Jump to contentJump to page navigation: previous page [access key p]/next page [access key n]
documentation.suse.com / Building Linux System Appliances / Contributing

12 Contributing

Note
Note

Abstract

This document describes the development process of KIWI NG and how you can be part of it. This description applies to version 10.2.2.

12.1 Using KIWI NG in a Python Project

Note
Note

Abstract

KIWI NG is provided as a Python module under the kiwi namespace. It is available for the Python 3 version. The following description applies for KIWI NG version 10.2.2.

KIWI NG can also function as a module for other Python projects. The following example demonstrates how to read an existing image description, add a new repository definition, and export the modified description on stdout.

import sys
import logging

from kiwi.xml_description import XMLDescription
from kiwi.xml_state import XMLState

description = XMLDescription('path/to/kiwi/XML/config.xml')

xml_data = description.load()

xml_state = XMLState(
    xml_data=xml_data, profiles=[], build_type='iso'
)

xml_state.add_repository(
    repo_source='http://repo',
    repo_type='rpm-md',
    repo_alias='myrepo',
    repo_prio=99
)

xml_data.export(
    outfile=sys.stdout, level=0
)

Each class in the example is responsible for a single tasks, so they can be reused in other user cases. Therefore it is possible to use KIWI NG beyond the main image building scope, for example to manage setup of loop devices, filesystems, partitions, etc.

This means KIWI NG offers a way to describe a system, but you can choose whether you want to use the KIWI NG description format or not. The following example shows how to use KIWI NG to create a simple filesystem image which contains your host tmp directory.

import logging

from kiwi.storage.loop_device import LoopDevice
from kiwi.filesystem import FileSystem

with LoopDevice(
    filename='my_tmp.ext4', filesize_mbytes=100
) as loop_provider:
    loop_provider.create()

    filesystem = FileSystem.new(
        'ext4', loop_provider, '/tmp/'
    )
    filesystem.create_on_device(
        label='TMP'
    )
    filesystem.sync_data()

12.2 Plugin Architecture

Each command provided by KIWI NG is written as a task plugin under the kiwi.tasks namespace. As a developer, you can extend KIWI NG with custom task plugins, following the conventions below.

12.2.1 Naming conventions

Task plugin file name

The file name of a task plugin must follow the pattern <service>_<command>.py. This allows you to invoke the task with kiwi-ng service command ...

Task plugin option handling

KIWI NG uses the docopt module to handle options. Each task plugin must use docopt to allow option handling.

Task plugin class

The implementation of the plugin must be a class that matches the naming convention <Service><Command>Task. The class must inherit from the CliTask base class. On the plugin startup, KIWI NG expects an implementation of the process method.

Task plugin entry point

Registration of the plugin must be done in setup.py using the entry_points concept from Python’s setuptools.

'packages': ['kiwi_plugin'],
'entry_points': {
    'kiwi.tasks': [
        'service_command=kiwi_plugin.tasks.service_command'
    ]
}

12.2.2 Example plugin

Note
Note

The following example assumes an existing Python project which was set up according to the Python project rules and standards.

  1. Assuming the project namespace is kiwi_relax_plugin, create the task plugin directory kiwi_relax_plugin/tasks

  2. Create the entry point in setup.py.

    Assuming we want to create the service named relax that has the command justdoit, this is the following entry point definition in setup.py:

    'packages': ['kiwi_relax_plugin'],
    'entry_points': {
        'kiwi.tasks': [
            'relax_justdoit=kiwi_relax_plugin.tasks.relax_justdoit'
        ]
    }
  3. Create the plugin code in the file kiwi_relax_plugin/tasks/relax_justdoit.py with the following content:

    """
    usage: kiwi-ng relax justdoit -h | --help
           kiwi-ng relax justdoit --now
    
    commands:
        justdoit
            time to relax
    
    options:
        --now
            right now. For more details about docopt
            see: http://docopt.org
    """
    # These imports requires kiwi to be part of your environment
    # It can be either installed from pip into a virtual development
    # environment or from the distribution package manager
    from kiwi.tasks.base import CliTask
    from kiwi.help import Help
    
    class RelaxJustdoitTask(CliTask):
        def process(self):
            self.manual = Help()
            if self.command_args.get('help') is True:
                # The following will invoke man to show the man page
                # for the requested command. Thus for the call to
                # succeed a manual page needs to be written and
                # installed by the plugin
                return self.manual.show('kiwi::relax::justdoit')
    
            print(
                'https://genius.com/Frankie-goes-to-hollywood-relax-lyrics'
            )
  4. Test the plugin

    $ ./setup.py develop
    $ kiwi-ng relax justdoit --now

12.3 Write Integration Tests for the Scripts

KIWI NG comes with a set of helper functions that can be used in config.sh (see also: Section 7.6, “User-Defined Scripts”). These functions utilize containers to run the individual tasks and verify the final result.

