd-master000
kube-apiserver-master000
kube-controller-manager-master000
kube-proxy-x2965
kube-proxy-x9zlv
kube-scheduler-master000
kured-45rc2

kured-cptk4
metrics-server-79b8658cd7-gjvhs
oidc-dex-55fc689dc-f6cfg
oidc-gangway-7b7fbbdbdf-85p6t

@ Note

CPU(cores)
32m
43m
Im
2m
3m
21m
20m
6m
Om
Om
2m
1Im
Om
Im
Im
Im

MEMORY (bytes)
216Mi
227Mi
46Mi
11Mi
11Mi
584Mi
325Mi
105Mi
24Mi
19Mi
46Mi
25Mi
25Mi
21Mi
20Mi
18Mi

The option flag --sort-by=cpu/--sort-by=memory has an sorting issue at the

moment. It will be fixed in the future.

Usage

SUSE CaaS Platform 4.2.4

7.3.1.1 Using Horizontal Pod Autoscaler (HPA)

You can set the HPA to scale according to various metrics. These include average CPU utiliza-
tion, average CPU value, average memory utilization and average memory value. The fol-

lowing sections show the recommended configuration for each of the aforementioned options.

7.3.1.1.1 Creating an HPA Using Average CPU Utilization

The following code is an example of what this type of HPA can look like. You will have to run
the code on your admin node or user local machine. Note that you need a kubeconfig file with

RBAC permission that allow setting up autoscale rules into your Kubernetes cluster.

deployment

kubectl autoscale deployment <DEPLOYMENT NAME> \
--min=<MIN REPLICAS NUMBER> \
- -max=<MAX_ REPLICAS NUMBER> \
--cpu-percent=<PERCENT>

replication controller

kubectl autoscale replicationcontrollers <REPLICATIONCONTROLLERS NAME> \
--min=<MIN REPLICAS NUMBER> \
- -max=<MAX_ REPLICAS NUMBER> \
--cpu-percent=<PERCENT>

You could for example use the following values:

kubectl autoscale deployment oidc-dex \

--name=avg-cpu-util \

--min=1 \

--max=10 \

--Ccpu-percent=50
The example output below shows autoscaling works in case of the oidc-dex deployment. The
HPA increases the minimum number of pods to 1 and will increase the pods up to 10, if the
average CPU utilization of the pods reaches 50%. For more details about the inner workings
of the scaling, refer to The Kubernetes documentation on the horizontal pod autoscale algorithm

(https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details) 7.

To check the current status of the HPA run:

kubectl get hpa

Example output:

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

164 Usage SUSE CaasS Platform 4.2.4

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#algorithm-details

oidc-dex Deployment/oidc-dex 0%/50% 1 10 3 115s

@ Note

To calculate pod CPU utilization HPA divides the total CPU usage of all containers by the
total number of CPU requests:

POD CPU UTILIZATION = TOTAL CPU USAGE OF ALL CONTAINERS / NUMBER OF
CPU REQUESTS

For example:

® Container] requests 0.5 CPU and uses 0 CPU.

® Container2 requests 1 CPU and uses 2 CPU.

The CPU utilization will be (0+2)/(0.5+1)*100 (%) =133 (%)

If a replication controller, deployment, replica set or stateful set does not specify the CPU

request, the output of kubectl get hpa TARGETS will be unknown.

7.3.1.1.2 Creating an HPA Using the Average CPU Value
1. Create a yaml manifest file hpa-avg-cpu-value.yaml with the following content:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: avg-cpu-value @
namespace: kube-system @
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment ©
name: example @
minReplicas: 1 ©
maxReplicas: 10 @
metrics:
- type: Resource
resource:
name: cpu
target:
type: AverageValue
averageValue: 500Mi @

165 Usage SUSE CaasS Platform 4.2.4

@ Name of the HPA.

®

Namespace of the HPA.

®

or stateful set).
Specifies the name of the object to scale.

Specifies the minimum number of replicas.

@ ® 6

Specifies the maximum number of replicas.

@ The average value of the requested CPU that each pod uses.
2. Apply the yaml manifest by running:

kubectl apply -f hpa-avg-cpu-value.yaml
3. Check the current status of the HPA:

kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS
AGE

avg-cpu-value Deployment/php-apache 1m/500Mi 1 10
39s

7.3.1.1.3 Creating an HPA Using Average Memory Utilization

Specifies the kind of object to scale (a replication controller, deployment, replica set

REPLICAS

1. Create a yaml manifest file hpa-avg-memory-util.yaml with the following content:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: avg-memory-util @
namespace: kube-system @
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment ©
name: example @
minReplicas: 1 ©
maxReplicas: 10 @
metrics:
- type: Resource
resource:

166 Usage SUSE CaasS Platform 4.2.4

name: memory
target:
type: Utilization
averageUtilization: 50 @

@ Name of the HPA.

® Namespace of the HPA.
(3

or stateful set).
@ Specifies the name of the object to scale.
© Specifies the minimum number of replicas.
@ Specifies the maximum number of replicas.

@ The average utilization of the requested memory that each pod uses.

2. Apply the yaml manifest by running:
kubectl apply -f hpa-avg-memory-util.yaml
3. Check the current status of the HPA:

kubectl get hpa

NAME REFERENCE TARGETS
AGE

avg-memory-util Deployment/example 5%/50%
4m54s

@ Note

MINPODS MAXPODS

1 10

Specifies the kind of object to scale (a replication controller, deployment, replica set

REPLICAS

HPA calculates pod memory utilization as: total memory usage of all containers /

total memory requests. If a deployment or replication controller does not specify

the memory request, the ouput of kubectl get hpa TARGETS is <unknown>.

7.3.1.1.4 Creating an HPA Using Average Memory Value

1. Create a yaml manifest file hpa-avg-memory-value.yaml with the following content:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler

167

Usage

SUSE CaaS Platform 4.2.4

metadata:

name: avg-memory-value @
namespace: kube-system @

spec:

® 0

®@ ® 6

scaleTargetRef:
apiVersion: apps/vl
kind: Deployment ©
name: example @
minReplicas: 1 ©
maxReplicas: 10 @
metrics:
- type: Resource
resource:
name: memory
target:
type: AverageValue
averageValue: 500Mi @

Name of the HPA.
Namespace of the HPA.

Specifies the kind of object to scale (a replication controller, deployment, replica set

or stateful set).

Specifies the name of the object to scale.
Specifies the minimum number of replicas.
Specifies the maximum number of replicas.

The average value of the requested memory that each pod uses.

2. Apply the yaml manifest by running:

kubectl apply -f hpa-avg-memory-value.yaml

3. Check the current status of the HPA:

kubectl get hpa

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
avg-memory-value Deployment/example 11603968/500Mi 1 10 1
6m24s

168

Usage SUSE CaasS Platform 4.2.4

7.4 Stratos Web Console

o Important

7.4.1

This feature is offered as a "tech preview".

We release this as a tech-preview in order to get early feedback from our customers. Tech
previews are largely untested, unsupported, and thus not ready for production use.

That said, we strongly believe this technology is useful at this stage in order to make the
right improvements based on your feedback. A fully supported, production-ready release

is planned for a later point in time.

Note
If you plan to deploy SUSE Cloud Application Platform on your SUSE CaaS Platform

cluster please skip this section of the documentation and refer to the official SUSE Cloud

Application Platform instructions. This will include Stratos.

https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#cha-cap-

depl-caasp?

Introduction

The Stratos user interface (UI) is a modern web-based management application for Kubernetes

and for Cloud Foundry distributions based on Kubernetes like SUSE Cloud Application Platform.

Stratos provides a graphical management console for both developers and system administrators.

A single Stratos instance can be used to monitor multiple Kubernetes clusters as long as it is

granted access to their Kubernetes API endpoint.

This document aims to describe how to install Stratos in a SUSE CaaS Platform cluster that

doesn’t plan to run any SUSE Cloud Application Platform components.

The Stratos stack is deployed using a helm charts and consists of its web UI POD and a MariaDB

one that is used to store configuration values.

169

Stratos Web Console SUSE CaaS Platform 4.2.4

https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#cha-cap-depl-caasp
https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#cha-cap-depl-caasp

7.4.2 Prerequisites

7.4.2.1 Helm

The deployment of Stratos is performed using a helm chart. Your remote administration machine

must have Helm installed.

When using a Helm release earlier than 3.0, Helm’s Tiller component has to be installed and

active on your SUSE CaaS Platform cluster.

7.4.2.2 Persistent Storage

The MariaDB instance used by Stratos requires a persistent storage to store its data.

The cluster must have a Kubernetes Storage Class defined.

7.4.3 Installation

7.4.3.1 Adding helm chart repository and default values

1. Add SUSE helm charts repository

helm repo add suse https://kubernetes-charts.suse.com

2. Obtain the default values.yaml file of the helm chart

helm inspect values suse/console > stratos-values.yaml

7.4.3.2 Define admin user password

Create a secure password for your admin user and write that into the stratos-values.yaml

as value of the console.localAdminPassword key.

o Important

This step is required to allow the installation of Stratos without having any SUSE Cloud

Application Platform components deployed on the cluster.

170 Prerequisites SUSE CaasS Platform 4.2.4

7.4.3.3 Define the Storage Class to be used

If your cluster does not have a default storage class configured, or you want to use a different

one, follow these instructions.

Openthe stratos-values.yaml file and look for the storageClass entry defined at the global

level, uncomment the line and provide the name of your Storage Class.

The values file will have something like that:

Specify which storage class should be used for PVCs
storageClass: default

@ Note

The file has other storageClass keys defined inside of some of its resources. These can

be left empty to rely on the global Storage Class that has just been defined.

7.4.3.4 Exposing the Web Ul

The web interface of Stratos can be exposed either via a Ingress resource or by using a Service

of type LoadBalancer or even both at the same time.

An Ingress controller must be deployed on the cluster to be able to expose the service using

an Ingress resource.

The cluster must be deployed on a platform that can handle LoadBalancer objects and must
have the Cloud Provider Integration (CPI) enabled. This can be achieved, for example, when

deploying SUSE CaaS Platform on top of OpenStack.

The behavior is defined inside of the console.service stanza of the yaml file:

console:
service:
annotations: []
externalIPs: []
loadBalancerIP:
loadBalancerSourceRanges: []
servicePort: 443
nodePort: 30000
type: ClusterIP
externalName:
ingress:
If true, Ingress will be created

171 Installation SUSE CaaS Platform 4.2.4

enabled: false

Additional annotations
annotations: {}

Additional labels
extralLabels: {}

Host for the ingress
Defaults to console.[env.Domain] if env.Domain is set and host is not
host:

Name of secret containing TLS certificate
secretName:

crt and key for TLS Certificate (this chart will create the secret based on
these)
tls:
crt:
key:

7.4.3.4.1 Expose the web Ul using a LoadBalancer
The service can be exposes as a LoadBalancer one by setting the value of console.ser-
vice.type to be LoadBalancer.

The LoadBalancer resource can be tuned by changing the values of the other loadBalancer*

params specified inside of the console.service stanza.

7.4.3.4.2 Expose the web Ul using an Ingress

The Ingress resource can be created by setting console.service.ingress.enabled to be

true.

Stratos is exposed by the Ingress using a dedicated host rule. Hence you must specify the FQDN

of the host as a value of the console.service.ingress.host key.

The behavior of the Ingress object can be fine tuned by using the other keys inside of the con-

sole.service.ingress stanza.

7.4.3.5 Securing Stratos

It’s highly recommended to secure Stratos' web interface using TLS encryption.

172 Installation SUSE CaaS Platform 4.2.4

This can be done by creating a TLS certificate for Stratos.

7.4.3.5.1 Secure Stratos web Ul

It’s highly recommended to secure the web interface of Stratos by using TLS encryption. This
can be easily done when exposing the web interface using an Ingress resource.

Inside of the console.service.ingress stanza ensure the Ingress resource is enabled and then
specify values for console.service.ingress.tls.crt and console.service.ingress.tl-
s.key. These keys hold the base64 encoded TLS certificate and key.

The TLS certificate and key can be base64 encoded by using the following command:

base64 tls.crt
base64 tls.key

The output produced by the two commands has to be copied into the stratos-values.yaml

file, resulting in something like that:

console:
service:
ingress:
enabled: true
tls: |
<output of base64 tls.crt>
key: |
<output of base64 tls.key>

7.4.3.5.2 Change MariaDB password

The helm chart provisions the MariaDB database with a default weak password. A stronger

password can be specified by altering the value of mariadb.mariadbPassword.

7.4.3.6 Enable tech preview features

You can enable tech preview features of Stratos by changing the value of console.techPreview
from false to true.

173 Installation SUSE CaaS Platform 4.2.4

7.4.3.7 Deploying Stratos

Now Stratos can be deployed using helm and the values specified inside of the stratos-val-

ues.yaml file:
helm install suse/console \
--name stratos-console \
--namespace stratos \
--values stratos-values.yaml
You can monitor the status of your Stratos deployment with the watch command:
watch --color 'kubectl get pods --namespace stratos'
When Stratos is successfully deployed, the following is observed:
¢ For the volume-migration pod, the STATUS is Completed and the READY column is at 0/1.
e All other pods have a Running STATUS and a READY value of n/n.

Press Ctr1-C to exit the watch command.

1. At this stage Stratos web UI should be accessible. You can log into that using the admin

user and the password you specified inside of your stratos-values.yaml file.

7.4.4 Stratos configuration

Now that Stratos is up and running you can log into it and configure it to connect to your

Kubernetes cluster(s).

Please refer to the SUSE Cloud Application Platform documentation (https://documenta-

tion.suse.com/suse-cap/1.5.2/single-html/cap-guides/#book-cap-guides) # for more information.

174 Stratos configuration SUSE CaasS Platform 4.2.4

https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#book-cap-guides
https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#book-cap-guides

8 Storage

8.1 vSphere Storage

The vSphere cloud provider can be enabled with SUSE CaaS Platform to allow Kubernetes pods
to use VMWare vSphere Virtual Machine Disk (VMDK) volumes as persistent storage.
This chapter provides the two types of persistent volume usage and description.

Please refer to Cluster Bootstrap (https://documentation.suse.com/suse-caasp/4.2/single-html/

caasp-deployment/#bootstrap) 7 on how to setup vSphere cloud provider enabled cluster.

8.1.1 Node Meta

Extra node meta could be found when region and zone was added to vsphere.conf before

bootstrap cluster node.

[Labels]
region = "<VC DATACENTER TAG>"
zone = "<VC CLUSTER TAG>"

Region refers to the datacenter and zones refers to the cluster grouping of hosts within the
datacenter. Adding region and zone makes Kubernetes persistent volume created with zone
and region labels. With such an environment, Kubernetes pod scheduler is set to be locational
aware for the persistent volume. For more information refer to: https://vmware.github.io/vsphere-

storage-for-kubernetes/documentation/zones.html .

You can view the cloudprovider associated node meta with command.
kubectl get nodes -o jsonpath='{range .items[*]}{.metadata.name}{"\tregion:
"}{.metadata.labels.failure-domain\.beta\.kubernetes\.io/region}{"\tzone: "}

{.metadata.labels.failure-domain\.beta\.kubernetes\.io/zone}{"\n"}{end}"'

010084072206 region: vcp-provo zone: vcp-cluster-jazz
010084073045 region: vcp-provo zone: vcp-cluster-jazz

8.1.2 Static Persistent Volume

1. Create new VMDK volume in datastore. The VMDK volume used in persistent volume must

exist before the resource is created.

175 vSphere Storage SUSE CaasS Platform 4.2.4

https://documentation.suse.com/suse-caasp/4.2/single-html/caasp-deployment/#bootstrap
https://documentation.suse.com/suse-caasp/4.2/single-html/caasp-deployment/#bootstrap
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/zones.html
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/zones.html

You can use govc to automate the task.
For installation instructions, refer to: https://github.com/vmware/govmomi/tree/mas-

ter/govc .

govc datastore.disk.create -dc <DATA CENTER> -ds <DATA STORE> -size <DISK SIZE>
<DISK NAME>

<DATA_CENTER > The datacenter name in vCenter where Kubernetes nodes reside.
<DATA _STORE > The datastore in vCenter where volume should be created.
<DISK_SIZE > The volume size to create, for example 1G.

<DISK_NAME > The VMDK volume name. for example my-disk.vmdk, or my-cluster-fold-
er/my-disk.vmdk.

2. Create persistent volume - sample-static-pv.yaml.

kubectl create -f sample-static-pv.yaml

apiVersion: vl
kind: PersistentVolume
metadata:
name: sample-static-pv @
spec:
capacity:
storage: 1Gi @
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Delete ©
vsphereVolume:
volumePath: "[datastore] volume/path" @
fsType: ext4d O

The name of persistent volume resource.
The disk size available.

The policy for how persistent volume should be handled when it is released.

-

The path to VMDK volume. This path must exist.

© The file system type to mount.
3. Create persistent volume claim - sample-static-pvc.yaml.

kubectl create -f sample-static-pvc.yaml

apiVersion: vl

176 Static Persistent Volume SUSE CaaS Platform 4.2.4

https://github.com/vmware/govmomi/tree/master/govc
https://github.com/vmware/govmomi/tree/master/govc

kind: PersistentVolumeClaim
metadata:
name: sample-static-pvc
labels:
app: sample
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi @

@ The required volume size.

4. Create deployement - sample-static-deployment.yaml.

177

kubectl create -f sample-static-deployment.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: sample-static-deployment
labels:
app: sample
tier: sample
spec:
selector:
matchLabels:
app: sample
tier: sample
strategy:
type: Recreate
template:
metadata:
labels:
app: sample
tier: sample
spec:
containers:
- image: busybox
name: sample
volumeMounts:
- name: sample-volume
mountPath: /data @

command: ["sleep", "infinity"]

volumes:

Static Persistent Volume

SUSE CaaS Platform 4.2.4

- name: sample-volume
persistentVolumeClaim:
claimName: sample-static-pvc @

@ The volume mount path in deployed pod.
® The requested persistent volume claim name.
5. Check persistent volume claim is bonded and pod is running.

kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES

STORAGECLASS AGE
sample-static-pvc Bound sample-static-pv 1Gi RWO
55s

kubectl get pod

NAME READY STATUS RESTARTS AGE
sample-static-deployment-549dc77d76-pwdqw 1/1 Running 0 3m42s

8.1.3 Dynamic Persistent Volume

1. Create storage class - sample-sc.yaml.

kubectl create -f sample-sc.yaml

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: sample-sc
annotations:
storageclass.kubernetes.io/is-default-class: "true" @
provisioner: kubernetes.io/vsphere-volume
parameters:
datastore: "datastore" @

@ Set as the default storage class.

