This guide covers system administration tasks like maintaining, monitoring and customizing an initially installed system.
- Preface
- I Common tasks
- 1 Bash and Bash scripts
- 2
sudo
basics - 3 Using YaST
- 4 YaST in text mode
- 5 YaST online update
- 6 Managing software with command line tools
- 7 System recovery and snapshot management with Snapper
- 7.1 Default setup
- 7.2 Using Snapper to undo changes
- 7.3 System rollback by booting from snapshots
- 7.4 Enabling Snapper in user home directories
- 7.5 Creating and modifying Snapper configurations
- 7.6 Manually creating and managing snapshots
- 7.7 Automatic snapshot clean-up
- 7.8 Showing exclusive disk space used by snapshots
- 7.9 Frequently asked questions
- 8 Live kernel patching with KLP
- 9 Transactional updates
- 10 Remote graphical sessions with VNC
- 11 File copying with RSync
- II Booting a Linux system
- III System
- 16 32-bit and 64-bit applications in a 64-bit system environment
- 17
journalctl
: Query thesystemd
journal - 18
update-alternatives
: Managing multiple versions of commands and files - 19 Basic networking
- 19.1 IP addresses and routing
- 19.2 IPv6—the next generation Internet
- 19.3 Name resolution
- 19.4 Configuring a network connection with YaST
- 19.5 Configuring a network connection manually
- 19.6 Basic router setup
- 19.7 Setting up bonding devices
- 19.8 Setting up team devices for Network Teaming
- 19.9 Software-defined networking with Open vSwitch
- 20 Printer operation
- 21 Graphical user interface
- 22 Accessing file systems with FUSE
- 23 Managing kernel modules
- 24 Dynamic kernel device management with
udev
- 24.1 The
/dev
directory - 24.2 Kernel
uevents
andudev
- 24.3 Drivers, kernel modules and devices
- 24.4 Booting and initial device setup
- 24.5 Monitoring the running
udev
daemon - 24.6 Influencing kernel device event handling with
udev
rules - 24.7 Persistent device naming
- 24.8 Files used by
udev
- 24.9 More information
- 24.1 The
- 25 Special system features
- 26 Using NetworkManager
- 27 Power management
- 28 Persistent memory
- IV Services
- 29 Service management with YaST
- 30 Time synchronization with NTP
- 31 The domain name system
- 32 DHCP
- 33 SLP
- 34 The Apache HTTP server
- 34.1 Quick start
- 34.2 Configuring Apache
- 34.3 Starting and stopping Apache
- 34.4 Installing, activating, and configuring modules
- 34.5 Enabling CGI scripts
- 34.6 Setting up a secure Web server with SSL
- 34.7 Running multiple Apache instances on the same server
- 34.8 Avoiding security problems
- 34.9 Troubleshooting
- 34.10 More information
- 35 Setting up an FTP server with YaST
- 36 Squid caching proxy server
- 36.1 Some facts about proxy servers
- 36.2 System requirements
- 36.3 Basic usage of Squid
- 36.4 The YaST Squid module
- 36.5 The Squid configuration file
- 36.6 Configuring a transparent proxy
- 36.7 Using the Squid cache manager CGI interface (
cachemgr.cgi
) - 36.8 Cache report generation with Calamaris
- 36.9 More information
- 37 Web Based Enterprise Management using SFCB
- V Troubleshooting
- A An example network
- B GNU licenses
- 4.1 Main window of YaST in text mode
- 4.2 The software installation module
- 5.1 YaST online update
- 5.2 Viewing retracted patches and history
- 5.3 YaST online update configuration
- 7.1 Boot loader: snapshots
- 10.1 vncviewer
- 10.2 Remmina's main window
- 10.3 Remote desktop preference
- 10.4 Quick-starting
- 10.5 Remmina viewing remote session
- 10.6 Reading path to the profile file
- 10.7 Remote administration
- 10.8 VNC session settings
- 10.9 Joining a persistent VNC session
- 13.1 Secure boot support
- 13.2 UEFI: secure boot process
- 14.1 GRUB 2 boot editor
- 14.2 Boot code options
- 14.3 Code options
- 14.4 Boot loader options
- 14.5 Kernel parameters
- 15.1 Services Manager
- 17.1 YaST systemd journal
- 19.1 Simplified layer model for TCP/IP
- 19.2 TCP/IP ethernet packet
- 19.3 Configuring network settings
- 19.4
wicked
architecture - 26.1 GNOME Network Connections dialog
- 26.2
firewalld
zones in NetworkManager - 29.1 YaST service manager
- 30.1 NTP configuration window
- 30.2 Adding a time server
- 31.1 DNS server installation: forwarder settings
- 31.2 DNS server installation: DNS zones
- 31.3 DNS server installation: finish wizard
- 31.4 DNS server: logging
- 31.5 DNS server: Zone Editor (Basics)
- 31.6 DNS server: Zone Editor (NS Records)
- 31.7 DNS server: Zone Editor (MX Records)
- 31.8 DNS server: Zone Editor (SOA)
- 31.9 Adding a record for a master zone
- 31.10 Adding a reverse zone
- 31.11 Adding a reverse record
- 32.1 DHCP server: card selection
- 32.2 DHCP server: global settings
- 32.3 DHCP server: dynamic DHCP
- 32.4 DHCP server: start-up
- 32.5 DHCP server: host management
- 32.6 DHCP server: chroot jail and declarations
- 32.7 DHCP server: selecting a declaration type
- 32.8 DHCP server: configuring subnets
- 32.9 DHCP server: TSIG configuration
- 32.10 DHCP server: interface configuration for dynamic DNS
- 32.11 DHCP server: network interface and firewall
- 34.1 HTTP server wizard: default host
- 34.2 HTTP server wizard: summary
- 34.3 HTTP server configuration: listen ports and addresses
- 34.4 HTTP server configuration: server modules
- 35.1 FTP server configuration — start-up
- 39.1 HTML report generated by SCA tool
- 39.2 HTML report generated by SCA appliance
- 1.1 Bash configuration files for login shells
- 1.2 Bash configuration files for non-login shells
- 1.3 Special files for Bash
- 1.4 Overview of a standard directory tree
- 1.5 Useful environment variables
- 6.1 Essential RPM query options
- 6.2 RPM verify options
- 15.1 Service management commands
- 15.2 Commands for enabling and disabling services
- 15.3 System V runlevels and
systemd
target units - 19.1 Private IP address domains
- 19.2 Parameters for /etc/host.conf
- 19.3 Databases available via /etc/nsswitch.conf
- 19.4 Configuration options for NSS “databases”
- 19.5 Feature comparison between bonding and team
- 21.1 Generating PFL from fontconfig rules
- 21.2 Results from generating PFL from fontconfig rules with changed order
- 21.3 Results from generating PFL from fontconfig rules
- 25.1
ulimit
: Setting resources for the user - 37.1 Commands for managing sfcbd
- 38.1 Man pages—categories and descriptions
- 39.1 Comparison of features and file names in the TAR archive
- 40.1 Log files
- 40.2 System information with the
/proc
file system - 40.3 System information with the
/sys
file system
- 1.1 A shell script printing a text
- 6.1 Zypper—list of known repositories
- 6.2
rpm -q -i wget
- 6.3 Script to search for packages
- 7.1 Example timeline configuration
- 14.1 Usage of grub2-mkconfig
- 14.2 Usage of grub2-mkrescue
- 14.3 Usage of grub2-script-check
- 14.4 Usage of grub2-once
- 15.1 List active services
- 15.2 List failed services
- 15.3 List all processes belonging to a service
- 18.1 Alternatives System of the
java
command - 19.1 Writing IP addresses
- 19.2 Linking IP addresses to the netmask
- 19.3 Sample IPv6 address
- 19.4 IPv6 address specifying the prefix length
- 19.5 Common network interfaces and some static routes
- 19.6
/var/run/netconfig/resolv.conf
- 19.7
/etc/hosts
- 19.8
/etc/networks
- 19.9
/etc/host.conf
- 19.10
/etc/nsswitch.conf
- 19.11 Output of the command ping
- 19.12 Configuration for load balancing with Network Teaming
- 19.13 Configuration for DHCP Network Teaming device
- 20.1 Error message from
lpd
- 20.2 Broadcast from the CUPS network server
- 21.1 Specifying rendering algorithms
- 21.2 Aliases and family name substitutions
- 21.3 Aliases and family name substitutions
- 21.4 Aliases and family names substitutions
- 24.1 Example
udev
rules - 25.1 Entry in /etc/crontab
- 25.2 /etc/crontab: remove time stamp files
- 25.3
ulimit
: Settings in~/.bashrc
- 31.1 Forwarding options in named.conf
- 31.2 A basic /etc/named.conf
- 31.3 Entry to disable logging
- 31.4 Zone entry for example.com
- 31.5 Zone entry for example.net
- 31.6 The /var/lib/named/example.com.zone file
- 31.7 Reverse lookup
- 32.1 The configuration file /etc/dhcpd.conf
- 32.2 Additions to the configuration file
- 34.1 Basic examples of name-based
VirtualHost
entries - 34.2 Name-based
VirtualHost
directives - 34.3 IP-based
VirtualHost
directives - 34.4 Basic
VirtualHost
configuration - 34.5 VirtualHost CGI configuration
- 36.1 A request with
squidclient
- 36.2 Defining ACL rules
- 39.1 Output of
hostinfo
when logging in asroot
Copyright © 2006–2024 SUSE LLC and contributors. All rights reserved.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation License”.
For SUSE trademarks, see https://www.suse.com/company/legal/. All third-party trademarks are the property of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates. Asterisks (*) denote third-party trademarks.
All information found in this book has been compiled with utmost attention to detail. However, this does not guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable for possible errors or the consequences thereof.
Preface #
1 Available documentation #
- Online documentation
Our documentation is available online at https://documentation.suse.com. Browse or download the documentation in various formats.
Note: Latest updatesThe latest updates are usually available in the English-language version of this documentation.
- SUSE Knowledgebase
If you have run into an issue, also check out the Technical Information Documents (TIDs) that are available online at https://www.suse.com/support/kb/. Search the SUSE Knowledgebase for known solutions driven by customer need.
- Release notes
For release notes, see https://www.suse.com/releasenotes/.
- In your system
For offline use, the release notes are also available under
/usr/share/doc/release-notes
on your system. The documentation for individual packages is available at/usr/share/doc/packages
.Many commands are also described in their manual pages. To view them, run
man
, followed by a specific command name. If theman
command is not installed on your system, install it withsudo zypper install man
.
2 Improving the documentation #
Your feedback and contributions to this documentation are welcome. The following channels for giving feedback are available:
- Service requests and support
For services and support options available for your product, see https://www.suse.com/support/.
To open a service request, you need a SUSE subscription registered at SUSE Customer Center. Go to https://scc.suse.com/support/requests, log in, and click .
- Bug reports
Report issues with the documentation at https://bugzilla.suse.com/.
To simplify this process, click the
icon next to a headline in the HTML version of this document. This preselects the right product and category in Bugzilla and adds a link to the current section. You can start typing your bug report right away.A Bugzilla account is required.
- Contributions
To contribute to this documentation, click the
icon next to a headline in the HTML version of this document. This will take you to the source code on GitHub, where you can open a pull request.A GitHub account is required.
Note:only available for EnglishThe
icons are only available for the English version of each document. For all other languages, use the icons instead.For more information about the documentation environment used for this documentation, see the repository's README.
You can also report errors and send feedback concerning the documentation to <doc-team@suse.com>. Include the document title, the product version, and the publication date of the document. Additionally, include the relevant section number and title (or provide the URL) and provide a concise description of the problem.
3 Documentation conventions #
The following notices and typographic conventions are used in this document:
/etc/passwd
: Directory names and file namesPLACEHOLDER: Replace PLACEHOLDER with the actual value
PATH
: An environment variablels
,--help
: Commands, options, and parametersuser
: The name of a user or grouppackage_name: The name of a software package
Alt, Alt–F1: A key to press or a key combination. Keys are shown in uppercase as on a keyboard.
AMD/Intel This paragraph is only relevant for the AMD64/Intel 64 architectures. The arrows mark the beginning and the end of the text block.
IBM Z, POWER This paragraph is only relevant for the architectures
IBM Z
andPOWER
. The arrows mark the beginning and the end of the text block.Chapter 1, “Example chapter”: A cross-reference to another chapter in this guide.
Commands that must be run with
root
privileges. You can also prefix these commands with thesudo
command to run them as a non-privileged user:#
command
>
sudo
command
Commands that can be run by non-privileged users:
>
command
Commands can be split into two or multiple lines by a backslash character (
\
) at the end of a line. The backslash informs the shell that the command invocation will continue after the line's end:>
echo
a b \ c dA code block that shows both the command (preceded by a prompt) and the respective output returned by the shell:
>
command
outputNotices
Warning: Warning noticeVital information you must be aware of before proceeding. Warns you about security issues, potential loss of data, damage to hardware, or physical hazards.
Important: Important noticeImportant information you should be aware of before proceeding.
Note: Note noticeAdditional information, for example about differences in software versions.
Tip: Tip noticeHelpful information, like a guideline or a piece of practical advice.
Compact Notices
Additional information, for example about differences in software versions.
Helpful information, like a guideline or a piece of practical advice.
4 Support #
Find the support statement for SUSE Linux Enterprise Server and general information about technology previews below. For details about the product lifecycle, see https://www.suse.com/lifecycle.
If you are entitled to support, find details on how to collect information for a support ticket at https://documentation.suse.com/sles-15/html/SLES-all/cha-adm-support.html.
4.1 Support statement for SUSE Linux Enterprise Server #
To receive support, you need an appropriate subscription with SUSE. To view the specific support offers available to you, go to https://www.suse.com/support/ and select your product.
The support levels are defined as follows:
- L1
Problem determination, which means technical support designed to provide compatibility information, usage support, ongoing maintenance, information gathering and basic troubleshooting using available documentation.
- L2
Problem isolation, which means technical support designed to analyze data, reproduce customer problems, isolate a problem area and provide a resolution for problems not resolved by Level 1 or prepare for Level 3.
- L3
Problem resolution, which means technical support designed to resolve problems by engaging engineering to resolve product defects which have been identified by Level 2 Support.
For contracted customers and partners, SUSE Linux Enterprise Server is delivered with L3 support for all packages, except for the following:
Technology previews.
Sound, graphics, fonts, and artwork.
Packages that require an additional customer contract.
Some packages shipped as part of the module Workstation Extension are L2-supported only.
Packages with names ending in -devel (containing header files and similar developer resources) will only be supported together with their main packages.
SUSE will only support the usage of original packages. That is, packages that are unchanged and not recompiled.
4.2 Technology previews #
Technology previews are packages, stacks, or features delivered by SUSE to provide glimpses into upcoming innovations. Technology previews are included for your convenience to give you a chance to test new technologies within your environment. We would appreciate your feedback. If you test a technology preview, please contact your SUSE representative and let them know about your experience and use cases. Your input is helpful for future development.
Technology previews have the following limitations:
Technology previews are still in development. Therefore, they may be functionally incomplete, unstable, or otherwise not suitable for production use.
Technology previews are not supported.
Technology previews may only be available for specific hardware architectures.
Details and functionality of technology previews are subject to change. As a result, upgrading to subsequent releases of a technology preview may be impossible and require a fresh installation.
SUSE may discover that a preview does not meet customer or market needs, or does not comply with enterprise standards. Technology previews can be removed from a product at any time. SUSE does not commit to providing a supported version of such technologies in the future.
For an overview of technology previews shipped with your product, see the release notes at https://www.suse.com/releasenotes.
Part I Common tasks #
- 1 Bash and Bash scripts
Today, many people use computers with a graphical user interface (GUI) like GNOME. Although GUIs offer many features, they're limited when performing automated task execution. Shells complement GUIs well, and this chapter gives an overview of some aspects of shells, in this case the Bash shell.
- 2
sudo
basics Running certain commands requires root privileges. However, for security reasons and to avoid mistakes, it is not recommended to log in as
root
. A safer approach is to log in as a regular user, and then usesudo
to run commands with elevated privileges.- 3 Using YaST
YaST is a SUSE Linux Enterprise Server tool that provides a graphical interface for all essential installation and system configuration tasks. Whether you need to update packages, configure a printer, modify firewall settings, set up an FTP server, or partition a hard disk—you can do it using YaST. …
- 4 YaST in text mode
The ncurses-based pseudo-graphical YaST interface is designed primarily to help system administrators to manage systems without an X server. The interface offers several advantages compared to the conventional GUI. You can navigate the ncurses interface using the keyboard, and there are keyboard sho…
- 5 YaST online update
SUSE offers a continuous stream of software security updates for your product. By default, the update applet is used to keep your system up-to-date. Refer to Book “Deployment Guide”, Chapter 21 “Installing or removing software”, Section 21.5 “The GNOME package updater” for further information on the…
- 6 Managing software with command line tools
This chapter describes Zypper and RPM, two command line tools for managing software. For a definition of the terminology used in this context (for example,
repository
,patch
, orupdate
) refer to Book “Deployment Guide”, Chapter 21 “Installing or removing software”, Section 21.1 “Definition of terms”.- 7 System recovery and snapshot management with Snapper
Snapper allows creating and managing file system snapshots. File system snapshots allow keeping a copy of the state of a file system at a certain point of time. The standard setup of Snapper is designed to allow rolling back system changes. However, you can also use it to create on-disk backups of user data. As the basis for this functionality, Snapper uses the Btrfs file system or thinly-provisioned LVM volumes with an XFS or Ext4 file system.
- 8 Live kernel patching with KLP
This document describes the basic principles of the Kernel Live Patching (KLP) technology, and provides usage guidelines for the SLE Live Patching service.
- 9 Transactional updates
Transactional updates are available in SUSE Linux Enterprise Server as a technology preview, for updating SLES when the root file system is read-only. Transactional updates are atomic (all updates are applied only if all updates succeed) and support rollbacks. It does not affect a running system as no changes are activated until after the system is rebooted. As reboots are disruptive, the admin must decide if a reboot is more expensive than disturbing running services. If reboots are too expensive then do not use transactional updates.
Transactional updates are run daily by the
transactional-update
script. The script checks for available updates. If there are any updates, it creates a new snapshot of the root file system in the background, and then fetches updates from the release channels. After the new snapshot is completely updated, it is marked as active and will be the new default root file system after the next reboot of the system. Whentransactional-update
is set to run automatically (which is the default behavior) it also reboots the system. Both the time that the update runs and the reboot maintenance window are configurable.Only packages that are part of the snapshot of the root file system can be updated. If packages contain files that are not part of the snapshot, the update could fail or break the system.
RPMs that require a license to be accepted cannot be updated.
- 10 Remote graphical sessions with VNC
Virtual Network Computing (VNC) enables you to access a remote computer via a graphical desktop, and run remote graphical applications. VNC is platform-independent and accesses the remote machine from any operating system. This chapter describes how to connect to a VNC server with the desktop clients vncviewer and Remmina, and how to operate a VNC server.
SUSE Linux Enterprise Server supports two different kinds of VNC sessions: One-time sessions that “live” as long as the VNC connection from the client is kept up, and persistent sessions that “live” until they are explicitly terminated.
A VNC server can offer both kinds of sessions simultaneously on different ports, but an open session cannot be converted from one type to the other.
- 11 File copying with RSync
Today, a typical user has several computers: home and workplace machines, a laptop, a smartphone or a tablet. This makes the task of keeping files and documents in synchronization across multiple devices all the more important.
1 Bash and Bash scripts #
Today, many people use computers with a graphical user interface (GUI) like GNOME. Although GUIs offer many features, they're limited when performing automated task execution. Shells complement GUIs well, and this chapter gives an overview of some aspects of shells, in this case the Bash shell.
1.1 What is “the shell”? #
Traditionally, the Linux shell is Bash (Bourne again Shell). When this chapter speaks about “the shell” it means Bash. There are more shells available (ash, csh, ksh, zsh, …), each employing different features and characteristics.
1.1.1 Bash configuration files #
A shell can be invoked as an:
Interactive login shell. This is used when logging in to a machine, invoking Bash with the
--login
option or when logging in to a remote machine with SSH.Interactive non-login shell. This is normally the case when starting xterm, konsole, gnome-terminal, or similar command-line interface (CLI) tools.
Non-interactive non-login shell. This is invoked when invoking a shell script at the command line.
Depending on the type of shell you use, different configuration files will be read. The following tables show the login and non-login shell configuration files.
Bash looks for its configuration files in a specific order depending on
the type of shell where it is run. Find more details on the Bash man
page (man 1 bash
). Search for the headline
INVOCATION
.
File |
Description |
---|---|
|
Do not modify this file, otherwise your modifications may be destroyed during your next update! |
|
Use this file if you extend |
|
Contains system-wide configuration files for specific programs |
|
Insert user specific configuration for login shells here |
Note that the login shell also sources the configuration files listed under Table 1.2, “Bash configuration files for non-login shells”.
|
Do not modify this file, otherwise your modifications may be destroyed during your next update! |
|
Use this file to insert your system-wide modifications for Bash only |
|
Insert user specific configuration here |
Additionally, Bash uses some more files:
File |
Description |
---|---|
|
Contains a list of all commands you have typed |
|
Executed when logging out |
|
User defined aliases of frequently used commands. See
|
No-Login Shells#
There are special shells that block users from logging into
the system: /bin/false
and
/sbin/nologin
. Both fail silently
when the user attempts to log into the system. This was intended
as a security measure for system users, though modern
Linux operating systems have more effective tools for controlling system
access, such as PAM and AppArmor.
The default on SUSE Linux Enterprise Server is to assign /bin/bash
to human users, and /bin/false
or
/sbin/nologin
to system users.
The nobody
user has /bin/bash
for historical reasons, as
it is a minimally-privileged user that used to be the default for system users.
However, whatever little bit of security gained by using
nobody
is lost when
multiple system users use it. It should be possible to change it to
/sbin/nologin
; the fastest way to test it is change
it and see if it breaks any services or applications.
Use the following command to list which shells are assigned to all users,
system and human users, in /etc/passwd
. The output
varies according to the services and users on your system:
>
sort -t: -k 7 /etc/passwd | awk -F: '{print $1"\t" $7}' | column -t
tux /bin/bash
nobody /bin/bash
root /bin/bash
avahi /bin/false
chrony /bin/false
dhcpd /bin/false
dnsmasq /bin/false
ftpsecure /bin/false
lightdm /bin/false
mysql /bin/false
postfix /bin/false
rtkit /bin/false
sshd /bin/false
tftp /bin/false
unbound /bin/false
bin /sbin/nologin
daemon /sbin/nologin
ftp /sbin/nologin
lp /sbin/nologin
mail /sbin/nologin
man /sbin/nologin
nscd /sbin/nologin
polkitd /sbin/nologin
pulse /sbin/nologin
qemu /sbin/nologin
radvd /sbin/nologin
rpc /sbin/nologin
statd /sbin/nologin
svn /sbin/nologin
systemd-coredump /sbin/nologin
systemd-network /sbin/nologin
systemd-timesync /sbin/nologin
usbmux /sbin/nologin
vnc /sbin/nologin
wwwrun /sbin/nologin
messagebus /usr/bin/false
scard /usr/sbin/nologin
1.1.2 The directory structure #
The following table provides a short overview of the most important higher-level directories that you find on a Linux system. Find more detailed information about the directories and important subdirectories in the following list.
Directory |
Contents |
---|---|
|
Root directory—the starting point of the directory tree. |
|
Essential binary files, such as commands that are needed by both the system administrator and normal users. Usually also contains the shells, such as Bash. |
|
Static files of the boot loader. |
|
Files needed to access host-specific devices. |
|
Host-specific system configuration files. |
|
Holds the home directories of all users who have accounts on the system.
However, |
|
Essential shared libraries and kernel modules. |
|
Mount points for removable media. |
|
Mount point for temporarily mounting a file system. |
|
Add-on application software packages. |
|
Home directory for the superuser |
|
Essential system binaries. |
|
Data for services provided by the system. |
|
Temporary files. |
|
Secondary hierarchy with read-only data. |
|
Variable data such as log files. |
|
Only available if you have both Microsoft Windows* and Linux installed on your system. Contains the Windows data. |
The following list provides more detailed information and gives some examples of which files and subdirectories can be found in the directories:
/bin
Contains the basic shell commands that may be used both by
root
and by other users. These commands includels
,mkdir
,cp
,mv
,rm
andrmdir
./bin
also contains Bash, the default shell in SUSE Linux Enterprise Server./boot
Contains data required for booting, such as the boot loader, the kernel, and other data that is used before the kernel begins executing user-mode programs.
/dev
Holds device files that represent hardware components.
/etc
Contains local configuration files that control the operation of programs like the X Window System. The
/etc/init.d
subdirectory contains LSB init scripts that can be executed during the boot process./home/USERNAME
Holds the private data of every user who has an account on the system. The files located here can only be modified by their owner or by the system administrator. By default, your e-mail directory and personal desktop configuration are located here in the form of hidden files and directories, such as
.gconf/
and.config
.Note: Home directory in a network environmentIf you are working in a network environment, your home directory may be mapped to a directory in the file system other than
/home
./lib
Contains the essential shared libraries needed to boot the system and to run the commands in the root file system. The Windows equivalent for shared libraries are DLL files.
/media
Contains mount points for removable media, such as CD-ROMs, flash disks, and digital cameras (if they use USB).
/media
generally holds any type of drive except the hard disk of your system. When your removable medium has been inserted or connected to the system and has been mounted, you can access it from here./mnt
This directory provides a mount point for a temporarily mounted file system.
root
may mount file systems here./opt
Reserved for the installation of third-party software. Optional software and larger add-on program packages can be found here.
/root
Home directory for the
root
user. The personal data ofroot
is located here./run
A tmpfs directory used by
systemd
and various components./var/run
is a symbolic link to/run
./sbin
As the
s
indicates, this directory holds utilities for the superuser./sbin
contains the binaries essential for booting, restoring and recovering the system in addition to the binaries in/bin
./srv
Holds data for services provided by the system, such as FTP and HTTP.
/tmp
This directory is used by programs that require temporary storage of files.
Important: Cleaning up/tmp
at boot timeData stored in
/tmp
is not guaranteed to survive a system reboot. It depends, for example, on settings made in/etc/tmpfiles.d/tmp.conf
./usr
/usr
has nothing to do with users, but is the acronym for Unix system resources. The data in/usr
is static, read-only data that can be shared among various hosts compliant with theFilesystem Hierarchy Standard
(FHS). This directory contains all application programs including the graphical desktops such as GNOME and establishes a secondary hierarchy in the file system./usr
holds several subdirectories, such as/usr/bin
,/usr/sbin
,/usr/local
, and/usr/share/doc
./usr/bin
Contains generally accessible programs.
/usr/sbin
Contains programs reserved for the system administrator, such as repair functions.
/usr/local
In this directory the system administrator can install local, distribution-independent extensions.
/usr/share/doc
Holds various documentation files and the release notes for your system. In the
manual
subdirectory find an online version of this manual. If more than one language is installed, this directory may contain versions of the manuals for different languages.Under
packages
find the documentation included in the software packages installed on your system. For every package, a subdirectory/usr/share/doc/packages/PACKAGENAME
is created that often holds README files for the package and sometimes examples, configuration files or additional scripts.If HOWTOs are installed on your system
/usr/share/doc
also holds thehowto
subdirectory in which to find additional documentation on many tasks related to the setup and operation of Linux software./var
Whereas
/usr
holds static, read-only data,/var
is for data which is written during system operation and thus is variable data, such as log files or spooling data. For an overview of the most important log files you can find under/var/log/
, refer to Table 40.1, “Log files”./windows
Only available if you have both Microsoft Windows and Linux installed on your system. Contains the Windows data available on the Windows partition of your system. Whether you can edit the data in this directory depends on the file system your Windows partition uses. If it is FAT32, you can open and edit the files in this directory. For NTFS, SUSE Linux Enterprise Server also includes write access support. However, the driver for the NTFS-3g file system has limited functionality.
1.2 Writing shell scripts #
Shell scripts provide a convenient way to perform a wide range of tasks: collecting data, searching for a word or phrase in a text and other useful things. The following example shows a small shell script that prints a text:
#!/bin/sh 1 # Output the following line: 2 echo "Hello World" 3
The first line begins with the Shebang
characters ( | |
The second line is a comment beginning with the hash sign. We recommend that you comment difficult lines. With proper commenting, you can remember the purpose and function of the line. Also, other readers will hopefully understand your script. Commenting is considered good practice in the development community. | |
The third line uses the built-in command |
Before you can run this script, there are a few prerequisites:
Every script should contain a Shebang line (as in the example above). If the line is missing, you need to call the interpreter manually.
You can save the script wherever you want. However, it is a good idea to save it in a directory where the shell can find it. The search path in a shell is determined by the environment variable
PATH
. Usually a normal user does not have write access to/usr/bin
. Therefore it is recommended to save your scripts in the users' directory~/bin/
. The above example gets the namehello.sh
.The script needs executable permissions. Set the permissions with the following command:
>
chmod +x ~/bin/hello.sh
If you have fulfilled all of the above prerequisites, you can execute the script in the following ways:
As absolute path. The script can be executed with an absolute path. In our case, it is
~/bin/hello.sh
.Everywhere. If the
PATH
environment variable contains the directory where the script is located, you can execute the script withhello.sh
.
1.3 Redirecting command events #
Each command can use three channels, either for input or output:
Standard output. This is the default output channel. Whenever a command prints something, it uses the standard output channel.
Standard input. If a command needs input from users or other commands, it uses this channel.
Standard error. Commands use this channel for error reporting.
To redirect these channels, there are the following possibilities:
Command > File
Saves the output of the command into a file, an existing file will be deleted. For example, the
ls
command writes its output into the filelisting.txt
:>
ls > listing.txtCommand >> File
Appends the output of the command to a file. For example, the
ls
command appends its output to the filelisting.txt
:>
ls >> listing.txtCommand < File
Reads the file as input for the given command. For example, the
read
command reads in the content of the file into the variable:>
read a < fooCommand1 | Command2
Redirects the output of the left command as input for the right command. For example, the
cat
command outputs the content of the/proc/cpuinfo
file. This output is used bygrep
to filter only those lines which containcpu
:>
cat /proc/cpuinfo | grep cpu
Every channel has a file descriptor: 0 (zero) for
standard input, 1 for standard output and 2 for standard error. It is
allowed to insert this file descriptor before a <
or
>
character. For example, the following line searches
for a file starting with foo
, but suppresses its errors
by redirecting it to /dev/null
:
>
find / -name "foo*" 2>/dev/null
1.4 Using aliases #
An alias is a shortcut definition of one or more commands. The syntax for an alias is:
alias NAME=DEFINITION
For example, the following line defines an alias lt
that
outputs a long listing (option -l
), sorts it by
modification time (-t
), and prints it in reverse sorted order (-r
):
>
alias lt='ls -ltr'
To view all alias definitions, use alias
. Remove your
alias with unalias
and the corresponding alias name.
1.5 Using variables in Bash #
A shell variable can be global or local. Global variables, or environment variables, can be accessed in all shells. In contrast, local variables are visible in the current shell only.
To view all environment variables, use the printenv
command. If you need to know the value of a variable, insert the name of
your variable as an argument:
>
printenv PATH
A variable, be it global or local, can also be viewed with
echo
:
>
echo $PATH
To set a local variable, use a variable name followed by the equal sign, followed by the value:
>
PROJECT="SLED"
Do not insert spaces around the equal sign, otherwise you get an error. To
set an environment variable, use export
:
>
export NAME="tux"
To remove a variable, use unset
:
>
unset NAME
The following table contains some common environment variables which can be used in you shell scripts:
|
the home directory of the current user |
|
the current host name |
|
when a tool is localized, it uses the language from this environment
variable. English can also be set to |
|
the search path of the shell, a list of directories separated by colon |
|
specifies the normal prompt printed before each command |
|
specifies the secondary prompt printed when you execute a multi-line command |
|
current working directory |
|
the current user |
1.5.1 Using argument variables #
For example, if you have the script foo.sh
you can
execute it like this:
>
foo.sh "Tux Penguin" 2000
To access all the arguments which are passed to your script, you need
positional parameters. These are $1
for the first argument,
$2
for the second, and so on. You can have up to nine
parameters. To get the script name, use $0
.
The following script foo.sh
prints all arguments from 1
to 4:
#!/bin/sh echo \"$1\" \"$2\" \"$3\" \"$4\"
If you execute this script with the above arguments, you get:
"Tux Penguin" "2000" "" ""
1.5.2 Using variable substitution #
Variable substitutions apply a pattern to the content of a variable either from the left or right side. The following list contains the possible syntax forms:
${VAR#pattern}
removes the shortest possible match from the left:
>
file=/home/tux/book/book.tar.bz2>
echo ${file#*/} home/tux/book/book.tar.bz2${VAR##pattern}
removes the longest possible match from the left:
>
file=/home/tux/book/book.tar.bz2>
echo ${file##*/} book.tar.bz2${VAR%pattern}
removes the shortest possible match from the right:
>
file=/home/tux/book/book.tar.bz2>
echo ${file%.*} /home/tux/book/book.tar${VAR%%pattern}
removes the longest possible match from the right:
>
file=/home/tux/book/book.tar.bz2>
echo ${file%%.*} /home/tux/book/book${VAR/pattern_1/pattern_2}
substitutes the content of VAR from the PATTERN_1 with PATTERN_2:
>
file=/home/tux/book/book.tar.bz2>
echo ${file/tux/wilber} /home/wilber/book/book.tar.bz2
1.6 Grouping and combining commands #
Shells allow you to concatenate and group commands for conditional execution. Each command returns an exit code which determines the success or failure of its operation. If it is 0 (zero) the command was successful, everything else marks an error which is specific to the command.
The following list shows, how commands can be grouped:
Command1 ; Command2
executes the commands in sequential order. The exit code is not checked. The following line displays the content of the file with
cat
and then prints its file properties withls
regardless of their exit codes:>
cat filelist.txt ; ls -l filelist.txtCommand1 && Command2
runs the right command, if the left command was successful (logical AND). The following line displays the content of the file and prints its file properties only, when the previous command was successful (compare it with the previous entry in this list):
>
cat filelist.txt && ls -l filelist.txtCommand1 || Command2
runs the right command, when the left command has failed (logical OR). The following line creates only a directory in
/home/wilber/bar
when the creation of the directory in/home/tux/foo
has failed:>
mkdir /home/tux/foo || mkdir /home/wilber/barfuncname(){ ... }
creates a shell function. You can use the positional parameters to access its arguments. The following line defines the function
hello
to print a short message:>
hello() { echo "Hello $1"; }You can call this function like this:
>
hello Tuxwhich prints:
Hello Tux
1.7 Working with common flow constructs #
To control the flow of your script, a shell has while
,
if
, for
and case
constructs.
1.7.1 The if control command #
The if
command is used to check expressions. For
example, the following code tests whether the current user is Tux:
if test $USER = "tux"; then echo "Hello Tux." else echo "You are not Tux." fi
The test expression can be as complex or simple as possible. The following
expression checks if the file foo.txt
exists:
if test -e /tmp/foo.txt ; then echo "Found foo.txt" fi
The test expression can also be abbreviated in square brackets:
if [ -e /tmp/foo.txt ] ; then echo "Found foo.txt" fi
Find more useful expressions at https://bash.cyberciti.biz/guide/If..else..fi.
1.7.2 Creating loops with the for
command #
The for
loop allows you to execute commands to a list of
entries. For example, the following code prints some information about PNG
files in the current directory:
for i in *.png; do ls -l $i done
1.8 More information #
Important information about Bash is provided in the man pages man
bash
. More about this topic can be found in the following list:
https://tldp.org/LDP/Bash-Beginners-Guide/html/index.html—Bash Guide for Beginners
https://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html—BASH Programming - Introduction HOW-TO
https://tldp.org/LDP/abs/html/index.html—Advanced Bash-Scripting Guide
http://www.grymoire.com/Unix/Sh.html—Sh - the Bourne Shell
2 sudo
basics #
Running certain commands requires root privileges. However, for security
reasons and to avoid mistakes, it is not recommended to log in as
root
. A safer approach is to log in as a regular user, and
then use sudo
to run commands with elevated privileges.
On SUSE Linux Enterprise Server, sudo
is configured to work similarly to su
. However,
sudo
provides a flexible mechanism that allows users to run commands with
privileges of any other user. This can be used to assign roles with specific
privileges to certain users and groups. For example, it is possible to allow
members of the group users
to run a command with the privileges of
user wilber
. Access to the command can be further restricted by
disallowing any command options. While su always requires the root
password for authentication with PAM, sudo
can be configured to
authenticate with your own credentials. This means that the users do not have
to share the root
password, which improves security.
2.1 Basic sudo
usage #
The following chapter provides an introduction to basic usage of sudo
.
2.1.1 Running a single command #
As a regular user, you can run any command as root
by
adding sudo
before it. This prompts you to provide the root password. If
authenticated successfully, this runs the command as root
:
>
id -un
1 tux>
sudo
id -un
root's password:2 root>
id -un
tux3>
sudo
id -un
4 root
The | |
The password is not shown during input, neither as clear text nor as masking characters. | |
Only commands that start with | |
The elevated privileges persist for a certain period of time, so you
do not need to provide the |
When using sudo
, I/O redirection does not work:
>
sudo
echo s > /proc/sysrq-trigger bash: /proc/sysrq-trigger: Permission denied>
sudo
cat < /proc/1/maps bash: /proc/1/maps: Permission denied
In the example above, only the echo
and
cat
commands run with elevated privileges. The
redirection is done by the user's shell with user privileges. To perform
redirection with elevated privileges, either start a shell as in Section 2.1.2, “Starting a shell” or use the dd
utility:
echo s | sudo dd of=/proc/sysrq-trigger sudo dd if=/proc/1/maps | cat
2.1.2 Starting a shell #
Using sudo
every time to run a command with elevated privileges is not
always practical. While you can use the sudo bash
command, it is recommended to use one of the built-in mechanisms to start a
shell:
sudo -s (<command>)
Starts a shell specified by the
SHELL
environment variable or the target user's default shell. If a command is specified, it is passed to the shell (with the-c
option). Otherwise the shell runs in interactive mode.tux:~ >
sudo -s root's password:root:/home/tux #
exittux:~ >
sudo -i (<command>)
Similar to
-s
, but starts the shell as a login shell. This means that the shell's start-up files (.profile
etc.) are processed, and the current working directory is set to the target user's home directory.tux:~ >
sudo -i root's password:root:~ #
exittux:~ >
By default, sudo
does not propagate environment variables. This behavior
can be changed using the env_reset
option (see Useful flags and options).
2.2 Configuring sudo
#
sudo
provides a wide range on configurable options.
If you accidentally locked yourself out of sudo
, use su
-
and the root
password to start a root shell.
To fix the error, run visudo
.
2.2.1 Editing the configuration files #
The main policy configuration file for sudo
is
/etc/sudoers
. As it is possible to lock yourself out
of the system if the file is malformed, it is strongly recommended to use
visudo
for editing. It prevents editing conflicts and
checks for syntax errors before saving the modifications.
You can use another editor instead of vi by setting the
EDITOR
environment variable, for example:
sudo EDITOR=/usr/bin/nano visudo
Keep in mind that the /etc/sudoers
file is supplied by
the system packages, and modifications done directly in the file may break
updates. Therefore, it is recommended to put custom configuration into
files in the /etc/sudoers.d/
directory. Use the
following command to create or edit a file:
sudo visudo -f /etc/sudoers.d/NAME
The command bellow opens the file using a different editor (in this case,
nano
):
sudo EDITOR=/usr/bin/nano visudo -f /etc/sudoers.d/NAME
/etc/sudoers.d
The #includedir
directive in
/etc/sudoers
ignores files that end with the
~
(tilde) character or contain the .