Ensure that you have either podman or docker installed and configured on your system. With Podman, the integration tests use podman in rootless mode by default. You can select docker instead by setting the environment variable CONTAINER_RUNTIME to docker. Then you can run the integration tests via tox:

$ tox -e scripts -- -n NUMBER_OF_THREADS

The tests are written using the pytest-container plugin. If applicable, use the utility functions and fixtures of the plugin. For example, the auto_container and auto_container_per_test fixtures in conjunction with testinfra.

12.3.1 Test setup

The script tests can be run inside different containers specified in test/scripts/conftest.py. This file contains the CONTAINERS list with all currently present images. These images are pulled and built as needed, and the functions.sh is copied into /bin/, so it is available in PATH.

To use any of these containers, you can either define the global variable CONTAINER_IMAGES in a test module and use the auto_container fixture, or parametrize the container fixture indirectly:

@pytest.mark.parametrize("container_per_test", (TUMBLEWEED, LEAP_15_3), indirect=True)
def test_RmWorks(container_per_test):
    # create the file /root/foobar
    container_per_test.connection.run_expect([0], "touch /root/foobar")
    assert container_per_test.connection.file("/root/foobar").exists

    # source the functions and execute our function under test
    container_per_test.connection.run_expect([0], ". /bin/functions.sh && Rm /root/foobar")

    # verify the result
    assert not container_per_test.connection.file("/root/foobar").exists

The example above uses the _per_test variant of the container fixture. It ensures that the container is used only in a single test function. Use this variant for tests that mutate the system under test, because otherwise it may lead race conditions that are difficult to debug. For tests that only perform reads, you can omit the _per_test suffix, so that the container environment can shared with other tests. This improves execution speed, but comes at the expense of safety in case of mutation.

For further information, refer to pytest-container.

12.4 Extending KIWI NG with Custom Operations

Note
Note

Abstract

Extension plugins in KIWI NG offer a mechanism for adding information outside the standard KIWI NG schema.

This document describes how to create an extension plugin for the KIWI NG schema as well as how to add and validate additional information in the KIWI NG image description.

The described schema extension can be used in an additional KIWI NG task plugin to provide a new subcommand for KIWI NG. At the present moment, there is no other plugin interface except for providing additional KIWI NG commands.

Depending on the demand for custom plugins, the interface to hook in code into other parts of the KIWI NG processing needs to be extended.

This description applies for version 10.2.2.

12.4.1 The <extension> Section

The main KIWI NG schema supports an extension section that allows you to specify any XML structure and attributes, as long as they are attached to a namespace. This means that any custom XML structure can be implemented similar to the the example below:

<image>
    ...
    <extension xmlns:my_plugin="http://www.my_plugin.com">
        <my_plugin:my_feature>
            <my_plugin:title name="cool stuff"/>
        </my_plugin:my_feature>
    </extension>
</image>
  • Any toplevel namespace must be unique

  • Multiple different toplevel namespaces are allowed, for example: my_plugin_a, my_plugin_b

12.4.2 RELAX NG Schema for the Extension

If an extension section is found, KIWI NG looks up its namespace and uses the main XML catalog for the schema file to validate the extension data. The schema file must be a RELAX NG schema in the .rng format. We recommend to save the schema as /usr/share/xml/kiwi/my_plugin.rng

For the example above, the RELAX NG Schema in the compressed format my_plugin.rnc looks as follows:

namespace my_plugin = "http://www.my_plugin.com"

start =
    k.my_feature

div {
    k.my_feature.attlist = empty
    k.my_feature =
        element my_plugin:my_feature {
            k.my_feature.attlist &
            k.title
        }
}

div {
    k.title.name.attribute =
        attribute name { text }
    k.title.attlist = k.title.name.attribute
    k.title =
        element my_plugin:title {
            k.title.attlist
        }
}

In order to convert this schema to the .rng format just call:

$ trang -I rnc -O rng my_plugin.rnc /usr/share/xml/kiwi/my_plugin.rng

12.4.3 Extension schema in XML catalog

As mentioned above, the mapping from the extension namespace to the correct RELAX NG schema file is handled by a XML catalog file. The XML catalog for the example is as follows:

<?xml version="1.0"?>
<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
    <system
        systemId="http://www.my_plugin.com"
        uri="file:////usr/share/xml/kiwi/my_plugin.rng"/>
</catalog>

For resolving the catalog, KIWI NG uses the xmlcatalog command and the main XML catalog from the system /etc/xml/catalog.