® The datastore name in vCenter where volume should be created.
2. Create persistent volume claim - sample-dynamic-pvc.yaml.

kubectl create -f sample-dynamic-pvc.yaml

178 Dynamic Persistent Volume SUSE CaasS Platform 4.2.4

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: sample-dynamic-pvc
annotations:

volume.beta.kubernetes.io/storage-class:

labels:
app: sample
spec:
accessModes:
- ReadWriteOnce
resources:
requests:

storage: 1Gi @

sample-sc @

@ Annotate with storage class name to use the storage class created.

® The required volume size.

3. Create deployment - sample-deployment.yaml

kubectl create -f sample-deployment.yaml

apiVersion: apps/vl
kind: Deployment
metadata:
name: sample-dynamic-deployment
labels:
app: sample
tier: sample
spec:
selector:
matchLabels:
app: sample
tier: sample
strategy:
type: Recreate
template:
metadata:
labels:
app: sample
tier: sample
spec:
containers:
- image: busybox
name: sample

Dynamic Persistent Volume

SUSE CaaS Platform 4.2.4

volumeMounts:
- name: sample-volume
mountPath: /data @
command: ["sleep", "infinity"]
volumes:
- name: sample-volume
persistentVolumeClaim:
claimName: sample-dynamic-pvc @

@ The volume mount path in deployed pod.
® The requested persistent volume claim name.
4. Check persistent volume claim is bonded and pod is running.

kubectl get pvc

NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE

sample-dynamic-pvc Bound pvc-0ca694b5-0084-4e36-befl-5b2354158d79 1G1i
RWO sample-sc 70s

kubectl get pod

NAME READY STATUS RESTARTS AGE
sample-dynamic-deployment-687765d5b5-67vnh 1/1 Running 0 20s

180 Dynamic Persistent Volume SUSE CaasS Platform 4.2.4

9 Integration

@ Note

Integration with external systems might require you to install additional packages to the

base OS. Please refer to Section 3.1, “Software Installation”.

9.1 SUSE Enterprise Storage Integration

SUSE CaaS Platform offers SUSE Enterprise Storage as a storage solution for its containers. This

chapter describes the steps required for successful integration.

9.1.1 Prerequisites

Before you start with integrating SUSE Enterprise Storage, you need to ensure the following:

® The SUSE CaaS Platform cluster must have ceph-common and xfsprogs installed on all

nodes. You can check this by running rpm -q ceph-common and rpm -q xfsprogs.

® The SUSE CaaS Platform cluster can communicate with all of the following SUSE Enterprise
Storage nodes: master, monitoring nodes, OSD nodes and the metadata server (in case
you need a shared file system). For more details refer to the SUSE Enterprise Storage

documentation: https://documentation.suse.com/ses/6/ 4.

* The SUSE Enterprise Storage cluster has a pool with RADOS Block Device (RBD) enabled.

9.1.2 Procedures According to Type of Integration

The steps will differ in small details depending on whether you are using RBD or CephFS and

dynamic or static persistent volumes.

9.1.2.1 Using RBD in a Pod

RBD, also known as the Ceph Block Device or RADOS Block Device, is software that facilitates the
storage of block-based data in the open source Ceph distributed storage system. The procedure

below describes steps to take when you need to use a RADOS Block Device in a pod.

181 SUSE Enterprise Storage Integration SUSE CaasS Platform 4.2.4

https://documentation.suse.com/ses/6/

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring.

2. Apply the configuration that includes the Ceph secret by running kubectl apply. Replace

<CEPH_SECRET> with your own Ceph secret and run the following:

kubectl apply -f - << *EOQF*
apiVersion: vl
kind: Secret
metadata:
name: ceph-secret
type: "kubernetes.io/rbd"
data:
key: "$(echo <CEPH SECRET> | base64)"
EQF

3. Create an image in the SES cluster. To do that, run the following command on the master

node, replacing <SIZE> with the size of the image, for example 2G, and <YOUR VOLUME>

with the name of the image.

rbd create -s <SIZE> <YOUR VOLUME>

4. Create a pod that uses the image by executing the command below. This example is the

182

minimal configuration for using a RADOS Block Device.

Fill in the IP addresses and ports of your monitor nodes under <MONITOR IP> and <MONI-
TOR PORT>. The default port number is 67 89.

Substitute <POD NAME> and <CONTAINER NAME> for a Kubernetes container and pod name
of your choice.

<IMAGE NAME> is the name you decide to give your container image, for example "open-
suse/leap".

<RBD POOL>. is the RBD pool name, please refer to the RBD documentation for instruc-
tions on how to create the RBD pool: https://docs.ceph.com/docs/mimic/rbd/rados-rbd-

cmds/#create-a-block-device-pool @

kubectl apply -f - << *EQF*
apiVersion: vl
kind: Pod
metadata:
name: <POD NAME>
spec:

Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

https://docs.ceph.com/docs/mimic/rbd/rados-rbd-cmds/#create-a-block-device-pool
https://docs.ceph.com/docs/mimic/rbd/rados-rbd-cmds/#create-a-block-device-pool

containers:
- name: <CONTAINER NAME>
image: <IMAGE NAME>
volumeMounts:
- mountPath: /mnt/rbdvol
name: rbdvol
volumes:
- name: rbdvol
rbd:
monitors:
- '<MONITOR1 IP:MONITOR1 PORT>'
- '<MONITOR2 IP:MONITOR2 PORT>'
'<MONITOR3 IP:MONITOR3 PORT>'
pool: <RBD POOL>
image: <YOUR VOLUME>
user: admin
secretRef:
name: ceph-secret
fsType: ext4
readOnly: false
SEORS

5. Verify that the pod exists and check its status:
kubectl get pod

6. Once the pod is running, check the mounted volume:

kubectl exec -it CONTAINER NAME -- df -k ...
Filesystem 1K-block Used Available Used% Mounted on
/dev/rbdl 999320 1284 929224 0% /mnt/rbdvol

In case you need to delete the pod, run the following command:

kubectl delete pod <POD NAME>

9.1.2.2 Using RBD with Static Persistent Volumes

The following procedure describes how to attach a pod to an RBD static persistent volume:

1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

183 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

or directly from /etc/ceph/ceph.client.admin.keyring.

2. Apply the configuration that includes the Ceph secret by using kubectl apply. Replace
<CEPH SECRET> with your Ceph secret.

kubectl apply -f - << *EOQF*
apiVersion: vl
kind: Secret
metadata:
name: ceph-secret
type: "kubernetes.io/rbd"
data:
key: "$(echo <CEPH SECRET> | base64)"
SEORS

3. Create an image in the SES cluster. On the master node, run the following command:

rbd create -s <SIZE> <YOUR VOLUME>

Replace <SIZE> with the size of the image, for example 2G (2 gigabytes), and <YOUR VOL-

UME> with the name of the image.
4. Create the persistent volume:

kubectl apply -f - << *EOQF*
apiVersion: vl
kind: PersistentVolume
metadata:
name: <PV_NAME>
spec:
capacity:
storage: <SIZE>
accessModes:
- ReadWriteOnce
rbd:
monitors:
'<MONITOR1 IP:MONITOR1 PORT>'
'<MONITOR2_ IP:MONITOR2 PORT>'
'<MONITOR3 IP:MONITOR3 PORT>'
pool: <RBD POOL>
image: <YOUR VOLUME>
user: admin
secretRef:
name: ceph-secret
fsType: ext4
readOnly: false

184 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

EOF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example

2Gi.

5. Create a persistent volume claim:

kubectl apply -f - << *EOQF*
kind: PersistentVolumeClaim
apiVersion: vl

metadata:
name: <PVC_NAME>
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: SIZE
BEOES

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example

2Gi.

@ Note: Listing Volumes

This persistent volume claim does not explicitly list the volume. Persistent volume

claims work by picking any volume that meets the criteria from a pool. In this case

we specified any volume with a size of 2G or larger. When the claim is removed,

the recycling policy will be followed.

6. Create a pod that uses the persistent volume claim:

kubectl apply -f - <<*EOF*
apiVersion: vl
kind: Pod
metadata:
name: <POD NAME>
spec:

containers:

- name: <CONTAINER NAME>
image: <IMAGE NAME>
volumeMounts:

- mountPath: /mnt/rbdvol
name: rbdvol

Procedures According to Type of Integration

SUSE CaaS Platform 4.2.4

volumes:
- name: rbdvol
persistentVolumeClaim:
claimName: <PV_NAME>
EQF

7. Verify that the pod exists and its status:
kubectl get pod
8. Once the pod is running, check the volume:

kubectl exec -it CONTAINER NAME -- df -k ...
/dev/rbd3 999320 1284 929224 0% /mnt/rbdvol

In case you need to delete the pod, run the following command:

kubectl delete pod <CONTAINER NAME>

@ Note: Deleting A Pod

When you delete the pod, the persistent volume claim is deleted as well. The RBD is not
deleted.

9.1.2.3 Using RBD with Dynamic Persistent Volumes

The following procedure describes how to attach a pod to an RBD dynamic persistent volume.
1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring.

2. Apply the configuration that includes the Ceph secret by using kubectl apply. Replace
<CEPH_SECRET> with your Ceph secret.

kubectl apply -f - << *EOQF*
apiVersion: vl
kind: Secret
metadata:

name: ceph-secret-admin
type: "kubernetes.io/rbd"

186 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

data:
key: "$(echo <CEPH SECRET> | base64)"
EOF

3. Create Ceph user on the SES cluster.

ceph auth get-or-create client.user mon "allow r" osd "allow class-read
object prefix rbd children,
allow rwx pool=<RBD POOL>" -o ceph.client.user.keyring

Replace <RBD POOL> with the RBD pool name.

4. For a dynamic persistent volume, you will also need a user key. Retrieve the Ceph user

secret by running:

ceph auth get-key client.user

or directly from /etc/ceph/ceph.client.user.keyring

5. Apply the configuration that includes the Ceph secret by running the kubectl apply
command, replacing <CEPH _SECRET> with your own Ceph secret.

kubectl apply -f - << *EOF*
apiVersion: vl
kind: Secret
metadata:
name: ceph-secret-user
type: "kubernetes.io/rbd"
data:
key: "$(echo <CEPH SECRET> | base64)"
EQF

6. Create the storage class:

kubectl apply -f - << *EOF*
apiVersion: storage.k8s.io/vlbetal
kind: StorageClass
metadata:
name: <SC NAME>
annotations:
storageclass.beta.kubernetes.io/is-default-class: "true"
provisioner: kubernetes.io/rbd
parameters:
monitors: <MONITOR1 IP:MONITOR1 PORT>, <MONITOR2 IP:MONITOR2 PORT>,
<MONITOR3 IP:MONITOR3 PORT>
adminId: admin

187 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

adminSecretName: ceph-secret-admin

adminSecretNamespace: default

pool: <RBD POOL>

userId: user

userSecretName: ceph-secret-user
EQF

7. Create the persistent volume claim:

kubectl apply -f - << *EOF*
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: <PVC NAME>
spec:

accessModes:

- ReadWriteOnce

resources:

requests:
storage: <SIZE>

EQF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example

2Gi.
8. Create a pod that uses the persistent volume claim.

kubectl apply -f - << *EQF*
apiVersion: vl
kind: Pod
metadata:
name: <POD NAME>
spec:

containers:

- name: <CONTAINER NAME>
image: <IMAGE NAME>
volumeMounts:

- name: rbdvol
mountPath: /mnt/rbdvol
readOnly: false

volumes:

- name: rbdvol
persistentVolumeClaim:

claimName: <PVC NAME>
EQF

9. Verify that the pod exists and check its status.

188 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

kubectl get pod

10. Once the pod is running, check the volume:

kubectl exec -it <CONTAINER NAME> -- df -k ...
/dev/rbd3 999320 1284 929224 0% /mnt/rbdvol

In case you need to delete the pod, run the following command:

kubectl delete pod <CONTAINER NAME>

@ Note: Deleting A Pod

When you delete the pod, the persistent volume claim is deleted as well. The RBD is not
deleted.

9.1.2.4 Using CephFSin a Pod

The procedure below describes steps to take when you need to use a CephFS in a pod.

PROCEDURE: USING CEPHFS IN A POD
1. Retrieve the Ceph admin secret. You can get the key value using the following command:

ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring.

2. Apply the configuration that includes the Ceph secret by running kubectl apply. Replace
<CEPH_SECRET> with your own Ceph secret and run the following:

kubectl apply -f - << *EQF*
apiVersion: vl
kind: Secret
metadata:
name: ceph-secret
type: "kubernetes.io/rbd"
data:
key: "$(echo <CEPH SECRET> | base64)"
EQF

189 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

3. Create a pod that uses the CephFS filesystem by executing the following command. This
example shows the minimal configuration for a CephFS volume. Fill in the IP addresses

and ports of your monitor nodes. The default port number is 6789.

kubectl apply -f - << *EOF*
apiVersion: vl
kind: Pod
metadata:
name: <POD NAME>
spec:
containers:
- name: <CONTAINER NAME>
image: <IMAGE NAME>
volumeMounts:
- mountPath: /mnt/cephfsvol
name: ceph-vol
volumes:
- name: ceph-vol
cephfs:
monitors:
'<MONITOR1 IP:MONITOR1 PORT>'
'<MONITOR2_ IP:MONITOR2 PORT>'
'<MONITOR3 IP:MONITOR3 PORT>'
user: admin
secretRef:
name: ceph-secret-admin
readOnly: false
EQF

4. Verify that the pod exists and check its status:
kubectl get pod
5. Once the pod is running, check the mounted volume:

kubectl exec -it <CONTAINER NAME> -- df -k ...
172.28.0.6:6789,172.28.0.14:6789,172.28.0.7:6789:/ 59572224 0 59572224

0% /mnt/cephfsvol

In case you need to delete the pod, run the following command:

kubectl delete pod <POD_NAME>

190 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

9.1.2.5 Using CephFS with Static Persistent Volumes

The following procedure describes how to attach a CephFS static persistent volume to a pod:

1. Retrieve the Ceph admin secret. You can get the key value using the following command:
ceph auth get-key client.admin

or directly from /etc/ceph/ceph.client.admin.keyring.

2. Apply the configuration that includes the Ceph secret by running kubectl apply. Replace
<CEPH_SECRET> with your own Ceph secret and run the following:

kubectl apply -f - << *EOF*
apiVersion: vl
kind: Secret
metadata:
name: ceph-secret
type: "kubernetes.io/rbd"
data:
key: "$(echo <CEPH SECRET> | base64)"
EQOF

3. Create the persistent volume:

kubectl apply -f - << *EOQF*
apiVersion: vl
kind: PersistentVolume
metadata:
name: <PV_NAME>
spec:
capacity:
storage: <SIZE>
accessModes:
- ReadWriteOnce
cephfs:
monitors:
'<MONITOR1 IP:MONITOR1 PORT>'
'<MONITOR2 IP:MONITOR2 PORT>'
'<MONITOR3 IP:MONITOR3 PORT>'
user: admin
secretRef:
name: ceph-secret-admin
readOnly: false
EQF

191 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example

2Gi.
4. Create a persistent volume claim:

kubectl apply -f - << *EOQF*
kind: PersistentVolumeClaim
apiVersion: vl
metadata:

name: <PVC_NAME>
spec:

accessModes:

- ReadWriteOnce

resources:

requests:
storage: <SIZE>

EQF

Replace <SIZE> with the desired size of the volume. Use the gibibit notation, for example

2Gi.
5. Create a pod that uses the persistent volume claim.

kubectl apply -f - << *EOQF*
apiVersion: vl
kind: Pod
metadata:
name: <POD_ NAME>
spec:

containers:

- name: <CONTAINER NAME>
image: <IMAGE NAME>
volumeMounts:

- mountPath: /mnt/cephfsvol
name: cephfsvol

volumes:

- name: cephfsvol
persistentVolumeClaim:

claimName: <PVC NAME>

EOF

6. Verify that the pod exists and check its status.

192 Procedures According to Type of Integration SUSE CaasS Platform 4.2.4

kubectl get pod

7. Once the pod is running, check the volume by running:
kubectl exec -it <CONTAINER NAME> -- df -k ...

172.28.0.25:6789,172.28.0.21:6789,172.28.0.6:6789:/ 76107776 0 76107776
0% /mnt/cephfsvol

In case you need to delete the pod, run the following command:

kubectl delete pod <CONTAINER NAME>

@ Note: Deleting A Pod

When you delete the pod, the persistent volume claim is deleted as well. The cephFS is
not deleted.

9.2 SUSE Cloud Application Platform Integration

For integration with SUSE Cloud Application Platform, refer to: Deploying SUSE Cloud Application
Platform on SUSE CaaS Platform (https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-

guides/#cha-cap-depl-caasp) <.

193 SUSE Cloud Application Platform Integration SUSE CaasS Platform 4.2.4

https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#cha-cap-depl-caasp
https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#cha-cap-depl-caasp
https://documentation.suse.com/suse-cap/1.5.2/single-html/cap-guides/#cha-cap-depl-caasp

10 Cluster Disaster Recovery

Etcd is a crucial component of Kubernetes - the etcd cluster stores the entire Kubernetes clus-
ter state, which means critical configuration data, specifications, as well as the statuses of the
running workloads. It also serves as the backend for service discovery. Chapter 11, Backup and
Restore with Velero explains how to use Velero to backup, restore and migrate data. However, the
Kubernetes cluster needs to be accessible for Velero to operate. And since the Kubernetes cluster
can become inaccessible for many reasons, for example when all of its master nodes are lost, it

is important to periodically backup etcd cluster data.

10.1 Backing Up etcd Cluster Data

This chapter describes the backup of etcd cluster data running on master nodes of SUSE Caa$S

Platform.

10.1.1 Data To Backup

1. Create backup directories on external storage.

BACKUP_DIR=CaaSP Backup “date +%Y%m%d%H%M%S"
mkdir /${BACKUP DIR}

2. Copy the following files/folders into the backup directory:

¢ The skuba command-line binary: for the running cluster. Used to replace nodes from

cluster.

¢ The cluster definition folder: Directory created during bootstrap holding the cluster

certificates and configuration.

® The etcd cluster database: Holds all non-persistent cluster data. Can be used to
recover master nodes. Please refer to the next section for steps to create an etcd
cluster database backup.

3. (Optional) Make backup directory into a compressed file, and remove the original backup
directory.

tar cfv ${BACKUP DIR}.tgz /${BACKUP_DIR}

194 Backing Up etcd Cluster Data SUSE CaasS Platform 4.2.4

rm -rf /${BACKUP_DIR}

10.1.2 Creating an etcd Cluster Database Backup

10.1.2.1 Procedure

1. Mount external storage device to all master nodes. This is only required if the following

step is using local hostpath as volume storage.
2. Create backup.
a. Find the size of the database to be backed up

ls -sh /var/lib/etcd/member/snap/db

o Important

The backup size depends on the cluster. Ensure each of the backups has suffi-

cient space. The available size should be more than the database snapshot file.