(dot) character.
For more information on the visudo
command, run
man 8 visudo
.
2.2.2 Basic sudoers configuration syntax #
The sudoers configuration files contain two types of options: strings and flags. While strings can contain any value, flags can be turned either ON or OFF. The most important syntax constructs for sudoers configuration files are as follows:
# Everything on a line after # is ignored 1 Defaults !insults # Disable the insults flag 2 Defaults env_keep += "DISPLAY HOME" # Add DISPLAY and HOME to env_keep tux ALL = NOPASSWD: /usr/bin/frobnicate, PASSWD: /usr/bin/journalctl 3
There are two exceptions: | |
Remove the | |
-
targetpw
This flag controls whether the invoking user is required to enter the password of the target user (ON) (for example
root
) or the invoking user (OFF).Defaults targetpw # Turn targetpw flag ON
-
rootpw
If set,
sudo
prompts for theroot
password. The default is OFF.Defaults !rootpw # Turn rootpw flag OFF
-
env_reset
If set,
sudo
constructs a minimal environment withTERM
,PATH
,HOME
,MAIL
,SHELL
,LOGNAME
,USER
,USERNAME
, andSUDO_*
. Additionally, variables listed inenv_keep
are imported from the calling environment. The default is ON.Defaults env_reset # Turn env_reset flag ON
-
env_keep
List of environment variables to keep when the
env_reset
flag is ON.# Set env_keep to contain EDITOR and PROMPT Defaults env_keep = "EDITOR PROMPT" Defaults env_keep += "JRE_HOME" # Add JRE_HOME Defaults env_keep -= "JRE_HOME" # Remove JRE_HOME
-
env_delete
List of environment variables to remove when the
env_reset
flag is OFF.# Set env_delete to contain EDITOR and PROMPT Defaults env_delete = "EDITOR PROMPT" Defaults env_delete += "JRE_HOME" # Add JRE_HOME Defaults env_delete -= "JRE_HOME" # Remove JRE_HOME
The Defaults
token can also be used to create aliases
for a collection of users, hosts, and commands. Furthermore, it is possible
to apply an option only to a specific set of users.
For detailed information about the /etc/sudoers
configuration file, consult man 5 sudoers
.
2.2.3 Basic sudoers rules #
Each rule follows the following scheme
([]
marks optional parts):
#Who Where As whom Tag What User_List Host_List = [(User_List)] [NOPASSWD:|PASSWD:] Cmnd_List
User_List
One or several (separated by comma) identifiers: either a user name, a group in the format
%GROUPNAME
, or a user ID in the format#UID
. Negation can be specified with the!
prefix.Host_List
One or several (separated by comma) identifiers: either a (fully qualified) host name or an IP address. Negation can be specified with the
!
prefix.ALL
is a common choice forHost_List
.NOPASSWD:|PASSWD:
The user is not prompted for a password when running commands matching
Cmd_List
afterNOPASSWD:
.PASSWD
is the default. It only needs to be specified when bothPASSWD
andNOPASSWD
are on the same line:tux ALL = PASSWD: /usr/bin/foo, NOPASSWD: /usr/bin/bar
Cmnd_List
One or several (separated by comma) specifiers: A path to an executable, followed by an optional allowed argument.
/usr/bin/foo # Anything allowed /usr/bin/foo bar # Only "/usr/bin/foo bar" allowed /usr/bin/foo "" # No arguments allowed
ALL
can be used as User_List
,
Host_List
, and Cmnd_List
.
A rule that allows tux
to run all commands as root without
entering a password:
tux ALL = NOPASSWD: ALL
A rule that allows tux
to run systemctl restart
apache2
:
tux ALL = /usr/bin/systemctl restart apache2
A rule that allows tux
to run wall
as
admin
with no arguments:
tux ALL = (admin) /usr/bin/wall ""
Do not use rules like ALL ALL =
ALL
without Defaults targetpw
. Otherwise
anyone can run commands as root
.
2.3 sudo
use cases #
While the default configuration works for standard usage scenarios, you can customize the default configuration to meet your specific needs.
2.3.1 Using sudo
without root
password #
By design, members of the group
wheel
can run all commands
with sudo
as root. The following procedure explains how to add a user
account to the wheel
group.
Verify that the
wheel
group exists:>
getent group wheel
If the previous command returned no result, install the system-group-wheel package that creates the
wheel
group:>
sudo
zypper install system-group-wheel
Add your user account to the group
wheel
.If your user account is not already a member of the
wheel
group, add it using thesudo usermod -a -G wheel USERNAME
command. Log out and log in again to enable the change. Verify that the change was successful by running thegroups USERNAME
command.Authenticate with the user account's normal password.
Create the file
/etc/sudoers.d/userpw
using thevisudo
command (see Section 2.2.1, “Editing the configuration files”) and add the following:Defaults !targetpw
Select a new default rule.
Depending on whether you want users to re-enter their passwords, uncomment the appropriate line in
/etc/sudoers
and comment out the default rule.## Uncomment to allow members of group wheel to execute any command # %wheel ALL=(ALL) ALL ## Same thing without a password # %wheel ALL=(ALL) NOPASSWD: ALL
Make the default rule more restrictive.
Comment out or remove the allow-everything rule in
/etc/sudoers
:ALL ALL=(ALL) ALL # WARNING! Only use this together with 'Defaults targetpw'!
Warning: Dangerous rule in sudoersDo not skip this step. Otherwise any user can execute any command as
root
!Test the configuration.
Run
sudo
as member and non-member ofwheel
.tux:~ >
groups users wheeltux:~ >
sudo id -un tux's password: rootwilber:~ >
groups userswilber:~ >
sudo id -un wilber is not in the sudoers file. This incident will be reported.
2.3.2 Using sudo
with X.Org applications #
Starting graphical applications with sudo
usually results in the following
error:
>
sudo
xterm xterm: Xt error: Can't open display: %s xterm: DISPLAY is not set
A simple workaround is to use xhost to temporarily allow the root user to access the local user's X session. This is done using the following command:
xhost si:localuser:root
The command below removes the granted access:
xhost -si:localuser:root
Running graphical applications with root privileges has security implications. It is recommended to enable root access for a graphical application only as an exception. It is also recommended to revoke the granted root access as soon as the graphical application is closed.
2.4 More information #
The sudo --help
command offers a brief overview of the
available command line options, while the man sudoers
command provides detailed information about sudoers
and its configuration.
3 Using YaST #
YaST is a SUSE Linux Enterprise Server tool that provides a graphical interface for all essential installation and system configuration tasks. Whether you need to update packages, configure a printer, modify firewall settings, set up an FTP server, or partition a hard disk—you can do it using YaST. Written in Ruby, YaST features an extensible architecture that makes it possible to add new functionality via modules.
Additional information about YaST is available on the project's official Web site at https://yast.opensuse.org/.
3.1 YaST interface overview #
YaST has two graphical interfaces: one for use with graphical desktop environments like KDE and GNOME, and an ncurses-based pseudo-graphical interface for use on systems without an X server (see Chapter 4, YaST in text mode).
In the graphical version of YaST, all modules in YaST are grouped by category, and the navigation sidebar allows you to quickly access modules in the desired category. The search field at the top makes it possible to find modules by their names. To find a specific module, enter its name into the search field, and you should see the modules that match the entered string as you type.
The list of installed modules for the ncurses-based and GUI version of YaST may differ. Before starting any YaST module, verify that it is installed for the version of YaST that you are using.
3.2 Useful key combinations #
The graphical version of YaST supports keyboard shortcuts
- Print Screen
Take and save a screenshot. It may not work on certain desktop environments.
- Shift–F4
Enable and disable the color palette optimized for visually-impaired users.
- Shift–F7
Enable/disable logging of debug messages.
- Shift–F8
Open a file dialog to save log files to a user-defined location.
- Ctrl–Shift–Alt–D
Send a DebugEvent. YaST modules can react to this by executing special debugging actions. The result depends on the specific YaST module.
- Ctrl–Shift–Alt–M
Start and stop macro recorder.
- Ctrl–Shift–Alt–P
Replay macro.
- Ctrl–Shift–Alt–S
Show style sheet editor.
- Ctrl–Shift–Alt–T
Dump widget tree to the log file.
- Ctrl–Shift–Alt–X
Open a terminal window (xterm). Useful for installation process via VNC.
- Ctrl–Shift–Alt–Y
Show widget tree browser.
4 YaST in text mode #
The ncurses-based pseudo-graphical YaST interface is designed primarily to help system administrators to manage systems without an X server. The interface offers several advantages compared to the conventional GUI. You can navigate the ncurses interface using the keyboard, and there are keyboard shortcuts for practically all interface elements. The ncurses interface is light on resources, and runs fast even on modest hardware. You can run the ncurses-based version of YaST via an SSH connection, so you can administer remote systems. Keep in mind that the minimum supported size of the terminal emulator in which to run YaST is 80x25 characters.
To launch the ncurses-based version of YaST, open the terminal and run the
sudo yast2
command. Use the Tab or
arrow keys to navigate between interface elements like menu
items, fields, and buttons. All menu items and buttons in YaST can be
accessed using the appropriate function keys or keyboard shortcuts. For
example, you can cancel the current operation by pressing
F9, while the F10 key can be used to accept
the changes. Each menu item and button in YaST's ncurses-based interface
has a highlighted letter in its label. This letter is part of the keyboard
shortcut assigned to the interface element. For example, the letter
Q
is highlighted in the
button. This means that you can activate the button by pressing
Alt–Alt+Q.
If a YaST dialog gets corrupted or distorted (for example, while resizing the window), press Ctrl–L to refresh and restore its contents.
4.2 Advanced key combinations #
The ncurses-based version of YaST offers several advanced key combinations.
- Shift–F1
List advanced hotkeys.
- Shift–F4
Change color schema.
- Ctrl–Q
Quit the application.
- Ctrl–L
Refresh screen.
- Ctrl–DF1
List advanced hotkeys.
- Ctrl–DShift–D
Dump dialog to the log file as a screenshot.
- Ctrl–DShift–Y
Open YDialogSpy to see the widget hierarchy.
4.3 Restriction of key combinations #
If your window manager uses global Alt combinations, the Alt combinations in YaST might not work. Keys like Alt or Shift can also be occupied by the settings of the terminal.
- Using Alt instead of Esc
Alt shortcuts can be executed with Esc instead of Alt. For example, Esc–H replaces Alt–H. (Press Esc, then press H.)
- Backward and forward navigation with Ctrl–F and Ctrl–B
If the Alt and Shift combinations are taken over by the window manager or the terminal, use the combinations Ctrl–F (forward) and Ctrl–B (backward) instead.
- Restriction of function keys
The function keys (F1 ... F12) are also used for functions. Certain function keys might be taken over by the terminal and may not be available for YaST. However, the Alt key combinations and function keys should always be fully available on a text-only console.
4.4 YaST command line options #
Besides the text mode interface, YaST provides a command line interface. To get a list of YaST command line options, use the following command:
>
sudo
yast -h
4.4.1 Installing packages from the command line #
If you know the package name, and the package is provided by an active
installation repository, you can use the command line option
-i
to install the package:
>
sudo
yast -i package_name
or
>
sudo
yast --install -i package_name
package_name can be a single short package name (for example gvim) installed with dependency checking, or the full path to an RPM package, which is installed without dependency checking.
While YaST offers basic functionality for managing software from the command line, consider using Zypper for more advanced package management tasks. Find more information on using Zypper in Section 6.1, “Using Zypper”.
4.4.2 Working with individual modules #
To save time, you can start individual YaST modules using the following command:
>
sudo
yast module_name
View a list of all modules available on your system with yast
-l
or yast --list
.
4.4.3 Command line parameters of YaST modules #
To use YaST functionality in scripts, YaST provides command line support for individual modules. However, not all modules have command line support. To display the available options of a module, use the following command:
>
sudo
yast module_name help
If a module does not provide command line support, it is started in a text mode with the following message:
This YaST module does not support the command line interface.
The following sections describe all YaST modules with command line support, along with a brief explanation of all their commands and available options.
4.4.3.1 Common YaST module commands #
All YaST modules support the following commands:
- help
Lists all the module's supported commands with their description:
>
sudo
yast lan help- longhelp
Same as
help
, but adds a detailed list of all command's options and their descriptions:>
sudo
yast lan longhelp- xmlhelp
Same as
longhelp
, but the output is structured as an XML document and redirected to a file:>
sudo
yast lan xmlhelp xmlfile=/tmp/yast_lan.xml- interactive
Enters the interactive mode. This lets you run the module's commands without prefixing them with
sudo yast
. Useexit
to leave the interactive mode.
4.4.3.2 yast add-on #
Adds a new add-on product from the specified path:
>
sudo
yast add-on http://server.name/directory/Lang-AddOn-CD1/
You can use the following protocols to specify the source path: http:// ftp:// nfs:// disk:// cd:// or dvd://.
4.4.3.3 yast audit-laf #
Displays and configures the Linux Audit Framework. Refer to the Book “Security and Hardening Guide” for more details. yast audit-laf
accepts the following commands:
- set
Sets an option:
>
sudo
yast audit-laf set log_file=/tmp/audit.logFor a complete list of options, run
yast audit-laf set help
.- show
Displays settings of an option:
>
sudo
yast audit-laf show diskspace space_left: 75 space_left_action: SYSLOG admin_space_left: 50 admin_space_left_action: SUSPEND action_mail_acct: root disk_full_action: SUSPEND disk_error_action: SUSPENDFor a complete list of options, run
yast audit-laf show help
.
4.4.3.4 yast dhcp-server #
Manages the DHCP server and configures its settings. yast
dhcp-server
accepts the following commands:
- disable
Disables the DHCP server service.
- enable
Enables the DHCP server service.
- host
Configures settings for individual hosts.
- interface
Specifies to which network interface to listen to:
>
sudo
yast dhcp-server interface current Selected Interfaces: eth0 Other Interfaces: bond0, pbu, eth1For a complete list of options, run
yast dhcp-server interface help
.- options
Manages global DHCP options. For a complete list of options, run
yast dhcp-server options help
.- status
Prints the status of the DHCP service.
- subnet
Manages the DHCP subnet options. For a complete list of options, run
yast dhcp-server subnet help
.
4.4.3.5 yast dns-server #
Manages the DNS server configuration. yast dns-server
accepts the following commands:
- acls
Displays access control list settings:
>
sudo
yast dns-server acls show ACLs: ----- Name Type Value ---------------------------- any Predefined localips Predefined localnets Predefined none Predefined- dnsrecord
Configures zone resource records:
>
sudo
yast dnsrecord add zone=example.org query=office.example.org type=NS value=ns3For a complete list of options, run
yast dns-server dnsrecord help
.- forwarders
Configures DNS forwarders:
>
sudo
yast dns-server forwarders add ip=10.0.0.100>
sudo
yast dns-server forwarders show [...] Forwarder IP ------------ 10.0.0.100For a complete list of options, run
yast dns-server forwarders help
.- host
Handles 'A' and its related 'PTR' record at once:
>
sudo
yast dns-server host show zone=example.orgFor a complete list of options, run
yast dns-server host help
.- logging
Configures logging settings:
>
sudo
yast dns-server logging set updates=no transfers=yesFor a complete list of options, run
yast dns-server logging help
.- mailserver
Configures zone mail servers:
>
sudo
yast dns-server mailserver add zone=example.org mx=mx1 priority=100For a complete list of options, run
yast dns-server mailserver help
.- nameserver
Configures zone name servers:
>
sudo
yast dns-server nameserver add zone=example.com ns=ns1For a complete list of options, run
yast dns-server nameserver help
.- soa
Configures the start of authority (SOA) record:
>
sudo
yast dns-server soa set zone=example.org serial=2006081623 ttl=2D3H20SFor a complete list of options, run
yast dns-server soa help
.- startup
Manages the DNS server service:
>
sudo
yast dns-server startup atbootFor a complete list of options, run
yast dns-server startup help
.- transport
Configures zone transport rules. For a complete list of options, run
yast dns-server transport help
.- zones
Manages DNS zones:
>
sudo
yast dns-server zones add name=example.org zonetype=masterFor a complete list of options, run
yast dns-server zones help
.
4.4.3.6 yast disk #
Prints information about all disks or partitions. The only supported
command is list
followed by either of the following
options:
- disks
Lists all configured disks in the system:
>
sudo
yast disk list disks Device | Size | FS Type | Mount Point | Label | Model ---------+------------+---------+-------------+-------+------------- /dev/sda | 119.24 GiB | | | | SSD 840 /dev/sdb | 60.84 GiB | | | | WD1003FBYX-0- partitions
Lists all partitions in the system:
>
sudo
yast disk list partitions Device | Size | FS Type | Mount Point | Label | Model ---------------+------------+---------+-------------+-------+------ /dev/sda1 | 1.00 GiB | Ext2 | /boot | | /dev/sdb1 | 1.00 GiB | Swap | swap | | /dev/sdc1 | 698.64 GiB | XFS | /mnt/extra | | /dev/vg00/home | 580.50 GiB | Ext3 | /home | | /dev/vg00/root | 100.00 GiB | Ext3 | / | | [...]
4.4.3.7 yast ftp-server #
Configures FTP server settings. yast ftp-server
accepts
the following options:
- SSL, TLS
Controls secure connections via SSL and TLS. SSL options are valid for the
vsftpd
only.>
sudo
yast ftp-server SSL enable>
sudo
yast ftp-server TLS disable- access
Configures access permissions:
>
sudo
yast ftp-server access authen_onlyFor a complete list of options, run
yast ftp-server access help
.- anon_access
Configures access permissions for anonymous users:
>
sudo
yast ftp-server anon_access can_uploadFor a complete list of options, run
yast ftp-server anon_access help
.- anon_dir
Specifies the directory for anonymous users. The directory must already exist on the server:
>
sudo
yast ftp-server anon_dir set_anon_dir=/srv/ftpFor a complete list of options, run
yast ftp-server anon_dir help
.- chroot
Controls change root environment (chroot):
>
sudo
yast ftp-server chroot enable>
sudo
yast ftp-server chroot disable- idle-time
Sets the maximum idle time in minutes before FTP server terminates the current connection:
>
sudo
yast ftp-server idle-time set_idle_time=15- logging
Determines whether to save the log messages into a log file:
>
sudo
yast ftp-server logging enable>
sudo
yast ftp-server logging disable- max_clients
Specifies the maximum number of concurrently connected clients:
>
sudo
yast ftp-server max_clients set_max_clients=1500- max_clients_ip
Specifies the maximum number of concurrently connected clients via IP:
>
sudo
yast ftp-server max_clients_ip set_max_clients=20- max_rate_anon
Specifies the maximum data transfer rate permitted for anonymous clients (KB/s):
>
sudo
yast ftp-server max_rate_anon set_max_rate=10000- max_rate_authen
Specifies the maximum data transfer rate permitted for locally authenticated users (KB/s):
>
sudo
yast ftp-server max_rate_authen set_max_rate=10000- port_range
Specifies the port range for passive connection replies:
>
sudo
yast ftp-server port_range set_min_port=20000 set_max_port=30000For a complete list of options, run
yast ftp-server port_range help
.- show
Displays FTP server settings.
- startup
Controls the FTP start-up method:
>
sudo
yast ftp-server startup atbootFor a complete list of options, run
yast ftp-server startup help
.- umask
Specifies the file umask for
authenticated:anonymous
users:>
sudo
yast ftp-server umask set_umask=177:077- welcome_message
Specifies the text to display when someone connects to the FTP server:
>
sudo
yast ftp-server welcome_message set_message="hello everybody"
4.4.3.8 yast http-server #
Configures the HTTP server (Apache2). yast http-server
accepts the following commands:
- configure
Configures the HTTP server host settings:
>
sudo
yast http-server configure host=main servername=www.example.com \ serveradmin=admin@example.comFor a complete list of options, run
yast http-server configure help
.
- hosts
Configures virtual hosts:
>
sudo
yast http-server hosts create servername=www.example.com \ serveradmin=admin@example.com documentroot=/var/wwwFor a complete list of options, run
yast http-server hosts help
.
- listen
Specifies the ports and network addresses where the HTTP server should listen:
>
sudo
yast http-server listen add=81>
sudo
yast http-server listen list Listen Statements: ================== :80 :81>
sudo
yast http-server delete=80For a complete list of options, run
yast http-server listen help
.
- mode
Enables or disables the wizard mode:
>
sudo
yast http-server mode wizard=on
- modules
Controls the Apache2 server modules:
>
sudo
yast http-server modules enable=php5,rewrite>
sudo
yast http-server modules disable=ssl>
sudo
http-server modules list [...] Enabled rewrite Disabled ssl Enabled php5 [...]
4.4.3.9 yast kdump #
Configures kdump
settings. For more information
on kdump
, refer to the
Book “System Analysis and Tuning Guide”, Chapter 20 “Kexec and Kdump”, Section 20.7 “Basic Kdump configuration”. yast kdump
accepts the following commands:
- copykernel
Copies the kernel into the dump directory.
- customkernel
Specifies the kernel_string part of the name of the custom kernel. The naming scheme is
/boot/vmlinu[zx]-kernel_string[.gz]
.>
sudo
yast kdump customkernel kernel=kdumpFor a complete list of options, run
yast kdump customkernel help
.- dumpformat
Specifies the (compression) format of the dump kernel image. Available formats are 'none', 'ELF', 'compressed', or 'lzo':
>
sudo
yast kdump dumpformat dump_format=ELF- dumplevel
Specifies the dump level number in the range from 0 to 31:
>
sudo
yast kdump dumplevel dump_level=24- dumptarget
Specifies the destination for saving dump images:
>
sudo
kdump dumptarget taget=ssh server=name_server port=22 \ dir=/var/log/dump user=user_nameFor a complete list of options, run
yast kdump dumptarget help
.- immediatereboot
Controls whether the system should reboot immediately after saving the core in the kdump kernel:
>
sudo
yast kdump immediatereboot enable>
sudo
yast kdump immediatereboot disable- keepolddumps
Specifies how many old dump images are kept. Specify zero to keep them all:
>
sudo
yast kdump keepolddumps no=5- kernelcommandline
Specifies the command line that needs to be passed off to the kdump kernel:
>
sudo
yast kdump kernelcommandline command="ro root=LABEL=/"- kernelcommandlineappend
Specifies the command line that you need to append to the default command line string:
>
sudo
yast kdump kernelcommandlineappend command="ro root=LABEL=/"- notificationcc
Specifies an e-mail address for sending copies of notification messages:
>
sudo
yast kdump notificationcc email="user1@example.com user2@example.com"- notificationto
Specifies an e-mail address for sending notification messages:
>
sudo
yast kdump notificationto email="user1@example.com user2@example.com"- show
Displays
kdump
settings:>
sudo
yast kdump show Kdump is disabled Dump Level: 31 Dump Format: compressed Dump Target Settings target: file file directory: /var/crash Kdump immediate reboots: Enabled Numbers of old dumps: 5- smtppass
Specifies the file with the plain text SMTP password used for sending notification messages:
>
sudo
yast kdump smtppass pass=/path/to/file- smtpserver
Specifies the SMTP server host name used for sending notification messages:
>
sudo
yast kdump smtpserver server=smtp.server.com- smtpuser
Specifies the SMTP user name used for sending notification messages:
>
sudo
yast kdump smtpuser user=smtp_user- startup
Enables or disables start-up options:
>
sudo
yast kdump startup enable alloc_mem=128,256>
sudo
yast kdump startup disable
4.4.3.10 yast keyboard #
Configures the system keyboard for virtual consoles. It does not affect
the keyboard settings in graphical desktop environments, such as GNOME
or KDE. yast keyboard
accepts the following commands:
- list
Lists all available keyboard layouts.
- set
Activates new keyboard layout setting:
>
sudo
yast keyboard set layout=czech- summary
Displays the current keyboard configuration.
4.4.3.11 yast lan #
Configures network cards. yast lan
accepts the
following commands:
- add
Configures a new network card:
>
sudo
yast lan add name=vlan50 ethdevice=eth0 bootproto=dhcpFor a complete list of options, run
yast lan add help
.- delete
Deletes an existing network card:
>
sudo
yast lan delete id=0- edit
Changes the configuration of an existing network card:
>
sudo
yast lan edit id=0 bootproto=dhcp- list
Displays a summary of network card configuration:
>
sudo
yast lan list id name, bootproto 0 Ethernet Card 0, NONE 1 Network Bridge, DHCP
4.4.3.12 yast language #
Configures system languages. yast language
accepts the
following commands:
- list
Lists all available languages.
- set
Specifies the main system languages and secondary languages:
>
sudo
yast language set lang=cs_CZ languages=en_US,es_ES no_packages
4.4.3.13 yast mail #
Displays the configuration of the mail system:
>
sudo
yast mail summary
4.4.3.14 yast nfs #
Controls the NFS client. yast nfs
accepts the following
commands:
- add
Adds a new NFS mount:
>
sudo
yast nfs add spec=remote_host:/path/to/nfs/share file=/local/mount/pointFor a complete list of options, run
yast nfs add help
.- delete
Deletes an existing NFS mount:
>
sudo
yast nfs delete spec=remote_host:/path/to/nfs/share file=/local/mount/pointFor a complete list of options, run
yast nfs delete help
.- edit
Changes an existing NFS mount:
>
sudo
yast nfs edit spec=remote_host:/path/to/nfs/share \ file=/local/mount/point type=nfs4For a complete list of options, run
yast nfs edit help
.- list
Lists existing NFS mounts:
>
sudo
yast nfs list Server Remote File System Mount Point Options ---------------------------------------------------------------- nfs.example.com /mnt /nfs/mnt nfs nfs.example.com /home/tux/nfs_share /nfs/tux nfs
4.4.3.15 yast nfs-server #
Configures the NFS server. yast nfs-server
accepts the
following commands:
- add
Adds a directory to export:
>
sudo
yast nfs-server add mountpoint=/nfs/export hosts=*.allowed_hosts.comFor a complete list of options, run
yast nfs-server add help
.- delete
Deletes a directory from the NFS export:
>
sudo
yast nfs-server delete mountpoint=/nfs/export- set
Specifies additional parameters for the NFS server:
>
sudo
yast nfs-server set enablev4=yes security=yesFor a complete list of options, run
yast nfs-server set help
.- start
Starts the NFS server service:
>
sudo
yast nfs-server start- stop
Stops the NFS server service:
>
sudo
yast nfs-server stop- summary
Displays a summary of the NFS server configuration:
>
sudo
yast nfs-server summary NFS server is enabled NFS Exports * /mnt * /home NFSv4 support is enabled. The NFSv4 domain for idmapping is localdomain. NFS Security using GSS is enabled.
4.4.3.16 yast nis #
Configures the NIS client. yast nis
accepts the
following commands:
- configure
Changes global settings of a NIS client:
>
sudo
yast nis configure server=nis.example.com broadcast=yesFor a complete list of options, run
yast nis configure help
.- disable
Disables the NIS client:
>
sudo
yast nis disable- enable
Enables your machine as NIS client:
>
sudo
yast nis enable server=nis.example.com broadcast=yes automounter=yesFor a complete list of options, run
yast nis enable help
.- find
Shows available NIS servers for a given domain:
>
sudo
yast nis find domain=nisdomain.com- summary
Displays a configuration summary of a NIS client.
4.4.3.17 yast nis-server #
Configures a NIS server. yast nis-server
accepts the
following commands:
- master
Configures a NIS master server:
>
sudo
yast nis-server master domain=nisdomain.com yppasswd=yesFor a complete list of options, run
yast nis-server master help
.- slave
Configures a NIS slave server:
>
sudo
yast nis-server slave domain=nisdomain.com master_ip=10.100.51.65For a complete list of options, run
yast nis-server slave help
.- stop
Stops a NIS server:
>
sudo
yast nis-server stop- summary
Displays a configuration summary of a NIS server:
>
sudo
yast nis-server summary
4.4.3.18 yast proxy #
Configures proxy settings. yast proxy
accepts the
following commands:
- authentication
Specifies the authentication options for proxy:
>
sudo
yast proxy authentication username=tux password=secretFor a complete list of options, run
yast proxy authentication help
.- enable, disable
Enables or disables proxy settings.
- set
Changes the current proxy settings:
>
sudo
yast proxy set https=proxy.example.comFor a complete list of options, run
yast proxy set help
.- summary
Displays proxy settings.
4.4.3.19 yast rdp #
Controls remote desktop settings. yast rdp
accepts the
following commands:
- allow
Allows remote access to the server's desktop:
>
sudo
yast rdp allow set=yes- list
Displays the remote desktop configuration summary.
4.4.3.20 yast samba-client #
Configures the Samba client settings. yast samba-client
accepts the following commands:
- configure
Changes global settings of Samba:
>
sudo
yast samba-client configure workgroup=FAMILY- isdomainmember
Checks whether the machine is a member of a domain:
>
sudo
yast samba-client isdomainmember domain=SMB_DOMAIN- joindomain
Makes the machine a member of a domain:
>
sudo
yast samba-client joindomain domain=SMB_DOMAIN user=username password=pwd- winbind
Enables or disables Winbind services (the
winbindd
daemon):>
sudo
yast samba-client winbind enable>
sudo
yast samba-client winbind disable
4.4.3.21 yast samba-server #
Configures Samba server settings. yast samba-server
accepts the following commands:
- backend
Specifies the back-end for storing user information:
>
sudo
yast samba-server backend smbpasswdFor a complete list of options, run
yast samba-server backend help
.- configure
Configures global settings of the Samba server:
>
sudo
yast samba-server configure workgroup=FAMILY description='Home server'For a complete list of options, run
yast samba-server configure help
.- list
Displays a list of available shares:
>
sudo
yast samba-server list Status Type Name ============================== Disabled Disk profiles Enabled Disk print$ Enabled Disk homes Disabled Disk groups Enabled Disk movies Enabled Printer printers- role
Specifies the role of the Samba server:
>
sudo
yast samba-server role standaloneFor a complete list of options, run
yast samba-server role help
.- service
Enables or disables the Samba services (
smb
andnmb
):>
sudo
yast samba-server service enable>
sudo
yast samba-server service disable- share
Manipulates a single Samba share:
>
sudo
yast samba-server share name=movies browseable=yes guest_ok=yesFor a complete list of options, run
yast samba-server share help
.
4.4.3.22 yast security #
Controls the security level of the host. yast security
accepts the following commands:
- level
Specifies the security level of the host:
>
sudo
yast security level serverFor a complete list of options, run
yast security level help
.- set
Sets the value of a specific option:
>
sudo
yast security set passwd=sha512 crack=yesFor a complete list of options, run
yast security set help
.- summary
Displays a summary of the current security configuration:
sudo
yast security summary
4.4.3.23 yast sound #
Configures sound card settings. yast sound
accepts the
following commands:
- add
Configures a new sound card. Without any parameters, the command adds the first detected card.
>
sudo
yast sound add card=0 volume=75For a complete list of options, run
yast sound add help
.- channels
Lists available volume channels of a sound card:
>
sudo
yast sound channels card=0 Master 75 PCM 100- modules
Lists all available sound kernel modules:
>
sudo
yast sound modules snd-atiixp ATI IXP AC97 controller (snd-atiixp) snd-atiixp-modem ATI IXP MC97 controller (snd-atiixp-modem) snd-virtuoso Asus Virtuoso driver (snd-virtuoso) [...]- playtest
Plays a test sound on a sound card:
>
sudo
yast sound playtest card=0- remove
Removes a configured sound card:
>
sudo
yast sound remove card=0>
sudo
yast sound remove all- set
Specifies new values for a sound card:
>
sudo
yast sound set card=0 volume=80- show
Displays detailed information about a sound card:
>
sudo
yast sound show card=0 Parameters of card 'ThinkPad X240' (using module snd-hda-intel): align_buffer_size Force buffer and period sizes to be multiple of 128 bytes. bdl_pos_adj BDL position adjustment offset. beep_mode Select HDA Beep registration mode (0=off, 1=on) (default=1). Default Value: 0 enable_msi Enable Message Signaled Interrupt (MSI) [...]- summary
Prints a configuration summary for all sound cards on the system:
>
sudo
yast sound summary- volume
Specifies the volume level of a sound card:
sudo
yast sound volume card=0 play
4.4.3.24 yast sysconfig #
Controls the variables in files under /etc/sysconfig
.
yast sysconfig
accepts the following commands:
- clear
Sets empty value to a variable:
>
sudo
yast sysconfig clear=POSTFIX_LISTENTip: Variable in multiple filesIf the variable is available in several files, use the VARIABLE_NAME$FILE_NAME syntax:
>
sudo
yast sysconfig clear=CONFIG_TYPE$/etc/sysconfig/mail- details
Displays detailed information about a variable:
>
sudo
yast sysconfig details variable=POSTFIX_LISTEN Description: Value: File: /etc/sysconfig/postfix Possible Values: Any value Default Value: Configuration Script: postfix Description: Comma separated list of IP's NOTE: If not set, LISTEN on all interfaces- list
Displays summary of modified variables. Use
all
to list all variables and their values:>
sudo
yast sysconfig list all AOU_AUTO_AGREE_WITH_LICENSES="false" AOU_ENABLE_CRONJOB="true" AOU_INCLUDE_RECOMMENDS="false" [...]- set
Sets a value for a variable:
>
sudo
yast sysconfig set DISPLAYMANAGER=gdmTip: Variable in multiple filesIf the variable is available in several files, use the VARIABLE_NAME$FILE_NAME syntax:
>
sudo
yast sysconfig set CONFIG_TYPE$/etc/sysconfig/mail=advanced
4.4.3.25 yast tftp-server #
Configures a TFTP server. yast tftp-server
accepts the
following commands:
- directory
Specifies the directory of the TFTP server:
>
sudo
yast tftp-server directory path=/srv/tftp>
sudo
yast tftp-server directory list Directory Path: /srv/tftp- status
Controls the status of the TFTP server service:
>
sudo
yast tftp-server status disable>
sudo
yast tftp-server status show Service Status: false>
sudo
yast tftp-server status enable
4.4.3.26 yast timezone #
Configures the time zone. yast timezone
accepts the
following commands:
- list
Lists all available time zones grouped by region:
>
sudo
yast timezone list Region: Africa Africa/Abidjan (Abidjan) Africa/Accra (Accra) Africa/Addis_Ababa (Addis Ababa) [...]- set
Specifies new values for the time zone configuration:
>
sudo
yast timezone set timezone=Europe/Prague hwclock=local- summary
Displays the time zone configuration summary:
>
sudo
yast timezone summary Current Time Zone: Europe/Prague Hardware Clock Set To: Local time Current Time and Date: Mon 12. March 2018, 11:36:21 CET
4.4.3.27 yast users #
Manages user accounts. yast users
accepts the following
commands:
- add
Adds a new user:
>
sudo
yast users add username=user1 password=secret home=/home/user1For a complete list of options, run
yast users add help
.- delete
Deletes an existing user account:
>
sudo
yast users delete username=user1 delete_homeFor a complete list of options, run
yast users delete help
.- edit
Changes an existing user account:
>
sudo
yast users edit username=user1 password=new_secretFor a complete list of options, run
yast users edit help
.- list
Lists existing users filtered by user type:
>
sudo
yast users list systemFor a complete list of options, run
yast users list help
.- show
Displays details about a user:
>
sudo
yast users show username=wwwrun Full Name: WWW daemon apache List of Groups: www Default Group: wwwrun Home Directory: /var/lib/wwwrun Login Shell: /sbin/nologin Login Name: wwwrun UID: 456For a complete list of options, run
yast users show help
.
5 YaST online update #
SUSE offers a continuous stream of software security updates for your product. By default, the update applet is used to keep your system up-to-date. Refer to Book “Deployment Guide”, Chapter 21 “Installing or removing software”, Section 21.5 “The GNOME package updater” for further information on the update applet. This chapter covers the alternative tool for updating software packages: YaST Online Update.
The current patches for SUSE® Linux Enterprise Server are available from an update software repository. If you have registered your product during the installation, an update repository is already configured. If you have not registered SUSE Linux Enterprise Server, you can do so by starting the in YaST. Alternatively, you can manually add an update repository from a source you trust. To add or remove repositories, start the Repository Manager with › in YaST. Learn more about the Repository Manager in Book “Deployment Guide”, Chapter 21 “Installing or removing software”, Section 21.4 “Managing software repositories and services”.
If you are not able to access the update catalog, this might be because of an expired subscription. Normally, SUSE Linux Enterprise Server comes with a one-year or three-year subscription, during which you have access to the update catalog. This access will be denied after the subscription ends.
If an access to the update catalog is denied, you will see a warning message prompting you to visit the SUSE Customer Center and check your subscription. The SUSE Customer Center is available at https://scc.suse.com//.
By default, the firewall on SUSE Linux Enterprise Server only blocks incoming connections. If your system is behind another firewall that blocks outgoing traffic, make sure to allow connections to https://scc.suse.com/ and https://updates.suse.com on ports 80 and 443 in order to receive updates.
SUSE provides updates with different relevance levels:
- Security updates
Fix severe security hazards and should always be installed.
- Recommended updates
Fix issues that could compromise your computer.
- Optional updates
Fix non-security relevant issues or provide enhancements.
5.1 The online update dialog #
To open the YaST yast2 online_update
.
The
window consists of four sections.
The SUSE Linux Enterprise Server. The patches are sorted by security relevance:
security
, recommended
, and
optional
. You can change the view of the
section by selecting one of the following options
from :
- (default view)
Non-installed patches that apply to packages installed on your system.
Patches that either apply to packages not installed on your system, or patches that have requirements which have already have been fulfilled (because the relevant packages have already been updated from another source).
All patches available for SUSE Linux Enterprise Server.
Each list entry in the Shift–F1. Actions required by Security
and
Recommended
patches are automatically preset. These
actions are ,
and .
If you install an up-to-date package from a repository other than the update repository, the requirements of a patch for this package may be fulfilled with this installation. In this case a check mark is displayed in front of the patch summary. The patch will be visible in the list until you mark it for installation. This will in fact not install the patch (because the package already is up-to-date), but mark the patch as having been installed.
Select an entry in the
section to view a short at the bottom left corner of the dialog. The upper right section lists the packages included in the selected patch (a patch can consist of several packages). Click an entry in the upper right section to view details about the respective package that is included in the patch.5.2 Installing patches #
The YaST Online Update dialog allows you to either install all available patches at once or manually select the desired patches. You may also revert patches that have been applied to the system.
By default, all new patches (except optional
ones) that
are currently available for your system are already marked for installation.
They will be applied automatically once you click
or .
If one or multiple patches require a system reboot, you will be notified
about this before the patch installation starts. You can then either decide
to continue with the installation of the selected patches, skip the
installation of all patches that need rebooting and install the rest, or go
back to the manual patch selection.
Start YaST and select
› .To automatically apply all new patches (except
optional
ones) that are currently available for your system, click or .First modify the selection of patches that you want to apply:
Use the respective filters and views that the interface provides. For details, refer to Section 5.1, “The online update dialog”.
Select or deselect patches according to your needs and wishes by right-clicking the patch and choosing the respective action from the context menu.
Important: Always apply security updatesDo not deselect any
security
-related patches without a very good reason. These patches fix severe security hazards and prevent your system from being exploited.Most patches include updates for several packages. To change actions for single packages, right-click a package in the package view and choose an action.
To confirm your selection and apply the selected patches, proceed with
or .
After the installation is complete, click
to leave the YaST . Your system is now up-to-date.
5.3 Viewing retracted patches #
Maintenance updates are carefully tested, to minimize the risk of introducing a bug. If a patch proves to contain a bug, it is automatically retracted. A new update (with a higher version number) is issued to revert the buggy patch, and is blocked from being installed again. You can see retracted patches, and their history, on the
tab.5.4 Automatic online update #
You may configure automatic updates with a daily, weekly, or
monthly schedule with YaST. Install the
yast2-online-update-configuration
package.