Note
Note

How the main catalog is informed about the existence of the KIWI NG extension catalog file depends on the distribution and its version. Refer to the distribution documentation for information on adding XML catalogs.

If the following command provides the information to the correct RELAX NG schema file, you are ready for a first test:

$ xmlcatalog /etc/xml/catalog http://www.my_plugin.com

12.4.4 Using the extension

In order to test the extension, insert the example extension into one of your image description’s config.xml file.

The following example reads the name attribute from the title section of the my_feature root element and prints it:

import logging

from kiwi.xml_description import XMLDescription

description = XMLDescription('path/to/kiwi/XML/config.xml')
description.load()

my_plugin = description.get_extension_xml_data('my_plugin')

print(my_plugin.getroot()[0].get('name'))

12.5 The Basics

The core appliance builder is developed in Python and follows the test driven development rules.

If you want to implement a bigger feature, consider opening an issue on GitHub first to discuss the changes. Or join the discussion in the #kiwi channel on Riot.im.

12.6 Fork the upstream repository

  1. On GitHub, navigate to: https://github.com/OSInside/kiwi

  2. In the top-right corner of the page, click Fork.

12.7 Create a local clone of the forked repository

$ git clone https://github.com/YOUR-USERNAME/kiwi

$ git remote add upstream https://github.com/OSInside/kiwi.git

12.8 Install Required Operating System Packages

KIWI NG requires additional packages at runtime which are not provided by pip. Those will be pulled in by installing the following package:

  • kiwi-systemdeps

The package is provided on the Open Build Service in the Virtualization:Appliances:Builder project. For manual inspection of the packages that are pulled in from the above kiwi-systemdeps package, please refer to the package/python-kiwi-spec-template spec file from the checked out Git repository.

12.9 Create a Python Virtual Development Environment

The following commands initializes and activates a development environment for Python 3:

Note
Note

KIWI NG uses tox to create a devel environment and to run tests, linters and other tasks in the tox generated environment. A tox version >= 3.3 is required for this setup process. On your host a python version >= 3.9 is required for tox to work.

$ poetry install

The command above automatically creates the application script called kiwi-ng, which allows you to run KIWI NG from the Python sources inside the virtual environment using Poetry:

$ poetry run kiwi-ng --help

12.10 Running the Unit Tests

We use tox to run the unit tests. Tox sets up its own virtualenvs inside the .tox directory for multiple Python versions and should thus not be invoked from inside your development virtualenv.

Before submitting your changes via a pull request, ensure that all tests pass and that the code has the required test coverage via the command:

$ tox

We also include pytest-xdist in the development virtualenv which allows to run the unit tests in parallel. It is turned off by default but can be enabled via:

$ tox -- "-n NUMBER_OF_PROCESSES"

where you can insert an arbitrary number as NUMBER_OF_PROCESSES (or a shell command like $(nproc)). Note that the double quotes around -n NUMBER_OF_PROCESSES are required (otherwise tox will consume this command line flag instead of forwarding it to pytest).

The previous call would run the unit tests for different Python versions, check the source code for errors and build the documentation.

If you want to see the available targets, use the option -l to let tox print a list of them:

$ tox -l

To only run a special target, use the -e option. The following example runs the test cases for the Python 3.11 interpreter only:

$ tox -e unit_py3_11

12.11 Create a Branch for each Feature or Bugfix

Code changes should be done in an extra Git branch. This allows for creating GitHub pull requests in a clean way. See also: Collaborating with issues and pull requests

$ git checkout -b my-topic-branch

Make and commit your changes.

Note
Note

You can make multiple commits which is generally useful to give your changes a clear structure and to allow us to better review your work.

Note
Note

Your work is important and must be signed to ensure the integrity of the repository and the code. Thus we recommend to setup a signing key as documented in Signing Git Patches.

$ git commit -S -a

Run the tests and code style checks. All of these are also performed by GitLab CI when a pull request is created.