You should also have a rotation method to clean up the unneeded snapshots

over time.

When there is insufficient space available during backup, pods will fail to be in

Running state and no space left on device errors will show in pod logs.

The below example manifest shows a binding to a local hostPath. We strongly

recommend using other storage methods instead.

b. Modify the script example
Replace <STORAGE MOUNT POINT> with the directory in which to store the backup.
The directory must exist on every node in cluster.
Replace <IN CLUSTER ETCD IMAGE> with the etcd image used in the cluster. This
can be retrieved by accessing any one of the nodes in the cluster and running:

grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'

c. Create a backup deployment

195 Creating an etcd Cluster Database Backup SUSE CaasS Platform 4.2.4

Run the following script:

ETCD SNAPSHOT="<STORAGE _MOUNT POINT>/etcd snapshot"
ETCD IMAGE="<IN CLUSTER ETCD IMAGE>"
MANIFEST="etcd-backup.yaml"

cat << *EOF* > ${MANIFEST}
apiVersion: batch/vl
kind: Job
metadata:
name: etcd-backup
namespace: kube-system

labels:
jobgroup: backup
spec:
template:
metadata:
name: etcd-backup
labels:
jobgroup: backup
spec:
containers:

- name: etcd-backup
image: ${ETCD IMAGE}

env:
- name: ETCDCTL_API
value: "3"

command: ["/bin/sh"]
args: ["-c", "etcdctl --endpoints=https://127.0.0.1:2379 --cacert=/
etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/healthcheck-
client.crt --key=/etc/kubernetes/pki/etcd/healthcheck-client.key snapshot
save /backup/etcd-snapshot-\$(date +%Y-%m-%d %H:%M:%S %Z).db"]
volumeMounts:
- mountPath: /etc/kubernetes/pki/etcd
name: etcd-certs
readOnly: true
- mountPath: /backup
name: etcd-backup
restartPolicy: OnFailure
nodeSelector:
node-role.kubernetes.io/master: ""
tolerations:
- effect: NoSchedule
operator: Exists
hostNetwork: true
volumes:
- name: etcd-certs

196 Creating an etcd Cluster Database Backup SUSE CaasS Platform 4.2.4

hostPath:
path: /etc/kubernetes/pki/etcd
type: DirectoryOrCreate

- name: etcd-backup

hostPath:
path: ${ETCD_SNAPSHOT}
type: Directory

EQF

kubectl create -f ${MANIFEST}

If you are using local hostPath and not using a shared storage device, the etcd
backup will be created to any one of the master nodes. To find the node associated

with each etcd backup run:

kubectl get pods --namespace kube-system --selector=job-name=etcd-backup -o
wide

10.1.3 Scheduling etcd Cluster Backup

1. Mount external storage device to all master nodes. This is only required if the following

step is using local hostPath as volume storage.
2. Create Cronjob.

a. Find the size of the database to be backed up

o Important

The backup size depends on the cluster. Ensure each of the backups has suffi-

cient space. The available size should be more than the database snapshot file.

You should also have a rotation method to clean up the unneeded snapshots

over time.

When there is insufficient space available during backup, pods will fail to be in

Running state and no space left on device errors will show in pod logs.

The below example manifest shows a binding to a local hostPath. We strongly

recommend using other storage methods instead.

197 Scheduling etcd Cluster Backup SUSE CaasS Platform 4.2.4

ls -sh /var/lib/etcd/member/snap/db

b. Modify the script example
Replace <STORAGE _MOUNT POINT> with directory to store for backup. The directory
must exist on every node in cluster.
Replace <IN CLUSTER ETCD IMAGE> with etcd image used in cluster. This can be

retrieved by accessing any one of the nodes in the cluster and running:

grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'

c. Create a backup schedule deployment
Run the following script:

ETCD SNAPSHOT="<STORAGE_MOUNT POINT>/etcd snapshot"
ETCD IMAGE="<IN CLUSTER ETCD IMAGE>"

SCHEDULE in Cron format. https://crontab.guru/
SCHEDULE="0 1 * * x"

* HISTORY_ LIMIT is the number of maximum history keep in the cluster.
SUCCESS HISTORY LIMIT="3"
FAILED HISTORY LIMIT="3"

MANIFEST="etcd-backup.yaml"

cat << *EOF* > ${MANIFEST}
apiVersion: batch/vlbetal
kind: CronJob
metadata:
name: etcd-backup
namespace: kube-system
spec:
startingDeadlineSeconds: 100
schedule: "${SCHEDULE}"
successfulJobsHistoryLimit: ${SUCCESS HISTORY LIMIT}
failedJobsHistoryLimit: ${FAILED HISTORY LIMIT}
jobTemplate:
spec:
template:
spec:
containers:
- name: etcd-backup
image: ${ETCD IMAGE}
env:

198 Scheduling etcd Cluster Backup SUSE CaasS Platform 4.2.4

- name: ETCDCTL API
value: "3"
command: ["/bin/sh"]
args: ["-c", "etcdctl --endpoints=https://127.0.0.1:2379 --cacert=/
etc/kubernetes/pki/etcd/ca.crt --cert=/etc/kubernetes/pki/etcd/healthcheck-
client.crt --key=/etc/kubernetes/pki/etcd/healthcheck-client.key snapshot
save /backup/etcd-snapshot-\$(date +%Y-%m-%d %H:%M:%S %Z).db"]
volumeMounts:
- mountPath: /etc/kubernetes/pki/etcd
name: etcd-certs
readOnly: true
- mountPath: /backup
name: etcd-backup
restartPolicy: OnFailure
nodeSelector:
node-role.kubernetes.io/master: ""
tolerations:
- effect: NoSchedule
operator: Exists
hostNetwork: true
volumes:
- name: etcd-certs
hostPath:
path: /etc/kubernetes/pki/etcd
type: DirectoryOrCreate
- name: etcd-backup
hostPath is only one of the types of persistent volume. Suggest
to setup external storage instead.
hostPath:
path: ${ETCD_SNAPSHOT}
type: Directory
SEORS

kubectl create -f ${MANIFEST}

10.2 Recovering Master Nodes

This chapter describes how to recover SUSE CaaS Platform master nodes.

10.2.1 Replacing a Single Master Node

1. Remove the failed master node with skuba.
Replace <NODE NAME> with failed cluster master node name.

199 Recovering Master Nodes SUSE CaasS Platform 4.2.4

skuba node remove <NODE_ NAME>

2. Delete failed master node from known hosts.
Replace” <NODE_IP >" with failed master node IP address.

sed -i "/<NODE IP>/d" known_ hosts

3. Prepare a new instance.

4. Use skuba to join master node from step 3.
Replace <NODE_IP> with the new master node ip address.
Replace <NODE_NAME> with the new master node name.

Replace <USER NAME> with user name.

skuba node join --role=master --user=<USER NAME> --sudo --target <NODE IP>
<NODE_NAME>

10.2.2 Recovering All Master Nodes

Ensure cluster version for backup/restore should be the same. Cross-version restoration in any

domain is likely to encounter data/API compatibility issues.

10.2.2.1 Prerequisites

You will only need to restore database on one of the master node (master-0) to regain con-
trol-plane access. etcd will sync the database to all master nodes in the cluster once restored.
This does not mean, however, that the nodes will automatically be added back to the cluster.
You must join one master node to the cluster, restore the database and then continue adding

your remaining master nodes (which then will sync automatically).

Do the following on master-0. Remote restore is not supported.

1. Install one of the required software packages (etcdctl, Docker or Podman).

200 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

e Etcdctl:
sudo zypper install etcdctl
® Docker:

sudo zypper install docker
sudo systemctl start docker

ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"
sudo docker pull ${ETCD_ IMAGE}
¢ Podman:
sudo zypper install podman
ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"

sudo podman pull ${ETCD IMAGE}

2. Have access to etcd snapshot from backup device.

10.2.2.2 Procedure

1. Stop etcd on all master nodes.
mv /etc/kubernetes/manifests/etcd.yaml /tmp/
You can check etcd container does not exist with crictl ps | grep etcd
2. Purge etcd data on all master nodes.

sudo rm -rf /var/lib/etcd

3. Login to master-0 via SSH.

4. Restore etcd data.
Replace <SNAPSHOT DIR> with directory to the etcd snapshot, for example: /share/back-
up/etcd snapshot
Replace <SNAPSHOT> with the name of the etcd snapshot, for example: etcd-snap-
shot-2019-11-08 05:19:20 GMT.db

201 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

Replace <NODE NAME> with master-0 cluster node name, for example: skuba-master-1
Replace <NODE IP> with master-0 cluster node IP address.

o Important

The <NODE IP> must be visible from inside the node.

ip addr | grep <NODE IP>

o Important

The <NODE NAME> and <NODE IP> must exist after --initial-cluster in /etc/
kubernetes/manifests/etcd.yaml

e Etcdetl:

SNAPSHOT="<SNAPSHOT_DIR>/<SNAPSHOT>"
NODE_NAME="<NODE NAME>"
NODE IP="<NODE IP>"

sudo ETCDCTL API=3 etcdctl snapshot restore ${SNAPSHOT}\
--data-dir /var/lib/etcd\
--name ${NODE_ NAME}\
--initial-cluster ${NODE_NAME}=https://${NODE_IP}:2380\
--initial-advertise-peer-urls https://${NODE IP}:2380

® Docker:

SNAPSHOT="<SNAPSHOT>"
SNAPSHOT DIR="<SNAPSHOT DIR>"
NODE_NAME="<NODE_NAME>"
NODE IP="<NODE IP>"

sudo docker run\
-v ${SNAPSHOT DIR}:/etcd snapshot\
-v /var/lib:/var/lib\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL_API=3 etcdctl snapshot restore /etcd snapshot/${SNAPSHOT}\
--data-dir /var/lib/etcd\
--name ${NODE_ NAME}\
--initial-cluster ${NODE_NAME}=https://${NODE_IP}:2380\

202 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

--initial-advertise-peer-urls https://${NODE IP}:2380"

® Podman:

SNAPSHOT="<SNAPSHOT>"
SNAPSHOT DIR="<SNAPSHOT DIR>"
NODE_NAME="<NODE NAME>"
NODE IP="<NODE IP>"

sudo podman run\
-v ${SNAPSHOT DIR}:/etcd snapshot\
-v /var/lib:/var/lib\
--network host\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL _API=3 etcdctl snapshot restore /etcd snapshot/${SNAPSHOT}\
--data-dir /var/lib/etcd\
--name ${NODE_NAME}\
--initial-cluster ${NODE_NAME}=https://${NODE_IP}:2380\
--initial-advertise-peer-urls https://${NODE_IP}:2380"

5. Start etcd on master-0.

mv /tmp/etcd.yaml /etc/kubernetes/manifests/

6. You should be able to see master-0 joined to the etcd cluster member list.
Replace <ENDPOINT IP> with master-0 cluster node IP address.

e Etcdetl:

sudo ETCDCTL_API=3 etcdctl\
--endpoints=https://127.0.0.1:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key member list

e Docker:

ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"
ENDPOINT=<ENDPOINT IP>

sudo docker run\
-v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL_API=3 etcdctl\
--endpoints=https://${ENDPOINT}:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\

203 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key member list"

® Podman:

ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"
ENDPOINT=<ENDPOINT IP>

sudo podman run\
-v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd\
--network host\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL API=3 etcdctl\
--endpoints=https://${ENDPOINT}:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key member list"

7. Add another master node to the etcd cluster member list.
Replace <NODE NAME> with cluster node name, for example: skuba-master-1
Replace <ENDPOINT IP> with master-0 cluster node IP address.
Replace <NODE IP> with cluster node IP address.

o Important

The <NODE IP> must be visible from inside the node.

ip addr | grep <NODE IP>

0 Important

The <NODE NAME> and <NODE IP> must exist after --initial-cluster in /etc/
kubernetes/manifests/etcd.yaml

0 Important

Nodes must be restored in sequence.

204 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

e Etcdetl:

NODE_NAME="<NODE_NAME>"
NODE_IP="<NODE IP>"

sudo ETCDCTL_API=3 etcdctl\
--endpoints=https://127.0.0.1:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key\
member add ${NODE_NAME} --peer-urls=https://${NODE _IP}:2380

® Docker:

ETCD_IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"
ENDPOINT=<ENDPOINT IP>

NODE_NAME="<NODE_NAME>"

NODE_IP="<NODE IP>"

sudo docker run\
-v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL API=3 etcdctl\
--endpoints=https://${ENDPOINT}:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key\
member add ${NODE NAME} --peer-urls=https://${NODE IP}:2380"

e Podman:

ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"
ENDPOINT=<ENDPOINT IP>

NODE_NAME="<NODE NAME>"

NODE_IP="<NODE IP>"

sudo podman run\
-v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd\
--network host\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL_API=3 etcdctl\
--endpoints=https://${ENDPOINT}:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key\

205 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

member add ${NODE_NAME} --peer-urls=https://${NODE IP}:2380"

8. Login to the node in step 7 via SSH.
9. Start etcd.

cp /tmp/etcd.yaml /etc/kubernetes/manifests/

10. Repeat step 7, 8, 9 to recover all remaining master nodes.

10.2.2.3 Confirming the Restoration

After restoring, execute the below command to confirm the procedure. A successful restoration
will show master nodes in etcd member list started, and all Kubernetes nodes in STATUS

Ready.
e Etcdetl:

sudo ETCDCTL API=3 etcdctl\
--endpoints=https://127.0.0.1:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key member list

EXAMPLE

116c1458aef748bc, started, caasp-master-cluster-2, https://172.28.0.20:2380,
https://172.28.0.20:2379

3d124d6adllcf3dd, started, caasp-master-cluster-0, https://172.28.0.26:2380,
https://172.28.0.26:2379

43d2c8b1d5179¢c01, started, caasp-master-cluster-1, https://172.28.0.6:2380,
https://172.28.0.6:2379

® Docker:

ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"

Replace <ENDPOINT IP> with “master-0° cluster node IP address.
ENDPOINT=<ENDPOINT IP>

sudo docker run\
-v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL_API=3 etcdctl\
--endpoints=https://${ENDPOINT}:2379\

206 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key member list"

EXAMPLE

116c1458aef748bc, started, caasp-master-cluster-2, https://172.28.0.20:2380,
https://172.28.0.20:2379

3d124d6adllcf3dd, started, caasp-master-cluster-0, https://172.28.0.26:2380,
https://172.28.0.26:2379

43d2c8b1d5179¢c01, started, caasp-master-cluster-1, https://172.28.0.6:2380,
https://172.28.0.6:2379

e Podman:

ETCD IMAGE="grep image: /etc/kubernetes/manifests/etcd.yaml | awk '{print $2}'"

Replace <ENDPOINT IP> with "master-0° cluster node IP address.
ENDPOINT=<ENDPOINT IP>

sudo podman run\
-v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd\
--network host\
--entrypoint "" ${ETCD IMAGE} /bin/bash -c "\
ETCDCTL_API=3 etcdctl\
--endpoints=https://${ENDPOINT}:2379\
--cacert=/etc/kubernetes/pki/etcd/ca.crt\
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt\
- -key=/etc/kubernetes/pki/etcd/healthcheck-client.key member list"

EXAMPLE

116c1458aef748bc, started, caasp-master-cluster-2, https://172.28.0.20:2380,
https://172.28.0.20:2379

3d124d6adllcf3dd, started, caasp-master-cluster-0, https://172.28.0.26:2380,
https://172.28.0.26:2379

43d2c8b1d5179¢c01, started, caasp-master-cluster-1, https://172.28.0.6:2380,
https://172.28.0.6:2379

e Kubectl:

kubectl get nodes

EXAMPLE

NAME STATUS ROLES AGE VERSION
caasp-master-cluster-0 Ready master 28m v1.16.2
caasp-master-cluster-1 Ready master 20m v1.16.2
caasp-master-cluster-2 Ready master 12m v1.16.2
caasp-worker-cluster-0 Ready <none> 36m36s v1.16.2

207 Recovering All Master Nodes SUSE CaasS Platform 4.2.4

11 Backup and Restore with Velero

Velero (https://velero.io/) # is a solution for supporting Kubernetes cluster disaster recovery, data
migration and data protection by backing up Kubernetes cluster resources and persistent vol-

umes to externally supported storage backend on-demand or by schedule.

The major functions include:

¢ Backup Kubernetes resources and persistent volumes for supported storage providers.
® Restore Kubernetes resources and persistent volumes for supported storage providers.

¢ When backing up persistent volumes w/o supported storage provider, Velero leverages
restic (https://github.com/restic/restic) # as an agnostic solution to back up this sort of per-

sistent volumes under some known limitations.
User can leverage these fundamental functions to achieve user stories:
® Backup whole Kubernetes cluster resources then restore if any Kubernetes resources loss.

® Backup selected Kubernetes resources then restore if the selected Kubernetes resources loss.

® Backup selected Kubernetes resources and persistent volumes then restore if the Kubernetes

selected Kubernetes resources loss or data loss.

® Replicate or migrate a cluster for any purpose, for example replicating a production cluster

to a development cluster for testing.
Velero consists of below components:

® A Velero server that runs on your Kubernetes cluster.
® A restic deployed on each worker nodes that run on your Kubernetes cluster (optional).

¢ A command-line client that runs locally.

11.1 Limitations

1. Velero doesn’t overwrite objects in-cluster if they already exist.

2. Velero supports a single set of credentials per provider. It’s not yet possible to use different
credentials for different object storage locations for the same provider.

208 Limitations SUSE CaaS Platform 4.2.4

https://velero.io/
https://github.com/restic/restic

3. Volume snapshots are limited by where your provider allows you to create snapshots. For
example, AWS and Azure do not allow you to create a volume snapshot in a different
region than where the volume is located. If you try to take a Velero backup using a volume
snapshot location with a different region than where your cluster’s volume is, the backup

will fail.

4. It is not yet possible to send a single Velero backup to multiple backup storage locations
simultaneously, or a single volume snapshot to multiple locations simultaneously. Howev-
er, you can set up multiple backups manually or scheduled that differ only in the storage

locations.

5. Cross-provider snapshots are not supported. If you have a cluster with more than one type
of volume (e.g. NFS and Ceph), but you only have a volume snapshot location configured
for NFS, then Velero will only snapshot the NFS volumes.

6. Restic data is stored under a prefix/subdirectory of the main Velero bucket and will
go into the bucket corresponding backup storage location selected by the user at backup

creation time.