By default, updates are downloaded as delta RPMs. Since rebuilding RPM packages from delta RPMs is a memory- and processor-intensive task, certain setups or hardware configurations might require you to disable the use of delta RPMs for the sake of performance.
Some patches, such as kernel updates or packages requiring license agreements, require user interaction, which would cause the automatic update procedure to stop. You can configure skipping patches that require user interaction.
Use the
tab in the YaST module to review available and installed patches, including references to bug reports and CVE bulletins.After installation, start YaST and select yast2-online-update-configuration is not installed, you will be prompted to do that.
› . Choose › . If theFigure 5.3: YaST online update configuration #Alternatively, start the module with
yast2 online_update_configuration
from the command line.Choose the update interval:
, , or .Sometimes patches may require the attention of the administrator, for example when restarting critical services. For example, this might be an update for Docker Open Source Engine that requires all containers to be restarted. Before these patches are installed, the user is informed about the consequences and is asked to confirm the installation of the patch. Such patches are called “Interactive Patches”.
When installing patches automatically, it is assumed that you have accepted the installation of interactive patches. If you prefer to review these patches before they get installed, check
. In this case, interactive patches will be skipped during automated patching. Make sure to periodically run a manual online update, to check whether interactive patches are waiting to be installed.To automatically accept any license agreements, activate
.To automatically install all packages recommended by updated packages, activate
.To disable the use of delta RPMs (for performance reasons), un-check
.To filter the patches by category (such as security or recommended), check
and add the appropriate patch categories from the list. Only patches of the selected categories will be installed. It is a good practice to enable only automatic updates, and to manually review all others. Patching is usually reliable, but you may wish to test non-security patches, and roll them back if you encounter any problems.supply patches for package management and YaST features and modules.
patches provide crucial updates and bugfixes.
patches are optional bugfixes and enhancements.
are new packages.
is equivalent to miscellaneous.
is unused.
Confirm your configuration by clicking
.
The automatic online update does not automatically restart the system afterward. If there are package updates that require a system reboot, you need to do this manually.
6 Managing software with command line tools #
This chapter describes Zypper and RPM, two command line tools for managing
software. For a definition of the terminology used in this context (for
example, repository
, patch
, or
update
) refer to
Book “Deployment Guide”, Chapter 21 “Installing or removing software”, Section 21.1 “Definition of terms”.
6.1 Using Zypper #
Zypper is a command line package manager for installing, updating and removing packages. It also manages repositories. It is especially useful for accomplishing remote software management tasks or managing software from shell scripts.
6.1.1 General usage #
The general syntax of Zypper is:
zypper[--global-options]
COMMAND[--command-options]
[arguments]
The components enclosed in brackets are not required. See zypper
help
for a list of general options and all commands. To get help
for a specific command, type zypper help
COMMAND.
- Zypper commands
The simplest way to execute Zypper is to type its name, followed by a command. For example, to apply all needed patches to the system, use:
>
sudo
zypper patch- Global options
Additionally, you can choose from one or more global options by typing them immediately before the command:
>
sudo
zypper --non-interactive patchIn the above example, the option
--non-interactive
means that the command is run without asking anything (automatically applying the default answers).- Command-specific options
To use options that are specific to a particular command, type them immediately after the command:
>
sudo
zypper patch --auto-agree-with-licensesIn the above example,
--auto-agree-with-licenses
is used to apply all needed patches to a system without you being asked to confirm any licenses. Instead, licenses will be accepted automatically.- Arguments
Some commands require one or more arguments. For example, when using the command
install
, you need to specify which package or which packages you want to install:>
sudo
zypper install mplayerSome options also require a single argument. The following command will list all known patterns:
>
zypper search -t pattern
You can combine all of the above. For example, the following command will
install the mc and vim packages from
the factory
repository while being verbose:
>
sudo
zypper -v install --from factory mc vim
The --from
option keeps all repositories
enabled (for solving any dependencies) while requesting the package from the
specified repository. --repo
is an alias for --from
, and you may use either one.
Most Zypper commands have a dry-run
option that does a
simulation of the given command. It can be used for test purposes.
>
sudo
zypper remove --dry-run MozillaFirefox
Zypper supports the global --userdata
STRING
option. You can specify a string
with this option, which gets written to Zypper's log files and plug-ins
(such as the Btrfs plug-in). It can be used to mark and identify
transactions in log files.
>
sudo
zypper --userdata STRING patch
6.1.2 Using Zypper subcommands #
Zypper subcommands are executables that are stored in the zypper_execdir,
/usr/lib/zypper/commands
. If a subcommand is not found
in the zypper_execdir, Zypper automatically searches the rest of your $PATH
for it. This enables writing your own local extensions and storing them in
userspace.
Executing subcommands in the Zypper shell, and using global Zypper options are not supported.
List your available subcommands:
>
zypper help subcommand
[...]
Available zypper subcommands in '/usr/lib/zypper/commands'
appstream-cache
lifecycle
migration
search-packages
Zypper subcommands available from elsewhere on your $PATH
<none>
View the help screen for a subcommand:
>
zypper help appstream-cache
6.1.3 Installing and removing software with Zypper #
To install or remove packages, use the following commands:
>
sudo
zypper install PACKAGE_NAME>
sudo
zypper remove PACKAGE_NAME
Do not remove mandatory system packages like glibc , zypper , kernel . If they are removed, the system can become unstable or stop working altogether.
6.1.3.1 Selecting which packages to install or remove #
There are various ways to address packages with the commands
zypper install
and zypper remove
.
- By exact package name
>
sudo
zypper install MozillaFirefox- By exact package name and version number
>
sudo
zypper install MozillaFirefox-52.2- By repository alias and package name
>
sudo
zypper install mozilla:MozillaFirefoxWhere
mozilla
is the alias of the repository from which to install.- By package name using wild cards
You can select all packages that have names starting or ending with a certain string. Use wild cards with care, especially when removing packages. The following command will install all packages starting with “Moz”:
>
sudo
zypper install 'Moz*'Tip: Removing all-debuginfo
packagesWhen debugging a problem, you sometimes need to temporarily install a lot of
-debuginfo
packages which give you more information about running processes. After your debugging session finishes and you need to clean the environment, run the following:>
sudo
zypper remove '*-debuginfo'- By capability
For example, to install a package without knowing its name, capabilities come in handy. The following command will install the package MozillaFirefox:
>
sudo
zypper install firefox- By capability, hardware architecture, or version
Together with a capability, you can specify a hardware architecture and a version:
The name of the desired hardware architecture is appended to the capability after a full stop. For example, to specify the AMD64/Intel 64 architectures (which in Zypper is named
x86_64
), use:>
sudo
zypper install 'firefox.x86_64'Versions must be appended to the end of the string and must be preceded by an operator:
<
(lesser than),<=
(lesser than or equal),=
(equal),>=
(greater than or equal),>
(greater than).>
sudo
zypper install 'firefox>=74.2'You can also combine a hardware architecture and version requirement:
>
sudo
zypper install 'firefox.x86_64>=74.2'
- By path to the RPM file
You can also specify a local or remote path to a package:
>
sudo
zypper install /tmp/install/MozillaFirefox.rpm>
sudo
zypper install http://download.example.com/MozillaFirefox.rpm
6.1.3.2 Combining installation and removal of packages #
To install and remove packages simultaneously, use the
+/-
modifiers. To install emacs and
simultaneously remove vim , use:
>
sudo
zypper install emacs -vim
To remove emacs and simultaneously install vim , use:
>
sudo
zypper remove emacs +vim
To prevent the package name starting with the -
being
interpreted as a command option, always use it as the second argument. If
this is not possible, precede it with --
:
>
sudo
zypper install -emacs +vim # Wrong>
sudo
zypper install vim -emacs # Correct>
sudo
zypper install -- -emacs +vim # Correct>
sudo
zypper remove emacs +vim # Correct
6.1.3.3 Cleaning up dependencies of removed packages #
If (together with a certain package), you automatically want to remove any
packages that become unneeded after removing the specified package, use the
--clean-deps
option:
>
sudo
zypper rm --clean-deps PACKAGE_NAME
6.1.3.4 Using Zypper in scripts #
By default, Zypper asks for a confirmation before installing or removing a
selected package, or when a problem occurs. You can override this behavior
using the --non-interactive
option. This option must be
given before the actual command (install
,
remove
, and patch
), as can be seen in
the following:
>
sudo
zypper--non-interactive
install PACKAGE_NAME
This option allows the use of Zypper in scripts and cron jobs.
6.1.3.5 Installing or downloading source packages #
To install the corresponding source package of a package, use:
>
zypper source-install PACKAGE_NAME
When executed as root
, the default location to install source
packages is /usr/src/packages/
and
~/rpmbuild
when run as user. These values can be
changed in your local rpm
configuration.
This command will also install the build dependencies of the specified
package. If you do not want this, add the switch -D
:
>
sudo
zypper source-install -D PACKAGE_NAME
To install only the build dependencies use -d
.
>
sudo
zypper source-install -d PACKAGE_NAME
Of course, this will only work if you have the repository with the source packages enabled in your repository list (it is added by default, but not enabled). See Section 6.1.6, “Managing repositories with Zypper” for details on repository management.
A list of all source packages available in your repositories can be obtained with:
>
zypper search -t srcpackage
You can also download source packages for all installed packages to a local directory. To download source packages, use:
>
zypper source-download
The default download directory is
/var/cache/zypper/source-download
. You can change it
using the --directory
option. To only show missing or
extraneous packages without downloading or deleting anything, use the
--status
option. To delete extraneous source packages, use
the --delete
option. To disable deleting, use the
--no-delete
option.
6.1.3.6 Installing packages from disabled repositories #
Normally you can only install or refresh packages from enabled
repositories. The --plus-content
TAG
option helps you specify
repositories to be refreshed, temporarily enabled during the current Zypper
session, and disabled after it completes.
For example, to enable repositories that may provide additional
-debuginfo
or -debugsource
packages, use --plus-content debug
. You can specify this
option multiple times.
To temporarily enable such 'debug' repositories to install a specific
-debuginfo
package, use the option as follows:
>
sudo
zypper --plus-content debug \ install "debuginfo(build-id)=eb844a5c20c70a59fc693cd1061f851fb7d046f4"
The build-id
string is reported by
gdb
for missing debuginfo packages.
Repositories from the SUSE Linux Enterprise Server installation media are still
configured but disabled after successful installation. You can use the
--plus-content
option to install packages from the
installation media instead of the online repositories. Before calling
zypper
, ensure the media is available, for example by
inserting the DVD into the computer's drive.
6.1.3.7 Utilities #
To verify whether all dependencies are still fulfilled and to repair missing dependencies, use:
>
zypper verify
In addition to dependencies that must be fulfilled, some packages “recommend” other packages. These recommended packages are only installed if actually available and installable. In case recommended packages were made available after the recommending package has been installed (by adding additional packages or hardware), use the following command:
>
sudo
zypper install-new-recommends
This command is very useful after plugging in a Web cam or Wi-Fi device. It will install drivers for the device and related software, if available. Drivers and related software are only installable if certain hardware dependencies are fulfilled.
6.1.4 Updating software with Zypper #
There are three different ways to update software using Zypper: by
installing patches, by installing a new version of a package or by updating
the entire distribution. The latter is achieved with zypper
dist-upgrade
. Upgrading SUSE Linux Enterprise Server is discussed in
Book “Upgrade Guide”, Chapter 1 “Upgrade paths and methods”.
6.1.4.1 Installing all needed patches #
Patching SUSE Linux Enterprise is the most reliable way to install new versions of installed packages. It guaranties that all required packages with correct versions are installed and ensures that package versions considered as conflicting are omitted.
To install all officially released patches that apply to your system, run:
>
sudo
zypper patch
All patches available from repositories configured on your computer are
checked for their relevance to your installation. If they are relevant (and
not classified as optional
or
feature
), they are installed immediately.
If zypper patch
succeeds, it is guaranteed that no
vulnerable version package is installed unless you confirmed the exception.
Note that the official update repository is only
available after registering your SUSE Linux Enterprise Server installation.
If a patch that is about to be installed includes changes that require a system reboot, you will be warned before.
The plain zypper patch
command does not apply patches
from third party repositories. To update also the third party repositories,
use the with-update
command option as follows:
>
sudo
zypper patch --with-update
To install also optional patches, use:
>
sudo
zypper patch --with-optional
To install all patches relating to a specific Bugzilla issue, use:
>
sudo
zypper patch --bugzilla=NUMBER
To install all patches relating to a specific CVE database entry, use:
>
sudo
zypper patch --cve=NUMBER
For example, to install a security patch with the CVE number
CVE-2010-2713
, execute:
>
sudo
zypper patch --cve=CVE-2010-2713
To install only patches which affect Zypper and the package management itself, use:
>
sudo
zypper patch --updatestack-only
Bear in mind that other command options that would also update other
repositories will be dropped if you use the
updatestack-only
command option.
6.1.4.2 Listing patches #
To find out whether patches are available, Zypper allows viewing the following information:
- Number of needed patches
To list the number of needed patches (patches that apply to your system but are not yet installed), use
patch-check
:>
zypper patch-check Loading repository data... Reading installed packages... 5 patches needed (1 security patch)This command can be combined with the
--updatestack-only
option to list only the patches which affect Zypper and the package management itself.- List of needed patches
To list all needed patches (patches that apply to your system but are not yet installed), use
zypper list-patches
.- List of all patches
To list all patches available for SUSE Linux Enterprise Server, regardless of whether they are already installed or apply to your installation, use
zypper patches
.
It is also possible to list and install patches relevant to specific
issues. To list specific patches, use the zypper
list-patches
command with the following options:
- By Bugzilla issues
To list all needed patches that relate to Bugzilla issues, use the option
--bugzilla
.To list patches for a specific bug, you can also specify a bug number:
--bugzilla=NUMBER
. To search for patches relating to multiple Bugzilla issues, add commas between the bug numbers, for example:>
zypper list-patches --bugzilla=972197,956917- By CVE number
To list all needed patches that relate to an entry in the CVE database (Common Vulnerabilities and Exposures), use the option
--cve
.To list patches for a specific CVE database entry, you can also specify a CVE number:
--cve=NUMBER
. To search for patches relating to multiple CVE database entries, add commas between the CVE numbers, for example:>
zypper list-patches --bugzilla=CVE-2016-2315,CVE-2016-2324- List retracted patches
In the SUSE Linux Enterprise 15 codestream, some patches are automatically retracted. Maintenance updates are carefully tested, because there is a risk that an update contains a new bug. If an update proves to contain a bug, a new update (with a higher version number) is issued to revert the buggy update, and the buggy update is blocked from being installed again. You can list retracted patches with
zypper
:>
zypper lp --all |grep retracted
SLE-Module-Basesystem15-SP3-Updates | SUSE-SLE-Module-Basesystem-15-SP3-2021-1965 | recommended | important | --- | retracted | Recommended update for multipath-tools SLE-Module-Basesystem15-SP3-Updates | SUSE-SLE-Module-Basesystem-15-SP3-2021-2689 | security | important | --- | retracted | Security update for cpio SLE-Module-Basesystem15-SP3-Updates | SUSE-SLE-Module-Basesystem-15-SP3-2021-3655 | security | important | reboot | retracted | Security update for the Linux KernelSee complete information on a retracted (or any) patch:
>
zypper patch-info SUSE-SLE-Product-SLES-15-2021-2689
Loading repository data... Reading installed packages... Information for patch SUSE-SLE-Product-SLES-15-2021-2689: --------------------------------------------------------- Repository : SLE-Product-SLES15-LTSS-Updates Name : SUSE-SLE-Product-SLES-15-2021-2689 Version : 1 Arch : noarch Vendor : maint-coord@suse.de Status : retracted Category : security Severity : important Created On : Mon 16 Aug 2021 03:44:00 AM PDT Interactive : --- Summary : Security update for cpio Description : This update for cpio fixes the following issues: It was possible to trigger Remote code execution due to a integer overflow (CVE-2021-38185, bsc#1189206) UPDATE: This update was buggy and could lead to hangs, so it has been retracted. There will be a follow up update. [...]- Patch with conflicting packages
Information for patch openSUSE-SLE-15.3-2022-333: ------------------------------------------------- Repository : Update repository with updates from SUSE Linux Enterprise 15 Name : openSUSE-SLE-15.3-2022-333 Version : 1 Arch : noarch Vendor : maint-coord@suse.de Status : needed Category : security Severity : important Created On : Fri Feb 4 09:30:32 2022 Interactive : reboot Summary : Security update for xen Description : This update for xen fixes the following issues: - CVE-2022-23033: Fixed guest_physmap_remove_page not removing the p2m mappings. (XSA-393) (bsc#1194576) - CVE-2022-23034: Fixed possible DoS by a PV guest Xen while unmapping a grant. (XSA-394) (bsc#1194581) - CVE-2022-23035: Fixed insufficient cleanup of passed-through device IRQs. (XSA-395) (bsc#1194588) Provides : patch:openSUSE-SLE-15.3-2022-333 = 1 Conflicts : [22] xen.src < 4.14.3_06-150300.3.18.2 xen.noarch < 4.14.3_06-150300.3.18.2 xen.x86_64 < 4.14.3_06-150300.3.18.2 xen-devel.x86_64 < 4.14.3_06-150300.3.18.2 xen-devel.noarch < 4.14.3_06-150300.3.18.2 [...]
The above patch conflicts with the affected or vulnerable versions of 22 packages. If any of these affected or vulnerable packages are installed, it triggers a conflict, and the patch is classified as needed.
zypper patch
tries to install all available patches. If it encounters problems, it reports them, thus informing you that not all updates are installed. The conflict can be resolved by either updating the affected or vulnerable packages or by removing them. Because SUSE update repositories also ship fixed packages, updating is a standard way to resolve conflicts. If the package cannot be updated—for example, due to dependency issues or package locks—it is deleted after the user's approval.
To list all patches regardless of whether they are needed, use the option
--all
additionally. For example, to list all patches with
a CVE number assigned, use:
>
zypper list-patches --all --cve
Issue | No. | Patch | Category | Severity | Status
------+---------------+-------------------+-------------+-----------+----------
cve | CVE-2019-0287 | SUSE-SLE-Module.. | recommended | moderate | needed
cve | CVE-2019-3566 | SUSE-SLE-SERVER.. | recommended | moderate | not needed
[...]
6.1.4.3 Installing new package versions #
If a repository contains only new packages, but does not provide patches,
zypper patch
does not show any effect. To update
all installed packages with newer available versions, use the following command:
>
sudo
zypper update
zypper update
ignores problematic packages.
For example, if a package is locked, zypper update
omits the package, even if a higher version of it is available. Conversely,
zypper patch
reports a conflict if the package is
considered vulnerable.
To update individual packages, specify the package with either the update or install command:
>
sudo
zypper update PACKAGE_NAME>
sudo
zypper install PACKAGE_NAME
A list of all new installable packages can be obtained with the command:
>
zypper list-updates
Note that this command only lists packages that match the following criteria:
has the same vendor like the already installed package,
is provided by repositories with at least the same priority than the already installed package,
is installable (all dependencies are satisfied).
A list of all new available packages (regardless whether installable or not) can be obtained with:
>
sudo
zypper list-updates --all
To find out why a new package cannot be installed, use the zypper
install
or zypper update
command as described
above.
6.1.4.4 Identifying orphaned packages #
Whenever you remove a repository from Zypper or upgrade your system, some packages can get in an “orphaned” state. These orphaned packages belong to no active repository anymore. The following command gives you a list of these:
>
sudo
zypper packages --orphaned
With this list, you can decide if a package is still needed or can be removed safely.
6.1.5 Identifying processes and services using deleted files #
When patching, updating or removing packages, there may be running processes
on the system which continue to use files having been deleted by the update
or removal. Use zypper ps
to list processes using deleted
files. In case the process belongs to a known service, the service name is
listed, making it easy to restart the service. By default zypper
ps
shows a table:
>
zypper ps
PID | PPID | UID | User | Command | Service | Files
------+------+-----+-------+--------------+--------------+-------------------
814 | 1 | 481 | avahi | avahi-daemon | avahi-daemon | /lib64/ld-2.19.s->
| | | | | | /lib64/libdl-2.1->
| | | | | | /lib64/libpthrea->
| | | | | | /lib64/libc-2.19->
[...]
PID: ID of the process |
PPID: ID of the parent process |
UID: ID of the user running the process |
Login: Login name of the user running the process |
Command: Command used to execute the process |
Service: Service name (only if command is associated with a system service) |
Files: The list of the deleted files |
The output format of zypper ps
can be controlled as
follows:
zypper ps
-s
Create a short table not showing the deleted files.
>
zypper ps -s PID | PPID | UID | User | Command | Service ------+------+------+---------+--------------+-------------- 814 | 1 | 481 | avahi | avahi-daemon | avahi-daemon 817 | 1 | 0 | root | irqbalance | irqbalance 1567 | 1 | 0 | root | sshd | sshd 1761 | 1 | 0 | root | master | postfix 1764 | 1761 | 51 | postfix | pickup | postfix 1765 | 1761 | 51 | postfix | qmgr | postfix 2031 | 2027 | 1000 | tux | bash |zypper ps
-ss
Show only processes associated with a system service.
PID | PPID | UID | User | Command | Service ------+------+------+---------+--------------+-------------- 814 | 1 | 481 | avahi | avahi-daemon | avahi-daemon 817 | 1 | 0 | root | irqbalance | irqbalance 1567 | 1 | 0 | root | sshd | sshd 1761 | 1 | 0 | root | master | postfix 1764 | 1761 | 51 | postfix | pickup | postfix 1765 | 1761 | 51 | postfix | qmgr | postfix
zypper ps
-sss
Only show system services using deleted files.
avahi-daemon irqbalance postfix sshd
zypper ps
--print "systemctl status %s"
Show the commands to retrieve status information for services which might need a restart.
systemctl status avahi-daemon systemctl status irqbalance systemctl status postfix systemctl status sshd
For more information about service handling refer to
Chapter 15, The systemd
daemon.
6.1.6 Managing repositories with Zypper #
All installation or patch commands of Zypper rely on a list of known repositories. To list all repositories known to the system, use the command:
>
zypper repos
The result will look similar to the following output:
>
zypper repos
# | Alias | Name | Enabled | Refresh
--+--------------+---------------+---------+--------
1 | SLEHA-15-GEO | SLEHA-15-GEO | Yes | No
2 | SLEHA-15 | SLEHA-15 | Yes | No
3 | SLES15 | SLES15 | Yes | No
When specifying repositories in various commands, an alias, URI or
repository number from the zypper repos
command output
can be used. A repository alias is a short version of the repository name
for use in repository handling commands. Note that the repository numbers
can change after modifying the list of repositories. The alias will never
change by itself.
By default, details such as the URI or the priority of the repository are not displayed. Use the following command to list all details:
>
zypper repos -d
6.1.6.1 Adding repositories #
To add a repository, run
>
sudo
zypper addrepo URI ALIAS
URI can either be an Internet repository, a network resource, a directory or a CD or DVD (see https://en.opensuse.org/openSUSE:Libzypp_URIs for details). The ALIAS is a shorthand and unique identifier of the repository. You can freely choose it, with the only exception that it needs to be unique. Zypper will issue a warning if you specify an alias that is already in use.
6.1.6.2 Refreshing repositories #
zypper
enables you to fetch changes in packages from
configured repositories. To fetch the changes, run:
>
sudo
zypper refresh
zypper
By default, some commands perform refresh
automatically, so you do not need to run the command explicitly.
The refresh
command enables you to view changes also in
disabled repositories, by using the --plus-content
option:
>
sudo
zypper --plus-content refresh
This option fetches changes in repositories, but keeps the disabled repositories in the same state—disabled.
6.1.6.3 Removing repositories #
To remove a repository from the list, use the command zypper
removerepo
together with the alias or number of the repository
you want to delete. For example, to remove the repository
SLEHA-12-GEO
from Example 6.1, “Zypper—list of known repositories”, use one of the following commands:
>
sudo
zypper removerepo 1>
sudo
zypper removerepo "SLEHA-12-GEO"
6.1.6.4 Modifying repositories #
Enable or disable repositories with zypper modifyrepo
.
You can also alter the repository's properties (such as refreshing
behavior, name or priority) with this command. The following command will
enable the repository named updates
, turn on
auto-refresh and set its priority to 20:
>
sudo
zypper modifyrepo -er -p 20 'updates'
Modifying repositories is not limited to a single repository—you can also operate on groups:
-a : all repositories |
-l : local repositories |
-t : remote repositories |
-m TYPE : repositories
of a certain type (where TYPE can be one of the
following: http , https , ftp ,
cd , dvd , dir , file ,
cifs , smb , nfs , hd ,
iso ) |
To rename a repository alias, use the renamerepo
command. The following example changes the alias from Mozilla
Firefox
to firefox
:
>
sudo
zypper renamerepo 'Mozilla Firefox' firefox
6.1.7 Querying repositories and packages with Zypper #
Zypper offers various methods to query repositories or packages. To get lists of all products, patterns, packages or patches available, use the following commands:
>
zypper products>
zypper patterns>
zypper packages>
zypper patches
To query all repositories for certain packages, use
search
. To get information regarding particular packages,
use the info
command.
6.1.7.1 Searching for software #
The zypper search
command works on package names, or,
optionally, on package summaries and descriptions. Strings wrapped in
/
are interpreted as regular expressions. By default,
the search is not case-sensitive.
- Simple search for a package name containing
fire
>
zypper search "fire"- Simple search for the exact package
MozillaFirefox
>
zypper search --match-exact "MozillaFirefox"- Also search in package descriptions and summaries
>
zypper search -d fire- Only display packages not already installed
>
zypper search -u fire- Display packages containing the string
fir
not followed bee
>
zypper se "/fir[^e]/"
6.1.7.2 Searching for packages across all SLE modules #
To search for packages both within and outside of currently enabled SLE
modules, use the search-packages
subcommand. This
command contacts the SUSE Customer Center and searches all modules for matching packages,
for example:
>
zypper search-packages package1 package2
zypper search-packages
provides the following options:
Search for an exact match of your search string:
-x
,--match-exact
Group the results by module (default: group by package):
-g,
--group-by-module
Display more detailed information about packages:
-d
,--details
Output search results in XML:
--xmlout
6.1.7.3 Searching for specific capability #
To search for packages which provide a special capability, use the command
what-provides
. For example, if you want to know which
package provides the Perl module SVN::Core
, use the
following command:
>
zypper what-provides 'perl(SVN::Core)'
The what-provides
PACKAGE_NAME
is similar to
rpm -q --whatprovides
PACKAGE_NAME, but RPM is only able to query the
RPM database (that is the database of all installed packages). Zypper, on
the other hand, will tell you about providers of the capability from any
repository, not only those that are installed.
6.1.7.4 Showing package information #
To query single packages, use info
with an exact package
name as an argument. This displays detailed information about a package. In
case the package name does not match any package name from repositories,
the command outputs detailed information for non-package matches. If you
request a specific type (by using the -t
option) and the
type does not exist, the command outputs other available matches but
without detailed information.
If you specify a source package, the command displays binary packages built from the source package. If you specify a binary package, the command outputs the source packages used to build the binary package.
To also show what is required/recommended by the package, use the options
--requires
and --recommends
:
>
zypper info --requires MozillaFirefox
6.1.8 Showing lifecycle information #
SUSE products are generally supported for 10 years. Often, you can extend that standard lifecycle by using the extended support offerings of SUSE which add three years of support. Depending on your product, find the exact support lifecycle at https://www.suse.com/lifecycle.
To check the lifecycle of your product and the supported package, use the
zypper lifecycle
command as shown below:
#
zypper lifecycle
Product end of support Codestream: SUSE Linux Enterprise Server 15 2028-07-31 Product: SUSE Linux Enterprise Server 15 SP3 n/a* Module end of support Basesystem Module n/a* Desktop Applications Module n/a* Server Applications Module n/a* Package end of support if different from product: autofs Now, installed 5.1.3-7.3.1, update available 5.1.3-7.6.1
6.1.9 Configuring Zypper #
Zypper now comes with a configuration file, allowing you to permanently
change Zypper's behavior (either system-wide or user-specific). For
system-wide changes, edit /etc/zypp/zypper.conf
. For
user-specific changes, edit ~/.zypper.conf
. If
~/.zypper.conf
does not yet exist, you can use
/etc/zypp/zypper.conf
as a template: copy it to
~/.zypper.conf
and adjust it to your liking. Refer to
the comments in the file for help about the available options.
6.1.10 Troubleshooting #
If you have trouble accessing packages from configured repositories (for example, Zypper cannot find a certain package even though you know it exists in one of the repositories), refreshing the repositories may help:
>
sudo
zypper refresh
If that does not help, try
>
sudo
zypper refresh -fdb
This forces a complete refresh and rebuild of the database, including a forced download of raw metadata.
6.1.11 Zypper rollback feature on Btrfs file system #
If the Btrfs file system is used on the root partition and
snapper
is installed, Zypper automatically calls
snapper
when committing changes to the file system to
create appropriate file system snapshots. These snapshots can be used to
revert any changes made by Zypper. See Chapter 7, System recovery and snapshot management with Snapper for
more information.
6.1.12 More information #
For more information on managing software from the command line, enter
zypper help
, zypper help
COMMAND or refer to the
zypper(8)
man page. For a complete and detailed command
reference, cheat sheets
with the most important commands,
and information on how to use Zypper in scripts and applications, refer to
https://en.opensuse.org/SDB:Zypper_usage. A list of
software changes for the latest SUSE Linux Enterprise Server version can be found at
https://en.opensuse.org/openSUSE:Zypper_versions.
6.2 RPM—the package manager #
RPM (RPM Package Manager) is used for managing software packages. Its main
commands are rpm
and rpmbuild
. The
powerful RPM database can be queried by the users, system administrators and
package builders for detailed information about the installed software.
rpm
has five modes: installing, uninstalling
(or updating) software packages, rebuilding the RPM database, querying RPM
bases or individual RPM archives, integrity checking of packages and signing
packages. rpmbuild
can be used to build installable
packages from pristine sources.
Installable RPM archives are packed in a special binary format. These
archives consist of the program files to install and certain meta information
used during the installation by rpm
to configure the
software package or stored in the RPM database for documentation purposes.
RPM archives normally have the extension .rpm
.
For several packages, the components needed for software development
(libraries, headers, include files, etc.) have been put into separate
packages. These development packages are only needed if you want to compile
software yourself (for example, the most recent GNOME packages). They can
be identified by the name extension -devel
, such as the
packages alsa-devel
and
gimp-devel
.
6.2.1 Verifying package authenticity #
RPM packages have a GPG signature. To verify the signature of an RPM
package, use the command rpm --checksig
PACKAGE-1.2.3.rpm to determine whether the
package originates from SUSE or from another trustworthy facility. This is
especially recommended for update packages from the Internet.
While fixing issues in the operating system, you might need to install a Problem Temporary Fix (PTF) into a production system. The packages provided by SUSE are signed against a special PTF key. However, in contrast to SUSE Linux Enterprise 11, this key is not imported by default on SUSE Linux Enterprise 12 systems. To manually import the key, use the following command:
>
sudo
rpm --import \ /usr/share/doc/packages/suse-build-key/suse_ptf_key.asc
After importing the key, you can install PTF packages on your system.
6.2.2 Managing packages: install, update, and uninstall #
Normally, the installation of an RPM archive is quite simple: rpm
-i
PACKAGE.rpm. With this command the
package is installed, but only if its dependencies are fulfilled and if
there are no conflicts with other packages. With an error message,
rpm
requests those packages that need to be installed to
meet dependency requirements. In the background, the RPM database ensures
that no conflicts arise—a specific file can only belong to one
package. By choosing different options, you can force rpm
to ignore these defaults, but this is only for experts. Otherwise, you risk
compromising the integrity of the system and possibly jeopardize the ability
to update the system.
The options -U
or --upgrade
and
-F
or --freshen
can be used to update a
package (for example, rpm -F
PACKAGE.rpm). This command removes the files of
the old version and immediately installs the new files. The difference
between the two versions is that -U
installs packages that
previously did not exist in the system, while -F
merely
updates previously installed packages. When updating, rpm
updates configuration files carefully using the following strategy:
If a configuration file was not changed by the system administrator,
rpm
installs the new version of the appropriate file. No action by the system administrator is required.If a configuration file was changed by the system administrator before the update,
rpm
saves the changed file with the extension.rpmorig
or.rpmsave
(backup file) and installs the version from the new package. This is done only if the originally installed file and the newer version are different. If this is the case, compare the backup file (.rpmorig
or.rpmsave
) with the newly installed file and make your changes again in the new file. Afterward, delete all.rpmorig
and.rpmsave
files to avoid problems with future updates..rpmnew
files appear if the configuration file already exists and if thenoreplace
label was specified in the.spec
file.
Following an update, .rpmsave
and
.rpmnew
files should be removed after comparing them,
so they do not obstruct future updates. The .rpmorig
extension is assigned if the file has not previously been recognized by the
RPM database.
Otherwise, .rpmsave
is used. In other words,
.rpmorig
results from updating from a foreign format to
RPM. .rpmsave
results from updating from an older RPM
to a newer RPM. .rpmnew
does not disclose any
information to whether the system administrator has made any changes to the
configuration file. A list of these files is available in
/var/adm/rpmconfigcheck
. Some configuration files (like
/etc/httpd/httpd.conf
) are not overwritten to allow
continued operation.
The -U
switch is not only an
equivalent to uninstalling with the -e
option and
installing with the -i
option. Use -U
whenever possible.
To remove a package, enter rpm -e
PACKAGE. This command only deletes the package if
there are no unresolved dependencies. It is theoretically impossible to
delete Tcl/Tk, for example, as long as another application requires it. Even
in this case, RPM calls for assistance from the database. If such a deletion
is, for whatever reason, impossible (even if no
additional dependencies exist), it may be helpful to rebuild the RPM
database using the option --rebuilddb
.
6.2.3 Delta RPM packages #
Delta RPM packages contain the difference between an old and a new version of an RPM package. Applying a delta RPM onto an old RPM results in a completely new RPM. It is not necessary to have a copy of the old RPM because a delta RPM can also work with an installed RPM. The delta RPM packages are even smaller in size than patch RPMs, which is an advantage when transferring update packages over the Internet. The drawback is that update operations with delta RPMs involved consume considerably more CPU cycles than plain or patch RPMs.
The makedeltarpm
and applydelta
binaries are part of the delta RPM suite (package
deltarpm
) and help you create and apply delta RPM
packages. With the following commands, you can create a delta RPM called
new.delta.rpm
. The following command assumes that
old.rpm
and new.rpm
are present:
>
sudo
makedeltarpm old.rpm new.rpm new.delta.rpm
Using applydeltarpm
, you can reconstruct the new RPM from
the file system if the old package is already installed:
>
sudo
applydeltarpm new.delta.rpm new.rpm
To derive it from the old RPM without accessing the file system, use the
-r
option:
>
sudo
applydeltarpm -r old.rpm new.delta.rpm new.rpm
See /usr/share/doc/packages/deltarpm/README
for
technical details.
6.2.4 RPM queries #
With the -q
option rpm
initiates
queries, making it possible to inspect an RPM archive (by adding the option
-p
) and to query the RPM database of installed packages.
Several switches are available to specify the type of information required.
See Table 6.1, “Essential RPM query options”.
|
Package information |
|
File list |
|
Query the package that contains the file FILE (the full path must be specified with FILE) |
|
File list with status information (implies |
|
List only documentation files (implies |
|
List only configuration files (implies |
|
File list with complete details (to be used with |
|
List features of the package that another package can request with
|
|
Capabilities the package requires |
|
Installation scripts (preinstall, postinstall, uninstall) |
For example, the command rpm -q -i wget
displays the
information shown in Example 6.2, “rpm -q -i wget
”.
rpm -q -i wget
#Name : wget Version : 1.14 Release : 17.1 Architecture: x86_64 Install Date: Mon 30 Jan 2017 14:01:29 CET Group : Productivity/Networking/Web/Utilities Size : 2046483 License : GPL-3.0+ Signature : RSA/SHA256, Thu 08 Dec 2016 07:48:44 CET, Key ID 70af9e8139db7c82 Source RPM : wget-1.14-17.1.src.rpm Build Date : Thu 08 Dec 2016 07:48:34 CET Build Host : sheep09 Relocations : (not relocatable) Packager : https://www.suse.com/ Vendor : SUSE LLC <https://www.suse.com/> URL : http://www.gnu.org/software/wget/ Summary : A Tool for Mirroring FTP and HTTP Servers Description : Wget enables you to retrieve WWW documents or FTP files from a server. This can be done in script files or via the command line. Distribution: SUSE Linux Enterprise 15
The option -f
only works if you specify the complete file
name with its full path. Provide as many file names as desired. For example:
>
rpm -q -f /bin/rpm /usr/bin/wget
rpm-4.14.1-lp151.13.10.x86_64
wget-1.19.5-lp151.4.1.x86_64
If only part of the file name is known, use a shell script as shown in Example 6.3, “Script to search for packages”. Pass the partial file name to the script shown as a parameter when running it.
#! /bin/sh for i in $(rpm -q -a -l | grep $1); do echo "\"$i\" is in package:" rpm -q -f $i echo "" done
The command rpm -q --changelog
PACKAGE displays a detailed list of change
information about a specific package, sorted by date.
With the installed RPM database, verification checks can be made. Initiate
these with -V
, or --verify
. With this
option, rpm
shows all files in a package that have been
changed since installation. rpm
uses eight character
symbols to give some hints about the following changes:
|
MD5 check sum |
|
File size |
|
Symbolic link |
|
Modification time |
|
Major and minor device numbers |
|
Owner |
|
Group |
|
Mode (permissions and file type) |
In the case of configuration files, the letter c
is
printed. For example, for changes to /etc/wgetrc
(wget
package):
>
rpm -V wget
S.5....T c /etc/wgetrc
The files of the RPM database are placed in
/var/lib/rpm
. If the partition
/usr
has a size of 1 GB, this database can occupy
nearly 30 MB, especially after a complete update. If the database is
much larger than expected, it is useful to rebuild the database with the
option --rebuilddb
. Before doing this, make a backup of the
old database. The cron
script
cron.daily
makes daily copies of the database (packed
with gzip) and stores them in /var/adm/backup/rpmdb
.
The number of copies is controlled by the variable
MAX_RPMDB_BACKUPS
(default: 5
) in
/etc/sysconfig/backup
. The size of a single backup is
approximately 1 MB for 1 GB in /usr
.
6.2.5 Installing and compiling source packages #
All source packages carry a .src.rpm
extension (source
RPM).
Source packages can be copied from the installation medium to the hard disk
and unpacked with YaST. They are not, however, marked as installed
([i]
) in the package manager. This is because the source
packages are not entered in the RPM database. Only
installed operating system software is listed in the
RPM database. When you “install” a source package, only the
source code is added to the system.
The following directories must be available for rpm
and
rpmbuild
in /usr/src/packages
(unless you specified custom settings in a file like
/etc/rpmrc
):
SOURCES
for the original sources (
.tar.bz2
or.tar.gz
files, etc.) and for distribution-specific adjustments (mostly.diff
or.patch
files)SPECS
for the
.spec
files, similar to a meta Makefile, which control the build processBUILD
all the sources are unpacked, patched and compiled in this directory
RPMS
where the completed binary packages are stored
SRPMS
here are the source RPMs
When you install a source package with YaST, all the necessary components
are installed in /usr/src/packages
: the sources and the
adjustments in SOURCES
and the relevant
.spec
file in SPECS
.
Do not experiment with system components
(glibc
,
rpm
, etc.), because this
endangers the stability of your system.
The following example uses the wget.src.rpm
package.