$ tox

Once everything is done, push your local branch to your forked repository and create a pull request into the upstream repository.

$ git push origin my-topic-branch

Thank you much for contributing to KIWI NG. Your time and work effort is very much appreciated!

12.12 Coding Style

KIWI NG follows the general PEP8 guidelines with the following exceptions:

  • We do not use free functions at all. Even utility functions must be part of a class, but should be either prefixed with the @classmethod or @staticmethod decorators (whichever is more appropriate).

  • Do not set module and class level variables, put these into the classes’ __init__ method.

  • The names of constants are not written in all capital letters.

12.12.1 Documentation

KIWI NG uses Sphinx for the API, user documentation and manual pages

tox -e doc

Document all your classes, methods, their parameters and their types using the standard reStructuredText syntax as supported by Sphinx, an example class is documented as follows:

class Example:
    """
    **Example class**

    :param str param: A parameter
    :param bool : Source file name to compress
    :param list supported_zipper: List of supported compression tools
    :attr Optional[str] attr: A class attribute
    """
    def __init__(self, param, param_w_default=False):
        self.attr = param if param_w_default else None

    def method(self, param):
        """
        A method that takes a parameter.

        :param list param: a parameter
        :return: whether param is very long
        :rtype: bool
        """
        return len(param) > 50

Try to stick to the following guidelines when documenting source code:

  • Classes should be documented directly in their main docstring and not in __init__.

  • Document every function parameter and every public attribute including their types.

  • Only public methods should be documented, private methods don’t have to, unless they are complex and it is not easy to grasp what they do (which should be avoided anyway).

Please also document any user-facing changes that you implementing (e.g. adding a new build type) in the user documentation, which can be found in doc/source. General documentation should be put into the working_with_kiwi/ subfolder, whereas documentation about more specialized topics would belong into the building/ subfolder.

Adhere to a line limit of 75 characters when writing the user facing documentation .

12.13 Additional Information

The following sections provides further information about the repository integrity, version, package and documentation management.

12.13.1 Signing Git Patches

To ensure the integrity of the repository and the code base, patches sent for inclusion should be signed with a GPG key.

To prepare Git to sign commits, follow these instructions:

  1. Create a key suitable for signing (it is not recommended to use existing keys to not mix it with your email environment):

    $ gpg2 --expert --full-gen-key
  2. Either choose a RSA key for signing (option (4)) or an ECC key for signing (option (10)). For a RSA key choose a key size of 4096 bits and for a ECC key choose Curve 25519 (option (1)). Enter a reasonable validity period (we recommend 2 to 5 years). Complete the key generation by entering your name and email address.

  3. Add the key ID to your git configuration, by running the following git config commands:

    $ git config --local user.signingkey $YOUR_SIGN_KEY_ID
    $ git config --local commit.gpgSign true

    Omitting the flag --local will make these settings global for all repositories (they will be added to ~/.gitconfig). You can find your signkey’s ID via:

    $ gpg2 --list-keys --keyid-format long $YOUR_EMAIL
    pub   rsa4096/AABBCCDDEEFF0011 2019-04-26 [S] [expires: 2021-04-16]
    AAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBBB
    uid                 [ultimate] YOU <$YOUR_EMAIL>

    The key’s ID in this case would be AABBCCDDEEFF0011. Note that your signkey will have only a [S] after the creation date, not a [SC] (then you are looking at your ordinary GPG key that can also encrypt).

12.13.2 Bumping the Version

The KIWI NG project follows the Semantic Versioning scheme. We use the bumpversion tool for consistent versioning.

Follow these instructions to bump the major, minor, or patch part of the KIWI NG version. Ensure that your repository is clean (i.e. no modified and unknown files exist) beforehand running bumpversion.

  • For backwards-compatible bug fixes:

    $ bumpversion patch
  • For additional functionality in a backwards-compatible manner. When changed, the patch level is reset to zero:

    $ bumpversion minor
  • For incompatible API changes. When changed, the patch and minor levels are reset to zero:

    $ bumpversion major

12.13.3 Creating a RPM Package

We provide a template for a RPM spec file in package/python-kiwi-spec-template alongside with a rpmlint configuration file and an automatically updated python-kiwi.changes.

To create the necessary files to build a RPM package via rpmbuild, run:

$ make build

The sources are collected in the dist/ directory. These can be directly build it with rpmbuild, fedpkg, or submitted to the Open Build Service using osc.