7. When recovering, the Kubernetes version, Velero version (includes container version), and

Helm version have to be exactly the same as the original cluster.

8. When performing cluster migration, the new cluster number of nodes should be equal or

greater than the original cluster.

For more information about storage and snapshot locations, refer to Velero: Backup Storage Lo-

cations and Volume Snapshot Locations (https://velero.io/docs/v1.3.1/locations/) @

11.2 Prerequisites

11.2.1 Helm

To successfully use Velero to backup and restore the Kubernetes cluster, you first need to install
Helm and Tiller. Refer to Section 3.7.2.1, “Installing Helm”.

Add SUSE helm chart repository URL:

helm repo add suse https://kubernetes-charts.suse.com

209 Prerequisites SUSE CaasS Platform 4.2.4

https://velero.io/docs/v1.3.1/locations/
https://velero.io/docs/v1.3.1/locations/

11.2.2 Object Storage And It's Credentials

Velero uses object storage to store backups and associated artifacts. It can also optionally cre-
ate snapshots of persistent volume and store them in object storage by restic, if there is no

supported volume snapshot provider.

Choose one of the object storage providers, which fits your environment, from the list below for
backing up and restoring the Kubernetes cluster.

The object storage server checks access permission, so it is vital to have credentials ready. Pro-

vide the credentials file credentials-velero to the velero server, so that it has the permission

to write or read the backup data from the object storage.

o Important

Make sure the object storage is created before you install Velero. Otherwise, the Velero
server won'’t be able to start successfully. This is because the Velero server checks that
the object storage exists and needs to have the permission to access it during server boot.

11.2.2.1 Public Cloud Providers

Provider Object Storage Plugin Provider Repo

Amazon Web Services (AWS) AWS S3 Velero plugin for AWS (https://
github.com/vmware-tanzu/

velero-plugin-for-aws) 7

Google Cloud Platform (GCP) Google Cloud Storage Velero plugin for GCP (https://
github.com/vmware-tanzu/

velero-plugin-for-gcp) 2

Microsoft Azure Azure Blob Storage Velero plugin for Microsoft
Azure (https://github.com/
vmware-tanzu/velero-plug-

in-for-microsoft-azure) @

210 Object Storage And It's Credentials SUSE CaasS Platform 4.2.4

https://github.com/vmware-tanzu/velero-plugin-for-aws
https://github.com/vmware-tanzu/velero-plugin-for-aws
https://github.com/vmware-tanzu/velero-plugin-for-aws
https://github.com/vmware-tanzu/velero-plugin-for-gcp
https://github.com/vmware-tanzu/velero-plugin-for-gcp
https://github.com/vmware-tanzu/velero-plugin-for-gcp
https://github.com/vmware-tanzu/velero-plugin-for-microsoft-azure
https://github.com/vmware-tanzu/velero-plugin-for-microsoft-azure
https://github.com/vmware-tanzu/velero-plugin-for-microsoft-azure
https://github.com/vmware-tanzu/velero-plugin-for-microsoft-azure

11.2.2.1.1 AWSS3

1. AWS CLI

Install aws CLI locally, follow the doc (https://docs.aws.amazon.com/cli/latest/userguide/cli-

chap-welcome.html)# to install.

2. AWS S3 bucket
Create a AWS S3 bucket to store backup data and restore data from the S3 bucket.

aws s3api create-bucket \
--bucket <BUCKET NAME> \
--region <REGION> \
--create-bucket-configuration LocationConstraint=<REGION>

3. Create the credential file credentials-velero in the local machine

[default]
aws_access_key id=<AWS ACCESS KEY ID>
aws_secret access key=<AWS SECRET ACCESS KEY>

For details, please refer to Velero Plugin For AWS (https://github.com/vmware-tanzu/velero-

plugin-for-aws/tree/v1.0.1) A.

11.2.2.1.2 Google Cloud Storage

1. GCP CLIs

Install gcloud and gsutil CLIs locally, follow the doc (https://cloud.google.com/sdk/
docs/) 7 to install.

2. Create GCS bucket
gsutil mb gs://<BUCKET NAME>/
3. Create the service account

View current config settings
gcloud config list

Store the project value to PROJECT ID environment variable
PROJECT ID=$(gcloud config get-value project)

Create a service account

gcloud iam service-accounts create velero \
--display-name "Velero service account"

211 Object Storage And It's Credentials SUSE CaasS Platform 4.2.4

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://github.com/vmware-tanzu/velero-plugin-for-aws/tree/v1.0.1
https://github.com/vmware-tanzu/velero-plugin-for-aws/tree/v1.0.1
https://cloud.google.com/sdk/docs/
https://cloud.google.com/sdk/docs/

List all accounts

gcloud iam service-accounts list

Set the SERVICE ACCOUNT EMAIL environment variable

SERVICE_ACCOUNT EMAIL=$(gcloud iam service-accounts list \
--filter="displayName:Velero service account" \

'value(email) ')

format

Attach policies to give velero the necessary permissions
ROLE PERMISSIONS=(

compute.
compute.
compute.
compute.
compute.
compute.
compute.
compute.

disks.get

snapshots
snapshots
snapshots
snapshots
zones.get

Create iam roles
gcloud iam roles create velero.server \
--project $PROJECT ID \

--title "Velero Server" \
--permissions "$(IFS=","; echo "${ROLE PERMISSIONS[*]}")"

disks.create
disks.createSnapshot

.get
.create

.useReadOnly

.delete

Bind iam policy to project
gcloud projects add-iam-policy-binding $PROJECT ID \
--member serviceAccount:$SERVICE ACCOUNT EMAIL \
--role projects/$PROJECT ID/roles/velero.server

gsutil iam ch serviceAccount:$SERVICE ACCOUNT EMAIL:objectAdmin gs://<BUCKET NAME>

4. Create the credential file credentials-velero in the local machine

gcloud iam service-accounts keys create credentials-velero \
--iam-account $SERVICE ACCOUNT EMAIL

For details, please refer to Velero Plugin For GCP (https://github.com/vmware-tanzu/velero-

plugin-for-gcp/tree/v1.0.1)A.

11.2.2.1.3

Azure Blob Storage

1. Azure CLI

212

Object Storage And It's Credentials

SUSE CaaS Platform 4.2.4

https://github.com/vmware-tanzu/velero-plugin-for-gcp/tree/v1.0.1
https://github.com/vmware-tanzu/velero-plugin-for-gcp/tree/v1.0.1

Install az CLI locally, follow the doc (https://docs.microsoft.com/en-us/cli/azure/in-

stall-azure-cli) 7 to install.

2. Create a resource group for the backups storage account
Create the resource group named Velero_Backups, change the resource group name and

location as needed.

AZURE_RESOURCE_GROUP=Velero Backups
az group create -n $AZURE_RESOURCE GROUP --location <location>

3. Create the storage account

az storage account create \
--name $AZURE_STORAGE ACCOUNT ID \
--resource-group $AZURE_RESOURCE GROUP \
--sku Standard GRS \
--encryption-services blob \
--https-only true \
--kind BlobStorage \
--access-tier Hot

4. Create a blob container
Create a blob container named velero. Change the name as needed.

BLOB CONTAINER=velero
az storage container create -n $BLOB_CONTAINER --public-access off --account-name
$AZURE_STORAGE ACCOUNT ID

5. Create the credential file credentials-velero in the local machine

Obtain your Azure Account Subscription ID
AZURE_SUBSCRIPTION ID="az account list --query '[?isDefault].id' -o tsv’

Obtain your Azure Account Tenant ID
AZURE_TENANT ID="az account list --query '[?isDefault].tenantId' -o tsv’

Generate client secret
AZURE CLIENT SECRET="az ad sp create-for-rbac --name "velero" --role "Contributor"
--query 'password' -o tsv’

Generate client ID
AZURE_CLIENT ID="az ad sp list --display-name "velero" --query '[0].appId' -o tsv'

cat << EOF > ./credentials-velero

AZURE_SUBSCRIPTION ID=${AZURE SUBSCRIPTION ID}
AZURE_TENANT _ID=${AZURE_TENANT ID}

213 Object Storage And It's Credentials SUSE CaasS Platform 4.2.4

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

AZURE_CLIENT ID=${AZURE CLIENT ID}

AZURE_CLIENT SECRET=${AZURE_CLIENT SECRET}
AZURE_RESOURCE GROUP=${AZURE RESOURCE GROUP}
EOF

For details, please refer to Velero Plugin For Azure (https://github.com/vmware-tanzu/velero-

plugin-for-microsoft-azure/tree/v1.0.1)7.

11.2.2.2 On-Premise (S3-Compatible Providers)

11.2.2.2.1 SUSE Enterprise Storage 6 Ceph Object Gateway (radosgw)

SUSE supports the SUSE Enterprise Storage 6 Ceph Object Gateway (radosgw) as an S3-com-
patible object storage provider.

1. Installation Refer to the SES 6 Object Gateway Manual Installation (https://documenta-
tion.suse.com/ses/6/html/ses-all/cha-ceph-additional-software-installation.html) # on how to

install it.
2. Create the credential file credentials-velero in the local machine
[default]

aws_access key id=<SES STORAGE ACCESS KEY ID>
aws secret access key=<SES STORAGE SECRET ACCESS KEY>

11.2.2.2.2 Minio

Besides SUSE Enterprise Storage, there is an alternative open source S3-compatible object stor-

age provider minio (https://min.io/) .
1. Prepare an external host and install Minio on the host
Download Minio server
wget https://dl.min.io/server/minio/release/linux-amd64/minio
chmod +x minio
Expose Minio access key and secret key

export MINIO ACCESS KEY=<access key>
export MINIO SECRET KEY=<secret key>

214 Object Storage And It's Credentials SUSE CaasS Platform 4.2.4

https://github.com/vmware-tanzu/velero-plugin-for-microsoft-azure/tree/v1.0.1
https://github.com/vmware-tanzu/velero-plugin-for-microsoft-azure/tree/v1.0.1
https://documentation.suse.com/ses/6/html/ses-all/cha-ceph-additional-software-installation.html
https://documentation.suse.com/ses/6/html/ses-all/cha-ceph-additional-software-installation.html
https://min.io/

Start Minio server
mkdir -p bucket
./minio server bucket &

Download Minio client
wget https://dl.min.io/client/mc/release/linux-amd64/mc
chmod +x mc

Setup Minio server
./mc config host add Velero http://localhost:9000 $MINIO ACCESS KEY
$MINIO SECRET KEY

Create bucket on Minio server
./mc mb -p velero/velero

2. Create the credential file credentials-velero in the local machine

[default]
aws_access key i1d=<MINIO STORAGE ACCESS KEY ID>
aws_secret access key=<MINIO STORAGE SECRET ACCESS KEY>

For the rest of the S3-compatible storage providers supported by Velero, refer to Velero Supported

Providers (https://velero.io/docs/v1.3.1/supported-providers/) A.

11.2.3 Volume Snapshotter

A volume snapshotter is able to snapshot its persistent volumes if its volume driver supports

volume snapshot and corresponding API.

If a volume provider does not support volume snapshot or volume snapshot API, or does not have
Velero supported storage plugin, Velero leverages restic as an agnostic solution to backup

and restore this sort of persistent volumes.

Provider Volume Snapshotter Plugin Provider Repo

Amazon Web Services (AWS) AWS EBS Velero plugin for AWS (https://
github.com/vmware-tanzu/

velero-plugin-for-aws) 7

For the other snapshotter providers refer to Velero Supported Providers (https://velero.io/docs/

v1.3.1/supported-providers/) a.

215 Volume Snapshotter SUSE CaasS Platform 4.2.4

https://velero.io/docs/v1.3.1/supported-providers/
https://velero.io/docs/v1.3.1/supported-providers/
https://github.com/vmware-tanzu/velero-plugin-for-aws
https://github.com/vmware-tanzu/velero-plugin-for-aws
https://github.com/vmware-tanzu/velero-plugin-for-aws
https://velero.io/docs/v1.3.1/supported-providers/
https://velero.io/docs/v1.3.1/supported-providers/

11.2.4 Velero CLI

Install Velero CLI to interact with Velero server.

sudo zypper install velero

11.3 Known Issues

1. Velero reports errors when restoring Cilium CRDs. However, this does not affect Cilium

functionality.

@ Note

You can add a label to Cilium CRDs to skip Velero backup.

kubectl label -n kube-system customresourcedefinitions/
ciliumendpoints.cilium.io velero.io/exclude-from-backup=true

kubectl label -n kube-system customresourcedefinitions/
ciliumnetworkpolicies.cilium.io velero.io/exclude-from-backup=true

2. When restoring dex and gangway, Velero reports NodePort cannot be restored since
dex and gangway are deployed by an addon already and the same NodePort has been

registered. However, this does not break the dex and gangway service access from outside.

@ Note

You can add a label to services oidc-dex and oidc-gangway to skip Velero backup.

kubectl label -n kube-system services/oidc-dex velero.io/exclude-from-

backup=true

kubectl label -n kube-system services/oidc-gangway velero.io/exclude-from-

backup=true

216 Velero CLI SUSE CaaS Platform 4.2.4

11.4 Deployment

Use Helm CLI to install Velero deployment and restic (optional) if the storage does not provides

volume snapshot API.

@ Note

If Velero installed other than default namespace velero, setup velero config config to

the Velero installed namespace.

velero client config set namespace=<NAMESPACE>

@ Note

For troubleshooting a velero deployment, refer to Velero: Debugging Installation Issues

(https://velero.io/docs/v1.3.1/debugging-install/) @

11.4.1 Backup Kubernetes Cluster Objects Only

For the cases that the Kubernetes cluster does not use external storage or the external storage
would handle take volume snapshot by itself, it does not need Velero to backup persistent vol-

ume.
¢ Backup To A Public Cloud Provider

e Amazon Web Services (AWS)

1. The backup bucket name BUCKET NAME. (The bucket name in AWS S3 object

storage)

2. The backup region name REGION_NAME. (The region name for the AWS S3
object storage. For example, us-east-1 for AWS US East (N. Virginia))

3. The Velero installed namespace NAMESPACE, the default namespace is

velero. (optional)
helm install \

--name velero \
--namespace <NAMESPACE> \

217 Deployment SUSE CaasS Platform 4.2.4

https://velero.io/docs/v1.3.1/debugging-install/
https://velero.io/docs/v1.3.1/debugging-install/

--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=aws \

--set configuration.backupStorageLocation.name=default \

--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set configuration.backupStorageLocation.config.region=<REGION NAME>

--set snapshotsEnabled=false \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-aws:1.0.1 \

--set initContainers[0].volumeMounts[O].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing

Helm™

kubectl create namespace <NAMESPACE>

helm install velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=aws \
--set configuration.backupStoragelLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set configuration.backupStorageLocation.config.region=<REGION NAME>

--set snapshotsEnabled=false \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-aws:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[@].name=plugins \

suse/velero

4. Then, suggests creating at least one additional backup locations point to the
different object storage server to prevent object storage server single point of

failure.

velero backup-location create slave \
--provider aws \
--bucket <BUCKET SLAVE NAME> \
--region <REGION NAME>

¢ Google Cloud Platform (GCP)

218 Backup Kubernetes Cluster Objects Only SUSE CaasS Platform 4.2.4

219

1. The backup bucket name BUCKET NAME. (The bucket name in Google Cloud

Storage object storage)

. The Velero installed namespace NAMESPACE, the default namespace is

velero. (optional)

helm install \
--name velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=gcp \
--set configuration.backupStoragelLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set snapshotsEnabled=false \
--set initContainers[0].name=velero-plugin-for-gcp \
--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-gcp:1.0.1 \
--set initContainers[0].volumeMounts[0].mountPath=/target \
--set initContainers[0].volumeMounts[0].name=plugins \
suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing

Helm™

kubectl create namespace <NAMESPACE>
helm install velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=gcp \
--set configuration.backupStorageLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set snapshotsEnabled=false \
--set initContainers[0].name=velero-plugin-for-gcp \
--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-gcp:1.0.1 \
--set initContainers[0].volumeMounts[0].mountPath=/target \
--set initContainers[0].volumeMounts[0].name=plugins \
suse/velero

. Then, suggests creating at least one additional backup locations point to the

different object storage server to prevent object storage server single point of

failure.

velero backup-location create slave \

Backup Kubernetes Cluster Objects Only SUSE CaasS Platform 4.2.4

--provider gcp \
--bucket <BUCKET SLAVE NAME>

® Microsoft Azure

1. The backup bucket name BUCKET NAME. (The bucket name in Azure Blob Stor-

age object storage)

2. The resource group name AZURE RESOURCE_GROUP. (The Azure resource

group name)

3. The storage account ID AZURE_STORAGE_ACCOUNT ID. (The Azure storage ac-
count ID)

4. The Velero installed namespace NAMESPACE, the default namespace is

velero. (optional)

helm install \

--name velero \

--namespace <NAMESPACE> \

--set-file credentials.secretContents.cloud=credentials-velero \

--set configuration.provider=azure \

--set configuration.backupStorageLocation.name=default \

--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \

--set
configuration.backupStorageLocation.config.resourceGroup=<AZURE RESOURCE GROUP>
\

--set
configuration.backupStoragelLocation.config.storageAccount=<AZURE STORAGE ACCOUNT ID>
\

--set snapshotsEnabled=false \

--set initContainers[0].name=velero-plugin-for-microsoft-azure \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-

plugin-for-microsoft-azure:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing

Helm™

kubectl create namespace <NAMESPACE>
helm install velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \

220 Backup Kubernetes Cluster Objects Only SUSE CaasS Platform 4.2.4

--set configuration.provider=azure \

--set configuration.backupStoragelLocation.name=default \

--set configuration.backupStoragelLocation.bucket=<BUCKET NAME> \

--set
configuration.backupStoragelLocation.config.resourceGroup=<AZURE_RESOURCE_GROUP>

\
--set
configuration.backupStorageLocation.config.storageAccount=<AZURE STORAGE ACCOUNT_ ID>

\
--set snapshotsEnabled=false \
--set initContainers[0].name=velero-plugin-for-microsoft-azure \
--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-microsoft-azure:1.0.1 \
--set initContainers[0].volumeMounts[O@].mountPath=/target \
--set initContainers[0].volumeMounts[0].name=plugins \
suse/velero

5. Then, suggests creating at least one additional backup locations point to the
different object storage server to prevent object storage server single point of

failure.

velero backup-location create slave \
--provider azure \
- -bucket <BUCKET SLAVE NAME> \
--region
resourceGroup=<AZURE_RESOURCE_ GROUP>, storageAccount=<AZURE STORAGE ACCOUNT ID>

® Backup To A S3-Compatible Provider

1. The backup bucket name BUCKET NAME. (The bucket name in S3-compatible object

storage)

2. The backup region name REGION_NAME. (The region name for the S3-compatible
object storage. For example, radosgw or master/slave if you have HA -compatible

object storage backups)

3. The S3-compatible object storage simulates the S3-compatible object storage. There-
fore, the configuration for S3-compatible object storage has to setup additional con-

figurations.

configuration.backupStorageLocation.config.s3ForcePathStyle=true
configuration.backupStoragelLocation.config.s3Url=<S3 COMPATIBLE STORAGE_SERVER URL>

helm install \
--name velero \

221 Backup Kubernetes Cluster Objects Only SUSE CaasS Platform 4.2.4

--namespace <NAMESPACE> \

--set-file credentials.secretContents.cloud=credentials-velero \

--set configuration.provider=aws \

--set configuration.backupStorageLocation.name=default \

--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \

--set configuration.backupStoragelLocation.config.region=<REGION NAME> \

--set configuration.backupStorageLocation.config.s3ForcePathStyle=true \

--set
configuration.backupStorageLocation.config.s3Url=<S3 COMPATIBLE STORAGE SERVER URL>
\

--set snapshotsEnabled=false \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-plugin-for-
aws:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

4. Then, suggests creating at least one additional backup location point to the different

object storage server to prevent object storage server single point of failure.

velero backup-location create slave \
--provider aws \
--bucket <BUCKET SLAVE NAME> \
--config
region=slave,s3ForcePathStyle=true, s3Url=<S3 COMPATIBLE STORAGE SERVER URL>

11.4.2 Backup Kubernetes Cluster

For the case that the Kubernetes cluster uses external storage and the external storage would
not handle volume snapshot by itself (either external storage does not support volume snapshot
or administrator want use velero to take volume snapshot when velero do cluster backup).