After installing the source package, you should have files similar to those
in the following list:
/usr/src/packages/SOURCES/wget-1.19.5.tar.bz2 /usr/src/packages/SOURCES/wgetrc.patch /usr/src/packages/SPECS/wget.spec
rpmbuild
-bX
/usr/src/packages/SPECS/wget.spec
starts the
compilation. X is a wild card for various stages
of the build process (see the output of --help
or the RPM
documentation for details). The following is merely a brief explanation:
-bp
Prepare sources in
/usr/src/packages/BUILD
: unpack and patch.-bc
Do the same as
-bp
, but with additional compilation.-bi
Do the same as
-bp
, but with additional installation of the built software. Caution: if the package does not support the BuildRoot feature, you might overwrite configuration files.-bb
Do the same as
-bi
, but with the additional creation of the binary package. If the compile was successful, the binary should be in/usr/src/packages/RPMS
.-ba
Do the same as
-bb
, but with the additional creation of the source RPM. If the compilation was successful, the binary should be in/usr/src/packages/SRPMS
.--short-circuit
Skip some steps.
The binary RPM created can now be installed with rpm
-i
or, preferably, with rpm
-U
. Installation with rpm
makes it
appear in the RPM database.
Keep in mind that the BuildRoot
directive in the spec
file is deprecated. If you still need this feature, use the
--buildroot
option as a workaround.
6.2.6 Compiling RPM packages with build #
The danger with many packages is that unwanted files are added to the
running system during the build process. To prevent this use
build
, which creates a defined environment in which
the package is built. To establish this chroot environment, the
build
script must be provided with a complete package
tree. This tree can be made available on the hard disk, via NFS, or from
DVD. Set the position with build --rpms
DIRECTORY. Unlike rpm
, the
build
command looks for the .spec
file in the source directory. To build wget
(like in
the above example) with the DVD mounted in the system under
/media/dvd
, use the following commands as
root
:
#
cd /usr/src/packages/SOURCES/#
mv ../SPECS/wget.spec .#
build --rpms /media/dvd/suse/ wget.spec
Subsequently, a minimum environment is established at
/var/tmp/build-root
. The package is built in this
environment. Upon completion, the resulting packages are located in
/var/tmp/build-root/usr/src/packages/RPMS
.
The build
script offers several additional options. For
example, cause the script to prefer your own RPMs, omit the initialization
of the build environment or limit the rpm
command to one
of the above-mentioned stages. Access additional information with
build
--help
and by reading the
build
man page.
6.2.7 Tools for RPM archives and the RPM database #
Midnight Commander (mc
) can display the contents of RPM
archives and copy parts of them. It represents archives as virtual file
systems, offering all usual menu options of Midnight Commander. Display the
HEADER
with F3. View the archive
structure with the cursor keys and Enter. Copy archive
components with F5.
A full-featured package manager is available as a YaST module. For details, see Book “Deployment Guide”, Chapter 21 “Installing or removing software”.
7 System recovery and snapshot management with Snapper #
Snapper allows creating and managing file system snapshots. File system snapshots allow keeping a copy of the state of a file system at a certain point of time. The standard setup of Snapper is designed to allow rolling back system changes. However, you can also use it to create on-disk backups of user data. As the basis for this functionality, Snapper uses the Btrfs file system or thinly-provisioned LVM volumes with an XFS or Ext4 file system.
Snapper has a command-line interface and a YaST interface. Snapper lets you create and manage file system snapshots on the following types of file systems:
Btrfs, a copy-on-write file system for Linux that natively supports file system snapshots of subvolumes. (Subvolumes are separately mountable file systems within a physical partition.)
You can also boot from
Btrfs
snapshots. For more information, see Section 7.3, “System rollback by booting from snapshots”.Thinly-provisioned LVM volumes formatted with XFS or Ext4.
Using Snapper, you can perform the following tasks:
Undo system changes made by
zypper
and YaST. See Section 7.2, “Using Snapper to undo changes” for details.Restore files from previous snapshots. See Section 7.2.2, “Using Snapper to restore files” for details.
Do a system rollback by booting from a snapshot. See Section 7.3, “System rollback by booting from snapshots” for details.
Manually create and manage snapshots, within the running system. See Section 7.6, “Manually creating and managing snapshots” for details.
7.1 Default setup #
Snapper on SUSE Linux Enterprise Server is set up as an undo and recovery
tool for system changes. By default, the root partition
(/
) of SUSE Linux Enterprise Server is formatted with
Btrfs
. Taking snapshots is automatically enabled if the
root partition (/
) is big enough (more
than approximately 16 GB). By default, snapshots are disabled on partitions
other than /
.
If you disabled Snapper during the installation, you can enable it at any time later. To do so, create a default Snapper configuration for the root file system by running:
>
sudo
snapper -c root create-config /
Afterward enable the different snapshot types as described in Section 7.1.4.1, “Disabling/enabling snapshots”.
Note that on a Btrfs root file system, snapshots require a file system with subvolumes set up as proposed by the installer and a partition size of at least 16 GB.
When a snapshot is created, both the snapshot and the original point to the
same blocks in the file system. So, initially a snapshot does not occupy
additional disk space. If data in the original file system is modified,
changed data blocks are copied while the old data blocks are kept for the
snapshot. Therefore, a snapshot occupies the same amount of space as the
data modified. So, over time, the amount of space a snapshot allocates,
constantly grows. As a consequence, deleting files from a
Btrfs
file system containing snapshots may
not free disk space!
Snapshots always reside on the same partition or subvolume on which the snapshot has been taken. It is not possible to store snapshots on a different partition or subvolume.
As a result, partitions containing snapshots need to be larger than partitions not containing snapshots. The exact amount depends strongly on the number of snapshots you keep and the amount of data modifications. As a rule of thumb, give partitions twice as much space as you normally would. To prevent disks from running out of space, old snapshots are automatically cleaned up. Refer to Section 7.1.4.4, “Controlling snapshot archiving” for details.
7.1.1 Default settings #
- Disks larger than 16 GB
Configuration file:
/etc/snapper/configs/root
USE_SNAPPER=yes
TIMELINE_CREATE=no
- Disks smaller than 16 GB
Configuration file: not created
USE_SNAPPER=no
TIMELINE_CREATE=yes
7.1.2 Types of snapshots #
Although snapshots themselves do not differ in a technical sense, we distinguish between three types of snapshots, based on the events that trigger them:
- Timeline snapshots
A single snapshot is created every hour. Using the YaST OS installation method (default), timeline snapshots are enabled, except for the root file system. You can configure timeline snapshots to be taken at different intervals: hourly, daily, weekly, monthly and yearly. Old snapshots are automatically deleted. By default, the first snapshot of the last ten days, months and years is kept.
- Installation snapshots
Whenever one or more packages are installed with Zypper or YaST, three installation snapshots are created. In case an important system component such as the kernel has been installed, the snapshot pair is marked as important. Old snapshots are automatically deleted. Installation snapshots are enabled by default.
- Administration snapshots
Whenever you make changes to the system using Zypper or YaST, a pair of snapshots is created: one prior to the system change (“pre”) and the other one after the system change (“post”). Old snapshots are automatically deleted. Administration snapshots are enabled by default.
7.1.3 Directories that are excluded from snapshots #
Some directories need to be excluded from snapshots for different reasons. The following list shows all directories that are excluded:
/boot/grub2/i386-pc
,/boot/grub2/x86_64-efi
,/boot/grub2/powerpc-ieee1275
,/boot/grub2/s390x-emu
A rollback of the boot loader configuration is not supported. The directories listed above are architecture-specific. The first two directories are present on AMD64/Intel 64 machines, the latter two on IBM POWER and on IBM Z, respectively.
/home
If
/home
does not reside on a separate partition, it is excluded to avoid data loss on rollbacks./opt
Third-party products usually get installed to
/opt
. It is excluded to avoid uninstalling these applications on rollbacks./srv
Contains data for Web and FTP servers. It is excluded to avoid data loss on rollbacks.
/tmp
All directories containing temporary files and caches are excluded from snapshots.
/usr/local
This directory is used when manually installing software. It is excluded to avoid uninstalling these installations on rollbacks.
/var
This directory contains many variable files, including logs, temporary caches, third party products in
/var/opt
, and is the default location for virtual machine images and databases. Therefore this subvolume is created to exclude all of this variable data from snapshots and has Copy-On-Write disabled.
7.1.4 Customizing the setup #
SUSE Linux Enterprise Server comes with a reasonable default setup, which should be sufficient for most use cases. However, all aspects of taking automatic snapshots and snapshot keeping can be configured according to your needs.
7.1.4.1 Disabling/enabling snapshots #
Each of the three snapshot types (timeline, installation, administration) can be enabled or disabled independently.
- Disabling/enabling timeline snapshots
Enabling.
snapper -c root set-config "TIMELINE_CREATE=yes"
Disabling.
snapper -c root set-config "TIMELINE_CREATE=no"
Using the YaST OS installation method (default), timeline snapshots are enabled, except for the root file system.
- Disabling/enabling installation snapshots
Enabling: Install the package
snapper-zypp-plugin
Disabling: Uninstall the package
snapper-zypp-plugin
Installation snapshots are enabled by default.
- Disabling/enabling administration snapshots
Enabling: Set
USE_SNAPPER
toyes
in/etc/sysconfig/yast2
.Disabling: Set
USE_SNAPPER
tono
in/etc/sysconfig/yast2
.Administration snapshots are enabled by default.
7.1.4.2 Controlling installation snapshots #
Taking snapshot pairs upon installing packages with YaST or Zypper is
handled by the
snapper-zypp-plugin
. An XML
configuration file, /etc/snapper/zypp-plugin.conf
defines, when to make snapshots. By default the file looks like the
following:
1 <?xml version="1.0" encoding="utf-8"?> 2 <snapper-zypp-plugin-conf> 3 <solvables> 4 <solvable match="w"1 important="true"2>kernel-*3</solvable> 5 <solvable match="w" important="true">dracut</solvable> 6 <solvable match="w" important="true">glibc</solvable> 7 <solvable match="w" important="true">systemd*</solvable> 8 <solvable match="w" important="true">udev</solvable> 9 <solvable match="w">*</solvable>4 10 </solvables> 11 </snapper-zypp-plugin-conf>
The match attribute defines whether the pattern is a Unix shell-style
wild card ( | |
If the given pattern matches and the corresponding package is marked as important (for example kernel packages), the snapshot will also be marked as important. | |
Pattern to match a package name. Based on the setting of the
| |
This line unconditionally matches all packages. |
With this configuration snapshot, pairs are made whenever a package is installed (line 9). When the kernel, dracut, glibc, systemd, or udev packages marked as important are installed, the snapshot pair will also be marked as important (lines 4 to 8). All rules are evaluated.
To disable a rule, either delete it or deactivate it using XML comments. To prevent the system from making snapshot pairs for every package installation for example, comment line 9:
1 <?xml version="1.0" encoding="utf-8"?> 2 <snapper-zypp-plugin-conf> 3 <solvables> 4 <solvable match="w" important="true">kernel-*</solvable> 5 <solvable match="w" important="true">dracut</solvable> 6 <solvable match="w" important="true">glibc</solvable> 7 <solvable match="w" important="true">systemd*</solvable> 8 <solvable match="w" important="true">udev</solvable> 9 <!-- <solvable match="w">*</solvable> --> 10 </solvables> 11 </snapper-zypp-plugin-conf>
7.1.4.3 Creating and mounting new subvolumes #
Creating a new subvolume underneath the /
hierarchy
and permanently mounting it is supported. Such a subvolume will be
excluded from snapshots. You need to make sure not to create it inside an
existing snapshot, since you would not be able to delete snapshots anymore
after a rollback.
SUSE Linux Enterprise Server is configured with the /@/
subvolume
which serves as an independent root for permanent subvolumes such as
/opt
, /srv
,
/home
and others. Any new subvolumes you create and
permanently mount need to be created in this initial root file system.
To do so, run the following commands. In this example, a new subvolume
/usr/important
is created from
/dev/sda2
.
>
sudo
mount /dev/sda2 -o subvol=@ /mnt>
sudo
btrfs subvolume create /mnt/usr/important>
sudo
umount /mnt
The corresponding entry in /etc/fstab
needs to look
like the following:
/dev/sda2 /usr/important btrfs subvol=@/usr/important 0 0
A subvolume may contain files that constantly change, such as
virtualized disk images, database files, or log files. If so, consider
disabling the copy-on-write feature for this volume, to avoid duplication
of disk blocks. Use the nodatacow
mount option in
/etc/fstab
to do so:
/dev/sda2 /usr/important btrfs nodatacow,subvol=@/usr/important 0 0
To alternatively disable copy-on-write for single files or directories,
use the command chattr +C
PATH
.
7.1.4.4 Controlling snapshot archiving #
Snapshots occupy disk space. To prevent disks from running out of space and thus causing system outages, old snapshots are automatically deleted. By default, up to ten important installation and administration snapshots and up to ten regular installation and administration snapshots are kept. If these snapshots occupy more than 50% of the root file system size, additional snapshots will be deleted. A minimum of four important and two regular snapshots are always kept.
Refer to Section 7.5.1, “Managing existing configurations” for instructions on how to change these values.
7.1.4.5 Using Snapper on thinly provisioned LVM volumes #
Apart from snapshots on Btrfs
file systems, Snapper
also supports taking snapshots on thinly-provisioned LVM volumes (snapshots
on regular LVM volumes are not supported) formatted
with XFS, Ext4 or Ext3. For more information and setup instructions on LVM
volumes, refer to Book “Deployment Guide”, Chapter 10 “.
”, Section 10.2 “LVM configuration”
To use Snapper on a thinly-provisioned LVM volume you need to create a
Snapper configuration for it. On LVM it is required to specify the file
system with
--fstype=lvm(FILESYSTEM)
.
ext3
, etx4
or xfs
are valid values for FILESYSTEM. Example:
>
sudo
snapper -c lvm create-config --fstype="lvm(xfs)" /thin_lvm
You can adjust this configuration according to your needs as described in Section 7.5.1, “Managing existing configurations”.
7.2 Using Snapper to undo changes #
Snapper on SUSE Linux Enterprise Server is preconfigured to serve as a tool that lets you
undo changes made by zypper
and YaST. For this purpose,
Snapper is configured to create a pair of snapshots before and after each
run of zypper
and YaST. Snapper also lets you restore
system files that have been accidentally deleted or modified. Timeline
snapshots for the root partition need to be enabled for this
purpose—see
Section 7.1.4.1, “Disabling/enabling snapshots” for details.
By default, automatic snapshots as described above are configured for the
root partition and its subvolumes. To make snapshots available for other
partitions such as /home
for example, you can create
custom configurations.
When working with snapshots to restore data, it is important to know that there are two fundamentally different scenarios Snapper can handle:
- Undoing changes
When undoing changes as described in the following, two snapshots are being compared and the changes between these two snapshots are made undone. Using this method also allows to explicitly select the files that should be restored.
- Rollback
When doing rollbacks as described in Section 7.3, “System rollback by booting from snapshots”, the system is reset to the state at which the snapshot was taken.
When undoing changes, it is also possible to compare a snapshot against the current system. When restoring all files from such a comparison, this will have the same result as doing a rollback. However, using the method described in Section 7.3, “System rollback by booting from snapshots” for rollbacks should be preferred, since it is faster and allows you to review the system before doing the rollback.
There is no mechanism to ensure data consistency when creating a snapshot.
Whenever a file (for example, a database) is written at the same time as
the snapshot is being created, it will result in a corrupted or partly written
file. Restoring such a file will cause problems. Furthermore, some system
files such as /etc/mtab
must never be restored.
Therefore it is strongly recommended to always closely
review the list of changed files and their diffs. Only restore files that
really belong to the action you want to revert.
7.2.1 Undoing YaST and Zypper changes #
If you set up the root partition with Btrfs
during the
installation, Snapper—preconfigured for doing rollbacks of YaST or
Zypper changes—will automatically be installed. Every time you start
a YaST module or a Zypper transaction, two snapshots are created: a
“pre-snapshot” capturing the state of the file system before
the start of the module and a “post-snapshot” after the module
has been finished.
Using the YaST Snapper module or the snapper
command
line tool, you can undo the changes made by YaST/Zypper by restoring
files from the “pre-snapshot”. Comparing two snapshots the
tools also allow you to see which files have been changed. You can also
display the differences between two versions of a file (diff).
Start the
module from the section in YaST or by enteringyast2 snapper
.Make sure
is set to . This is always the case unless you have manually added own Snapper configurations.Choose a pair of pre- and post-snapshots from the list. Both, YaST and Zypper snapshot pairs are of the type
. YaST snapshots are labeled aszypp(y2base)
in the ; Zypper snapshots are labeledzypp(zypper)
.Click
to open the list of files that differ between the two snapshots.Review the list of files. To display a “diff” between the pre- and post-version of a file, select it from the list.
To restore one or more files, select the relevant files or directories by activating the respective check box. Click
and confirm the action by clicking .To restore a single file, activate its diff view by clicking its name. Click
and confirm your choice with .
snapper
command #Get a list of YaST and Zypper snapshots by running
snapper list -t pre-post
. YaST snapshots are labeled asyast MODULE_NAME
in the ; Zypper snapshots are labeledzypp(zypper)
.>
sudo
snapper list -t pre-post Pre # | Post # | Pre Date | Post Date | Description ------+--------+-------------------------------+-------------------------------+-------------- 311 | 312 | Tue 06 May 2018 14:05:46 CEST | Tue 06 May 2018 14:05:52 CEST | zypp(y2base) 340 | 341 | Wed 07 May 2018 16:15:10 CEST | Wed 07 May 2018 16:15:16 CEST | zypp(zypper) 342 | 343 | Wed 07 May 2018 16:20:38 CEST | Wed 07 May 2018 16:20:42 CEST | zypp(y2base) 344 | 345 | Wed 07 May 2018 16:21:23 CEST | Wed 07 May 2018 16:21:24 CEST | zypp(zypper) 346 | 347 | Wed 07 May 2018 16:41:06 CEST | Wed 07 May 2018 16:41:10 CEST | zypp(y2base) 348 | 349 | Wed 07 May 2018 16:44:50 CEST | Wed 07 May 2018 16:44:53 CEST | zypp(y2base) 350 | 351 | Wed 07 May 2018 16:46:27 CEST | Wed 07 May 2018 16:46:38 CEST | zypp(y2base)Get a list of changed files for a snapshot pair with
snapper status
PRE..POST. Files with content changes are marked with , files that have been added are marked with and deleted files are marked with .>
sudo
snapper status 350..351 +..... /usr/share/doc/packages/mikachan-fonts +..... /usr/share/doc/packages/mikachan-fonts/COPYING +..... /usr/share/doc/packages/mikachan-fonts/dl.html c..... /usr/share/fonts/truetype/fonts.dir c..... /usr/share/fonts/truetype/fonts.scale +..... /usr/share/fonts/truetype/みかちゃん-p.ttf +..... /usr/share/fonts/truetype/みかちゃん-pb.ttf +..... /usr/share/fonts/truetype/みかちゃん-ps.ttf +..... /usr/share/fonts/truetype/みかちゃん.ttf c..... /var/cache/fontconfig/7ef2298fde41cc6eeb7af42e48b7d293-x86_64.cache-4 c..... /var/lib/rpm/Basenames c..... /var/lib/rpm/Dirnames c..... /var/lib/rpm/Group c..... /var/lib/rpm/Installtid c..... /var/lib/rpm/Name c..... /var/lib/rpm/Packages c..... /var/lib/rpm/Providename c..... /var/lib/rpm/Requirename c..... /var/lib/rpm/Sha1header c..... /var/lib/rpm/Sigmd5To display the diff for a certain file, run
snapper diff
PRE..POST FILENAME. If you do not specify FILENAME, a diff for all files will be displayed.>
sudo
snapper diff 350..351 /usr/share/fonts/truetype/fonts.scale --- /.snapshots/350/snapshot/usr/share/fonts/truetype/fonts.scale 2014-04-23 15:58:57.000000000 +0200 +++ /.snapshots/351/snapshot/usr/share/fonts/truetype/fonts.scale 2014-05-07 16:46:31.000000000 +0200 @@ -1,4 +1,4 @@ -1174 +1486 ds=y:ai=0.2:luximr.ttf -b&h-luxi mono-bold-i-normal--0-0-0-0-c-0-iso10646-1 ds=y:ai=0.2:luximr.ttf -b&h-luxi mono-bold-i-normal--0-0-0-0-c-0-iso8859-1 [...]To restore one or more files run
snapper -v undochange
PRE..POST FILENAMES. If you do not specify a FILENAMES, all changed files will be restored.>
sudo
snapper -v undochange 350..351 create:0 modify:13 delete:7 undoing change... deleting /usr/share/doc/packages/mikachan-fonts deleting /usr/share/doc/packages/mikachan-fonts/COPYING deleting /usr/share/doc/packages/mikachan-fonts/dl.html deleting /usr/share/fonts/truetype/みかちゃん-p.ttf deleting /usr/share/fonts/truetype/みかちゃん-pb.ttf deleting /usr/share/fonts/truetype/みかちゃん-ps.ttf deleting /usr/share/fonts/truetype/みかちゃん.ttf modifying /usr/share/fonts/truetype/fonts.dir modifying /usr/share/fonts/truetype/fonts.scale modifying /var/cache/fontconfig/7ef2298fde41cc6eeb7af42e48b7d293-x86_64.cache-4 modifying /var/lib/rpm/Basenames modifying /var/lib/rpm/Dirnames modifying /var/lib/rpm/Group modifying /var/lib/rpm/Installtid modifying /var/lib/rpm/Name modifying /var/lib/rpm/Packages modifying /var/lib/rpm/Providename modifying /var/lib/rpm/Requirename modifying /var/lib/rpm/Sha1header modifying /var/lib/rpm/Sigmd5 undoing change done
Reverting user additions via undoing changes with Snapper is not recommended. Since certain directories are excluded from snapshots, files belonging to these users will remain in the file system. If a user with the same user ID as a deleted user is created, this user will inherit the files. Therefore it is strongly recommended to use the YaST
tool to remove users.7.2.2 Using Snapper to restore files #
Apart from the installation and administration snapshots, Snapper creates timeline snapshots. You can use these backup snapshots to restore files that have accidentally been deleted or to restore a previous version of a file. By using Snapper's diff feature you can also find out which modifications have been made at a certain point of time.
Being able to restore files is especially interesting for data, which may
reside on subvolumes or partitions for which snapshots are not taken by
default. To be able to restore files from home directories, for example,
create a separate Snapper configuration for /home
doing automatic timeline snapshots. See
Section 7.5, “Creating and modifying Snapper configurations” for instructions.
Snapshots taken from the root file system (defined by Snapper's root configuration), can be used to do a system rollback. The recommended way to do such a rollback is to boot from the snapshot and then perform the rollback. See Section 7.3, “System rollback by booting from snapshots” for details.
Performing a rollback would also be possible by restoring all files from a
root file system snapshot as described below. However, this is not
recommended. You may restore single files, for example a configuration
file from the /etc
directory, but not the
complete list of files from the snapshot.
This restriction only affects snapshots taken from the root file system!
Start the
module from the section in YaST or by enteringyast2 snapper
.Choose the
from which to choose a snapshot.Select a timeline snapshot from which to restore a file and choose
. Timeline snapshots are of the type with a description value of .Select a file from the text box by clicking the file name. The difference between the snapshot version and the current system is shown. Activate the check box to select the file for restore. Do so for all files you want to restore.
Click
and confirm the action by clicking .
snapper
command #Get a list of timeline snapshots for a specific configuration by running the following command:
>
sudo
snapper -c CONFIG list -t single | grep timelineCONFIG needs to be replaced by an existing Snapper configuration. Use
snapper list-configs
to display a list.Get a list of changed files for a given snapshot by running the following command:
>
sudo
snapper -c CONFIG status SNAPSHOT_ID..0Replace SNAPSHOT_ID by the ID for the snapshot from which you want to restore the file(s).
Optionally list the differences between the current file version and the one from the snapshot by running
>
sudo
snapper -c CONFIG diff SNAPSHOT_ID..0 FILE NAMEIf you do not specify <FILE NAME>, the difference for all files are shown.
To restore one or more files, run
>
sudo
snapper -c CONFIG -v undochange SNAPSHOT_ID..0 FILENAME1 FILENAME2If you do not specify file names, all changed files will be restored.
7.3 System rollback by booting from snapshots #
The GRUB 2 version included on SUSE Linux Enterprise Server can boot from Btrfs snapshots.
Together with Snapper's rollback feature, this allows to recover a
misconfigured system. Only snapshots created for the default Snapper
configuration (root
) are bootable.
As of SUSE Linux Enterprise Server 15 SP3 system rollbacks are only supported if the default subvolume configuration of the root partition has not been changed.
When booting a snapshot, the parts of the file system included in the snapshot are mounted read-only; all other file systems and parts that are excluded from snapshots are mounted read-write and can be modified.
When working with snapshots to restore data, it is important to know that there are two fundamentally different scenarios Snapper can handle:
- Undoing changes
When undoing changes as described in Section 7.2, “Using Snapper to undo changes”, two snapshots are compared and the changes between these two snapshots are reverted. Using this method also allows to explicitly exclude selected files from being restored.
- Rollback
When doing rollbacks as described in the following, the system is reset to the state at which the snapshot was taken.
To do a rollback from a bootable snapshot, the following requirements must be met. When doing a default installation, the system is set up accordingly.
The root file system needs to be Btrfs. Booting from LVM volume snapshots is not supported.
The root file system needs to be on a single device. To check, run
sudo /sbin/btrfs filesystem show
. It needs to reportTotal devices 1
. If more than1
device is listed, your setup is not supported.Note: Directories excluded from snapshotsDirectories that are excluded from snapshots such as
/srv
(see Section 7.1.3, “Directories that are excluded from snapshots” for a full list) may reside on separate devices.The system needs to be bootable via the installed boot loader.
Only contents of the subvolume
/
will be rolled back. It is not possible to include other subvolumes.
To perform a rollback from a bootable snapshot, do as follows:
Boot the system. In the boot menu choose
and select the snapshot you want to boot. The list of snapshots is listed by date—the most recent snapshot is listed first.Log in to the system. Carefully check whether everything works as expected. Note that you cannot write to any directory that is part of the snapshot. Data you write to other directories will not get lost, regardless of what you do next.
Depending on whether you want to perform the rollback or not, choose your next step:
If the system is in a state where you do not want to do a rollback, reboot to boot into the current system state. You can then choose a different snapshot, or start the rescue system.
To perform the rollback, run
>
sudo
snapper rollbackand reboot afterward. On the boot screen, choose the default boot entry to reboot into the reinstated system. A snapshot of the file system status before the rollback is created. The default subvolume for root will be replaced with a fresh read-write snapshot. For details, see Section 7.3.1, “Snapshots after rollback”.
It is useful to add a description for the snapshot with the
-d
option. For example:New file system root since rollback on DATE TIME
If snapshots are not disabled during installation, an initial bootable
snapshot is created at the end of the initial system installation. You can
go back to that state at any time by booting this snapshot. The snapshot
can be identified by the description after installation
.
A bootable snapshot is also created when starting a system upgrade to a service pack or a new major release (provided snapshots are not disabled).
7.3.1 Snapshots after rollback #
Before a rollback is performed, a snapshot of the running file system is created. The description references the ID of the snapshot that was restored in the rollback.
Snapshots created by rollbacks receive the value number
for the Cleanup
attribute. The rollback snapshots are
therefore automatically deleted when the set number of snapshots is reached.
Refer to Section 7.7, “Automatic snapshot clean-up” for details.
If the snapshot contains important data, extract the data from the snapshot
before it is removed.
7.3.1.1 Example of rollback snapshot #
For example, after a fresh installation the following snapshots are available on the system:
#
snapper
--iso list Type | # | | Cleanup | Description | Userdata -------+---+ ... +---------+-----------------------+-------------- single | 0 | | | current | single | 1 | | | first root filesystem | single | 2 | | number | after installation | important=yes
After running sudo snapper rollback
snapshot
3
is created and contains the state of the system
before the rollback was executed. Snapshot 4
is
the new default Btrfs subvolume and thus the system after a reboot.
#
snapper
--iso list Type | # | | Cleanup | Description | Userdata -------+---+ ... +---------+-----------------------+-------------- single | 0 | | | current | single | 1 | | number | first root filesystem | single | 2 | | number | after installation | important=yes single | 3 | | number | rollback backup of #1 | important=yes single | 4 | | | |
7.3.2 Accessing and identifying snapshot boot entries #
To boot from a snapshot, reboot your machine and choose ↓ and ↑ to navigate and press Enter to activate the selected snapshot. Activating a snapshot from the boot menu does not reboot the machine immediately, but rather opens the boot loader of the selected snapshot.
. A screen listing all bootable snapshots opens. The most recent snapshot is listed first, the oldest last. Use the keysRefer to https://www.suse.com/support/kb/doc/?id=000020602 for more details.
Each snapshot entry in the boot loader follows a naming scheme which makes it possible to identify it easily:
[*]1OS2 (KERNEL3,DATE4TTIME5,DESCRIPTION6)
If the snapshot was marked | |
Operating system label. | |
Date in the format | |
Time in the format | |
This field contains a description of the snapshot. In case of a manually
created snapshot this is the string created with the option
|
It is possible to replace the default string in the description field of a snapshot with a custom string. This is for example useful if an automatically created description is not sufficient, or a user-provided description is too long. To set a custom string STRING for snapshot NUMBER, use the following command:
>
sudo
snapper modify --userdata "bootloader=STRING" NUMBER
The description should be no longer than 25 characters—everything that exceeds this size will not be readable on the boot screen.
7.3.3 Limitations #
A complete system rollback, restoring the complete system to the identical state as it was in when a snapshot was taken, is not possible.
7.3.3.1 Directories excluded from snapshots #
Root file system snapshots do not contain all directories. See Section 7.1.3, “Directories that are excluded from snapshots” for details and reasons. As a general consequence, data from these directories is not restored, resulting in the following limitations.
- Add-ons and third-party software may be unusable after a rollback
Applications and add-ons installing data in subvolumes excluded from the snapshot, such as
/opt
, may not work after a rollback, if others parts of the application data are also installed on subvolumes included in the snapshot. Re-install the application or the add-on to solve this problem.- File access problems
If an application had changed file permissions and/or ownership in between snapshot and current system, the application may not be able to access these files. Reset permissions and/or ownership for the affected files after the rollback.
- Incompatible data formats
If a service or an application has established a new data format in between snapshot and current system, the application may not be able to read the affected data files after a rollback.
- Subvolumes with a mixture of code and data
Subvolumes like
/srv
may contain a mixture of code and data. A rollback may result in non-functional code. A downgrade of the PHP version, for example, may result in broken PHP scripts for the Web server.- User data
If a rollback removes users from the system, data that is owned by these users in directories excluded from the snapshot, is not removed. If a user with the same user ID is created, this user will inherit the files. Use a tool like
find
to locate and remove orphaned files.
7.3.3.2 No rollback of boot loader data #
A rollback of the boot loader is not possible, since all
“stages” of the boot loader must fit together. This cannot be
guaranteed when doing rollbacks of /boot
.
7.4 Enabling Snapper in user home directories #
You may enable snapshots for users' /home
directories, which supports a number of use cases:
Individual users may manage their own snapshots and rollbacks.
System users, for example database, system, and network admins who want to track copies of configuration files, documentation, and so on.
Samba shares with home directories and Btrfs back-end.
Each user's directory is a Btrfs subvolume of /home
.
It is possible to set this up manually
(see Section 7.4.3, “Manually enabling snapshots in home directories”). However, a
more convenient way is to use pam_snapper
.
The pam_snapper
package installs the
pam_snapper.so
module and helper scripts, which
automate user creation and Snapper configuration.
pam_snapper
provides integration with the
useradd
command, pluggable
authentication modules (PAM), and Snapper. By default it creates snapshots
at user login and logout, and also creates time-based snapshots as some
users remain logged in for extended periods of time. You may change the
defaults using the normal Snapper commands and configuration files.
7.4.1 Installing pam_snapper and creating users #
The easiest way is to start with a new /home
directory formatted with Btrfs, and no existing users. Install
pam_snapper
:
#
zypper in pam_snapper
Add this line to /etc/pam.d/common-session
:
session optional pam_snapper.so
Use the /usr/lib/pam_snapper/pam_snapper_useradd.sh
script to create a new user and home directory. By default the script
performs a dry run. Edit the script to change
DRYRUN=1
to DRYRUN=0
. Now you
can create a new user:
#
/usr/lib/pam_snapper/pam_snapper_useradd.sh \
username group passwd=password
Create subvolume '/home/username'
useradd: warning: the home directory already exists.
Not copying any file from skel directory into it.
The files from /etc/skel
will be copied
into the user's home directory at their first login. Verify that
the user's configuration was created by listing your Snapper
configurations:
#
snapper list --all
Config: home_username, subvolume: /home/username
Type | # | Pre # | Date | User | Cleanup | Description | Userdata
-------+---+-------+------+------+---------+-------------+---------
single | 0 | | | root | | current |
Over time, this output will become populated with a list of snapshots, which the user can manage with the standard Snapper commands.
7.4.2 Removing users #
Remove users with the
/usr/lib/pam_snapper/pam_snapper_userdel.sh
script. By default it performs a dry run, so edit it to change
DRYRUN=1
to DRYRUN=0
. This
removes the user, the user's home subvolume, Snapper configuration,
and deletes all snapshots.
#
/usr/lib/pam_snapper/pam_snapper_userdel.sh username
7.4.3 Manually enabling snapshots in home directories #
These are the steps for manually setting up users' home directories
with Snapper. /home
must be formatted with Btrfs,
and the users not yet created.
#
btrfs subvol create /home/username#
snapper -c home_username create-config /home/username#
sed -i -e "s/ALLOW_USERS=\"\"/ALLOW_USERS=\"username\"/g" \ /etc/snapper/configs/home_username#
yast users add username=username home=/home/username password=password#
chown username.group /home/username#
chmod 755 /home/username/.snapshots
7.5 Creating and modifying Snapper configurations #
The way Snapper behaves is defined in a configuration file that is specific
for each partition or Btrfs
subvolume. These
configuration files reside under /etc/snapper/configs/
.
In case the root file system is big enough (approximately 12 GB), snapshots
are automatically enabled for the root file system /
upon installation. The corresponding default configuration is named
root
. It creates and manages the YaST and Zypper
snapshot. See Section 7.5.1.1, “Configuration data” for a list
of the default values.
As explained in Section 7.1, “Default setup”, enabling snapshots requires additional free space in the root file system. The amount depends on the amount of packages installed and the amount of changes made to the volume that is included in snapshots. The snapshot frequency and the number of snapshots that get archived also matter.
There is a minimum root file system size that is required to automatically
enable snapshots during the installation. Currently this size is
approximately 12 GB. This value may change in the future, depending on
architecture and the size of the base system. It depends on the values for
the following tags in the file /control.xml
from the
installation media:
<root_base_size> <btrfs_increase_percentage>
It is calculated with the following formula: ROOT_BASE_SIZE * (1 + BTRFS_INCREASE_PERCENTAGE/100)
Keep in mind that this value is a minimum size. Consider using more space for the root file system. As a rule of thumb, double the size you would use when not having enabled snapshots.
You may create your own configurations for other partitions formatted with
Btrfs
or existing subvolumes on a
Btrfs
partition. In the following example we will set up
a Snapper configuration for backing up the Web server data residing on a
separate, Btrfs
-formatted partition mounted at
/srv/www
.
After a configuration has been created, you can either use
snapper
itself or the YaST
module to restore files from these snapshots. In YaST you need to select
your , while you need to specify
your configuration for snapper
with the global switch
-c
(for example, snapper -c myconfig
list
).
To create a new Snapper configuration, run snapper
create-config
:
>
sudo
snapper -c www-data1 create-config /srv/www2
Name of configuration file. | |
Mount point of the partition or |
This command will create a new configuration file
/etc/snapper/configs/www-data
with reasonable default
values (taken from
/etc/snapper/config-templates/default
). Refer to
Section 7.5.1, “Managing existing configurations” for instructions on how to
adjust these defaults.
Default values for a new configuration are taken from
/etc/snapper/config-templates/default
. To use your own
set of defaults, create a copy of this file in the same directory and
adjust it to your needs. To use it, specify the -t
option
with the create-config command:
>
sudo
snapper -c www-data create-config -t MY_DEFAULTS /srv/www
7.5.1 Managing existing configurations #
The snapper
command offers several subcommands for managing
existing configurations. You can list, show, delete and modify them:
- Listing configurations
Use the subcommand
snapper list-configs
to get all existing configurations:>
sudo
snapper list-configs Config | Subvolume -------+---------- root | / usr | /usr local | /local- Showing a configuration
Use the subcommand
snapper -c CONFIG get-config
to display the specified configuration. Replace CONFIG with one of the configuration names shown bysnapper list-configs
. For more information about the configuration options, see Section 7.5.1.1, “Configuration data”.To display the default configuration, run:
>
sudo
snapper -c root get-config- Modifying a configuration
Use the subcommand
snapper -c CONFIG set-config OPTION=VALUE
to modify an option in the specified configuration. Replace CONFIG with one of the configuration names shown bysnapper list-configs
. Possible values for OPTION and VALUE are listed in Section 7.5.1.1, “Configuration data”.- Deleting a configuration
Use the subcommand
snapper -c CONFIG delete-config
to delete a configuration. Replace CONFIG with one of the configuration names shown bysnapper list-configs
.
7.5.1.1 Configuration data #
Each configuration contains a list of options that can be modified from
the command line. The following list provides details for each option. To
change a value, run snapper -c CONFIG
set-config
"KEY=VALUE"
.
ALLOW_GROUPS
,ALLOW_USERS
Granting permissions to use snapshots to regular users. See Section 7.5.1.2, “Using Snapper as regular user” for more information.
The default value is
""
.BACKGROUND_COMPARISON
Defines whether pre and post snapshots should be compared in the background after creation.
The default value is
"yes"
.EMPTY_*
Defines the clean-up algorithm for snapshots pairs with identical pre and post snapshots. See Section 7.7.3, “Cleaning up snapshot pairs that do not differ” for details.
FSTYPE
File system type of the partition. Do not change.
The default value is
"btrfs"
.NUMBER_*
Defines the clean-up algorithm for installation and admin snapshots. See Section 7.7.1, “Cleaning up numbered snapshots” for details.
QGROUP
/SPACE_LIMIT
Adds quota support to the clean-up algorithms. See Section 7.7.5, “Adding disk quota support” for details.
SUBVOLUME
Mount point of the partition or subvolume to snapshot. Do not change.
The default value is
"/"
.SYNC_ACL
If Snapper is used by regular users (see Section 7.5.1.2, “Using Snapper as regular user”), the users must be able to access the
.snapshot
directories and to read files within them. If SYNC_ACL is set toyes
, Snapper automatically makes them accessible using ACLs for users and groups from the ALLOW_USERS or ALLOW_GROUPS entries.The default value is
"no"
.TIMELINE_CREATE
If set to
yes
, hourly snapshots are created. Valid values:yes
,no
.The default value is
"no"
.TIMELINE_CLEANUP
/TIMELINE_LIMIT_*
Defines the clean-up algorithm for timeline snapshots. See Section 7.7.2, “Cleaning up timeline snapshots” for details.
7.5.1.2 Using Snapper as regular user #
By default Snapper can only be used by root
. However, there are
cases in which certain groups or users need to be able to create snapshots
or undo changes by reverting to a snapshot:
Web site administrators who want to take snapshots of
/srv/www
Users who want to take a snapshot of their home directory
For these purposes, you can create Snapper configurations that grant
permissions to users or/and groups. The corresponding
.snapshots
directory needs to be readable and
accessible by the specified users. The easiest way to achieve this is to
set the SYNC_ACL option to yes
.
Note that all steps in this procedure need to be run by root
.
If a Snapper configuration does not exist yet, create one for the partition or subvolume on which the user should be able to use Snapper. Refer to Section 7.5, “Creating and modifying Snapper configurations” for instructions. Example:
>
sudo
snapper --config web_data create /srv/wwwThe configuration file is created under
/etc/snapper/configs/CONFIG
, where CONFIG is the value you specified with-c/--config
in the previous step (for example/etc/snapper/configs/web_data
). Adjust it according to your needs. For more information, see Section 7.5.1, “Managing existing configurations”.Set values for
ALLOW_USERS
and/orALLOW_GROUPS
to grant permissions to users and/or groups, respectively. Multiple entries need to be separated by Space. To grant permissions to the userwww_admin
for example, run:>
sudo
snapper -c web_data set-config "ALLOW_USERS=www_admin" SYNC_ACL="yes"The given Snapper configuration can now be used by the specified user(s) and/or group(s). You can test it with the
list
command, for example:www_admin:~ >
snapper -c web_data list
7.6 Manually creating and managing snapshots #
Snapper is not restricted to creating and managing snapshots automatically by configuration; you can also create snapshot pairs (“before and after”) or single snapshots manually using either the command-line tool or the YaST module.
All Snapper operations are carried out for an existing configuration (see
Section 7.5, “Creating and modifying Snapper configurations” for details). You can only take
snapshots of partitions or volumes for which a configuration exists. By
default the system configuration (root
) is used.
To create or manage snapshots for your own configuration you need to
explicitly choose it. Use the
drop-down box in YaST or specify the -c
on the command
line (snapper -c MYCONFIG
COMMAND
).
7.6.1 Snapshot metadata #
Each snapshot consists of the snapshot itself and some metadata. When
creating a snapshot you also need to specify the metadata. Modifying a
snapshot means changing its metadata—you cannot modify its content.
Use snapper list
to show existing snapshots and their
metadata:
snapper --config home list
Lists snapshots for the configuration
home
. To list snapshots for the default configuration (root), usesnapper -c root list
orsnapper list
.snapper list -a
Lists snapshots for all existing configurations.
snapper list -t pre-post
Lists all pre and post snapshot pairs for the default (
root
) configuration.snapper list -t single
Lists all snapshots of the type
single
for the default (root
) configuration.
The following metadata is available for each snapshot:
Type: Snapshot type, see Section 7.6.1.1, “Snapshot types” for details. This data cannot be changed.
Number: Unique number of the snapshot. This data cannot be changed.
Pre Number: Specifies the number of the corresponding pre snapshot. For snapshots of type post only. This data cannot be changed.
Description: A description of the snapshot.
Userdata: An extended description where you can specify custom data in the form of a comma-separated key=value list:
reason=testing, project=foo
. This field is also used to mark a snapshot as important (important=yes
) and to list the user that created the snapshot (user=tux).Cleanup-Algorithm: Cleanup-algorithm for the snapshot, see Section 7.7, “Automatic snapshot clean-up” for details.
7.6.1.1 Snapshot types #
Snapper knows three different types of snapshots: pre, post, and single. Physically they do not differ, but Snapper handles them differently.
pre
Snapshot of a file system before a modification. Each
pre
snapshot corresponds to apost
snapshot. For example, this is used for the automatic YaST/Zypper snapshots.post
Snapshot of a file system after a modification. Each
post
snapshot corresponds to apre
snapshot. For example, this is used for the automatic YaST/Zypper snapshots.single
Stand-alone snapshot. For example, this is used for the automatic hourly snapshots. This is the default type when creating snapshots.
7.6.1.2 Cleanup algorithms #
Snapper provides three algorithms to clean up old snapshots. The
algorithms are executed in a daily
cron
job.
It is possible to define the
number of different types of snapshots to keep in the Snapper
configuration (see Section 7.5.1, “Managing existing configurations” for
details).
- number
Deletes old snapshots when a certain snapshot count is reached.
- timeline
Deletes old snapshots having passed a certain age, but keeps several hourly, daily, monthly, and yearly snapshots.
- empty-pre-post
Deletes pre/post snapshot pairs with empty diffs.
7.6.2 Creating snapshots #
To create a snapshot, run snapper create
or
click in the YaST module
. The following examples explain how to create
snapshots from the command line.
The YaST interface for Snapper is not explicitly described here but
provides equivalent functionality.
Always specify a meaningful description to later be able to
identify its purpose. You can also specify additional information via
the option --userdata
.
snapper create --from 17 --description "with package2"
Creates a stand-alone snapshot (type single) from an existing snapshot, which is specified by the snapshot's number from
snapper list
. (This applies to Snapper version 0.8.4 and newer.)snapper create --description "Snapshot for week 2 2014"
Creates a stand-alone snapshot (type single) for the default (
root
) configuration with a description. Because no cleanup-algorithm is specified, the snapshot will never be deleted automatically.snapper --config home create --description "Cleanup in ~tux"
Creates a stand-alone snapshot (type single) for a custom configuration named
home
with a description. Because no cleanup-algorithm is specified, the snapshot will never be deleted automatically.snapper --config home create --description "Daily data backup" --cleanup-algorithm timeline
>Creates a stand-alone snapshot (type single) for a custom configuration named
home
with a description. The snapshot will automatically be deleted when it meets the criteria specified for the timeline cleanup-algorithm in the configuration.snapper create --type pre --print-number --description "Before the Apache config cleanup" --userdata "important=yes"
Creates a snapshot of the type
pre
and prints the snapshot number. First command needed to create a pair of snapshots used to save a “before” and “after” state. The snapshot is marked as important.snapper create --type post --pre-number 30 --description "After the Apache config cleanup" --userdata "important=yes"
Creates a snapshot of the type
post
paired with thepre
snapshot number30
. Second command needed to create a pair of snapshots used to save a “before” and “after” state. The snapshot is marked as important.snapper create --command COMMAND --description "Before and after COMMAND"
Automatically creates a snapshot pair before and after running COMMAND. This option is only available when using snapper on the command line.
7.6.3 Modifying snapshot metadata #
Snapper allows you to modify the description, the cleanup algorithm, and the user data of a snapshot. All other metadata cannot be changed. The following examples explain how to modify snapshots from the command line. It should be easy to adopt them when using the YaST interface.
To modify a snapshot on the command line, you need to know its number. Use
snapper list
to display all snapshots
and their numbers.
The YaST
module already lists all snapshots. Choose one from the list and click .snapper modify --cleanup-algorithm "timeline"
10Modifies the metadata of snapshot 10 for the default (
root
) configuration. The cleanup algorithm is set totimeline
.snapper --config home modify --description "daily backup" -cleanup-algorithm "timeline" 120
Modifies the metadata of snapshot 120 for a custom configuration named
home
. A new description is set and the cleanup algorithm is unset.
7.6.4 Deleting snapshots #
To delete a snapshot with the YaST
module, choose a snapshot from the list and click .
To delete a snapshot with the command-line tool, you need to know its
number. Get it by running snapper list
. To delete a
snapshot, run snapper delete
NUMBER.
Deleting the current default subvolume snapshot is not allowed.
When deleting snapshots with Snapper, the freed space will be claimed by a
Btrfs process running in the background. Thus the visibility and the
availability of free space is delayed. In case you need space freed by
deleting a snapshot to be available immediately, use the option
--sync
with the delete command.
When deleting a pre
snapshot, you should always delete
its corresponding post
snapshot (and vice versa).
snapper delete 65
Deletes snapshot 65 for the default (
root
) configuration.snapper -c home delete 89 90
Deletes snapshots 89 and 90 for a custom configuration named
home
.snapper delete --sync 23
Deletes snapshot 23 for the default (
root
) configuration and makes the freed space available immediately.
Sometimes the Btrfs snapshot is present but the XML file containing the metadata for Snapper is missing. In this case the snapshot is not visible for Snapper and needs to be deleted manually:
btrfs subvolume delete /.snapshots/SNAPSHOTNUMBER/snapshot rm -rf /.snapshots/SNAPSHOTNUMBER
If you delete snapshots to free space on your hard disk, make sure to delete old snapshots first. The older a snapshot is, the more disk space it occupies.
Snapshots are also automatically deleted by a daily cron job. Refer to Section 7.6.1.2, “Cleanup algorithms” for details.
7.7 Automatic snapshot clean-up #
Snapshots occupy disk space and over time the amount of disk space occupied by the snapshots may become large. To prevent disks from running out of space, Snapper offers algorithms to automatically delete old snapshots. These algorithms differentiate between timeline snapshots and numbered snapshots (administration plus installation snapshot pairs). You can specify the number of snapshots to keep for each type.
In addition to that, you can optionally specify a disk space quota, defining the maximum amount of disk space the snapshots may occupy. It is also possible to automatically delete pre and post snapshots pairs that do not differ.
A clean-up algorithm is always bound to a single Snapper configuration, so you need to configure algorithms for each configuration. To prevent certain snapshots from being automatically deleted, refer to Can a snapshot be protected from deletion? .
The default setup (root
) is configured to do clean-up
for numbered snapshots and empty pre and post snapshot pairs. Quota support
is enabled—snapshots may not occupy more than 50% of the available
disk space of the root partition. Timeline snapshots are disabled by
default, therefore the timeline clean-up algorithm is also disabled.
7.7.1 Cleaning up numbered snapshots #
Cleaning up numbered snapshots—administration plus installation snapshot pairs—is controlled by the following parameters of a Snapper configuration.
NUMBER_CLEANUP
Enables or disables clean-up of installation and admin snapshot pairs. If enabled, snapshot pairs are deleted when the total snapshot count exceeds a number specified with
NUMBER_LIMIT
and/orNUMBER_LIMIT_IMPORTANT
and an age specified withNUMBER_MIN_AGE
. Valid values:yes
(enable),no
(disable).The default value is
"yes"
.Example command to change or set:
>
sudo
snapper -c CONFIG set-config "NUMBER_CLEANUP=no"NUMBER_LIMIT
/NUMBER_LIMIT_IMPORTANT
Defines how many regular and/or important installation and administration snapshot pairs to keep. Ignored if
NUMBER_CLEANUP
is set to"no"
.The default value is
"2-10"
forNUMBER_LIMIT
and"4-10"
forNUMBER_LIMIT_IMPORTANT
. The cleaning algorithms delete snapshots above the specified maximum value, without taking the snapshot and file system space into account. The algorithms also delete snapshots above the minimum value until the limits for the snapshot and file system are reached.Example command to change or set:
>
sudo
snapper -c CONFIG set-config "NUMBER_LIMIT=10"Important: Ranged compared to constant valuesIn case quota support is enabled (see Section 7.7.5, “Adding disk quota support”) the limit needs to be specified as a minimum-maximum range, for example
2-10
. If quota support is disabled, a constant value, for example10
, needs to be provided, otherwise cleaning-up will fail with an error.NUMBER_MIN_AGE
Defines the minimum age in seconds a snapshot must have before it can automatically be deleted. Snapshots younger than the value specified here will not be deleted, regardless of how many exist.
The default value is
"1800"
.Example command to change or set:
>
sudo
snapper -c CONFIG set-config "NUMBER_MIN_AGE=864000"
NUMBER_LIMIT
, NUMBER_LIMIT_IMPORTANT
and NUMBER_MIN_AGE
are always evaluated. Snapshots are
only deleted when all conditions are met.
If you always want to keep the number of snapshots defined with
NUMBER_LIMIT*
regardless of their age, set
NUMBER_MIN_AGE
to 0
.
The following example shows a configuration to keep the last 10 important and regular snapshots regardless of age:
NUMBER_CLEANUP=yes NUMBER_LIMIT_IMPORTANT=10 NUMBER_LIMIT=10 NUMBER_MIN_AGE=0
On the other hand, if you do not want to keep snapshots beyond a certain
age, set NUMBER_LIMIT*
to 0
and
provide the age with NUMBER_MIN_AGE
.
The following example shows a configuration to only keep snapshots younger than ten days:
NUMBER_CLEANUP=yes NUMBER_LIMIT_IMPORTANT=0 NUMBER_LIMIT=0 NUMBER_MIN_AGE=864000
7.7.2 Cleaning up timeline snapshots #
Cleaning up timeline snapshots is controlled by the following parameters of a Snapper configuration.
TIMELINE_CLEANUP
Enables or disables clean-up of timeline snapshots. If enabled, snapshots are deleted when the total snapshot count exceeds a number specified with
TIMELINE_LIMIT_*
and an age specified withTIMELINE_MIN_AGE
. Valid values:yes
,no
.The default value is
"yes"
.Example command to change or set:
>
sudo
snapper -c CONFIG set-config "TIMELINE_CLEANUP=yes"TIMELINE_LIMIT_DAILY
,TIMELINE_LIMIT_HOURLY
,TIMELINE_LIMIT_MONTHLY
,TIMELINE_LIMIT_WEEKLY
,TIMELINE_LIMIT_YEARLY
Number of snapshots to keep for hour, day, month, week, and year.
The default value for each entry is
"10"
, except forTIMELINE_LIMIT_WEEKLY
, which is set to"0"
by default.TIMELINE_MIN_AGE
Defines the minimum age in seconds a snapshot must have before it can automatically be deleted.
The default value is
"1800"
.
TIMELINE_CLEANUP="yes" TIMELINE_CREATE="yes" TIMELINE_LIMIT_DAILY="7" TIMELINE_LIMIT_HOURLY="24" TIMELINE_LIMIT_MONTHLY="12" TIMELINE_LIMIT_WEEKLY="4" TIMELINE_LIMIT_YEARLY="2" TIMELINE_MIN_AGE="1800"
This example configuration enables hourly snapshots which are
automatically cleaned up. TIMELINE_MIN_AGE
and
TIMELINE_LIMIT_*
are always both evaluated. In this
example, the minimum age of a snapshot before it can be deleted is set to
30 minutes (1800 seconds). Since we create hourly snapshots, this ensures
that only the latest snapshots are kept. If
TIMELINE_LIMIT_DAILY
is set to not zero, this means
that the first snapshot of the day is kept, too.
Hourly: The last 24 snapshots that have been made.
Daily: The first daily snapshot that has been made is kept from the last seven days.
Monthly: The first snapshot made on the last day of the month is kept for the last twelve months.
Weekly: The first snapshot made on the last day of the week is kept from the last four weeks.
Yearly: The first snapshot made on the last day of the year is kept for the last two years.
7.7.3 Cleaning up snapshot pairs that do not differ #
As explained in Section 7.1.2, “Types of snapshots”, whenever you run a YaST module or execute Zypper, a pre snapshot is created on start-up and a post snapshot is created when exiting. In case you have not made any changes there will be no difference between the pre and post snapshots. Such “empty” snapshot pairs can be automatically be deleted by setting the following parameters in a Snapper configuration:
EMPTY_PRE_POST_CLEANUP
If set to
yes
, pre and post snapshot pairs that do not differ will be deleted.The default value is
"yes"
.EMPTY_PRE_POST_MIN_AGE
Defines the minimum age in seconds a pre and post snapshot pair that does not differ must have before it can automatically be deleted.
The default value is
"1800"
.
7.7.4 Cleaning up manually created snapshots #
Snapper does not offer custom clean-up algorithms for manually created snapshots. However, you can assign the number or timeline clean-up algorithm to a manually created snapshot. If you do so, the snapshot will join the “clean-up queue” for the algorithm you specified. You can specify a clean-up algorithm when creating a snapshot, or by modifying an existing snapshot:
snapper create --description "Test" --cleanup-algorithm number
Creates a stand-alone snapshot (type single) for the default (root) configuration and assigns the
number
clean-up algorithm.snapper modify --cleanup-algorithm "timeline" 25
Modifies the snapshot with the number 25 and assigns the clean-up algorithm
timeline
.
7.7.5 Adding disk quota support #
In addition to the number and/or timeline clean-up algorithms described above, Snapper supports quotas. You can define what percentage of the available space snapshots are allowed to occupy. This percentage value always applies to the Btrfs subvolume defined in the respective Snapper configuration.
Btrfs quotas are applied to subvolumes, not to users. You may apply
disk space quotas to users and groups (for example, with the
quota
command) in addition to using Btrfs quotas.
If Snapper was enabled during the installation, quota support is
automatically enabled. In case you manually enable Snapper at a later point
in time, you can enable quota support by running snapper
setup-quota
. This requires a valid configuration (see
Section 7.5, “Creating and modifying Snapper configurations” for more information).
Quota support is controlled by the following parameters of a Snapper configuration.
QGROUP
The Btrfs quota group used by Snapper. If not set, run
snapper setup-quota
. If already set, only change if you are familiar withman 8 btrfs-qgroup
. This value is set withsnapper setup-quota
and should not be changed.SPACE_LIMIT
Limit of space snapshots are allowed to use in fractions of 1 (100%). Valid values range from 0 to 1 (0.1 = 10%, 0.2 = 20%, ...).
The following limitations and guidelines apply:
Quotas are only activated in addition to an existing number and/or timeline clean-up algorithm. If no clean-up algorithm is active, quota restrictions are not applied.
With quota support enabled, Snapper will perform two clean-up runs if required. The first run will apply the rules specified for number and timeline snapshots. Only if the quota is exceeded after this run, the quota-specific rules will be applied in a second run.
Even if quota support is enabled, Snapper will always keep the number of snapshots specified with the
NUMBER_LIMIT*
andTIMELINE_LIMIT*
values, even if the quota will be exceeded. It is therefore recommended to specify ranged values (MIN-MAX
) forNUMBER_LIMIT*
andTIMELINE_LIMIT*
to ensure the quota can be applied.If, for example,
NUMBER_LIMIT=5-20
is set, Snapper will perform a first clean-up run and reduce the number of regular numbered snapshots to 20. In case these 20 snapshots exceed the quota, Snapper will delete the oldest ones in a second run until the quota is met. A minimum of five snapshots will always be kept, regardless of the amount of space they occupy.
7.8 Showing exclusive disk space used by snapshots #
Snapshots share data, for efficient use of storage space, so using ordinary
commands like du
and df
won't measure
used disk space accurately. When you want to free up disk space on Btrfs
with quotas enabled, you need to know how much exclusive disk space is
used by each snapshot, rather than shared space. Snapper 0.6 and up reports
the used disk space for each snapshot in the
Used Space
column:
#
snapper --iso list
# | Type | Pre # | Date | User | Used Space | Cleanup | Description | Userdata
----+--------+-------+---------------------+------+------------+---------+-----------------------+--------------
0 | single | | | root | | | current |
1* | single | | 2019-07-22 13:08:38 | root | 16.00 KiB | | first root filesystem |
2 | single | | 2019-07-22 14:21:05 | root | 14.23 MiB | number | after installation | important=yes
3 | pre | | 2019-07-22 14:26:03 | root | 144.00 KiB | number | zypp(zypper) | important=no
4 | post | 3 | 2019-07-22 14:26:04 | root | 112.00 KiB | number | | important=no
5 | pre | | 2019-07-23 08:19:36 | root | 128.00 KiB | number | zypp(zypper) | important=no
6 | post | 5 | 2019-07-23 08:19:43 | root | 80.00 KiB | number | | important=no
7 | pre | | 2019-07-23 08:20:50 | root | 256.00 KiB | number | yast sw_single |
8 | pre | | 2019-07-23 08:23:22 | root | 112.00 KiB | number | zypp(ruby.ruby2.5) | important=no
9 | post | 8 | 2019-07-23 08:23:35 | root | 64.00 KiB | number | | important=no
10 | post | 7 | 2019-07-23 08:24:05 | root | 16.00 KiB | number | |
The btrfs
command provides another view of space used by
snapshots:
#
btrfs qgroup show -p /
qgroupid rfer excl parent
-------- ---- ---- ------
0/5 16.00KiB 16.00KiB ---
[...]
0/272 3.09GiB 14.23MiB 1/0
0/273 3.11GiB 144.00KiB 1/0
0/274 3.11GiB 112.00KiB 1/0
0/275 3.11GiB 128.00KiB 1/0
0/276 3.11GiB 80.00KiB 1/0
0/277 3.11GiB 256.00KiB 1/0
0/278 3.11GiB 112.00KiB 1/0
0/279 3.12GiB 64.00KiB 1/0
0/280 3.12GiB 16.00KiB 1/0
1/0 3.33GiB 222.95MiB ---
The qgroupid
column displays the identification number for
each subvolume, assigning a qgroup level/ID combination.
The rfer
column displays the total amount of data
referred to in the subvolume.
The excl
column displays the exclusive data in each
subvolume.
The parent
column shows the parent qgroup of the subvolumes.
The final item, 1/0
, shows the totals for the parent
qgroup. In the above example, 222.95 MiB will be freed if all subvolumes
are removed. Run the following command to see which snapshots are associated
with each subvolume:
#
btrfs subvolume list -st /
ID gen top level path
-- --- --------- ----
267 298 266 @/.snapshots/1/snapshot
272 159 266 @/.snapshots/2/snapshot
273 170 266 @/.snapshots/3/snapshot
274 171 266 @/.snapshots/4/snapshot
275 287 266 @/.snapshots/5/snapshot
276 288 266 @/.snapshots/6/snapshot
277 292 266 @/.snapshots/7/snapshot
278 296 266 @/.snapshots/8/snapshot
279 297 266 @/.snapshots/9/snapshot
280 298 266 @/.snapshots/10/snapshot
Doing an upgrade from one service pack to another results in snapshots occupying a lot of disk space on the system subvolumes. Manually deleting these snapshots after they are no longer needed is recommended. See Section 7.6.4, “Deleting snapshots” for details.
7.9 Frequently asked questions #
- Q:
Why does Snapper never show changes in
/var/log
,/tmp
and other directories? For some directories we decided to exclude them from snapshots. See Section 7.1.3, “Directories that are excluded from snapshots” for a list and reasons. To exclude a path from snapshots we create a subvolume for that path.
- Q: Can I boot a snapshot from the boot loader?
Yes—refer to Section 7.3, “System rollback by booting from snapshots” for details.
- Q: Can a snapshot be protected from deletion?
Currently Snapper does not offer means to prevent a snapshot from being deleted manually. However, you can prevent snapshots from being automatically deleted by clean-up algorithms. Manually created snapshots (see Section 7.6.2, “Creating snapshots”) have no clean-up algorithm assigned unless you specify one with
--cleanup-algorithm
. Automatically created snapshots always either have thenumber
ortimeline
algorithm assigned. To remove such an assignment from one or more snapshots, proceed as follows:List all available snapshots:
>
sudo
snapper list -aMemorize the number of the snapshot(s) you want to prevent from being deleted.
Run the following command and replace the number placeholders with the number(s) you memorized:
>
sudo
snapper modify --cleanup-algorithm "" #1 #2 #nCheck the result by running
snapper list -a
again. The entry in the columnCleanup
should now be empty for the snapshots you modified.
- Q: Where can I get more information on Snapper?
See the Snapper home page at http://snapper.io/.
8 Live kernel patching with KLP #
This document describes the basic principles of the Kernel Live Patching (KLP) technology, and provides usage guidelines for the SLE Live Patching service.
KLP makes it possible to apply the latest security updates to Linux kernels without rebooting. This maximizes system uptime and availability, which is especially important for mission-critical systems.
The information provided in this document relates to the AMD64/Intel 64, POWER, and IBM Z architectures.
8.1 Advantages of Kernel Live Patching #
KLP offers several benefits.
Keeping a large number of servers automatically up to date is essential for organizations obtaining or maintaining certain compliance certifications. KLP can help achieve compliance, while reducing the need for costly maintenance windows.
Companies that work with service-level agreement contracts must guarantee a specific level of their system accessibility and uptime. Live patching makes it possible to patch systems without incurring downtime.
Since KLP is part of the standard system update mechanism, there is no need for specialized training or introduction of complicated maintenance routines.
8.2 Kernel Live Patching overview #
Kernel live patches are delivered as packages with modified code that are separate from the main kernel package. The live patches are cumulative, so the latest patch contains all fixes from the previous ones for the kernel package. Each kernel live package is tied to the exact kernel revision for which it is issued. The live patch package version number increases with every addition of fixes.
After a live patch is applied, the
lp-HASH
string is added to
the version of the running kernel as reported by the uname
-a
command.
>
uname -a
Linux sle15-sp3 5.3.18-150300.59.101-default #1 SMP \
Tue Nov 1 11:32:03 UTC 2022 (b2a976e/lp-cd28ef5) x86_64 x86_64 x86_64 GNU/Linux
To determine the kernel patching status, use the klp -v
patches
command.
Live patches contain only critical fixes, and they do not replace regular kernel updates that require a reboot. Consider live patches as temporary measures that protect the kernel until a proper kernel update and a reboot are performed.
The diagram below illustrates the overall relationship between live patches
and kernel updates. The list of CVEs and defect reports addressed by the
currently active live patch can be viewed using the klp -v
patches
command.
It is possible to have multiple versions of the kernel package installed along with their live patches. These packages do not conflict. You can install updated kernel packages along with live patches for the running kernel. In this case, you may be prompted to reboot the system. Users with SLE Live Patching subscriptions are eligible for technical support as long as there are live patch updates for the running kernel (see Section 8.5.1, “Checking expiration date of the live patch”).
With KLP activated, every kernel update comes with a live patch package.
This live patch does not contain any fixes and serves as a seed for future
live patches for the corresponding kernel. These empty seed patches are
called initial patches
.
8.2.1 Kernel Live Patching scope #
The scope of SLE Live Patching includes fixes for SUSE Common Vulnerability Scoring System (CVSS; SUSE CVSS is based on the CVSS v3.0 system) level 7+ vulnerabilities and bug fixes related to system stability or data corruption. However, it may not be technically feasible to create live patches for all fixes that fall under the specified categories. SUSE therefore reserves the right to skip fixes in situations where creating a kernel live patch is not possible for technical reasons. Currently, over 95% of qualifying fixes are released as live patches. For more information on CVSS (the base for the SUSE CVSS rating), see Common Vulnerability Scoring System SIG.
8.2.2 Kernel Live Patching limitations #
KLP involves replacing functions and gracefully handling replacement of interdependent function sets. This is done by redirecting calls to old code to updated code in a different memory location. Changes in data structures make the situation more complicated, as the data remain in place and cannot be extended or reinterpreted. While there are techniques that allow indirect alteration of data structures, some fixes cannot be converted to live patches. In this situation, a system restart is the only way to apply the fixes.
8.3 Activating Kernel Live Patching using YaST #
To activate KLP on your system, you need to have active SLES and SLE Live Patching subscriptions. Visit SUSE Customer Center to check the status of your subscriptions and obtain a registration code for the SLE Live Patching subscription.
To activate Kernel Live Patching on your system, follow these steps:
Run the
yast2 registration
command and click .Select
in the list of available extensions and click .Confirm the license terms and click
.Enter your SLE Live Patching registration code and click
.Check the
and selected . The patternsLive Patching
andSLE Live Patching Lifecycle Data
should be automatically selected for installation along with additional packages to satisfy dependencies.Click
to complete the installation. This will install the base Kernel Live Patching components on your system, the initial live patch, and the required dependencies.
8.4 Activating Kernel Live Patching from the command line #
To activate Kernel Live Patching, you need to have active SLES and SLES Live Patching subscriptions. Visit SUSE Customer Center to check the status of your subscriptions and obtain a registration code for the SLES Live Patching subscription.
Run
sudo SUSEConnect --list-extensions
. Note the exact activation command for SLES Live Patching. Example command output (abbreviated):$ SUSEConnect --list-extensions ... SUSE Linux Enterprise Live Patching 15 SP3 x86_64 Activate with: SUSEConnect -p sle-module-live-patching/15.3/x86_64 \ -r ADDITIONAL REGCODE
Activate SLES Live Patching using the obtained command followed by
-r LIVE_PATCHING_REGISTRATION_CODE
, for example:SUSEConnect -p sle-module-live-patching/15.3/x86_64 \ -r LIVE_PATCHING_REGISTRATION_CODE
Install the required packages and dependencies using the command
zypper install -t pattern lp_sles
At this point, the system has already been live-patched.
Here is how the process works behind the scenes: When the package installation system detects that there is an installed kernel that can be live-patched, and that there is a live patch for it in the software channel, the system selects the live patch for installation. The kernel then receives the live patch fixes as part of the package installation. The kernel gets live-patched even before the product installation is complete.
8.5 Performing Kernel Live Patching #
Kernel live patches are installed as part of regular system updates. However, there are several things you should be aware of.
The kernel is live-patched if a kernel-livepatch-* package has been installed for the running kernel. You can use the command
zypper se --details kernel-livepatch-*
to check what kernel live patch packages are installed on your system.When the kernel-default package is installed, the update manager prompts you to reboot the system. To prevent this message from appearing, you can filter out kernel updates from the patching operation. This can be done by adding package locks with Zypper. SUSE Manager also makes it possible to filter channel contents (see Live Patching with SUSE Manager).
You can check patching status using the
klp status
command. To examine installed patches, run theklp -v patches
command.Keep in mind that while there may be multiple kernel packages installed on the system, only one of them is running at any given time. Similarly, there may be multiple live patch packages installed, but only one live patch is loaded into the kernel.
The active live patch is included in the
initrd
. This means that in case of an unexpected reboot, the system comes up with the live patch fixes applied, so there is no need to perform patching again.
8.5.1 Checking expiration date of the live patch #
Make sure that the
lifecycle-data-sle-module-live-patching is installed,
then run the zypper lifecycle
command. You should see
expiration dates for live patches in the Package end of support if
different from product
section of the output.
Every live patch receives updates for one year from the release of the underlying kernel package. The Maintained kernels, patch updates and lifecycle page allows you to check expiration dates based on the running kernel version without installing the product extension.
8.6 Troubleshooting Kernel Live Patching issues #
8.6.1 Manual patch downgrade #
If you find the latest live patch problematic, you can downgrade the currently installed live patch back to its previous version. We recommend performing patch downgrade before the system starts exhibiting issues. Keep in mind that a system with kernel warnings or kernel error traces in the system log may not be suitable for the patch downgrade procedure. If you are unsure whether the system meets the requirements for a patch downgrade, contact SUSE Technical Support for help.
Identify the running live patch using the
klp -v patches
command. You can see the currently running patch on the line starting withRPM:
. For example:RPM: kernel-livepatch-5_3_18-24_29-default-2-2.1.x86_64
The
5_3_18-24_29-default
in the example above denotes the exact running kernel version.Use the command
zypper search -s kernel-livepatch-RUNNING_KERNEL_VERSION-default
to search for previous versions of the patch. The command returns a list of available package versions. Keep in mind that for every new live patch package release, the version number increases by one. Make sure that you choose the version number one release lower than the current one.Install the desired version with the command
zypper in --oldpackage kernel-livepatch-RUNNING_KERNEL_VERSION-default=DESIRED_VERSION
.
9 Transactional updates #
Transactional updates are available in SUSE Linux Enterprise Server as a technology preview, for updating SLES when the root file system is read-only. Transactional updates are atomic (all updates are applied only if all updates succeed) and support rollbacks. It does not affect a running system as no changes are activated until after the system is rebooted. As reboots are disruptive, the admin must decide if a reboot is more expensive than disturbing running services. If reboots are too expensive then do not use transactional updates.
Transactional updates are run daily by the
transactional-update
script. The script checks for
available updates. If there are any updates, it creates a new snapshot of
the root file system in the background, and then fetches updates from the
release channels. After the new snapshot is completely updated, it is
marked as active and will be the new default root file system after the next
reboot of the system. When transactional-update
is set to run
automatically (which is the default behavior) it also reboots the system.
Both the time that the update runs and the reboot maintenance window are
configurable.
Only packages that are part of the snapshot of the root file system can be updated. If packages contain files that are not part of the snapshot, the update could fail or break the system.
RPMs that require a license to be accepted cannot be updated.
9.1 Limitations of technology preview #
As a technology preview, there are certain limitations in functionality. The
following packages will not work with transactional-update
:
The nginx default index.html page may not be available
tomcat-webapps and tomcat-admin-webapps
phpMyAdmin
sca-appliance-*
mpi-selector
emacs works except for Emacs games
bind and bind-chrootenv
docbook*
sblim-sfcb*
texlive*
iso_ent
openjade
opensp
pcp
plymouth
postgresql-server-10
pulseaudio-gdm-hooks
smartmontools
The updater component of the system installer does not work with a read-only file system as it has no support for transactional updates.
Further considerations:
In general it is a good idea to minimize the time between updating the system and rebooting the machine.
Only one update can be applied at a time. Be sure to reboot after an update, and before the next update is applied.
update-alternatives
should not be run after a transactional update until the machine has been rebooted.Do not create new system users or system groups after a transactional update until after reboot. It is acceptable to create normal users and groups (UID > 1000, GID > 1000).
YaST is not yet aware of transactional updates. If a YaST module needs to install additional packages, this will not work. Normal system operations only modifying configuration files in
/etc
will work.For php7-fastcgi, you must manually create a symlink,
/srv/www/cgi-bin/php
, that points to/usr/bin/php-cgi
.ntpis part of the Legacy Module for migration from older SLES versions. It is not supported on a new SUSE Linux Enterprise Server installation, and has been replaced by chrony. If you continue to use ntp, a fresh installation is required to work correctly with transactional updates.
sblim-sfcb: The whole sblim ecosystem is incompatible with transactional update.
btrfs-defrag
from the btrfsmaintenance package does not work with a read-only root file system.For
btrfs-balance
, the variableBTRFS_BALANCE_MOUNTPOINTS
in/etc/sysconfig/btrfsmaintenance
must be changed from/
to/.snapshots
.For
btrfs-scrub
, the variableBTRFS_SCRUB_MOUNTPOINTS
in/etc/sysconfig/btrfsmaintenance
must be changed from/
to/.snapshots
.
9.2 Enabling transactional-update #
You must enable the Transactional Server Module during system installation, and then select the Transactional Server System Role. Installing any package from the Transactional Server Module later in a running system is NOT supported and may break the system.
Note that changing the subvolume layout of the root partition, or putting
sub-directories or subvolumes of the root partition on their own partitions
(except /home
, /var
,
/srv
, and /opt
) is not supported,
and will most likely break the system.
9.3 Managing automatic updates #
Automatic updates are controlled by a systemd.timer
that runs once per day. This applies all updates, and informs
rebootmgrd
that the machine should be rebooted. You may
adjust the time when the update runs, see systemd.timer(5). To adjust the
maintenance window, which is when rebootmgrd
reboots the
system, see rebootmgrd(8).
You can disable automatic transactional updates with this command:
#
systemctl --now disable transactional-update.timer
9.4 The transactional-update
command #
The transactional-update
command enables atomic installation
or removal of updates; updates are applied only
if all of them can be successfully installed.
transactional-update
creates a snapshot of your system
before the update is applied, and you can restore this snapshot. All changes become
active only after reboot.
--continue
The
--continue
option is for making multiple changes to an existing snapshot without rebooting.The default
transactional-update
behavior is to create a new snapshot from the current root file system. If you forget something, such as installing a new package, you have to reboot to apply your previous changes, runtransactional-update
again to install the forgotten package, and reboot again. You cannot run thetransactional-update
command multiple times without rebooting to add more changes to the snapshot, because that creates separate independent snapshots that do not include changes from the previous snapshots.Use the
--continue
option to make as many changes as you want without rebooting. A separate snapshot is made each time, and each snapshot contains all the changes you made in the previous snapshots, plus your new changes. Repeat this process as many times as you want, and when the final snapshot includes everything you want reboot the system, and your final snapshot becomes the new root file system.Another useful feature of the
--continue
option is you may select any existing snapshot as the base for your new snapshot. The following example demonstrates runningtransactional-update
to install a new package in a snapshot based on snapshot 13, and then running it again to install another package:#
transactional-update pkg install package_1
#
transactional-update --continue 13 pkg install package_2
The
--continue [num]
option callssnapper create --from
, see Section 7.6.2, “Creating snapshots”.cleanup
If the current root filesystem is identical to the active root filesystem (after a reboot, before
transactional-update
creates a new snapshot with updates), all old snapshots without a cleanup algorithm get a cleanup algorithm set. This ensures that old snapshots will be deleted by Snapper. (See the section about cleanup algorithms in snapper(8).) This also removes all unreferenced (and thus unused)/etc
overlay directories in/var/lib/overlay
:#
transactional-update cleanup
pkg in/install
Installs individual packages from the available channels using the
zypper install
command. This command can also be used to install Program Temporary Fix (PTF) RPM files.#
transactional-update pkg install package_name
or
#
transactional-update pkg install rpm1 rpm2
pkg rm/remove
Removes individual packages from the active snapshot using the
zypper remove
command. This command can also be used to remove PTF RPM files.#
transactional-update pkg remove package_name
pkg up/update
Updates individual packages from the active snapshot using the
zypper update
command. Only packages that are part of the snapshot of the base file system can be updated.#
transactional-update pkg update package_name
up/update
If there are new updates available, a new snapshot is created and
zypper up/update
updates the snapshot.#
transactional-update up
dup
If there are new updates available, a new snapshot is created and
zypper dup –no-allow-vendor-change
updates the snapshot. The snapshot is activated afterwards and becomes the new root file system after reboot.#
transactional-update dup
patch
If there are new updates available, a new snapshot is created and
zypper patch
updates the snapshot.#
transactional-update patch
rollback
This sets the default subvolume. On systems with a read-write file system
snapper rollback
is called. On a read-only file system and without any argument, the current system is set to a new default root file system. If you specify a number, that snapshot is used as the default root file system. On a read-only file system, it does not create any additional snapshots.#
transactional-update rollback snapshot_number
grub.cfg
This creates a new GRUB2 configuration. Sometimes it is necessary to adjust the boot configuration, for example adding additional kernel parameters. Edit /etc/default/grub, run
transactional-update grub.cfg
, and then reboot to activate the change. You must immediately reboot, or the new GRUB2 configuration will be overwritten with the default by the next transactional-update.#
transactional-update grub.cfg
reboot
This parameter triggers a reboot after the action is completed.
#
transactional-update dup reboot
--help
This prints a help screen with options and subcommands.
#
transactional-update --help
9.5 Troubleshooting #
If the upgrade fails, run supportconfig
to collect log
data. Provide the resulting files, including
/var/log/transactional-update.log
to SUSE Support.
10 Remote graphical sessions with VNC #
Virtual Network Computing (VNC) enables you to access a remote computer via a graphical desktop, and run remote graphical applications. VNC is platform-independent and accesses the remote machine from any operating system. This chapter describes how to connect to a VNC server with the desktop clients vncviewer and Remmina, and how to operate a VNC server.
SUSE Linux Enterprise Server supports two different kinds of VNC sessions: One-time sessions that “live” as long as the VNC connection from the client is kept up, and persistent sessions that “live” until they are explicitly terminated.
A VNC server can offer both kinds of sessions simultaneously on different ports, but an open session cannot be converted from one type to the other.
10.1 The vncviewer
client #
To connect to a VNC service provided by a server, a client is needed. The
default in SUSE Linux Enterprise Server is vncviewer
, provided by the
tigervnc
package.
10.1.1 Connecting using the vncviewer CLI #
To start your VNC viewer and initiate a session with the server, use the command:
>
vncviewer jupiter.example.com:1
Instead of the VNC display number you can also specify the port number with two colons:
>
vncviewer jupiter.example.com::5901
The actual display or port number you specify in the VNC client must be
the same as the display or port number picked by the
vncserver
command on the target machine. See
Section 10.4, “Configuring persistent VNC server sessions” for further info.
10.1.2 Connecting using the vncviewer GUI #
By running vncviewer
without specifying
--listen
or a host to connect to, it will show a window
to ask for connection details. Enter the host into the field like in Section 10.1.1, “Connecting using the vncviewer CLI”
and click .
10.1.3 Notification of unencrypted connections #
The VNC protocol supports different kinds of encrypted connections, not to be confused with password authentication. If a connection does not use TLS, the text “(Connection not encrypted!)” can be seen in the window title of the VNC viewer.