¢ Backup To A Public Cloud Provider

e Amazon Web Services (AWS)

1. The backup bucket name BUCKET NAME. (The bucket name in AWS S3 object

storage)

2. The backup region name REGION_NAME. (The region name for the AWS S3
object storage. For example, us-east-1 for AWS US East (N. Virginia))

222 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

3. The Velero installed namespace NAMESPACE, the default namespace is

velero. (optional)

o Important

If the Kubernetes cluster in AWS and uses AWS EBS as storage, please

remove the
--set deployRestic=true \

at below in order to use AWS EBS volume snapshot API to take volume
snapshot. Otherwise, it would install restic and velero server will use
restic to take volume snapshot and the volume data will stores to AWS
S3 bucket.

helm install \
--name velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=aws \
--set configuration.backupStorageLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set configuration.backupStoragelLocation.config.region=<REGION NAME>

--set snapshotsEnabled=true \

--set deployRestic=true \

--set configuration.volumeSnapshotLocation.name=default \

--set
configuration.volumeSnapshotLocation.config.region=<REGION NAME> \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-aws:1.0.1 \

--set initContainers([0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[0O].name=plugins \

suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing

Helm™

kubectl create namespace <NAMESPACE>
helm install velero \
--namespace <NAMESPACE> \

223 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=aws \

--set configuration.backupStorageLocation.name=default \

--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set configuration.backupStorageLocation.config.region=<REGION NAME>

--set snapshotsEnabled=true \

--set deployRestic=true \

--set configuration.volumeSnapshotlLocation.name=default \

--set
configuration.volumeSnapshotLocation.config.region=<REGION NAME> \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-aws:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

4. Then, suggest to create at least one additional backup locations point to the
different object storage server to prevent object storage server single point of

failure.

velero backup-location create slave \
--provider aws \
- -bucket <BUCKET SLAVE NAME> \
--config region=<REGION NAME>

® Google Cloud Platform (GCP)

1. The backup bucket name BUCKET NAME. (The bucket name in Google Cloud

Storage object storage)

2. The Velero installed namespace NAMESPACE, the default namespace is

velero. (optional)

helm install \
--name velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=gcp \
--set configuration.backupStorageLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set snapshotsEnabled=true \
--set deployRestic=true \
--set configuration.volumeSnapshotLocation.name=default \
--set initContainers[0].name=velero-plugin-for-gcp \

224 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-gcp:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing

Helm™

kubectl create namespace <NAMESPACE>
helm install velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=gcp \
--set configuration.backupStorageLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set snapshotsEnabled=true \
--set deployRestic=true \
--set configuration.volumeSnapshotLocation.name=default \
--set initContainers[0].name=velero-plugin-for-gcp \
--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-gcp:1.0.1 \
--set initContainers[0].volumeMounts[0].mountPath=/target \
--set initContainers[0].volumeMounts[0].name=plugins \
suse/velero

3. Then, suggests creating at least one additional backup locations point to the
different object storage server to prevent object storage server single point of

failure.

velero backup-location create slave \
--provider gcp \
--bucket <BUCKET SLAVE NAME>

e Microsoft Azure

1. The backup bucket name BUCKET NAME. (The bucket name in Azure Blob Stor-

age object storage)

2. The resource group name AZURE RESOURCE_GROUP. (The Azure resource

group name)

3. The storage account ID AZURE_STORAGE_ACCOUNT ID. (The Azure storage ac-
count ID)

225 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

4. The Velero installed namespace NAMESPACE, the default namespace is

velero. (optional)

helm install \
--name velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=azure \
--set configuration.backupStorageLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \

--set
configuration.backupStoragelLocation.config.resourceGroup=<AZURE RESOURCE GROUP>
\
--set
configuration.backupStoragelLocation.config.storageAccount=<AZURE STORAGE ACCOUNT ID>
\

--set snapshotsEnabled=true \

--set deployRestic=true \

--set configuration.volumeSnapshotLocation.name=default \

--set initContainers[0].name=velero-plugin-for-microsoft-azure \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-microsoft-azure:1.0.1 \

--set initContainers[0].volumeMounts[O].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.1.2.1, “Installing

Helm™

kubectl create namespace <NAMESPACE>
helm install velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=azure \
--set configuration.backupStoragelLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \

--set
configuration.backupStorageLocation.config.resourceGroup=<AZURE RESOURCE_GROUP>
\
--set
configuration.backupStoragelLocation.config.storageAccount=<AZURE STORAGE ACCOUNT_ ID>
\

--set snapshotsEnabled=true \
--set deployRestic=true \
--set configuration.volumeSnapshotlLocation.name=default \

226 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

--set initContainers[0].name=velero-plugin-for-microsoft-azure \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-
plugin-for-microsoft-azure:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[@].name=plugins \

suse/velero

5. Then, suggests creating at least one additional backup locations point to the
different object storage server to prevent object storage server single point of

failure.

velero backup-location create slave \
--provider azure \
--bucket <BUCKET SLAVE NAME> \
--region
resourceGroup=<AZURE_RESOURCE_GROUP>, storageAccount=<AZURE STORAGE_ACCOUNT_ID>

® Backup To A S3-Compatible Provider

1. The backup bucket name BUCKET NAME. (The bucket name in S3-compatible object

storage)

2. The backup region name REGION_NAME. (The region name for the S3-compatible
object storage. For example, radosgw or master/slave if you have HA S3-compatible

object storage backups)

3. The S3-compatible object storage simulates the S3-compatible object storage. There-
fore, the configuration for S3-compatible object storage have to setup additional con-

figurations

configuration.backupStorageLocation.config.s3ForcePathStyle=true
configuration.backupStorageLocation.config.s3Url=<S3 COMPATIBLE STORAGE_SERVER URL>

@ Note

Mostly the on-premise persistent volume does not support volume snapshot
API or does not have community-supported snapshotter providers. Therefore,

we have to deploy the restic DaemonSet.

helm install \
--name velero \
--namespace <NAMESPACE> \

227 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

--set-file credentials.secretContents.cloud=credentials-velero \

--set configuration.provider=aws \

--set configuration.backupStorageLocation.name=default \

--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \

--set configuration.backupStorageLocation.config.region=<REGION NAME> \

--set configuration.backupStorageLocation.config.s3ForcePathStyle=true \

--set

configuration.backupStorageLocation.config.s3Url=<S3 COMPATIBLE STORAGE SERVER URL>

\

--set snapshotsEnabled=true \

--set deployRestic=true \

--set configuration.volumeSnapshotlLocation.name=default \

--set configuration.volumeSnapshotlLocation.config.region=<REGION NAME> \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-plugin-for-
aws:1.0.1 \

--set initContainers[0].volumeMounts[O].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

suse/velero

Or if you have selected the Helm 3 alternative also see Section 3.7.2.1, “Installing Helm™:

kubectl create namespace <NAMESPACE>
helm install velero \
--namespace <NAMESPACE> \
--set-file credentials.secretContents.cloud=credentials-velero \
--set configuration.provider=aws \
--set configuration.backupStorageLocation.name=default \
--set configuration.backupStorageLocation.bucket=<BUCKET NAME> \
--set configuration.backupStorageLocation.config.region=<REGION NAME> \
--set configuration.backupStorageLocation.config.s3ForcePathStyle=true \
--set
configuration.backupStoragelLocation.config.s3Url=<S3 COMPATIBLE STORAGE SERVER URL>

--set snapshotsEnabled=true \

--set deployRestic=true \

--set configuration.volumeSnapshotlLocation.name=default \

--set configuration.volumeSnapshotLocation.config.region=minio \

--set initContainers[0].name=velero-plugin-for-aws \

--set initContainers[0].image=registry.suse.com/caasp/v4/velero-plugin-for-
aws:1.0.1 \

--set initContainers[0].volumeMounts[0].mountPath=/target \

--set initContainers[0].volumeMounts[0].name=plugins \

228 Backup Kubernetes Cluster SUSE CaasS Platform 4.2.4

suse/velero

4. Then, suggest to create at least one additional backup locations point to the different

object storage server to prevent object storage server single point of failure.

velero backup-location create slave \
--provider aws \
- -bucket <BUCKET SLAVE NAME> \
--config
region=slave,s3ForcePathStyle=true, s3Url=<S3 COMPATIBLE STORAGE SERVER URL>

11.5 Operations

11.6 Backup

® Annotate Persistent Volume (optional)
If the persistent volume in the supported volume snapshotter provider, skip this proce-
dure.
However, if we deploy the restic DaemonSet and want to backup the persistent vol-
ume by restic, we have to add annotation backup.velero.io/backup-volumes=<VOL-
UME_NAME 1>,<VOLUME_NAME 2>,.. to the pods which have mounted the volume manu-
ally.
For example, we deploy an Elasticsearch cluster and want to backup the Elasticsearch

cluster’s data. Add the annotation to the Elasticsearch cluster pods:

kubectl annotate pod/elasticsearch-master-0 backup.velero.io/backup-
volumes=elasticsearch-master
kubectl annotate pod/elasticsearch-master-1 backup.velero.io/backup-
volumes=elasticsearch-master
kubectl annotate pod/elasticsearch-master-2 backup.velero.io/backup-
volumes=elasticsearch-master

229 Operations SUSE CaasS Platform 4.2.4

@ Note

Velero currently does not provide a mechanism to detect persistent volume claims
that are missing the restic backup annotation. To solve this, there is a commu-
nity provided controller velero-pvc-watcher (https://github.com/bitsbeats/velero-pvc-
watcher) # which integrates Prometheus to generate alerts for volumes that are not

in the backup or backup-exclusion annotation.

e Manual Backup

velero backup create <BACKUP_ NAME>

¢ Scheduled Backup
The schedule template in cron notation, using UTC time. The schedule can also be ex-
pressed using @every <duration> syntax. The duration can be specified using a combi-

nation of seconds (s), minutes (m), and hours (h), for example: @every 2h30m.

Create schedule template
Create a backup every 6 hours
velero schedule create <SCHEDULE NAME> --schedule="0 */6 * * *"

Create a backup every 6 hours with the @every notation
velero schedule create <SCHEDULE NAME> --schedule="@every 6h"

Create a daily backup of the web namespace
velero schedule create <SCHEDULE NAME> --schedule="@every 24h" --include-namespaces
web

Create a weekly backup, each living for 90 days (2160 hours)
velero schedule create <SCHEDULE NAME> --schedule="@every 168h" --ttl 2160hOm0Os

Character Position Character Period Acceptable Values
1 Minute 0-59,*
2 Hour 0-23,*
3 Day of Month 1-31,%*
4 Month 1-12,%*

230 Backup SUSE CaasS Platform 4.2.4

https://github.com/bitsbeats/velero-pvc-watcher
https://github.com/bitsbeats/velero-pvc-watcher

Character Position Character Period Acceptable Values

5 Day of Week 0-7,%*

@ Note

When creating multiple backups to different backup locations closely, you might
hit the object storage server API rate limit issues. Now, the velero does not have
a mechanism on retry backups when the rate limit occurred. Consider shifting the

time to create multiple backups.

® Optional Flags

¢ Granularity
Without passing extra flags to velero backup create, Velero will backup the whole

Kubernetes cluster.

® Namespace
Pass flag --include-namespaces or --exclude-namespaces to specify
which namespaces to include/exclude when backing up.

For example:

Create a backup including the nginx and default namespaces
velero backup create backup-1 --include-namespaces nginx,default

Create a backup excluding the kube-system and default namespaces
velero backup create backup-1 --exclude-namespaces kube-system,default

® Resources
Pass flag --include-resources or --exclude-resources to specifies which
resources to include/exclude when backing up.

For example:

Create a backup including storageclass resource only
velero backup create backup-1 --include-resources storageclasses

231 Backup SUSE CaasS Platform 4.2.4

@ Tip

Use kubectl api-resources to lists all API resources on the server.

e Label Selector

Pass --selector to only back up resources matching the label selector.

Create a backup for the elasticsearch cluster only
velero backup create backup-1 --selector app=elasticsearch-master

® Location
Pass --storage-location to specify where the backup stores to. For example, if

we have HA object storage server called master and slave respectively.

Create a backup to the master storage server
velero backup create backup2master --storage-location master

Create a backup to the slave storage server
velero backup create backup2slave --storage-location slave

® Garbage Collection
Pass --ttl to specify how long the backup should be kept, after that, the backup
will be dumped into garbage (deleted). The default time for a backup to exist before
it is deleted is 720 hours (30 days).

¢ Exclude Specific Items from Backup
You can exclude individual items from being backed up, even if they match the re-
source/namespace/label selectors defined in the backup spec. To do this, label the

item as follows:

kubectl label -n <ITEM NAMESPACE> <RESOURCE>/<NAME> velero.io/exclude-from-
backup=true

11.6.1 Backup Troubleshooting

e List Backups

232 Backup Troubleshooting SUSE CaasS Platform 4.2.4

velero backup get

® Describe Backups

velero backup describe <BACKUP_NAME 1> <BACKUP_NAME 2> <BACKUP NAME 3>

® Retrieve Backup Logs

velero backup logs <BACKUP_NAME>

11.7 Restore

e Manual Restore

velero restore create <RESTORE NAME> --from-backup <BACKUP NAME>
For example:

Create a restore named "restore-1" from backup "backup-1"
velero restore create restore-1 --from-backup backup-1

Create a restore with a default name ("backup-1l-<timestamp>") from backup

"backup-1"
velero restore create --from-backup backup-1

¢ Scheduled Backup
velero restore create <RESTORE NAME> --from-schedule <SCHEDULE NAME>
For example:

Create a restore from the latest successful backup triggered by schedule
"schedule-1"

velero restore create --from-schedule schedule-1

Create a restore from the latest successful OR partially-failed backup triggered

by schedule "schedule-1"
velero restore create --from-schedule schedule-1 --allow-partially-failed

¢ Optional Flags

¢ Granularity

233 Restore SUSE CaaS Platform 4.2.4

234

Without pass extra flags to velero restore create, Velero will restore whole

resources from the backup or from the schedule.

® Namespace
Pass flag --include-namespaces or --exclude-namespaces to velero re-
store create to specifies which namespaces to include/exclude when restor-
ing.

For example:

Create a restore including the nginx and default namespaces
velero restore create --from-backup backup-1 --include-namespaces
nginx,default

Create a restore excluding the kube-system and default namespaces
velero restore create --from-backup backup-1 --exclude-namespaces kube-
system,default

¢ Resources
Pass flag --include-resources or --exclude-resources to velero re-
store create to specifies which resources to include/exclude when restoring.

For example:

create a restore for only persistentvolumeclaims and persistentvolumes
within a backup

velero restore create --from-backup backup-1 --include-resources
persistentvolumeclaims,persistentvolumes

@ Tip

Use kubectl api-resources to lists all API resources on the server.

¢ Label Selector
Pass --selector to only restore the resources matching the label selector.
For example:

create a restore for only the elasticsearch cluster within a backup

Restore SUSE CaaS Platform 4.2.4

velero restore create --from-backup backup-1 --selector
app=elasticsearch-master

11.7.1 Restore Troubleshooting
® Retrieve restores
velero restore get
® Describe restores
velero restore describe <RESTORE NAME 1> <RESTORE NAME 2> <RESTORE NAME 3>
® Retrieve restore logs

velero restore logs <RESTORE NAME>

@ Note

For troubleshooting velero restore, refer to Velero: Debugging Restores (https://velero.io/
docs/v1.3.1/debugging-restores/) @

11.8 Use Cases

11.8.1 Disaster Recovery

Use the scheduled backup function for periodical backups. When the Kubernetes cluster runs

into an unexpected state, recover from the most recent scheduled backup.

® Backup
Run the schedule backup, this creates a backup file with the name <SCHED-
ULE NAME>-<TIMESTAMP>.

velero schedule create <SCHEDULE NAME> --schedule="@daily"

® Restore
When a disaster happens, make sure the Velero server and restic DaemonSet exists (op-

tional). If not, reinstall from the helm chart.

235 Restore Troubleshooting SUSE CaasS Platform 4.2.4

https://velero.io/docs/v1.3.1/debugging-restores/
https://velero.io/docs/v1.3.1/debugging-restores/

1. Update the backup storage location to read-only mode (it prevents the backup file
from being created or deleted in the backup storage location during the restore

process):
kubectl patch backupstoragelocation <STORAGE LOCATION NAME> \
--namespace <NAMESPACE> \

--type merge \
--patch '{"spec":{"accessMode":"ReadOnly"}}"

2. Create a restore from the most recent backup file:
velero restore create --from-backup <SCHEDULE NAME>-<TIMESTAMP>
3. After restoring finished, change the backup storage location back to read-write mode:
kubectl patch backupstoragelocation <STORAGE LOCATION NAME> \
--namespace <NAMESPACE> \

--type merge \
--patch '{"spec":{"accessMode":"ReadWrite"}}"'

11.8.2 Cluster Migration

Migrate the Kubernetes cluster from cluster 1 to cluster 2, as long as you point different

cluster’s Velero instances to the same external object storage location.