10.2 Remmina: the remote desktop client #
Remmina is a modern and feature rich remote desktop client. It supports several access methods, for example VNC, SSH, RDP, and Spice.
10.2.1 Installation #
To use Remmina, verify whether the remmina package is installed on your system, and install it if not. Remember to install the VNC plug-in for Remmina as well:
#
zypper in remmina remmina-plugin-vnc
10.2.2 Main window #
Run Remmina by entering the remmina
command.
The main application window shows the list of stored remote sessions. Here you can add and save a new remote session, quick-start a new session without saving it, start a previously saved session, or set Remmina's global preferences.
10.2.3 Adding remote sessions #
To add and save a new remote session, click in the top left of the main window. The window opens.
Complete the fields that specify your newly added remote session profile. The most important are:
- Name
Name of the profile. It will be listed in the main window.
- Protocol
The protocol to use when connecting to the remote session, for example VNC.
- Server
The IP or DNS address and display number of the remote server.
- User name, password
Credentials to use for remote authentication. Leave empty for no authentication.
- Color depth, quality
Select the best options according to your connection speed and quality.
Select the
tab to enter more specific settings.If the communication between the client and the remote server is not encrypted, activate
, otherwise the connection fails.Select the
tab for advanced SSH tunneling and authentication options.Confirm with
. Your new profile will be listed in the main window.10.2.4 Starting remote sessions #
You can either start a previously saved session, or quick-start a remote session without saving the connection details.
10.2.4.1 Quick-starting remote sessions #
To start a remote session quickly without adding and saving connection details, use the drop-down box and text box at the top of the main window.
Select the communication protocol from the drop-down box, for example 'VNC', then enter the VNC server DNS or IP address followed by a colon and a display number, and confirm with Enter.
10.2.4.2 Opening saved remote sessions #
To open a specific remote session, double-click it from the list of sessions.
10.2.4.3 Remote sessions window #
Remote sessions are opened in tabs of a separate window. Each tab hosts one session. The toolbar on the left of the window helps you manage the windows/sessions, such as toggle fullscreen mode, resize the window to match the display size of the session, send specific keystrokes to the session, take screenshots of the session, or set the image quality.
10.2.5 Editing, copying, and deleting saved sessions #
To edit a saved remote session, right-click its name in Remmina's main window and select . Refer to Section 10.2.3, “Adding remote sessions” for the description of the relevant fields.
To copy a saved remote session, right-click its name in Remmina's main window and select . In the window, change the name of the profile, optionally adjust relevant options, and confirm with .
To Delete a saved remote session, right-click its name in Remmina's main window and select . Confirm with in the next dialog.
10.2.6 Running remote sessions from the command line #
If you need to open a remote session from the command line or from a batch file without first opening the main application window, use the following syntax:
>
remmina -c profile_name.remmina
Remmina's profile files are stored in the
.local/share/remmina/
directory in your home
directory. To determine which profile file belongs to the session you want
to open, run Remmina, click the session name in the main window, and read
the path to the profile file in the window's status line at the bottom.
While Remmina is not running, you can rename the profile file to a more
reasonable file name, such as sle15.remmina
. You can
even copy the profile file to your custom directory and run it using the
remmina -c
command from there.
10.3 Configuring one-time sessions on the VNC server #
A one-time session is initiated by the remote client. It starts a graphical login screen on the server. This way you can choose the user which starts the session and, if supported by the login manager, the desktop environment. When you terminate the client connection to such a VNC session, all applications started within that session will be terminated, too. One-time VNC sessions cannot be shared, but it is possible to have multiple sessions on a single host at the same time.
Start
› › .Check
.Activate
if you plan to access the VNC session in a Web browser window.If necessary, also check
(for example, when your network interface is configured to be in the External Zone). If you have more than one network interface, restrict opening the firewall ports to a specific interface via .Confirm your settings with
.In case not all needed packages are available yet, you need to approve the installation of missing packages.
Tip: Restart the display managerYaST makes changes to the display manager settings. You need to log out of your current graphical session and restart the display manager for the changes to take effect.
10.3.1 Available configurations #
The default configuration on SUSE Linux Enterprise Server serves sessions with a
resolution of 1024x768 pixels at a color depth of 16-bit. The sessions are
available on ports 5901
for
“regular” VNC viewers (equivalent to VNC display
1
) and on port
5801
for Web browsers.
Other configurations can be made available on different ports, see Section 10.3.3, “Configuring one-time VNC sessions”.
VNC display numbers and X display numbers are independent in one-time sessions. A VNC display number is manually assigned to every configuration that the server supports (:1 in the example above). Whenever a VNC session is initiated with one of the configurations, it automatically gets a free X display number.
By default, both the VNC client and server try to communicate securely via a self-signed SSL certificate, which is generated after installation. You can either use the default one, or replace it with your own. When using the self-signed certificate, you need to confirm its signature before the first connection—both in the VNC viewer and the Web browser.
Some VNC clients refuse to establish a secure connection via the default
self-signed certificate. For example, the Vinagre client verifies the
certification against the GnuTLS global trust store and fails if the
certificate is self-signed. In such a case, either use an encryption
method other than x509
, or generate a properly signed
certificate for the VNC server and import it to the client's system trust
store.
10.3.2 Initiating a one-time VNC session #
To connect to a one-time VNC session, a VNC viewer must be installed, see
also Section 10.1, “The vncviewer
client”. Alternatively use a
JavaScript-capable Web browser to view the VNC session by entering the
following URL: http://jupiter.example.com:5801
10.3.3 Configuring one-time VNC sessions #
You can skip this section, if you do not need or want to modify the default configuration.
One-time VNC sessions are started via the systemd
socket
xvnc.socket
. By default it offers six
configuration blocks: three for VNC viewers (vnc1
to
vnc3
), and three serving a JavaScript client
(vnchttpd1
to vnchttpd3
). By default
only vnc1
and vnchttpd1
are active.
To activate the VNC server socket at boot time, run the following command:
>
sudo
systemctl enable xvnc.socket
To start the socket immediately, run:
>
sudo
systemctl start xvnc.socket
The Xvnc
server can be configured via the
server_args
option. For a list of options, see
Xvnc --help
.
When adding custom configurations, make sure they are not using ports that are already in use by other configurations, other services, or existing persistent VNC sessions on the same host.
Activate configuration changes by entering the following command:
>
sudo
systemctl reload xvnc.socket
When activating Remote Administration as described in
Procedure 10.1, “Enabling one-time VNC sessions”, the ports
5801
and
5901
are opened in the firewall.
If the network interface serving the VNC sessions is protected by a
firewall, you need to manually open the respective ports when activating
additional ports for VNC sessions. See
Book “Security and Hardening Guide”, Chapter 23 “Masquerading and firewalls” for instructions.
10.4 Configuring persistent VNC server sessions #
A persistent session can be accessed from multiple clients simultaneously. This is ideal for demonstration purposes where one client has full access and all other clients have view-only access. Another use case are training sessions where the trainer might need access to the trainee's desktop.
To connect to a persistent VNC session, a VNC viewer must be installed.
Refer to Section 10.1, “The vncviewer
client” for more details. Alternatively
use a JavaScript-capable Web browser to view the VNC session by entering the
following URL: http://jupiter.example.com:5801
There are two types of persistent VNC sessions:
10.4.1 VNC session initiated using vncserver
#
This type of persistent VNC session is initiated on the server. The session and all applications started in this session run regardless of client connections until the session is terminated. Access to persistent sessions is protected by two possible types of passwords:
a regular password that grants full access or
an optional view-only password that grants a non-interactive (view-only) access.
A session can have multiple client connections of both kinds at once.
vncserver
#Open a shell and make sure you are logged in as the user that should own the VNC session.
If the network interface serving the VNC sessions is protected by a firewall, you need to manually open the port used by your session in the firewall. If starting multiple sessions you may alternatively open a range of ports. See Book “Security and Hardening Guide”, Chapter 23 “Masquerading and firewalls” for details on how to configure the firewall.
vncserver
uses the ports5901
for display:1
,5902
for display:2
, and so on. For persistent sessions, the VNC display and the X display usually have the same number.To start a session with a resolution of 1024x768 pixel and with a color depth of 16-bit, enter the following command:
vncserver -alwaysshared -geometry 1024x768 -depth 16
The
vncserver
command picks an unused display number when none is given and prints its choice. Seeman 1 vncserver
for more options.
When running vncserver
for the first time, it asks for a
password for full access to the session. If needed, you can also provide a
password for view-only access to the session.
The password(s) you are providing here are also used for future sessions
started by the same user. They can be changed with the
vncpasswd
command.
Make sure to use strong passwords of significant length (eight or more characters). Do not share these passwords.
To terminate the session shut down the desktop environment that runs inside the VNC session from the VNC viewer as you would shut it down if it was a regular local X session.
If you prefer to manually terminate a session, open a shell on the VNC
server and make sure you are logged in as the user that owns the VNC
session you want to terminate. Run the following command to terminate the
session that runs on display :1
: vncserver
-kill :1
10.4.1.1 Configuring persistent VNC sessions #
Persistent VNC sessions can be configured by editing
$HOME/.vnc/xstartup
. By default this shell script
starts the same GUI/window manager it was started from. In SUSE Linux Enterprise Server
this will either be GNOME or IceWM. If you want to start your session
with a window manager of your choice, set the variable
WINDOWMANAGER
:
WINDOWMANAGER=gnome vncserver -geometry 1024x768 WINDOWMANAGER=icewm vncserver -geometry 1024x768
Persistent VNC sessions are configured in a single per-user configuration. Multiple sessions started by the same user will all use the same start-up and password files.
10.4.2 VNC session initiated using vncmanager
#
Start
› › .Activate
.Activate
if you plan to access the VNC session in a Web browser window.If necessary, also check
(for example, when your network interface is configured to be in the External Zone). If you have more than one network interface, restrict opening the firewall ports to a specific interface via .Confirm your settings with
.In case not all needed packages are available yet, you need to approve the installation of missing packages.
Tip: Restart the display managerYaST makes changes to the display manager settings. You need to log out of your current graphical session and restart the display manager for the changes to take effect.
10.4.2.1 Configuring persistent VNC sessions #
After you enable the VNC session management as described in Procedure 10.3, “Enabling persistent VNC sessions”, you can normally connect to
the remote session with your favorite VNC viewer, such as
vncviewer
or Remmina. You will be presented with the
login screen. After you log in, the 'VNC' icon will appear in the system
tray of your desktop environment. Click the icon to open the window. If it does not appear or if your desktop
environment does not support icons in the system tray, run
vncmanager-controller
manually.
There are several settings that influence the VNC session's behavior:
This is equivalent to a one-time session. It is not visible to others and will be terminated after you disconnect from it. Refer to Section 10.3, “Configuring one-time sessions on the VNC server” for more information.
The session is visible to other users and keeps running even after you disconnect from it.
Here you can specify the name of the persistent session so that it is easily identified when reconnecting.
The session will be freely accessible without having to log in under user credentials.
You need to log in with a valid user name and password to access the session. Lists the valid user names in the
text box.Prevents multiple users from joining the session at the same time.
Allows multiple users to join the persistent session at the same time. Useful for remote presentations or training sessions.
Confirm with
.10.4.2.2 Joining persistent VNC sessions #
After you set up a persistent VNC session as described in Section 10.4.2.1, “Configuring persistent VNC sessions”, you can join it with your VNC viewer. After your VNC client connects to the server, you will be prompted to choose whether you want to create a new session, or join the existing one:
After you click the name of the existing session, you may be asked for login credentials, depending on the persistent session settings.
10.5 Configuring encryption on the VNC server #
If the VNC server is set up properly, all communication between the VNC server and the client is encrypted. The authentication happens at the beginning of the session; the actual data transfer only begins afterward.
Whether for a one-time or a persistent VNC session, security options are
configured via the -securitytypes
parameter of the
/usr/bin/Xvnc
command located on the
server_args
line. The -securitytypes
parameter selects both authentication method and encryption. It has the
following options:
- None, TLSNone, x509None
No authentication.
- VncAuth, TLSVnc, x509Vnc
Authentication using custom password.
- Plain, TLSPlain, x509Plain
Authentication using PAM to verify user's password.
- None, vncAuth, plain
No encryption.
- TLSNone, TLSVnc, TLSPlain
Anonymous TLS encryption. Everything is encrypted, but there is no verification of the remote host. So you are protected against passive attackers, but not against man-in-the-middle attackers.
- X509None, x509Vnc, x509Plain
TLS encryption with certificate. If you use a self-signed certificate, you will be asked to verify it on the first connection. On subsequent connections you will be warned only if the certificate changed. So you are protected against everything except man-in-the-middle on the first connection (similar to typical SSH usage). If you use a certificate signed by a certificate authority matching the machine name, then you get full security (similar to typical HTTPS usage).
TipSome VNC clients refuse to establish a secure connection via the default self-signed certificate. For example, the Vinagre client verifies the certification against the GnuTLS global trust store and fails if the certificate is self-signed. In such a case, either use an encryption method other than
x509
, or generate a properly signed certificate for the VNC server and import it to the client's system trust store.Tip: Path to certificate and keyWith X509 based encryption, you need to specify the path to the X509 certificate and the key with
-X509Cert
and-X509Key
options.
If you select multiple security types separated by comma, the first one supported and allowed by both client and server will be used. That way you can configure opportunistic encryption on the server. This is useful if you need to support VNC clients that do not support encryption.
On the client, you can also specify the allowed security types to prevent a downgrade attack if you are connecting to a server which you know has encryption enabled (although our vncviewer will warn you with the "Connection not encrypted!" message in that case).
10.6 Compatibility with Wayland #
The Remote Administration (VNC) feature relies on X11 and may result in an
empty screen if Wayland is enabled.
The display manager must be configured to use X11 instead of Wayland.
For gdm, edit /etc/gdm/custom.conf
.
In the [daemon]
section, add
WaylandEnable=false
to the configuration file.
When logging in, the user must choose an X11-compatible session as well.
If you wish to remove the Wayland option for GNOME, you can remove and lock
the gnome-session-wayland package.
11 File copying with RSync #
Today, a typical user has several computers: home and workplace machines, a laptop, a smartphone or a tablet. This makes the task of keeping files and documents in synchronization across multiple devices all the more important.
Before you start using a synchronization tool, you should familiarize yourself with its features and functionality. Make sure to back up your important files.
11.1 Conceptual overview #
For synchronizing a large amount of data over a slow network connection, Rsync offers a reliable method of transmitting only changes within files. This applies not only to text files but also binary files. To detect the differences between files, Rsync subdivides the files into blocks and computes check sums over them.
Detecting changes requires some computing power. So make sure that machines on both ends have enough resources, including RAM.
Rsync can be particularly useful when large amounts of data containing only minor changes need to be transmitted regularly. This is often the case when working with backups. Rsync can also be useful for mirroring staging servers that store complete directory trees of Web servers to a Web server in a DMZ.
Despite its name, Rsync is not a synchronization tool. Rsync is a tool that copies data only in one direction at a time. It does not and cannot do the reverse. If you need a bidirectional tool which can synchronize both source and destination, use Csync.
11.2 Basic syntax #
Rsync is a command-line tool that has the following basic syntax:
rsync [OPTION] SOURCE [SOURCE]... DEST
You can use Rsync on any local or remote machine, provided you have access and write permissions. It is possible to have multiple SOURCE entries. The SOURCE and DEST placeholders can be paths, URLs, or both.
Below are the most common Rsync options:
-v
Outputs more verbose text
-a
Archive mode; copies files recursively and preserves time stamps, user/group ownership, file permissions, and symbolic links
-z
Compresses the transmitted data
When working with Rsync, you should pay particular attention to trailing slashes. A trailing slash after the directory denotes the content of the directory. No trailing slash denotes the directory itself.
11.3 Copying files and directories locally #
The following description assumes that the current user has write
permissions to the directory /var/backup
. To copy a
single file from one directory on your machine to another path, use the
following command:
>
rsync
-avz backup.tar.xz /var/backup/
The file backup.tar.xz
is copied to
/var/backup/
; the absolute path will be
/var/backup/backup.tar.xz
.
Do not forget to add the trailing slash after the
/var/backup/
directory! If you do not insert the slash,
the file backup.tar.xz
is copied to
/var/backup
(file) not inside the
directory /var/backup/
!
Copying a directory is similar to copying a single file. The following
example copies the directory tux/
and
its content into the directory /var/backup/
:
>
rsync
-avz tux /var/backup/
Find the copy in the absolute path
/var/backup/tux/
.
11.4 Copying files and directories remotely #
The Rsync tool is required on both machines. To copy files from or to remote directories requires an IP address or a domain name. A user name is optional if your current user names on the local and remote machine are the same.
To copy the file file.tar.xz
from your local host to
the remote host
192.168.1.1
with
same users (being local and remote), use the following command:
>
rsync
-avz file.tar.xz tux@192.168.1.1:
Depending on what you prefer, these commands are also possible and equivalent:
>
rsync
-avz file.tar.xz 192.168.1.1:~>
rsync
-avz file.tar.xz 192.168.1.1:/home/tux
In all cases with standard configuration, you will be prompted to enter your
passphrase of the remote user. This command will copy
file.tar.xz
to the home directory of user tux
(usually /home/tux
).
Copying a directory remotely is similar to copying a directory locally. The
following example copies the directory
tux/
and its content into the remote
directory /var/backup/
on the
192.168.1.1
host:
>
rsync
-avz tux 192.168.1.1:/var/backup/
Assuming you have write permissions on the host
192.168.1.1
, you will
find the copy in the absolute path
/var/backup/tux
.
11.5 Configuring and using an rsync server #
Rsync can run as a daemon
(rsyncd
) listening on default
port 873 for incoming connections. This daemon can receive “copying
targets”.
The following description explains how to create an Rsync server on a
jupiter
host with a backup
target. This target can be used to store your backups. To create an Rsync
server, do the following:
On jupiter, create a directory to store all your backup files. In this example, we use
/var/backup
:#
mkdir
/var/backupSpecify ownership. In this case, the directory is owned by user
tux
in groupusers
:#
chown
tux.users /var/backupConfigure the rsyncd daemon.
We will separate the configuration file into a main file and some “modules” which hold your backup target. This makes it easier to add additional targets later. Global values can be stored in
/etc/rsyncd.d/*.inc
files, whereas your modules are placed in/etc/rsyncd.d/*.conf
files:Create a directory
/etc/rsyncd.d/
:#
mkdir
/etc/rsyncd.d/In the main configuration file
/etc/rsyncd.conf
, add the following lines:# rsyncd.conf main configuration file log file = /var/log/rsync.log pid file = /var/lock/rsync.lock &merge /etc/rsyncd.d 1 &include /etc/rsyncd.d 2
Create your module (your backup target) in the file
/etc/rsyncd.d/backup.conf
with the following lines:# backup.conf: backup module [backup] 1 uid = tux 2 gid = users 2 path = /var/backup 3 auth users = tux 4 secrets file = /etc/rsyncd.secrets 5 comment = Our backup target
The backup target. You can use any name you like. However, it is a good idea to name a target according to its purpose and use the same name in your
*.conf
file.Specifies the user name or group name that is used when the file transfer takes place.
Defines the path to store your backups (from Step 1).
Specifies a comma-separated list of allowed users. In its simplest form, it contains the user names that are allowed to connect to this module. In our case, only user
tux
is allowed.Specifies the path of a file that contains lines with user names and plain passwords.
Create the
/etc/rsyncd.secrets
file with the following content and replace PASSPHRASE:# user:passwd tux:PASSPHRASE
Make sure the file is only readable by
root
:#
chmod
0600 /etc/rsyncd.secrets
Start and enable the rsyncd daemon with:
#
systemctl
enable rsyncd#
systemctl
start rsyncdTest the access to your Rsync server:
>
rsync
jupiter::You should see a response that looks like this:
backup Our backup target
Otherwise, check your configuration file, firewall and network settings.
The above steps create an Rsync server that can now be used to store
backups. The example also creates a log file listing all connections. This
file is stored in /var/log/rsyncd.log
. This is useful
if you want to debug your transfers.
To list the content of your backup target, use the following command:
>
rsync -avz jupiter::backup
This command lists all files present in the directory
/var/backup
on the server. This request is also logged
in the log file /var/log/rsyncd.log
. To start an actual
transfer, provide a source directory. Use .
for the
current directory. For example, the following command copies the current
directory to your Rsync backup server:
>
rsync -avz . jupiter::backup
By default, Rsync does not delete files and directories when it runs. To
enable deletion, the additional option --delete
must be
stated. To ensure that no newer files are deleted, the option
--update
can be used instead. Any conflicts that arise must
be resolved manually.
11.6 More information #
- Csync
Bidirectional file synchronization tool, see https://csync.org/.
- RSnapshot
Creates incremental backups, see https://rsnapshot.org.
- Unison
A file synchronization tool similar to CSync but with a graphical interface, see https://github.com/bcpierce00/unison.
- Rear
A disaster recovery framework, see the Administration Guide of the SUSE Linux Enterprise High Availability, chapter Disaster Recovery with Rear (Relax-and-Recover).
Part II Booting a Linux system #
- 12 Introduction to the boot process
Booting a Linux system involves different components and tasks. After a firmware and hardware initialization process, which depends on the machine's architecture, the kernel is started by means of the boot loader GRUB 2. After this point, the boot process is completely controlled by the operating system and handled by
systemd
.systemd
provides a set of “targets” that boot configurations for everyday usage, maintenance or emergencies.- 13 UEFI (Unified Extensible Firmware Interface)
UEFI (Unified Extensible Firmware Interface) is the interface between the firmware that comes with the system hardware, all the hardware components of the system, and the operating system.
- 14 The boot loader GRUB 2
This chapter describes how to configure GRUB 2, the boot loader used in SUSE® Linux Enterprise Server. It is the successor to the traditional GRUB boot loader—now called “GRUB Legacy”. GRUB 2 has been the default boot loader in SUSE® Linux Enterprise Server since version 12. A YaST module is available for configuring the most important settings. The boot procedure as a whole is outlined in Chapter 12, Introduction to the boot process. For details on Secure Boot support for UEFI machines, see Chapter 13, UEFI (Unified Extensible Firmware Interface).
- 15 The
systemd
daemon systemd initializes the system. It has the process ID 1. systemd is started directly by the kernel and resists signal 9, which normally terminates processes. All other programs are started directly by systemd or by one of its child processes. systemd is a replacement for the System V init daemon and…
12 Introduction to the boot process #
Booting a Linux system involves different components and tasks. After a
firmware and hardware initialization process, which depends on the
machine's architecture, the kernel is started by means of the boot loader
GRUB 2. After this point, the boot process is completely controlled by the
operating system and handled by systemd
. systemd
provides a set of
“targets” that boot configurations for everyday usage,
maintenance or emergencies.
12.1 Terminology #
This chapter uses terms that can be interpreted ambiguously. To understand how they are used here, read the definitions below:
init
Two different processes are commonly named “init”:
The
initramfs
process mounting the root file systemThe operating system process that starts all other processes that is executed from the real root file system
In both cases, the
systemd
program is taking care of this task. It is first executed from theinitramfs
to mount the root file system. Once that has succeeded, it is re-executed from the root file system as the initial process. To avoid confusing these twosystemd
processes, we refer to the first process as init on initramfs and to the second one as systemd.-
initrd
/initramfs
An
initrd
(initial RAM disk) is an image file containing a root file system image which is loaded by the kernel and mounted from/dev/ram
as the temporary root file system. Mounting this file system requires a file system driver.Beginning with kernel 2.6.13, the initrd has been replaced by the
initramfs
(initial RAM file system), which does not require a file system driver to be mounted. SUSE Linux Enterprise Server exclusively uses aninitramfs
. However, since theinitramfs
is stored as/boot/initrd
, it is often called “initrd”. In this chapter we exclusively use the nameinitramfs
.
12.2 The Linux boot process #
The Linux boot process consists of several stages, each represented by a different component:
12.2.1 The initialization and boot loader phase #
During the initialization phase the machine's hardware is set up and the devices are prepared. This process differs significantly between hardware architectures.
SUSE Linux Enterprise Server uses the boot loader GRUB 2 on all architectures. Depending on the architecture and firmware, starting the GRUB 2 boot loader can be a multi-step process. The purpose of the boot loader is to load the kernel and the initial, RAM-based file system (initramfs). For more information about GRUB 2, refer to Chapter 14, The boot loader GRUB 2.
12.2.1.1 Initialization and boot loader phase on AArch64 and AMD64/Intel 64 #
After turning on the computer, the BIOS or the UEFI initializes the screen and keyboard, and tests the main memory. Up to this stage, the machine does not access any mass storage media. Subsequently, the information about the current date, time, and the most important peripherals are loaded from the CMOS values. When the boot media and its geometry are recognized, the system control passes from the BIOS/UEFI to the boot loader.
On a machine equipped with a traditional BIOS, only code from the first
physical 512-byte data sector (the Master Boot Record, MBR) of the boot
disk can be loaded. Only a minimal GRUB 2 fits into the MBR. Its sole
purpose is to load a GRUB 2 core image containing file system drivers from
the gap between the MBR and the first partition (MBR partition table) or
from the BIOS boot partition (GPT partition table). This image contains
file system drivers and therefore is able to access
/boot
located on the root file
system. /boot
contains additional modules for GRUB 2
core as well as the kernel and the initramfs image. Once it has access to
this partition, GRUB 2 loads the kernel and the initramfs image into
memory and hands control over to the kernel.
When booting a BIOS system from an encrypted file system that includes an
encrypted /boot
partition, you need to enter the
password for decryption twice. It is first needed by GRUB 2 to decrypt
/boot
and then for systemd
to mount the encrypted
volumes.
On machines with UEFI the boot process is much simpler than on machines
with a traditional BIOS. The firmware is able to read from a FAT formatted
system partition of disks with a GPT partition table. This EFI
system-partition (in the running system mounted as
/boot/efi
) holds enough space to host a fully-fledged
GRUB 2 which is directly loaded and executed by the firmware.
If the BIOS/UEFI supports network booting, it is also possible to configure a boot server that provides the boot loader. The system can then be booted via PXE. The BIOS/UEFI acts as the boot loader. It gets the boot image from the boot server and starts the system. This is completely independent of local hard disks.
12.2.1.2 Initialization and boot loader phase on IBM Z #
On IBM Z the boot process must be initialized by a boot loader
called zipl
(z initial program load). Although
zipl
supports reading from various file systems, it
does not support the SLE default file system (Btrfs) or booting from
snapshots. SUSE Linux Enterprise Server therefore uses a two-stage boot process that
ensures full Btrfs support at boot-time:
zipl
boots from the partition/boot/zipl
, which can be formatted with the Ext2, Ext3, Ext4, or XFS file system. This partition contains a minimal kernel and an initramfs that are loaded into memory. The initramfs contains a Btrfs driver (among others) and the boot loader GRUB 2. The kernel is started with a parameterinitgrub
, which tells it to start GRUB 2.The kernel mounts the root file system, so
/boot
becomes accessible. Now GRUB 2 is started from the initramfs. It reads its configuration from/boot/grub2/grub.cfg
and loads the final kernel and initramfs from/boot
. The new kernel now gets loaded via Kexec.
12.2.2 The kernel phase #
When the boot loader has passed on system control, the boot process is the
same on all architectures. The boot loader loads both the kernel and an
initial RAM-based file system (initramfs
) into
memory and the kernel takes over.
After the kernel has set up memory management and has detected the CPU type
and its features, it initializes the hardware and mounts the temporary root
file system from the memory that was loaded with the
initramfs
.
12.2.2.1 The initramfs
file #
initramfs
(initial RAM file system) is a small
cpio archive that the kernel can load into a RAM disk. It is located at
/boot/initrd
. It can be created with a tool called
dracut
—refer to man 8 dracut
for details.
The initramfs
provides a minimal Linux
environment that enables the execution of programs before the actual root
file system is mounted. This minimal Linux environment is loaded into
memory by BIOS or UEFI routines and does not have specific hardware
requirements other than sufficient memory. The
initramfs
archive must always provide an
executable named init
that executes the systemd
daemon on the root file system for the boot process to proceed.
Before the root file system can be mounted and the operating system can be
started, the kernel needs the corresponding drivers to access the device
on which the root file system is located. These drivers may include
special drivers for certain kinds of hard disks or even network drivers to
access a network file system. The needed modules for the root file system
are loaded by init
on
initramfs
. After the modules are loaded,
udev
provides the
initramfs
with the needed devices. Later in the
boot process, after changing the root file system, it is necessary to
regenerate the devices. This is done by the systemd
unit
systemd-udev-trigger.service
.
12.2.2.1.1 Regenerating the initramfs #
Because the initramfs
contains drivers, it needs
to be updated whenever a new version of one of its drivers is
available. This is done automatically when installing the package
containing the driver update. YaST or zypper will inform you about
this by showing the output of the command that generates the
initramfs
. However, there are some occasions
when you need to regenerate an initramfs
manually:
- Adding drivers because of hardware changes
If you need to change hardware, for example, hard disks, and this hardware requires different drivers to be in the kernel at boot time, you must update the
initramfs
file.Open or create
/etc/dracut.conf.d/10-DRIVER.conf
and add the following line (mind the leading whitespace):force_drivers+=" DRIVER1 "
Replace DRIVER1 with the module name of the driver. If you need to add more than one driver, list them space-separated:
force_drivers+=" DRIVER1 DRIVER2 "
Proceed with Procedure 12.1, “Generate an initramfs”.
- Moving system directories to a RAID or LVM
Whenever you move swap files, or system directories like
/usr
in a running system to a RAID or logical volume, you need to create aninitramfs
that contains support for software RAID or LVM drivers.To do so, create the respective entries in
/etc/fstab
and mount the new entries (for example withmount -a
and/orswapon -a
).Proceed with Procedure 12.1, “Generate an initramfs”.
- Adding disks to an LVM group or Btrfs RAID containing the root file system
Whenever you add (or remove) a disk to a logical volume group or a Btrfs RAID containing the root file system, you need to create an
initramfs
that contains support for the enlarged volume. Follow the instructions at Procedure 12.1, “Generate an initramfs”.Proceed with Procedure 12.1, “Generate an initramfs”.
- Changing kernel variables
If you change the values of kernel variables via the
sysctl
interface by editing related files (/etc/sysctl.conf
or/etc/sysctl.d/*.conf
), the change will be lost on the next system reboot. Even if you load the values withsysctl --system
at runtime, the changes are not saved into theinitramfs
file. You need to update it by proceeding as outlined in Procedure 12.1, “Generate an initramfs”.- Adding or removing swap devices, re-creating swap area
Whenever you add or remove a swap device, or re-create a swap area with a different UUID, update the initramfs as outlined in Procedure 12.1, “Generate an initramfs”. You may also need to update
GRUB_CMDLINE_*
variables that include theresume=
option in/etc/default/grub
, and then regenerate/boot/grub2/grub.cfg
as outlined in Section 14.2.1, “The file/boot/grub2/grub.cfg
”.
Note that all commands in the following procedure need to be executed
as the root
user.
Enter your
/boot
directory:#
cd /bootGenerate a new
initramfs
file withdracut
, replacing MY_INITRAMFS with a file name of your choice:#
dracut MY_INITRAMFSAlternatively, run
dracut -f
FILENAME to replace an existing init file.(Skip this step if you ran
dracut -f
in the previous step.) Create a symlink from theinitramfs
file you created in the previous step toinitrd
:#
ln -sf MY_INITRAMFSinitrd
On the IBM IBM Z architecture, additionally run
grub2-install
.
12.2.3 The init on initramfs phase #
The temporary root file system mounted by the kernel from the
initramfs
contains the executable systemd
(which
is called init
on
initramfs
in the following, also see Section 12.1, “Terminology”. This program performs all actions needed
to mount the proper root file system. It provides kernel functionality for
the needed file system and device drivers for mass storage controllers with
udev
.
The main purpose of init
on
initramfs
is to prepare the mounting of and access
to the real root file system. Depending on your system configuration,
init
on initramfs
is
responsible for the following tasks.
- Loading kernel modules
Depending on your hardware configuration, special drivers may be needed to access the hardware components of your computer (the most important component being your hard disk). To access the final root file system, the kernel needs to load the proper file system drivers.
- Providing block special files
The kernel generates device events depending on loaded modules.
udev
handles these events and generates the required special block files on a RAM file system in/dev
. Without those special files, the file system and other devices would not be accessible.- Managing RAID and LVM setups
If you configured your system to hold the root file system under RAID or LVM,
init
oninitramfs
sets up LVM or RAID to enable access to the root file system later.- Managing the network configuration
If you configured your system to use a network-mounted root file system (mounted via NFS),
init
must make sure that the proper network drivers are loaded and that they are set up to allow access to the root file system.If the file system resides on a network block device like iSCSI or SAN, the connection to the storage server is also set up by
init
oninitramfs
. SUSE Linux Enterprise Server supports booting from a secondary iSCSI target if the primary target is not available. For more details regarding configuration of the booting iSCSI target refer to Book “Storage Administration Guide”, Chapter 15 “Mass storage over IP networks: iSCSI”, Section 15.3.1 “Using YaST for the iSCSI initiator configuration”.
If the root file system fails to mount from within the boot environment, it must be checked and repaired before the boot can continue. The file system checker will be automatically started for Ext3 and Ext4 file systems. The repair process is not automated for XFS and Btrfs file systems, and the user is presented with information describing the options available to repair the file system. When the file system has been successfully repaired, exiting the boot environment will cause the system to retry mounting the root file system. If successful, the boot will continue normally.
12.2.3.1 The init on initramfs phase in the installation process #
When init
on initramfs
is called during the initial boot as part of the installation process, its
tasks differ from those mentioned above. Note that the installation system
also does not start systemd
from
initramfs
—these tasks are performed by
linuxrc
.
- Finding the installation medium
When starting the installation process, your machine loads an installation kernel and a special
init
containing the YaST installer. The YaST installer is running in a RAM file system and needs to have information about the location of the installation medium to access it for installing the operating system.- Initiating hardware recognition and loading appropriate kernel modules
As mentioned in Section 12.2.2.1, “The
initramfs
file”, the boot process starts with a minimum set of drivers that can be used with most hardware configurations. On AArch64, POWER, and AMD64/Intel 64 machines,linuxrc
starts an initial hardware scanning process that determines the set of drivers suitable for your hardware configuration. On IBM Z, a list of drivers and their parameters needs to be provided, for example via linuxrc or a parmfile.These drivers are used to generate a custom
initramfs
that is needed to boot the system. If the modules are not needed for boot but for coldplug, the modules can be loaded withsystemd
; for more information, see Section 15.6.4, “Loading kernel modules”.- Loading the installation system
When the hardware is properly recognized, the appropriate drivers are loaded. The
udev
program creates the special device files andlinuxrc
starts the installation system with the YaST installer.- Starting YaST
Finally,
linuxrc
starts YaST, which starts the package installation and the system configuration.
12.2.4 The systemd phase #
After the “real” root file system has been found, it is
checked for errors and mounted. If this is successful, the
initramfs
is cleaned and the systemd
daemon on
the root file system is executed. systemd
is Linux's system and service
manager. It is the parent process that is started as PID 1 and acts as an
init system which brings up and maintains user space services. See Chapter 15, The systemd
daemon for details.
13 UEFI (Unified Extensible Firmware Interface) #
UEFI (Unified Extensible Firmware Interface) is the interface between the firmware that comes with the system hardware, all the hardware components of the system, and the operating system.
UEFI is becoming more and more available on PC systems and thus is replacing the traditional PC-BIOS. UEFI, for example, properly supports 64-bit systems and offers secure booting (“Secure Boot”, firmware version 2.3.1c or better required), which is one of its most important features. Lastly, with UEFI a standard firmware will become available on all x86 platforms.
UEFI additionally offers the following advantages:
Booting from large disks (over 2 TiB) with a GUID Partition Table (GPT).
CPU-independent architecture and drivers.
Flexible pre-OS environment with network capabilities.
CSM (Compatibility Support Module) to support booting legacy operating systems via a PC-BIOS-like emulation.
For more information, see http://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface. The following sections are not meant as a general UEFI overview; these are only hints about how some features are implemented in SUSE Linux Enterprise Server.
13.1 Secure boot #
In the world of UEFI, securing the bootstrapping process means establishing a chain of trust. The “platform” is the root of this chain of trust; in the context of SUSE Linux Enterprise Server, the mainboard and the on-board firmware could be considered the “platform”. In other words, it is the hardware vendor, and the chain of trust flows from that hardware vendor to the component manufacturers, the OS vendors, etc.
The trust is expressed via public key cryptography. The hardware vendor puts a so-called Platform Key (PK) into the firmware, representing the root of trust. The trust relationship with operating system vendors and others is documented by signing their keys with the Platform Key.
Finally, security is established by requiring that no code will be executed by the firmware unless it has been signed by one of these “trusted” keys—be it an OS boot loader, some driver located in the flash memory of some PCI Express card or on disk, or be it an update of the firmware itself.
To use Secure Boot, you need to have your OS loader signed with a key trusted by the firmware, and you need the OS loader to verify that the kernel it loads can be trusted.
Key Exchange Keys (KEK) can be added to the UEFI key database. This way, you can use other certificates, as long as they are signed with the private part of the PK.
13.1.1 Implementation on SUSE Linux Enterprise Server #
Microsoft’s Key Exchange Key (KEK) is installed by default.
The Secure Boot feature is enabled by default on UEFI/x86_64 installations. You can find the
option in the tab of the dialog. It supports booting when the secure boot is activated in the firmware, while making it possible to boot when it is deactivated.The Secure Boot feature requires that a GUID Partitioning Table (GPT) replaces the old partitioning with a Master Boot Record (MBR). If YaST detects EFI mode during the installation, it will try to create a GPT partition. UEFI expects to find the EFI programs on a FAT-formatted EFI System Partition (ESP).
Supporting UEFI Secure Boot requires having a boot loader with a digital signature that the firmware recognizes as a trusted key. That key is trusted by the firmware a priori, without requiring any manual intervention.
There are two ways of getting there. One is to work with hardware vendors to have them endorse a SUSE key, which SUSE then signs the boot loader with. The other way is to go through Microsoft’s Windows Logo Certification program to have the boot loader certified and have Microsoft recognize the SUSE signing key (that is, have it signed with their KEK). By now, SUSE got the loader signed by UEFI Signing Service (that is Microsoft in this case).
At the implementation layer, SUSE uses the shim
loader which is installed by default. It is a smart solution that avoids
legal issues, and simplifies the certification and signing step
considerably. The shim
loader’s job is to load a
boot loader such as GRUB 2 and verify it; this boot loader in
turn will load kernels signed by a SUSE key only. SUSE provides this
functionality since SLE11 SP3 on fresh installations with UEFI Secure Boot
enabled.
There are two types of trusted users:
First, those who hold the keys. The Platform Key (PK) allows almost everything. The Key Exchange Key (KEK) allows all a PK can except changing the PK.
Second, anyone with physical access to the machine. A user with physical access can reboot the machine, and configure UEFI.
UEFI offers two types of variables to fulfill the needs of those users:
The first is the so-called “Authenticated Variables”, which can be updated from both within the boot process (the so-called Boot Services Environment) and the running OS. This can be done only when the new value of the variable is signed with the same key that the old value of the variable was signed with. And they can only be appended to or changed to a value with a higher serial number.
The second is the so-called “Boot Services Only Variables”. These variables are accessible to any code that runs during the boot process. After the boot process ends and before the OS starts, the boot loader must call the
ExitBootServices
call. After that, these variables are no longer accessible, and the OS cannot touch them.
The various UEFI key lists are of the first type, as this allows online updating, adding, and blacklisting of keys, drivers, and firmware fingerprints. It is the second type of variable, the “Boot Services Only Variable”, that helps to implement Secure Boot in a secure and open source-friendly manner, and thus compatible with GPLv3.
SUSE starts with shim
—a small and simple EFI
boot loader signed by SUSE and Microsoft.
This allows shim
to load and execute.
shim
then goes on to verify that the boot loader
it wants to load is trusted.
In a default situation shim
will use an
independent SUSE certificate embedded in its body. In addition,
shim
will allow to “enroll”
additional keys, overriding the default SUSE key. In the following, we call
them “Machine Owner Keys” or MOKs for short.
Next the boot loader will verify and then boot the kernel, and the kernel will do the same on the modules.
13.1.2 MOK (Machine Owner Key) #
To replace specific kernels, drivers, or other components that are part of
the boot process, you have to use Machine Owner Keys (MOKs). The
mokutil
tool can help you to manage MOKs.
You can create a MOK enrollment request with
mokutil
. The request is stored in a UEFI runtime
(RT) variable called MokNew
. During the next boot,
the shim
bootloader detects
MokNew
and loads
MokManager
, which presents you with several options.
You can use the and
options to add the key to the
MokList. Use the option to copy the key from
the MokNew
variable.
Enrolling a key from disk is usually done when the shim fails to
load grub2
and falls back to loading
MokManager. As MokNew
does not exist yet,
you have the option of locating the key on the UEFI partition.
13.1.3 Booting a custom kernel #
The following is based on https://en.opensuse.org/openSUSE:UEFI#Booting_a_custom_kernel.
Secure Boot does not prevent you from using a self-compiled kernel. You must sign it with your own certificate and make that certificate known to the firmware or MOK.
Create a custom X.509 key and certificate used for signing:
openssl req -new -x509 -newkey rsa:2048 -keyout key.asc \ -out cert.pem -nodes -days 666 -subj "/CN=$USER/"
For more information about creating certificates, see https://en.opensuse.org/openSUSE:UEFI_Image_File_Sign_Tools#Create_Your_Own_Certificate.
Package the key and the certificate as a PKCS#12 structure:
>
openssl pkcs12 -export -inkey key.asc -in cert.pem \ -name kernel_cert -out cert.p12Generate an NSS database for use with
pesign
:>
certutil -d . -NImport the key and the certificate contained in PKCS#12 into the NSS database:
>
pk12util -d . -i cert.p12“Bless” the kernel with the new signature using
pesign
:>
pesign -n . -c kernel_cert -i arch/x86/boot/bzImage \ -o vmlinuz.signed -sList the signatures on the kernel image:
>
pesign -n . -S -i vmlinuz.signedAt that point, you can install the kernel in
/boot
as usual. Because the kernel now has a custom signature the certificate used for signing needs to be imported into the UEFI firmware or MOK.Convert the certificate to the DER format for import into the firmware or MOK:
>
openssl x509 -in cert.pem -outform der -out cert.derCopy the certificate to the ESP for easier access:
>
sudo
cp cert.der /boot/efi/Use
mokutil
to launch the MOK list automatically.Import the certificate to MOK:
>
mokutil --root-pw --import cert.derThe
--root-pw
option enables usage of theroot
user directly.Check the list of certificates that are prepared to be enrolled:
>
mokutil --list-newReboot the system;
shim
should launch MokManager. You need to enter theroot
password to confirm the import of the certificate to the MOK list.Check if the newly imported key was enrolled:
>
mokutil --list-enrolled
Alternatively, this is the procedure if you want to launch MOK manually:
Reboot
In the GRUB 2 menu press the '
c
' key.Type:
chainloader $efibootdir/MokManager.efi boot
Select
.Navigate to the
cert.der
file and press Enter.Follow the instructions to enroll the key. Normally this should be pressing '
0
' and then 'y
' to confirm.Alternatively, the firmware menu may provide ways to add a new key to the Signature Database.
13.1.4 Using non-inbox drivers #
There is no support for adding non-inbox drivers (that is, drivers that do not come with SUSE Linux Enterprise Server) during installation with Secure Boot enabled. The signing key used for SolidDriver/PLDP is not trusted by default.
It is possible to install third party drivers during installation with Secure Boot enabled in two different ways. In both cases:
Add the needed keys to the firmware database via firmware/system management tools before the installation. This option depends on the specific hardware you are using. Consult your hardware vendor for more information.
Use a bootable driver ISO from https://drivers.suse.com/ or your hardware vendor to enroll the needed keys in the MOK list at first boot.
To use the bootable driver ISO to enroll the driver keys to the MOK list, follow these steps:
Burn the ISO image above to an empty CD/DVD medium.
Start the installation using the new CD/DVD medium, having the standard installation media at hand or a URL to a network installation server.
If doing a network installation, enter the URL of the network installation source on the boot command line using the
install=
option.If doing installation from optical media, the installer will first boot from the driver kit and then ask to insert the first installation disk of the product.
An initrd containing updated drivers will be used for installation.
For more information, see https://drivers.suse.com/doc/Usage/Secure_Boot_Certificate.html.
13.1.5 Features and limitations #
When booting in Secure Boot mode, the following features apply:
Installation to UEFI default boot loader location, a mechanism to keep or restore the EFI boot entry.
Reboot via UEFI.
Xen hypervisor will boot with UEFI when there is no legacy BIOS to fall back to.
UEFI IPv6 PXE boot support.
UEFI videomode support, the kernel can retrieve video mode from UEFI to configure KMS mode with the same parameters.
UEFI booting from USB devices is supported.
Since SUSE Linux Enterprise Server 15 SP3, Kexec and Kdump are supported in Secure Boot mode.
When booting in Secure Boot mode, the following limitations apply:
To ensure that Secure Boot cannot be easily circumvented, some kernel features are disabled when running under Secure Boot.
Boot loader, kernel, and kernel modules must be signed.
Hibernation (suspend on disk) is disabled.
Access to
/dev/kmem
and/dev/mem
is not possible, not even as root user.Access to the I/O port is not possible, not even as root user. All X11 graphical drivers must use a kernel driver.
PCI BAR access through sysfs is not possible.
custom_method
in ACPI is not available.debugfs for asus-wmi module is not available.
the
acpi_rsdp
parameter does not have any effect on the kernel.
13.2 More information #
https://www.uefi.org —UEFI home page where you can find the current UEFI specifications.
Blog posts by Olaf Kirch and Vojtěch Pavlík (the chapter above is heavily based on these posts):
https://en.opensuse.org/openSUSE:UEFI —UEFI with openSUSE.
14 The boot loader GRUB 2 #
This chapter describes how to configure GRUB 2, the boot loader used in SUSE® Linux Enterprise Server. It is the successor to the traditional GRUB boot loader—now called “GRUB Legacy”. GRUB 2 has been the default boot loader in SUSE® Linux Enterprise Server since version 12. A YaST module is available for configuring the most important settings. The boot procedure as a whole is outlined in Chapter 12, Introduction to the boot process. For details on Secure Boot support for UEFI machines, see Chapter 13, UEFI (Unified Extensible Firmware Interface).
14.1 Main differences between GRUB legacy and GRUB 2 #
The configuration is stored in different files.
More file systems are supported (for example, Btrfs).
Can directly read files stored on LVM or RAID devices.
The user interface can be translated and altered with themes.
Includes a mechanism for loading modules to support additional features, such as file systems, etc.
Automatically searches for and generates boot entries for other kernels and operating systems, such as Windows.
Includes a minimal Bash-like console.
14.2 Configuration file structure #
The configuration of GRUB 2 is based on the following files:
/boot/grub2/grub.cfg
This file contains the configuration of the GRUB 2 menu items. It replaces
menu.lst
used in GRUB Legacy.grub.cfg
should not be edited—it is automatically generated by the commandgrub2-mkconfig -o /boot/grub2/grub.cfg
./boot/grub2/custom.cfg
This optional file is directly sourced by
grub.cfg
at boot time and can be used to add custom items to the boot menu. Starting with SUSE Linux Enterprise Server 12 SP2 these entries are also parsed when usinggrub-once
./etc/default/grub
This file controls the user settings of GRUB 2 and normally includes additional environmental settings such as backgrounds and themes.
- Scripts under
/etc/grub.d/
The scripts in this directory are read during execution of the command
grub2-mkconfig -o /boot/grub2/grub.cfg
. Their instructions are integrated into the main configuration file/boot/grub/grub.cfg
./etc/sysconfig/bootloader
This configuration file holds certain basic settings like the boot loader type and whether to enable UEFI Secure Boot support.
/boot/grub2/x86_64-efi
,/boot/grub2/power-ieee1275
,/boot/grub2/s390x
These configuration files contain architecture-specific options.
GRUB 2 can be controlled in various ways. Boot entries from an existing
configuration can be selected from the graphical menu (splash screen). The
configuration is loaded from the file
/boot/grub2/grub.cfg
which is compiled from other
configuration files (see below). All GRUB 2 configuration files are
considered system files, and you need root
privileges to edit them.
After having manually edited GRUB 2 configuration files, you need to
run grub2-mkconfig -o /boot/grub2/grub.cfg
to
activate the changes. However, this is not necessary when changing the
configuration with YaST, because YaST automatically runs this
command.
14.2.1 The file /boot/grub2/grub.cfg
#
The graphical splash screen with the boot menu is based on the GRUB 2
configuration file /boot/grub2/grub.cfg
, which
contains information about all partitions or operating systems that can be
booted by the menu.
Every time the system is booted, GRUB 2 loads the menu file directly from
the file system. For this reason, GRUB 2 does not need to be re-installed
after changes to the configuration file. grub.cfg
is
automatically rebuilt with kernel installations or removals.
grub.cfg
is compiled from the file
/etc/default/grub
and scripts found in the
/etc/grub.d/
directory when running the command
grub2-mkconfig -o /boot/grub2/grub.cfg
. Therefore you should never
edit the file manually. Instead, edit the related source files or use the
YaST module to modify the configuration as
described in Section 14.3, “Configuring the boot loader with YaST”.
14.2.2 The file /etc/default/grub
#
More general options of GRUB 2 belong in this file, such as the time the menu is displayed, or the default OS to boot. To list all available options, see the output of the following command:
>
grep "export GRUB_DEFAULT" -A50 /usr/sbin/grub2-mkconfig | grep GRUB_
You can introduce custom variables and use them later in the scripts
found in the /etc/grub.d
directory.
After having edited /etc/default/grub
, update the
main configuration file with grub2-mkconfig -o
/boot/grub2/grub.cfg
.
All options specified in this file are general options that affect all
boot entries. Options specific to a Xen hypervisor include the
_XEN_
substring.
More complex options with spaces require quoting so that they are processed as one option. Such inner quotes need to be correctly escaped, for example:
GRUB_CMDLINE_LINUX_XEN="debug loglevel=9 log_buf_len=5M \"ddebug_query=file drivers/xen/xen-acpi-processor.c +p\""
GRUB_DEFAULT
Sets the boot menu entry that is booted by default. Its value can be a numeric value, the complete name of a menu entry, or “saved”.
GRUB_DEFAULT=2
boots the third (counted from zero) boot menu entry.GRUB_DEFAULT="2>0"
boots the first submenu entry of the third top-level menu entry.GRUB_DEFAULT="Example boot menu entry"
boots the menu entry with the title “Example boot menu entry”.GRUB_DEFAULT=saved
boots the entry specified by thegrub2-once
orgrub2-set-default
commands. Whilegrub2-reboot
sets the default boot entry for the next reboot only,grub2-set-default
sets the default boot entry until changed.grub2-editenv list
lists the next boot entry.GRUB_HIDDEN_TIMEOUT
Waits the specified number of seconds for the user to press a key. During the period no menu is shown unless the user presses a key. If no key is pressed during the time specified, the control is passed to
GRUB_TIMEOUT
.GRUB_HIDDEN_TIMEOUT=0
first checks whether Shift is pressed and shows the boot menu if yes, otherwise immediately boots the default menu entry. This is the default when only one bootable OS is identified by GRUB 2.GRUB_HIDDEN_TIMEOUT_QUIET
If
false
is specified, a countdown timer is displayed on a blank screen when theGRUB_HIDDEN_TIMEOUT
feature is active.GRUB_TIMEOUT
Time period in seconds the boot menu is displayed before automatically booting the default boot entry. If you press a key, the timeout is cancelled and GRUB 2 waits for you to make the selection manually.
GRUB_TIMEOUT=-1
causes the menu to be displayed until you select the boot entry manually.GRUB_CMDLINE_LINUX
Entries on this line are added at the end of the boot entries for normal and recovery modes. Use it to add kernel parameters to the boot entry.
GRUB_CMDLINE_LINUX_DEFAULT
Same as
GRUB_CMDLINE_LINUX
but the entries are appended in the normal mode only.GRUB_CMDLINE_LINUX_RECOVERY
Same as
GRUB_CMDLINE_LINUX
but the entries are appended in the recovery mode only.GRUB_CMDLINE_LINUX_XEN_REPLACE
This entry replaces the
GRUB_CMDLINE_LINUX
parameters for all Xen boot entries.GRUB_CMDLINE_LINUX_XEN_REPLACE_DEFAULT
Same as
GRUB_CMDLINE_LINUX_XEN_REPLACE
but it only replaces parameters ofGRUB_CMDLINE_LINUX_DEFAULT
.GRUB_CMDLINE_XEN
These entries are passed to the Xen hypervisor Xen menu entries for normal and recovery modes. For example:
GRUB_CMDLINE_XEN="loglvl=all guest_loglvl=all"
Tip: Xen hypervisor optionsFind a complete list of Xen hypervisor options in https://xenbits.xen.org/docs/unstable/misc/xen-command-line.html
GRUB_CMDLINE_XEN_DEFAULT
Same as
GRUB_CMDLINE_XEN
but the entries are appended in the normal mode only.GRUB_TERMINAL
Enables and specifies an input/output terminal device. Can be
console
(PC BIOS and EFI consoles),serial
(serial terminal),ofconsole
(Open Firmware console), or the defaultgfxterm
(graphics-mode output). It is also possible to enable more than one device by quoting the required options, for example,GRUB_TERMINAL="console serial"
.GRUB_GFXMODE
The resolution used for the
gfxterm
graphical terminal. You can only use modes supported by your graphics card (VBE). The default is ‘auto’, which tries to select a preferred resolution. You can display the screen resolutions available to GRUB 2 by typingvideoinfo
in the GRUB 2 command line. The command line is accessed by typing C when the GRUB 2 boot menu screen is displayed.You can also specify a color depth by appending it to the resolution setting, for example,
GRUB_GFXMODE=1280x1024x24
.GRUB_BACKGROUND
Set a background image for the
gfxterm
graphical terminal. The image must be a file readable by GRUB 2 at boot time, and it must end with the.png
,.tga
,.jpg
, or.jpeg
suffix. If necessary, the image is scaled to fit the screen.GRUB_DISABLE_OS_PROBER
If this option is set to
true
, automatic searching for other operating systems is disabled. Only the kernel images in/boot/
and the options from your own scripts in/etc/grub.d/
are detected.SUSE_BTRFS_SNAPSHOT_BOOTING
If this option is set to
true
, GRUB 2 can boot directly into Snapper snapshots. For more information, see Section 7.3, “System rollback by booting from snapshots”.
For a complete list of options, see the GNU GRUB manual.
14.2.3 Scripts in /etc/grub.d
#
The scripts in this directory are read during execution of the command
grub2-mkconfig -o /boot/grub2/grub.cfg
. Their
instructions are incorporated into
/boot/grub2/grub.cfg
. The order of menu items in
grub.cfg
is determined by the order in which the
files in this directory are run. Files with a leading numeral are
executed first, beginning with the lowest number.
00_header
is run before
10_linux
, which would run before
40_custom
. If files with alphabetic names are
present, they are executed after the numerically named files. Only
executable files generate output to grub.cfg
during execution of grub2-mkconfig
. By default all
files in the /etc/grub.d
directory are executable.
grub.cfg
Because /boot/grub2/grub.cfg
is recompiled each
time grub2-mkconfig
is run, any custom content is
lost. To insert your lines directly into
/boot/grub2/grub.cfg
without losing them after
grub2-mkconfig
is run, insert them between
### BEGIN /etc/grub.d/90_persistent ###
and
### END /etc/grub.d/90_persistent ###
The 90_persistent
script ensures that such
content is preserved.
A list of the most important scripts follows:
00_header
Sets environmental variables such as system file locations, display settings, themes and previously saved entries. It also imports preferences stored in the
/etc/default/grub
. Normally you do not need to make changes to this file.10_linux
Identifies Linux kernels on the root device and creates relevant menu entries. This includes the associated recovery mode option if enabled. Only the latest kernel is displayed on the main menu page, with additional kernels included in a submenu.
30_os-prober
This script uses
os-prober
to search for Linux and other operating systems and places the results in the GRUB 2 menu. There are sections to identify specific other operating systems, such as Windows or macOS.40_custom
This file provides a simple way to include custom boot entries into
grub.cfg
. Make sure that you do not change theexec tail -n +3 $0
part at the beginning.
The processing sequence is set by the preceding numbers with the lowest number being executed first. If scripts are preceded by the same number the alphabetical order of the complete name decides the order.
/boot/grub2/custom.cfg
If you create /boot/grub2/custom.cfg
and fill it
with content, it is automatically included into
/boot/grub2/grub.cfg
right after
40_custom
at boot time.
14.2.4 Mapping between BIOS drives and Linux devices #
In GRUB Legacy, the device.map
configuration file
was used to derive Linux device names from BIOS drive numbers. The
mapping between BIOS drives and Linux devices cannot always be guessed
correctly. For example, GRUB Legacy would get a wrong order if the boot
sequence of IDE and SCSI drives is exchanged in the BIOS configuration.
GRUB 2 avoids this problem by using device ID strings (UUIDs) or file
system labels when generating grub.cfg
. GRUB 2
utilities create a temporary device map on the fly, which is normally
sufficient, particularly for single-disk systems.
However, if you need to override the GRUB 2's automatic device mapping
mechanism, create your custom mapping file
/boot/grub2/device.map
. The following example
changes the mapping to make DISK 3
the boot disk.
GRUB 2 partition numbers start with 1
and
not with 0
as in GRUB 2 Legacy.
(hd1) /dev/disk-by-id/DISK3 ID (hd2) /dev/disk-by-id/DISK1 ID (hd3) /dev/disk-by-id/DISK2 ID
14.2.6 Setting a boot password #
Even before the operating system is booted, GRUB 2 enables access to file systems. Users without root permissions can access files in your Linux system to which they have no access after the system is booted. To block this kind of access or to prevent users from booting certain menu entries, set a boot password.
If set, the boot password is required on every boot, which means the system does not boot automatically.
Proceed as follows to set a boot password. Alternatively use YaST ().
Encrypt the password using
grub2-mkpasswd-pbkdf2:
>
sudo
grub2-mkpasswd-pbkdf2 Password: **** Reenter password: **** PBKDF2 hash of your password is grub.pbkdf2.sha512.10000.9CA4611006FE96BC77A...Paste the resulting string into the file
/etc/grub.d/40_custom
together with theset superusers
command.set superusers="root" password_pbkdf2 root grub.pbkdf2.sha512.10000.9CA4611006FE96BC77A...
To import the changes into the main configuration file, run:
>
sudo
grub2-mkconfig -o /boot/grub2/grub.cfg
After you reboot, GRUB 2 prompts you for a user name and a password
when trying to boot a menu entry. Enter root
and the
password you typed during the grub2-mkpasswd-pbkdf2
command. If the credentials are correct, the system boots the
selected boot entry.
For more information, see https://www.gnu.org/software/grub/manual/grub.html#Security.
14.2.7 Authorized access to boot menu entries #
You can configure GRUB 2 to allow access to boot menu entries depending on the level of authorization. You can configure multiple user accounts protected with passwords and assign them access to different menu entries. To configure authorization in GRUB 2, follow these steps:
Create and encrypt one password for each user account you want to use in GRUB 2. Use the
grub2-mkpasswd-pbkdf2
command as described in Section 14.2.6, “Setting a boot password”.Delete the content of the
/etc/grub.d/10_linux
file and save it. This prevents outputting the default GRUB 2 menu entries.Edit the
/boot/grub2/custom.cfg
file and add custom menu entries manually. The following template is just an example, adjust it to better match your use case:set superusers=admin password admin ADMIN_PASSWORD password maintainer MAINTAINER_PASSWORD menuentry 'Operational mode' { insmod ext2 set root=hd0,1 echo 'Loading Linux ...' linux /boot/vmlinuz root=/dev/vda1 $GRUB_CMDLINE_LINUX_DEFAULT $GRUB_CMDLINE_LINUX mode=operation echo 'Loading Initrd ...' initrd /boot/initrd } menuentry 'Maintenance mode' --users maintainer { insmod ext2 set root=hd0,1 echo 'Loading Linux ...' linux /boot/vmlinuz root=/dev/vda1 $GRUB_CMDLINE_LINUX_DEFAULT $GRUB_CMDLINE_LINUX mode=maintenance echo 'Loading Initrd ...' initrd /boot/initrd }
Import the changes into the main configuration file:
>
sudo
grub2-mkconfig -o /boot/grub2/grub.cfg
In the above example:
The GRUB 2 menu has two entries,
and .If no user is specified, both boot menu entries are accessible, but no one can access GRUB 2 command line nor edit existing menu entries.
admin
user can access GRUB 2 command line and edit existing menu entries.maintenance
user can select the recovery menu item.
14.3 Configuring the boot loader with YaST #
The easiest way to configure general options of the boot loader in your SUSE Linux Enterprise Server system is to use the YaST module. In the , select › . The module shows the current boot loader configuration of your system and allows you to make changes.
Use the
tab to view and change settings related to type, location and advanced loader settings. You can choose whether to use GRUB 2 in standard or EFI mode.If you have an EFI system you can only install GRUB2-EFI, otherwise your system is no longer bootable.
To reinstall the boot loader, make sure to change a setting in YaST and then change it back. For example, to reinstall GRUB2-EFI, select
first and then immediately switch back to .Otherwise, the boot loader may only be partially reinstalled.
To use a boot loader other than the ones listed, select
. Read the documentation of your boot loader carefully before choosing this option.14.3.1 Boot loader location and boot code options #
The default location of the boot loader depends on the partition setup and
is either the Master Boot Record (MBR) or the boot sector of the
/
partition. To modify the location of the boot loader,
follow these steps:
Select the
tab and then choose one of the following options for :This installs the boot loader in the MBR of the disk containing the directory
/boot
. Usually this will be the disk mounted to/
, but if/boot
is mounted to a separate partition on a different disk, the MBR of that disk will be used.This installs the boot loader in the boot sector of the
/
partition.Use this option to specify the location of the boot loader manually.
Click
to apply the changes.
The
tab includes the following additional options:Activates the partition that contains the
/boot
directory. For POWER systems it activates the PReP partition. Use this option on systems with old BIOS and/or legacy operating systems because they may fail to boot from a non-active partition. It is safe to leave this option active.If MBR contains a custom 'non-GRUB' code, this option replaces it with a generic, operating system independent code. If you deactivate this option, the system may become unbootable.
Starts TrustedGRUB2, which supports trusted computing functionality (Trusted Platform Module (TPM)). For more information refer to https://github.com/Sirrix-AG/TrustedGRUB2.
The
section includes the following options:This is appropriate for traditional legacy BIOS booting.
This is appropriate for UEFI booting.
This is usually the best choice if you have an already working system.
In most cases YaST defaults to the appropriate choice.
14.3.2 Adjusting the disk order #
If your computer has more than one hard disk, you can specify the boot sequence of the disks. The first disk in the list is where GRUB 2 will be installed in the case of booting from MBR. It is the disk where SUSE Linux Enterprise Server is installed by default. The rest of the list is a hint for GRUB 2's device mapper (see Section 14.2.4, “Mapping between BIOS drives and Linux devices”).
The default value is usually valid for almost all deployments. If you change the boot order of disks wrongly, the system may become unbootable on the next reboot. For example, if the first disk in the list is not part of the BIOS boot order, and the other disks in the list have empty MBRs.
Open the
tab.Click
.If more than one disk is listed, select a disk and click
or to reorder the displayed disks.Click
two times to save the changes.
14.3.3 Configuring advanced options #
Advanced boot parameters can be configured via the
tab.14.3.3.1 tab #
Change the value of
by typing in a new value and clicking the appropriate arrow key with your mouse.When selected, the boot loader searches for other systems like Windows or other Linux installations.
Hides the boot menu and boots the default entry.
Select the desired entry from the “Default Boot Section” list. Note that the “>” sign in the boot entry name delimits the boot section and its subsection.
Protects the boot loader and the system with an additional password. For details on manual configuration, see Section 14.2.6, “Setting a boot password”. If this option is activated, the boot password is required on every boot, which means the system does not boot automatically. However, if you prefer the behavior of GRUB 1, additionally enable . With this setting, anybody is allowed to select a boot entry and boot the system, whereas the password for the GRUB 2
root
user is only required for modifying boot entries.
14.3.3.2 tab #
Specify optional kernel parameters here to enable/disable system features, add drivers, etc.
SUSE has released one or more kernel boot command line parameters for all software mitigations that have been deployed to prevent CPU side-channel attacks. Some of those may result in performance loss. Choose one the following options to strike a balance between security and performance, depending on your setting:
Enables all mitigations required for your CPU model, but does not protect against cross-CPU thread attacks. This setting may impact performance to some degree, depending on the workload. .
Provides the full set of available security mitigations. Enables all mitigations required for your CPU model. In addition, it disables Simultaneous Multithreading (SMT) to avoid side-channel attacks across multiple CPU threads. This setting may further impact performance, depending on the workload. .
Disables all mitigations. Side-channel attacks against your CPU are possible, depending on the CPU model. This setting has no impact on performance. .
Does not set any mitigation level. Specify your CPU mitigations manually by using the kernel command line options. .
When checked, the boot menu appears on a graphical splash screen rather than in a text mode. The resolution of the boot screen is set automatically by default, but you can manually set it via
. The graphical theme definition file can be specified with the file chooser. Only change this if you want to apply your own, custom-made theme.If your machine is controlled via a serial console, activate this option and specify which COM port to use at which speed. See
info grub
or http://www.gnu.org/software/grub/manual/grub.html#Serial-terminal
14.4 Differences in terminal usage on IBM Z #
On 3215 and 3270 terminals there are some differences and limitations on how to move the cursor and how to issue editing commands within GRUB 2.
14.4.1 Limitations #
- Interactivity
Interactivity is strongly limited. Typing often does not result in visual feedback. To see where the cursor is, type an underscore (_).
Note: 3270 compared to 3215The 3270 terminal is much better at displaying and refreshing screens than the 3215 terminal.
- Cursor movement
“Traditional” cursor movement is not possible. Alt, Meta, Ctrl and the cursor keys do not work. To move the cursor, use the key combinations listed in Section 14.4.2, “Key combinations”.
- Caret
The caret (^) is used as a control character. To type a literal ^ followed by a letter, type ^, ^, LETTER.
- Enter
The Enter key does not work, use ^–J instead.
14.4.2 Key combinations #
Common Substitutes: |
^–J |
engage (“Enter”) |
^–L |
abort, return to previous “state” | |
^–I |
tab completion (in edit and shell mode) | |
Keys Available in Menu Mode: |
^–A |
first entry |
^–E |
last entry | |
^–P |
previous entry | |
^–N |
next entry | |
^–G |
previous page | |
^–C |
next page | |
^–F |
boot selected entry or enter submenu (same as ^–J) | |
E |
edit selected entry | |
C |
enter GRUB-Shell | |
Keys Available in Edit Mode: |
^–P |
previous line |
^–N |
next line | |
^–B |
backward char | |
^–F |
forward char | |
^–A |
beginning of line | |
^–E |
end of line | |
^–H |
backspace | |
^–D |
delete | |
^–K |
kill line | |
^–Y |
yank | |
^–O |
open line | |
^–L |
refresh screen | |
^–X |
boot entry | |
^–C |
enter GRUB-Shell | |
Keys Available in Command Line Mode: |
^–P |
previous command |
^–N |
next command from history | |
^–A |
beginning of line | |
^–E |
end of line | |
^–B |
backward char | |
^–F |
forward char | |
^–H |
backspace | |
^–D |
delete | |
^–K |
kill line | |
^–U |
discard line | |
^–Y |
yank |
14.5 Helpful GRUB 2 commands #
grub2-mkconfig
Generates a new
/boot/grub2/grub.cfg
based on/etc/default/grub
and the scripts from/etc/grub.d/
.Example 14.1: Usage of grub2-mkconfig #grub2-mkconfig -o /boot/grub2/grub.cfg
Tip: Syntax checkRunning
grub2-mkconfig
without any parameters prints the configuration to STDOUT where it can be reviewed. Usegrub2-script-check
after/boot/grub2/grub.cfg
has been written to check its syntax.Important:grub2-mkconfig
cannot repair UEFI Secure Boot tablesIf you are using UEFI Secure Boot and your system is not reaching GRUB 2 correctly anymore, you may need to additionally reinstall the Shim and regenerate the UEFI boot table. To do so, use:
#
shim-install --config-file=/boot/grub2/grub.cfggrub2-mkrescue
Creates a bootable rescue image of your installed GRUB 2 configuration.
Example 14.2: Usage of grub2-mkrescue #grub2-mkrescue -o save_path/name.iso iso
grub2-script-check
Checks the given file for syntax errors.
Example 14.3: Usage of grub2-script-check #grub2-script-check /boot/grub2/grub.cfg
grub2-once
Set the default boot entry for the next boot only. To get the list of available boot entries use the
--list
option.Example 14.4: Usage of grub2-once #grub2-once number_of_the_boot_entry
Tip:grub2-once
helpCall the program without any option to get a full list of all possible options.
14.6 Rescue mode #
Rescue mode is a specific root
user session
for troubleshooting and repairing systems where the booting process
fails. It offers a single-user environment with local file systems and
core system services active. Network interfaces are not activated. To
enter the rescue mode, follow these steps.
Reboot the system. The boot screen appears, offering the GRUB 2 boot menu.
Select the menu entry to boot and press e to edit the boot line.
Append the following parameter to the line containing the kernel parameters:
systemd.unit=rescue.target
Press Ctrl+X to boot with these settings.
Enter the password for
root
.Make all the necessary changes.
Enter normal operating target again by entering
systemctl isolate multi-user.target
orsystemctl isolate graphical.target
at the command line.
14.7 More information #
Extensive information about GRUB 2 is available at https://www.gnu.org/software/grub/. Also refer to the
grub
info page. You can also
search for the keyword “GRUB 2” in the Technical Information
Search at https://www.suse.com/support to get
information about special issues.
15 The systemd
daemon #
systemd
initializes the system. It has the process ID 1. systemd
is
started directly by the kernel and resists signal 9, which normally
terminates processes. All other programs are started directly by
systemd
or by one of its child processes. systemd
is a replacement for
the System V init daemon and is fully compatible with System V init (by
supporting init scripts).
The main advantage of systemd
is that it considerably speeds up boot time
by parallelizing service starts. Furthermore, systemd
only starts a
service when it is really needed. Daemons are not started unconditionally
at boot time, but when being required for the first time. systemd
also
supports Kernel Control Groups (cgroups), creating snapshots, and restoring
the system state. For more details see
http://www.freedesktop.org/wiki/Software/systemd/.
15.1 The systemd
concept #
The following section explains the concept behind systemd
.
systemd
is a system and session manager for Linux, compatible with System V
and LSB init scripts.
The main features of systemd
include:
parallelization capabilities
socket and D-Bus activation for starting services
on-demand starting of daemons
tracking of processes using Linux cgroups
creating snapshots and restoring of the system state
maintains mount and automount points
implements an elaborate transactional dependency-based service control logic
15.1.1 Unit file #
A unit configuration file contains information about a service, a
socket, a device, a mount point, an automount point, a swap file or
partition, a start-up target, a watched file system path, a timer
controlled and supervised by systemd
, a temporary system state
snapshot, a resource management slice or a group of externally created
processes.
“Unit file” is a generic term used by systemd
for the
following:
Service. Information about a process (for example, running a daemon); file ends with .service
Targets. Used for grouping units and as synchronization points during start-up; file ends with .target
Sockets. Information about an IPC or network socket or a file system FIFO, for socket-based activation (like
inetd
); file ends with .socketPath. Used to trigger other units (for example, running a service when files change); file ends with .path
Timer. Information about a timer controlled, for timer-based activation; file ends with .timer
Mount point. Normally auto-generated by the fstab generator; file ends with .mount
Automount point. Information about a file system automount point; file ends with .automount
Swap. Information about a swap device or file for memory paging; file ends with .swap
Device. Information about a device unit as exposed in the sysfs/udev(7) device tree; file ends with .device
Scope / slice. A concept for hierarchically managing resources of a group of processes; file ends with .scope/.slice
For more information about systemd
unit files, see
http://www.freedesktop.org/software/systemd/man/systemd.unit.html
15.2 Basic usage #
The System V init system uses several commands to handle
services—the init scripts, insserv
,
telinit
and others. systemd
makes it easier to
manage services, because there is only one command to handle most service
related tasks: systemctl
. It uses the “command
plus subcommand” notation like git
or
zypper
:
systemctl GENERAL OPTIONS SUBCOMMAND SUBCOMMAND OPTIONS
See man 1 systemctl
for a complete manual.
If the output goes to a terminal (and not to a pipe or a file, for example), systemd
commands send long output to a pager by default.
Use the --no-pager
option to turn off paging mode.
systemd
also supports bash-completion, allowing you to enter the first letters of a subcommand and then press →|.
This feature is only available in the bash
shell and requires the installation of the package bash-completion
.
15.2.1 Managing services in a running system #
Subcommands for managing services are the same as for managing a service with System V init (start
, stop
, ...).
The general syntax for service management commands is as follows:
systemd
systemctl reload|restart|start|status|stop|... MY_SERVICE(S)
- System V init
rcMY_SERVICE(S) reload|restart|start|status|stop|...
systemd
allows you to manage several services in one go.
Instead of executing init scripts one after the other as with System V init, execute a command like the following:
>
sudo
systemctl start MY_1ST_SERVICE MY_2ND_SERVICE
To list all services available on the system:
>
sudo
systemctl list-unit-files --type=service
The following table lists the most important service management commands for systemd
and System V init:
Task |
|
System V init Command |
---|---|---|
Starting. |
start |
start |
Stopping. |
stop |
stop |
Restarting. Shuts down services and starts them afterward. If a service is not yet running, it is started. |
restart |
restart |
Restarting conditionally. Restarts services if they are currently running. Does nothing for services that are not running. |
try-restart |
try-restart |
Reloading.
Tells services to reload their configuration files without interrupting operation.
Use case: Tell Apache to reload a modified |
reload |
reload |
Reloading or restarting. Reloads services if reloading is supported, otherwise restarts them. If a service is not yet running, it is started. |
reload-or-restart |
n/a |
Reloading or restarting conditionally. Reloads services if reloading is supported, otherwise restarts them if currently running. Does nothing for services that are not running. |
reload-or-try-restart |
n/a |
Getting detailed status information.
Lists information about the status of services.
The |
status |
status |
Getting short status information. Shows whether services are active or not. |
is-active |
status |
15.2.2 Permanently enabling/disabling services #
The service management commands mentioned in the previous section let
you manipulate services for the current session. systemd
also lets
you permanently enable or disable services, so they are automatically
started when requested or are always unavailable. You can either do
this by using YaST, or on the command line.
15.2.2.1 Enabling/disabling services on the command line #
The following table lists enabling and disabling commands for
systemd
and System V init:
When enabling a service on the command line, it is not started
automatically. It is scheduled to be started with the next system
start-up or runlevel/target change. To immediately start a service
after having enabled it, explicitly run systemctl start
MY_SERVICE
or rc
MY_SERVICE start
.
Task |
|
System V init Command |
---|---|---|
Enabling. |
|
|
Disabling. |
|
|
Checking. Shows whether a service is enabled or not. |
|
|
Re-enabling. Similar to restarting a service, this command first disables and then enables a service. Useful to re-enable a service with its defaults. |
|
n/a |
Masking. After “disabling” a service, it can still be started manually. To disable a service, you need to mask it. Use with care. |
|
n/a |
Unmasking. A service that has been masked can only be used again after it has been unmasked. |
|
n/a |
15.3 System start and target management #
The entire process of starting the system and shutting it down is maintained by systemd
.
From this point of view, the kernel can be considered a background process to maintain all other processes and adjust CPU time and hardware access according to requests from other programs.
15.3.1 Targets compared to runlevels #
With System V init the system was booted into a so-called
“Runlevel”. A runlevel defines how the system is started
and what services are available in the running system. Runlevels are
numbered; the most commonly known ones are 0
(shutting down the system), 3
(multiuser with
network) and 5
(multiuser with network and display
manager).
systemd
introduces a new concept by using so-called “target
units”. However, it remains fully compatible with the runlevel
concept. Target units are named rather than numbered and serve specific
purposes. For example, the targets
local-fs.target
and
swap.target
mount local file systems and swap
spaces.
The target graphical.target
provides a
multiuser system with network and display manager capabilities and is
equivalent to runlevel 5. Complex targets, such as
graphical.target
act as “meta”
targets by combining a subset of other targets. Since systemd
makes
it easy to create custom targets by combining existing targets, it
offers great flexibility.
The following list shows the most important systemd
target units. For
a full list refer to man 7 systemd.special
.
systemd
target units #default.target
The target that is booted by default. Not a “real” target, but rather a symbolic link to another target like
graphic.target
. Can be permanently changed via YaST (see Section 15.4, “Managing services with YaST”). To change it for a session, use the kernel parametersystemd.unit=MY_TARGET.target
at the boot prompt.emergency.target
Starts a minimal emergency
root
shell on the console. Only use it at the boot prompt assystemd.unit=emergency.target
.graphical.target
Starts a system with network, multiuser support and a display manager.
halt.target
Shuts down the system.
mail-transfer-agent.target
Starts all services necessary for sending and receiving mails.
multi-user.target
Starts a multiuser system with network.
reboot.target
Reboots the system.
rescue.target
Starts a single-user
root
session without network. Basic tools for system administration are available. Therescue
target is suitable for solving multiple system problems, for example, failing logins or fixing issues with a display driver.
To remain compatible with the System V init runlevel system, systemd
provides special targets named
runlevelX.target
mapping
the corresponding runlevels numbered X.
To inspect the current target, use the command: systemctl
get-default
systemd
target units #
System V runlevel |
|
Purpose |
---|---|---|
0 |
|
System shutdown |
1, S |
|
Single-user mode |
2 |
|
Local multiuser without remote network |
3 |
|
Full multiuser with network |
4 |
|
Unused/User-defined |
5 |
|
Full multiuser with network and display manager |
6 |
|
System reboot |
systemd
ignores /etc/inittab
The runlevels in a System V init system are configured in
/etc/inittab
. systemd
does
not use this configuration. Refer to
Section 15.5.5, “Creating custom targets” for instructions on
how to create your own bootable target.
15.3.1.1 Commands to change targets #
Use the following commands to operate with target units:
Task |
|
System V init Command |
---|---|---|
Change the current target/runlevel |
|
|
Change to the default target/runlevel |
|
n/a |
Get the current target/runlevel |
With |
or
|
persistently change the default runlevel |
Use the Services Manager or run the following command:
|
Use the Services Manager or change the line
in |
Change the default runlevel for the current boot process |
Enter the following option at the boot prompt
|
Enter the desired runlevel number at the boot prompt. |
Show a target's/runlevel's dependencies |
“Requires” lists the hard dependencies (the ones that must be resolved), whereas “Wants” lists the soft dependencies (the ones that get resolved if possible). |
n/a |
15.3.2 Debugging system start-up #
systemd
offers the means to analyze the system start-up process.
You can review the list of all services and their status (rather than having to parse /var/log/
). systemd
also allows you to scan the start-up procedure to find out how much time each service start-up consumes.