@ Note

Velero does not support the migration of persistent volumes across public cloud providers.

1. (At cluster 1) Backup the entire Kubernetes cluster manually:
velero backup create <BACKUP_NAME>

2. (At cluster 2) Prepare a Kubernetes cluster deployed by skuba:

3. (Atcluster 2) Helm install Velero and make sure the backup-location and snapshot-location

point to the same location as cluster 1:

velero backup-location get
velero snapshot-location get

236 Cluster Migration SUSE CaasS Platform 4.2.4

@ Note

The default sync interval is 1 minute. You could change the interval with the flag

--backup-sync-period when creating a backup location.

4. (At cluster 2) Make sure the cluster 1 backup resources are sync to the external object
storage server:

velero backup get <BACKUP_ NAME>
velero backup describe <BACKUP_NAME>

5. (At cluster 2) Restore the cluster from the backup file:
velero restore create --from-backup <BACKUP_ NAME>

6. (At cluster 2) Verify the cluster is behaving correctly:
velero restore get

velero restore describe <RESTORE NAME>
velero restore logs <RESTORE NAME>

7. (At cluster 2) Since Velero doesn’t overwrite objects in-cluster if they already exist, a man-

ual check of all addon configurations is desired after the cluster is restored:

a. Check dex configuration:
Download dex.yaml
kubectl -n kube-system get configmap oidc-dex-config -o yaml > oidc-dex-

config.yaml

Edit oidc-dex-config.yaml to desired
vim oidc-dex-config.yaml

Apply new oidc-dex-config.yaml
kubectl apply -f oidc-dex-config.yaml --force

Restart oidc-dex deployment
kubectl rollout restart deployment/oidc-dex -n kube-system

b. Check gangway configuration:
Download gangway.yaml

kubectl -n kube-system get configmap oidc-gangway-config -o yaml > oidc-
gangway-config.yaml

237 Cluster Migration SUSE CaasS Platform 4.2.4

Edit oidc-gangway-config.yaml to desired
vim oidc-gangway-config.yaml

Apply new oidc-gangway-config.yaml
kubectl apply -f oidc-gangway-config.yaml --force

Restart oidc-gangway deployment
kubectl rollout restart deployment/oidc-gangway -n kube-system

c. Check kured is disabled automatically reboots

kubectl get daemonset kured -o yaml

d. Check that psp is what you wish it to be:

kubectl
kubectl
kubectl

kubectl
kubectl
kubectl

get
get
get

get
get
get

psp suse.caasp.psp.privileged -o yaml
clusterrole suse:caasp:psp:privileged -o yaml
rolebinding suse:caasp:psp:privileged -o yaml

psp suse.caasp.psp.unprivileged -o yaml
clusterrole suse:caasp:psp:unprivileged -o yaml

clusterrolebinding suse:caasp:psp:default -o yaml

11.9 Uninstall

Remove the Velero server deployment and restic DaemonSet if it exists. Then, delete Velero

custom resource definitions (CRDs).

helm del --purge velero
kubectl delete crds -1 app.kubernetes.io/name=velero

238

Uninstall

SUSE CaaS Platform 4.2.4

12 Miscellaneous

12.1 Configuring HTTP/HTTPS Proxy for CRI-O

In some cases you must configure the container runtime to use a proxy to pull container images.

The CRI-O runtime uses the system-wide proxy configuration, defined at /etc/syscon-
fig/proxy.

This file can be edited a number of ways. It can be pre-configured at build time via AutoY-
aST, as described in the AutoYaST documentation (https://documentation.suse.com/sles/15-SP1/
single-html/SLES-autoyast/#Configuration-Network-Proxy) 7. On an existing system, the file can

be edited via YaST by running yast2 proxy.

If preferred, it can alternatively be edited manually as described in the SUSE Knowledge Base

(https://www.suse.com/support/kb/doc/?id=7006845) 2 article

@ Note

CRI-O and skuba both support four types of comma-separated entries in the NO PROXY

variable:
® An exact IP address (1.2.3.4)
e CIDRIPrange (1.2.3.4/16)
® DNS domain name (eg.com matches www.eg.com and eg.com)

¢ Restricted DNS subdomain (.eg.com matches www.eg.com but not eg.com)

All standard programs should ignore unsupported values in that variable and continue to

work (albeit without the configured proxy) when encountering an unsupported value.

@ Tip

Not all programs on all systems will respect CIDR ranges or restricted subdomains.

239 Configuring HTTP/HTTPS Proxy for CRI-O SUSE CaasS Platform 4.2.4

https://documentation.suse.com/sles/15-SP1/single-html/SLES-autoyast/#Configuration-Network-Proxy
https://documentation.suse.com/sles/15-SP1/single-html/SLES-autoyast/#Configuration-Network-Proxy
https://www.suse.com/support/kb/doc/?id=7006845
https://www.suse.com/support/kb/doc/?id=7006845

After you have configured the system proxy for your environment, restart the container runtime

with:

systemctl restart crio

12.2 Configuring Container Registries for CRI-O

o Important

The configuration example in this text uses VERSION 2 of the CRI-O registries configu-
ration syntax. It is not compatible with the VERSION 1 syntax present in some upstream
examples.

Please refer to: https://raw.githubusercontent.com/containers/image/master/docs/contain-

ers-registries.conf.5.md <

Every registry-related configuration needs to be done in the TOML (https://github.com/toml-lang/
toml)# file /etc/containers/registries.conf. After any change of this file, CRI-O needs
to be restarted.

The configuration is a sequence of [[registry]] entries. For example, a single registry entry

within that configuration could be added like this:
/etc/containers/registries.conf
[[registry]]

blocked = false
insecure = false

location = "example.net/bar"
prefix = "example.com/foo/images"
mirror = [
{ location = "example-mirror-0.local", insecure = false },
{ location = "example-mirror-1.local", insecure = true, mirror-by-digest-only =

true }

]

[[registryl]
blocked = false
insecure = false

location = "example.net/mymirror"
prefix = "example.com/mirror/images"
mirror = [

240 Configuring Container Registries for CRI-O SUSE CaasS Platform 4.2.4

https://raw.githubusercontent.com/containers/image/master/docs/containers-registries.conf.5.md
https://raw.githubusercontent.com/containers/image/master/docs/containers-registries.conf.5.md
https://github.com/toml-lang/toml
https://github.com/toml-lang/toml

{ location = "example-mirror-2.local", insecure = false, mirror-by-digest-only =
true },
{ location = "example-mirror-3.local", insecure = true }

]

unqualified-search = false

Given an image name, a single [[registry]] TOML table is chosen based on its prefix field.

A prefix is mainly a user-specified image name and can have one of the following formats:

® host[:port]
® host[:port]/namespace[/namespace..]
® host[:port]/namespace[/namespace..]/repo

® host[:port]/namespace[/namespace..]/repo[:tag|@digest]

The user-specified image name must start with the specified prefix (and continue with the
appropriate separator) for a particular [[registry]] TOML table to be considered. Only the
TOML entry with the longest match is used.

As a special case, the prefix field can be missing. If so, it defaults to the value of the location
field.

12.2.1 Per-namespace Settings

e insecure (true or false): By default, container runtimes require TLS when retrieving
images from a registry. If insecure is set to true, unencrypted HTTP as well as TLS

connections with untrusted certificates are allowed.

® blocked (true or false): If true, pulling images with matching names is forbidden.

12.2.2 Remapping and Mirroring Registries

The user-specified image reference is, primarily, a "logical" image name, always used for naming
the image. By default, the image reference also directly specifies the registry and repository
to use, but the following options can be used to redirect the underlying accesses to different
registry servers or locations. This can be used to support configurations with no access to the

Internet without having to change Dockerfiles, or to add redundancy.

241 Per-namespace Settings SUSE CaasS Platform 4.2.4

12.2.2.1 location

Accepts the same format as the prefix field, and specifies the physical location of the prefix -
rooted namespace. By default, this is equal to prefix (in which case prefix can be omitted
and the [[registry]] TOML table can just specify location).

12.2.2.1.1 Example

prefix = "example.com/foo"
location = "internal-registry-for-example.net/bar"

Requests for the image example.com/foo/myimage:latest will actually work with the in-

ternal-registry-for-example.net/bar/myimage:latest image.

12.2.2.2 mirror

An array of TOML tables specifying (possibly partial) mirrors for the prefix -rooted namespace.

The mirrors are attempted in the specified order. The first one that can be contacted and contains
the image will be used (and if none of the mirrors contains the image, the primary location
specified by the registry.location field, or using the unmodified user-specified reference,
is tried last).

Each TOML table in the mirror array can contain the following fields, with the same semantics
as if specified in the [[registry]] TOML table directly:

® location

® insecure

12.2.2.3 mirror-by-digest-only

Can be true or false.If true, mirrors will only be used during pulling if the image reference
includes a digest. Referencing an image by digest ensures that the same one is always used
(whereas referencing an image by a tag may cause different registries to return different images
if the tag mapping is out of sync).

Note that if this is true, images referenced by a tag will only use the primary registry, failing
if that registry is not accessible.

242 Remapping and Mirroring Registries SUSE CaasS Platform 4.2.4

12.3 FlexVolume Configuration

FlexVolume drivers are external (out-of-tree) drivers usually provided by a specific vendor. They
are executable files that are placed in a predefined directory in the cluster on both worker and

master nodes. Pods interact with FlexVolume drivers through the flexvolume in-tree plugin.

The vendor driver first has to be installed on each worker and master node in a Kubernetes clus-
ter. On SUSE CaasS Platform 4, the path to install the driversis /usr/lib/kubernetes/kubelet-
plugins/volume/exec/ .

If the drivers are deployed with DaemonSet, this will require changing the FlexVolume directory

path, which is usually stored as an environment variable, for example for rook:
FLEXVOLUME _DIR PATH=/usr/lib/kubernetes/kubelet-plugins/volume/exec/

For a general guide to the FlexVolume configuration, see https://github.com/kubernetes/commu-

nity/blob/master/contributors/devel/sig-storage/flexvolume.md <

12.4 Configuring kubelet

0 Warning

Modifying the file /etc/sysconfig/kubelet directly is not supported.

The changes made to this file will not persist through an update/upgrade of the software.

Please follow the instructions below to change the configuration for kubelet persistent-

ly.

@ Note

This procedure does not override the default configuration but amends the changes from

the "drop-in" configuration.

Please refer to: https://www.freedesktop.org/software/systemd/man/systemd.unit.html| 2

If you wish to modify the configuration for kubelet you must use the "drop-in" configuration
feature of systemd. The steps need to be performed on each cluster node whose kubelet you

wish to reconfigure.

243 FlexVolume Configuration SUSE CaasS Platform 4.2.4

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md
https://www.freedesktop.org/software/systemd/man/systemd.unit.html

1. Create an appropriate .conf file (e.g. resource-handling.conf) in /usr/lib/sys-

temd/system/kubelet.service.d/ with your desired changes. .
2. Reload the service definitions

sudo systemctl daemon-reload

3. Restart kubelet

sudo systemctl restart kubelet

244 Configuring kubelet SUSE CaasS Platform 4.2.4

13 Troubleshooting

This chapter summarizes frequent problems that can occur while using SUSE Caa$S Platform and

their solutions.

Additionally, SUSE support collects problems and their solutions online at https://www.suse.com/
support/kb/?id=SUSE_CaaS_Platform & .

13.1 The supportconfig Tool

As a first step for any troubleshooting/debugging effort, you need to find out the location of the
cause of the problem. For this purpose we ship the supportconfig tool and plugin with SUSE
CaaS Platform. With a simple command you can collect and compile a variety of details about

your cluster to enable SUSE support to pinpoint the potential cause of an issue.

In case of problems, a detailed system report can be created with the supportconfig command

line tool. It will collect information about the system, such as:

® Current Kernel version

Hardware information

Installed packages

e Partition setup

Cluster and node status

Q
A full list of of the data collected by supportconfig can be found under https://
github.com/SUSE/supportutils-plugin-suse-caasp/blob/master/README.md 7.

o Important

To collect all the relevant logs, run the supportconfig command on all the master and

worker nodes individually.

sudo supportconfig

245 The supportconfig Tool SUSE CaasS Platform 4.2.4

https://www.suse.com/support/kb/?id=SUSE_CaaS_Platform
https://www.suse.com/support/kb/?id=SUSE_CaaS_Platform
https://github.com/SUSE/supportutils-plugin-suse-caasp/blob/master/README.md
https://github.com/SUSE/supportutils-plugin-suse-caasp/blob/master/README.md

sudo tar -xvJf /var/log/nts *.txz
cd /var/log/nts*
sudo cat kubernetes.txt crio.txt

The result is a TAR archive of files. Each of the *.txz files should be given a name that can be

used to identify which cluster node it was created on.

After opening a Service Request (SR), you can upload the TAR archives to SUSE Global Technical
Support.

The data will help to debug the issue you reported and assist you in solving the problem.
For details, see https://documentation.suse.com/sles/15-SP1/single-html/SLES-admin/#cha-adm-

supporta.

13.2 Cluster definition directory

Apart from the logs provided by running the supportconfig tool, an additional set of data
might be required for debugging purposes. This information is located at the Management node,
under your cluster definition directory. This folder contains important and sensitive information

about your SUSE CaaS Platform cluster and it’s the one from where you issue skuba commands.

@ Warning

If the problem you are facing is related to your production environment, do not upload
the admin.conf as this would expose access to your cluster to anyone in possession of
the collected information! The same precautions apply for the pki directory, since this

also contains sensitive information (CA cert and key).

In this case add --exclude='./my-cluster/admin.conf' --exclude='./my-clus-
ter/pki/' to the command in the following example. Make sure to replace ./my-clus-

ter with the actual path of your cluster definition folder.

If you need to debug issues with your private certificates, a separate call with SUSE sup-

port must be scheduled to help you.

Create a TAR archive by compressing the cluster definition directory.

Read the TIP above

Move the admin.conf and pki directory to another safe location or exclude from
packaging

tar -czvf cluster.tar.gz /home/user/my-cluster/

246 Cluster definition directory SUSE CaasS Platform 4.2.4

https://documentation.suse.com/sles/15-SP1/single-html/SLES-admin/#cha-adm-support
https://documentation.suse.com/sles/15-SP1/single-html/SLES-admin/#cha-adm-support

If the error is related to Terraform, please copy the terraform configuration files as
well
tar -czvf cluster.tar.gz /home/user/my-terraform-configuration/

After opening a Service Request (SR), you can upload the TAR archive to SUSE Global Technical
Support.

13.3 Log collection

Some of these information are required for debugging certain cases. The data collected by via

supportconfig in such cases are following:

e eted.txt (master nodes)

curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/health
curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
members

curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
stats/leader

curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
stats/self

curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/
stats/store

curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt --key /etc/kubernetes/pki/etcd/
server.key --cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/metrics

etcdcontainer=$(crictl ps --label io.kubernetes.container.name=etcd --quiet)

crictl exec $etcdcontainer sh -c \"ETCDCTL ENDPOINTS='https://127.0.0.1:2379'
ETCDCTL CACERT='/etc/kubernetes/pki/etcd/ca.crt' ETCDCTL CERT='/etc/kubernetes/pki/

etcd/server.crt' ETCDCTL_KEY='/etc/kubernetes/pki/etcd/server.key' ETCDCTL_API=3
etcdctl check perf\"

crictl logs -t $etcdcontainer

crictl stats --id $etcdcontainer

etcdpod=$(crictl ps | grep etcd | awk -F ' ' '{ print $9 }')

247 Log collection SUSE CaasS Platform 4.2.4

crictl inspectp $etcdpod

@ Note

For more information about etcd, refer to Section 13.10, “ETCD Troubleshooting”.

e kubernetes.txt (all nodes)
export KUBECONFIG=/etc/kubernetes/admin.conf
kubectl version
kubectl api-versions
kubectl config view
kubectl -n kube-system get pods
kubectl get events --sort-by=.metadata.creationTimestamp
kubectl get nodes
kubectl get all -A

kubectl get nodes -o yaml
e kubernetes-cluster-info.txt (all nodes)

export KUBECONFIG=/etc/kubernetes/admin.conf

a copy of kubernetes logs /var/log/kubernetes
kubectl cluster-info dump --output-directory="/var/log/kubernetes"

e kubelet.txt (all nodes)
systemctl status --full kubelet
journalctl -u kubelet

a copy of kubernetes manifests /etc/kubernetes/manifests"
cat /var/lib/kubelet/config.yaml

¢ oidc-gangway.txt (all nodes)

container=$(crictl ps --label io.kubernetes.container.name="oidc-gangway" --quiet)

248 Log collection SUSE CaasS Platform 4.2.4

crictl logs -t $container
crictl inspect $container
pod=$(crictl ps | grep "oidc-gangway" | awk -F ' ' '{ print $9 }')
crictl inspectp $pod
® oidc-dex.txt (worker nodes)
container=$(crictl ps --label io.kubernetes.container.name="oidc-dex" --quiet)
crictl logs -t $container
crictl inspect $container
pod=$(crictl ps | grep "oidc-dex" | awk -F ' ' '{ print $9 }')
crictl inspectp $pod
¢ cilium-agent.txt (all nodes)
container=$(crictl ps --label io.kubernetes.container.name="cilium-agent" --quiet)
crictl logs -t $container
crictl inspect $container
pod=$(crictl ps | grep "cilium-agent" | awk -F ' ' '{ print $9 }')
crictl inspectp $pod
¢ cilium-operator.txt (only from the worker node is runs)

container=$(crictl ps --label io.kubernetes.container.name="cilium-operator" --
quiet)

crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "cilium-operator" | awk -F ' ' '{ print $9 }')
crictl inspectp $pod

e kured.txt (all nodes)

249 Log collection SUSE CaasS Platform 4.2.4

container=$(crictl ps --label io.kubernetes.container.name="kured" --quiet)
crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "kured" | awk -F ' ' '{ print $9 }'")

crictl inspectp $pod

e coredns.txt (worker nodes)

container=$(crictl ps --label io.kubernetes.container.name="coredns" --quiet)
crictl logs -t $container

crictl inspect $container

pod=$(crictl ps | grep "coredns" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

¢ kube-apiserver.txt (master nodes)
container=$(crictl ps --label io.kubernetes.container.name="kube-apiserver" --quiet)
crictl logs -t $container
crictl inspect $container
pod=$(crictl ps | grep "kube-apiserver" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

¢ kube-proxy.txt (all nodes)
container=$(crictl ps --label io.kubernetes.container.name="kube-proxy" --quiet)
crictl logs -t $container
crictl inspect $container
After skuba 4.2.2

pod=$(crictl ps | grep "kube-proxy" | awk -F ' ' '{ print $9 }')

crictl inspectp $pod

250 Log collection SUSE CaasS Platform 4.2.4

e kube-scheduler.txt (master nodes)
container=$(crictl ps --label io.kubernetes.container.name="kube-scheduler" --quiet)
crictl logs -t $container
crictl inspect $container
pod=$(crictl ps | grep "kube-scheduler" | awk -F ' ' '{ print $9 }')
crictl inspectp $pod
¢ kube-controller-manager.txt (master nodes)

container=$(crictl ps --label io.kubernetes.container.name="kube-controller-manager"
--quiet)

crictl logs -t $container
crictl inspect $container
pod=$(crictl ps | grep "kube-controller-manager" | awk -F ' ' '{ print $9 }')
crictl inspectp $pod
¢ kube-system.txt (all nodes)
export KUBECONFIG=/etc/kubernetes/admin.conf
kubectl get all -n kube-system -o yaml
e crio.txt (all nodes)
crictl version
systemctl status --full crio.service
crictl info
crictl images
crictl ps --all
crictl stats --all

journalctl -u crio

251 Log collection SUSE CaasS Platform 4.2.4

a copy of /etc/crictl.yaml
a copy of /etc/sysconfig/crio
a copy of /etc/crio/crio.conf
a copy of every file under /etc/crio/
Run the following three commands for every container using this loop:
for i in $(crictl ps -a 2>/dev/null | grep -v "CONTAINER" | awk '{print $1}');
do
crictl stats --id $i
crictl logs $i

crictl inspect $i
done

13.4 Debugging SLES Nodes provision

If Terraform fails to setup the required SLES infrastructure for your cluster, please provide the

configuration you applied in a form of a TAR archive.