15.3.2.1 Review start-up of services #
To review the complete list of services that have been started since booting the system, enter the command systemctl
.
It lists all active services like shown below (shortened).
To get more information on a specific service, use systemctl status MY_SERVICE
.
#
systemctl
UNIT LOAD ACTIVE SUB JOB DESCRIPTION
[...]
iscsi.service loaded active exited Login and scanning of iSC+
kmod-static-nodes.service loaded active exited Create list of required s+
libvirtd.service loaded active running Virtualization daemon
nscd.service loaded active running Name Service Cache Daemon
chronyd.service loaded active running NTP Server Daemon
polkit.service loaded active running Authorization Manager
postfix.service loaded active running Postfix Mail Transport Ag+
rc-local.service loaded active exited /etc/init.d/boot.local Co+
rsyslog.service loaded active running System Logging Service
[...]
LOAD = Reflects whether the unit definition was properly loaded.
ACTIVE = The high-level unit activation state, i.e. generalization of SUB.
SUB = The low-level unit activation state, values depend on unit type.
161 loaded units listed. Pass --all to see loaded but inactive units, too.
To show all installed unit files use 'systemctl list-unit-files'.
To restrict the output to services that failed to start, use the --failed
option:
#
systemctl --failed
UNIT LOAD ACTIVE SUB JOB DESCRIPTION
apache2.service loaded failed failed apache
NetworkManager.service loaded failed failed Network Manager
plymouth-start.service loaded failed failed Show Plymouth Boot Screen
[...]
15.3.2.2 Debug start-up time #
To debug system start-up time, systemd
offers the systemd-analyze
command.
It shows the total start-up time, a list of services ordered by start-up time and can also generate an SVG graphic showing the time services took to start in relation to the other services.
- Listing the system start-up time
#
systemd-analyze Startup finished in 2666ms (kernel) + 21961ms (userspace) = 24628ms- Listing the services start-up time
#
systemd-analyze blame 15.000s backup-rpmdb.service 14.879s mandb.service 7.646s backup-sysconfig.service 4.940s postfix.service 4.921s logrotate.service 4.640s libvirtd.service 4.519s display-manager.service 3.921s btrfsmaintenance-refresh.service 3.466s lvm2-monitor.service 2.774s plymouth-quit-wait.service 2.591s firewalld.service 2.137s initrd-switch-root.service 1.954s ModemManager.service 1.528s rsyslog.service 1.378s apparmor.service [...]- Services start-up time graphics
#
systemd-analyze plot > jupiter.example.com-startup.svg
15.3.2.3 Review the complete start-up process #
The commands above list the services that are started and their start-up times.
For a more detailed overview, specify the following parameters at the boot prompt to instruct systemd
to create a verbose log of the complete start-up procedure.
systemd.log_level=debug systemd.log_target=kmsg
Now systemd
writes its log messages into the kernel ring buffer.
View that buffer with dmesg
:
>
dmesg -T | less
15.3.3 System V compatibility #
systemd
is compatible with System V, allowing you to still use existing System V init scripts.
However, there is at least one known issue where a System V init script does not work with systemd
out of the box: starting a service as a different user via su
or sudo
in init scripts will result in a failure of the script, producing an “Access denied” error.
When changing the user with su
or sudo
, a PAM session is started.
This session will be terminated after the init script is finished.
As a consequence, the service that has been started by the init script will also be terminated.
To work around this error, proceed as follows:
Create a service file wrapper with the same name as the init script plus the file name extension
.service
:[Unit] Description=DESCRIPTION After=network.target [Service] User=USER Type=forking1 PIDFile=PATH TO PID FILE1 ExecStart=PATH TO INIT SCRIPT start ExecStop=PATH TO INIT SCRIPT stop ExecStopPost=/usr/bin/rm -f PATH TO PID FILE1 [Install] WantedBy=multi-user.target2
Replace all values written in UPPERCASE LETTERS with appropriate values.
Start the daemon with
systemctl start APPLICATION
.
15.4 Managing services with YaST #
Basic service management can also be done with the YaST Services Manager module. It supports starting, stopping, enabling and disabling services. It also lets you show a service's status and change the default target. Start the YaST module with
› › .- Changing the
To change the target the system boots into, choose a target from the
drop-down box. The most often used targets are (starting a graphical login screen) and (starting the system in command line mode).- Starting or stopping a service
Select a service from the table. The
column shows whether it is currently running ( ) or not ( ). Toggle its status by choosing or .Starting or stopping a service changes its status for the currently running session. To change its status throughout a reboot, you need to enable or disable it.
- Defining service start-up behavior
Services can either be started automatically at boot time or manually. Select a service from the table. The
column shows whether it is currently started or . Toggle its status by choosing .To change a service status in the current session, you need to start or stop it as described above.
- View a status messages
To view the status message of a service, select it from the list and choose
. The output is identical to the one generated by the commandsystemctl
-l
status MY_SERVICE.
15.5 Customizing systemd
#
The following sections describe how to customize systemd
unit files.
15.5.1 Where are unit files stored? #
systemd
unit files shipped by SUSE are stored in
/usr/lib/systemd/
. Customized unit files and unit file
drop-ins are stored in
/etc/systemd/
.
When customizing systemd
, always use the directory
/etc/systemd/
instead of /usr/lib/systemd/
.
Otherwise your changes will be overwritten by the next update of systemd
.
15.5.2 Override with drop-in files #
Drop-in files (or drop-ins) are partial unit files that override only
specific settings of the unit file. Drop-ins have higher precedence over main configuration
files. The command
systemctl edit SERVICE
starts the default text editor and creates a directory with an empty
override.conf
file in
/etc/systemd/system/NAME.service.d/
. The
command also ensures that the running systemd
process is notified about the changes.
For example, to change the amount of time that the system waits for MariaDB to start, run
sudo systemctl edit mariadb.service
and edit the opened file to include
the modified lines only:
# Configures the time to wait for start-up/stop TimeoutSec=300
Adjust the TimeoutSec
value and save the changes. To enable the changes,
run sudo systemctl daemon-reload
.
For further information, refer to the man pages that can be evoked with
the man 1 systemctl
command.
If you use the --full
option in the systemctl edit --full
SERVICE
command, a copy of the original unit file is
created where you can modify specific options. We do not recommend such customization
because when the unit file is updated by SUSE, its changes are overridden by the
customized copy in the /etc/systemd/system/
directory. Moreover, if
SUSE provides updates to distribution drop-ins, they will override the copy of the unit
file created with --full
. To prevent this confusion and always have your
customization valid, use drop-ins.
15.5.3 Creating drop-in files manually #
Apart from using the systemctl edit
command, you can create drop-ins
manually to have more control over their priority. Such drop-ins let you extend both unit
and daemon configuration files without having to edit or override the files themselves.
They are stored in the following directories:
/etc/systemd/*.conf.d/
,/etc/systemd/system/*.service.d/
Drop-ins added and customized by system administrators.
/usr/lib/systemd/*.conf.d/
,/usr/lib/systemd/system/*.service.d/
Drop-ins installed by customization packages to override upstream settings. For example, SUSE ships systemd-default-settings.
See the man page man 5 systemd.unit
for the full
list of unit search paths.
For example, to disable the rate limiting that is enforced by the
default setting of
systemd-journald
, follow these steps:
Create a directory called
/etc/systemd/journald.conf.d
.>
sudo
mkdir /etc/systemd/journald.conf.dNoteThe directory name must follow the service name that you want to patch with the drop-in file.
In that directory, create a file
/etc/systemd/journald.conf.d/60-rate-limit.conf
with the option that you want to override, for example:>
cat /etc/systemd/journald.conf.d/60-rate-limit.conf
# Disable rate limiting RateLimitIntervalSec=0Save your changes and restart the service of the corresponding
systemd
daemon.>
sudo
systemctl restart systemd-journald
To avoid name conflicts between your drop-ins and files shipped by
SUSE, it is recommended to prefix all drop-ins with a two-digit
number and a dash, for example,
80-override.conf
.
The following ranges are reserved:
0-19
is reserved forsystemd
upstream.20-29
is reserved forsystemd
shipped by SUSE.30-39
is reserved for SUSE packages other thansystemd
.40-49
is reserved for third party packages.50
is reserved for unit drop-in files created withsystemctl set-property
.
Use a two-digit number above this range to ensure that none of the drop-ins shipped by SUSE can override your own drop-ins.
You can use systemctl cat $UNIT
to list and verify
which files are taken into account in the units configuration.
Because the configuration of systemd
components can be scattered
across different places on the file system, it might be hard to get a
global overview. To inspect the configuration of a systemd
component, use the following commands:
systemctl cat UNIT_PATTERN
prints configuration files related to one or moresystemd
units, for example:>
systemctl cat atd.servicesystemd-analyze cat-config DAEMON_NAME_OR_PATH
copies the contents of a configuration file and drop-ins for asystemd
daemon, for example:>
systemd-analyze cat-config systemd/journald.conf
15.5.4 Converting xinetd
services to systemd
#
Since the release of SUSE Linux Enterprise Server 15, the xinetd
infrastructure has been removed.
This section outlines how to convert existing custom xinetd
service files to systemd
sockets.
For each xinetd
service file, you need at least two systemd
unit files: the socket file (*.socket
) and an associated service file (*.service
).
The socket file tells systemd
which socket to create, and the service file tells systemd
which executable to start.
Consider the following example xinetd
service file:
#
cat /etc/xinetd.d/example
service example
{
socket_type = stream
protocol = tcp
port = 10085
wait = no
user = user
group = users
groups = yes
server = /usr/libexec/example/exampled
server_args = -auth=bsdtcp exampledump
disable = no
}
To convert it to systemd
, you need the following two matching files:
#
cat /usr/lib/systemd/system/example.socket
[Socket]
ListenStream=0.0.0.0:10085
Accept=false
[Install]
WantedBy=sockets.target
#
cat /usr/lib/systemd/system/example.service
[Unit]
Description=example
[Service]
ExecStart=/usr/libexec/example/exampled -auth=bsdtcp exampledump
User=user
Group=users
StandardInput=socket
For a complete list of the systemd
'socket' and 'service' file options, refer to the systemd.socket and systemd.service manual pages (man 5 systemd.socket
, man 5 systemd.service
).
15.5.5 Creating custom targets #
On System V init SUSE systems, runlevel 4 is unused to allow administrators to create their own runlevel configuration. systemd
allows you to create any number of custom targets.
It is suggested to start by adapting an existing target such as graphical.target
.
Copy the configuration file
/usr/lib/systemd/system/graphical.target
to/etc/systemd/system/MY_TARGET.target
and adjust it according to your needs.The configuration file copied in the previous step already covers the required (“hard”) dependencies for the target. To also cover the wanted (“soft”) dependencies, create a directory
/etc/systemd/system/MY_TARGET.target.wants
.For each wanted service, create a symbolic link from
/usr/lib/systemd/system
into/etc/systemd/system/MY_TARGET.target.wants
.When you have finished setting up the target, reload the
systemd
configuration to make the new target available:>
sudo
systemctl daemon-reload
15.6 Advanced usage #
The following sections cover advanced topics for system administrators.
For even more advanced systemd
documentation, refer to Lennart Pöttering's series about systemd
for administrators at http://0pointer.de/blog/projects.
15.6.1 Cleaning temporary directories #
systemd
supports cleaning temporary directories regularly.
The configuration from the previous system version is automatically migrated and active. tmpfiles.d
—which is responsible for managing temporary files—reads its configuration from /etc/tmpfiles.d/*.conf
, /run/tmpfiles.d/*.conf
, and /usr/lib/tmpfiles.d/*.conf
files.
Configuration placed in /etc/tmpfiles.d/*.conf
overrides related configurations from the other two directories (/usr/lib/tmpfiles.d/*.conf
is where packages store their configuration files).
The configuration format is one line per path containing action and path, and optionally mode, ownership, age and argument fields, depending on the action. The following example unlinks the X11 lock files:
Type Path Mode UID GID Age Argument r /tmp/.X[0-9]*-lock
To get the status the tmpfile timer:
>
sudo
systemctl status systemd-tmpfiles-clean.timer systemd-tmpfiles-clean.timer - Daily Cleanup of Temporary Directories Loaded: loaded (/usr/lib/systemd/system/systemd-tmpfiles-clean.timer; static) Active: active (waiting) since Tue 2018-04-09 15:30:36 CEST; 1 weeks 6 days ago Docs: man:tmpfiles.d(5) man:systemd-tmpfiles(8) Apr 09 15:30:36 jupiter systemd[1]: Starting Daily Cleanup of Temporary Directories. Apr 09 15:30:36 jupiter systemd[1]: Started Daily Cleanup of Temporary Directories.
For more information on temporary files handling, see man 5 tmpfiles.d
.
15.6.2 System log #
Section 15.6.9, “Debugging services” explains how to view log messages for a given service.
However, displaying log messages is not restricted to service logs.
You can also access and query the complete log messages written by systemd
—the so-called “Journal”.
Use the command journalctl
to display the complete log messages starting with the oldest entries.
Refer to man 1 journalctl
for options such as applying filters or changing the output format.
15.6.3 Snapshots #
You can save the current state of systemd
to a named snapshot and later revert to it with the isolate
subcommand.
This is useful when testing services or custom targets, because it allows you to return to a defined state at any time.
A snapshot is only available in the current session and will automatically be deleted on reboot.
A snapshot name must end in .snapshot
.
- Create a snapshot
>
sudo
systemctl snapshot MY_SNAPSHOT.snapshot- Delete a snapshot
>
sudo
systemctl delete MY_SNAPSHOT.snapshot- View a snapshot
>
sudo
systemctl show MY_SNAPSHOT.snapshot- Activate a snapshot
>
sudo
systemctl isolate MY_SNAPSHOT.snapshot
15.6.4 Loading kernel modules #
With systemd
, kernel modules can automatically be loaded at boot time via a configuration file in /etc/modules-load.d
.
The file should be named MODULE.conf and have the following content:
# load module MODULE at boot time MODULE
In case a package installs a configuration file for loading a kernel module, the file gets installed to /usr/lib/modules-load.d
.
If two configuration files with the same name exist, the one in /etc/modules-load.d
tales precedence.
For more information, see the modules-load.d(5)
man page.
15.6.5 Performing actions before loading a service #
With System V init actions that need to be performed before loading a
service, needed to be specified in /etc/init.d/before.local
. This procedure is no longer supported with systemd
. If
you need to do actions before starting services, do the following:
- Loading kernel modules
Create a drop-in file in
/etc/modules-load.d
directory (seeman modules-load.d
for the syntax)- Creating Files or Directories, Cleaning-up Directories, Changing Ownership
Create a drop-in file in
/etc/tmpfiles.d
(seeman tmpfiles.d
for the syntax)- Other tasks
Create a system service file, for example,
/etc/systemd/system/before.service
, from the following template:[Unit] Before=NAME OF THE SERVICE YOU WANT THIS SERVICE TO BE STARTED BEFORE [Service] Type=oneshot RemainAfterExit=true ExecStart=YOUR_COMMAND # beware, executable is run directly, not through a shell, check the man pages # systemd.service and systemd.unit for full syntax [Install] # target in which to start the service WantedBy=multi-user.target #WantedBy=graphical.target
When the service file is created, you should run the following commands (as
root
):>
sudo
systemctl daemon-reload>
sudo
systemctl enable beforeEvery time you modify the service file, you need to run:
>
sudo
systemctl daemon-reload
15.6.6 Kernel control groups (cgroups) #
On a traditional System V init system, it is not always possible to match a process to the service that spawned it. Some services, such as Apache, spawn a lot of third-party processes (for example, CGI or Java processes), which themselves spawn more processes. This makes a clear assignment difficult or even impossible. Additionally, a service may not finish correctly, leaving certain children alive.
systemd
solves this problem by placing each service into its own
cgroup. cgroups are a kernel feature that allows aggregating processes
and all their children into hierarchical organized groups. systemd
names each cgroup after its service. Since a non-privileged process is
not allowed to “leave” its cgroup, this provides an
effective way to label all processes spawned by a service with the name
of the service.
To list all processes belonging to a service, use the command
systemd-cgls
, for example:
#
systemd-cgls --no-pager
├─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 20
├─user.slice
│ └─user-1000.slice
│ ├─session-102.scope
│ │ ├─12426 gdm-session-worker [pam/gdm-password]
│ │ ├─15831 gdm-session-worker [pam/gdm-password]
│ │ ├─15839 gdm-session-worker [pam/gdm-password]
│ │ ├─15858 /usr/lib/gnome-terminal-server
[...]
└─system.slice
├─systemd-hostnamed.service
│ └─17616 /usr/lib/systemd/systemd-hostnamed
├─cron.service
│ └─1689 /usr/sbin/cron -n
├─postfix.service
│ ├─ 1676 /usr/lib/postfix/master -w
│ ├─ 1679 qmgr -l -t fifo -u
│ └─15590 pickup -l -t fifo -u
├─sshd.service
│ └─1436 /usr/sbin/sshd -D
[...]
See Book “System Analysis and Tuning Guide”, Chapter 10 “Kernel control groups” for more information about cgroups.
15.6.7 Terminating services (sending signals) #
As explained in Section 15.6.6, “Kernel control groups (cgroups)”, it is not always possible to assign a process to its parent service process in a System V init system. This makes it difficult to terminate a service and all of its children. Child processes that have not been terminated will remain as zombie processes.
systemd
's concept of confining each service into a cgroup makes it possible to clearly identify all child processes of a service and therefore allows you to send a signal to each of these processes.
Use systemctl kill
to send signals to services.
For a list of available signals refer to man 7 signals
.
- Sending
SIGTERM
to a service SIGTERM
is the default signal that is sent.>
sudo
systemctl kill MY_SERVICE- Sending SIGNAL to a service
Use the
-s
option to specify the signal that should be sent.>
sudo
systemctl kill -s SIGNAL MY_SERVICE- Selecting processes
By default the
kill
command sends the signal toall
processes of the specified cgroup. You can restrict it to thecontrol
or themain
process. The latter is, for example, useful to force a service to reload its configuration by sendingSIGHUP
:>
sudo
systemctl kill -s SIGHUP --kill-who=main MY_SERVICE
15.6.8 Important notes on the D-Bus service #
The D-Bus service is the message bus for communication between
systemd
clients and the systemd manager that is running as pid 1.
Even though dbus
is a
stand-alone daemon, it is an integral part of the init infrastructure.
Stopping dbus
or restarting it
in the running system is similar to an attempt to stop or restart PID
1. It breaks the systemd
client/server communication and makes most
systemd
functions unusable.
Therefore, terminating or restarting
dbus
is neither
recommended nor supported.
Updating the dbus
or
dbus
-related packages requires a reboot. When
in doubt whether a reboot is necessary, run the sudo zypper ps
-s
. If dbus
appears among the listed
services, you need to reboot the system.
Keep in mind that dbus
is updated even when
automatic updates are configured to skip the packages that require
reboot.
15.6.9 Debugging services #
By default, systemd
is not overly verbose. If a service was started
successfully, no output is produced. In case of a failure, a short
error message is displayed. However, systemctl
status
provides a means to debug the start-up and operation of a
service.
systemd
comes with its own logging mechanism (“The
Journal”) that logs system messages. This allows you to display
the service messages together with status messages. The
status
command works similar to
tail
and can also display the log messages in
different formats, making it a powerful debugging tool.
- Show service start-up failure
Whenever a service fails to start, use
systemctl status MY_SERVICE
to get a detailed error message:#
systemctl start apache2 Job failed. See system journal and 'systemctl status' for details.#
systemctl status apache2 Loaded: loaded (/usr/lib/systemd/system/apache2.service; disabled) Active: failed (Result: exit-code) since Mon, 04 Apr 2018 16:52:26 +0200; 29s ago Process: 3088 ExecStart=/usr/sbin/start_apache2 -D SYSTEMD -k start (code=exited, status=1/FAILURE) CGroup: name=systemd:/system/apache2.service Apr 04 16:52:26 g144 start_apache2[3088]: httpd2-prefork: Syntax error on line 205 of /etc/apache2/httpd.conf: Syntax error on li...alHost>- Show last N service messages
The default behavior of the
status
subcommand is to display the last ten messages a service issued. To change the number of messages to show, use the--lines=N
parameter:>
sudo
systemctl status chronyd>
sudo
systemctl --lines=20 status chronyd- Show service messages in append mode
To display a “live stream” of service messages, use the
--follow
option, which works liketail
-f
:>
sudo
systemctl --follow status chronyd- Messages output format
The
--output=MODE
parameter allows you to change the output format of service messages. The most important modes available are:short
The default format. Shows the log messages with a human readable time stamp.
verbose
Full output with all fields.
cat
Terse output without time stamps.
15.7 systemd
timer units #
Similar to cron, systemd
timer units provide a mechanism for scheduling jobs on Linux.
Although systemd
timer units serve the same purpose as cron, they offer several advantages.
Jobs scheduled using a timer unit can depend on other
systemd
services.Timer units are treated as regular
systemd
services, so can be managed withsystemctl
.Timers can be realtime and monotonic.
Time units are logged to the
systemd
journal, which makes it easier to monitor and troubleshoot them.
systemd
timer units are identified by the .timer
file name extension.
15.7.1 systemd
timer types #
Timer units can use monotonic and realtime timers.
Similar to cronjobs, realtime timers are triggered on calendar events. Realtime timers are defined using the option
OnCalendar
.Monotonic timers are triggered at a specified time elapsed from a certain starting point. The latter could be a system boot or system unit activation event. There are several options for defining monotonic timers including
OnBootSec
,OnUnitActiveSec
, andOnTypeSec
. Monotonic timers are not persistent, and they are reset after each reboot.
15.7.2 systemd
timers and service units #
Every timer unit must have a corresponding systemd
unit file it controls.
In other words, a .timer
file activates and manages the corresponding .service
file.
When used with a timer, the .service
file does not require an [Install]
section, as the service is managed by the timer.
15.7.3 Practical example #
To understand the basics of systemd
timer units, we set up a timer that triggers the foo.sh
shell script.
First step is to create a systemd
service unit that controls the shell script.
To do this, open a new text file for editing and add the following service unit definition:
[Unit] Description="Foo shell script" [Service] ExecStart=/usr/local/bin/foo.sh
Save the file under the name foo.service
in the directory /etc/systemd/system/
.
Next, open a new text file for editing and add the following timer definition:
[Unit] Description="Run foo shell script" [Timer] OnBootSec=5min OnUnitActiveSec=24h Unit=foo.service [Install] WantedBy=multi-user.target
The [Timer]
section in the example above specifies
what service to trigger (foo.service
) and when to
trigger it. In this case, the option OnBootSec
specifies a monotonic timer that triggers the service five minutes
after the system boot, while the option
OnUnitActiveSec
triggers the service 24 hours after
the service has been activated (that is, the timer triggers the service
once a day). Finally, the option WantedBy
specifies
that the timer should start when the system has reached the multi-user
target.
Instead of a monotonic timer, you can specify a real-time one using the
option OnCalendar
. The following realtime timer
definition triggers the related service unit once a week, starting on
Monday at 12:00.
[Timer] OnCalendar=weekly Persistent=true
The option Persistent=true
indicates that the service
is triggered immediately after the timer activation if the timer missed
the last start time (for example, because of the system being powered
off).
The option OnCalendar
can also be used to define
specific dates times for triggering a service using the following
format: DayOfWeek Year-Month-Day Hour:Minute:Second
.
The example below triggers a service at 5am every day:
OnCalendar=*-*-* 5:00:00
You can use an asterisk to specify any value, and commas to list possible values. Use two values separated by .. to indicate a contiguous range. The following example triggers a service at 6pm on Friday of every month:
OnCalendar=Fri *-*-1..7 18:00:00
To trigger a service at different times, you can specify several OnCalendar
entries:
OnCalendar=Mon..Fri 10:00 OnCalendar=Sat,Sun 22:00
In the example above, a service is triggered at 10am on week days and at 10pm on weekends.
When you are done editing the timer unit file, save it under the name foo.timer
in the /etc/systemd/system/
directory.
To check the correctness of the created unit files, run the following command:
>
sudo
systemd-analyze verify /etc/systemd/system/foo.*
If the command returns no output, the files have passed the verification successfully.
To start the timer, use the command sudo systemctl start foo.timer
.
To enable the timer on boot, run the command sudo systemctl enable foo.timer
.
15.7.4 Managing systemd
timers #
Since timers are treated as regular systemd
units, you can manage them using systemctl
.
You can start a timer with systemctl start
, enable a timer with systemctl enable
, and so on.
In addition to that, you can list all active timers using the command systemctl list-timers
.
To list all timers, including inactive ones, run the command systemctl list-timers --all
.
15.8 More information #
For more information on systemd
refer to the following online resources:
- Homepage
systemd
for administratorsLennart Pöttering, one of the
systemd
authors, has written a series of blog entries (13 at the time of writing this chapter). Find them at http://0pointer.de/blog/projects.
Part III System #
- 16 32-bit and 64-bit applications in a 64-bit system environment
SUSE® Linux Enterprise Server is available for several 64-bit platforms. The developers have not ported all 32-bit applications to 64-bit systems. This chapter offers a brief overview of 32-bit support implementation on 64-bit SUSE Linux Enterprise Server platforms.
- 17
journalctl
: Query thesystemd
journal systemd
features its own logging system called journal. There is no need to run asyslog
-based service, as all system events are written to the journal.- 18
update-alternatives
: Managing multiple versions of commands and files Often, there are several versions of the same tool installed on a system. To give administrators a choice and to make it possible to install and use different versions side by side, the alternatives system allows managing such versions consistently.
- 19 Basic networking
Linux offers the necessary networking tools and features for integration into all types of network structures. Network access using a network card can be configured with YaST. Manual configuration is also possible. In this chapter only the fundamental mechanisms and the relevant network configuration files are covered.
- 20 Printer operation
SUSE® Linux Enterprise Server supports printing with many types of printers, including remote network printers. Printers can be configured manually or with YaST. For configuration instructions, refer to Book “Deployment Guide”, Chapter 20 “Setting up hardware components with YaST”, Section 20.3 “Set…
- 21 Graphical user interface
SUSE Linux Enterprise Server includes the X.org server and the GNOME desktop. This chapter describes the configuration of the graphical user interface for all users.
- 22 Accessing file systems with FUSE
FUSE is the acronym for Filesystem in Userspace. This means you can configure and mount a file system as an unprivileged user. Normally, you need to be
root
for this task. FUSE alone is a kernel module. Combined with plug-ins, it allows you to extend FUSE to access almost all file systems like remote SSH connections, ISO images, and more.- 23 Managing kernel modules
Although Linux is a monolithic kernel, it can be extended using kernel modules. These are special objects that can be inserted into the kernel and removed on demand. In practical terms, kernel modules make it possible to add and remove drivers and interfaces that are not included in the kernel itsel…
- 24 Dynamic kernel device management with
udev
The kernel can add or remove almost any device in a running system. Changes in the device state (whether a device is plugged in or removed) need to be propagated to user space. Devices need to be configured when they are plugged in and recognized. Users of a certain device need to be informed about …
- 25 Special system features
This chapter starts with information about various software packages, the virtual consoles and the keyboard layout. We talk about software components like
bash
,cron
andlogrotate
, because they were changed or enhanced during the last release cycles. Even if they are small or considered of minor importance, users should change their default behavior, because these components are often closely coupled with the system. The chapter concludes with a section about language and country-specific settings (I18N and L10N).- 26 Using NetworkManager
NetworkManager is the ideal solution for laptops and other portable computers. It supports state-of-the-art encryption types and standards for network connections, including connections to 802.1X protected networks. 802.1X is the “IEEE Standard for Local and Metropolitan Area Networks—Port-Based Net…
- 27 Power management
The features and hardware described in this chapter do not exist on IBM Z, making this chapter irrelevant for these platforms.
- 28 Persistent memory
This chapter contains additional information about using SUSE Linux Enterprise with non-volatile main memory, also known as Persistent Memory, comprising one or more NVDIMMs.
16 32-bit and 64-bit applications in a 64-bit system environment #
SUSE® Linux Enterprise Server is available for several 64-bit platforms. The developers have not ported all 32-bit applications to 64-bit systems. This chapter offers a brief overview of 32-bit support implementation on 64-bit SUSE Linux Enterprise Server platforms.
SUSE Linux Enterprise Server for the 64-bit platforms POWER, IBM Z and AMD64/Intel 64 is designed so that existing 32-bit applications run in the 64-bit environment “out-of-the-box.” The corresponding 32-bit platforms are POWER for POWER, and x86 for AMD64/Intel 64. This support means that you can continue to use your preferred 32-bit applications without waiting for a corresponding 64-bit port to become available. The current POWER system runs most applications in 32-bit mode, but you can run 64-bit applications.
SUSE Linux Enterprise Server does not support compilation of 32-bit applications. It only offers runtime support for 32-bit binaries.
16.1 Runtime support #
If an application is available for both 32-bit and 64-bit environments, installing both versions may cause problems. In such cases, decide on one version to install to avoid potential runtime errors.
An exception to this rule is PAM (pluggable authentication modules). SUSE Linux Enterprise Server uses PAM in the authentication process as a layer that mediates between user and application. Always install both PAM versions on 64-bit operating systems that also run 32-bit applications.
For correct execution, every application requires a range of libraries. Unfortunately, the names are identical for the 32-bit and 64-bit versions of these libraries. They must be differentiated from each other in another way.
To retain compatibility with 32-bit versions, 64-bit and
32-bit libraries are stored in the same location. The 32-bit
version of libc.so.6
is located under
/lib/libc.so.6
in both 32-bit and 64-bit
environments.
All 64-bit libraries and object files are located in directories called
lib64
. The 64-bit object files normally
found under /lib
and
/usr/lib
are now found under
/lib64
and /usr/lib64
. This means
that space is available for 32-bit libraries under /lib
and /usr/lib
, so the file name for both versions can
remain unchanged.
If the data content of 32-bit subdirectories under /lib
does not
depend on word size, they are not moved. This scheme conforms to LSB (Linux Standards Base)
and FHS (File System Hierarchy Standard).
16.2 Kernel specifications #
The 64-bit kernels for AMD64/Intel 64, POWER and IBM Z offer both a 64-bit and a 32-bit kernel ABI (application binary interface). The latter is identical to the ABI for the corresponding 32-bit kernel. This means that communication between both 32-bit and 64-bit applications with 64-bit kernels are identical.
The 32-bit system call emulation for 64-bit kernels does not support
all the APIs used by system programs. This depends on the platform. For this
reason, few applications, like lspci
, must be
compiled on non-POWER platforms as 64-bit programs to
function properly. On IBM Z, not all ioctls are available in the
32-bit kernel ABI.
A 64-bit kernel can only load 64-bit kernel modules. You must compile 64-bit modules specifically for 64-bit kernels. It is not possible to use 32-bit kernel modules with 64-bit kernels.
Some applications require separate kernel-loadable modules. If you intend to use a 32-bit application in a 64-bit system environment, contact the provider of the application and SUSE. Make sure that the 64-bit version of the kernel-loadable module and the 32-bit compiled version of the kernel API are available for this module.
17 journalctl
: Query the systemd
journal #
systemd
features its own logging system called
journal. There is no need to run a
syslog
-based service, as all system events are
written to the journal.
The journal itself is a system service managed by systemd
. Its full name is
systemd-journald.service
. It collects and stores logging
data by maintaining structured indexed journals based on logging information
received from the kernel, user processes, standard input, and system service errors. The systemd-journald
service is on
by default:
>
sudo
systemctl status systemd-journald systemd-journald.service - Journal Service Loaded: loaded (/usr/lib/systemd/system/systemd-journald.service; static) Active: active (running) since Mon 2014-05-26 08:36:59 EDT; 3 days ago Docs: man:systemd-journald.service(8) man:journald.conf(5) Main PID: 413 (systemd-journal) Status: "Processing requests..." CGroup: /system.slice/systemd-journald.service └─413 /usr/lib/systemd/systemd-journald [...]
17.1 Making the journal persistent #
The journal stores log data in /run/log/journal/
by
default. Because the /run/
directory is volatile by
nature, log data is lost at reboot. To make the log data persistent, create the
directory /var/log/journal/
and make sure it
has the correct access modes and ownership, so the systemd-journald service can store its
data. To switch to persistent logging, execute the following commands:
>
sudo
mkdir /var/log/journal>
sudo
systemd-tmpfiles --create --prefix=/var/log/journal>
sudo
journalctl --flush
Any log data stored in /run/log/journal/
will be flushed into
/var/log/journal/
.
17.2 journalctl
: Useful switches #
This section introduces several common useful options to enhance the default
journalctl
behavior. All switches are described in the
journalctl
manual page, man 1
journalctl
.
To show all journal messages related to a specific executable, specify the full path to the executable:
>
sudo
journalctl /usr/lib/systemd/systemd
- -f
Shows only the most recent journal messages, and prints new log entries as they are added to the journal.
Prints the messages and jumps to the end of the journal, so that the latest entries are visible within the pager.
- -r
Prints the messages of the journal in reverse order, so that the latest entries are listed first.
- -k
Shows only kernel messages. This is equivalent to the field match
_TRANSPORT=kernel
(see Section 17.3.3, “Filtering based on fields”).- -u
Shows only messages for the specified
systemd
unit. This is equivalent to the field match_SYSTEMD_UNIT=UNIT
(see Section 17.3.3, “Filtering based on fields”).>
sudo
journalctl -u apache2 [...] Jun 03 10:07:11 pinkiepie systemd[1]: Starting The Apache Webserver... Jun 03 10:07:12 pinkiepie systemd[1]: Started The Apache Webserver.
17.3 Filtering the journal output #
When called without switches, journalctl
shows the full
content of the journal, the oldest entries listed first. The output can be
filtered by specific switches and fields.
17.3.1 Filtering based on a boot number #
journalctl
can filter messages based on a specific
system boot. To list all available boots, run
>
sudo
journalctl --list-boots -1 097ed2cd99124a2391d2cffab1b566f0 Mon 2014-05-26 08:36:56 EDT—Fri 2014-05-30 05:33:44 EDT 0 156019a44a774a0bb0148a92df4af81b Fri 2014-05-30 05:34:09 EDT—Fri 2014-05-30 06:15:01 EDT
The first column lists the boot offset: 0
for the
current boot, -1
for the previous one,
-2
for the one prior to that, etc. The second column
contains the boot ID followed by the limiting time stamps of the specific
boot.
Show all messages from the current boot:
>
sudo
journalctl -b
If you need to see journal messages from the previous boot, add an offset parameter. The following example outputs the previous boot messages:
>
sudo
journalctl -b -1
Another way is to list boot messages based on the boot ID. For this purpose, use the _BOOT_ID field:
>
sudo
journalctl _BOOT_ID=156019a44a774a0bb0148a92df4af81b
17.3.2 Filtering based on time interval #
You can filter the output of journalctl
by specifying
the starting and/or ending date. The date specification should be of the
format "2014-06-30 9:17:16". If the time part is omitted, midnight is
assumed. If seconds are omitted, ":00" is assumed. If the date part is
omitted, the current day is assumed. Instead of numeric expression, you can
specify the keywords "yesterday", "today", or "tomorrow". They refer to
midnight of the day before the current day, of the current day, or of the
day after the current day. If you specify "now", it refers to the current
time. You can also specify relative times prefixed with
-
or +
, referring to times before or
after the current time.
Show only new messages since now, and update the output continuously:
>
sudo
journalctl --since "now" -f
Show all messages since last midnight till 3:20am:
>
sudo
journalctl --since "today" --until "3:20"
17.3.3 Filtering based on fields #
You can filter the output of the journal by specific fields. The syntax of
a field to be matched is FIELD_NAME=MATCHED_VALUE
, such
as _SYSTEMD_UNIT=httpd.service
. You can specify multiple
matches in a single query to filter the output messages even more. See
man 7 systemd.journal-fields
for a list of default
fields.
Show messages produced by a specific process ID:
>
sudo
journalctl _PID=1039
Show messages belonging to a specific user ID:
# journalctl _UID=1000
Show messages from the kernel ring buffer (the same as
dmesg
produces):
>
sudo
journalctl _TRANSPORT=kernel
Show messages from the service's standard or error output:
>
sudo
journalctl _TRANSPORT=stdout
Show messages produced by a specified service only:
>
sudo
journalctl _SYSTEMD_UNIT=avahi-daemon.service
If two different fields are specified, only entries that match both expressions at the same time are shown:
>
sudo
journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=1488
If two matches refer to the same field, all entries matching either expression are shown:
>
sudo
journalctl _SYSTEMD_UNIT=avahi-daemon.service _SYSTEMD_UNIT=dbus.service
You can use the '+' separator to combine two expressions in a logical 'OR'. The following example shows all messages from the Avahi service process with the process ID 1480 together with all messages from the D-Bus service:
>
sudo
journalctl _SYSTEMD_UNIT=avahi-daemon.service _PID=1480 + _SYSTEMD_UNIT=dbus.service
17.4 Investigating systemd
errors #
This section introduces a simple example to illustrate how to find and fix
the error reported by systemd
during apache2
start-up.
Try to start the apache2 service:
# systemctl start apache2 Job for apache2.service failed. See 'systemctl status apache2' and 'journalctl -xn' for details.
Let us see what the service's status says:
>
sudo
systemctl status apache2 apache2.service - The Apache Webserver Loaded: loaded (/usr/lib/systemd/system/apache2.service; disabled) Active: failed (Result: exit-code) since Tue 2014-06-03 11:08:13 CEST; 7min ago Process: 11026 ExecStop=/usr/sbin/start_apache2 -D SYSTEMD -DFOREGROUND \ -k graceful-stop (code=exited, status=1/FAILURE)The ID of the process causing the failure is 11026.
Show the verbose version of messages related to process ID 11026:
>
sudo
journalctl -o verbose _PID=11026 [...] MESSAGE=AH00526: Syntax error on line 6 of /etc/apache2/default-server.conf: [...] MESSAGE=Invalid command 'DocumenttRoot', perhaps misspelled or defined by a module [...]Fix the typo inside
/etc/apache2/default-server.conf
, start the apache2 service, and print its status:>
sudo
systemctl start apache2 && systemctl status apache2 apache2.service - The Apache Webserver Loaded: loaded (/usr/lib/systemd/system/apache2.service; disabled) Active: active (running) since Tue 2014-06-03 11:26:24 CEST; 4ms ago Process: 11026 ExecStop=/usr/sbin/start_apache2 -D SYSTEMD -DFOREGROUND -k graceful-stop (code=exited, status=1/FAILURE) Main PID: 11263 (httpd2-prefork) Status: "Processing requests..." CGroup: /system.slice/apache2.service ├─11263 /usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf -D [...] ├─11280 /usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf -D [...] ├─11281 /usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf -D [...] ├─11282 /usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf -D [...] ├─11283 /usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf -D [...] └─11285 /usr/sbin/httpd2-prefork -f /etc/apache2/httpd.conf -D [...]
17.5 Journald configuration #
The behavior of the systemd-journald service can be adjusted by modifying
/etc/systemd/journald.conf
. This section introduces
only basic option settings. For a complete file description, see
man 5 journald.conf
. Note that you need to restart the
journal for the changes to take effect with
>
sudo
systemctl restart systemd-journald
17.5.1 Changing the journal size limit #
If the journal log data is saved to a persistent location (see
Section 17.1, “Making the journal persistent”), it uses up to 10% of the file
system the /var/log/journal
resides on. For example,
if /var/log/journal
is located on a 30 GB
/var
partition, the journal may use up to 3 GB of the
disk space. To change this limit, change (and uncomment) the
SystemMaxUse
option:
SystemMaxUse=50M
17.5.2 Forwarding the journal to /dev/ttyX
#
You can forward the journal to a terminal device to inform you about system
messages on a preferred terminal screen, for example
/dev/tty12
. Change the following journald options to