Create a TAR archive by compressing the Terraform.
tar -czvf terraform.tar.gz /path/to/terraform/configuration

After opening a Service Request (SR), you can upload the TAR archive to Global Technical
Support.

13.5 Debugging Cluster Deployment

If the cluster deployment fails, please re-run the command again with setting verbosity level
to5 -v=5.

For example, if bootstraps the first master node of the cluster fails, re-run the command like
skuba node bootstrap --user sles --sudo --target <IP/FQDN> <NODE NAME> -v=5

However, if the join procedure fails at the last final steps, re-running it might not help. To
verify this, please list the current member nodes of your cluster and look for the one who failed.

kubectl get nodes

252 Debugging SLES Nodes provision SUSE CaasS Platform 4.2.4

If the node that failed to join is nevertheless listed in the output as part of your cluster, then
this is a bad indicator. This node cannot be reset back to a clean state anymore and it’s not safe to
keep it online in this unknown state. As a result, instead of trying to fix its existing configuration
either by hand or re-running the join/bootstrap command, we would highly recommend you to

remove this node completely from your cluster and then replace it with a new one.

skuba node remove <NODE NAME> --drain-timeout 5s

13.6 Error x509: certificate signed by
unknown authority

When interacting with Kubernetes, you might run into the situation where your existing con-
figuration for the authentication has changed (cluster has been rebuild, certificates have been
switched.) In such a case you might see an error message in the output of your CLI or Web

browser.

x509: certificate signed by unknown authority

This message indicates that your current system does not know the Certificate Authority (CA)
that signed the SSL certificates used for encrypting the communication to the cluster. You then

need to add or update the Root CA certificate in your local trust store.

1. Obtain the root CA certificate from on of the Kubernetes cluster node, at the location /

etc/kubernetes/pki/ca.crt

2. Copy the root CA certificate into your local machine directory /etc/pki/trust/an-

chors/

3. Update the cache for know CA certificates

sudo update-ca-certificates

13.7 Error Invalid client credentials

When using Dex & Gangway for authentication, you might see the following error message in

the Web browser output:

oauth2: cannot fetch token: 401 Unauthorized

253 Error x509: certificate signed by unknown authority SUSE CaasS Platform 4.2.4

Response: {"error":"invalid client","error description":"Invalid client credentials."}

This message indicates that your Kubernetes cluster Dex & Gangway client secret is out of sync.

13.7.1 Versions before SUSE CaaS Platform 4.2.2

@ Note

These steps apply to skuba < 1.3.5

Please update the Dex & Gangway ConfigMap to use the same client secret.
kubectl -n kube-system get configmap oidc-dex-config -o yaml > oidc-dex-config.yaml
kubectl -n kube-system get configmap oidc-gangway-config -o yaml > oidc-gangway-

config.yaml

Make sure the oidc’s secret in oidc-dex-config.yaml is the same as the clientSecret in

oidc-gangway-config.yaml. Then, apply the updated ConfigMap.

kubectl replace -f oidc-dex-config.yaml
kubectl replace -f oidc-gangway-config.yaml

13.7.2 Versions after SUSE CaaS Platform 4.2.2

@ Note

These steps apply to skuba = 1.4.1

If you have configured Dex via a kustomize patch, please update your patch to use secretEnv:
0IDC_GANGWAY CLIENT SECRET. Change your patch as follows, from:
- id: oidc
name: 'OIDC'
secret: <client-secret>
trustedPeers:

- oidc-cli

to

254 Versions before SUSE CaaS Platform 4.2.2 SUSE CaaS Platform 4.2.4

- id: oidc
name: 'OIDC'
secretEnv: OIDC GANGWAY CLIENT SECRET
trustedPeers:

- oidc-cli

Dex & Gangway will then use the same client secret.

13.8 Replacing a Lost Node

If your cluster loses a node, for example due to failed hardware, remove the node as explained

in Section 2.4, “"Removing Nodes”. Then add a new node as described in Section 2.3, “Adding Nodes".

13.9 Rebooting an Undrained Node with RBD
Volumes Mapped

Rebooting a cluster node always requires a preceding drain. In some cases, draining the nodes
first might not be possible and some problem can occur during reboot if some RBD volumes

are mapped to the nodes.

In this situation, apply the following steps.
1. Make sure kubelet and CRI-O are stopped:
systemctl stop kubelet crio
2. Unmount every RBD device /dev/rbd* before rebooting. For example:

umount -vAf /dev/rbdo

If there are several device mounted, this little script can be used to avoid manual unmounting:
#!/usr/bin/env bash

while grep "rbd" /proc/mounts > /dev/null 2>&1; do
for dev in $(lsblk -p -o NAME | grep "rbd"); do
if $(mountpoint -x $dev > /dev/null 2>&1); then
echo ">>> umounting $dev"
umount -vAf "$dev"
fi

255 Replacing a Lost Node SUSE CaasS Platform 4.2.4

done
done

13.10 ETCD Troubleshooting

13.10.1 Introduction

This document aims to describe debugging an etcd cluster.

The required etcd logs are part of the supportconfig, a utility that collects all the required
information for debugging a problem. The rest of the document provides information on how

you can obtain these information manually.

13.10.2 ETCD container

ETCD is a distributed reliable key-value store for the most critical data of a distributed system.
It is running only on the master nodes in a form a container application. For instance, in a

cluster with 3 master nodes, it is expected to have 3 etcd instances as well:

kubectl get pods -n kube-system -1 component=etcd

NAME READY STATUS RESTARTS AGE
etcd-vm072044.qga.prv.suse.net 1/1 Running 1 7d
etcd-vm072050.qa.prv.suse.net 1/1 Running 1 7d
etcd-vm073033.qga.prv.suse.net 1/1 Running 1 7d

The specific configuration which etcd is using to start, is the following:

etcd \
--advertise-client-urls=https://<YOUR MASTER NODE IP ADDRESS>:2379 \
--cert-file=/etc/kubernetes/pki/etcd/server.crt \
--client-cert-auth=true --data-dir=/var/lib/etcd \
--initial-advertise-peer-urls=https://<YOUR MASTER NODE IP ADDRESS>:2380 \
--initial-cluster=vm072050.qa.prv.suse.net=https://

<YOUR _MASTER NODE IP ADDRESS>:2380 \
--key-file=/etc/kubernetes/pki/etcd/server.key \
--listen-client-urls=https://127.0.0.1:2379,https://

<YOUR_MASTER NODE IP_ ADDRESS>:2379 \
--listen-peer-urls=https://<YOUR MASTER NODE IP ADDRESS>:2380 \
--name=vm0@72050.qga.prv.suse.net \
--peer-cert-file=/etc/kubernetes/pki/etcd/peer.crt \
--peer-client-cert-auth=true \

256 ETCD Troubleshooting SUSE CaasS Platform 4.2.4

- -peer-key-file=/etc/kubernetes/pki/etcd/peer.key \
--peer-trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt \
--snapshot-count=10000 --trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt

@ Note

For more information related to ETCD, we highly recommend you to read ETCD FAQ

(https://etcd.io/docs/v3.4.0/faq/) @ page.

13.10.3 logging

Since etcd is running in a container, that means it is not controlled by systemd, thus any
commands related to that (e.g. journalctl) will fail, therefore you need to use container de-

bugging approach instead.

@ Note

To use the following commands, you need to connect (e.g. via SSH) to the master node

where the eted pod is running.

To see the etcd logs, connect to a Kubernetes master node and then run as root:

ssh sles@<MASTER NODE>
sudo bash # connect as root
etcdcontainer=$(crictl ps --label io.kubernetes.container.name=etcd --quiet)

crictl logs -f $etcdcontainer

13.10.4 etcdctl

etcdctl is a command line client for etcd. The new version of CaaSP is using the v3 APIL
For that, you need to make sure to set environment variable ETCDCTL_API=3 before using it.
Apart from that, you need to provide the required keys and certificates for authentication and
authorization, via ETCDCTL CACERT, ETCDCTL CERT and ETCDCTL KEY environment variables.
Last but not least, you need to also specify the endpoint via ETCDCTL_ENDPOINTS environment

variable.

* Example

257 logging SUSE CaasS Platform 4.2.4

https://etcd.io/docs/v3.4.0/faq/
https://etcd.io/docs/v3.4.0/faq/

To find out if your network and disk latency are fast enough, you can benchmark your
node using the etcdctl check perf command. To do this, frist connect to a Kubernetes

master node:

ssh sles@<MASTER NODE>
sudo bash # login as root

and then run as root:

etcdcontainer=$(crictl ps --label io.kubernetes.container.name=etcd --quiet)
crictl exec $etcdcontainer sh -c \
"ETCDCTL_ENDPOINTS='https://127.0.0.1:2379"' \
ETCDCTL_CACERT='/etc/kubernetes/pki/etcd/ca.crt' \

ETCDCTL CERT='/etc/kubernetes/pki/etcd/server.crt' \

ETCDCTL _KEY='/etc/kubernetes/pki/etcd/server.key' \

ETCDCTL_API=3 \

etcdctl check perf"

13.10.5 curl as an alternative

For most of the etcdctl commands, there is an alternative way to fetch the same information
via curl. First you need to connect to the master node and then issue a curl command against

the ETCD endpoint. Here’s an example of the information which supportconfig is collecting:

e Health check:

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/health

e Member list

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/members

® Leader information

available only from the master node where ETCD **leader** runs

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \

--key /etc/kubernetes/pki/etcd/server.key \

--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/stats/leader

258 curl as an alternative SUSE CaaS Platform 4.2.4

e Current member information

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/stats/self

e Statistics

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/v2/stats/store

® Metrics

sudo curl -Ls --cacert /etc/kubernetes/pki/etcd/ca.crt \
--key /etc/kubernetes/pki/etcd/server.key \
--cert /etc/kubernetes/pki/etcd/server.crt https://localhost:2379/metrics

13.11 Kubernetes debugging tips

® General guidelines and instructions: https://v1-17.docs.kubernetes.io/docs/tasks/debug-ap-

plication-cluster/troubleshooting/#

¢ Troubleshooting applications: https://v1-17.docs.kubernetes.io/docs/tasks/debug-applica-

tion-cluster/debug-application @

¢ Troubleshooting clusters: https://v1-17.docs.kubernetes.io/docs/tasks/debug-applica-

tion-cluster/debug-cluster @

® Debugging pods: https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/de-

bug-pod-replication-controller &

® Debugging services: https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-clus-

ter/debug-service @

13.12 Helm Error: context deadline exceeded

This means the tiller installation was secured via SSL/TLS as described in Section 3.1.2.1, “Installing

Helm”. You must pass the --tls flag to helm to enable authentication.

259 Kubernetes debugging tips SUSE CaasS Platform 4.2.4

https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/troubleshooting/
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/troubleshooting/
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-application
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-application
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-pod-replication-controller
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-service
https://v1-17.docs.kubernetes.io/docs/tasks/debug-application-cluster/debug-service

13.13 AWS Deployment fails with cannot attach
profile error

For SUSE CaasS Platform to be properly deployed, you need to have proper IAM role, role policy
and instance profile set up in AWS. Under normal circumstances Terraform will be invoked
by a user with suitable permissions during deployment and automatically create these profiles.
If your access permissions on the AWS account forbid Terraform from creating the profiles

automatically, they must be created before attempting deployment.

13.13.1 Create IAM Role, Role Policy, and Instance Profile through
AWS CLI

Users who do not have permission to create IAM role, role policy, and instance profile using

Terraform, devops should create them for you, using the instructions below:

e STACK NAME: Cluster Stack Name

1. Install AWS CLI:

sudo zypper --gpg-auto-import-keys install -y aws-cli
2. Setup AWS credentials:
aws configure

3. Prepare role policy:

cat <<*EOF* >"./<STACK NAME>-trust-policy.json"

{
"Version": "2012-10-17",
"Statement": [
{
"Action": "sts:AssumeRole",
"Principal”: {
"Service": "ec2.amazonaws.com"
H
"Effect": "Allow",
"Sid": "
}
1
¥

260 AWS Deployment fails with cannot attach profile error SUSE CaasS Platform 4.2.4

261

EOF

4. Prepare master instance policy:

cat <<*EOF* >"./<STACK NAME>-master-role-trust-policy.json"

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"autoscaling:DescribeAutoScalingGroups",
"autoscaling:DescribelLaunchConfigurations",
"autoscaling:DescribeTags",
"ec2:DescribeInstances",

"ec2:DescribeRegions",
ec2:DescribeRouteTables",

"ec2:DescribeSecurityGroups",

"ec2:DescribeSubnets",

ec2:DescribeVolumes",

"ec2:CreateSecurityGroup",

"ec2:CreateTags",
ec2:CreateVolume",

"ec2:ModifyInstanceAttribute",

"ec2:ModifyVolume",
ec2:AttachVolume",

"ec2:AuthorizeSecurityGroupIngress",

"ec2:CreateRoute",
ec2:DeleteRoute",

"ec2:DeleteSecurityGroup",

"ec2:DeleteVolume",
"ec2:DetachVolume",

"ec2:RevokeSecurityGroupIngress",

"ec2:DescribeVpcs",

"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing

Create IAM Role, Role Policy, and Instance Profile through AWS CLI

:AddTags",
:AttachLoadBalancerToSubnets",
:ApplySecurityGroupsToLoadBalancer",
:CreatelLoadBalancer",
:CreatelLoadBalancerPolicy",
:CreatelLoadBalancerListeners",
:ConfigureHealthCheck",
:DeletelLoadBalancer",
:DeletelLoadBalancerListeners",
:DescribeloadBalancers",
:DescribeloadBalancerAttributes",
:DetachLoadBalancerFromSubnets",
:DeregisterInstancesFromLoadBalancer",

SUSE CaaS Platform

4.24

]I

"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing
"elasticloadbalancing

:ModifylLoadBalancerAttributes",
:RegisterInstancesWithLoadBalancer",
:SetlLoadBalancerPoliciesForBackendServer",
:AddTags",

:CreatelListener",
:CreateTargetGroup",
:DeletelListener",
:DeleteTargetGroup",
:Describelisteners",
:DescribelLoadBalancerPolicies",
:DescribeTargetGroups",
:DescribeTargetHealth",
:ModifyListener",
:ModifyTargetGroup",
:RegisterTargets",
:SetlLoadBalancerPoliciesOfListener",

"iam:CreateServicelLinkedRole",

"kms:DescribeKey"

"Resource": [

}
EOF

5. Prepare worker instance policy:

nxn

cat <<*EOF* >".,/<STACK NAME>-worker-role-trust-policy.json"

{

"Version": "2012-10-17",
"Statement": [

{

"Effect": "Allow",
"Action": [
"ec2:DescribelInstances",

]I

"ec2:DescribeRegions",

"ecr:GetAuthorizationToken",
"ecr:BatchCheckLayerAvailability",
"ecr:GetDownloadUrlForLayer",

"ecr:GetRepositoryPolicy",
"ecr:DescribeRepositories",

"ecr:ListImages",
"ecr:BatchGetImage"

"Resource": "*"

Create IAM Role, Role Policy, and Instance Profile through AWS CLI

262

SUSE CaaS Platform

4.24

263

}
EOF

6. Create roles:

aws iam create-role --role-name <STACK NAME> cpi master --assume-role-policy-
document file://<FILE DIRECTORY>/<STACK NAME>-trust-policy.json
aws iam create-role --role-name <STACK NAME> cpi worker --assume-role-policy-
document file://<FILE DIRECTORY>/<STACK NAME>-trust-policy.json

7. Create instance role policies:

aws iam put-role-policy --role-name <STACK NAME> cpi master --policy-
name <STACK NAME> cpi master --policy-document file://<FILE DIRECTORY>/
<STACK NAME>-master-role-trust-policy.json

aws iam put-role-policy --role-name <STACK NAME> cpi worker --policy-
name <STACK NAME> cpi worker --policy-document file://<FILE DIRECTORY>/
<STACK_NAME>-worker-role-trust-policy.json

8. Create instance profiles:

aws iam create-instance-profile --instance-profile-name <STACK NAME> cpi master
aws iam create-instance-profile --instance-profile-name <STACK NAME> cpi worker

9. Add role to instance profiles:

aws iam add-role-to-instance-profile --role-name <STACK NAME> cpi master --
instance-profile-name <STACK NAME> cpi master
aws iam add-role-to-instance-profile --role-name <STACK NAME> cpi worker --
instance-profile-name <STACK NAME> cpi worker

Create IAM Role, Role Policy, and Instance Profile through AWS CLI SUSE CaaS Platform
4.2.4

14 Glossary

AWS

BPF

CA

CIDR

CNI

CRD

FQDN

GKE

KVM

LDAP

OCI

OIDC

264

Amazon Web Services. A broadly adopted cloud platform run by Amazon.

Berkeley Packet Filter. Technology used by Cilium to filter network traffic at

the level of packet processing in the kernel.
Certificate or Certification Authority. An entity that issues digital certificates.

Classless Inter-Domain Routing. Method for allocating IP addresses and IP

routing.

Container Networking Interface. Creates a generic plugin-based networking

solution for containers based on spec files in JSON format.

Custom Resource Definition. Functionality to define non-default resources for

Kubernetes pods.

Fully Qualified Domain Name. The complete domain name for a specific com-
puter, or host, on the internet, consisting of two parts: the hostname and the

domain name.

Google Kubernetes Engine. Manager for container orchestration built on Ku-
bernetes by Google. Similar for example to Amazon Elastic Kubernetes Service
(Amazon EKS) and Azure Kubernetes Service (AKS).

Kernel-based Virtual Machine. Linux native virtualization tool that allows the

kernel to function as a hypervisor.

Lightweight Directory Access Protocol. A client/server protocol used to ac-
cess and manage directory information. It reads and edits directories over IP
networks and runs directly over TCP/IP using simple string formats for data

transfer.

Open Containers Initiative. A project under the Linux Foundation with the
goal of creating open industry standards around container formats and run-

time.

OpenID Connect. Identity layer on top of the OAuth 2.0 protocol.

SUSE CaaS Platform 4.2.4

OLM

POC

PSP

PVC

RBAC

RMT

RPO

RTO

RSA

SLA

SMT

265

Operator Lifecycle Manager. Open Source tool for managing operators in a

Kubernetes cluster.

Proof of Concept. Pioneering project directed at proving the feasibility of a de-

sign concept.

Pod Security Policy. PSPs are cluster-level resources that control security-sen-

sitive aspects of pod specification.
Persistent Volume Claim. A request for storage by a user.

Role-based Access Control. An approach to restrict authorized user access

based on defined roles.

Repository Mirroring Tool. Successor of the SMT. Helps optimize the man-
agement of SUSE Linux Enterprise software updates and subscription entitle-

ments.

Recovery Point Objective. Defines the interval of time that can occur between

to backup points before normal business can no longer be resumed.

Recovery Time Objective. This defines the time (and typically service level

from SLA) with which backup relevant incidents must be handled within.

Rivest-Shamir-Adleman. Asymmetric encryption technique that uses two dif-
ferent keys as public and private keys to perform the encryption and decryp-

tion.

Service Level Agreement. A contractual clause or set of clauses that deter-
mines the guaranteed handling of support or incidents by a software vendor or

supplier.

SUSE Subscription Management Tool. Helps to manage software updates,
maintain corporate firewall policy and meet regulatory compliance require-
ments in SUSE Linux Enterprise 11 and 12. Has been replaced by the RMT and

SUSE Manager in newer SUSE Linux Enterprise versions.

SUSE CaaS Platform 4.2.4

STS StatefulSet. Manages the deployment and scaling of a set of Pods, and pro-
vides guarantees about the ordering and uniqueness of these Pods for a "state-

ful" application.

SMTP Simple Mail Transfer Protocol. A communication protocol for electronic mail
transmission.
TOML Tom’s Obvious, Minimal Language. Configuration file format used for config-

uring container registries for CRI-O.

VPC Virtual Private Cloud. Division of a public cloud, which supports private cloud
computing and thus offers more control over virtual networks and an isolated

environment for sensitive workloads.

266 SUSE CaaS Platform 4.2.4

A GNU Licenses

This appendix contains the GNU Free Documentation License version 1.2.

A.1 GNU Free Documentation License

Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful docu-
ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and redis-
tribute it, with or without modifying it, either commercially or non-commercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not

being considered responsible for modifications made by others.

This License is a kind of "copyleft', which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which

is a copyleft license designed for free software.

We have designed this License to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

267 GNU Free Documentation License SUSE CaaS Platform 4.2.4

A "Modified Version" of the Document means any work containing the Document or a portion

of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or po-

litical position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document

does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-

Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A

copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated

HTML, PostScript or PDF produced by some word processors for output purposes only.

268 GNU Free Documentation License SUSE CaaS Platform 4.2.4

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most

prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you

modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this Li-
cense applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that

these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-com-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other condi-
tions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies

you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display

copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the

full title with all words of the title equally prominent and visible. You may add other material

269 GNU Free Documentation License SUSE CaaS Platform 4.2.4

on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take rea-
sonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year
after the last time you distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and mod-
ification of the Modified Version to whoever possesses a copy of it. In addition, you must do

these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they

release you from this requirement.

270 GNU Free Documentation License SUSE CaaS Platform 4.2.4

271

. State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

. Include, immediately after the copyright notices, a license notice giving the public permis-

sion to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

. Include an unaltered copy of this License.

. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an

item describing the Modified Version as stated in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to a Trans-

parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You
may omit a network location for a work that was published at least four years before the

Document itself, or if the original publisher of the version it refers to gives permission.

For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with

any Invariant Section.

Preserve any Warranty Disclaimers.

GNU Free Documentation License SUSE CaaS Platform 4.2.4

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from

any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the

text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission

from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use

their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all

their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant

Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled "Ac-
knowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled

"Endorsements".

272 GNU Free Documentation License SUSE CaaS Platform 4.2.4

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License

for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow

this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an "aggregate"
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers

that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires spe-
cial permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original

version will prevail.

273 GNU Free Documentation License SUSE CaaS Platform 4.2.4

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses termi-
nated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/ 2.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have
the option of following the terms and conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version ever published

(not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with...

Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the

274 GNU Free Documentation License SUSE CaaS Platform 4.2.4

http://www.gnu.org/copyleft/

Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,

merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

275 GNU Free Documentation License SUSE CaaS Platform 4.2.4

	Administration Guide
	Contents
	
	Chapter 1. About This Guide
	1.1. Required Background
	1.2. Available Documentation
	1.3. Feedback
	1.4. Documentation Conventions

	Chapter 2. Cluster Management
	2.1. Prerequisites
	2.2. Bootstrap and Initial Configuration
	2.3. Adding Nodes
	2.3.1. Adding Nodes from Template

	2.4. Removing Nodes
	2.4.1. Temporary Removal
	2.4.2. Permanent Removal

	2.5. Reconfiguring Nodes
	2.6. Node Operations
	2.6.1. Uncordon and Cordon
	2.6.2. Draining Nodes

	Chapter 3. Software Management
	3.1. Software Installation
	3.1.1. Base OS
	3.1.1.1. Initial Rollout
	3.1.1.2. Existing Cluster

	3.1.2. Kubernetes stack
	3.1.2.1. Installing Helm
	3.1.2.2. Installing Tiller
	3.1.2.2.1. Unsecured Tiller Deployment
	3.1.2.2.2. Secured Tiller Deployment with TLS certificate
	3.1.2.2.2.1. Trusted Certificates
	3.1.2.2.2.2. Self-signed Certificates (optional)

	3.1.2.3. Helm 2 to 3 Migration
	3.1.2.3.1. Preconditions
	3.1.2.3.2. Migration Procedure
	3.1.2.3.3. Migration Procedure (Air gap)

	Chapter 4. Cluster Updates
	4.1. Update Requirements
	4.2. Updating Kubernetes Components
	4.2.1. Update Management Workstation
	4.2.2. Generating an Overview of Available Platform Updates
	4.2.3. Generating an Overview of Available Addon Updates

	4.3. Updating Nodes
	4.3.1. How To Update Nodes
	4.3.2. Check for Upgrades to New Version

	4.4. Base OS Updates
	4.4.1. Disabling Automatic Updates
	4.4.2. Completely Disabling Reboots
	4.4.3. Manual Unlock

	Chapter 5. Security
	5.1. Network Access Considerations
	5.2. Access Control
	5.3. Role Management
	5.3.1. List of Verbs
	5.3.2. List of Resources
	5.3.3. Creating Roles
	5.3.4. Create Role Bindings

	5.4. Managing Users and Groups
	5.4.1. Adding a New Organizational Unit
	5.4.2. Removing an Organizational Unit
	5.4.3. Adding a New Group to an Organizational Unit
	5.4.4. Removing a Group from an Organizational Unit
	5.4.4.1. Adding a New User
	5.4.4.2. Showing User Attributes
	5.4.4.3. Modifying a User
	5.4.4.4. Deleting a User
	5.4.4.5. Changing Your own LDAP Password from CLI

	5.5. Role Based Access Control (RBAC)
	5.5.1. Introduction
	5.5.2. Authentication Flow
	5.5.2.1. Web Flow
	5.5.2.2. CLI Flow

	5.5.3. RBAC Operations
	5.5.3.1. Administration
	5.5.3.1.1. Kubernetes Role Binding
	5.5.3.1.2. Update the Authentication Connector

	5.5.3.2. User Access
	5.5.3.2.1. Setting up kubectl
	5.5.3.2.1.1. In the Web Browser
	5.5.3.2.1.2. Using the CLI
	5.5.3.2.1.3. OIDC Tokens

	5.5.3.2.2. Access Kubernetes Resources

	5.6. Configuring an External LDAP Server
	5.6.1. Deploying an External 389 Directory Server
	5.6.2. Deploying a 389 Directory Server with an External Certificate
	5.6.2.1. Known Issues

	5.6.3. Examples of Usage
	5.6.3.1. 389 Directory Server:
	5.6.3.1.1. Example 1: 389-ds Content LDIF
	5.6.3.1.2. Example 2: Dex LDAP TLS Connector Configuration (addons/dex/patches/custom.yaml)

	5.6.3.2. Active Directory
	5.6.3.2.1. Example 1: Active Directory Content LDIF
	5.6.3.2.2. Example 2: Dex Active Directory TLS Connector Configuration

	5.7. Pod Security Policies
	5.7.1. Default Policies
	5.7.2. Policy Definition
	5.7.2.1. Policy File Examples

	5.7.3. Creating a PodSecurityPolicy

	5.8. NGINX Ingress Controller
	5.8.1. Configure and deploy NGINX ingress controller
	5.8.1.1. Define networking configuration
	5.8.1.2. Deploy ingress controller from helm chart
	5.8.1.3. Create DNS entries

	5.8.2. Deploy Kubernetes Dashboard as an example

	5.9. Admission Controllers
	5.9.1. Introduction
	5.9.2. Configured admission controllers

	5.10. Certificates
	5.10.1. Communication Security
	5.10.2. Certificate Validity
	5.10.3. Certificate Location
	5.10.4. Monitoring Certificates
	5.10.4.1. Prerequisites
	5.10.4.2. Prometheus Alerts
	5.10.4.3. Grafana Dashboards
	5.10.4.4. Monitor Custom Secret Certificates

	5.10.5. Using Custom Trusted CA Certificates
	5.10.6. Deployment with a Custom CA Certificate
	5.10.7. Replace OIDC Server Certificate Signed By A Trusted CA Certificate
	5.10.8. Automatic Certificate Renewal
	5.10.8.1. Control Plane Nodes Certificates Rotation
	5.10.8.2. Worker Node Certificate Rotation
	5.10.8.3. Addon Certificate Rotation
	5.10.8.3.1. Client Certificate Rotation
	5.10.8.3.2. Server Certificates Rotation

	5.10.9. Manual Certificate Renewal
	5.10.9.1. Renewing Control Plane Certificates
	5.10.9.2. Renewing Addon Certificates:

	5.10.10. How To Generate Certificates
	5.10.10.1. Trusted 3rd-Party Signed Certificate
	5.10.10.1.1. Trusted Server Certificate
	5.10.10.1.2. Trusted Client Certificate

	5.10.10.2. Self-signed Server Certificate
	5.10.10.2.1. Self-signed CA Certificate
	5.10.10.2.2. Self-signed Server Certificate
	5.10.10.2.3. Self-signed Client Certificate

	Chapter 6. Logging
	6.1. Introduction
	6.2. Logging in skuba
	6.3. Audit Log
	6.3.1. Limitations
	6.3.2. Enable Auditing During Cluster Bootstrap
	6.3.3. Enable Auditing On Running Cluster
	6.3.4. Disable Auditing

	6.4. Centralized Logging
	6.4.1. Prerequisites
	6.4.2. Types of Logs
	6.4.3. Log Formats
	6.4.4. Deployment
	6.4.5. Queuing
	6.4.6. Optional settings

	Chapter 7. Monitoring
	7.1. Monitoring Stack
	7.1.1. Introduction
	7.1.2. Prerequisites
	7.1.3. Installation
	7.1.3.1. Installation For Subdomains
	7.1.3.2. Create DNS entries
	7.1.3.2.1. TLS Certificate
	7.1.3.2.2. Prometheus
	7.1.3.2.3. Alertmanager Configuration Example
	7.1.3.2.4. Recording Rules Configuration Example
	7.1.3.2.5. Grafana
	7.1.3.2.6. Adding Grafana Dashboards

	7.1.3.3. Installation For Subpaths
	7.1.3.4. Create DNS entries
	7.1.3.4.1. TLS Certificate
	7.1.3.4.2. Prometheus
	7.1.3.4.3. Alertmanager Configuration Example
	7.1.3.4.4. Recording Rules Configuration Example
	7.1.3.4.5. Grafana
	7.1.3.4.6. Adding Grafana Dashboards

	7.1.4. Monitoring
	7.1.4.1. Prometheus Jobs
	7.1.4.2. ETCD Cluster

	7.2. Health Checks
	7.2.1. Cluster Health Checks
	7.2.1.1. Kubernetes master
	7.2.1.2. ETCD Cluster

	7.2.2. Node Health Checks
	7.2.2.1. kubelet
	7.2.2.1.1. Local Check
	7.2.2.1.2. Remote Check

	7.2.2.2. CNI

	7.2.3. Service/Application Health Checks
	7.2.3.1. livenessProbe
	7.2.3.2. readinessProbe

	7.2.4. General Health Checks

	7.3. Horizontal Pod Autoscaler
	7.3.1. Usage
	7.3.1.1. Using Horizontal Pod Autoscaler (HPA)
	7.3.1.1.1. Creating an HPA Using Average CPU Utilization
	7.3.1.1.2. Creating an HPA Using the Average CPU Value
	7.3.1.1.3. Creating an HPA Using Average Memory Utilization
	7.3.1.1.4. Creating an HPA Using Average Memory Value

	7.4. Stratos Web Console
	7.4.1. Introduction
	7.4.2. Prerequisites
	7.4.2.1. Helm
	7.4.2.2. Persistent Storage

	7.4.3. Installation
	7.4.3.1. Adding helm chart repository and default values
	7.4.3.2. Define admin user password
	7.4.3.3. Define the Storage Class to be used
	7.4.3.4. Exposing the Web UI
	7.4.3.4.1. Expose the web UI using a LoadBalancer
	7.4.3.4.2. Expose the web UI using an Ingress

	7.4.3.5. Securing Stratos
	7.4.3.5.1. Secure Stratos web UI
	7.4.3.5.2. Change MariaDB password

	7.4.3.6. Enable tech preview features
	7.4.3.7. Deploying Stratos

	7.4.4. Stratos configuration

	Chapter 8. Storage
	8.1. vSphere Storage
	8.1.1. Node Meta
	8.1.2. Static Persistent Volume
	8.1.3. Dynamic Persistent Volume

	Chapter 9. Integration
	9.1. SUSE Enterprise Storage Integration
	9.1.1. Prerequisites
	9.1.2. Procedures According to Type of Integration
	9.1.2.1. Using RBD in a Pod
	9.1.2.2. Using RBD with Static Persistent Volumes
	9.1.2.3. Using RBD with Dynamic Persistent Volumes
	9.1.2.4. Using CephFS in a Pod
	9.1.2.5. Using CephFS with Static Persistent Volumes

	9.2. SUSE Cloud Application Platform Integration

	Chapter 10. Cluster Disaster Recovery
	10.1. Backing Up etcd Cluster Data
	10.1.1. Data To Backup
	10.1.2. Creating an etcd Cluster Database Backup
	10.1.2.1. Procedure

	10.1.3. Scheduling etcd Cluster Backup

	10.2. Recovering Master Nodes
	10.2.1. Replacing a Single Master Node
	10.2.2. Recovering All Master Nodes
	10.2.2.1. Prerequisites
	10.2.2.2. Procedure
	10.2.2.3. Confirming the Restoration

	Chapter 11. Backup and Restore with Velero
	11.1. Limitations
	11.2. Prerequisites
	11.2.1. Helm
	11.2.2. Object Storage And It’s Credentials
	11.2.2.1. Public Cloud Providers
	11.2.2.1.1. AWS S3
	11.2.2.1.2. Google Cloud Storage
	11.2.2.1.3. Azure Blob Storage

	11.2.2.2. On-Premise (S3-Compatible Providers)
	11.2.2.2.1. SUSE Enterprise Storage 6 Ceph Object Gateway (radosgw)
	11.2.2.2.2. Minio

	11.2.3. Volume Snapshotter
	11.2.4. Velero CLI

	11.3. Known Issues
	11.4. Deployment
	11.4.1. Backup Kubernetes Cluster Objects Only
	11.4.2. Backup Kubernetes Cluster

	11.5. Operations
	11.6. Backup
	11.6.1. Backup Troubleshooting

	11.7. Restore
	11.7.1. Restore Troubleshooting

	11.8. Use Cases
	11.8.1. Disaster Recovery
	11.8.2. Cluster Migration

	11.9. Uninstall

	Chapter 12. Miscellaneous
	12.1. Configuring HTTP/HTTPS Proxy for CRI-O
	12.2. Configuring Container Registries for CRI-O
	12.2.1. Per-namespace Settings
	12.2.2. Remapping and Mirroring Registries
	12.2.2.1. location
	12.2.2.1.1. Example

	12.2.2.2. mirror
	12.2.2.3. mirror-by-digest-only

	12.3. FlexVolume Configuration
	12.4. Configuring kubelet

	Chapter 13. Troubleshooting
	13.1. The supportconfig Tool
	13.2. Cluster definition directory
	13.3. Log collection
	13.4. Debugging SLES Nodes provision
	13.5. Debugging Cluster Deployment
	13.6. Error x509: certificate signed by unknown authority
	13.7. Error Invalid client credentials
	13.7.1. Versions before SUSE CaaS Platform 4.2.2
	13.7.2. Versions after SUSE CaaS Platform 4.2.2

	13.8. Replacing a Lost Node
	13.9. Rebooting an Undrained Node with RBD Volumes Mapped
	13.10. ETCD Troubleshooting
	13.10.1. Introduction
	13.10.2. ETCD container
	13.10.3. logging
	13.10.4. etcdctl
	13.10.5. curl as an alternative

	13.11. Kubernetes debugging tips
	13.12. Helm Error: context deadline exceeded
	13.13. AWS Deployment fails with cannot attach profile error
	13.13.1. Create IAM Role, Role Policy, and Instance Profile through AWS CLI

	Chapter 14. Glossary
	Appendix A. GNU Licenses
	A.1. GNU Free Documentation License

